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ABSTRACT

Repeated measures design (or longitudinal study) are commonly seen in many research

fields, especially in pharmaceutical clinical trials, agricultural research, and psychology. PROC

MIXED (SAS Inc.) is a well-known standard tool for analyzing repeated measures data nowadays.

The MIXED procedure is based on the standard linear MIXED model, which estimates parameters

by maximizing the restricted likelihood. The usual assumption for a standard linear MIXED

model is normality. However, the character of data in the real world is hard to tell; it may be non-

smoothed, non-symmetric, and having heavy tails, having a small sample size, and so on. Therefore,

this simulation study was conducted to check the validity of a MIXED model’s statistical inference

when violating the underlying assumptions – normality of random errors [Scheffe, 1959], and giving

two design features as unbalanced group size and inequality of variance of errors [Scheffe, 1959].

We compare the Type I error rate in different combinations of settings with the Type I error rate

under the normal distribution. The power rate is also provided for checking the robustness. The

main results in this study show us that the MIXED model is reasonably robust to modest violations

of the normal distribution. In the meantime, when small group size combines with large variance,

it would cause a severe inflation problem on Type I error rates, which breaks the MIXED model’s

performance. When the Type I errors were found to be inflated, the Group= option was found to

often help with this problem, or sometimes one could use a Sub-Sampling procedure.
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1. INTRODUCTION

Repeated measures design (longitudinal study) is a study in which the outcome variables are

repeatedly measured more than once over time for each subject. It is widely used in many research

fields, especially in pharmaceutical clinical trials, agricultural research, and psychology. There are

three traditional ways to analyze the repeated measures data: ANOVA, MANOVA, and MIXED

models, notably using SAS PROC MIXED [Guerin and Stroup, 2000]. Among the three, PROC

MIXED allows us to specify the variance/covariance structure and tolerate the missing outcome

values, making it a standard tool for repeated measures data nowadays.

This study extends work begun by Taylor King’s thesis in 2017 [King, 2017]. In her research,

she compared the performance of multivariate analysis with the performance of mixed model and

the performance of different covariance structures in a mixed model. According to her suggestions

for future research, simulating unbalanced data or following a non-normal distribution would be

a good continuation. Therefore, in this study, we violate the underlying assumptions – normality

of random errors [Scheffe, 1959], and giving two design features as unbalanced group size and

inequality of variance of errors [Scheffe, 1959]. By doing this, the validity of the statistical inference

of the MIXED model can be checked. In a repeated measures study, unbalanced sample size

features, unequal group variance features, and non-normal distribution are very common. For

example, subjects may drop during a longitudinal study, which may cause unbalanced group size;

treatments are likely to have heterogeneous variances. Although normal distribution would be an

ideal situation, real-world data distribution is unknown, so that non-normal distribution can be

expected. Therefore, the results of this study would be useful from a practical point.

For illustration simplification, we first start to view the repeated measures data in a simple

linear growth model with only a factor TIME [Kwok et al., 2007]:
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The linear model can be written in matrix form [Littell et al., 2006]

Y = Xβ + Zu+ e (1.2)

Where u
e

 ∼MVN


0

0

 ,

G 0

0 R




With T time periods and N subjects, the dependent variable y is TN×1 vector, representing

T time measurements for N subjects. X is TN×2 design matrix containing the average intercept 1

and the slope TIME. β is 2×1 vector having two fixed but unknown parameters β0 and β1. Z is

TN×2N design matrix, and u is 2N×1 vector having the random effects of u0i and u1i representing

individual subject’s difference and follows N(0,G). e is a TN×1 vector containing the random effects

for measurement difference and follows N(0,R). The u and e are assumed to be uncorrelated.

There are two components in equation 1.2: fixed effects Xβ and random effects Zu+e. Xβ is

the mean of y. It is fixed effects because X is the design matrix, and the parameter β can be fixed.

There are two kinds of random effects: between-subject random effects Zu, and within-subject

random effects e. The random-effects u0i and u1i in u are between-subject variation, representing

the deviation of ith subject’s intercept and slope from the averaged intercept and slope. And e

is within-subject random error, where the element eti is the deviation of ith subject at the tth

2



measurement from the subject’s individual regression line. The random-effects u has a covariance

matrix G, and error e has a covariance matrix R.

Since the model contains two random effects, the properties of y can be investigated by

conditioning on random effects. Therefore, the generalized linear mixed model contains two types

of distributions- conditional distribution Equation 1.3 and marginal distribution Equation 1.4,

depending on if conditioning on random effects u [Littell et al., 2006]. If there are no random

effects (u = 0) in the model, the marginal and conditional variances are identical.

The conditional distribution of y with the following mean and variance

y|u ∼MVN(Xβ + Zu,R) (1.3)

Where R is a block diagonal matrix with N blocks (one per subject), having dimensions T×T.

The marginal distribution of y with the following mean and variance

y ∼MVN(Xβ, V ) (1.4)

Where the variance V equals to [Kwok et al., 2007]:

V = V AR(Zu+ e)

= V AR(Zu) + V AR(e)

= ZGZT +R

=



Z1 : : 0

0 Z2 : 0

: : : :

0 : : ZN


N×N



T : : 0

0 T : 0

: : : :

0 : : T


T×T



Z1 : : 0

0 Z2 : 0

: : : :

0 : : ZN



T

N×N

+



Σ : : 0

0 Σ : 0

: : : :

0 : : Σ


T×T

(1.5)
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The block structures on the diagonal of matrices in V are defined as follows:

Zi =



1 TIME1

1 TIME2

: :

: :

1 TIMET


N×2

, where i ∈ (1, ..., N) (1.6)

T =

τ00 τ01

τ10 τ11


2×2

(1.7)

and

Σ =



σ211 σ212 : σ21T

σ221 σ222 : σ22T

: : : :

σ2T1 σ2T1 : σ2TT


T×T

(1.8)

T is a 2 × 2 matrix having variances and covariances for between-subject random effects, and Σ is

a T×T block matrix showing the variances and covariances for within-subject random effects.

Since the data are repeatedly measured, the errors in the mixed model are correlated. A

common correlation among measurements is assumed for each subject, so there are multiple choices

of covariance structures that can be chosen as a common correlation

[Guerin and Stroup, 2000, SAS, 2015, Littell et al., 2006, Kincaid, 2005]. The five most common

covariance structures using k=4 repeated measures are described as below.

Variance Components(VC) [Littell et al., 2006, Kincaid, 2005] is the default covariance struc-

ture for a PROC MIXED procedure in SAS and is also the simplest covariance structure. It has

four different subject variances in the diagonal and has zero in all off-diagonals. This structure

assumes independence of errors.
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V C =



σ2γ1 0 0 0

0 σ2γ2 0 0

0 0 σ23 0

0 0 0 σ44


First-Order Autoregressive(AR(1)) [Littell et al., 2006, Kincaid, 2005] is used widely in time

series data. It can only be used when time intervals between any two measurements are equal in

repeated measure. The correlation between two measurements is defined by exponential function

ρx, so the correlation will decrease when time-space increases.

AR(1) = σ2



1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


Toeplitz(TOEP) [Littell et al., 2006, Kincaid, 2005] has more parameters than VC, AR(1),

and CS, but a smaller number of parameters than UN. The measurements taken at closer time

intervals have similar correlations.

TOEP = σ2



1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1


Compound Symmetry(CS) [Littell et al., 2006, Kincaid, 2005] is used for repeated measures

having the same correlation. A constant correlation is assumed between two separate measurements.

CS = σ2



1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1
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Unstructured(UN) [Littell et al., 2006, Kincaid, 2005] is the most complex covariance struc-

ture because each term can be different. It may be the best structure when fitting the real data

since the correlation between any two measurements does not have any constraints. However, it

may use up many degrees of freedom which would cause the Type I error increasing, especially

when the data set is small.

UN =



σ211 σ12 σ13 σ14

σ21 σ222 σ23 σ24

σ31 σ32 σ233 σ34

σ41 σ42 σ43 σ244
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2. LITERATURE REVIEW

2.1. SAS PROC MIXED Procedure

There are lots of guidelines and published papers about how to use SAS PROC MIXED.

PROC MIXED is based on REML (restricted maximum-likelihood) approach for parameter es-

timation [Jennrich and Schluchter, 1986, Littell et al., 2006]. The F test are the default statis-

tical tests in PROC MIXED procedure for the main effects, and interaction effects of repeated

measures data, which tends to cause Type I error inflation problems with multiple covariance

structures in unbalanced designs, and non-normal data distribution [Keselman et al., 1999b]. How-

ever, the Satterthwaite F test, which can define the denominator degrees of freedom of F test

through PROC MIXED is fairly robust compared with the default F test on the same condition

[Keselman et al., 1999a]. Therefore, the DDFM= option in the MODEL statement is important

because it can specify the method for computing the denominator degrees of freedom for the fixed

effects tests. There are five methods for DDFM=, which are CONTAIN, BETWITHIN, RESID-

UAL, SATTERTH, and KENWARDROGER. Among the five, DDFM=KENWARDROGER ad-

justs the denominator degrees of freedom based on Satterthwaite-type denominator degrees of free-

dom [Kenward and Roger, 1997, Prasad and Rao, 1990, Harville and Jeske, 1992], which makes it

effectively control the Type I error rate for the repeated measures fixed-effects.

Based on repeated measurement data, there are two statements in PROC MIXED that

needed to be specified: REPEATED statement and RANDOM statement[Littell et al., 2006]. The

REPEATED statement can specify the variable name of a repeated measure factor. Within a

REPEATED statement, the SUBJECT option defines the sets of repeated measures, and the TYPE

option names the covariance structure, which must be used when only using REPEATED statement.

RANDOM statement can specify the random effects. When repeated measures are modeled with

a REPEATED statement, without a RANDOM statement in PROC MIXED, this model is called

a conditional model based on the conditional distribution of y. In a conditional model, the TYPE

option under the REPEATED statement incorporates the complex covariance structure directly

through the variance matrix R. When repeated measures are modeled with both REPEATED

statement and RANDOM statement in PROC MIXED, the model is called a marginal model based
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on the marginal distribution of y. In the marginal model, the TYPE= option under the REPEATED

statement specifies the variance matrix R which is typically denoted for variance matrix of random

error e, and the TYPE= option under the RANDOM statement specifies the variance matrix G

which is typically denoted for variance matrix of random error u [Littell et al., 2006]. Based on our

simulation experiment results, these two models would provide the same parameter estimates for

fixed effects.

When fitting a model with heterogeneous variance structure, a model with unequal vari-

ances can be specified in PROC MIXED under the REPEATED/RANDOM statement with the

GROUP= option [Littell et al., 2006]. The GROUP= option allows the parameters of different

GROUP effect levels to have different structure parameters despite a covariance structure (TYPE=

option) remaining the same. So it will change the covariance parameters from one group to an-

other, which can remarkably increase the number of covariance parameters needing to be estimated

[Kincaid, 2005]. Also, GROUP= option is limited to categorical factors, which requires using a

CLASS statement. For example, when incorporating between-subject variance heterogeneity, the

GROUP= option in the REPEATED statement can be set up. An example code can be viewed as

below [SAS, 2015].

proc mixed ;

c l a s s A;

model y = A / ddfm=s a t t e r t h ;

repeated / group=A;

lsmeans A / ad jus t=smm adjd f e=row ;

run ;

2.2. Previous Simulation Studies

The Behrens–Fisher problem [Fisher, 1938, Kim and Cohen, 1998, Paul et al., 2019]has ex-

isted for more than sixty years in the area of statistics. The problem is named after Walter Behrens

and Ronald Fisher. It occurs when testing the means of two independent populations without

knowing the equality of the variances [Fisher, 1938, Kim and Cohen, 1998, Paul et al., 2019]. The

Behrens-Fisher problem considers the basic design features, unequal or unknown variances, under

two normally distributed populations. However, data in the real world are more often skewed,
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non-smoothed, non-symmetric, and having heavy tails [Hill and Dixon, 1982]. The test statistics

do not always deal with an ideal situation, like equal sample sizes, equal variances. Therefore, there

are lots of studies about the analog of the Behrens-Fisher Problem.

Henry Scheffe talked about the effects of departures from the underlying assumptions in

his book ”The Analysis of Variance” [Scheffe, 1959], which is one of the analogous problems of the

Behrens-Fisher Problem for the non-normal distribution. In this book, he violates the following

assumptions[Scheffe, 1959]:

1. normality of errors, and normality of the random effects in the models;

2. equality of variance of the errors;

3. statistical independence of the errors.

Based on his real data examples, he came up with three conclusions[Scheffe, 1959]:

1. nonnormality has minimal impact on inferences about means but substantial impact on in-

ferences about the variances of random effects;

2. Unequal variance has little impact on inferences about means when sample sizes are equal

but has notably impact when sample sizes are unequal;

3. Correlated observations can cause severe problems with inferences about means.

According to the underlying violations mentioned above, some methods are recommended

for addressing the severe effects when having two population groups[Scheffe, 1959, Paul et al., 2019].

With assumed equal size, the classical Student’s T-test is recommended. If two populations

have equal group size or if the distributions are symmetrical, the Student’s t-test is robust; if

two populations have unequal group size and the distributions are skewed, the effects of de-

parture from normality may be a concern; If population distributions are normal but with un-

equal and unknown variances, either Satterthwaite’s t-statistic or Satterthwaite’s F test is sug-

gested. However, Satterthwaite’s procedure is not robust under most non-normal distributions

[Reed III, 2003, Paul et al., 2019].
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2.3. Second Order Response Surface Models

Response surface methodology is a statistical technique to investigate, characterize, or

optimize a response regarding a set of quantitative variables through linear models and second-

order polynomial models [Box and Wilson, 1951]. It has become the standard framework for

industrial design and development nowadays. The approximation of response surface model is

y = f(x1, x1, ..., xq) + ε. There are three types of response surface models: First-Order, Second-

Order, and Mixture Models [Johnson and Montgomery, 2009].

The second-order surface model is widely used when the curvature in response surface is

detected. The estimation of second-order polynomial model is one of the most important pri-

mary tools of response surface methodology, it includes all terms of the first-order of design

variables x1,x2,...,xn, quadratic and cross product to present the true response with curvature.

In general, a second-order surface model expression[Bradley, 2007, Myers and Montgomery, 1997,

Amir et al., 2016] takes the following form:

y = β0 +
∑n

i=1 βixi +
∑n

i=1 βiix
2
i +

∑∑
i≤j βijxixj + ε

In SAS, the RSREG procedure is one of the most specialized procedures to conduct a

second-order response surface regression model compared to the REG and GLM procedures. It

used the method of least squares to fit quadratic response surface models [Inc, 2016]. RSREG

procedure with surface plot performance can provide a more explicit and vivid finding and give a

better idea of the dependent variables at the various settings of two independent variables [Inc, 2016,

Amir et al., 2016].

2.4. Data Transformation

For equal spreads and reducing skewness of distributions, data transformation was usually

the first step to deal with data. Transformation is to replace a variable with a function of that

variable. After data transformation, the shape of distribution or relationship will be changed. There

are many functions for data transformation, such as log(x), square x2, square root x0.5. Among

them, rank test [Lehmann and D’Abrera, 1975] is one of the standard tools in applied statistician’s

tool kit because of its convenience and simplicity. It is to replace the original observations with

their respective rank, then compute tests on these ranks.
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Aligned rank transformation [Higgins et al., 1990] adds a simple alignment fix-up method-

ology before ranking, which can be applied to analyzing multi-factor designs when the error distri-

bution is moderately skewed. In the aligned rank test, data are aligned, ranked, then analyzed. The

main difference is the alignment. The purpose of alignment is to remove the effect of ”nuisance”

parameters when testing the effects of parameters of interests for multi-parameter models. For

example, the effect of blocks in testing for effects of treatments can be removed by data alignment

in completely randomized block design [Lehmann and D’Abrera, 1975].

2.5. Sub-Sampling and Bootstrap Method

Sub-sampling and Bootstrap are widespread re-sampling methods. Comparing traditional

methods, they require fewer assumptions and are more accurate in practice[Hesterberg et al., 2005].

Generally speaking, sub-sampling is the method to draw a subset randomly and without replace-

ment from the original data samples [Efron, 1981, Politis et al., 1999, Schroeder and Martin, 2005].

Bootstrap is to generate a sample with replacement randomly from original data samples, usually

of the same size as the original sample [Chernick, 2011].
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3. METHODOLOGY

The purpose of this paper is twofold: firstly, to violate the normality assumption of the

MIXED model, the methods for this part will be described in Section 3.4; and secondly, to suggest

a new approach for the analogous Behrens-Fisher Problem, the methods for this part will be

described in Section 3.5.

3.1. Simulation Methodology

3.1.1. Simulation Program

To explore the results of statistics in previous chapters, we used SAS 9.4 (SAS Institute,

NC, USA) to perform all simulations and analyses [Wicklin, 2013]. Each simulation was examined

using 5000 samples with a 0.05 significance level of α. There are two intervals used as the index

for the estimates’ precision: Bradley’s liberal criterion [Bradley, 1978] and binomial standard error

interval [Kowalchuk et al., 2004, Bradley, 1978]. The test robustness can be evaluated by whether

the empirical estimate Type I error (α̂) stays within the interval of 0.5α ≤ α̂ ≤ 1.5α, which is

0.025≤ α̂ ≤0.075 in this study. The binomial standard error is [ α̂(1−α̂)N ]0.5, where N is the total

number of samples. In this study, with a significance level of 0.05 and 5000 samples, the Type I

error rate should stay between 0.04396 and 0.05604.

3.1.2. Hypotheses

The Type I error rate was calculated by counting the number of times that the null hypoth-

esis H0 was rejected when H0 is true and dividing by the total number of samples. The power rate

was calculated by counting the number of times that the null hypothesis H0 was rejected when Ha

is true and dividing by the total number of samples. There are three hypotheses included in this

study.

• All Treatment main effects means equal, H0 : τ1 = τ2

• All Time main effects means equal, H0 : α1 = α2 = α3 = α4

• All Treatment×Time interaction effects means equal,

H0 : τα11 = τα12 = τα13 = τα14 = τα21 = τα22 = τα23 = τα24
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3.1.3. Data Simulation

This simulation study was performed with 5000 samples, and each sample was conducted

by a split-plot design assuming equally spaced time intervals. Our split-plot design has 2 treatment

groups, 4 repeated time periods, and a First-Order Autoregressive [AR(1)] correlation structure

[Littell et al., 2006, Kincaid, 2005] where ρ=0.75. There are two stages in this experiment. In

the first stage, subjects are randomly assigned to treatment groups (whole-plot factor); In the

subsequent stage, time factor (sub-plot factor) in repeated measures being nested within each of

the subjects without randomization. There are 30 subjects in each sample. Each subject was

randomly assigned to a treatment group and was repeatedly measured four times. For better

understanding, one sample data set can be visualized in Table 3.1. The number in each group

changes depending on the specific simulation scenarios.

Table 3.1. Repeated Measures Data with 30 Subjects

Subject ID Treatment y1 y2 y3 y4

1 Control . . . .

2 Control . . . .

3 Control . . . .

.. .. .. .. .. ..

.. .. .. .. .. ..

28 Treatment . . . .

29 Treatment . . . .

30 Treatment . . . .

An effects model for this experiment is

Yijk = µij + γk + eijk = µ+ τi + αj + (τα)ij + γk + eijk (3.1)

Where

Subjects k=1,2,...,30

Treatments i=1,2

Time periods j= 1,2,3,4
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µij = µ+ τi+αj + (τα)ij is the mean µ for treatment i at time j, containing treatment effects

τi, time effects αj , and interaction treatment×time effects (τα)ij , respectively.

γk is the whole-plot error effect for subject k, assumed
iid∼ N(0,σ2γ).

eijk is the sub-plot error effect for jth time measurement of subject k on treatment i, assumed

iid∼ N(0,σ2).

γk and eijk are assumed to be independent of one another

The corresponding matrix form of this model is

Y = Xβ + Zw + e (3.2)

Where

Y is the vector of observations.

β is the coefficient vector corresponding to the fixed effects µij .

X is the design matrix for the fixed effects.

w is the coefficient vector corresponding to whole-plot errors.

Z is the design matrix with respect to whole-plot errors.

e is the vector corresponding to split-plot errors.

To obtain the repeated measures y in a simulation study, two parts of this matrix model

needed to be provided. The first part is to specify the fixed effects Xβ, and the second part is to

generate the two random effects - Zw and e, respectively.

The first part, the mean effects uij in the effects model can be obtained by the fixed unknown

constant Xβ in the matrix model, which contains design matrix X and parameter vector β. Since it

is a 2 by 4 split-plot design, the vector β is set as β = (µ, τ1, τ2, α1, α2, α3, α4)
′ with no interaction

effects being considered. In this study, the parameter vector β7×1 was set as β = (5, 0, 0, 0, 0, 0, 0)′

when there are no main effects assumed, it was applied when H0 is true; the parameter vector

β7×1 was set that β = (5, 0, 1.5, 0, 0.2, 0.4, 0.6)′ when adding the main effects to treatment effects
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and time effects, it was applied when Ha is true. The design matrix X would have 7 columns that

correspond to each parameter in β, and have 120 rows that correspond to each measurement of

each subject. (30)(4)=120 rows because each sample has 30 subject, and 4 repeated measures per

subject. Therefore, the design matrix X is as follows.

X =



1 1 0 1 0 0 0

1 1 0 0 1 0 0

1 1 0 0 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 0

1 1 0 0 1 0 0

1 1 0 0 0 1 0

1 1 0 0 0 0 1

.. .. .. .. .. .. ..

.. .. .. .. .. .. ..

1 0 1 1 0 0 0

1 0 1 0 1 0 0

1 0 1 0 0 1 0

1 0 1 0 0 0 1


120×7

In the second part - two random effects, Ramon Littell [Littell et al., 2006] provided a formula for

getting the random effects variance. That is V = var(y) = σ2γJ + R, where J is a matrix of ones.

The σ2γJ is the variance for the between-subject random effect Zw, and the R is the variance for

the within-subject random effect e. The two random effects were both assumed with a mean zero.

Therefore, Zw has mean zero and covariance matrix σ2γJ , and e has mean zero and covariance

matrix R.

The part J which is matrix of ones was chosen as between-subject covariance structure

because the measures are on the same subject, and σ2γ is the variance of treatment groups. The

part R represents the covariance due to the proximity of measurements. R is a covariance matrix

corresponding to a within-subject variance. In this study, we assumed that the within-subject

variances R for all subjects are identical.
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Regarding choosing a covariance structure for R, Unstructured(UN) [Kincaid, 2005] is com-

monly recommended as the initial covariance structure when using the MIXED model for repeated

measures data because the right covariance structure is unknown. However, defining a correla-

tion for any pair of terms would be difficult since there would not need to be any pattern for the

Unstructured (UN). Meanwhile, the Unstructured (UN) has the most parameters compared with

other structures, which may cause loss of power. Therefore, for obtaining a time series structure,

First-Order Auto-regressive (AR(1)) [Littell et al., 2006, Kincaid, 2005] was chosen as the right

covariance structure with the correlation ρ as 0.75, and the within variance σ2 was set as 1. The

covariance matrix R in this study is presented as follows.

R = σ2



1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


=



1 0.75 0.5625 0.0421875

0.75 1 0.75 0.0525

0.0525 0.75 1 0.75

0.0421875 0.0525 0.75 1



3.1.4. Simulation Scenarios

The usual assumption for a standard linear MIXED model is normality. For checking

the validity of the MIXED model, we violated the assumption by simulating normal/non-normal

distribution of between-subject effects Zw and within-subject effects e [Scheffe, 1959], specifically.

Therefore, four different scenarios were generated: 1.between subject effects Zw follows a multivari-

ate normal distribution and within-subject effects e follows multivariate non-normal distribution;

2. between-subject effects Zw follows a multivariate normal distribution and within-subject ef-

fects e follows multivariate normal distribution; 3. between-subject effects Zw follows multivariate

non-normal distribution and within-subject effects e follows multivariate normal distribution; 4.

between-subject effects Zw follows multivariate non-normal distribution and within-subject effects

e multivariate non-normal distribution. The list of the four basic scenarios are shown as follows.

1. Zw ∼MVN(0, σ2γJ),e ∼Multi-Skew(µ=0, R, Skew=2, Kurtosis=6)

2. Zw ∼MVN(0, σ2γJ),e ∼MVN(0, R)

3. Zw ∼Multi-Skew(µ=0, σ2γJ, Skew=2, Kurtosis=6),e ∼MVN(0, R)
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4. Zw ∼Multi-Skew(µ=0, σ2γJ, Skew=2, Kurtosis=6),e ∼Multi-Skew(µ=0, R, Skew=2, Kurto-

sis=6)

For simulating the multivariate non-normal distribution data in this study, the univariate distribu-

tion was first generated by Fleishman’s Cubic Transformation [Fleishman, 1978] with target values

of skewness=2 and kurtosis=6, then the method from Vale-Maurelli [Vale and Maurelli, 1983] was

used to generate multivariate non-normal data.

Within each scenario, two conditions were applied for checking the stability of the MIXED

model. They are the equality of sizes, and the equality of (between-subject) variances for two

treatment groups [Scheffe, 1959]. The parameters sets for two conditions were listed as follows.

Here, 1 is for the treatment group, and 2 is for the control group.

• Equal group size n1 = n2 = 15

• Unequal group size n1/n2 = (0.5, 2), where

– For n1/n2=0.5, n1 = 10 and n2 = 20

– For n1/n2=2.0, n1 = 20 and n2 = 10

• Equal variances σ2γ1 = σ2γ2 = (1, 2, 4, 10)

• Unequal variances σ2γ1/σ
2
γ2=(2,4,6,8,10), where σ2γ2=1

The two conditions resulted in four different situation combinations: equal group size with

equal variance, equal group size but unequal variance, unequal group size but equal variance,

unequal group size and unequal variance.

3.2. Analysis

After these data were generated based on these simulation scenarios and different condi-

tions, PROC MIXED was applied to run the test by sample. In PROC MIXED, the conditional

distribution of the mixed model was used. DDFM=KENWARDROGER is to adjust the degrees

of freedom. The five most common covariance structures (Variance Components (VC), First-

Order Autoregressive (AR(1)), Toeplitz (TOEP), Compound Symmetry (CS), Unstructured (UN)

[Littell et al., 2006, Kincaid, 2005]) were applied under the REPEATED statement, respectively.

An example code can be viewed as below [Littell et al., 2006].

17



proc mixed data=rm . uv dsn . p . n ;

by sample ;

c l a s s t r t per iod subj id ;

model s t r e s s = t r t | per iod /ddfm=kr ;

repeated per iod / s u b j e c t=subj id type=AR( 1 ) ;

t i t l e 2 ”Repeated Measures ANOVA using Mixed Model Approach −− AR( 1 ) ” ;

run ;

3.3. Second-Order Response Surface Models

In this study, we would have two independent variables: size ratio and variance ratio. Let

us set the size ratio as x1, variance ratio as x2. The second-order response surface model would

include all quadratic and cross-product terms of x1 and x2. Therefore, the second-order response

surface model can be expressed as

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε

RSREG procedure in SAS is commonly used to create a prediction and generate a surface plot

of the prediction for second-order response surface model [Inc, 2016]. The code concerning these

two-factor variables is provided below [Inc, 2016]:

proc r s r e g p l o t s=s u r f a c e (3D) ;

model y=x1 x2 ;

run ;

3.4. Verifying the Stability of Type I Error Rate

For checking the consistency of the Type I error rates, two methods would be used: increas-

ing the sample sizes and extending the repeated time points.

One scenarios, Zw ∼ Normal e ∼ Skew, was set up as an example. Under this scenario,

three different group size sets within the same size ratio were added to see if this would affect

Type I error rates. According to Taylor’s research results [King, 2017], she suggested that a sample

size of 30 is needed to produce adequate power with different simulation parameters. Therefore,

within the previous condition unchanged, three different group sizes were generated by double,

triple, quadruple the original sample size. That is, for size ratio n1/n2=0.5, the three different
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groups sizes are 20vs40, 30vs60, and 40vs80; for size ratio n1/n2=1, the three different groups

sizes are 30vs30, 45vs45, and 60vs60; for size ratio n1/n2=2, the three different groups sizes are

40vs20, 60vs30, 80vs40. The power rates for these three different group sizes were also generated

for reference. Besides, the repeated measures would also be extended from 4 times to 6 times to see

if this would affect Type I error rates. The corresponding power rates were generated for reference.

3.5. Null Distribution Testing

For characterizing the impact of the Type I error rate inflation on power assessment, we

could conduct sample distribution by using Monte Carlo methods.

Firstly, we would simulate a null hypothesis distribution with large enough samples (10,000

samples) and get the null distribution’s F values. The 95% F critical value can be found. In the

Type I error rate inflation case (we have 5000 samples in our case), by adding an effect size between

control and treatment groups (so H0 is false), we would get the observed power rate and also the

F values in all the cases of observed power rates. We would compare the F value in the observed

power rate with the F critical value. If the F value in the case of observed power rate is greater

than the F critical values, then it is one reject case (Reject H0 when H0 is false, which is power).

So the theoretical power rate can be calculated by total rejection cases divided by the number of

samples in the observed power rate (5,000). Lastly, by subtracting the theoretical power rate from

the observed power rate, we would know how the power rate is impacted by the inflated Type I

error rate.

Meanwhile, we also check if the Type I error rate was simulated correctly by comparing the

F critical value with the F value in the case of the observed Type I error rate. Specifically, if F

value in the case of observed Type I error rate is greater or equal to F critical value, then it is a

rejection case (Reject H0 when H0 is true, which is Type I error). The estimated Type I error rate

can be calculated by the total rejection cases divided by the number of times that the samples were

replicated in the cases of observed Type I error rate (5,000). If the estimated Type I error rate is

approaching 5.00%, the Type I error rate was simulated correctly.

3.6. Methods for Type I Error Rate Inflation Problem

When Type I error rate is inflated, there are four different methods would be used: Rank

Test [Lehmann and D’Abrera, 1975], Aligned Rank Test [Higgins et al., 1990], Sub-Sampling Method

[Schroeder and Martin, 2005], and MIXED model incorporating GROUP= option under REPEAT
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statement [Littell et al., 2006]. We would compare the four methods based on their Type I error

rate and power rates. The technical details of these four methods would be explained below.

For Rank Test, it is to replace the original observations with their respective rank, then

compute tests on these ranks; For Aligned Rank Test [Higgins et al., 1990], the data are ranked after

they are aligned. The alignment procedure in this study was introduced as below[Higgins et al., 1990],

and the code can be found in Appendix B.

The mathematical model is

Yijk = µ+ αi + βj + (αβ)ij + eijk (3.3)

Where i=1,2, j=1,2,3,4, k=1,...,30, and the eijks are assumed
iid∼ N(0,σ2). The αi and βj is repre-

sented as row and column effects, respectively. The usual assumption on parameters are:
∑

i αi=0,∑
j βj=0,

∑
i(αβ)ij=

∑
j(αβ)ij=0. These estimates are: µ̂ = Ȳ..., α̂i = Ȳi.. − Ȳ..., β̂j = Ȳ.j. − Ȳ...,

ˆ(αβ)ij = Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...

For rows the aligned data are

Aijk = Yijk − (µ̂+ β̂j + ˆ(αβ)ij) = Yijk − Ŷij. + Ŷi.. − Ŷ... (3.4)

For columns the aligned data are

Bijk = Yijk − (µ̂+ α̂i + ˆ(αβ)ij) = Yijk − Ŷij. + Ŷ.j. − Ŷ... (3.5)

The aligned data for testing for interactions have the form

ABijk = Yijk − (µ̂+ α̂i + β̂j) = Yijk − Ŷi.. − Ŷ.j. + Ŷ... (3.6)

For Sub-Sampling method, since we have unbalanced groups, our aims to make group size

equal by drop subjects from the large group. The Sub-Sampling method in this study is to keep

the group having a small sample size, then randomly select subjects without replacement from the

group having a large sample size until the large group has the same group size as the small one.

For GROUP= option, an example code for this method can be viewed as below [SAS, 2015].
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proc mixed data=rm . uv ;

by sample ;

c l a s s t r t per iod subj id ;

model s t r e s s = t r t | per iod /ddfm=kr ;

repeated per iod / s u b j e c t=subj id type=AR(1) group=t r t ;

t i t l e 2 ”Repeated Measures ANOVA using Mixed Model Approach −− AR( 1 ) ” ;

run ;
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4. RESULTS

We estimate Type I error rates by finding the percentage of the cases that reject the null

hypothesis H0 when the H0 is true. Also, the significance level α is stated as 5.00%. The Type

I error rate for all combinations of two conditions: the equality of group size and the equality of

variance, under four basic scenarios are presented in the following tables in percentage form. In

each table, there are three test parts of different effects: treatment effects, time period effects, and

interaction (treatment×time) effects. For better understanding, a diagram which organizes the

various elements of the results and shows how the parts are related is presented in Figure 4.1.

Figure 4.1. Results Diagram

4.1. Four Scenarios

As stated in Chapter 3.4, the four scenarios are listed as follows:

• Zw ∼ Normal & e ∼ Skew

• Zw ∼ Normal & e ∼ Normal

• Zw ∼ Skew & e ∼ Normal
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• Zw ∼ Skew & e ∼ Skew

Based on the parameters we set, the first two scenarios have normal distribution or distribution

with slightly skewed, and the last two scenarios have distributions with heavily skewed.

Table 4.1 displays the Type I error rates of four basic scenarios for treatment and control

group with n1 = n1 = 15 and equal variance σ2γ1 = σ2γ2 with increased variance as given in (1,2,4,10).

The Type I error rates in both period results and interaction results are below the limits of α equals

5.00%, staying between 3.36% and 4.88%, a bit below the binomial threshold (4.396, 5.604). Values

of the Type I error rates in treatment results stay within 4.44% to 5.48%, but the highest value,

5.48%, is still below the upper bound of binomial standard error interval (4.396, 5.604). Also, the

tests are robust here. The four scenarios have a similar trend, so the violation of normality appears

to cause little effect on Type I error rates no matter whether the skewness is in between-subject

effects or within-subject effects.

Table 4.1. Type I Error Rate of Four Basic Scenarios for Balanced Group Size n1 = n2 = 15; and
Equal Variances σ2γ1 = σ2γ2 = (1, 2, 4, 10)

σ2γ
Distribution Scenarios

Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Treatment Results

1 4.96 5.48 5.38 5.12

2 4.80 4.66 5.04 4.78

4 5.34 5.46 5.44 4.90

10 4.96 5.14 4.44 4.52

Period Results

1 3.74 4.20 4.86 3.76

2 3.50 4.12 4.14 3.64

4 3.70 3.84 4.34 4.10

10 3.98 4.58 3.96 3.66

Treatment*Period Results

1 3.52 3.54 4.22 3.70

2 3.36 4.54 4.02 3.90

4 3.42 4.28 3.86 3.84

10 3.84 4.88 4.02 3.66
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Based on the two conditions (the equality of group size and the equality of variance) of Table

4.1, Table 4.2, and Table 4.3, change one condition separately but keep the other one the same.

The Type I error rates under the four scenarios keep the same character with only unequal group

size, as described in Table 4.3. With only unequal variance, the Type I error rates in period, and

interaction tests are all below the limit of 5.00%. However, in the treatment test, when increasing

the variance ratio, the distribution which is normal or slightly skewed keeps the Type I error rate

staying within 95% binomial standard error interval (4.396, 5.604), but the distribution with high

skewness increases the Type I error rates from 4.66% to 7.86% Therefore, unbalanced group size or

unequal group variance itself should not be a concern when using a MIXED model. However, when

the high skewness presents, the effects of the big difference of group variances should be a concern.

Table 4.2. Type I Error Rate of Four Scenarios for Unequal Group Size n1 = 10 and n2 = 20;
Equal Variances σ2γ1 = σ2γ2 = (1, 2, 4, 10)

σ2γ
Distribution Scenarios

Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Treatment Results

1 5.06 4.72 5.14 5.16

2 5.34 5.96 4.98 4.24

4 5.72 4.70 4.48 4.88

10 4.78 5.10 4.38 4.40

Period Results

1 4.14 4.66 4.16 4.26

2 4.18 3.94 4.52 3.82

4 3.72 4.14 4.30 3.96

10 4.18 4.04 4.62 3.72

Treatment*Period Results

1 4.04 3.64 4.34 3.94

2 4.04 4.46 4.24 3.84

4 4.34 4.24 4.12 3.84

10 3.96 3.62 4.00 4.26
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Table 4.3. Type I Error Rate of Four Scenarios for Equal Group Sizes n1 = n2 = 15; Unequal
Variance as Giving the Variance Ratio σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Treatment Results

2 5.32 5.36 5.44 4.66

4 5.16 5.42 5.34 6.28

6 5.34 5.20 6.58 6.32

8 5.08 5.28 7.28 6.90

10 5.24 5.04 7.86 7.76

Period Results

2 4.02 4.66 3.94 3.96

4 3.58 4.00 4.12 4.00

6 4.04 3.94 3.66 3.20

8 3.46 4.28 3.90 4.02

10 3.96 4.20 3.82 3.88

Treatment*Period Results

2 3.84 4.00 3.96 3.94

4 3.72 4.14 4.24 3.80

6 3.70 4.12 4.40 3.66

8 3.66 4.34 3.66 3.52

10 3.44 4.04 4.30 3.56

Table 4.4 illustrates how the Type I error rate performs when two conditions change at the

same time. The information of size ratio equals to 1 was provided as a reference. In period and

interaction tests, Type I error rates stays below the limit of 5.00%. Under the treatment test, when

the size ratio equals to 2, Type I error rates go conservative as the variance ratio increases in all

four scenarios, below 5.00. When the size ratio equals to 0.5, the Type I error rates are inflated

incredibly as the variance ratio increases in all four scenarios, rising from 6.36% to 15.02%, which is

above the upper bound of 95% binomial interval (4.396, 5.604). It also means that most treatment

tests are not robust when the size ratio equals to 0.5. Meanwhile, all four scenarios have a similar

pattern in all size ratios except for size ratio one. According to these results, when small group

size combines with large variance, it would cause a severe inflation problem on Type I error rates,

which breaks the MIXED model’s performance.

By adding the main treatment effects (0,1.5) and time effect (0,0.2,0.4,0.6), Table 4.5 under

Ha = (µ, τ1, τ2, α1, α2, α3, α4)=(0,1.5,0,0.2,0.4,0.6) is true, was created to present the corresponding
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power rate for Table 4.4. There are three groups with different size ratios under each scenario but

having the same sample size, 30. The power rates for these three groups are assumed to be similar

because of the same sample size. However, comparing the power rates in size ratio equals 1, we can

see that the power rates in size ratio equal to 0.5 inflated and the power rates in size ratio equal to

2 deflate. So the cases of inflated Type I error rates also inflate the power rates.

Therefore, we came up with two conclusions in this part: 1. the MIXED model is reasonably

robust to modest violations of the normal distribution; 2. when a large variance ratio (greater

than 8) combines with heavily skew, the MIXED model can not be considered robust anymore.

Nevertheless, it should not be a concern since the real data usually would not have such a big

variance ratio; 3. When there is a small sample combining with large variance, it will cause serious

Type I error inflation problems that need to be paid attention to.

Table 4.4. Type I Error Rate of Four Scenarios for Different Size Ratio n1/n2 = (0.5, 1, 2), where
the Total Group Size is 30; Unequal Variance as Giving Variance Ratio σ2γ1/σ

2
γ2=(2,4,6,8,10), where

σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼Skew
e ∼skew

n1/n2 n1/n2 n1/n2 n1/n2
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Treatment Results

2 7.14 5.32 3.70 6.82 5.36 3.88 6.36 5.44 3.62 6.94 4.66 3.86

4 10.56 5.16 2.42 10.06 5.42 2.54 10.82 5.34 2.96 10.18 6.28 3.30

6 11.10 5.34 2.04 11.06 5.20 1.86 12.60 6.58 2.58 12.12 6.32 3.06

8 12.70 5.08 1.84 12.34 5.28 1.70 13.36 7.28 3.38 13.40 6.90 3.20

10 14.38 5.24 1.34 14.08 5.04 1.90 15.02 7.86 3.00 14.66 7.76 2.52

Period Results

2 3.96 4.02 4.46 4.14 4.66 4.32 4.16 3.94 4.46 4.36 3.96 3.94

4 4.10 3.58 3.94 3.70 4.00 4.68 4.26 4.12 4.14 4.30 4.00 3.76

6 4.20 4.04 3.80 4.14 3.94 4.52 3.92 3.66 4.38 4.10 3.20 4.34

8 4.02 3.46 4.42 3.90 4.28 4.08 4.24 3.90 4.22 4.56 4.02 4.34

10 4.56 3.96 3.86 4.08 4.20 4.18 4.26 3.82 4.02 3.98 3.88 3.74

Treatment*Period Results

2 3.98 3.84 4.50 4.62 4.00 3.84 3.90 3.96 4.18 3.78 3.94 3.78

4 3.94 3.72 3.76 4.16 4.14 3.86 4.38 4.24 3.88 4.00 3.80 3.74

6 4.16 3.70 4.06 4.12 4.12 4.32 4.56 4.40 4.22 3.86 3.66 4.02

8 4.02 3.66 3.78 4.70 4.34 3.94 4.02 3.66 3.98 3.94 3.52 4.38

10 3.68 3.44 3.72 3.74 4.04 4.06 3.74 4.30 4.20 4.24 3.56 3.76
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Table 4.5. Power Rate with Ha = (µ, τ1, τ2, α1, α2, α3, α4)=(5,0,1.5,0,0.2,0.4,0.6) for Different Size Ratio n1/n2 = (0.5, 1, 2), and Variance
Ratio σ2γ1/σ

2
γ2=(2,4,6,8,10) in Four Scenarios, where σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼Skew
e ∼skew

n1/n2 n1/n2 n1/n2 n1/n2
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Treatment Results

2 72.90 75.38 69.84 74.18 76.26 68.08 75.56 75.94 69.30 74.16 76.08 69.32

4 62.84 60.72 49.48 60.32 60.34 49.48 63.10 62.78 54.44 62.60 63.04 51.70

6 54.48 49.40 36.60 53.08 48.90 37.76 54.62 54.14 42.68 54.38 53.50 43.20

8 48.80 42.72 28.32 42.34 42.34 27.76 47.32 48.84 37.74 47.08 49.22 37.34

10 44.02 37.12 22.14 44.80 37.44 22.30 41.24 44.80 32.58 42.30 44.30 32.44

Period Results

2 58.72 62.98 56.78 55.80 60.90 55.86 57.56 61.94 55.10 57.66 64.86 56.56

4 56.50 61.82 56.04 54.24 61.48 53.54 56.24 60.88 53.70 57.02 61.74 55.78

6 57.52 61.38 56.14 54.82 58.86 52.70 54.30 60.24 52.28 56.68 61.12 54.56

8 56.18 60.56 53.02 59.36 59.36 53.10 53.22 58.74 52.90 56.32 60.52 54.88

10 55.18 60.94 53.42 53.00 58.82 51.94 53.06 58.76 52.38 56.14 60.50 54.04

Treatment*Period Results

2 95.98 96.30 95.98 95.50 95.82 95.96 96.38 95.66 95.66 96.00 96.34 95.66

4 96.24 96.46 96.30 95.62 95.78 95.60 95.76 95.76 95.84 96.22 96.40 96.32

6 95.54 96.10 96.00 95.80 95.88 95.74 95.60 95.38 95.76 95.88 96.14 96.98

8 95.72 96.28 96.00 95.92 95.92 96.14 95.66 95.72 96.00 96.04 96.12 95.30

10 96.18 96.10 96.22 95.68 96.08 95.36 95.68 95.96 95.76 96.28 96.54 96.00
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4.1.1. Second-Order Response Surface Models

Based on the results of Treatment Results in Table 4.4, we conducted the second-order

response surface model for Type I error rates with different size ratios and variance ratios. The

surface model had five independent variables: Variance Ratio, Size Ratio, Variance Ratio∗Size

Ratio (interaction), Variance Ratio∗Variance Ratio, and Size Ratio∗Size Ratio.

According to the model outcome in Table 4.6, the P-value for all independent variables

is significant (≤0.05) except for Variance Ratio*Variance Ratio, which means that Variance Ra-

tio*Variance Ratio is not a significant variable. Meanwhile, the Size Ratio parameter estimate is

-14.985996, and the parameter estimate for the Variance Ratio is 1.331589. Also, the Size Ratio’s

standard error is 1.466766, and the estimated value for the Variance Ratio is 0.254844. With large

sample approximation, 2 times standard error was used to calculate the 95% confident interval, so

the 95% confident interval for parameter estimate of Size Ratio is around (-17.86,-12.11), and the

95% confident interval for parameter estimate of Variance Ratio is around (0.83,1.83). Therefore,

even though the variables of size ratio and variance ratio are both significant, the magnitude of the

Size Ratio effect is much larger than the effect of Variance Ratio relative to the parameter estimates

from the model. It seems that the size ratio may have more impact on the prediction of Type I

error rate inflation comparing to the variance ratio, so balancing the sample size would be worth

trying on the inflation problem of Type I error rate. The 3D surface plot is shown in Figure 4.2.

Table 4.6. Second Order Replace Surface Model Outcome

Parameter DF Estimate Standard Error t Value Pr > |t|
Intercept 1 12.639718 1.066612 11.85 <.0001

Variance Ratio 1 1.331589 0.254844 5.23 <.0001

Size Ratio 1 -14.985996 1.466766 -10.22 <.0001

Variance Ratio*Variance Ratio 1 -0.024974 0.019480 -1.28 0.2053

Size Ratio*Variance Ratio 1 -0.633449 0.070449 -8.99 <.0001

Size Ratio*Size Ratio 1 5.184000 0.542210 9.56 <.0001
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Figure 4.2. RSREG Model 3D Surface Plot for the Predicted Type I Error Rate

4.1.2. Stability of Type I Error Rates

For checking the stability of the Type I error rates, we would increase the sample sizes and

the number of repeated time points to see if the Type I error rates keep the consistency, and power

rates were provided as a reference.

4.1.2.1. Increasing Sample Sizes

In this section, we chose one scenario, Zw ∼ Normal e ∼ Skew, as an example, and generated

three different sample sizes under each size ratio. The result of Type I error rates is presented in

Table 4.7, and the result of power rates is presented in Table 4.8. According to the two tables, we can

see that the Type I error rates keep the same trend under the same size ratio. For example, when the

size ratio equals to 0.5 and the variance ratio increases from 2 to 10, the Type I error rate increases

from 6.86% to 14.38% regardless of the specific sample size of n1 and n2; Also, the Type I error

rates have the similar values when they are in the same size ratio and variance ratio. For example,

when size ratio equals to 0.5 and variance ratio equals to 10, the Type I error rate keeps around 13

no matter the difference of sample sizes: 13.18% when n1:n2=20:40, 12.98% when n1:n2=30:60, and
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13.54% when n1:n2=40:80. It shows us that the Type I error rates across the same sample size ratio

was very consistent. The power rates with Ha = (µ, τ1, τ2, α1, α2, α3, α4)=(5,0,1.5,0,0.2,0.4,0.6) are

provided as a reference in Table 4.7. As we can expect, the larger the sample size, the higher the

power. We believe this gives us more confidence that we can look at ratios of sample sizes and

ratios of variances without too much concern for the actual sampling effort.
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Table 4.7. Type I Error Rates for Four Different Sets of Sample Sizes under ZU∼MVN & e∼exp Scenario; Unequal Variance Ratio
σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ22=1

σ2γ1/σ
2
γ2

Distribution Scenario: ZU ∼MVN e ∼skew
n1/n2=0.5 n1/n2=1 n1/n2=2

10:20 20:40 30:60 40:80 15:15 30:30 45:45 60:60 20:10 40:20 60:30 80:40

Treatment Results

2 7.14 6.98 6.86 6.96 5.32 5.40 5.10 5.98 3.70 3.96 3.50 4.08

4 10.56 10.38 9.08 9.64 5.16 5.46 5.52 5.48 2.42 2.00 2.08 2.46

6 11.10 11.20 11.04 10.98 5.34 5.44 5.30 5.10 2.04 1.90 1.86 2.08

8 12.70 12.12 13.00 12.06 5.08 5.64 5.02 5.04 1.84 1.48 1.22 1.62

10 14.38 13.18 12.98 13.54 5.24 5.64 5.90 4.68 1.34 1.34 1.38 1.34

Period Results

2 3.96 4.04 4.82 4.42 4.02 4.50 4.02 4.74 4.46 4.70 4.12 4.28

4 4.10 4.22 4.90 4.18 3.58 4.70 4.26 4.70 3.94 4.38 4.64 4.86

6 4.20 4.72 4.60 4.36 4.04 4.68 4.54 4.82 3.80 4.58 4.14 4.34

8 4.02 4.56 4.56 4.68 3.46 4.00 5.20 4.78 4.42 4.88 4.26 5.12

10 4.56 4.30 4.50 4.72 3.96 4.42 4.54 4.98 3.86 4.10 4.40 4.74

Treatment*Period Results

2 3.98 4.36 4.58 4.34 3.84 4.06 4.56 4.72 4.50 4.62 4.34 4.76

4 3.94 4.16 4.64 4.86 3.72 4.42 4.00 4.20 3.76 4.58 4.66 4.60

6 4.16 4.36 4.94 4.24 3.70 4.40 3.98 4.68 4.06 4.80 4.58 4.68

8 4.02 4.72 4.76 4.38 3.66 3.84 4.64 4.64 3.78 4.54 4.82 4.40

10 3.68 4.24 4.60 5.16 3.44 3.96 5.02 4.84 3.72 4.90 4.84 4.40
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Table 4.8. Power Rates with Ha = (µ, τ1, τ2, α1, α2, α3, α4)=(5,0,1.5,0,0.2,0.4,0.6) for Four Different Sets of Sample Sizes under ZU∼MVN
& e∼exp Scenario; Unequal Variance Ratio σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ22=1

σ2γ1/σ
2
γ2

Distribution Scenario: ZU ∼MVN e ∼skew
n1/n2=0.5 n1/n2=1 n1/n2=2

10:20 20:40 30:60 40:80 15:15 30:30 45:45 60:60 20:10 40:20 60:30 80:40

Treatment Results

2 72.90 95.62 99.50 99.92 75.38 96.82 99.68 99.96 69.84 94.82 99.20 100.00

4 62.84 86.38 96.26 99.00 60.72 89.78 97.14 99.40 49.48 83.90 95.92 99.10

6 54.48 78.38 91.36 96.70 49.40 78.96 93.22 97.86 36.60 69.90 88.42 96.42

8 48.80 71.76 85.32 92.94 42.72 71.10 87.56 94.46 28.32 57.80 80.62 90.92

10 44.02 66.26 81.24 89.46 37.12 62.60 79.80 90.03 22.14 48.32 70.54 85.42

Period Results

2 58.72 90.10 98.56 99.82 62.98 93.62 99.14 99.90 56.78 90.24 98.22 99.82

4 56.50 89.84 98.28 99.74 61.82 92.74 99.08 99.92 56.04 88.64 98.22 99.82

6 57.52 89.62 98.32 99.84 61.38 92.82 99.12 99.92 56.14 88.72 98.24 99.84

8 56.18 89.14 98.26 99.66 60.56 92.88 99.22 99.92 53.02 88.58 98.38 99.72

10 55.18 88.66 98.08 99.80 60.94 92.28 98.98 99.92 53.42 88.24 98.10 99.72

Treatment*Period Results

2 95.98 95.14 95.36 95.72 96.30 95.44 96.04 95.70 95.98 95.10 95.46 95.36

4 96.24 95.40 95.60 95.24 96.46 95.96 95.48 95.02 96.30 94.94 95.20 95.04

6 95.54 95.04 95.62 95.48 96.10 94.98 95.86 95.20 96.00 95.46 95.92 94.90

8 95.72 95.66 95.74 95.02 96.28 95.84 95.64 95.54 96.00 95.34 95.44 95.18

10 96.18 95.90 95.34 95.20 96.10 95.40 95.40 95.38 96.22 95.90 95.00 94.88
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4.1.2.2. Increasing Time Points

A real-world longitudinal study is likely more than four times of repeated measures, so

the trend consistency of Type I error rates for a different number of times points is also essential.

Therefore, in this section, we extended the number of time points from 4 to 6 to check Type I error

rates. Based on Table 4.9, we can see that in the treatment test, Type I error rates inflated from

6.94% to 15.68% when the size ratio equals to 0.5, and deflated below 5.00 when the size ratio

equals to 2. The trend is the same as Table 4.4 when repeated time points are 4; And in period

and interaction tests, Type I error rates all stay below the limit of 5.00. The difference of Type I

Error Rate from 6 time points to 4 time points is presented in Table 4.10. The values in Table 4.10

are around 0, which clearly shows us that the difference is quite small.

By adding two main treatment effects (0,1.5) and six-time effects (0,0,0.2,0.4,0.6,0.8), the

corresponding power rates were obtained in Table 4.11. The power rates are very similar to Table

4.5 when repeated time points are 4. Specifically, in interaction tests, power rates are all above

95.00%; In period tests, power rates range from 57.06% to 73.48%; In treatment tests, power rates

drop from the highest 78.90% to the lowest 22.52% when the variance ratio increased from 2 to 10.

We believe this also gives us more confidence that we can look at ratios of sample sizes and

ratios of variances without too much concern for the number of repeated time points.
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Table 4.9. Type I Error Rate of Four Scenarios with 6 Time Points for Different Size Ratio
n1/n2 = (0.5, 1, 2), where the Total Group Size is 30; Unequal Variance Ratio σ2γ1/σ

2
γ2=(2,4,6,8,10),

where σ2γ1/σ
2
γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼Skew
e ∼skew

n1/n2 n1/n2 n1/n2 n1/n2
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Treatment Results

2 7.42 5.46 3.92 7.50 4.92 4.16 7.66 5.58 3.52 6.94 5.80 3.96

4 9.92 6.04 2.26 9.32 5.98 2.26 9.66 6.08 3.40 10.40 5.92 3.22

6 11.56 5.34 1.92 12.24 5.20 1.70 13.18 6.78 2.84 13.22 6.84 3.42

8 13.32 5.72 1.56 12.98 6.36 1.58 14.86 7.02 3.14 13.88 7.16 3.54

10 14.12 5.40 1.36 14.64 6.06 1.52 15.68 7.30 3.20 14.38 7.44 3.06

Period Results

2 3.84 3.70 3.92 3.82 4.24 4.22 3.72 4.46 3.96 3.98 3.96 4.06

4 4.16 3.30 4.10 3.62 4.06 3.98 3.88 4.40 3.80 4.28 3.86 4.02

6 4.60 3.72 4.14 4.04 4.38 4.02 4.32 3.90 4.18 3.70 4.06 4.46

8 3.94 3.74 4.04 4.02 4.36 3.78 3.88 4.38 3.70 4.08 3.48 3.90

10 4.12 3.90 3.96 3.24 3.86 3.86 4.24 4.14 3.98 4.00 3.64 4.20

Treatment*Period Results

2 3.96 3.68 4.70 4.16 3.96 3.76 4.42 4.08 4.14 4.26 3.78 4.00

4 4.08 3.80 4.10 4.36 4.20 3.68 4.46 4.42 3.84 3.70 3.40 3.76

6 4.34 3.52 4.16 4.10 4.18 3.96 3.58 3.84 4.06 4.32 2.94 3.88

8 3.80 3.70 3.88 3.94 4.28 3.82 4.10 4.36 3.72 4.54 3.34 4.02

10 4.08 3.74 3.82 3.94 4.08 4.04 4.22 4.36 3.68 4.04 3.76 3.86
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Table 4.10. The Difference of Type I Error Rate from 6 Time Points to 4 Time Points

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼Skew
e ∼skew

n1/n2 n1/n2 n1/n2 n1/n2
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Treatment Results

2 0.28 0.14 0.22 0.68 -0.44 0.28 1.30 0.14 -0.10 0.00 1.14 0.10

4 -0.64 0.88 -0.16 -0.74 0.56 -0.28 -1.16 0.74 0.44 0.22 -0.36 -0.08

6 0.46 0.00 -0.12 1.18 0.00 -0.16 0.58 0.20 0.26 1.10 0.52 0.36

8 0.62 0.64 -0.28 0.64 1.08 -0.12 1.50 -0.26 -0.24 0.48 0.26 0.34

10 -0.26 0.16 0.02 0.56 1.02 -0.38 0.66 -0.56 0.20 -0.28 -0.32 0.54

Period Results

2 -0.12 -0.32 -0.54 -0.32 -0.42 -0.10 -0.44 0.52 -0.50 -0.38 0.00 0.12

4 0.06 -0.28 0.16 -0.08 0.06 -0.70 -0.38 0.28 -0.34 -0.02 -0.14 0.26

6 0.40 -0.32 0.34 -0.10 0.44 -0.50 0.40 0.24 -0.20 -0.40 0.86 0.12

8 -0.08 0.28 -0.38 0.12 0.08 -0.30 -0.36 0.48 -0.52 -0.48 -0.54 -0.44

10 -0.44 -0.06 0.10 -0.84 -0.34 -0.32 -0.02 0.32 -0.04 0.02 -0.24 0.46

Treatment*Period Results

2 -0.02 -0.16 0.20 -0.46 -0.04 -0.08 0.52 0.12 -0.04 0.48 -0.16 0.22

4 0.14 0.08 0.34 0.20 0.06 -0.18 0.08 0.18 -0.04 -0.30 -0.40 0.02

6 0.18 -0.18 0.10 -0.02 0.06 -0.36 -0.98 -0.56 -0.16 0.46 -0.72 -0.14

8 -0.22 0.04 0.10 -0.76 -0.06 -0.12 0.08 0.70 -0.26 0.60 -0.18 -0.36

10 0.40 0.30 0.10 0.20 0.04 -0.02 0.48 0.06 -0.52 -0.20 0.20 0.10
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Table 4.11. Power Rate with Ha = (µ, τ1, τ2, α1, α2, α3, α4, α5, α6)=(5,0,1.5,0,0,0.2,0.4,0.6,0.8) for Different Size Ratio n1/n2 = (0.5, 1, 2),
and Variance Ratio σ2γ1/σ

2
γ2=(2,4,6,8,10) in Four Scenarios, where σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼Skew
e ∼skew

n1/n2 n1/n2 n1/n2 n1/n2
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Treatment Results

2 75.72 78.78 72.34 76.02 78.90 72.50 77.82 78.14 72.10 78.74 77.50 71.18

4 62.38 63.16 51.16 62.96 61.98 51.34 66.04 65.22 55.26 67.12 64.04 54.32

6 54.56 50.92 37.04 55.34 51.82 38.90 55.70 54.96 44.42 56.06 53.94 44.14

8 49.24 42.86 28.16 50.54 44.24 28.52 48.30 49.98 37.22 48.30 48.94 37.28

10 45.88 37.60 22.52 46.32 37.20 23.28 42.94 45.80 32.92 41.38 44.00 34.00

Period Results

2 66.98 73.48 66.38 66.06 71.84 64.18 66.92 71.88 64.44 67.88 73.42 65.16

4 65.62 70.96 62.40 63.90 68.90 61.58 63.48 69.90 63.12 66.36 70.30 64.08

6 63.66 68.94 62.12 62.50 67.30 59.90 64.56 69.08 61.90 65.72 69.66 62.90

8 62.62 68.00 60.82 62.04 66.90 59.26 62.50 67.20 59.54 62.46 68.44 60.84

10 62.02 66.68 59.26 61.38 65.62 57.50 61.48 67.50 57.06 62.22 67.06 58.60

Treatment*Period Results

2 95.88 96.20 95.64 95.62 96.04 95.98 96.38 96.10 95.36 95.68 96.34 96.10

4 95.38 96.12 95.80 96.20 95.94 95.96 96.04 96.16 95.92 96.00 97.04 96.00

6 95.96 96.18 95.96 95.26 95.52 96.22 96.04 95.88 95.66 95.80 96.42 95.52

8 95.98 96.14 95.96 95.46 95.54 95.84 96.02 95.70 96.32 96.28 96.46 95.74

10 96.18 96.04 96.10 95.74 95.48 95.84 95.42 95.50 95.46 96.00 96.36 95.44
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4.1.3. Null Distribution Testing

In this section, we would use Monte Carlo methods to get the sampling distributions for

Table 4.4. There are two primary purposes:

1. To access the theoretical power rate from the null distribution, and compare it with observed

power rate in Table 4.5;

2. To verify if the Type I error rates in Table 4.4 were simulated correctly.

Firstly, we simulated a null hypothesis distribution with 10,000 samples under

H0 : (µ, τ1, τ2, α1, α2, α3, α4)=(5,0,0,0,0,0,0) is true. After that, according to this empirical F value

distribution from the 10,000 samples, we can find the 95% F critical value.

For obtaining the theoretical power rate, we compare the F critical value obtained from

the empirical distribution above with with F values from each of the samples to determine the

observed power rate in Table 4.5 where Ha : (µ, τ1, τ2, α1, α2, α3, α4)=(5,0,1.5,0,0.2,0.4,0.6) is true:

if the F value in the case of observed power rate is greater or equal to the F critical value from

null distribution, it is a rejection case (true case, which is power); otherwise, it is not a rejection

case (false case). The theoretical power rates were calculated by total rejection cases divided by

the number of times that the samples were replicated in the observed power rate (5,000), and the

results are presented in Table 4.13.

Meanwhile, we subtracted the theoretical power rates in Table 4.13 from the observed power

rates in Table 4.5 to obtain the difference in power rates; the result is presented in Table 4.14. When

the size ratio or variance ratio is changed, there are no inflated/deflated trends of Type I error rates

in Period Results and Treatment*Period (Interaction) Results in Table 4.4, so we would mainly

focus on the part of Treatment Results in Table 4.14. Using size ratio equals to 1 as a reference,

the difference in power rate increases from 4.44% to 27.64% when the size ratio equals to 0.5, and

the difference in power rate decreases from -5.48% to -17.88% when the size ratio equals to 2. The

difference of power rate in Treatment Results can also be visualized in the 3D surface plot of Figure

4.3. The difference between the theoretical and observed powers are greatest when the size ratio is

0.5 and the variance ratio is 10. When the size ratio is 2 and the variance ratio is high, then we

see the observed power is worse than expected. This whole figure seems to mimic the Type I error

rate inflation where the small size ratio/high variance ratio settings have the highest error inflation
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and the high size ratio/high variance ratio settings have clearly conservative results. It seems that

the magnitude of the power inflation or deflation is greater than the type I error rate inflation or

deflation.

Figure 4.3. RSREG Model 3D Surface Plot for the Difference of Predicted Power Rates

After having the F critical value, we went back to check if the estimated Type I error rates

under null distributions stays around 5.00%. We compared the F critical value with F values in the

case of observed Type I error rate in Table 4.4 where H0 : (µ, τ1, τ2, α1, α2, α3, α4)=(5,0,0,0,0,0,0)

is true: if the F value in the case of observed Type I error rate is greater and equal to the F critical

value, then it is a rejection case (false case, which is Type I error); otherwise, it is not a rejection

case (true case). The estimated Type I error rate is obtained by the total rejection cases divided

by the number of times that the samples were replicated in the cases of observed Type I error rate

(5,000), and the result is presented in Table 4.12 in percentage form. In this table, all values are

approaching 5.00%, proving that the Type I error rates in Table 4.4 were simulated correctly.
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Table 4.12. The Estimated Type I Error Rate from Null Distribution for Different Size Ratio
n1/n2 = (0.5, 1, 2), where the Total Group Size is 30; Unequal Variance as Giving Variance Ratio
σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼Skew
e ∼skew

n1/n2 n1/n2 n1/n2 n1/n2
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Treatment Results

2 5.28 5.68 5.42 4.96 5.22 4.38 4.74 5.54 4.92 5.16 4.74 5.06

4 5.90 4.72 5.02 5.34 4.94 5.28 5.80 4.50 4.98 5.46 5.44 5.08

6 5.10 4.80 5.26 4.72 4.40 4.80 5.20 4.96 4.30 3.74 4.60 5.50

8 5.18 4.38 4.64 4.34 4.84 4.68 5.14 5.26 5.26 4.74 4.98 4.92

10 5.50 5.04 4.68 4.76 4.42 5.58 5.38 4.48 5.12 4.60 5.18 4.68

Period Results

2 4.72 5.00 5.66 4.66 5.16 5.48 4.66 5.18 5.46 4.68 5.54 4.86

4 4.72 4.64 4.88 4.76 5.82 5.46 5.24 5.18 5.68 5.32 5.02 4.78

6 5.36 5.02 4.98 5.44 4.82 5.04 4.80 4.42 4.78 5.40 4.46 5.70

8 5.22 4.76 5.30 4.66 5.12 4.88 5.48 4.42 5.22 5.86 5.14 5.86

10 5.30 5.42 4.96 4.76 5.42 5.48 5.18 4.42 4.82 4.78 5.26 4.54

Treatment*Period Results

2 5.10 5.42 5.84 5.12 5.22 5.40 4.70 4.84 4.76 4.70 4.58 4.72

4 4.66 5.70 4.72 5.14 4.68 4.42 5.44 5.46 4.80 4.94 4.82 4.44

6 5.12 4.80 4.70 5.16 4.86 4.64 5.30 5.14 4.98 5.02 4.72 4.84

8 5.04 5.02 5.22 6.16 5.34 4.92 4.72 4.16 4.78 4.92 5.04 5.54

10 4.56 4.34 4.58 4.30 4.32 5.14 5.24 5.08 4.92 5.42 4.76 4.74
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Table 4.13. The Theoretical Power Rate with Ha : (µ, τ1, τ2, α1, α2, α3, α4)=(5,0,1.5,0,0.2,0.4,0.6) for Different Size Ratio n1/n2 =
(0.5, 1, 2), where the Total Group Size is 30; Unequal Variance as Giving Variance Ratio σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼Skew
e ∼skew

n1/n2 n1/n2 n1/n2 n1/n2
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Treatment Results

2 67.84 76.16 74.68 69.34 75.60 73.56 70.80 76.24 73.42 69.72 76.26 72.92

4 50.94 59.38 60.54 47.32 58.52 62.94 48.86 60.36 60.52 47.42 60.72 59.32

6 38.92 47.14 53.52 37.24 46.60 51.42 33.28 50.08 49.62 31.74 48.06 52.52

8 31.64 40.88 45.66 29.26 40.86 44.16 22.90 43.32 46.54 22.08 43.64 45.70

10 26.44 36.60 38.66 25.22 35.06 40.18 16.80 37.76 41.54 14.66 37.10 40.36

Period Results

2 61.46 66.86 61.58 58.62 63.28 59.88 59.78 66.88 58.40 58.82 69.46 59.98

4 59.86 65.84 59.64 58.54 66.96 56.66 58.64 64.72 59.18 59.74 65.48 59.06

6 62.16 64.84 61.24 59.48 62.30 55.88 58.00 64.56 54.56 60.52 65.90 58.56

8 60.14 65.62 57.64 56.48 62.98 56.28 57.58 61.22 57.32 60.86 65.22 60.16

10 58.62 66.08 57.06 55.40 62.70 57.02 57.12 62.84 54.94 58.66 65.48 58.66

Treatment*Period Results

2 94.76 95.02 94.36 95.14 94.42 95.24 95.48 94.54 94.94 94.96 95.42 94.74

4 95.42 94.76 95.12 94.50 95.18 95.00 94.70 94.64 95.06 95.24 95.48 95.60

6 94.54 94.90 95.38 94.94 94.84 95.38 94.88 94.70 95.26 95.00 95.12 94.94

8 94.28 95.00 94.62 94.06 95.10 95.24 94.86 95.32 95.22 95.14 94.80 93.96

10 95.40 94.98 95.34 95.20 95.78 94.02 95.00 94.84 94.92 95.02 95.40 94.84
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Table 4.14. The Difference of Power Rate (Observed Power Rate minus Theoretical Power Rate) with Ha : (µ, τ1, τ2, α1, α2, α3, α4)=
(5,0,1.5,0,0.2,0.4,0.6) for Different Size Ratio n1/n2 = (0.5, 1, 2), where the Total Group Size is 30; Unequal Variance as Giving Variance
Ratio σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼Skew
e ∼skew

n1/n2 n1/n2 n1/n2 n1/n2
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Treatment Results

2 5.06 -0.78 -4.84 4.84 0.66 -5.48 4.76 -0.30 -4.12 4.44 -0.18 -3.60

4 11.90 1.34 -11.06 13.00 1.82 -13.46 14.24 2.42 -6.08 15.18 2.32 -7.62

6 15.56 2.26 -16.92 15.84 2.30 -13.66 21.34 4.06 -6.94 22.64 5.44 -9.32

8 17.16 1.84 -17.34 13.08 1.48 -16.40 24.42 5.52 -8.80 25.00 5.58 -8.36

10 17.58 0.52 -16.52 19.58 2.38 -17.88 24.44 7.04 -8.96 27.64 7.20 -7.92

Period Results

2 -2.74 -3.88 -4.80 -2.82 -2.38 -4.02 -2.22 -4.94 -3.30 -1.16 -4.60 -3.42

4 -3.36 -4.02 -3.60 -4.30 -5.48 -3.12 -2.40 -3.84 -5.48 -2.72 -3.74 -3.28

6 -4.64 -3.46 -5.10 -4.66 -3.44 -3.18 -3.70 -4.32 -2.28 -3.84 -4.78 -4.00

8 -3.96 -5.06 -4.62 2.88 -3.62 -3.18 -4.36 -2.48 -4.42 -4.54 -4.70 -5.28

10 -3.44 -5.14 -3.64 -2.40 -3.88 -5.08 -4.06 -4.08 -2.56 -2.52 -4.98 -4.62

Treatment*Period Results

2 1.22 1.28 1.62 0.36 1.40 0.72 0.90 1.12 0.72 1.04 0.92 0.92

4 0.82 1.70 1.18 1.12 0.60 0.60 1.06 1.12 0.78 0.98 0.92 0.72

6 1.00 1.20 0.62 0.86 1.04 0.36 0.72 0.68 0.50 0.88 1.02 2.04

8 1.44 1.28 1.38 1.86 0.82 0.90 0.80 0.40 0.78 0.90 1.32 1.34

10 0.78 1.12 0.88 0.48 0.30 1.34 0.68 1.12 0.84 1.26 1.14 1.16
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4.2. Type I Error Rate Inflation Problem

In this section, we would focus on one size ratio where there is more clearly a Type I error

rate inflation problem caused by small sample size with large variance, so the information with

only size rate equals to 0.5 (n1/n2=10:20) with four scenarios would be used. Meanwhile, since

there is no Type I error rate inflation problem in the part of Periods Test and Treatment×Period

(Interaction) Test, we would focus on Treatment Test only. We proposed four different methods as

potential solutions. They are the rank test, aligned rank test, Sub-Sampling Method, and MIXED

model incorporating GROUP= option under REPEAT statement. Sub-Sampling Method here is

to randomly drop ten subjects from the large group (n2), so the two groups would have an equal

sample size (n1/n2=10:10). The corresponding power rates were also investigated as a reference.

Besides the group test for two-levels of the treatment group, we would also do the group tests for

three-level treatment groups.

4.2.1. Methods for Two Levels of Treatment Groups

According to Type I error rates of Table 4.15, we can see that Rank Test and Aligned

Rank Test have a similar performance as of Original Test on Type I error rate inflation: for the

first two scenarios (normal or slightly skewed distribution), the two methods reduce the inflation

a little, but not very helpful; for the last two scenarios (heavily skew distribution), the inflation

problem gets worse. Nevertheless, when it comes to the Sub-Sampling Method and MIXED model

using GROUP= option method, the inflated Type I error rates in both methods drop substantially

compared to the Original Test: In the first two scenarios (normal or slightly skew distribution), two

methods both have excellent performance, keeping Type I error rates between 5.10% and 6.10%;

In the last two scenarios (heavily skewed distribution), the Type I error rates stay between 5.52%

and 8.59%, not as good as the first two scenarios.

Among the four methods, the Sub-Sampling and MIXED model using GROUP= option

methods have the best performance on Type I error inflation problem. More specifically, when

data has better behaved (normal or slightly skew), the two method of GROUP= option tends to

have a quite close performance on Type I error rate. For example, when variance ratio equals to

2 and Zw & e follow both Normal distribution, the Type I error rate is 5.20% in Sub-Sampling

Method and is 5.10% in the MIXED model using GROUP= option Method. But when data has
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poorly behaved (heavily skew), the two methods have Type I error rate inflation compared to the

performance when data is better behaved. Also, the MIXED model using the GROUP= option

seems to have a little bit more inflated Type I error rate than the Sub-Sampling method. For

example, when variance ratio equals to 10 and Zw & e follow both skew distribution, the Type I

error rate is 7.94% in Sub-Sampling method and is 8.53% in the MIXED model using GROUP=

option Method. So the presentation of heavily skew would cause a little bit of inflation on Type I

error rate, especially for the MIXED model using the GROUP= option method.

The corresponding power rates with the treatment effect added as Ha = (τ1, τ2)=(0,1.5)

is presented in Table 4.16. As we can see, the Rank Test and Aligned Rank Test have a very

similar performance on power rate, and the Sub-Sampling Method and the MIXED model method

using the GROUP= option have a very similar performance on power rate, too. For example,

when variance ratio equals to 2 and Zw & e both follow the normal distribution, the power rate

is 71.68% in Rank Test, and 70.76% in Aligned Rank Test. Comparing to the Original Test, the

Sub-Sampling Method and the MIXED model method using the GROUP= option lost lots of power

rate, nearly 20 percentage within each case. For example, when variance ratio equals to 2 and Zw

& e both follow the normal distribution, the power rate is 74.18% in Original Test, and 58.52% in

Sub-Sampling Method, there is a 15.66% percentage power rate lost. Partly for this reason, power

rate in Original Test is inflated by the inflated Type I error rate.

Meanwhile, in Original Test, power falls from 72.90% (the lowest Type I error rate when

variance ratio equals to 2) to 44.80% (the highest Type I error rate when variance ratio equals to

10) as the variance ratio increases from 2 to 10. For increasing the power value when the variance

ratio is high, we standardize the effect size by adding an effect size η=

√
σ2
γ1+σ

2
γ2

2 to one of the

treatment groups, which changes the Ha to (0,η). According to Table 4.17, when increasing the

variance ratio from 2 to 10, the power rates increase from 56.14% (the lowest Type I error rate when

variance ratio equals 2) to 81.08% (the highest Type I error rate when variance ratio equals 10). It

shows us that a standardized effect size (one that tries to account for the increasing variances by

increasing the absolute magnitude effect size) will yield higher power.
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Table 4.15. Methods for Type I Error Rates Inflation under Treatment Test with Fixed Size Ratio
n1/n2=0.5 and σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Original Test

2 7.14 6.82 6.36 6.94

4 10.56 10.06 10.82 10.18

6 11.10 11.06 12.60 12.12

8 12.70 12.34 13.36 13.40

10 14.38 14.08 15.02 14.66

Rank Test

2 6.52 6.16 6.46 7.62

4 9.32 8.32 10.66 11.94

6 9.38 9.16 13.50 15.48

8 10.12 9.90 16.08 16.74

10 11.66 10.30 18.24 19.32

Aligned Rank Test

2 6.62 6.18 6.36 7.66

4 9.32 8.34 10.64 11.70

6 9.46 9.10 13.46 15.40

8 10.02 9.88 16.04 16.76

10 11.72 10.34 17.74 19.10

Sub-Sampling Method

2 5.64 5.20 4.90 5.36

4 6.36 5.80 6.54 6.18

6 5.28 5.56 7.06 6.92

8 5.60 6.02 7.12 7.42

10 5.68 6.10 7.96 7.94

MIXED model using the GROUP= option

2 5.62 5.10 5.52 6.44

4 5.52 5.68 7.32 7.36

6 5.22 5.19 7.95 7.98

8 5.14 5.28 8.09 8.12

10 5.23 5.36 8.59 8.53
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Table 4.16. Methods for Power Rates with Ha : (τ1, τ2)=(0,1.5) under Treatment Test with Fixed
Size Ratio n1/n2=0.5 and σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Original Test

2 72.90 74.18 75.56 74.16

4 62.84 60.32 63.10 62.60

6 54.48 53.08 54.62 54.38

8 48.80 42.34 47.32 47.08

10 44.02 44.80 41.24 42.30

Rank Test

2 72.32 71.68 77.32 81.74

4 57.78 54.36 58.78 62.18

6 48.20 45.68 44.04 45.36

8 41.42 40.58 34.08 33.96

10 37.06 38.02 25.64 25.58

Aligned Rank Test

2 72.14 70.76 76.76 81.94

4 57.82 54.12 58.30 62.22

6 47.58 45.40 43.76 45.08

8 40.98 40.18 33.58 33.28

10 36.88 37.70 25.26 24.90

Sub-Sampling Method

2 57.72 58.52 59.06 59.92

4 44.74 41.70 44.24 43.54

6 36.48 34.28 32.68 32.68

8 30.54 29.46 25.44 25.38

10 26.16 25.88 19.42 19.84

MIXED model using the GROUP= option

2 65.38 66.61 69.22 69.46

4 47.72 45.38 47.82 45.23

6 36.87 34.77 32.33 31.34

8 29.33 29.22 23.16 22.89

10 24.70 25.24 17.21 17.19
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Table 4.17. Power Rates with Ha : (τ1, τ2)=(0,η) under Treatment Test with Fixed Size Ratio

n1/n2=0.5 and σ2γ1/σ
2
γ2=(2,4,6,8,10), where σ2γ2=1 and η=

√
σ2
γ1+σ

2
γ2

2

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Original Test with Ha : (τ1, τ2)=(0,1.5)

2 72.90 74.18 75.56 74.16

4 62.84 60.32 63.10 62.60

6 54.48 53.08 54.62 54.38

8 48.80 42.34 47.32 47.08

10 44.02 44.80 41.24 42.30

Original Test with Ha : (τ1, τ2)=(0,η)

2 58.62 56.14 59.02 58.42

4 65.36 65.32 67.48 69.08

6 69.16 69.24 74.56 73.38

8 71.36 72.00 77.04 77.96

10 74.02 73.38 80.18 81.08

4.2.2. Methods for Three Levels of Treatment Group

This section increased the treatment group from two-level to three-level to check the Type I

error rates and power rates in different methods. The three treatment groups are treatment group

A, treatment group B, and control group C. The total sample size is 40. The parameter sets of

sample size and variance for the three groups were listed in Table 4.18.

Table 4.18. The Parameters Set for Sample Size and Variances of Three Groups

Treatment Groups Symbol Sample size Variances

Treatment A γA 10 (2,6)

Treatment B γB 10 (2,4,6,8,10)

Control Group C γC 20 1

Specifically, the three-level of treatment group has 10 subjects for group A, 10 subjects for

group B, and 20 subjects in group C. Sub-Sampling Method here is to drop 10 subjects from group

C randomly, so all three treatment groups would have an equal sample size (10 subjects per group).

Since Rank Test and Aligned Rank Test did not have a good performance on Type I error rate

inflation problem in the previous section, Section 4.2.1, only the Sub-Sampling and MIXED model

methods using the GROUP= option would be presented in this section.
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According to the findings in Section 4.1, we already know that when we have a small sample

size with large variance, there is a Type I error rate inflation problem. The Type I error rate under

the three-level treatment group test is presented in Table 4.19. No matter σ2γA equals to 2 or 6

when σ2γB goes from 2 to 10, Type I error rate increased substantially in Original Test, from 6.68%

to 12.84%. Nevertheless, the Sub-Sampling method and the MIXED model using the GROUP=

option method produce a significant decline in the Type I error rate inflation problem. Specifically,

when data is well behaved (normal or slightly skew), Sub-Sampling Method and MIXED model

using GROUP= option method both have good performance for keeping Type I error rates between

4.90% and 6.38%, and MIXED model using GROUP= option tends to have more conservative Type

I error rate (between 4.90% and 5.65%) than Sub-Sampling method (between 4.96% and 6.38%).

However, when data is poorly behaved (heavily skew), the two methods both have a little bit

inflated Type I error rate comparing to the performance when data is well behaved, especially for

the method of the MIXED model using GROUP= option: the Type I error rates in Sub-Sampling

method goes from 5.04% to 8.42%, and the Type I error rates in the MIXED model using GROUP=

option method increased from 6.47% to 10.19%.

The corresponding power rates with treatment effect with Ha = (τ1, τ2, τ3)=(0,0,1.5) is

presented in Table 4.20. As we can see, the Sub-Sampling Method and MIXED model using the

GROUP= option method have a very similar performance on power rate. Specifically, when Zw & e

both follow normal distribution, and σ2γA=2 and σ2γB=2, the power rate is 55.08% in Sub-Sampling

Method, and 55.30% in the method of MIXED model using GROUP= option.

Meanwhile, in Original Test, power falls from 65.72% (the lowest Type I error rate when

σ2γA=2 and σ2γB=2) to 40.08% (the highest Type I error rate when σ2γA=2 and σ2γB=10) as σ2γB

increases from 2 to 10. For increasing the power value, when the variance ratio is high, we stan-

dardize the effect size by adding an effect size η=

√
σ2
γA

+σ2
γB

+σ2
γC

3 to one of the treatment groups,

which changes the Ha to (0,0,η). According to Table 4.21, under σ2γA equals to 2, when increasing

σ2γB from 2 to 10, the power rates keeps from 53.74% (the lowest Type I error rate at σ2γB equals

2) to 64.84% (the highest Type I error rate at σ2γB equals 10). These results provide a consistent

conclusion with the results from the two-level treatment group: standardizing the effect size would

yield the power rates for the higher variance ratio.
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According to both the results from the two-level treatment group and three-level treatment

group, the MIXED model using GROUP= option and Sub-Sampling method have a very similar

performance on Type I error rate inflation problem and power rates, even though there is still

a little difference depending on if data is well behaved or if group variance difference is small.

Specifically, if data is well behaved, two methods get a similar Type I error rate; If data has poorly

behaved, the MIXED model method using GROUP= option gets a little more inflated Type I error

rate (about 1 to 3 percentage higher) than the Sub-Sampling Method. In general, the MIXED

model method using the GROUP= option is recommended for well-behaved data from a practical

standpoint since it tries to use all of the data. A method excluding data like Sub-Sampling Methods

might be considered an ‘interesting academic’ result, but not practical. Because the real data is

hard to obtain in the first place, and the method would not likely be received as a reliable solution

if excluding lots of data.
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Table 4.19. Methods for Type I Error Inflation Rates under Treatment Test, where σ2γA=(2,6), σ2γB=(2,4,6,8,10), and σ2C=1

σ2γB
σ2γA=2 σ2γA=6

Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Original Test

2 6.68 7.18 6.80 6.68 10.00 9.22 9.74 9.76

4 8.62 8.64 8.64 8.22 10.10 9.92 9.74 9.20

6 9.68 10.08 9.60 10.24 10.12 10.90 10.44 10.38

8 10.08 10.68 11.30 11.32 12.10 10.72 11.48 10.84

10 11.64 10.94 12.36 12.84 11.70 11.10 11.52 12.52

Sub-Sampling Method

2 4.96 5.50 5.18 5.04 6.42 5.50 6.74 7.16

4 5.20 5.84 5.88 5.50 5.68 5.76 5.74 5.08

6 5.40 6.50 6.26 7.04 5.84 5.96 5.70 5.38

8 6.16 6.48 7.06 7.24 6.34 5.62 6.58 5.66

10 6.38 6.20 7.76 8.42 6.16 6.34 6.28 7.00

MIXED model using the GROUP= option

2 4.90 5.76 6.47 6.72 5.44 5.36 7.36 8.30

4 5.50 5.80 7.18 7.46 5.18 5.76 7.74 8.27

6 4.82 5.86 7.17 7.88 5.11 5.92 9.18 8.77

8 5.20 5.69 8.01 8.50 5.08 5.53 9.47 9.26

10 4.69 5.19 8.33 8.63 5.52 5.65 9.34 10.19
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Table 4.20. Methods for Power Rates with Ha : (τ1, τ2, τ3)=(0,0,1.5) under Treatment Test, where σ2γA=(2,6), σ2γB=(2,4,6,8,10), and
σ2C=1

σ2γB
σ2γA=2 σ2γA=6

Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Original Test with Treatment Effect Ha=(0,0,1.5)

2 65.72 65.84 66.14 68.68 54.38 54.36 57.30 56.52

4 55.60 55.90 56.82 57.04 48.02 48.62 48.40 50.40

6 49.64 48.72 49.60 49.54 43.56 43.16 44.28 43.30

8 43.14 45.34 43.16 41.72 39.94 40.10 39.18 38.56

10 39.34 40.08 38.26 38.36 36.22 36.52 34.40 36.22

Sub-Sampling Method with Treatment Effect Ha=(0,0,1.5)

2 55.68 55.08 56.68 59.30 38.06 39.18 44.34 44.32

4 44.90 44.92 44.64 45.72 33.26 34.08 36.56 37.04

6 38.58 36.52 36.58 36.44 30.20 28.88 31.14 29.68

8 32.24 33.60 29.54 28.56 26.74 27.82 26.28 25.44

10 29.30 29.12 23.94 24.94 24.28 23.90 21.24 23.34

MIXED model using the GROUP= option with Treatment Effect Ha=(0,0,1.5)

2 56.09 55.30 60.83 63.90 53.13 54.42 59.18 60.53

4 38.24 38.58 37.23 38.86 35.65 35.95 38.14 38.15

6 29.21 28.51 25.46 25.25 27.95 28.23 26.24 25.47

8 23.21 24.14 18.77 17.39 22.30 23.24 19.07 18.12

10 19.49 20.03 13.28 14.22 18.33 18.90 14.71 15.73
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Table 4.21. Power Rates with Ha : (τ1, τ2, τ3)=(0,0,η) under Treatment Test, where σ2γA=(2,6), σ2γB=(2,4,6,8,10), σ2C=1, and

η=

√
σ2
γA

+σ2
γB

+σ2
γC

3

σ2γB
σ2γA=2 σ2γA=6

Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

Original Test with Treatment Effect Ha=(0,0,1.5)

2 65.72 65.84 66.14 68.68 54.38 54.36 57.30 56.52

4 55.60 55.90 56.82 57.04 48.02 48.62 48.40 50.40

6 49.64 48.72 49.60 49.54 43.56 43.16 44.28 43.30

8 43.14 45.34 43.16 41.72 39.94 40.10 39.18 38.56

10 39.34 40.08 38.26 38.36 36.22 36.52 34.40 36.22

Original Test with Treatment Effect Ha=(0,0,η)

2 55.98 54.60 53.74 56.04 66.26 67.06 68.16 66.52

4 56.90 58.38 58.26 58.16 67.44 66.98 67.52 69.16

6 58.34 59.76 60.80 61.28 66.38 66.20 70.02 68.20

8 60.04 60.40 63.52 63.48 65.76 66.34 69.94 69.30

10 59.60 61.60 64.84 64.36 66.82 65.94 69.96 71.30
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4.2.3. Other Failed Methods

Besides the four methods above, we also tried the variation of Bootstrap method. The

variation of Bootstrap method aims to balance the two group sample size (15 subjects in the

treatment group vs. 15 subjects in the control group), though the original sample size (30 subjects)

keeping the same. To recall, in this study, there are 5000 simulated samples, and each sample has

30 subjects. Initially, there are 10 subjects in the treatment group and 20 in the control group.

Two ways are used the variation of Bootstrap method to boost the treatment group size

from 10 to 15. The first is to randomly select 5 subjects with replacement from the original 10

subjects in the treatment group, then add them to the original treatment group. The second is to

randomly select 15 subjects with replacement from the original 10 subjects in the treatment group

and treat the new 15 subjects as a new treatment group. There are also two ways to decrease the

control group size from 20 to 15: the first is to randomly drop 5 subjects without replacement from

the original 20 subjects in the control group; the second is to randomly select 15 subjects with

replacement from the original 20 subjects in the control group, and treat them as a new control

group. The subsets we created in the treatment and control group can build up to four different

sample data-sets. However, none of them can decrease the inflated Type I error rate, and some

even make the inflation problem worsen.

4.3. Five Different Covariance Structures

In this paper, we mainly focus on two problems presented in the previous two sections:

Section 4.1 and Section 4.2. We also want to provide a general idea of how the incorrect covariance

structure affects the Type I error rate and power rate in the treatment test.

To recall, First-Order Autoregressive (AR(1)) [Littell et al., 2006, Kincaid, 2005] was cho-

sen as the correct covariance structure when we generated these datasets. After these datasets

were generated, five most common covariance structure [Kincaid, 2005, Littell et al., 2006] (First-

Order Autoregressive (AR(1)), Toeplitz (TOEP), Compound Symmetry (CS), Unstructured (UN),

Variance Components (VC)) was applied under the REPEATED statement in PROC MIXED to

run the test, respectively. Therefore, there are five different Type I error rates, and power rates

corresponding to each covariance structure were obtained in every situation. Nevertheless, only

the results of Type I error rates, and power rates under First-Order Autoregressive (AR(1)) struc-
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ture [Kincaid, 2005, Littell et al., 2006] is the correct one, which would be used as the reference

for the results under other covariance structures. To sum up, according to all the tables listed

below, the Type I error rates and power rates under Toeplitz (TOEP), Compound Symmetry (CS),

and Unstructured (UN) are very similar to the results under First-Order Autoregressive (AR(1))

structure: the difference among the four is around 1 percent. However, the results under Variance

Components (VC) structure have the worst results among the five: the Type I error rate is 3 to

even 17 times than the Type I error rate under First-Order Autoregressive (AR(1)) structure, and

the power rate is 20 to 50 percent higher than the power rate under First-Order Autoregressive

(AR(1)) structure.

The main tables in the previous sections are presented under 5 different covariance struc-

tures in this section, and the guidance for the comparison is listed as below: Table 4.22 is the

Type I error rate under 5 different covariance structures of four scenarios for three different size

ratios (n1/n2 = (0.5, 1, 2)) and five different variance ratios (σ2γ1/σ
2
γ2 = (2, 4, 6, 8, 10)), which cor-

responding to the Treatment Test in Table 4.4; Table 4.23 is the power rate under 5 different

covariance structures of four scenarios for three different size ratios (n1/n2 = (0.5, 1, 2)) and five

different variance ratios (σ2γ1/σ
2
γ2 = (2, 4, 6, 8, 10)), which corresponding to the Treatment Test

in Table 4.5; Table 4.24 is the methods of Type I error rate in Treatment Test under 5 differ-

ent covariance structures of four scenarios for the fixed size ratio (n1/n2 = 0.5) and five different

variance ratios (σ2γ1/σ
2
γ2 = (2, 4, 6, 8, 10)), which corresponding to Table 4.15; Table 4.25 is the

methods of power rate with Ha=(0,1.5) in Treatment Test under 5 different covariance struc-

tures of four scenarios for the fixed size ratio (n1/n2 = 0.5) and five different variance ratios

(σ2γ1/σ
2
γ2 = (2, 4, 6, 8, 10)), which corresponding to Table 4.16; Table 4.26 is the methods of Type I

error rates for three treatment groups in Treatment Test under 5 different covariance structures of

four scenarios for the fixed sample size(nA = 10; nB = 10; nC = 20) and the group variance ratios

(σ2γA = 2;σ2γB = (2, 4, 6, 8, 10);σ2γC = 1), which corresponding to the part σ2γA = 2 in Table 4.19;

Table 4.27 is the methods of power rate with Ha:(0,0,1.5) for three treatment groups in Treatment

Test under 5 different covariance structures of four scenarios for the fixed sample size(nA = 10;

nB = 10; nC = 20) and the group variance ratios (σ2γA = 2;σ2γB = (2, 4, 6, 8, 10);σ2γC = 1), which

corresponding to the part σ2γA = 2 in Table 4.20; Table 4.28 is the methods of Type I error rates

for three treatment groups in Treatment Test under 5 different covariance structures of four sce-
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narios for the fixed sample size(nA = 10; nB = 10; nC = 20) and the group variance ratios

(σ2γA = 6;σ2γB = (2, 4, 6, 8, 10);σ2γC = 1), which corresponding to the part σ2γA = 6 in Table 4.19;

Table 4.29 is the methods of power rate with Ha:(0,0,1.5) for three treatment groups in Treatment

Test under 5 different covariance structures of four scenarios for the fixed sample size(nA = 10;

nB = 10; nC = 20) and the group variance ratios (σ2γA = 6;σ2γB = (2, 4, 6, 8, 10);σ2γC = 1), which

corresponding to the part σ2γA = 6 in Table 4.20.
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Table 4.22. Type I Error Rate in Treatment Test under 5 Covariance Structures of Four Scenarios
for Different Size Ratio n1/n2 = (0.5, 1, 2), where the Total Group Size is 30; Unequal Variance as
Giving Variance Ratio σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼Skew
e ∼skew

n1/n2 n1/n2 n1/n2 n1/n2
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

First-Order Autoregressive (AR(1))

2 7.14 5.32 3.70 6.82 5.36 3.88 6.36 5.44 3.62 6.94 4.66 3.86

4 10.56 5.16 2.42 10.06 5.42 2.54 10.82 5.34 2.96 10.18 6.28 3.30

6 11.10 5.34 2.04 11.06 5.20 1.86 12.60 6.58 2.58 12.12 6.32 3.06

8 12.70 5.08 1.84 12.34 5.28 1.70 13.36 7.28 3.38 13.40 6.90 3.20

10 14.38 5.24 1.34 14.08 5.04 1.90 15.02 7.86 3.00 14.66 7.76 2.52

Toeplitz (TOEP)

2 6.72 5.26 3.56 6.52 5.18 3.70 6.16 5.22 3.42 6.60 4.34 3.58

4 10.04 5.00 2.32 9.86 5.24 2.46 10.54 5.14 2.52 9.74 6.02 3.16

6 10.74 5.10 2.04 10.78 4.98 1.78 12.42 6.40 2.84 11.62 6.04 2.84

8 12.38 4.96 1.72 12.14 5.12 1.62 13.00 7.06 3.12 13.00 6.68 2.96

10 13.80 5.16 1.28 13.76 5.00 1.86 14.60 6.82 2.94 14.34 7.58 2.48

Compound Symmetry (CS)

2 6.86 5.28 3.62 6.50 5.30 3.68 6.10 5.06 3.46 6.80 4.38 3.84

4 10.16 5.10 2.20 9.92 5.32 2.32 10.56 5.10 2.54 9.84 6.04 3.16

6 10.88 5.18 1.96 11.06 4.92 1.78 12.16 6.50 2.84 11.72 5.96 2.84

8 12.38 5.02 1.68 12.04 5.08 1.60 12.80 7.02 3.18 13.12 6.84 3.04

10 13.92 5.18 1.26 13.64 5.04 1.84 14.56 6.86 2.90 14.36 7.68 2.50

Unstructured (UN)

2 6.86 5.28 3.62 6.50 5.30 3.68 6.10 5.06 3.46 6.80 4.38 3.84

4 10.16 5.10 2.20 9.92 5.32 2.32 10.56 5.10 2.54 9.84 6.04 3.16

6 10.88 5.18 1.96 11.06 4.92 1.78 12.16 6.50 2.84 11.72 5.96 2.84

8 12.38 5.02 1.68 12.04 5.08 1.60 12.80 7.02 3.18 13.12 6.84 3.04

10 13.92 5.18 1.26 13.64 5.04 1.84 14.56 6.86 2.90 14.36 7.68 2.50

Variance Components (VC)

2 33.64 30.16 26.26 32.36 30.44 26.92 33.16 30.74 28.00 34.06 30.44 27.60

4 39.74 30.82 23.52 37.92 31.28 24.84 40.00 32.52 22.74 39.60 32.74 23.90

6 10.30 31.36 22.22 39.42 30.64 21.52 41.72 32.86 23.58 42.72 31.40 23.00

8 42.66 31.66 20.90 41.84 31.52 22.04 44.88 33.34 23.30 44.20 32.78 21.80

10 45.62 32.26 19.90 44.44 31.90 22.00 45.36 34.08 21.72 45.22 33.26 22.00
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Table 4.23. Power Rate with Ha : (µ, τ1, τ2, α1, α2, α3, α4)=(5,0,1.5,0,0.2,0.4,0.6) in Treatment Test
under 5 Covariance Structures of Four Scenarios for Different Size Ratio n1/n2 = (0.5, 1, 2), and
Variance Ratio σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ2γ2=1

σ2γ1/σ
2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼Skew
e ∼skew

n1/n2 n1/n2 n1/n2 n1/n2
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

First-Order Autoregressive (AR(1))

2 72.90 75.38 69.84 74.18 76.26 68.08 75.56 75.94 69.30 74.16 76.08 69.32

4 62.84 60.72 49.48 60.32 60.34 49.48 63.10 62.78 54.44 62.60 63.04 51.70

6 54.48 49.40 36.60 53.08 48.90 37.76 54.62 54.14 42.68 54.38 53.50 43.20

8 48.80 42.72 28.32 42.34 42.34 27.76 47.32 48.84 37.74 47.08 49.22 37.34

10 44.02 37.12 22.14 44.80 37.44 22.30 41.24 44.80 32.58 42.30 44.30 32.44

Toeplitz (TOEP)

2 72.12 74.48 69.08 73.78 75.86 67.46 75.04 75.46 68.62 73.30 75.42 68.50

4 62.16 59.94 48.60 59.86 59.82 49.00 62.60 62.28 53.86 61.84 62.50 51.02

6 53.72 48.82 36.07 52.60 48.42 37.22 54.08 53.66 42.32 53.50 52.96 42.42

8 48.14 42.24 27.87 48.04 41.90 27.26 47.04 48.70 37.30 46.36 48.80 36.90

10 43.64 36.89 21.74 44.80 37.18 21.90 40.58 44.54 32.34 41.62 43.92 32.06

Compound Symmetry (CS)

2 72.50 74.96 69.12 73.70 75.80 67.56 74.96 75.38 68.74 73.64 75.52 68.56

4 62.28 60.50 48.90 59.84 59.88 49.04 62.50 62.00 53.92 61.80 62.44 51.26

6 53.82 49.06 36.06 52.46 48.78 37.16 53.84 53.72 42.42 53.88 52.86 42.50

8 48.52 42.48 27.86 47.96 41.76 27.02 47.06 48.66 37.36 46.58 49.08 37.12

10 43.78 36.82 21.78 44.42 37.16 21.88 40.72 44.50 32.32 41.82 44.18 32.12

Unstructured (UN)

2 72.50 74.96 69.12 73.70 75.80 67.56 74.96 75.38 68.74 73.64 75.52 68.56

4 62.28 60.50 48.90 59.84 59.88 49.04 62.50 62.00 53.92 61.80 62.44 51.26

6 53.82 49.06 36.06 52.46 48.78 37.16 53.84 53.72 42.42 53.88 52.86 42.50

8 48.52 42.48 27.86 47.96 41.76 27.02 47.06 48.66 37.36 46.58 49.08 37.12

10 43.78 36.82 21.78 44.42 37.16 21.88 40.72 44.50 32.32 41.82 44.18 32.12

Variance Components (VC)

2 93.18 95.46 94.00 93.64 95.30 93.52 94.60 94.28 93.48 94.30 94.22 92.82

4 87.92 88.94 87.74 86.32 89.68 87.58 89.28 87.68 85.64 89.32 88.46 84.60

6 82.24 83.16 79.86 81.78 83.32 80.26 84.34 80.80 78.26 84.64 81.68 78.32

8 78.06 79.28 74.08 76.72 78.50 73.84 79.96 78.54 72.70 80.24 76.64 73.62

10 74.80 74.38 68.82 74.82 75.06 68.68 77.78 73.60 69.94 76.80 73.92 69.10
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Table 4.24. Methods for Type I Error Rates in Treatment Test under 5 Covariance Structures of Four Scenarios with Fixed Size Ratio
n1/n2=0.5 and σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ2γ2=1

σ2
γ1

:
σ2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS

Original Test

2 7.14 6.72 6.86 6.86 33.64 6.82 6.52 6.50 6.50 32.36 6.36 6.16 6.10 6.10 33.16 6.94 6.60 6.80 6.80 34.06

4 10.56 10.04 10.16 10.16 39.74 10.06 9.86 9.92 9.92 37.92 10.82 10.54 10.56 10.56 40.00 10.18 9.74 9.84 9.84 39.60

6 11.10 10.74 10.88 10.88 10.30 11.06 10.78 11.06 11.06 39.42 12.60 12.42 12.16 12.16 41.72 12.12 11.62 11.72 11.72 42.72

8 12.70 12.38 12.38 12.38 42.66 12.34 12.14 12.04 12.04 41.84 13.36 13.00 12.80 12.80 44.88 13.40 13.00 13.12 13.12 44.20

10 14.38 13.80 13.92 13.92 45.62 14.08 13.76 13.64 13.64 44.44 15.02 14.60 14.56 14.56 45.36 14.66 14.34 14.36 14.36 45.22

Rank Test

2 6.52 6.32 6.36 6.36 32.54 6.16 5.82 5.84 5.84 30.64 6.46 5.96 6.10 6.10 29.94 7.62 7.42 7.38 7.38 33.30

4 9.32 9.10 8.94 8.94 37.10 8.32 8.12 8.02 8.02 34.20 10.66 10.26 10.34 10.34 37.40 11.94 11.44 11.36 11.36 39.26

6 9.38 8.96 9.02 9.02 36.38 9.16 8.76 8.64 8.64 35.72 13.50 13.00 13.14 13.14 42.20 15.48 15.06 15.02 15.02 44.68

8 10.12 9.88 9.80 9.80 37.92 9.90 9.48 9.44 9.44 37.50 16.08 15.42 15.54 15.54 45.50 16.74 16.60 16.50 16.50 46.16

10 11.66 11.26 11.28 11.28 41.06 10.30 10.08 10.00 10.00 38.48 18.24 17.74 17.66 17.66 47.96 19.32 18.74 18.66 18.66 49.24

Aligned Rank Test

2 6.62 6.28 6.42 6.42 32.40 6.18 5.84 5.76 5.76 30.74 6.36 6.14 6.00 6.00 29.82 7.66 7.36 7.36 7.36 33.26

4 9.32 9.08 9.00 9.00 36.90 8.34 8.06 8.00 8.00 34.24 10.64 10.14 10.28 10.28 37.60 11.70 11.28 11.24 11.24 39.40

6 9.46 9.08 9.06 9.06 36.40 9.10 8.80 8.60 8.60 35.76 13.46 13.12 13.14 13.14 42.12 15.40 14.96 14.98 14.98 44.64

8 10.02 9.80 9.86 9.86 37.70 9.88 9.46 9.52 9.52 37.56 16.04 15.44 15.36 15.36 45.56 16.76 16.34 16.34 16.34 46.10

10 11.72 11.24 11.26 11.26 41.02 10.34 10.04 10.02 10.02 38.52 17.74 17.48 17.52 17.52 48.10 19.10 18.64 18.58 18.58 49.30

Sub-Sampling Method

2 5.64 5.20 5.12 5.12 30.94 5.20 4.82 4.86 4.86 29.10 4.90 4.72 4.62 4.62 29.62 5.36 5.02 5.04 5.04 30.74

4 6.36 5.90 5.90 5.90 33.46 5.80 5.74 5.66 5.66 31.20 6.54 6.32 6.24 6.24 32.54 6.18 5.82 5.82 5.82 33.16

6 5.28 5.10 5.18 5.18 31.28 5.56 5.32 5.24 5.24 31.34 7.06 6.82 6.64 6.64 32.70 6.92 6.62 6.72 6.72 33.14

8 5.60 5.32 5.26 5.26 32.64 6.02 5.90 5.82 5.82 31.40 7.12 6.92 6.82 6.82 34.24 7.42 6.96 7.12 7.12 32.94

10 5.68 5.56 5.62 5.62 34.48 6.10 5.92 5.86 5.86 32.54 7.96 7.78 7.76 7.76 33.46 7.94 7.56 7.54 7.54 33.40

MIXED model using the GROUP= option

2 5.62 5.24 5.40 5.40 30.36 5.10 4.92 4.76 4.76 29.50 5.52 5.52 5.34 5.34 30.40 6.44 5.97 6.32 6.32 31.68

4 5.52 5.29 5.38 5.38 32.88 5.68 5.40 5.44 5.44 30.92 7.32 7.24 7.18 7.18 33.60 7.36 6.84 7.00 7.00 32.86

6 5.22 4.92 5.92 4.92 30.88 5.19 5.02 4.92 4.92 30.52 7.95 7.84 7.56 7.56 33.76 7.98 7.53 7.58 7.58 33.26

8 5.14 4.96 5.08 5.08 32.74 5.28 4.98 4.86 4.86 32.02 8.09 7.98 7.86 7.86 34.26 8.12 7.83 7.82 7.82 33.30

10 5.23 4.97 5.02 5.02 34.44 5.36 5.24 5.12 5.12 32.08 8.59 8.43 8.40 8.40 33.72 8.53 8.21 8.28 8.28 33.86
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Table 4.25. Methods for Power Rates with Ha : (τ1, τ2)=(0,1.5) in Treatment Test under 5 Covariance Structures with Fixed Size Ratio
n1/n2=0.5 and σ2γ1/σ

2
γ2=(2,4,6,8,10), where σ2γ2=1

σ2
γ1

:
σ2
γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS

Original Test

2 72.90 72.12 72.50 72.50 93.18 74.18 73.78 73.70 73.70 93.64 75.56 75.04 74.96 74.96 94.60 74.16 73.30 73.64 73.64 94.30

4 62.84 62.16 62.28 62.28 87.92 60.32 59.86 59.84 59.84 86.32 63.10 62.60 62.50 62.50 89.28 62.60 61.84 61.80 61.80 89.32

6 54.48 53.72 53.82 53.82 82.24 53.08 52.60 52.46 52.46 81.78 54.62 54.08 53.84 53.84 84.34 54.38 53.50 53.88 53.88 84.64

8 48.80 48.14 48.52 48.52 78.06 42.34 48.04 47.96 47.96 76.72 47.32 47.04 47.06 47.06 79.96 47.08 46.36 46.58 46.58 80.24

10 44.02 43.64 43.78 43.78 74.80 44.80 44.80 44.42 44.42 74.82 41.24 40.58 40.72 40.72 77.78 42.30 41.62 41.82 41.82 76.80

Rank Test

2 72.32 71.40 71.58 71.58 93.18 71.68 70.64 70.58 70.58 92.14 77.32 76.34 76.00 76.00 95.36 81.74 81.12 81.00 81.00 97.22

4 57.78 56.94 56.88 56.88 85.50 54.36 53.54 53.44 53.44 83.02 58.78 57.92 57.56 57.56 86.56 62.18 61.56 61.24 61.24 89.88

6 48.20 47.66 47.60 47.60 77.80 45.68 44.76 44.68 44.68 77.14 44.04 43.34 43.04 43.04 76.42 45.36 44.70 44.50 44.50 77.86

8 41.42 40.80 40.50 40.50 73.28 40.58 40.10 39.84 39.84 70.94 34.08 33.46 33.36 33.36 66.40 33.96 33.32 33.12 33.12 66.18

10 37.06 36.54 36.38 36.38 68.60 38.02 37.26 37.10 37.10 68.60 25.64 24.88 24.76 24.76 59.08 25.58 24.92 24.76 24.76 57.18

Aligned Rank Test

2 72.14 71.42 71.32 71.32 93.10 70.76 70.02 70.20 70.20 92.16 76.76 75.98 75.98 75.98 95.36 81.94 81.24 81.28 81.28 97.28

4 57.82 57.12 56.86 56.86 85.46 54.12 53.46 53.28 53.28 82.86 58.30 57.10 57.22 57.22 86.52 62.22 61.26 61.20 61.20 89.82

6 47.58 47.18 47.24 47.24 77.56 45.40 44.74 44.64 44.64 76.98 43.76 42.96 42.76 42.76 76.14 45.08 44.20 44.42 44.42 78.10

8 40.98 40.38 40.32 40.32 72.96 40.18 39.50 39.58 39.58 70.74 33.58 32.66 32.48 32.48 66.10 33.28 32.46 32.48 32.48 65.54

10 36.88 36.22 36.22 36.22 68.24 37.70 37.16 37.04 37.04 68.30 25.26 24.62 24.44 24.44 58.46 24.90 24.34 24.08 24.08 56.80

Sub-Sampling Method

2 57.72 56.18 56.88 56.88 88.76 58.52 57.56 57.60 57.60 88.42 59.06 58.26 58.18 58.18 89.54 59.92 58.90 58.86 58.86 89.02

4 44.74 43.90 44.08 44.08 81.08 41.70 40.99 41.08 41.08 79.18 44.24 43.4 43.44 43.44 82.82 43.54 42.44 42.72 42.72 82.80

6 36.48 35.66 35.78 35.78 74.08 34.28 33.80 33.68 33.68 72.82 32.68 31.64 31.80 31.80 76.98 32.68 31.97 32.26 32.26 77.60

8 30.54 29.78 29.74 29.74 68.74 29.46 29.06 29.08 29.08 67.68 25.44 24.96 25.02 25.02 71.44 25.38 24.48 24.68 24.68 71.82

10 26.16 25.78 36.06 26.06 64.36 25.88 25.48 25.66 25.66 64.92 19.42 19.14 19.04 19.04 67.34 19.84 19.28 19.44 19.44 67.16

MIXED model using the GROUP= option

2 65.38 63.91 64.76 64.76 92.40 66.61 65.64 65.76 65.76 92.70 69.22 68.07 67.80 67.80 94.90 69.46 67.89 68.02 68.02 95.16

4 47.72 46.48 46.62 46.62 84.46 45.38 44.72 44.58 44.58 82.70 47.82 46.98 46.56 46.56 87.72 45.23 43.42 44.10 44.10 88.76

6 36.87 35.94 36.18 36.18 76.66 34.77 34.32 34.26 34.26 76.10 32.33 31.61 31.26 31.26 81.24 31.34 29.86 30.26 30.26 81.26

8 29.33 28.55 28.88 28.88 71.00 29.22 28.99 28.78 28.78 69.04 23.16 22.78 22.62 22.62 74.64 22.89 21.91 22.12 22.12 74.74

10 24.70 24.11 24.14 24.14 66.14 25.24 34.93 24.92 24.92 66.18 17.21 16.78 16.80 16.80 70.20 17.19 16.38 16.64 16.64 69.60
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Table 4.26. Methods for Type I Error Rates in Treatment Test under 5 Covariance Structures with σ2γA=2, σ2γB=(2,4,6,8,10), and σ2C=1

σ2γ1
:
σ2γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS

Original Test

2 6.68 6.30 6.26 6.26 46.48 7.18 6.82 6.90 6.90 46.14 6.80 6.58 6.52 6.52 47.08 6.68 6.42 6.62 6.62 47.82

4 8.62 8.20 8.28 8.28 48.70 8.64 8.22 8.20 8.20 49.32 8.64 8.28 8.30 8.30 50.64 8.22 7.90 7.88 7.88 48.86

6 9.68 9.24 9.38 9.38 50.00 10.08 9.78 9.58 9.58 51.08 9.60 9.32 9.48 9.48 51.38 10.24 9.94 9.82 9.82 52.22

8 10.08 9.88 10.00 10.00 51.70 10.68 10.26 10.30 10.30 50.28 11.30 10.86 10.94 10.94 50.46 11.32 10.94 11.02 11.02 53.24

10 11.64 11.38 11.40 11.40 50.96 10.94 10.76 10.74 10.74 51.62 12.36 11.98 11.94 11.94 51.74 12.84 12.42 12.40 12.40 53.08

Sub-Sampling Method

2 4.96 4.52 4.48 4.48 43.12 5.50 5.24 5.36 5.36 42.28 5.18 4.86 4.84 4.84 43.06 5.04 4.66 4.68 4.68 44.40

4 5.20 4.88 4.98 4.98 42.58 5.84 5.58 5.48 5.48 43.58 5.88 5.62 5.60 5.60 45.78 5.50 5.26 5.38 5.38 43.48

6 5.40 5.06 5.24 5.24 42.66 6.50 6.14 6.16 6.16 44.30 6.26 6.14 6.02 6.02 44.32 7.04 6.68 6.72 6.72 44.16

8 6.16 5.98 6.04 6.04 43.42 6.48 6.28 6.24 6.24 43.04 7.06 6.80 6.68 6.68 42.76 7.24 7.06 7.14 7.14 44.84

10 6.38 6.28 6.40 6.40 42.44 6.20 6.04 6.04 6.04 41.92 7.76 7.48 7.50 7.50 43.60 8.42 8.12 8.12 8.12 44.78

MIXED model using the GROUP= option

2 4.90 4.53 4.76 4.76 43.92 5.76 5.06 5.18 5.18 43.66 6.47 6.02 5.96 5.96 44.76 6.72 6.09 6.28 6.28 45.56

4 5.50 5.15 5.12 5.12 44.44 5.80 5.49 5.22 5.22 44.40 7.18 6.77 6.74 6.74 47.44 7.46 6.98 7.14 7.14 45.68

6 4.82 4.59 4.64 4.64 45.38 5.86 5.49 5.38 5.38 45.92 7.17 6.87 6.54 6.54 47.00 7.88 7.38 7.52 7.52 47.28

8 5.20 4.66 4.76 4.76 45.88 5.69 5.67 5.52 5.52 45.36 8.01 7.70 7.54 7.54 46.74 8.50 7.82 8.00 8.00 48.24

10 4.69 4.23 4.40 4.40 45.94 5.19 4.81 5.00 4.98 45.48 8.33 7.97 7.74 7.74 46.42 8.63 8.35 8.46 8.46 48.30
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Table 4.27. Methods for Power Rates with Ha : (τ1, τ2, τ3)=(0,0,1.5) for Three Treatment Groups in Treatment Test under 5 Covariance
Structures with σ2γA=2, σ2γB=(2,4,6,8,10), and σ2C=1

σ2γ1
:
σ2γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS

Original Test

2 65.72 64.72 64.98 64.98 94.74 65.84 65.08 64.94 64.94 94.58 66.14 65.44 65.30 65.30 95.64 68.68 67.86 68.10 68.10 95.98

4 55.60 54.60 54.88 54.88 89.32 55.90 55.24 54.94 54.94 89.94 56.82 56.06 56.12 56.12 92.34 57.04 56.16 56.48 56.48 92.32

6 49.64 48.96 49.10 49.10 85.06 48.72 47.98 47.86 47.86 84.50 49.60 48.82 48.72 48.72 88.06 49.54 48.66 49.16 49.16 87.92

8 43.14 42.42 42.72 42.72 81.58 45.34 44.80 44.72 44.72 81.60 43.16 42.52 42.48 42.48 84.32 41.72 40.80 41.08 41.08 84.28

10 39.34 38.90 39.30 39.30 77.02 40.08 39.72 39.54 39.54 77.70 38.26 37.76 37.92 37.92 81.14 38.36 37.74 37.94 37.94 79.86

Sub-Sampling Method

2 55.68 54.58 54.90 54.90 92.70 55.08 54.30 54.42 54.42 92.26 56.68 55.72 55.98 55.98 92.72 59.30 58.06 58.30 58.30 93.60

4 44.90 43.82 44.04 44.04 85.68 44.92 44.30 44.26 44.26 86.34 44.64 43.86 43.72 43.72 89.10 45.72 44.54 45.20 45.20 89.62

6 38.58 37.64 37.42 37.42 80.52 36.52 36.20 36.46 36.46 79.78 36.58 35.68 35.80 35.80 84.72 36.44 35.24 35.54 35.54 84.26

8 32.34 31.80 31.82 31.82 76.32 33.60 32.96 32.82 32.82 76.42 29.54 28.98 28.92 28.92 79.46 28.56 27.68 27.90 27.90 79.54

10 29.30 28.62 28.66 28.66 71.04 29.12 28.92 29.16 29.16 71.50 23.94 23.54 23.70 23.70 75.84 24.94 24.48 24.40 24.40 74.84

MIXED model using the GROUP= option

2 56.09 54.09 54.98 54.98 94.24 55.30 53.82 54.00 54.00 93.78 60.83 59.96 58.94 58.94 96.22 63.90 61.19 61.94 61.94 97.10

4 38.24 36.96 37.26 37.26 86.38 38.58 37.18 37.30 37.30 86.28 37.23 35.89 35.68 35.68 91.40 38.86 37.13 37.26 37.26 91.86

6 29.21 28.20 28.14 28.14 80.68 28.51 27.79 27.20 27.20 79.36 25.46 24.35 24.38 24.38 85.50 25.25 23.87 24.58 24.58 84.78

8 23.21 22.10 22.26 22.26 75.88 24.14 23.27 22.98 22.98 75.76 18.77 18.03 17.98 17.98 79.66 17.39 16.29 16.74 16.74 78.92

10 19.49 18.73 19.04 19.04 71.34 20.03 19.50 19.30 19.30 71.58 13.28 12.66 12.40 12.40 74.68 14.22 13.64 13.84 13.84 74.32
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Table 4.28. Methods for Type I Error Rates in Treatment Test under 5 Covariance Structures with σ2γA=6, σ2γB=(2,4,6,8,10), and σ2C=1

σ2γ1
:
σ2γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS

Original Test

2 10.00 9.56 9.68 9.68 50.00 9.22 8.68 8.72 8.72 50.66 9.74 9.50 9.54 9.54 50.62 9.76 9.20 9.46 9.46 50.50

4 10.10 9.62 9.72 9.72 52.32 9.92 9.74 9.64 9.64 52.86 9.74 9.40 9.54 9.54 54.18 9.20 8.84 8.90 8.90 52.96

6 10.12 9.68 9.88 9.88 53.04 10.90 10.70 10.54 10.54 53.36 10.44 10.22 10.06 10.06 55.30 10.38 10.18 10.24 10.24 56.40

8 12.10 11.82 11.70 11.70 54.16 10.72 10.42 10.46 10.46 53.86 11.48 11.22 11.32 11.32 55.98 10.84 10.42 10.52 10.52 55.30

10 11.70 11.38 11.64 11.64 55.94 11.10 10.80 10.78 10.78 53.48 11.52 11.14 11.14 11.14 56.40 12.52 12.08 12.14 12.14 56.02

Sub-Sampling Method

2 6.42 6.10 6.02 6.02 42.58 5.50 5.32 5.40 5.40 43.44 6.74 6.34 6.30 6.30 43.72 7.16 6.74 6.74 6.74 43.12

4 5.68 5.50 5.50 5.50 43.06 5.76 5.54 5.40 5.40 44.34 5.74 5.46 5.42 5.42 45.96 5.08 4.94 4.92 4.92 44.36

6 5.84 5.70 5.72 5.72 43.94 5.96 5.86 5.68 5.68 44.40 5.70 5.56 5.44 5.44 46.00 5.38 5.20 5.18 5.18 46.78

8 6.34 5.96 6.02 6.02 43.86 5.62 5.48 5.64 5.64 43.70 6.58 6.38 6.38 6.38 46.10 5.66 5.32 5.28 5.28 44.92

10 6.16 6.08 6.00 6.00 45.10 6.34 6.24 6.20 6.20 42.82 6.28 6.12 6.08 6.08 46.24 7.00 6.64 6.88 6.88 46.96

MIXED model using the GROUP= option

2 5.44 5.11 5.14 5.14 44.94 5.36 4.86 4.64 4.64 45.26 7.36 7.05 6.76 6.76 46.60 8.30 7.45 7.76 7.76 46.34

4 5.18 5.11 5.10 5.10 45.36 5.76 5.47 5.44 5.44 46.36 7.74 7.36 7.38 7.38 48.80 8.27 7.57 7.74 7.74 46.72

6 5.11 4.79 4.88 4.88 46.02 5.92 5.50 5.56 5.56 46.16 9.18 8.61 8.80 8.80 48.38 8.77 8.20 8.26 8.26 48.98

8 5.08 4.73 4.88 4.88 46.90 5.53 5.35 5.28 5.28 45.82 9.47 9.17 9.18 9.18 49.30 9.26 8.61 8.72 8.72 47.82

10 5.52 5.15 5.38 5.38 47.14 5.65 5.37 5.36 5.36 46.18 9.34 8.83 8.82 8.82 49.30 10.19 9.68 9.98 9.98 49.70
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Table 4.29. Methods for Power Rates with Ha : (τ1, τ2, τ3)=(0,0,1.5) for Three Treatment Groups in Treatment Test under 5 Covariance
Structures with σ2γA=6, σ2γB=(2,4,6,8,10), and σ2C=1

σ2γ1
:
σ2γ2

Distribution Scenarios
Zw ∼ Normal
e ∼ Skew

Zw ∼ Normal
e ∼ Normal

Zw ∼ Skew
e ∼ Normal

Zw ∼ Skew
e ∼ Skew

AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS AR(1) TOEP CS UN VS

Original Test

2 54.38 53.40 53.68 53.68 93.70 54.36 53.82 53.84 53.84 92.72 57.30 56.56 56.58 56.58 94.14 56.52 55.50 55.82 55.82 93.90

4 48.02 47.22 47.42 47.42 88.68 48.62 48.20 48.14 48.14 88.98 48.40 47.74 47.86 47.86 89.50 50.40 49.34 49.42 49.42 90.20

6 43.56 43.12 43.28 43.28 84.74 43.16 42.52 42.72 42.72 84.68 44.28 43.62 43.80 43.80 86.84 43.30 42.64 42.68 42.68 87.20

8 39.94 39.14 39.18 39.18 80.68 40.10 39.56 39.78 39.78 80.66 39.18 38.76 38.66 38.66 83.44 38.56 37.74 37.90 37.90 83.60

10 36.22 35.70 36.18 36.18 79.30 36.52 36.22 36.04 36.04 78.26 34.40 34.00 33.94 33.94 82.16 36.22 35.76 35.98 35.98 81.60

Sub-Sampling Method

2 38.34 37.32 37.58 37.58 88.04 39.18 38.42 38.58 38.58 87.84 44.34 43.90 43.88 43.88 88.24 44.32 43.26 43.40 43.40 88.26

4 33.26 32.34 32.70 32.70 82.50 34.08 33.16 33.18 33.18 82.62 36.56 35.92 35.64 35.64 82.62 37.04 36.26 36.34 36.34 84.68

6 30.20 29.58 29.70 29.70 77.74 28.88 28.42 28.66 28.66 78.50 31.14 30.60 30.44 30.44 79.76 29.68 29.24 29.46 29.46 80.38

8 26.74 25.78 26.26 26.26 72.94 27.82 27.32 27.42 27.42 73.52 26.28 25.78 25.68 25.68 75.98 25.44 24.72 24.94 24.94 76.42

10 24.28 23.76 23.92 23.92 71.30 23.90 23.50 23.44 23.44 69.68 21.24 20.88 20.88 20.88 74.42 23.34 22.90 22.92 22.92 74.14

MIXED model using the GROUP= option

2 53.13 51.20 52.00 52.00 94.32 54.42 53.24 53.40 53.40 93.22 59.18 57.75 57.56 57.56 96.28 60.53 57.95 58.76 58.76 96.78

4 35.65 34.06 34.40 34.40 86.40 35.95 34.94 34.64 34.64 86.68 38.14 36.92 36.94 36.91 89.76 38.15 36.19 36.24 36.24 91.06

6 27.95 26.72 26.92 26.92 80.76 28.23 27.52 27.42 27.42 80.34 26.24 25.34 25.52 25.52 84.92 25.47 24.31 24.14 24.14 86.04

8 22.30 21.47 21.34 21.34 74.66 23.24 22.75 22.40 22.40 74.62 19.07 18.36 18.24 18.24 79.24 18.12 17.07 17.34 17.34 79.76

10 18.33 17.90 17.70 17.70 72.14 18.90 18.52 18.02 18.02 71.28 14.71 14.13 13.88 13.88 76.42 15.73 14.97 14.76 14.76 75.84
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4.4. Real Data Application

To illustrate the PROC MIXED model and the used methods, a real dataset was an-

alyzed. This dataset is from field studies on cocoa trees in central Africa by Owusu Domfeh

[Domfeh et al., 2019]. This study aims to determine the number of rows of cocoa that should be

inoculated with mild strain N1 for effective cross-protection of core cocoa trees from CSSV severe

1A infection. The data was collected over 8 years (from 2011 to 2018), and we have a dependent

variable – the yield data y. Moreover, there are three biological treatment groups: severely infected

cocoa trees (CSSV 1A), mildly infected cocoa trees (CSSV N1), uninoculated cocoa trees (Non-

inoculated). Therefore, it is a longitudinal study with eight repeated measures as yield data y and

heterogeneous variances across three treatments. The visualization of the trend of yield data over

time is presented in Figure 4.4. Meanwhile, according to Figure 4.5 and Table 4.30, we can see

that there is clear variance differences among treatment groups: the standard deviation of CSSV

1A treatment group is 200.967, the standard deviation of CSSV N1 treatment group is 798.342,

and the standard deviation of Non-inoculated treatment group is 339.901.

Figure 4.4. Plot of the Yield Data of Cocoa Trees in Years
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Figure 4.5. Cocao Tree Data Style

Table 4.30. The SAS MEANS Procedure

Analysis Variable: Yield

Treat Group N Obs N Mean Std Dev Minimum Maximum

CSSV 1A 96 96 262.228 200.967 54.700 1106.000

CSSV N1 72 72 996.062 789.342 70.400 3625.800

Non-inoculated 72 72 675.922 339.901 48.800 1432.000

At first, the dataset was run using the PROC MIXED model with Toeplitz (TOEP) as

the covariance structure, and the code is shown in Figure 4.6. Secondly, GROUP= option under

REPEATED statement was used, and the code is shown in Figure 4.7. Lastly, the Sub-Sampling

method was used, and the code of Sub-Sampling method is shown in Figure 4.8. For this dataset,

there are 12 subjects in the treatment group of CSSV 1A per year and 9 subjects in the treatment

group of CSSV N1 and Non-inoculated per year. The sub-sampling method here is to randomly

select 9 subjects without replacement from the treatment group of CSSV 1A and made the size of

three treatment groups equal. Then this updated dataset was run using the PROC MIXED model
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with TOEP as the covariance structure. The results of Type 3 Tests of Fixed Effects from the

MIXED model for these three methods is shown in Table 4.31.

Figure 4.6. PROC MIXED Model with TOEP as the Covariance Structure

Figure 4.7. PROC MIXED Model with GROUP= Option

65



Figure 4.8. Sub-Sampling Method

Table 4.31. The Results of Type 3 Tests of Fixed Effects from MIXED Model

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr> F

Original MIXED Model

Treat 2 26.7 9.89 0.006

Year 7 58.6 24.09 <.0001

Treat*Year 14 78.6 6.93 <.0001

MIXED model using the GROUP= option

Treat 2 19.2 17.36 <.0001

Year 7 35.2 14.50 <.0001

Treat*Year 14 40.5 6.13 <.0001

Sub-Sampling Method

Treat 2 27.1 11.36 0.0003

Year 7 61.6 17.55 <.0001

Treat*Year 14 77.1 5.36 <.0001
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5. CONCLUSION

To sum up, this study proposed four features to simulate longitudinal data, then using the

MIXED model to do analysis. The four conditions/features are: 1. Unbalanced sample size; 2.

Unequal group variance; 3. Violating normality assumption of the MIXED model; 4. A MIXED

model with incorrect covariance structures. This research aims to check how Type I error rates

would change within different conditions, and the corresponding power rates would also be provided

as references.

The first and main problem in this study is the analogue Behrens-Fisher problem under

the MIXED model structure. There are two features in this problem: unbalanced group size and

unequal group variance. Only one feature itself should not be a concern when using a MIXED

model, but it would be likely to have Type I error rate inflation problem when having the two

features simultaneously. The two features were interpreted as the two factors related to the Type I

error rate inflation problem in this study: ratios of sample size and ratios of group variance. When

the size and variance ratios are fixed, the inflated Type I error rate is consistent no matter the

changes of actual sample sizes or the number of repeated measures. According to our Second-Order

Response Surface Model in Chapter 4.1.2, the factor of size ratio may have more impact on the

prediction of Type I error rate inflation comparing to the factor of variance ratio, so when there

is an unbalanced group sample size, there may be a potential Type I error rate inflation/deflation

problem when the group variances are different. Furthermore, when a group has a relatively small

sample size but relatively large variance, we should be cautious of the Type I error inflation problem.

The MIXED model method using the GROUP= option Method and Sub-Sampling Method can be

reasonable solutions when having this problem. From a practical point, the method of the MIXED

model using the GROUP= option is recommended. However, based on the real data application,

we found that the Group= option does not always work on real data. When having these cases, the

Sub-Sampling procedure would be a great option. In the meantime, based on the corresponding

power rates’ performance, when there is Type I error rate inflation, the corresponding power rates

would also have detective deficiency. By standardizing the effect size, we could know how much

the power rate is impacted by the difference of group variances.
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The second problem is regards to violating the normality assumption of the MIXED model.

According to Chapter 4, the MIXED model is reasonably robust to modest violations of the normal

distribution. However, when data is heavily skewed with a big difference of group variances, the

MIXED model’s performance would be broken down.

The third problem is how does the incorrect covariance structures affect Type I error

rates and power rates. Comparing to the correct covariance structure, First-Order Autoregres-

sive (AR(1)) [Littell et al., 2006, Kincaid, 2005] which choosing the incorrect covariance structure

among Toeplitz (TOEP), Compound Symmetry (CS) and Unstructured (UN) [Littell et al., 2006,

Kincaid, 2005] does not affect the results of Type I error rate and power rate, the difference among

the four is around one percent. Nevertheless, Variance Components (VC) structure [Kincaid, 2005,

Littell et al., 2006] would increase the Type I error rate 3 to even 17 times compared to the results

of First-Order Autoregressive (AR(1)), as well as creating the highest power rate comparing to

other four. As we know, Variance Components (VC) is the simplest covariance structure. It spec-

ifies that observations are independent even on the same subjects, which is not realistic for most

longitudinal data. So neglecting the correlated measurements in a longitudinal study might be

why Variance Components (VC) structure causes the excessive Type I error rate inflation. There-

fore, when having longitudinal data, if not sure which covariance structure should be used in the

MIXED model, any one of the four following covariance structures would be recommended: First-

Order Autoregressive (AR(1)), Toeplitz (TOEP), Compound Symmetry (CS), and Unstructured

(UN).

Future research could look into the impact of issues of unbalanced samples and heteroge-

neous variances in more complex designs. All of the simulations in this thesis assume data from

continuous distributions. The mixed model framework generalizes to discrete distributions as well.

Perhaps some of these issues such as which variance-covariance structure to use or the impact

of unequal variances and unequal sample sizes could be investigated using simulated data from

discrete distributions. Thought would need to be given to the assumptions of these generalized

mixed models and whether or not the sample size and variance issues that can plague continuous

distributions in a mixed model ANOVA would impact the generalized models as well.
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(2019). Spatiotemporal spread of cacao swollen shoot virus severe strain 1a in mixed hybrid

cacao pre-inoculated with mild strain n1. Plant Disease, 103(12):3244–3250.

[Efron, 1981] Efron, B. (1981). Nonparametric estimates of standard error: the jackknife, the

bootstrap and other methods. Biometrika, 68(3):589–599.

[Fisher, 1938] Fisher, R. A. (1938). The statistical utilization of multiple measurements. Annals

of eugenics, 8(4):376–386.

[Fleishman, 1978] Fleishman, A. I. (1978). A method for simulating non-normal distributions.

Psychometrika, 43(4):521–532.

[Guerin and Stroup, 2000] Guerin, L. and Stroup, W. W. (2000). A simulation study to evaluate

proc mixed analysis of repeated measures data.

69



[Harville and Jeske, 1992] Harville, D. A. and Jeske, D. R. (1992). Mean squared error of estimation

or prediction under a general linear model. Journal of the American Statistical Association,

87(419):724–731.

[Hesterberg et al., 2005] Hesterberg, T., Moore, D., Monaghan, S., Clipson, A., Epstein, R., Moore,

D., and McCabe, G. (2005). Bootstrap methods and permutation tests ,(2005).

[Higgins et al., 1990] Higgins, J. J., Blair, R. C., and Tashtoush, S. (1990). The aligned rank

transform procedure.

[Hill and Dixon, 1982] Hill, M. and Dixon, W. (1982). Robustness in real life: A study of clinical

laboratory data. Biometrics, pages 377–396.

[Inc, 2016] Inc, S. (2016). Sas/stat. 14.2 user’s guide. Cary, NC: SAS Institute Inc.

[Jennrich and Schluchter, 1986] Jennrich, R. I. and Schluchter, M. D. (1986). Unbalanced repeated-

measures models with structured covariance matrices. Biometrics, pages 805–820.

[Johnson and Montgomery, 2009] Johnson, R. T. and Montgomery, D. C. (2009). Choice of second-

order response surface designs for logistic and poisson regression models. International Journal

of Experimental Design and Process Optimisation, 1(1):2–23.

[Kenward and Roger, 1997] Kenward, M. G. and Roger, J. H. (1997). Small sample inference for

fixed effects from restricted maximum likelihood. Biometrics, pages 983–997.

[Keselman et al., 1999a] Keselman, H., Algina, J., Kowalchuk, R. K., and Wolfinger, R. D. (1999a).

The analysis of repeated measurements: A comparison of mixed-model satterthwaite f tests and

a nonpooled adjusted degrees of freedom multivariate test. Communications in Statistics-Theory

and Methods, 28(12):2967–2999.

[Keselman et al., 1999b] Keselman, H., Algina, J., Kowalchuk, R. K., and Wolfinger, R. D. (1999b).

A comparison of recent approaches to the analysis of repeated measurements. British Journal of

Mathematical and Statistical Psychology, 52(1):63–78.

[Kim and Cohen, 1998] Kim, S.-H. and Cohen, A. S. (1998). On the behrens-fisher problem: A

review. Journal of Educational and Behavioral Statistics, 23(4):356–377.

70



[Kincaid, 2005] Kincaid, C. (2005). Guidelines for selecting the covariance structure in mixed

model analysis. In Proceedings of the thirtieth annual SAS users group international conference,

volume 30, pages 198–130. SAS Institute Inc Cary NC.

[King, 2017] King, T. J. (2017). Power analysis to determine the importance of covariance structure

choice in mixed model repeated measures anova. Master’s thesis, North Dakota State University.

[Kowalchuk et al., 2004] Kowalchuk, R. K., Keselman, H., Algina, J., and Wolfinger, R. D. (2004).

The analysis of repeated measurements with mixed-model adjusted f tests. Educational and

Psychological Measurement, 64(2):224–242.

[Kwok et al., 2007] Kwok, O.-m., West, S. G., and Green, S. B. (2007). The impact of misspecifying

the within-subject covariance structure in multiwave longitudinal multilevel models: A monte

carlo study. Multivariate Behavioral Research, 42(3):557–592.

[Lehmann and D’Abrera, 1975] Lehmann, E. L. and D’Abrera, H. J. (1975). Nonparametrics: sta-

tistical methods based on ranks. Holden-Day.

[Littell et al., 2006] Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Oliver, S.

(2006). SAS for mixed models. SAS publishing.

[Myers and Montgomery, 1997] Myers, R. H. and Montgomery, D. C. (1997). A tutorial on gener-

alized linear models. Journal of Quality Technology, 29(3):274–291.

[Paul et al., 2019] Paul, S., Wang, Y.-G., and Ullah, I. (2019). A review of the behrens-fisher prob-

lem and some of its analogs: Does the same size fit all? Revstat Statistical Journal, 17(4):563–597.

[Politis et al., 1999] Politis, D. N., Romano, J. P., and Wolf, M. (1999). Subsampling. Springer

Science & Business Media.

[Prasad and Rao, 1990] Prasad, N. N. and Rao, J. N. (1990). The estimation of the mean squared

error of small-area estimators. Journal of the American statistical association, 85(409):163–171.

[Reed III, 2003] Reed III, J. F. (2003). Solutions to the behrens–fisher problem. Computer methods

and programs in biomedicine, 70(3):259–263.

[SAS, 2015] SAS (2015). Sas/stat R© 14.1. user’s guide.

71



[Scheffe, 1959] Scheffe, H. (1959). The analysis of variance, volume 72. John Wiley & Sons.

[Schroeder and Martin, 2005] Schroeder, W. J. and Martin, K. M. (2005). Overview of visualiza-

tion.

[Vale and Maurelli, 1983] Vale, C. D. and Maurelli, V. A. (1983). Simulating multivariate nonnor-

mal distributions. Psychometrika, 48(3):465–471.

[Wicklin, 2013] Wicklin, R. (2013). Simulating data with SAS. SAS Institute.

72



APPENDIX A. SIMULATION CODE

The code below was used to perform the simulation study. Various parts of the code were

changed to obtain all the simulations based on different conditions. Note that some of the code is

commented off to prevent large amounts of output from printing.

proc iml ;

load module= a l l ; /∗ load Fleishman and Vale−Maure l l i modules ∗/

%l e t seed0=0;

%l e t NumSamples=5000;

t=2; ∗∗∗ t d e f i n e s # o f treatment groups ∗∗∗ ;

k=4; ∗∗∗ k d e f i n e s # o f repeated measures ∗∗∗ ;

s =30; ∗∗∗ s d e f i n e s # o f s ub j e c t s ∗∗∗ ;

rho =0.75; ∗∗∗ Autoco r r e l a t i on f o r AR(1) ∗∗∗ ;

sigma2 R=1; ∗∗∗ Res idua l var i ance component ∗∗∗ ;

sigma2 S1=1; ∗∗∗ Subject var iance component−c on t r o l ∗∗∗ ;

sigma2 S2=2; ∗∗∗ Subject var iance component−t r t ∗∗∗ ;

NumSamples = &NumSamples ;

∗∗∗∗∗∗∗∗∗∗∗∗ VCV bas i c s t r u c tu r e i s AR(1) here ∗∗∗∗∗∗∗∗∗∗∗∗ ;

e=j (k , k , 0 ) ; ∗∗∗ Matrix o f z e r o e s . ∗∗∗ ;

do i=1 to k ;

do j=1 to k ;

i f i=j then e [ i , j ]=1; ∗∗∗ Convert d iagona l to 1 s ∗∗∗ ;

e l s e e [ i , j ]=rho∗∗abs ( i−j ) ; ∗∗∗ AR(1) rhos ∗∗∗ ;

end ;

end ;

p r i n t e ;

do i = 2 to 30 ; ∗∗∗ Create block−d iagona l matrix ∗∗∗ ;

R = block (R, e ) ; ∗∗∗ with s b locks ∗∗∗ ;

end ;

R = I (30) @ e ; ∗∗∗ block−d iagona l matrix −t r t ∗∗∗ ;

p r i n t R;
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∗∗∗∗∗∗∗∗∗∗∗∗ Between sub j e c t s var iance s t r u c tu r e ∗∗∗∗∗∗∗∗∗∗∗∗ ;

B=j (k , k , 1 ) ;

B1 = sigma2 S1∗B; ∗∗∗ Mult ip ly VCV by sub j e c t sigma2 ∗∗∗ ;

p r i n t B1 ;

do i = 2 to 20 ; ∗∗∗ Create block−d iagona l matrix ∗∗∗ ;

R1 = block (R1 , B1 ) ; ∗∗∗ with s b locks ∗∗∗ ;

end ;

R1 = I (20) @ B1 ; ∗∗∗ block−d iagona l matrix −c on t r o l ∗∗∗ ;

B2 = sigma2 S2∗B; ∗∗∗ Mult ip ly VCV by sub j e c t sigma2 ∗∗∗ ;

p r i n t B2 ;

do i = 2 to 10 ; ∗∗∗ Create block−d iagona l matrix ∗∗∗ ;

R2 = block (R2 , B2 ) ; ∗∗∗ with s b locks ∗∗∗ ;

end ;

R2 = I (10) @ B2 ; ∗∗∗ block−d iagona l matrix −t r t ∗∗∗ ;

p r i n t R2 ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Fixed E f f e c t s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗ Set up the f i x ed por t i on des ign ∗∗∗∗∗∗∗∗∗∗∗∗ ;

Trt=j ( 8 0 , 1 , 1 ) ; ∗∗∗ Set up t r t des ign columns 80∗1∗∗∗ ;

do i=2 to t ;

Trt=co lv e c ( Trt// j ( 40 ,1 , i ) ) ; ∗concatenate v e r t i c a l //∗ ; ∗120∗1 ( conta in 1∗2)∗ ;

end ;

Trt = des ign ( Trt ) ;

p r i n t Trt ;

xxx=I (k ) ;

p r i n t xxx ;

∗∗∗ Set up repeated measures columns ∗∗∗ ;

do i=1 to s ;
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Week=(Week//xxx ) ;

end ;

p r i n t Week ;

X = j ( nrow (Week ) , 1 , 1 ) | | Trt | |Week ;

p r i n t X;

∗∗∗∗∗∗∗ Fixed e f f e c t s parms : mu t1 t2 w1 w2 w3 w4 ∗∗∗∗∗∗∗∗ ;

beta = {5 , 0 , 0 , 0 , 0 , 0 , 0} ;

∗∗∗∗∗∗∗ Fixed e f f e c t s eta ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

e ta1 = X∗beta ; ∗∗∗ Fixed e f f e c t s por t i on o f obs . ∗∗∗ ;

e ta = repeat ( eta1 , 1 , NumSamples ) ;

p r i n t beta ;

∗pr in t eta1 ;

∗pr in t eta ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Random E f f e c t s ∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗ Subject Random Error : zu ˜ MVN (0 ,R) ∗∗∗∗∗∗∗∗∗∗∗∗ ;

c a l l randseed (&seed0 ) ;

zero1 = j (1 , 80 , 0 ) ; ∗∗∗ the zero vector−c on t r o l ∗∗∗ ;

ze ro2 = j (1 , 40 , 0 ) ; ∗∗∗ the zero vector−t r t ∗∗∗ ;

p r i n t zero1 zero2 ;

esubj1 = RandNormal (NumSamples , zero1 , R1 ) ; ∗ esub j ˜ MVN(0 ,R) ;

e sub j e c t1=t ( esubj1 ) ;

e subj2 = RandNormal (NumSamples , zero2 , R2 ) ; ∗ esub j ˜ MVN(0 ,R) ;

e sub j e c t2=t ( esubj2 ) ;

e sub j e c t=( e sub j e c t1// e sub j e c t2 ) ;

∗pr in t e sub j e c t ;

∗∗∗∗∗∗∗ Random Error Component −− eps [ i , j ] ˜N(0 , sigma2 R)Normal ∗∗∗∗∗∗∗ ;
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c a l l randseed (&seed0 ) ;

ze ro = j (1 , 120 , 0 ) ; ∗∗∗ the zero vector−t r t ∗∗∗ ;

eps1 = RandNormal (NumSamples , zero , R) ; ∗ esub j ˜ MVN(0 ,R) ;

eps=t ( eps1 ) ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Conduct the equat ion with the f i x ed and random e f f e c t we got above ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

Y = eta + e sub j e c t + eps ;

∗pr in t Y;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Create MV data= X( des ign matrix)+ Indiv ( sub j e c t ID) + Y

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

Ind iv = co lv e c ( repeat (T( 1 : s ) , 1 , k ) ) ; ∗∗∗ Create Subj ID ∗∗∗ ;

∗pr in t Ind iv ;

MVdata=X[ , 2 : ( t+k+1 ) ] | | Ind iv | |Y;

∗pr in t mvdata ;

c r e a t e rm . Subj MV from MVdata ;

append from MVdata ;

c l o s e ;

qu i t ;

proc p r i n t data=rm . Subj MV( obs=10);

t i t l e 2 ’MV Data St ructure ’ ;

run ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗ Trans fe r MV data to UN data ∗∗∗∗∗∗∗∗∗∗∗ ;

76



∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

data rm . Subj UV( keep=Sample Subj ID S t r e s s Trt Period ) ;

s e t rm . Subj MV;

Subj ID=Col7 ;

i f c o l 1=1 then t r t=’A ’ ;

e l s e i f c o l 1=0 then t r t=’B ’ ;

i f c o l 3=1 then per iod=1;

e l s e i f c o l 4=1 then per iod=2;

e l s e i f c o l 5=1 then per iod=3;

e l s e i f c o l 6=1 then per iod=4;

array ys{&NumSamples} co l8−co l5007 ; ∗∗∗ ZZZ Adjust with sample s i z e . ∗∗∗ ;

do Sample=1 to &NumSamples ;

S t r e s s=ys{Sample } ;

output ;

end ;

run ;

proc s o r t data=rm . Subj UV;

by Sample ;

run ;

proc p r i n t data=rm . Subj UV ( obs=10);

t i t l e 2 ’UV Data St ruc ture ’ ;

run ;

∗∗∗∗∗∗∗∗ ANALYSIS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

%macro mvn( dsn , p , n ) ;

proc t ranspose data=rm . Subj UV out=rm .mv &dsn . &p . &n p r e f i x=S t r e s s ;

by Sample Subj ID Trt ;

var S t r e s s ;

run ;

∗proc p r i n t ;

run ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗∗∗ Repeated Measures MV Analys i s Block ∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

ods l i s t i n g c l o s e ;

ods output MultStat=MultStat &dsn . &p

ModelANOVA=ModelANOVAmv &dsn . &p

Eps i l ons=Eps i l ons &dsn . &p ;

proc glm data=rm .mv &dsn . &p . &n ;

by sample ;

c l a s s t r t ;

model s t r e s s 1 − s t r e s s&p = t r t / nouni ;

repeated per iod &p ;

t i t l e 2 ’ Repeated Measures ANOVA fo r E f f e c t o f Time on S t r e s s Leve l ’ ;

run ;

ods l i s t i n g ;

proc contents nopr int ;

run ;

data rm . uv &dsn . &p . &n ;

s e t rm . Subj UV;

run ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗ Repeated Measures UV Analys i s Block −− Trad i t i ona l Approach ∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

ods l i s t i n g c l o s e ;

ods output ModelANOVA=ModelANOVAuv &dsn . &p

F i t S t a t i s t i c s=F i t S t a t i s t i c s u v &dsn . &p ;

proc glm data=rm . uv &dsn . &p . &n ;

by sample ;

c l a s s t r t per iod ;

model s t r e s s = t r t | per iod ; ∗∗∗ a l l ows sub j e c t e r r o r combined w/ mse . ;

t i t l e 2 ’ Un ivar ia te ANOVA of Time on S t r e s s Leve l (No Subject E f f e c t ) ’ ;

run ;

ods l i s t i n g ;
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proc contents nopr int ;

run ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗ Repeated Measures UV Analys i s Block −− Mixed Model Approach ∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

%macro mmuv(VCV) ;

∗ods t r a c e on / l i s t i n g ;

ods l i s t i n g c l o s e ;

ods output

CovParms=Cov&VCV. &dsn . &p

F i t S t a t i s t i c s=Fit&VCV. &dsn . &p

Tests3=Tests3&VCV. &dsn . &p ;

proc mixed data=rm . uv &dsn . &p . &n ;

by sample ;

c l a s s t r t per iod subj id ;

model s t r e s s = t r t | per iod /ddfm=kr ;

repeated per iod / sub j e c t=subj id type=&VCV;

t i t l e 2 ”Repeated Measures ANOVA using Mixed Model Approach −− &VCV” ;

run ;

ods l i s t i n g ;

proc contents nopr int ;

run ;

%mend mmuv;

%mmuv(VC) ;

%mmuv(CS ) ;

%mmuv(TOEP) ;

%mmuv(UN) ;

∗ZZZzzzz ;

ods l i s t i n g c l o s e ;

ods output
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CovParms=CovAR &dsn . &p

F i t S t a t i s t i c s=FitAR &dsn . &p

Tests3=Tests3AR &dsn . &p ;

proc mixed data=rm . uv &dsn . &p . &n ;

by sample ;

c l a s s t r t per iod subj id ;

model s t r e s s = t r t | per iod /ddfm=kr ;

repeated per iod / sub j e c t=subj id type=AR( 1 ) ;

t i t l e 2 ”Repeated Measures ANOVA using Mixed Model Approach −− AR(1 ) ” ;

run ;

ods l i s t i n g ;

proc contents nopr int ;

run ;

t i t l e 1 ” Simulat ion o f Skewed Data , N=&N −− Data Covariance St ruc ture was &dsn ” ;

proc s o r t data=MultStat &dsn . &p

(where=(Hypothes is=’ per iod ’ and S t a t i s t i c=”Wilks ’ Lambda”) )

out=Per mvrm( keep=Sample va lue f va l u e probf ) ;

by sample ;

run ;

proc s o r t data=MultStat &dsn . &p

(where=(Hypothes is=’ per iod t r t ’ and S t a t i s t i c=”Wilks ’ Lambda”) )

out=PerTrt mvrm( keep=Sample va lue f va l u e probf ) ;

by sample ;

run ;

/∗

proc s o r t data=MultStat &dsn . &p

out=mvrm;

by sample ;

run ;

∗/

proc s o r t data=ModelANOVAmv &dsn . &p

(where=(Source=’ per iod ’ ) )
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out=Per mvgghf ( keep=Sample FValue ProbF ProbFGG ProbFHF ) ;

by sample ;

run ;

proc s o r t data=ModelANOVAmv &dsn . &p

(where=(Source=’ per iod∗ t r t ’ ) )

out=PerTrt mvgghf ( keep=Sample FValue ProbF ProbFGG ProbFHF ) ;

by sample ;

run ;

proc s o r t data=ModelANOVAmv &dsn . &p

(where=(Source=’ t r t ’ ) )

out=Trt mvgghf ( keep=Sample FValue ProbF ProbFGG ProbFHF ) ;

by sample ;

run ;

/∗ ANOVA with GG and HF above ∗/

proc s o r t data=ModelANOVAuv &dsn . &p

(where=(HypothesisType=3 and source=’ per iod ’ ) )

out=Per uvrm( keep=Sample FValue ProbF SS MS) ;

by sample ;

run ;

proc s o r t data=ModelANOVAuv &dsn . &p

(where=(HypothesisType=3 and source=’ t r t∗per iod ’ ) )

out=PerTrt uvrm( keep=Sample FValue ProbF SS MS) ;

by sample ;

run ;

proc s o r t data=ModelANOVAuv &dsn . &p

(where=(HypothesisType=3 and source=’ t r t ’ ) )

out=Trt uvrm( keep=Sample FValue ProbF SS MS) ;

by sample ;

run ;

/∗ ANOVA UV above ∗/

proc s o r t data=Tests3VC &dsn . &p

(where=(E f f e c t=’ per iod ’ ) )

out=Per uvrmVC( keep=Sample FValue ProbF ) ;

by sample ;
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run ;

proc s o r t data=Tests3VC &dsn . &p

(where=(E f f e c t=’ t r t∗per iod ’ ) )

out=PerTrt uvrmVC( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3VC &dsn . &p

(where=(E f f e c t=’ t r t ’ ) )

out=Trt uvrmVC( keep=Sample FValue ProbF ) ;

by sample ;

run ;

/∗

proc s o r t data=Tests3VC &dsn . &p

out=uvrmVC;

by sample ;

run ;

∗/

proc s o r t data=Tests3CS &dsn . &p(where=(E f f e c t=’ per iod ’ ) )

out=Per uvrmCS( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3CS &dsn . &p(where=(E f f e c t=’ t r t∗per iod ’ ) )

out=PerTrt uvrmCS( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3CS &dsn . &p(where=(E f f e c t=’ t r t ’ ) )

out=Trt uvrmCS( keep=Sample FValue ProbF ) ;

by sample ;

run ;

/∗ CS Resu l t s above ∗/

proc s o r t data=Tests3TOEP &dsn . &p(where=(E f f e c t=’ per iod ’ ) )

out=Per uvrmTOEP( keep=Sample FValue ProbF ) ;

by sample ;

run ;
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proc s o r t data=Tests3TOEP &dsn . &p(where=(E f f e c t=’ t r t∗per iod ’ ) )

out=PerTrt uvrmTOEP( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3TOEP &dsn . &p(where=(E f f e c t=’ t r t ’ ) )

out=Trt uvrmTOEP( keep=Sample FValue ProbF ) ;

by sample ;

run ;

/∗ TOEP Resu l t s above ∗/

proc s o r t data=Tests3UN &dsn . &p(where=(E f f e c t=’ per iod ’ ) )

out=Per uvrmUN( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3UN &dsn . &p(where=(E f f e c t=’ t r t∗per iod ’ ) )

out=PerTrt uvrmUN( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3UN &dsn . &p(where=(E f f e c t=’ t r t ’ ) )

out=Trt uvrmUN( keep=Sample FValue ProbF ) ;

by sample ;

run ;

/∗ UN Resu l t s above ∗/

proc s o r t data=Tests3AR &dsn . &p(where=(E f f e c t=’ per iod ’ ) )

out=Per uvrmAR( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3AR &dsn . &p(where=(E f f e c t=’ t r t∗per iod ’ ) )

out=PerTrt uvrmAR( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3AR &dsn . &p(where=(E f f e c t=’ t r t ’ ) )

out=Trt uvrmAR( keep=Sample FValue ProbF ) ;

by sample ;

run ;

83



/∗ AR Resu l t s above ∗/

/∗

proc p r i n t data=mvgghf ;

t i t l e 2 ’MVRM Structure ’ ;

run ;

∗/

proc format ;

va lue pow low−.05 = ’ Reject ’

. 05<−high = ’DNR’ ;

va lue mod 1= ’Wilks ’ 2= ’UVCS ’ 3= ’GG’ 4= ’HF ’ 5= ’UVNoBlk ’

6= ’MxVC’ 7= ’MxCS ’ 8= ’MxTOEP’

9= ’MxUN’ 10= ’MxAR’ ;

va lue modtrt

1= ’UVCS ’ 2= ’UVNoBlk ’

3= ’MxVC’ 4= ’MxCS ’ 5= ’MxTOEP’

6= ’MxUN’ 7= ’MxAR’ ;

run ;

∗∗∗ Period t e s t s ∗∗∗ ;

data rm . Per a l l ps &p . &n ;

merge Per mvrm ( rename=(value=wi lk s f va l u e=wl f probf=wl f p ) )

Per mvgghf ( rename=( f va l u e=per f probf=per p ) )

Per uvrm ( rename=( fva l u e=uvper f probf=uvper p ) )

Per uvrmVC( rename=( fva l u e=VCper f probf=VCper p ) )

Per uvrmCS( rename=( fva l u e=CSper f probf=CSper p ) )

Per uvrmTOEP( rename=( fva l u e=TOEPper f probf=TOEPper p ) )

Per uvrmUN( rename=( fva l u e=UNper f probf=UNper p ) )

Per uvrmAR( rename=( fva l u e=ARper f probf=ARper p ) ) ;

∗by sample ;

run ;

data Per u l t ( keep=sample i p value ) ;

s e t rm . Per a l l ps &p . &n ;

array ps {10} wl f p per p ProbFGG ProbFHF uvper p

VCper p CSper p TOEPper p UNper p ARper p ;
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do i=1 to 10 ;

p value=ps{ i } ;

output ;

end ;

run ;

proc f r e q data=Per u l t ;

t a b l e s p value∗ i / nopct norow ;

format p value pow . i mod . ;

t i t l e 3 ’ Period Resu l t s ’ ;

run ;

∗∗∗ Period∗Trt Tests ∗∗∗ ;

data rm . PerTrt a l l ps &p . &n ;

merge PerTrt mvrm ( rename=(value=wi lk s f va l u e=wl f probf=wl f p ) )

PerTrt mvgghf ( rename=( f va l u e=per f probf=per p ) )

PerTrt uvrm ( rename=( fva l u e=uvper f probf=uvper p ) )

PerTrt uvrmVC( rename=( fva l u e=VCper f probf=VCper p ) )

PerTrt uvrmCS( rename=( fva l u e=CSper f probf=CSper p ) )

PerTrt uvrmTOEP( rename=( fva l u e=TOEPper f probf=TOEPper p ) )

PerTrt uvrmUN( rename=( fva l u e=UNper f probf=UNper p ) )

PerTrt uvrmAR( rename=( fva l u e=ARper f probf=ARper p ) ) ;

run ;

data PerTrt u l t ( keep=sample i p value ) ;

s e t rm . PerTrt a l l ps &p . &n ;

array ps {10} wl f p per p ProbFGG ProbFHF uvper p

VCper p CSper p TOEPper p UNper p ARper p ;

do i=1 to 10 ;

p value=ps{ i } ;

output ;

end ;

run ;

proc f r e q data=PerTrt u l t ;

t a b l e s p value∗ i / nopct norow ;

format p value pow . i mod . ;

t i t l e 3 ’ Period∗Trt Resu l t s ’ ;

run ;
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∗∗∗ Trt Tests ∗∗∗ ;

data rm . Trt a l l ps &p . &n ;

merge Trt mvgghf ( rename=( f va l u e=per f probf=per p ) )

Trt uvrm ( rename=( fva l u e=uvper f probf=uvper p ) )

Trt uvrmVC( rename=( fva l u e=VCper f probf=VCper p ) )

Trt uvrmCS( rename=( fva l u e=CSper f probf=CSper p ) )

Trt uvrmTOEP( rename=( fva l u e=TOEPper f probf=TOEPper p ) )

Trt uvrmUN( rename=( fva l u e=UNper f probf=UNper p ) )

Trt uvrmAR( rename=( fva l u e=ARper f probf=ARper p ) ) ;

run ;

data Trt u l t ( keep=sample i p value ) ;

s e t rm . Trt a l l ps &p . &n ;

array ps {7} per p uvper p VCper p CSper p TOEPper p UNper p ARper p ;

do i=1 to 7 ;

p value=ps{ i } ;

output ;

end ;

run ;

proc f r e q data=Trt u l t ;

t a b l e s p value∗ i / nopct norow ;

format p value pow . i modtrt . ;

t i t l e 3 ’ Trt Resu l t s ’ ;

run ;

%mend mvn ;

%macro l oope r (p ) ;

%do dim=4 %to &p ;

∗∗∗ mvn( dsn , p , n) ∗∗∗ ;

%mvn(AR1, 4 , 3 0 ) ;

%end ;

%mend loope r ;

%loope r ( 4 ) ;

∗proc p r i n t ;
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run ;

%l e t t1 = %sys func ( datet ime ( ) ) ;

%l e t elapsedTime = %sy s e v a l f (&t1−&t0 ) ;

%put &elapsedTime ;
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APPENDIX B. ALIGNED RANK TEST CODE

The code below was used to prepare the aligned and ranked data-sets for TREATMENT

TEST. Various parts of the code were changed to obtain all the results based on different simulation

data-sets. Note that some of the code is commented off to prevent large amounts of output from

printing.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗ Build up c a l c u l a t i o n f o r a l i gned and ranks ∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

data subj uv ;

s e t rm . subj uv ;

run ;

∗∗∗∗∗∗∗∗∗∗ Get the means f o r row | column va r i a b l e s ∗∗∗∗∗∗ ;

proc means data=subj uv nopr int mean ;

by sample ;

var s t r e s s ;

output out=ybar o v e r a l l mean=ybar o v e r a l l ;

run ;

proc means data=subj uv nopr int mean ;

by sample t r t ;

var s t r e s s ;

output out=ybar t r t mean=ybar t r t ;

run ;

proc s o r t data=subj uv ;

by sample per iod ;

proc means nopr int mean ;

by sample per iod ;

var s t r e s s ;

output out=ybar per iod mean=ybar per iod ;

run ;

proc s o r t data=subj uv ;
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by sample t r t per iod ;

proc means nopr int mean ;

by sample t r t per iod ;

var s t r e s s ;

output out=ybar i n t e r mean=ybar i n t e r ;

run ;

∗∗∗∗∗ Align Dataset ∗∗∗∗ ;

Data ybar1 ( drop= f r e q type ) ;

merge ybar per iod ( IN=IN1 )

ybar o v e r a l l ( IN=IN2 ) ;

by sample ;

i f IN1 ;

run ;

Data ybar2 ( drop= f r e q type ) ;

merge ybar i n t e r ( IN=IN1 )

ybar t r t ( IN=IN2 ) ;

by sample t r t ;

i f IN1 ;

run ;

proc s o r t data=ybar2 ;

by sample per iod ;

Data ybar3 ( drop= f r e q type ) ;

merge ybar2 ( IN=IN1 )

ybar1 ( IN=IN2 ) ;

by sample per iod ;

i f IN1 ;

run ;

proc s o r t data=ybar3 ;

by sample t r t per iod ;

Data ybar ;

merge subj uv ( IN=IN1 )

ybar3 ( IN=IN2 ) ;
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by sample t r t per iod ;

i f IN1 ;

run ;

∗∗∗∗∗ Aligned da ta s e t s ∗∗∗∗ ;

data rm . a l i g n ( drop=ybar o v e r a l l ybar t r t ybar per iod ybar i n t e r ) ;

s e t ybar ;

i n t e r a l i=s t r e s s−ybar t r t−ybar per iod+ybar o v e r a l l ;

t r t a l i=s t r e s s−ybar i n t e r+ybar t r t−ybar o v e r a l l ;

pe r iod a l i=s t r e s s−ybar i n t e r+ybar per iod−ybar o v e r a l l ;

run ;

∗∗∗∗ Rank Datasets ∗∗∗∗ ;

proc s o r t data=rm . a l i g n ;

by sample t r t subj ID per iod ;

proc rank data=rm . a l i g n out=rm . a l i gned rank ;

by sample ;

var i n t e r a l i t r t a l i pe r iod a l i ;

run ;

data rm . subj uv ( rename=( t r t a l i=s t r e s s ) ) ;

s e t rm . a l i gned rank ( drop=s t r e s s per iod a l i i n t e r a l i ) ;

format a l l ;

run ;

∗∗∗∗∗∗∗∗∗∗∗∗∗ ANALYSIS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

%macro mvn( dsn , p , n ) ;

proc t ranspose data=rm . Subj UV out=rm .mv &dsn . &p . &n p r e f i x=S t r e s s ;

by Sample Subj ID Trt ;

var S t r e s s ;

run ;

∗proc p r i n t ;
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run ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗ Repeated Measures MV Analys i s Block ∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

ods l i s t i n g c l o s e ;

ods output MultStat=MultStat &dsn . &p

ModelANOVA=ModelANOVAmv &dsn . &p

Eps i l ons=Eps i l ons &dsn . &p ;

proc glm data=rm .mv &dsn . &p . &n ;

by sample ;

c l a s s t r t ;

model s t r e s s 1 − s t r e s s&p = t r t / nouni ;

repeated per iod &p ;

t i t l e 2 ’ Repeated Measures ANOVA fo r E f f e c t o f Time on S t r e s s Leve l ’ ;

run ;

ods l i s t i n g ;

proc contents nopr int ;

run ;

data rm . uv &dsn . &p . &n ;

s e t rm . Subj UV;

run ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗ Repeated Measures UV Analys i s Block −− Trad i t i ona l Approach ∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

ods l i s t i n g c l o s e ;

ods output ModelANOVA=ModelANOVAuv &dsn . &p

F i t S t a t i s t i c s=F i t S t a t i s t i c s u v &dsn . &p ;

proc glm data=rm . uv &dsn . &p . &n ;

by sample ;

c l a s s t r t per iod ;

model s t r e s s = t r t | per iod ; ∗∗∗ a l l ows sub j e c t e r r o r combined w/ mse . ;

t i t l e 2 ’ Un ivar ia te ANOVA of Time on S t r e s s Leve l (No Subject E f f e c t ) ’ ;
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run ;

ods l i s t i n g ;

proc contents nopr int ;

run ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗ Repeated Measures UV Analys i s Block −− Mixed Model Approach ∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

%macro mmuv(VCV) ;

∗ods t r a c e on / l i s t i n g ;

ods l i s t i n g c l o s e ;

ods output

CovParms=Cov&VCV. &dsn . &p

F i t S t a t i s t i c s=Fit&VCV. &dsn . &p

Tests3=Tests3&VCV. &dsn . &p ;

proc mixed data=rm . uv &dsn . &p . &n ;

by sample ;

c l a s s t r t per iod subj id ;

model s t r e s s = t r t | per iod/ddfm=kr ;

repeated per iod / sub j e c t=subj id type=&VCV;

t i t l e 2 ”Repeated Measures ANOVA using Mixed Model Approach −− &VCV” ;

run ;

ods l i s t i n g ;

proc contents nopr int ;

run ;

%mend mmuv;

%mmuv(VC) ;

%mmuv(CS ) ;

%mmuv(TOEP) ;

%mmuv(UN) ;
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∗ZZZzzzz ;

ods l i s t i n g c l o s e ;

ods output

CovParms=CovAR &dsn . &p

F i t S t a t i s t i c s=FitAR &dsn . &p

Tests3=Tests3AR &dsn . &p ;

proc mixed data=rm . uv &dsn . &p . &n ;

by sample ;

c l a s s t r t per iod subj id ;

model s t r e s s = t r t | per iod/ddfm=kr ;

repeated per iod / sub j e c t=subj id type=AR( 1 ) ;

t i t l e 2 ”Repeated Measures ANOVA using Mixed Model Approach −− AR(1 ) ” ;

run ;

ods l i s t i n g ;

proc contents nopr int ;

run ;

t i t l e 1 ” Simulat ion o f Skewed Data , N=&N −− Data Covariance St ruc ture was &dsn ” ;

proc s o r t data=MultStat &dsn . &p

(where=(Hypothes is=’ per iod ’ and S t a t i s t i c=”Wilks ’ Lambda”) )

out=Per mvrm( keep=Sample va lue f va l u e probf ) ;

by sample ;

run ;

proc s o r t data=MultStat &dsn . &p

(where=(Hypothes is=’ per iod t r t ’ and S t a t i s t i c=”Wilks ’ Lambda”) )

out=PerTrt mvrm( keep=Sample va lue f va l u e probf ) ;

by sample ;

run ;

/∗

proc s o r t data=MultStat &dsn . &p

out=mvrm;

by sample ;

run ;

∗/
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proc s o r t data=ModelANOVAmv &dsn . &p(where=(Source=’ per iod ’ ) )

out=Per mvgghf ( keep=Sample FValue ProbF ProbFGG ProbFHF ) ;

by sample ;

run ;

proc s o r t data=ModelANOVAmv &dsn . &p(where=(Source=’ per iod∗ t r t ’ ) )

out=PerTrt mvgghf ( keep=Sample FValue ProbF ProbFGG ProbFHF ) ;

by sample ;

run ;

proc s o r t data=ModelANOVAmv &dsn . &p(where=(Source=’ t r t ’ ) )

out=Trt mvgghf ( keep=Sample FValue ProbF ProbFGG ProbFHF ) ;

by sample ;

run ;

/∗ ANOVA with GG and HF above ∗/

proc s o r t data=ModelANOVAuv &dsn . &p

(where=(HypothesisType=3 and source=’ per iod ’ ) )

out=Per uvrm( keep=Sample FValue ProbF SS MS) ;

by sample ;

run ;

proc s o r t data=ModelANOVAuv &dsn . &p

(where=(HypothesisType=3 and source=’ t r t∗per iod ’ ) )

out=PerTrt uvrm( keep=Sample FValue ProbF SS MS) ;

by sample ;

run ;

proc s o r t data=ModelANOVAuv &dsn . &p

(where=(HypothesisType=3 and source=’ t r t ’ ) )

out=Trt uvrm( keep=Sample FValue ProbF SS MS) ;

by sample ;

run ;

/∗ ANOVA UV above ∗/

proc s o r t data=Tests3VC &dsn . &p(where=(E f f e c t=’ per iod ’ ) )

out=Per uvrmVC( keep=Sample FValue ProbF ) ;

by sample ;

run ;
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proc s o r t data=Tests3VC &dsn . &p(where=(E f f e c t=’ t r t∗per iod ’ ) )

out=PerTrt uvrmVC( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3VC &dsn . &p(where=(E f f e c t=’ t r t ’ ) )

out=Trt uvrmVC( keep=Sample FValue ProbF ) ;

by sample ;

run ;

/∗

proc s o r t data=Tests3VC &dsn . &p

out=uvrmVC;

by sample ;

run ;

∗/

proc s o r t data=Tests3CS &dsn . &p(where=(E f f e c t=’ per iod ’ ) )

out=Per uvrmCS( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3CS &dsn . &p(where=(E f f e c t=’ t r t∗per iod ’ ) )

out=PerTrt uvrmCS( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3CS &dsn . &p(where=(E f f e c t=’ t r t ’ ) )

out=Trt uvrmCS( keep=Sample FValue ProbF ) ;

by sample ;

run ;

/∗ CS Resu l t s above ∗/

proc s o r t data=Tests3TOEP &dsn . &p(where=(E f f e c t=’ per iod ’ ) )

out=Per uvrmTOEP( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3TOEP &dsn . &p(where=(E f f e c t=’ t r t∗per iod ’ ) )

out=PerTrt uvrmTOEP( keep=Sample FValue ProbF ) ;

by sample ;
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run ;

proc s o r t data=Tests3TOEP &dsn . &p(where=(E f f e c t=’ t r t ’ ) )

out=Trt uvrmTOEP( keep=Sample FValue ProbF ) ;

by sample ;

run ;

/∗ TOEP Resu l t s above ∗/

proc s o r t data=Tests3UN &dsn . &p(where=(E f f e c t=’ per iod ’ ) )

out=Per uvrmUN( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3UN &dsn . &p(where=(E f f e c t=’ t r t∗per iod ’ ) )

out=PerTrt uvrmUN( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3UN &dsn . &p(where=(E f f e c t=’ t r t ’ ) )

out=Trt uvrmUN( keep=Sample FValue ProbF ) ;

by sample ;

run ;

/∗ UN Resu l t s above ∗/

proc s o r t data=Tests3AR &dsn . &p(where=(E f f e c t=’ per iod ’ ) )

out=Per uvrmAR( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3AR &dsn . &p(where=(E f f e c t=’ t r t∗per iod ’ ) )

out=PerTrt uvrmAR( keep=Sample FValue ProbF ) ;

by sample ;

run ;

proc s o r t data=Tests3AR &dsn . &p(where=(E f f e c t=’ t r t ’ ) )

out=Trt uvrmAR( keep=Sample FValue ProbF ) ;

by sample ;

run ;

/∗ AR Resu l t s above ∗/

/∗
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proc p r i n t data=mvgghf ;

t i t l e 2 ’MVRM Structure ’ ;

run ;

∗/

ods r t f f i l e =”ART 10vs20 ZU (RandFleishman (0 ,G( trt10 , con1 ) ) e MVN(0 ,AR( 1 ) ) . r t f ” ;

t i t l e 1 ” Aligned Rank Test f o r TREATMENT TEST;

Unbalanced treatment group (10 vs20 ) ” ;

t i t l e 2 ”Between e f f e c t : ZU˜RandFleishman (u=0, sigma2=G( trt10 , con1 ) ,

skew=2, ku r t o s i s =6)”;

t i t l e 3 ”Within e f f e c t : e M̃VN(0 ,AR( 1 ) ) ” ;

proc format ;

va lue pow low−.05 = ’ Reject ’

. 05<−high = ’DNR’ ;

va lue mod 1= ’Wilks ’ 2= ’UVCS ’ 3= ’GG’ 4= ’HF ’ 5= ’UVNoBlk ’

6= ’MxVC’ 7= ’MxCS ’ 8= ’MxTOEP’

9= ’MxUN’ 10= ’MxAR’ ;

va lue modtrt

1= ’UVCS ’ 2= ’UVNoBlk ’

3= ’MxVC’ 4= ’MxCS ’ 5= ’MxTOEP’

6= ’MxUN’ 7= ’MxAR’ ;

run ;

∗∗∗ Period t e s t s ∗∗∗ ;

data rm . Per a l l ps &p . &n ;

merge Per mvrm ( rename=(value=wi lk s f va l u e=wl f probf=wl f p ) )

Per mvgghf ( rename=( f va l u e=per f probf=per p ) )

Per uvrm ( rename=( fva l u e=uvper f probf=uvper p ) )

Per uvrmVC( rename=( fva l u e=VCper f probf=VCper p ) )

Per uvrmCS( rename=( fva l u e=CSper f probf=CSper p ) )

Per uvrmTOEP( rename=( fva l u e=TOEPper f probf=TOEPper p ) )

Per uvrmUN( rename=( fva l u e=UNper f probf=UNper p ) )

Per uvrmAR( rename=( fva l u e=ARper f probf=ARper p ) ) ;
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∗by sample ;

run ;

data Per u l t ( keep=sample i p value ) ;

s e t rm . Per a l l ps &p . &n ;

array ps {10} wl f p per p ProbFGG ProbFHF uvper p

VCper p CSper p TOEPper p UNper p ARper p ;

do i=1 to 10 ;

p value=ps{ i } ;

output ;

end ;

run ;

proc f r e q data=Per u l t ;

t a b l e s p value∗ i / nopct norow ;

format p value pow . i mod . ;

t i t l e 4 ’ Period Resu l t s ’ ;

run ;

∗∗∗ Period∗Trt Tests ∗∗∗ ;

data rm . PerTrt a l l ps &p . &n ;

merge PerTrt mvrm ( rename=(value=wi lk s f va l u e=wl f probf=wl f p ) )

PerTrt mvgghf ( rename=( f va l u e=per f probf=per p ) )

PerTrt uvrm ( rename=( fva l u e=uvper f probf=uvper p ) )

PerTrt uvrmVC( rename=( fva l u e=VCper f probf=VCper p ) )

PerTrt uvrmCS( rename=( fva l u e=CSper f probf=CSper p ) )

PerTrt uvrmTOEP( rename=( fva l u e=TOEPper f probf=TOEPper p ) )

PerTrt uvrmUN( rename=( fva l u e=UNper f probf=UNper p ) )

PerTrt uvrmAR( rename=( fva l u e=ARper f probf=ARper p ) ) ;

run ;

data PerTrt u l t ( keep=sample i p value ) ;

s e t rm . PerTrt a l l ps &p . &n ;

array ps {10} wl f p per p ProbFGG ProbFHF uvper p

VCper p CSper p TOEPper p UNper p ARper p ;

do i=1 to 10 ;

p value=ps{ i } ;

output ;

end ;
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run ;

proc f r e q data=PerTrt u l t ;

t a b l e s p value∗ i / nopct norow ;

format p value pow . i mod . ;

t i t l e 4 ’ Period∗Trt Resu l t s ’ ;

run ;

∗∗∗ Trt Tests ∗∗∗ ;

data rm . Trt a l l ps &p . &n ;

merge Trt mvgghf ( rename=( f va l u e=per f probf=per p ) )

Trt uvrm ( rename=( fva l u e=uvper f probf=uvper p ) )

Trt uvrmVC( rename=( fva l u e=VCper f probf=VCper p ) )

Trt uvrmCS( rename=( fva l u e=CSper f probf=CSper p ) )

Trt uvrmTOEP( rename=( fva l u e=TOEPper f probf=TOEPper p ) )

Trt uvrmUN( rename=( fva l u e=UNper f probf=UNper p ) )

Trt uvrmAR( rename=( fva l u e=ARper f probf=ARper p ) ) ;

run ;

data Trt u l t ( keep=sample i p value ) ;

s e t rm . Trt a l l ps &p . &n ;

array ps {7} per p uvper p VCper p CSper p TOEPper p UNper p ARper p ;

do i=1 to 7 ;

p value=ps{ i } ;

output ;

end ;

run ;

proc f r e q data=Trt u l t ;

t a b l e s p value∗ i / nopct norow ;

format p value pow . i modtrt . ;

t i t l e 4 ’ Trt Resu l t s ’ ;

run ;

ods r t f c l o s e ;

%mend mvn ;

%macro l oope r (p ) ;

%do dim=4 %to &p ;

∗∗∗ mvn( dsn , p , n) ∗∗∗ ;
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%mvn(AR1, 4 , 3 0 ) ;

%end ;

%mend loope r ;

%loope r ( 4 ) ;

∗proc p r i n t ;

run ;

%l e t t1 = %sys func ( datet ime ( ) ) ;

%l e t elapsedTime = %sy s e v a l f (&t1−&t0 ) ;

%put &elapsedTime ;
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