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ABSTRACT 

Cyber-physical systems (CPSs), a term coined in 2006 refers to the integration of 

computation with physical processes. Particularly, modern critical infrastructures are examples 

of CPSs, like smart electric power grids, intelligent water distribution networks, and intelligent 

transportation systems. CPSs provide critical services that have great impact in nation’s 

economy, security, and health. Therefore, reliability is a primary metric. Nevertheless, the study 

of complex CPSs reliability demands understanding the joint dynamics of physical processes, 

hardware, software, and networks. In the present research, a series of studies is proposed to 

contribute to the challenging reliability analysis of CPSs by considering the reliability of 

physical components, hardware/software interactions, and overall reliability of CPSs modeled as 

networks. First, emerging technologies such as flexible electronics combined with data analytics 

and artificial intelligence, are now part of modern CPSs. In the present work, accelerated 

degradation testing (ADT) design and data analysis is considered for flexible hybrid electronic 

(FHE) devices, which can be part of the physical components or sensors of a CPS. Second, an 

important aspect of CPS is the interaction between hardware and software. Most of the existing 

work assume independency between hardware and software. In this work, a probabilistic 

approach is proposed to model such interactions using a Markov model and Monte Carlo 

simulation. Third, networks have been widely used to model CPSs reliability because they both 

have interconnected components. Estimating the network reliability by using traditional artificial 

neural networks (ANNs) has emerged as a promissory alternative to classical exact NP-hard 

algorithms; however, modern machine learning techniques have not been fully studied as 

reliability estimators for networks. This dissertation proposes the use of advanced deep learning 

(DL) techniques such as convolutional neural networks (CNNs) and deep neural networks 



 

iv 

(DNNs) for all-terminal network reliability estimation problem. DL techniques provide higher 

accuracy in reliability prediction as well as the possibility to dispense with computationally 

expensive inputs such the reliability upper bound. In addition, most of the previous works 

assume binary states for the components of networks, whereas the present work incorporates a 

Bayesian method to consider degradation for network reliability estimation and updating of 

parameters. 
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CHAPTER 1. INTRODUCTION 

The term cyber-physical systems (CPSs) was coined in 2006 by Helen Gill at the 

National Science Foundation (U.S.) for the integration of computation with physical processes 

[1]. Applications domains include agriculture, aeronautics, building design, civil infrastructure, 

energy, environmental quality, healthcare and personalized medicine, manufacturing, and 

transportation [2]. Particularly, modern critical infrastructures are examples of CPSs, like smart 

electric power grids, intelligent water distribution networks, and intelligent transportation 

systems. [3]. They provide critical services that have great impact in nation’s economy, security, 

and health. 

Reliability is an important feature of CPS [4]. Moreover, it is critical because the system 

failures have enormous impact on business, environment and society [5]. For example, in the 

Northeast US blackout in 2003 more than 50 million people were affected [6, 7] and the 

estimated cost was about $ 6 billion [7]. Southwest blackout in 2011 and 2013 Central California 

blackout left without electricity to 7 million and 145 million people, respectively [3]. Moreover, 

due to interdependencies, other CPS like water distribution and transportation fail as a result of 

failures in power system CPS [8]. In addition to random failures, the interdependency with cyber 

components also expose CPS to cyber-attacks [9]. Due to automation mechanisms, cyber-attacks 

may reach to a large number of critical components [10]. For instance, outages in electric power 

systems may propagate between the coupled networks, increasing the risk of system wide 

cascading failures [11]. A blackout in 2015 was considered the largest one caused by 

cyberattacks for the first time in history [9]. Similarly, in 2016 a large number of computers were 

run offline in Israel’s power supply system [12, 13]. Therefore, proper working of CPS is vital, 

and their reliability is a primary metric. 
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1.1. Overview 

As a result of CPS complexity, reliability analysis of such systems is a cumbersome 

effort. The complexity of CPS is reflected on the different perspectives from which their 

reliability can be analyzed. Therefore, CPS reliability analysis problem can be addressed by 

understanding the reliability at components level and further integrating the concepts of 

components reliability into system reliability models. Since CPS integrate physical and cyber 

components, appropriate methods are developed for the reliability estimation of physical 

components considering ADT, and cyber components considering hardware/software 

interactions. In addition, reliability at network level is proposed for overall system reliability 

analysis, considering that CPS have interconnected components that may degrade. Therefore, in 

the present research, a series of studies is proposed to contribute to reliability estimation of CPS 

considering physical components, hardware/software interactions, and overall network 

reliability. 

First, accelerated degradation testing (ADT) design and data analysis is considered to 

develop reliability estimation methods at components level. Flexible hybrid electronic (FHE) 

devices ADT data are used to demonstrate the developed methods, because they can be part of 

the physical components or sensors of a CPS. Nevertheless, the methods can be used with 

different kind of technology as well, with appropriate considerations of materials in test design. 

Our methods build the relations to estimate components reliability as a function of time and a 

developed equivalent stress relation. Our work is based on ADT, a developed multi-stress (S-L) 

relation, and probabilistic damage accumulation. As a result, we provide a framework for 

reliability estimation under realistic scenarios of multi-stress variables and multi-stress levels. 
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Second, an important aspect of CPS are the cyber components, which exhibit interaction 

between hardware and software. Most of the existing work assume independency between 

hardware and software or constant parameters to model their interactions. In this work, a 

probabilistic approach is proposed to estimate cyber components reliability, considering the 

interactions. Our work is based on NHPPs (non-homogeneous Poisson Processes), Markov 

model and Monte Carlo simulation. The realistic assumption of random parameters allows the 

estimation of confidence intervals on top of point reliability estimates as function of time. 

Third, networks have been widely used to model CPSs reliability at system level because 

networks can capture the interconnection of CPS components. Estimating the network reliability 

by using traditional artificial neural networks (ANNs) has emerged as a promissory alternative to 

classical exact NP-hard algorithms; however, modern machine learning techniques have not been 

fully studied as reliability estimators for networks. This dissertation develops methods based on 

advanced deep learning (DL) techniques such as convolutional neural networks (CNNs) and 

deep neural networks (DNNs) for all-terminal network reliability estimation problem. DL 

techniques demonstrate higher accuracy in reliability prediction as well as the possibility to 

dispense with computationally expensive inputs such the reliability upper bound. In addition, 

most of the previous works on network reliability assume binary states for the links and perfect 

nodes. On the other hand, the present work proposes a framework based on DNN, MC, and 

Bayesian methods, to consider degradation of both links and nodes for network reliability 

estimation. Moreover, our proposed framework allows updating the parameters by incorporating 

new degradation data as they become available. Initial and updated point estimations of 

reliability, as function of time, are provided along with credible intervals. 
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In summary, the methods developed, and results obtained through this work suggest that 

due to the complexity of CPS reliability analysis, this problem can be addressed by 

understanding the reliability at components level, but also integrating the concepts of 

components reliability into system reliability models. For instance, a major contribution of our 

last framework is to integrate the concepts of component reliability and network reliability, by 

modeling nodes and links as components that degrade. This integration provides the methods for 

modeling and estimating the reliability at both component level and system level, by using 

degradation data that can be provided by modern sensor technology. Therefore, to address some 

of the challenges of CPS reliability estimation problem, this dissertation aims at the following 

research objectives: 

• Objective 1: reliability assessment of physical components of a CPS considering 

ADT. 

• Objective 2: reliability assessment of CPS considering hardware-software 

interactions. 

• Objective 3: framework for network reliability assessment and updating of 

parameters considering degradation of links and nodes. 

1.2. Objective 1: reliability assessment of physical components of a CPS considering ADT  

Physical components of different CPSs can belong to a variety of classes. For instance, in 

electrical networks, generation, transmission, and distribution elements should be considered. In 

another example, a telecommunication network may consider switches and optical fiber as 

components. Although the components may differ among different CPSs, or even within the 

same CPS, a generic model is proposed for reliability assessment of components. Traditional 

ALT (accelerated life testing) may not be suitable for highly reliable modern components, which 
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may hardly fail even during accelerated stress conditions. On the other hand, accelerated 

degradation testing (ADT) offers a more effective approach to estimate failure-time distributions 

even if there are no failures occurred during testing [14]. Emerging technologies such as flexible 

electronics combined with data analytics and artificial intelligence, are now entering the market 

today as part of modern CPSs [15]. In the present work, the ADT design, data analysis and 

reliability estimation under normal conditions, is proposed for flexible hybrid electronic (FHE) 

devices (Objective 1). FHE devices can be part of the physical components or sensors of a CPS. 

For instance, the flexible Radio Frequency Identification (RFID) tags have been used as sensors 

in CPSs [16, 17]. Moreover, RFID systems are often considered a subset of CPSs [18-21]. 

Although FHE devices will be used to demonstrate the developed ADT methods, most of them, 

with appropriate material specific considerations, could be applied to rigid electronics or other 

kind of components as well.  

1.3. Objective 2: reliability assessment of CPS considering hardware-software interactions 

One important aspect of CPS is the interaction between physical components, which 

degrade, with cyber components highly dependent on software that does not degrade but can fail. 

Although some studies have presented hardware-software reliability models, most of them 

assume independency between hardware and software. Some works aimed to capture interactions 

between hardware and software. Nonetheless, a common approach has been assuming 

independent series blocks, i.e., hardware and software, for reliability assessment [22-25]. This 

research work proposes to develop a reliability model for CPS that captures the changing 

interactions between hardware and software based on a probabilistic approach (Objective 2). 

Different from previous research, a probabilistic behavior will be assumed rather than a fixed 
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ratio for software/hardware failures, which has been a common assumption in previous works 

[22-25], and does not necessarily reflects the reality [26-28]. 

1.4. Objective 3: framework for network reliability assessment and updating of parameters 

considering degradation of links and nodes 

While reliability block diagram (RBD) is a widely used technique for system reliability 

assessment, it might result inadequate for complex multicomponent systems [5]. Therefore, 

networks have been commonly used to model CPSs, because networks [29-31] can capture the 

connectivity and interactions of CPS components [3, 13, 32-34]. For instance, electric power 

systems present interactions between the physical components (e.g., generators, transmission 

lines, transformers) and the communication components [11, 13, 32, 35].  

Networks are usually represented by graphical models, where a graph 𝐺 (𝑁, 𝐿) denotes 

the graph 𝐺 composed by the set 𝑁 of nodes and the set 𝐿 of links or edges [36-38]. Regardless, 

the number of nodes, links, or their interconnection, the network reliability has several 

definitions, most of them associated with connectivity [32]. 

Three popular measures are all-terminal, two-terminal, and k-terminal [39]. All-terminal 

reliability is the probability that every node can communicate with every other node in the 

network. The two-terminal reliability problem requires that a pair of specified nodes, e.g., source 

and terminal, be able to communicate with one another. K-terminal reliability requires that a 

specified set of k target nodes be able to communicate with one another. Even though the two-

terminal reliability problem is simpler than the all-terminal reliability one [40] and the k-terminal 

reliability is indeed a subset of all-terminal reliability with a space set restricted to k nodes only 

[29], advanced network reliability techniques have been focused on the all-terminal reliability 

[41-45]. Nonetheless, all-terminal exact reliability is an NP-hard problem [40, 42], which has led 
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to the search of approximated but more efficient methods [46] such as Monte Carlo (MC) 

simulation [47-49] or bounds[40, 50, 51]. Since the exact reliability methods are computationally 

expensive, bounds algorithms appeared as an alternative to reduce the computational effort. 

Nonetheless, bounds methods still need the path sets and cut sets to be enumerated, requiring 

therefore exponential (in nodes) time [52]. Some improved algorithms to calculate the bounds 

are computationally intensive, e.g. 𝑂(𝑚3) time [46], where 𝑚 is the number of edges. MC 

methods provide a precise estimation of network reliability [47, 49]; however, they require 

numerous simulations to generate estimates. As a result, increased computational effort is 

required by MC methods, especially for highly reliable networks which rarely exhibit failures. 

Estimating the all-terminal network reliability by using traditional artificial neural 

networks (ANNs) has emerged as a promissory alternative to classical exact NP-hard algorithms; 

however, modern machine learning techniques have not been fully studied as reliability 

estimators for networks. This dissertation proposes the use of advanced deep learning techniques 

such as convolutional neural networks (CNNs) and deep neural networks (DNNs) for all-

terminal network reliability estimation problem. Features such as an adaptive learning rate, rate 

annealing, momentum training, dropout, and regularization, are believed to contribute to better 

generalization compared to traditional ANNs. DL techniques provide higher accuracy in 

reliability prediction as well as the possibility to dispense with computationally expensive inputs 

such the reliability upper bound.  

Another limitation of existing network reliability estimation method is the assumption of 

discrete functional states. In previous research of CPS modeled as networks, the majority of the 

studies have assumed binary states, i.e. functional or failed, for nodes [3, 32, 53, 54] or edges 

(links) [40, 55]. As an alternative to solve the network reliability problem, Markov models have 
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been proposed for reliability evaluation of CPS [4, 35, 56-58]. One of the main drawbacks of 

Markov models is that few assumed discrete states do not necessarily mimic continuous 

degradation state of real systems due to components degradation, whereas increasing the number 

of states makes the computation more complicated. Therefore, there is a need to explore system 

reliability modeling and assessment considering continuous degradation of the components. 

Degradation can be modeled by either general path [59] or stochastic processes [60], e.g., Wiener 

[61, 62], Gamma [63-65] and Inverse Gaussian (IG) [66-68].  

In addition, if the network reliability is regarded as dependent not only on its topology 

[69] but also on raw degradation data from nodes and edges, a vast amount and variety of data 

may be generated. Therefore, appropriate methods need to be developed to capture the network 

topology and topological attributes in a manner that they can be fed deep learning systems along 

with degradation data. 

A holistic approach for reliability assessment is proposed to integrate degradation data 

from nodes and edges with network topology information to estimate the reliability of networks. 

The amount and variety of data leads to high accuracy in the reliability estimation. Nevertheless, 

the increment in the size and complexity of data demands the use of modern Bayesian Methods 

(BM) and machine learning techniques such as CNN or DNN. 

Objective 3 of this dissertation aims to develop a framework to estimate network 

reliability considering degradation data of both nodes and edges. To address this problem, an 

integration of BM, MC and DL methods in a framework is proposed. 

1.5. Dissertation organization 

CHAPTER 2 presents a summary of the relevant literature.  
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CHAPTER 3 provides a generic model for reliability prediction of physical components 

considering multi-stress variables and multi-stress levels. The model is based on ADT design and 

data analysis. FHE devices are used to demonstrate the developed ADT methods. This chapter is 

based on three papers and supports objective 1. A generic model for reliability prediction 

considering more than one stress variable and multi-stress levels was proposed in our paper 

recently published in ASME Journal of Electronic Packaging [70]. This work was preceded by 

an extensive review in methods for reliability testing of FHE, published in the journal IEEE 

Transactions on Components, Packaging and Manufacturing Technology [71]. Another input for 

the model was provided by ADT design and data analysis, published in our paper in the 

International Technical Conference and Exhibition on Packaging and Integration of Electronic 

and Photonic Microsystems [72]. 

CHAPTER 4 is focused on a probabilistic approach for reliability assessment of CPS 

considering hardware-software interactions. This chapter is based on two papers and supports 

objective 2. Our paper about CPS reliability considering hardware and software components, was 

presented at the Reliability and Maintainability Symposium (RAMS) 2019 [73] and is published 

in the Proceedings of the Annual Reliability and Maintainability Symposium 2019. In addition, 

our paper about system reliability considering probabilistic hardware/software interactions was 

submitted to IEEE Transactions on Systems, Man, and Cybernetics: Systems [74]. 

CHAPTER 5 proposes two all-terminal network reliability estimation approaches. One 

approach is based on CNN and the other approach integrates DNN with GEM. This chapter is 

based on two of our papers and describes a preliminary step in the development of an overall 

framework for all-terminal network reliability assessment proposed in objective 3. Our paper 

about network reliability estimation using CNNs was published in the Journal of Risk and 

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221021


 

10 

Reliability [75]. Also, our paper ‘Deep Neural Networks (DNNs) For All-Terminal Network 

Reliability Estimation’ was presented at the Reliability and Maintainability Symposium (RAMS 

May 2021) and accepted for publication in Proceedings of the Annual Reliability and 

Maintainability Symposium 2021 [76]. This work was selected as the winner of the 2021 Stan 

Oftshun Award for the best student paper by the Society of Reliability Engineers (SRE). 

CHAPTER 6 presents two studies on all-terminal network reliability that relax the 

common assumption of constant (or even perfect) reliability of links and nodes. This chapter is 

based on two of our papers and supports objective 3. Our paper, presented in the IISE 2021 

Annual Conference [77], considers the relaxation of the assumption of perfect nodes on the 

network reliability estimation. The approach presented in such paper integrates MC and DNN, 

which allows fast network reliability estimation. Finally, we present a framework for network 

reliability estimation of parameters considering degradation of links and nodes. The proposed 

approach integrates BM, MC simulation, and DNN in a framework to estimate the reliability of 

networks as a function of time. Not only point estimates are provided but also credible intervals. 

Moreover, the proposed framework provides a mechanism for updating the model parameters as 

new information becomes available. This work was submitted to the journal Reliability 

Engineering and System Safety [78]. 

Finally, CHAPTER 7 summarizes the whole work and provides the future research 

direction. 

1.6. Statement of authorship 

Most of the content of the chapters presented in this dissertation is based on the following 

journal and conference papers, which are published, accepted, or submitted for publication: 
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CHAPTER 2. LITERATURE REVIEW 

Reliability definition (section 2.1) and CPS modeling (2.2) overview are presented as a 

prelude to the literature related to reliability of CPS (2.3). 

2.1. Reliability definition 

Reliability is the probability (or the ability) of a system, sub-system or component “to 

perform a required function, under given environmental and operational conditions and for a 

stated period of time” [79-81]. Nevertheless, due to the complexity of CPS, reliability analysis 

has been addressed from different perspectives [4]. As a result, complementary or specific 

reliability metrics have been employed depending on CPS modeling approaches or particular 

functionality. For instance, networks have been widely used to model CPS, and the most popular 

measures of network reliability are associated with network connectivity [32], thus the reliability 

can be defined as the probability that surviving nodes and edges span an operating subnetwork 

[29]. One interpretation is related to how many of the 𝑛 nodes can communicate with each other 

(e.g. two-terminal, k-terminal or all-terminal problems) [39, 40], assuming that a number of the 

links can fail. However, in a more general model, the nodes can fail as well and the node 

reliability is the probability of being operational over a time period [32].  

2.2. Modeling of CPS 

Reliability assessment approaches depend on the assumed models for CPS, which can be 

broadly classified in four categories: graphical, functional, probabilistic, and simulation based.  

2.2.1. Graphical models 

Graphical models allow to visualize the interdependencies of the components. Such 

models are representations of physical objects in terms of nodes and edges, where nodes 

characterize components and junctions of the system, and edges represent the connections. For 
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example, busbars in power systems or switches in telecommunication systems are modeled by 

nodes, whereas edges characterize power lines in power systems and optical fibers in 

telecommunication systems. These models are commonly based on graph theory (GT), where a 

graph G (N, L) denotes the graph G composed by the set N of nodes and the set L of links [36-

38]. Furthermore, to model the complexity of some CPS, several layers, e.g., cyber, physical, and 

interface, could be considered and result in complex interconnected networks [54, 82-86]. Zio et 

al [87] considered both electrical (transmission lines) and networks components to analyze 

power grids from four different perspectives, namely, topological, reliability, electrical, and 

electrical-reliability. Finite state machine models [1, 88], and petri net models [89, 90] have been 

used as well, being computational exponential time increasing with system size, a major 

drawback. 

2.2.2. Functional models 

They attempt to capture the physical system dynamics [91, 92] and the response of the 

systems exposed to strains [93]. Load flow for power systems, pressure for water systems, or 

connectivity-based models, are examples of these kind of models. [93]. Some of the models 

consider the sampling in the control loops [94, 95], since the signals should be discretized to 

flow through the communication networks.  

In general, functional models capture the physical behavior in a more realistic manner 

than the graphical (topological) models. However, topological models are computationally very 

fast [96-98]. Some functional models sacrifice accuracy to reduce computational time. For 

example, approximated DC power flow is most commonly used than AC model because the last 

one is usually time consuming and do not lead to convergence into global optimal solutions [38, 

99, 100]. 
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2.2.3. Probabilistic models 

CPS may be affected by probabilistic events, which can be modeled by uncertainty 

models. Han et al [101] studied the impacts of cyber system probabilistic failures on the 

availability of physical components. Overall CPS reliability can be summarized in probability 

tables based on reliability information of components [102, 103]. State transition probability of 

components can be modeled by state transition diagrams [104, 105]. Furthermore, Bayesian 

network (probabilistic) approaches have been used for power system reliability assessment [106], 

reliability analysis of complex systems [107], and recently, dynamic Bayesian network combined 

with hidden Markov model were used to estimate and predict functional reliability of a complex 

chemical process [5]. On top of probabilistic failures of CPS components, CPS depend on 

rational decision-making participants, e.g. system operators and hackers, situation that can be 

studied by game-theoretic models [108, 109].  

2.2.4. Simulation models 

Numerical simulation models aim to preserve the accuracy of complex CPS considering 

the discrete characteristics of cyber systems integrated with the continuous nature of physical 

systems. Such models have been developed on different software packages. For instance, for 

power physical systems: Matlab [110, 111], OpenDSS [112], DIgSILENT [113]. On the other 

hand, languages like Java [114] and Visual Studio [115] can be employed to create cyber 

systems simulation models. Simulation is often a suitable approach since it is impractical to test 

in real CPS, e.g., power grids [11]. In addition, there are some reports on previous blackouts, but 

they do not offer details about hardware and software components failures. Moreover, due to the 

high reliability of smart grids, many potential scenarios have never occurred in the past [3]. 
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2.3. CPS reliability, related research works 

In CPS, the physical processes are under the control and monitoring of embedded 

computers and networks, usually through feedback loops where physical processes affect 

computations and vice versa [1]. A simple composition model considers that a CPS comprises a 

physical component or hardware, cyber component or software, and communication among 

them. The system CPS reliability can be estimated as an integration of its components’ reliability 

[116]. In an effort to assess the reliability of a CPS, it is imperative to understand the available 

models to estimate the reliability of their components. As a starting point, a CPS can be 

decomposed in physical components (or subsystems) and software components (or subsystems). 

Regarding physical components, the reliability metrics could be derived through ALT or 

ADT. With the advancement in products with high reliability, failures will hardly occur 

prematurely even under high-stress conditions, which make ALT tests impractical in many cases. 

On the other hand, ADT offers an approach to estimate failure-time distributions even if there are 

no failures occurred during testing [14]. ADT test design, data analysis and reliability estimation 

under normal conditions, considering multi-stress levels and multi stress variables is proposed 

for the present research (Objective 1).  

Reliability assessment based on multiple components degradation has been already 

studied [117, 118]. The cyber components, which are associated with the software perspective, 

require different approach to assess their reliability. Since there is no degradation or wear out in 

software, predictive approaches based on software testing failure data have been developed to 

estimate software reliability [119-122].  

A unified hardware-software reliability model was introduced by Welke et al. [123]. The 

model incorporates the time-varying software failure intensity of the Goel-Okumoto/NHPP (non-
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homogeneous Poisson Process) model [119] into a Markov hardware reliability model. Similarly, 

Teng et al. [22] proposed a reliability model which combines Weibull distribution for hardware 

time-to-failure and a Gokel-Okumoto/ NHPP model with imperfect debugging for software 

failures. In the same way, Roy et al. [23] applied a unified hardware–software reliability model, 

which combines Weibull modelling for hardware failures and NHPP for software failures, to a 

smart grid physical infrastructure. Feng et al. [24] proposed a unified hardware-software model 

based on hardware failures, software failures, and assumed that 75% of hardware failures are 

indeed hardware/software interaction failures whereas 35% of the software failures are 

hardware-related. Koc [25] studied the reliability of a CPS assuming constant reliability data of 

both physical and cyber components. Previously proposed combined models are focused on 

hardware-software computer systems and commonly depend on failure data for hardware 

components, not on degradation. Nannapaneni [53] presented a reliability analysis framework for 

a smart parking CPS considering the timing constraints in addition to the usual operational 

requirements. The uncertainty in time of communication network was modeled by a probability 

density function and Monte Carlo sampling. Constant failure rates were assumed for the 

hardware components, and software was assumed to always work (rigorous testing) without 

failure. 

Research work was conducted by the author of this dissertation [73] to estimate the 

overall reliability profile of a CPS based on the mixed-degradation profiles of its physical 

components and the reliability profile of its software component that is responsible in controlling 

the CPS. A CPS with several critical physical components was assumed to follow different 

degradation path functions (linear, exponential, polynomial, etc.) and shaping a physical 

subsystem. A major critical software component was assumed, whose reliability was assessed by 
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utilizing one of the latest available NHPP software reliability models. For the CPS to operate 

without failure, it is required for both physical and software subsystems to function properly. 

That is to say, physical subsystem was assumed to be in series with a major independent cyber 

component, i.e., a reliability block diagram (RBD) approach was used. 

Although some studies have presented hardware-software reliability models, most of 

them assume independency between hardware and software. Some works aimed to capture 

interactions between hardware and software. Nonetheless, a common approach has been to 

assume independent series blocks, i.e., hardware, software, hardware/software, and 

software/hardware, for reliability assessment. Moreover, constant proportion of failures has been 

commonly assumed; e.g., 35% of observed software failures have been assigned as hardware-

related failures [22-25]. However, the classification of 35% of observed software failures as 

hardware-related comes from a previous result [124] and does not necessarily captures hardware-

software interactions of current systems, where the ratio of hardware-related software failures is 

not necessarily a fixed value [26-28]. In addition to the already published work, this research 

project proposes to develop a reliability model for CPS that captures the changing interactions 

between hardware and software based on probabilistic models (Objective 2).  

While RBD is the most widely used technique for system reliability assessment, it might 

result inadequate for complex multicomponent systems [5]. A major limitation is usually the lack 

of sufficient failure data for all system components [125]. Moreover, RBD approach allows only 

two functional states for system components, e.g. perfectly working or failed [5]. However, 

binary levels of failure does not necessarily mimic real-world situations [126, 127]. To capture 

CPS complexity, networks have been used as a promising modeling alternative. 
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A network can be defined as a set of items (nodes or vertices) connected by edges or 

links [128]. Usually, networks are modeled as mathematical graphs composed of nodes and links 

(directed or undirected) and used to represent physical problems such as computer networks, 

piping systems, or power supply systems. In such models, the links have associated parameters 

like flow (m3/s), bandwidth (Mbps), or power (MW) and provide communication pathways to 

the nodes, which represent users or resources [40]. 

Although networks are not a new topic, they have been widely used to model CPS, thus 

some network reliability approaches are included in this review. Moskowitz [55] proposed a 

network model with perfect vertices and edges either operational or failed. He developed an 

exact algorithm for network reliability as a function of the reliability of two networks. Theologou 

and Carlier [129] continued this work by proposing a factoring algorithm and reductions for 

reliability calculation considering imperfect vertices. Wood [29] contributed to reduce 

computation to the network reliability problem, which is known to be NP-hard, with a reliability-

preserving model based on reduction methods. Wood assumed perfect vertices and edges with 

independent operation probabilities. Taking into consideration the complexity of exact network 

reliability calculation, Aypub et al. [30] developed an algorithm based on Monte Carlo 

simulation and breadth-first search to get accurate estimates of reliability in feasible and practical 

time. Cancela et al. [31] proposed a polynomial-time algorithm for deleting irrelevant edges 

based on the evaluation of the source-terminal diameter constrained problem (source-terminal 

length should not be greater than D). They combined this procedure with Moskowitz’s exact 

method to calculate the reliability and obtained an important computational gain. As a part of the 

machine learning techniques, artificial neural networks (ANNs) have emerged as a promissory 

tool to estimate network reliability. Indeed, ANNs have been claimed to be one of the most 
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efficient methodologies developed so far for reliability estimation of networks [130]. ANNs have 

been usually trained with the network topology and edge reliability as inputs and with the target 

network reliability as desired output [42, 45, 131]. For example, Srivaree- ratana et al. [42] 

utilized an ANN to predict the all-terminal network reliability; with the network architecture, the 

link reliability, and the reliability upper bound as inputs, and the exact network reliability as the 

target. More recently, Altiparmak et al. [45] proposed an ANN model to predict the all-terminal 

network reliability, which takes the node degree and other connectivity metrics and the upper 

bound network reliability as inputs to predict the network reliability. Similarly, Dash et al. [131] 

proposed a method based on ANNs to maximize the reliability of fully connected networks 

subjected to some predefined total cost. In the present dissertation, the network topology and 

topological attributes will be considered for appropriate preprocessing and formatting for they to 

be used during deep learning training. Deep learning techniques such as CNN and DNN have not 

been fully explored for network reliability and they will be considered for the present study.  

In addition, in previous research of CPS modeled as networks, the majority of the studies 

have assumed binary states, i.e. functional or failed, for nodes [3, 32, 53, 54] or links [40, 55]. As 

an alternative to overcome this problem, Markov models have been proposed for reliability 

evaluation of CPS. 

Wu et al. [56] proposed Markov models for each component to assess the reliability of an 

integrated modular avionics system. Marashi et al. [57] modeled a smart grid with dependent 

components with a Markov imbedded system and computed the probability that the system is in 

one of the functional states. Sun et al. [58] proposed a phased-mission system model, that is 

Markov models for individual components and a binary decision diagram to analyze the 

reliability of a fuel management system of an aircraft. Li and Kang [4] developed a multi-index 
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method considering individual reliability of components and performance reliability indices for 

service, cyber security, resilience & elasticity, and vulnerability. Recently, Gunduz and 

Jayaweera [35] proposed a model to assess reliability of cyber-physical integrated system 

operation with multiple photovoltaic (PV) system configurations by incorporating Markov-Chain 

transitions for PV system components. One of the main drawbacks of Markov models is that few 

assumed discrete states do not necessarily mimic continuous degradation state of real systems 

due to components degradation, whereas increasing the number of states makes the computation 

more complicated.  

Therefore, there is a need to explore system reliability modeling and assessment 

considering continuous degradation of the nodes and the edges of a network. One of the 

objectives of this dissertation aims to address this problem (Objective 3) by developing a 

framework to provide reliability assessment and a mechanism for updating model parameters as 

more information becomes available. Physical components could be for example electrical or 

mechanical and therefore exhibit different degradation profiles which need to be incorporated 

into the network model to estimate the reliability of the CPS. 

The objective 3 of this dissertation seeks addressing this challenge. Appropriate input 

preprocessing and formatting, training and deep learning system architectures need to be 

developed. The complexity of the generated degradation data is expected to produce vast and 

diverse data which will require advanced machine learning methods to deal with them. An 

integration of BM, MC, and DL techniques is proposed to estimate the reliability of a network 

based on degradation data. In addition, the proposed framework is able to incorporate new 

available information for updating model parameters by applying a Bayesian approach. 
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2.4. Degradation modeling 

Since this dissertation contemplates to consider degradation of links and nodes of 

networks, a brief review on degradation is presented in the next paragraphs. 

Although failure data have been traditionally used for decades to estimate reliability, 

modern highly reliable products rarely result in failures even under stress application. Therefore, 

to assess reliability quickly, approaches based on degradation data have attracted attention to 

researchers. Measuring the performance characteristics of a product and their degradation over 

time provides a large amount of useful and essential information for assessing product reliability 

[132]. Moreover, degradation (data) models have been recently used for reliability assessment, 

remaining useful life (RUL) prediction, maintenance planning, and prognostics health 

management (PHM) [133]. Modern sensor technology facilitates the collection of degradation 

(of performance characteristics or related variables) data in both in-house testing facilities and in 

the field as well as covariates data like temperature, humidity, voltage, etc., which provide 

information about the operational environment. 

Degradation modeling, prognostics, and health management can be divided into two 

broad categories: physics-based and data-driven. [67, 134]. Data-driven models are becoming 

popular because in reality it is difficult to capture the exact physics-of-failure. A more detailed 

classification is shown in Figure 1. 
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Figure 1. Degradation models 

Considering statistical models, the degradation can be studied trough general path [59] or 

stochastic processes [60], e.g., Wiener [61, 62], Gamma [63-65] and Inverse Gaussian (IG) [66-

68]. 

Degradation analysis can be extended to CPS components. Modern components of 

systems are equipped with sensors to monitor operation indicators as well as environmental 

conditions [135]. Locomotive engines, for example, have sensors of oil pressure, oil temperature, 

and engine coolant temperature, which generate time series data that are used to control the 

engine during normal operation and can be further used to warn of dangerous operating 

conditions [136]. Similarly, aircraft engines have sensors for operation temperature, oil 

temperature, debris, and vibration, which could be used for engine health monitoring [137]. 

Currently, even modern automobiles have data acquisition and communication systems like 

GM’s Onstar which can collect and upload operational and environmental indicators [135]. 

Power distribution transformers now can be outfitted with sensors to provide environmental and 

operational information in real time or with the required periodicity. For instance, dissolved gas 

analysis (DGA) can be applied to indicate possible transformer faults [138]. Wind turbine 

systems contain sensors to capture information on variables like relative movement, sway, and 

vibration, which can be used to perform system health monitoring (SHM) [139-141].  



 

24 

CHAPTER 3. RELIABILITY ASSESSMENT OF PHYSICAL COMPONENTS OF A CPS 

CONSIDERING DEGRADATION DATA1 

Most of previous research on ADT is focused on single stress. A generic model for 

reliability prediction considering more than one stress variable and multi-stress levels is 

proposed in this chapter, based on ADT test design and data analysis. FHE devices are chosen 

for demonstration as FHE is an emerging technology that combined with data analytics and 

artificial intelligence, is now entering the market today as part of modern CPSs [15]. Although 

FHE devices will be used to demonstrate the developed ADT methods, most of them, with 

appropriate material limits considerations, could be applied to rigid electronics or other kind of 

components as well. Section 3.1 presents a review on FHE testing methods, section 3.2 discusses 

the ADT design, and section 3.3 proposes the model for reliability assessment considering ADT 

data. 

 

 

1 The present chapter is based on the following papers: 

1. A. Davila-Frias, S. Limon, V. Marinov, and O. P. Yadav, "Reliability Evaluation of Flexible Hybrid 

Electronics Systems Considering Degradation Behavior Under Multistress Operating Conditions,". Published 

in  Journal of Electronic Packaging, vol. 143, no. 2, 2020, doi: 10.1115/1.404803. 

Contribution of Alex Davila Frias: developing the mathematical models, analysis of the case study, 

discussion of the results, and drafting the paper. 

Contribution of Shah Limon, Val Marinov, and Om Yadav: verification of the results and proofreading the 

draft paper. 

 

2. A. Davila-Frias, O. P. Yadav, and V. Marinov, "A Review of Methods for the Reliability Testing of Flexible 
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3.1. Review on FHE testing methods [71] 

This section refers to an overview of testing methods applied to Flexible Hybrid 

Electronics (FHE). It describes general accelerated testing methods and how they are related to 

the current progress in FHE testing. Stressors like temperature cycling, temperature/humidity, 

bending, stretching and torsion have been commonly applied to FHE. The application of those 

stressors and the corresponding failure modes, mechanisms, and factors that impact reliability are 

summarized and discussed. Methods for testing the reliability of FHE devices such as RFID tags 

have been developed, but there are no industry-wide standards yet to address all aspects of this 

emerging technology.  

Flexible Hybrid Electronics (FHE) describes a technology that combines flexible high-

performance components (e.g., flexible silicon chips) with printed components (e.g., 

interconnects, sensors, or microfluidic channels) on non-traditional substrates (e.g., polymers and 

fabrics) that can flex, bend, stretch, and/or fold [142]. Section 3.1.1 focuses on traditional 

stressors for electronic testing that have been also applied to FHE, whereas section 3.1.2 

highlights specific application FHE testing beyond traditional rigid electronics testing methods. 

3.1.1. Traditional stressors 

Even though FHE is a relatively new technology, it is still an electronic assembly. 

Therefore, it is reasonable to consider the main sources of stress for electronic products in 

general. Considering stress as the effect that usage and environmental loads place on a device 

and its materials, some of the typical stress sources are temperature, humidity, and vibration. 

Apart from these stressors there are also others, like altitude and corrosion, that are applicable to 

electronic testing [143]. Temperature is a key stress in most of ALT (Accelerated Life Testing) 

plans [144], not only for electronic products. Moreover, temperature, humidity and vibration are 
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important sources of stress experienced in electronic equipment as displayed in Figure 2. They 

account for approximately 55%, 20%, and 19%, respectively, of the total frequency of 

occurrences of these stress sources [145]. These general percentages may of course vary, 

depending on the application and product location. 

 

Figure 2. Sources of stress for electronic equipment as percentages of frequency of occurrences. 

Adapted from [145] 

Vibration and mechanical shock tests have been applied to rigid circuit boards for they 

have limited bending and stretching capabilities [146]. However, due to the nature of FHE, 

bending , stretching [147-155], and/or twisting [156-158] are more appropriate factors and have 

been commonly evaluated, in addition to temperature and humidity. 

Reported results show that the reliability, usually presented as cumulative distribution 

functions, depends on factors such as substrate thickness, chip thickness, characteristics of 

adhesive, type of chip, and stress loading. 

Degradation in ACA (Anisotropic conductive adhesive) has been a common failure 

mechanism reported in several thermal cycling studies, and daisy-chain resistance is a common 

performance variable monitored. For instance, thermal cycling was applied to FHE (Flexible 

LCD with ultra-thin chip + PI + ACA) [159], and the failure mode was resistance increasing 

(daisy-chain) with failure mechanisms: expansion strain and warpage of chip, and degradation of 

electrical conductivity of conductive particles in ACA joints. In another study of FHE (Flexible 
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LCP (Liquid crystal polymer) substrate + ACA bonded flip chips) [160], the failure mode was 

also resistance increasing with failure mechanism: adhesive matrix deformed, the conductive 

particles lost contact and the joint failed. Similarly, different settings of thermal cycling [161-

163] applied to RFID tags (PET + chip + ACP) led to an increase in the threshold power as a 

failure mode, with failure mechanisms of relaxation of ACA material and cracks in antenna 

wiring. The reliability of FHE devices, as we can expect, has been affected by aspects such as the 

thickness or glass transition temperature (Tg) of the components, which has been corroborated 

by several studies [159-163]. Another factor that, expectedly, impacts reliability is the stress 

loading [162-164]. 

Temperature combined with humidity has been applied for FHE testing [159, 165-169] as 

well. The failure mode was resistance increase (daisy-chain). Failure mechanisms found were 

expansion strain and warpage of chip, humidity absorption of substrate and adhesive matrix, 

delamination in ACA joint, and corrosion of the metallization. 

Temperature/humidity have also been applied in RFID testing [170]. The failure mode 

was contact resistance increasing with a failure mechanism of resin moisture absorption followed 

by oxidation of aluminum pads. Another failure mode in RFID was threshold power increase 

[161, 164, 171]. The failure mechanisms were mainly adhesive matrix swelling that led to 

increased resistance in open joints and cracks in the wiring of the antenna near the RFIC (radio 

frequency chip). 

Bending tests have been commonly applied to FHE. There are two broad categories of 

bending tests: static and dynamic. In static bending, the devices under test are wrapped around 

cylinders with various radii [172, 173]. In another approach of static tests, the specimen is 

gradually bent using a 3 or 4-point bending fixture until it fails [174-178]. Regarding dynamic 
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bending, there are no standard test procedures. Manufacturers and researchers have developed 

their own testing methods subjecting the specimens to a number of bending cycles and radii 

[179-181]. Both static [159] and dynamic [179-181] tests have been applied to FHE. A common 

failure mode is daisy-chain or contact resistance increase associated with the failure mechanism 

peeling off the chip from the substrate. In the same way, both static [170, 182], and dynamic 

[182-185] bending tests have been applied to RFID as well. 

3.1.2. Specific application FHE testing 

Temperature cycling and temperature/humidity tests, traditionally used for regular rigid 

electronics, seem to be still applicable to FHE, whereas additional bending or twisting tests are 

required for FHE products due to their nature. Another similarity between regular electronics and 

FHE testing is the use of daisy-chain resistance to monitor the performance. In rigid electronics 

industry, daisy-chain resistance provides a simple and cost-effective testing mechanism to 

monitor deterioration. Daisy-chain resistance for FHE testing has been a popular performance 

indicator as well [159, 165-169, 181] as discussed in section 3.1.1. Nevertheless, traditional 

criteria such as the usual 20% resistance increase from IPC-9701A [186] may not be appropriate 

for FHE in some cases [152]. For instance, bending tests induce temporal strains, which may 

affect the electrical resistance. During the tests resistance may easily increase up to 20% [159] or 

even exceed 100% [152, 187]. However, after the stress removal, the original mechanical 

dimensions of electrical paths and consequently their related resistance values may be recovered. 

Nevertheless, if the resistance or any other electrical variable of a final product must exhibit a 

stable behavior, even under bending stress, a 20% variation could be still unacceptable. For 

example, a thermistor [158] sensor circuit may generate intolerable signal errors due to a 

bend/stretch force causing a resistance increase. 
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3.2. ADT test design and failure analysis of FHE devices [72] 

In this section, we present the design and experimental setup of ADT for FHE 

considering two stress factors simultaneously. We use daisy-chain resistance as a measurable 

degradation characteristic to periodically monitor the degradation of FHE products under 

accelerated stress conditions. Two stress factors, temperature and humidity, are considered and 

ADT will be carried out considering four combinations of temperature and humidity 

simultaneously. Failure analysis will be performed on failed units to investigate the failure 

process and location of the failure. The ADT data will be used to fit in the appropriate 

mathematical degradation model representing the failure process.  

Besides degradation modeling under stress conditions, an important goal of ADT is the 

estimation of product life under normal operating conditions. To this end, life-stress models are 

needed. Four stress levels combinations proposed would be enough for fitting life-stress models 

with up to four parameters, such as the generalized Eyring model. Eyring model has been a 

popular choice to capture the combined effect of temperature and non-thermal stress [188, 189]. 

It requires at least four combinations of stress levels to be estimated from the data [190] (see 

Table 1). 

Table 1. Experimental design 

Treatment 

combination 

(𝒌) 

Temperature 

[°C] 

Rel. Humidity 

[%] 

Duration 

[hours] 

1 85 98% 150 

2 85 85% 150 

3 65 98% 150 

4 65 85% 150 

 



 

30 

3.3. Reliability evaluation of FHE systems considering degradation behavior under multi-

stress operating conditions [70] 

Predicting the reliability is an important task of product life cycle analysis, especially 

during the product development stages. The uncertainty in the operating conditions and the 

presence of multi-stress factors makes this reliability prediction more difficult. In this section, a 

probabilistic reliability prediction framework is proposed using the linear damage accumulation 

and degradation modeling for multi-stress conditions. The multi stress-life (S-L) curve for 

corresponding multi-stress will be developed using the equivalent stress. The multi S-L model 

allows extrapolating the expected life product under given operating or test conditions as well as 

provides input to estimate the reliability as a function of time for both a single multi-stress factor 

level and a sequence of multi-stress-factor levels. The proposed methodology will be 

demonstrated with newly developed flexible hybrid electronics products. 

The degradation path modeling is briefly outlined below: 

Considering data from preliminary experiments, we propose to use a nonlinear 

exponential degradation model. Similar exponential models have been utilized to fit degradation 

data for contact resistance degradation in MOSFETS [191], and have proved to fit well 

cumulative degradation data [192]. Moreover, exponential degradation patterns have been 

observed in the degradation of electronic components [193]. Additionally, the moisture 

absorption of flexible substrates accelerated by temperature [194, 195] has shown an exponential 

degradation of adhesion to chips [196]. Daisy-chain resistance of FHE with ACA adhesive has 

shown nonlinear degradation paths [197]. Although in this particular case an exponential model 

is used to model the degradation process, as a part of the general framework, other degradation 

models could also be used depending on the observed degradation data. 
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Consider the actual degradation path of a particular unit over time is denoted by 

𝐷(𝑡), 𝑡 > 0 Samples are observed at discrete points in time 𝑡1, 𝑡2, … 𝑡𝑗 , … . The observed sample 

degradation 𝑦𝑖𝑗𝑘 for sample 𝑖, at time 𝑡𝑗 under the multi-stress level 𝑘 in a general degradation 

path model is given as: 

𝑦𝑖𝑗𝑘 = 𝐷𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘  (1) 

where 𝐷𝑖𝑗𝑘 = 𝐷(𝑡𝑖𝑗𝑘, 𝛽1𝑖𝑘, … , 𝛽𝑚𝑖𝑘) is the actual path of the unit 𝑖 at time 𝑡𝑖𝑗𝑘 (the times need not 

be the same for all units) and 𝜖𝑖𝑗𝑘~𝑁(0, 𝜎𝜖𝑘) is a residual deviation for the unit 𝑖 at time 𝑡𝑗 under 

the stress level 𝑘. The total number of observations on unit 𝑖 under stress 𝑘 is denoted by 𝑛𝑖𝑘. 

For the 𝑖th unit under the stress 𝑘, 𝛽1𝑖𝑘, … , 𝛽𝑚𝑖𝑘 is a vector of 𝑚 unknown parameters. A unit 𝑖 

under stress level 𝑘 is assumed to fail when its degradation level first reaches to a predefined 

threshold level 𝐷𝑓. 

The nonlinear mixed-effects degradation model [198] is used. The unit-to-unit variability 

in model parameters 𝛽1𝑘, … , 𝛽𝑚𝑘 can be modeled with 𝑘 multivariate normal distributions (one 

for each stress level) with mean vectors 𝝁𝜷𝒌  and covariance matrices 𝚺𝜷𝒌 [14]. It is generally 

assumed that the random parameters 𝛽1𝑘 , … , 𝛽𝑚𝑘 are independent of the 𝜖𝑖𝑗𝑘 and that 𝜎𝜖𝑘 is 

constant for each stress level 𝑘. Let 𝜽𝜷𝒌 = (𝝁𝜷𝒌, 𝚺𝜷𝒌) denote the overall population/process 

parameters for each stress level 𝑘. 

The likelihood for the random-parameter degradation model is given as [14]: 

𝐿(𝜽𝜷𝒌 , 𝜎𝜖𝑘|𝐷𝐴𝑇𝐴𝑘) =∏ ∫ …

∞

−∞

𝑝𝑘

𝑖=1

∫ [∏
1

𝜎𝜖𝑘
𝜑nor(𝜁𝑖𝑗𝑘)

𝑛𝑖𝑘

𝑗=1

]

∞

−∞

× 𝑓𝜷𝒌(𝛽1𝑖𝑘, … , 𝛽𝑚𝑖𝑘; 𝜽𝜷𝒌)𝑑𝛽1𝑖𝑘, … , 𝛽𝑚𝑖𝑘 (2) 

where 𝜁𝑖𝑗𝑘 = [𝑦𝑖𝑗𝑘 − 𝐷(𝑡𝑖𝑗𝑘, 𝛽1𝑖𝑘, … , 𝛽𝑚𝑖𝑘)]/𝜎𝜖𝑘, and 𝑓𝜷𝒌(𝛽1𝑖𝑘, … , 𝛽𝑚𝑖𝑘; 𝜽𝜷𝒌) is the multivariate 

normal distribution density function. The evaluation of equation (2) requires the numerical 

approximation of 𝑝𝑘 integrals of dimension 𝑚 (under multi-stress combination level , 𝑝𝑘 is the 
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number of sample paths and 𝑚 is the number of parameters for each path). Maximizing equation 

(2) with respect to (𝝁𝜷𝒌 , 𝚺𝜷𝒌, 𝜎𝜖𝑘) to get the ML estimated parameters will be extremely 

difficult. Therefore, numerical methods are suggested.  

Here, we assume that the degradation follows an exponential degradation path 𝐷(𝑡), 

which can be written in terms of random parameters 𝛽1, 𝛽2,  𝛽3 as [191]: 

𝐷(𝑡) = 𝛽1 + 𝛽2(𝑒
𝛽3𝑡 − 1) (3) 

where, 𝛽1 represents the initial performance value and 𝛽2,  𝛽3 define the shape and the 

degradation rate that are assumed to be material and stress-dependent. The MLE estimates for 

each stress level 𝝁̂𝜷𝒌, 𝚺̂𝜷𝒌 can be estimated from the degradation data by applying the nonlinear 

mixed-effects model. In the degradation path defined in equation (3), the model parameter 𝝁𝜷𝒌  is 

a three-dimension vector and 𝚺𝜷𝒌 is a three-by-three covariance matrix. The exact ML estimates 

of model parameters 𝜽𝜷𝒌 = (𝝁𝜷𝒌 , 𝚺𝜷𝒌) given the data (degradation paths observations) at each 

stress level 𝑘 would come from maximizing equation (2) with respect to (𝝁𝜷𝒌, 𝚺𝜷𝒌, 𝜎𝜖𝑘). In this 

study, the ‘nlme’ R function [199] will be used instead to get approximate estimates for 𝜽𝜷𝒌 

Given a failure threshold 𝐷𝑓, the time at which a sample reaches the failure threshold 𝐷𝑓, 

is defined as lifetime 𝐿 or time-to-failure, and is given by: 

𝐿 = 𝑡𝑓 =
𝐿𝑛 (

𝐷𝑓 − 𝛽1
𝛽2

+ 1)

𝛽3
 (4)

 

After the degradation modeling pseudo failure times at different stress levels are 

estimated with equation (4). Since the simultaneous application of multiple stress factors is 

considered, an equivalent stress model is proposed for developing a stress-life (S-L) curve. A 

probabilistic multi-stress dependent degradation model is formulated considering the S-L curve 

and the damage accumulation models. Finally, a multi-stress dependent dynamic reliability 
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assessment model is proposed that is capable to provide reliability estimates for any given 

operating conditions. Although FHE degradation data are used to demonstrate the approach, the 

framework can be used for other kind of products, considering the appropriate degradation 

model, e.g., linear, nonlinear, asymptotic, etc.  

3.3.1. Evaluation of time-to-failure distribution 

The time at which a sample reaches the failure threshold (𝐷𝑓) is defined as product 

lifetime (𝐿) at a given stress level, which will vary from unit to unit and hence treated as a 

random variable. Generally, the distribution of product lifetime is defined by the distribution of 

degradation 𝑦𝑖𝑗𝑘 [14]. Such distribution could be written in terms of the degradation model 

parameters. The sample degradation paths, failure threshold 𝐷𝑓, and lifetime distribution are 

graphically represented in Figure 3. Let us assume that a unit fails at time 𝑡 if the degradation 

reaches 𝐷𝑓 at time 𝑡, the probability of failure is given as: 

𝑃𝑟(𝐿 ≤ 𝑡) = 𝐹(𝑡) = 𝐹(𝑡; 𝜽𝜷𝒌) = Pr[𝐷(𝑡, 𝛽1𝑘, … , 𝛽𝑚𝑘) ≥  𝐷𝑓] (5) 
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Figure 3. Degradation path and lifetime distribution 

For a fixed 𝐷𝑓, the distribution of 𝐿 depends on the distribution of 𝛽1𝑘, … , 𝛽𝑚𝑘, that is, it 

depends on the basic path parameters in 𝜽𝜷𝒌. For simple linear path models, 𝐹(𝑡) can be 

expressed as a function of the basic parameters in a closed form. However, for most practical 
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models, specially nonlinear ones with random model parameters 𝛽1𝑘, … , 𝛽𝑚𝑘, generally there is 

no closed-form solution for 𝐹(𝑡) [14]. These complex nonlinear models can only be evaluated 

with numerical methods. Therefore, we propose to use Monte Carlo simulation [14] approach as 

discussed below. This procedure needs to be repeated for each stress level 𝑘: 

1. Generate 𝑁𝑘 simulated realizations 𝛽̆1𝑘, … , 𝛽̆𝑚𝑘 of 𝛽1𝑘 , … , 𝛽𝑚𝑘 from a multivariate 

normal distribution with mean 𝝁̂𝜷𝒌  and variance-covariance matrix 𝚺̂𝜷𝒌, where 𝑁𝑘 is a 

large number. 

2. Compute the 𝑁𝑘 simulated failure times corresponding to the 𝑁𝑘 realizations 𝛽̆1𝑘, … , 𝛽̆𝑚𝑘. 

In general, this can be done by substituting the realizations 𝛽̆1𝑘, … , 𝛽̆𝑚𝑘 into 

𝐷(𝑡, 𝛽1𝑘, … , 𝛽𝑚𝑘), finding the crossing time 𝑡̆𝑤𝑘 for each realization (for 𝑤 = 1,… , 𝑁𝑘). 

In the case study, we will use equation (4) to find the crossing time for each simulated 

path. 

3. Do distribution analysis of the simulated crossing times to estimate a time-to-failure 

distribution, that is, use the simulated failure times 𝑡̆𝑤𝑘 to fit a distribution for the life, 𝐿𝑘. 

The parameters of the distributions can be estimated from the simulated failures times 

𝑡̆𝑤𝑘 

Although we provide a generic approach to identify the appropriate distribution of failure 

time estimated using degradation data, most of the existing literature assumes that 𝐿𝑘 follows a 

normal distribution 𝑁(𝜇𝐿𝑘, 𝜎𝐿𝑘
2 ) [200-202]. Therefore, we also assume that estimated failure time 

follows normal distribution. The MLE estimates of the parameters of time-to-failure distributions 

at each stress level 𝑘 can be calculated as: 

𝜇̂𝐿𝑘 =
1

𝑁𝑘
∑ 𝑡̆𝑤𝑘

𝑁𝑘

𝑤=1

 (6) 
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𝜎̂𝐿𝑘
2 =

1

𝑁𝑘
∑(𝑡̆𝑤𝑘 − 𝜇𝐿𝑘̂)

2

𝑁𝑘

𝑤=1

 (7) 

3.3.1.1. S-L curve for multi-stress scenario 

In damage theory, generally a single stress factor is considered as the loading factor such 

as fatigue load. For single stress factor, the relationship between fatigue life (𝐿) and stress (S) is 

well explained by the S-L curve equation as given below [203, 204]: 

𝐿(𝑆) = 𝐴𝑆−𝛾 (8) 

The equation (8) actually represents the power law [190] that expresses the relationship 

between the product life and single accelerating stress factor as shown in Figure 4. 

 

Figure 4. Generic stress-life (S-L) curve 

However, most of the FHE products are exposed to a multi-stress factor environment in 

field operations. Therefore, to generate a (multi)S-L curve for reflecting real-life application, it 

seems reasonable to calculate an equivalent single stress to represent multi-stress conditions. For 

most of the electronic products temperature and humidity are the most commons stressors [205, 

206]. Generally, the thermal stress can be modeled with the well-known physics of failure model 

called Arrhenius law and non-thermal stresses can be explained by the power-law model. In the 
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presence of both thermal (T) and non-thermal stresses (𝑈), the life-stress model can be expressed 

by the general Eyring law model as: 

𝐿 = 𝐿(𝑇, 𝑈) = 𝐴0𝑈
−𝛾0𝑒(

𝐵0
𝑇
) (9) 

where 𝐴0, 𝐵0, and 𝛾0 are constants that need to be estimated using the experimental data. 𝐿 is a 

specific characteristic of the life distribution [190]. For a normal distribution, it represents the 

mean life and therefore, equation (9) can be rewritten as: 

𝜇𝐿 = 𝐴0 (𝑈𝑒
−(

𝐵0
𝑇𝛾0

)
)

−𝛾0

 (10) 

Without loss of generality, let  

𝑆𝑒𝑞 = 𝑈𝑒
−(

𝐵0
𝑇𝛾0

)
 (11) 

where 𝑆𝑒𝑞 can be considered an equivalent acceleration stress function, as long as it depends 

directly on the product of monotone functions of thermal (T) and non-thermal (U) stresses [207, 

208]. Non-thermal stress (U) could be any other single stress variable, such as humidity, voltage, 

current. It could also represent multiple non-thermal stresses; where U could be defined as a 

function of (possibly) transformed stresses [190, 207, 208]. For instance, considering a 

generalized power-law model, q non-thermal stresses 𝑈𝑣, can generate equivalent non-thermal 

accelerating stress U [207]: 

𝑈 =∏(𝐹𝑚(𝑈𝑣))
η𝑣

𝑞

𝑣=1

 (12) 

where 𝐹𝑚(∙) represents any monotone function. 

By combining equations (10) and (11), we derive an equivalent stress and life model: 

𝜇𝐿 = 𝐴0𝑆𝑒𝑞
−𝛾0  (13) 
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The life-stress model given by equation (13) is similar to equation (8) with the advantage 

that equation (13) captures multi-stress scenario in the form of equivalent stress 𝑆𝑒𝑞. 

In our study, we consider temperature and humidity as the (two) stress factors. 

Considering the non-thermal stress (U) to be the relative humidity H and assuming 𝑞 =

1, 𝐹𝑚(𝑈𝑣) =  𝑈𝑣 , η𝑣 = 1 in equation (12), the equation (11) can be modified to calculate 

equivalent stress as:  

𝑆𝑒𝑞 = 𝐻𝑒
−(

𝐵0
𝑇𝛾0

)
 (14) 

The expected life or time to failure 𝜇𝐿 is given as: 

𝜇𝐿 = 𝐴0 (𝐻𝑒
−(

𝐵0
𝑇𝛾0

)
)

−𝛾0

=
𝐴0
𝐻𝛾0

𝑒
𝐵0
𝑇  (15) 

The equation (15), in this particular case, turns out to be the well-known Eyring model. 

The parameters 𝐴0, 𝐵0, 𝛾0 in equation (15) can be estimated by using the least square 

method for multiple linear regression. 

By taking the natural log, the equation (15) becomes: 

𝐿𝑛(𝜇𝐿) = 𝐿𝑛(𝐴0) − 𝛾0𝐿𝑛(𝐻) + 𝐵0.
1

𝑇
 (16) 

The following transformations are considered to linearize the model:  

𝐿𝑛(𝜇𝐿) = 𝑦
′, 𝐿𝑛(𝐻) = 𝑥1,

1

𝑇
= 𝑥2, 𝐿𝑛(𝐴0) = 𝜃

′
0, −𝛾0 = 𝜃

′
1, 𝐵0 = 𝜃

′
2 (17) 

The notation 𝑦′ is used here to avoid confusion with the observed sample degradation 

path 𝑦𝑖𝑗𝑘 in equation (1). We get a linearized model: 

𝑦′ = 𝜃′0 + 𝜃
′
1𝑥1 + 𝜃

′
2𝑥2 (18) 

The parameters 𝜃′0, 𝜃′1, and 𝜃′2 can be estimated from the (linearized) life – stress points 

(𝑦𝑘
′ , 𝑥𝑘1, 𝑥𝑘2), where: 



 

38 

𝑦𝑘
′ = 𝐿𝑛(𝜇̂𝐿𝑘), 𝑥𝑘1 = 𝐿𝑛(𝐻𝑘), 𝑥𝑘2 =

1

𝑇𝑘
 (19) 

There is one life – stress point for each stress level 𝑘, where 𝑘 = 1,2, … , 𝑟. For each 

stress level 𝑘 with specified temperature and humidity (𝑇𝑘, 𝐻𝑘) there is an associated expected 

failure time, 𝜇̂𝐿𝑘 estimated using equation (4) . The multiple linear model can be written as a set 

of 𝑟 equations: 

𝑦𝑘
′ = 𝜃′0 + 𝜃

′
1𝑥𝑘1 + 𝜃

′
2𝑥𝑘2 + 𝜖𝑘, for all 𝑘 = 1,2, … , 𝑟 (20) 

Using matrix notation, the model for 𝑟 life-stress points can be written as 

(

𝑦1′

𝑦2′
⋮
𝑦𝑟′

) = (

1 𝑥11 𝑥12
1 𝑥21 𝑥22
⋮ ⋮ ⋮
1 𝑥𝑟1 𝑥𝑟2

)(

𝜃′0
𝜃′1
𝜃′2

) + (

𝜖1
𝜖2
⋮
𝜖𝑟

) = 𝜃′0 + 𝜃
′
1𝑥1 + 𝜃

′
2𝑥2 (21) 

Or in a condensed form: 

𝒚 = 𝑿𝜽′ + 𝝐 (22) 

For the multiple linear model, we consider the following assumptions: 

• 𝐸(𝜖𝑘) = 0 for all 𝑘 = 1,2,… , 𝑟 

• 𝑣𝑎𝑟(𝜖𝑘) = 𝜎
2 for all 𝑘 = 1,2,… , 𝑟 

• 𝑐𝑜𝑣(𝜖𝑘, 𝜖𝑙) = 0 for all 𝑘 ≠ 𝑙 

Provided the multiple linear model assumptions are valid, the least-squares estimates of 

𝜽′̂ = (𝜃′0̂, 𝜃′1̂, 𝜃′2̂)
𝑻
 is given as [209]: 

𝜽′̂ = (𝑿𝑻𝑿)−1𝑿𝑻𝒚′ (23) 

where (∙)𝑻 represents the transpose operator. 

By applying the inverse transformations assumed, we can get the estimates of parameters 

(𝐴0, 𝐵0, 𝛾0) corresponding to the original nonlinear model in equation (15). 

𝐴0̂ = 𝑒
𝜃′0
̂
, 𝐵0̂ = 𝜃′2̂, and 𝛾0̂ = −𝜃′1̂ (24) 
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A similar approach can be followed to estimate the parameters for other non-thermal 

stress factors or multiple non-thermal stresses (U) combined with temperature (T).  

The estimated parameters can now be used to calculate the equivalent stress (𝑆𝑒𝑞) using 

equation (14). Once the equivalent stress is calculated for each multi-stress combination, the S-L 

curve for FHE products can be fitted using pairwise points equivalent stress - expected time to 

failure (𝑆𝑒𝑞𝑘, 𝜇̂𝐿𝑘). 

In the next section, we develop a probabilistic degradation model using a fitted S-L curve 

for FHE products and Palmgren-Miner’s linear damage accumulation model. 

3.3.2. Probabilistic damage accumulation model 

The damage accumulation is a cumulative deteriorating phenomenon by which the 

product reaches to its failure state gradually. Since, the damage accumulation is influenced by 

several random variables such as operating conditions, material type, and usage rate, it also 

behaves as a random variable. Considering the probabilistic nature of damage accumulation, the 

distribution function of damage accumulation can be treated as a normal distribution [202]: 

𝐷′(𝑡)~𝑁{𝜇𝐷′(𝑡), 𝜎𝐷′
2 (𝑡)} (25) 

where D’(t) is the accumulated damage with mean 𝜇𝐷′(𝑡) and variance 𝜎𝐷′
2 (𝑡). We use 𝐷′(𝑡) to 

represent the damage accumulation to avoid confusion with the degradation path 𝐷(𝑡). 

The Palmgren-Mine’s linear damage accumulation model defines the damage as a ratio of 

the number of usage cycles to total expected life cycles at a given stress level. Nevertheless, 

under constant stressors a ratio of usage time to expected lifetime for a given stress level (or 

multi-stress combination) is more appropriate to consider. Assuming no initial damage, the 

expected damage accumulation 𝜇𝐷′𝑘 at a given stress combination (e.g. combination of 

temperature and humidity) level 𝑘 can be calculated as [204]:  
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𝜇𝐷′𝑘 =
𝑡𝑘
𝜇𝐿𝑘 

 (26) 

where, 𝑡𝑘 is the usage time and 𝜇𝐿𝑘 is the expected time to failure at any given combined single 

stress level 𝑘. If the product is subjected to 𝑛 multi-stress levels (a sequence of 𝑛 single stress 

levels), total expected damage accumulation is given as 𝜇𝐷′:  

𝜇𝐷′ =∑𝜇𝐷′𝑘

𝑛

𝑘=1

=∑
𝑡𝑘
𝜇𝐿𝑘  

𝑛

𝑘=1

 (27) 

where 𝜇𝐷′ is the total expected damage accumulation, 𝜇𝐷′𝑘 is the expected damage accumulation 

when subjected to kth stress level combination, 𝑡𝑘 is the operation or usage time at stress 

combination level 𝑘. 𝜇𝐿𝑘 is the expected time to failure at the kth stress level combination and 

can be estimated from the degradation model, equation (6).  

Combining the life-stress model equation (13) and damage accumulation model given in 

equation (26), the expected damage accumulation, 𝜇𝐷′𝑘, can be written as:  

𝜇𝐷′𝑘 =
𝑆𝑒𝑞𝑘

𝛾0

𝐴0
𝑡𝑘  (28) 

Considering multiple levels of multi-stress combinations, the total expected damage 

accumulation is given as:  

𝜇𝐷′ =∑𝜇𝐷′𝑘

𝑛

𝑘=1

=∑
𝑆𝑒𝑞𝑘

𝛾0

𝐴0
𝑡𝑘

𝑛

𝑘=1

 (29) 

where 𝑆𝑒𝑞𝑘 can be calculated for each stress level combination 𝑘 by using equation (11). For the 

given stress factors temperature 𝑇𝑘 and humidity 𝐻𝑘, 𝑆𝑒𝑞𝑘 can be calculated by using equation 

(14) (letting 𝑇 = 𝑇𝑘, 𝐻 = 𝐻𝑘). The equation (29) is modified by replacing 𝑆𝑒𝑞𝑘 and given as: 

𝜇𝐷′ =∑
𝐻𝑘
𝛾0

𝐴0𝑒
(
𝐵0
𝑇𝑘
)
𝑡𝑘

𝑛

𝑘=1

 (30) 
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It is generally assumed that a failure occurs when total accumulated damage 𝐷′ reaches to 

the threshold damage (𝐷′𝑐). Considering threshold damage also a random variable, the expected 

value it is 𝐸(𝐷′𝑐) = 𝜇𝐷′𝐶 = 1.  

Since we have assumed that the damage accumulation follows a normal distribution 

𝑁𝑂𝑅(𝜇𝐷𝑘
′ , 𝜎

𝐷𝑘
′
2 ), the standard deviation of accumulated damage at time 𝑡𝑘 is given as [210]: 

𝜎𝐷𝑘
′ =

𝑆𝑒𝑞𝑘
𝛾0

𝐴0
(
𝜎𝐿𝑘
𝜇𝐿𝑘
) 𝑡𝑘 (31) 

where, 𝜇𝐿𝑘 and 𝜎𝐿𝑘 are the mean and standard deviation of the product life 𝐿𝑘 at combined stress 

level k, respectively.  

Considering random variability in operating conditions, it is assumed these FHE products 

will be subjected to multiple levels of multi-stress combination during field operations. Given 

multi-stress factors and multi-level scenario, the standard deviation in the accumulated damage 

can be calculated as [210]: 

𝜎𝐷′ = √∑(
𝑆𝑒𝑞𝑘

𝛾0

𝐴0
𝑡𝑘 (

𝜎𝐿𝑘  
𝜇𝐿𝑘

))

𝑛

𝑘=1

2

 (32) 

Equation (32) is modified by replacing 𝑆𝑒𝑞𝑘 and given as: 

𝜎𝐷′ = √∑(
𝐻𝑘
𝛾0

𝐴0𝑒
(
𝐵0
𝑇𝑘
)
𝑡𝑘 (

𝜎𝐿𝑘  
𝜇𝐿𝑘

))

𝑛

𝑘=1

2

 (33) 

Both the expected damage accumulation given by equation (30) and the standard 

deviation of damage accumulation given by equation (33) are functions of the stress levels, time 

duration the product is subjected to these stress levels, the expected product life, and variability 

(or standard deviation) in expected product life at any given stress level. Essentially, these two 
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equations represent dynamic functions and provide expected accumulated damage and its 

variability at any given time when a product is subjected to multiple stresses at different levels 

during field operation or testing. 

3.3.3. Dynamic reliability estimation 

After deriving dynamic functions of expected damage accumulation and its variability, 

we now use stress-strength interference model to develop a dynamic reliability assessment 

model. In order to use stress-strength interference model, we consider the following assumptions 

[210]: 

• Failure occurs when the damage accumulation (D’) reaches the threshold damage (𝐷′𝑐), 

where 𝐸(𝐷′𝑐) = 𝜇𝐷′𝐶 = 1 

• The threshold damage has the same distribution as the damage accumulation measure 

• When the usage life is equal to the mean failure life (𝑡 = 𝜇𝐿), the variability of threshold 

damage accumulation (𝜎𝐷𝑐′
2) is equal to the variability of the damage accumulation 

measure (𝜎𝐷′
2) 

In the stress-strength interference model, the reliability is given as the probability that the 

accumulated damage is less than the threshold damage: 

𝑅 = 𝑃{𝐷′ < 𝐷′𝑐} (34) 

𝑅 = 1 − 𝑃{𝐷′𝑐 − 𝐷
′ ≤ 0} (35) 

𝑅 = 1 −Φ

(

 −
𝜇𝐷′𝑐 − 𝜇𝐷′

√𝜎𝐷′𝑐
2 + 𝜎𝐷′2)

  (36) 

where, Φ is the cumulative density function of the standard normal distribution, and 𝜇𝐷′ is total 

accumulated damage at a given time.  
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In our third assumption, we considered that at failure time (when usage time is equal to 

product life) in both the damage accumulated and the threshold damage the variability is the 

same. Hence, the variability in threshold damage can be calculated by considering usage time 

𝑡𝑘 = 𝜇𝐿𝑘 in equation (32).  

Figure 5 shows the damage accumulation probability density (pdf) function (black lines) 

is moving up (towards the threshold damage line) with time whereas pdf of threshold damage 

(red line) remains stationary. It is also important to note that for damage accumulation pdf, both 

the expected accumulated damage and its variability are changing (increasing) with usage time. 

Because of this phenomenon, we call it a dynamic reliability assessment model because it 

captures the impact of both usage time and field operating conditions on both expected damage 

accumulation and its variability.  
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Figure 5. Dynamic stress-strength model of damage accumulation 

Let us assume that the mean threshold damage 𝜇𝐷′𝑐 = 1 and considering appropriate 

equations for damage accumulation and its variability, equation (36) can be rewritten as: 
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𝑅 = 1 −Φ

(

 
 
 

−
1 − ∑

𝑆𝑒𝑞𝑘
𝛾0

𝐴0
𝑡𝑘

𝑛
𝑘=1

√𝜎𝐷′𝑐
2 + ∑ (

𝑆𝑒𝑞𝑘
𝛾0

𝐴0
𝑡𝑘 (

𝜎𝐿𝑘  
𝜇𝐿𝑘

))𝑛
𝑘=1

2

)

 
 
 

 (37) 

The equation (37) is modified by replacing 𝑆𝑒𝑞𝑘 and given as: 

𝑅 = 1 −Φ

(

 
 
 
 
 
 
 

−

1 − ∑
𝐻𝑘
𝛾0

𝐴0𝑒
(
𝐵0
𝑇𝑘
)
𝑡𝑘

𝑛
𝑘=1

√𝜎𝐷′𝑐
2 + ∑ (

𝐻𝑘
𝛾0

𝐴0𝑒
(
𝐵0
𝑇𝑘
)
𝑡𝑘 (

𝜎𝐿𝑘  
𝜇𝐿𝑘

))𝑛
𝑘=1

2

)

 
 
 
 
 
 
 

 (38) 

If the given product is subjected to a single stress level, the equation (29) can be 

evaluated considering 𝑛 = 1 to estimate the reliability. 

To estimate the reliability under given stress (operating) conditions by using equation 

(38), both the expected time to failure (𝜇𝐿) and its standard deviation (𝜎𝐿) are needed. By 

substituting the estimated parameters of the life stress model, e.g., (𝐴0, 𝐵0, 𝛾0) in equation (15), 

it is possible to estimate the expected time to failure (𝜇𝐿) under given stress conditions. To 

predict the reliability, it is also needed the standard deviation (𝜎𝐿) of the expected time-to-failure 

under given stress conditions, which is unknown. Further, many existing models such as 

Arrhenius-lognormal or power-Weibull have assumed the constant spread of time-to-failure 

distribution [190]. However, recent literature shows that the spread of time-to-failure is a 

function of stress [190] and usually the spread or variability in failure time is higher at a lower 

stress level. At lower stress levels, it is expected to observe larger time-to-failure (longer life of 

the product) but higher variability in the life of the product. Therefore, it is proposed to use a 
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linear model to estimate the standard deviation of time-to-failure as a function of the mean time-

to-failure, as shown in Figure 6. By setting the intercept term to zero, which assures that the 

estimated standard deviation is positive as time-to-failure is positive, the standard deviation 

function is given as: 

𝜎𝐿 = 𝛿𝜇𝐿 (39) 

where 𝛿 is a characteristic of the product and represents the slope of the standard deviation as a 

function of the expected product life. This linear relationship is illustrated in Figure 6.  

𝜎𝐿 

𝜇𝐿 
 

Figure 6. The standard deviation of expected product life as a function of product life. 

The parameter 𝛿 can be estimated from the pairwise points (𝜎̂𝐿𝑘, 𝜇̂𝐿𝑘), represented as dots 

in Figure 6. Each pair of observation at each stress level 𝑘, where 𝑘 = 1,2,… , 𝑟, consists of 

expected product life 𝜇̂𝐿𝑘 (equation (6)) and variability in product life 𝜎̂𝐿𝑘(equation (7)). We 

propose to use the linear regression model to capture the relationship between 𝜎̂𝐿𝑘 and 𝜇̂𝐿𝑘: 

𝜎𝐿𝑘 = 𝛿𝜇𝐿𝑘 + 𝜖𝑘, for all 𝑘 = 1,2,… , 𝑟 

The least-squares estimator 𝛿̂ is then given by [211]: 

𝛿̂ =
∑ 𝜇̂𝐿𝑘𝜎̂𝐿𝑘
𝑟
𝑘=1

∑ 𝜇̂𝐿𝑘
2𝑟

𝑘=1

 (40) 

By substituting 𝛿̂ from equation (40) in equation (39), the estimated standard deviation 𝜎𝐿̂ 

of failure time at any condition is given as: 

𝜎𝐿̂ = 𝛿̂𝜇𝐿 (41) 
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3.3.4. Case study 

To demonstrate the proposed method, a flexible hybrid electronics (FHE) product has 

been considered. The FHE is the newly developed complex concept that has immense 

opportunities for applications, especially in next-generation electronic products, security, 

defense, and wearable technology. Generally, a FHE device consists of a plastic substrate, an 

electric circuit, and, in some cases, an adhesive layer between the substrate and the circuit. The 

FHE samples used in our case study have been fabricated on a flexible polyamide substrate using 

a thinned (25μm) bare silicon die bonded to the traces on the substrate using an anisotropic 

conductive paste (ACP). Figure 7 shows the FHE test sample used in this work. 

 

Figure 7. The flexible hybrid electronics device used in this work 

To get the time-to-failure information on FHE samples, ADT has been conducted using 

temperature and humidity stress factors simultaneously. A common performance indicator for 

FHE has been daisy-chain resistance [159, 165-169, 181]. It is well known that the major failure 

mechanisms for FHE's are humidity absorption of the substrate and the adhesive, and 

delamination in substrate-circuit joint [159, 165-169]. In ADT, four treatment combinations (or 

levels) of two stress factors (each at two levels) have been considered to get the stress effect on 

failure mechanism. At each treatment combination, five samples were allocated for testing and 

measurement. The changes in resistance as an indicator of performance measurement have been 
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observed and recorded at every five hours. A sample is considered to have failed when there is a 

20% increase in the initial nominal resistance [186]. 

3.3.4.1. Results 

Figure 8 shows the degradation path (dashed lines) for the five samples at treatment 

combination level 2 (85 °C temperature and 85% relative humidity (RH). The predicted 

population path (solid line) is fitted by using ML estimates 𝛍̂𝛃𝟐, which seems to be a good fit to 

the degradation data. 

 

Figure 8. Degradation paths (dashed lines) and fitted path at temperature 85 °C and RH 85%  

The ML estimates 𝝁𝜷𝒌and 𝚺𝜷𝒌, at each treatment combination were computed using nmle 

function in the R package. The results are shown in Table 2. 
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Table 2. ML estimates 

Stress level 𝝁𝜷𝒌  𝚺𝜷𝒌 

85 °C/98% 

RH 

𝑘 = 1 

(
38.47
2.58

9.68𝑒 − 03
) (

0.22637 0.08447 1.22𝑒 − 04
0.08447 0.05428 1.74𝑒 − 04
0.00012 0.00017 7.93𝑒 − 07

) 

85 °C/85% 

RH 

𝑘 = 2 

(
38.17
2.19

6.86𝑒 − 03
) (

0.21862 0.16457 −1.38𝑒 − 04
0.16457 0.12951 −4.72𝑒 − 05

−1.38𝑒 − 04 −4.72𝑒 − 05 6.55𝑒 − 07
) 

65 °C/98% 

RH 

𝑘 = 3 

(
37.56
2.65

2.70𝑒 − 03
) (

2.26𝑒 − 01 1.13𝑒 − 01 −7.96𝑒 − 12
1.13𝑒 − 01 2.67𝑒 − 01 −8.66𝑒 − 12
−7.96𝑒 − 12 −8.66𝑒 − 12 2.81𝑒 − 16

) 

65 °C/85% 

RH 

𝑘 = 4 

(
37.45
3.28

1.29𝑒 − 03
) (

1.09183 −1.24𝑒 − 03 3.07𝑒 − 05
−1.24𝑒 − 03 7.87𝑒 − 06 −3.71𝑒 − 08
3.07𝑒 − 05 −3.71𝑒 − 08 8.67𝑒 − 10

) 

 

The normalized equivalent stress 𝑆𝑒𝑞𝑘,𝑛𝑜𝑟𝑚 is shown in Figure 9. 

 

Figure 9. Stress-life curve for FHE product considering equivalent stress 

Figure 10 shows the reliability estimated by the model for different constant operating 

conditions. 
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Figure 10. Reliability at different normal conditions scenarios 

Most of the products operate in multi-stress scenarios at different levels of stress. Further, 

the order or sequence of changes in the operating condition also influences product reliability 

[210]. To demonstrate the impact of sequencing in which operating conditions change or the 

product undergoes, we consider two sequencings of three multi-stress scenarios:  

Sequence 1: 22C/72%RH (average conditions of Florida, FL), 18C/68%RH (average 

conditions of Georgia, GA), and 8C/72%RH (average conditions of New York, NY) for 10,000 

hours, 15,000 hours, and the remaining hours up to failure, respectively. 

Sequence 2: the second sequencing is obtained by reversing the order to NY-GA-FL for 

133,438, 15,000, and 10,000 hours, respectively. The reliability assessment provided by the 

proposed model of both sequencing conditions is given in Figure 11.  
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Figure 11. Reliability estimation under variable operating conditions 

Figure 11 shows that for NY-GA-FL sequence, the initiation period is longer (almost 

constant reliability) but after the failure process starts, the reliability falls almost vertically, and 

the product fails within very short span of time. This behavior can be explained by the intensity 

of operating stress levels and their order. The intensity of operating conditions in NY area is low 

(8C/72%RH) and therefore, it takes longer to initiate the failure mechanism. However, once the 

failure process is initiated and the product is subjected to more intense operating conditions such 

as FL (22C/72%RH), the failure process propagates at a faster rate causing an almost vertical 

drop in reliability. On the other hand, when the product is subjected to severe operating 

conditions (22C/72%RH-FL) initially, the failure process initiates earlier but failure propagation 

slows down when operating conditions change from severe to medium and low. Because of 

slower propagation of the failure process, the degradation process slows down causing slight 

improvement in product reliability as can be shown in Figure 10. This explains FHE products are 
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not only vulnerable to varying operating conditions but to the pattern in which operating 

conditions change also impacts the product performance and reliability. 

3.3.5. Conclusion 

This study proposed a framework based on degradation test data to estimate the reliability 

of FHE systems. It contemplates multi-stress factors combinations experiments whose resultant 

degradation data are used to fit a nonlinear mixed-effects regression model and subsequently, to 

numerically evaluate time-to-failure distributions. Furthermore, the mean-time-to-failure 

estimates for different stress combinations are then used to fit a developed multi-stress factor 

stress-life (S-L) model. The S-L model, based on equivalent stress, allows estimating the 

product-life under given operating conditions other than those from the original experiments. In 

addition, the framework suggests a method to estimate both the expected damage accumulation 

and its variability at any given time and operating conditions. Additionally, the framework 

provides a procedure to evaluate the reliability as a function of time and operating conditions, 

useful for both constant and sequences of (varying) operating conditions 
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CHAPTER 4. RELIABILITY ASSESSMENT OF CPS CONSIDERING HARDWARE-

SOFTWARE INTERACTIONS [73, 74]2 

4.1. Abstract 

Besides physical components reliability, an important aspect of complex CPS systems 

reliability is the interaction between hardware and software. Most of the existing work has 

assumed either independence between hardware (HW) and software (SW) or a fixed proportion 

of hardware reported failures to represent HW/SW interactions. These assumptions do not 

necessarily reflect reality. This chapter proposes a reliability model for a system that captures the 

changing interactions between hardware and software based on probabilistic models. A 

preliminary model that integrates hardware and software, as independent blocks, for reliability 

estimation of cyber-physical systems was presented in our paper published in RAMS 2019 [73]. 

In addition, a more elaborated approach, that incorporates probabilistic hardware/software 

interactions, is discussed in our paper submitted to IEEE Transactions on Systems, Man, and 

Cybernetics: Systems [74]. The remaining sections of this chapter are based on such paper. 

 

 

2 The present chapter is based on the following papers: 

1. A. Davila-Frias, N. Yodo, and O. Yadav, "Probabilistic modeling of hardware and software interactions for 

reliability prediction of embedded systems," 2019. In IEEE Transactions on Systems, Man, and Cybernetics: 

Systems. Submitted. 

Contribution of Alex Davila Frias: developing the mathematical models, analysis of the case study, 

discussion of the results, and drafting the paper. 

Contribution of Nita Yodo and Om Yadav: verification of the results and proofreading the draft paper. 

 

2. A. Davila Frias, N. Yodo, and O. P. Yadav, "Mixed-Degradation Profiles Assessment of Critical Components 

in Cyber-Physical Systems,". Published in 2019 Annual Reliability and Maintainability Symposium (RAMS), 

28-31 Jan. 2019, pp. 1-6. 

Contribution of Alex Davila Frias: developing the mathematical models, analysis of the case study, 

discussion of the results, and drafting the paper. 
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4.2. Introduction 

Hardware-software systems are present in many of today’s CPS applications, such as 

cellphones, automobiles, military systems, medical equipment, and tracking devices. The 

reliability of hardware-software systems is a major concern because human lives and/or critical 

assets often depend on their proper function. Although extensive research has been done in 

hardware and software separately, the literature in capturing the impact of hardware-software 

(HW-SW) interactions for reliability modeling is still scarce and is summarized in the next 

paragraph. 

Most of the existing research on hardware-software systems reliability assessment has 

assumed independence between hardware and software [25, 73, 123, 212, 213]. Another 

limitation most of the models face is the shortage of sufficient data on failures of HW/SW 

systems because such data are sensitive [27]. In addition, many of the common references had 

used data from the 1980s and 1990s, when computer systems were significantly different from 

today [124, 214-216]. A more recent study [217] analyzed a population of 100,000 disks in terms 

of the mean time to hardware failure without considering the interaction with the software. With 

the availability of a large dataset (23,000 failures over nine years period including 24,101 

processors) provided by Los Alamos National Laboratory (LANL), Schroeder et al. [27] studied 

the mean failure times and the root cause of failures considering both hardware and software, 

separately though. Indeed, they reported that 53% of the failures were attributed by hardware and 

22% by software. Based on the same dataset, El-Sayed et al. [218] studied the correlations 

between failures, including hardware, software, among others. Although they provided intuitive 

insights, their work did not focus on modeling the HW/SW interactions.  
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On the other hand, some works have considered HW/SW interactions. For example, a 

unified hardware-software reliability model was introduced by Welke et al. [123]. They 

considered the time-varying software failure intensity of the Goel-Okumoto/ non-homogeneous 

Poisson process (NHPP) model [119] and a Markov hardware reliability model. Recently, Teng 

et al. [22] and Roy et al. [23] proposed combined reliability models considering failures due to 

hardware and software interactions. HW/SW interactions in systems have been usually analyzed 

by assuming that a fixed percentage of observed “hardware” failures are, in reality, HW/SW 

interactions failures [22-25]. This might not represent the reality, because different percentages 

in the range from 20% to 35% have been reported as the actual HW/SW interactions proportion 

[26, 124, 219, 220]. Therefore, the fraction of HW/SW interaction failures in a new system is 

essentially unknown and random in nature, which cannot be neglected for reliability assessment. 

Therefore, an approach that captures the probabilistic nature of interactions is proposed to model 

and predict a hardware-software system’s reliability.  

Systems failure databases usually provide failure data classified as purely hardware and 

software failures. Nevertheless, a fraction of misclassified “hardware” failures can indeed be 

HW/SW interaction failures because degraded states of hardware may lead to software 

misbehavior and, eventually, system failure. Besides the traditional hardware and software 

reliability models, HW/SW interactions element is integrated into the system’s reliability 

prediction model to provide a more realistic assessment in this study. This is achieved by 

considering the fraction of hardware failures, which are, in reality, HW/SW interaction failures, 

as a random variable. The randomness of the fraction of HW/SW interaction failures demands 

the use of stochastic programming methods to estimate the parameters of a hardware failure time 

distribution and the corresponding hardware reliability. To consider randomness, a stochastic 
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optimization problem is formulated and solved with the general algebraic modeling system 

(GAMS) [221] software by defining an extended mathematical programming (EMP) model 

[222]. Software reliability is modeled with a non-homogeneous Poisson process (NHPP) to fit 

the software failure data [120, 223]. To capture the interaction between hardware and software, a 

Markov process model is used by considering that a degraded hardware state leads to a HW/SW 

failure and eventually to a system failure[22].  

The estimation of rate parameters for the model becomes a challenging task because, 

first, the failure databases do not usually provide information on state transition rates, and 

second, the rate parameters depend on the random fraction of HW/SW interactions. To tackle 

this problem of estimating the rate parameter, a Monte Carlo method is employed in this work. 

Different from previous works, the ratio between state transition rates and the fraction of 

HW/SW interaction failures are treated as random variables and sampled according to assumed 

probability distributions with the aim to generate sampled distributions for the rate parameters. 

Different scenarios are considered by assuming several distributions for the HW/SW interactions 

and a uniform distribution for the state transition rates ratio. The sampled rate parameters are 

then used to generate sampled distributions for the reliability of the HW/SW element, which is 

then used along with pure hardware and pure software reliability estimates to generate sampled 

distributions of system reliability. By considering this probabilistic approach, confidence 

intervals and quartiles can be obtained for system reliability in addition to point estimators. The 

proposed methodology constitutes a practical tool and provides valuable information for 

designing better maintenance/warranty policies and developing availability models. The 

proposed method is demonstrated with data from a real computing system provided by Los 

Alamos National Laboratory [224]. 
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4.3. Proposed reliability estimation methodology 

Reliability is the probability of a system, subsystem, or component “to perform a required 

function under specified environmental and operational conditions for a stated period of time” 

[79-81]. Many modern systems, ranging from embedded systems to cyber-physical systems 

(CPSs), integrate hardware and software components. In these systems, hardware components 

may fail due to temperature, humidity, vibration, voltage, etc., causing a failure of the entire 

system. A hardware failure occurs when the hardware component ceases to function, e.g., the 

CPU burns out. On the other hand, a software failure may cause a system’s failure as well, e.g., 

in an embedded system, the software can corrupt the operating system and crash the entire 

system [225, 226]. A software failure, defined as the occurrence of an “incorrect output as a 

result of an input value that is received with respect to the specification” [120], is caused by a 

fault triggered by a specific input. A fault is a manifestation of an error made by the programmer 

or designer, as shown in Figure 12 [227]. Therefore, in general, it has been assumed that a 

hardware-software system may fail due to: (1) pure hardware failures and (2) pure software 

failures. This work proposes to incorporate a third important element, i.e., (3) HW/SW 

interaction failures. The HW/SW interaction failures may be defined as the result of a change in 

the hardware characteristic leading to software operation under unexpected operational profiles 

[22, 228, 229]. For instance, in an embedded system, a degraded circuit component may cause a 

microcontroller to receive an input out of the logic voltage levels, which might result in 

unexpected firmware behavior and, eventually, a software failure. Similarly, a degraded 

reference chip may lead to wrong inputs connected to an analog-to-digital converter (ADC) input 

of a microcontroller running firmware. Also, in a computer system, a failure in the random-

access memory (RAM) or permanent storage blocks can lead to a failure in an entire computer 
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system. In the remainder of this chapter, this kind of failure will be regarded as HW/SW 

interaction failures. In the proposed approach, it is assumed that the software does not degrade 

[120]. Therefore, the possibility of a change in the software characteristic leading to hardware 

failure is not considered in the proposed model. 

Software
failure

Software faults

Input

 

Figure 12. Software failure representation [120] 

A hardware-software system can be represented as the integration of hardware, software, 

and HW/SW interactions (interface), as shown in Figure 13. 

 

Figure 13. Representation of a hardware-software system with HW/SW interactions 

Assumptions: (1) It is assumed that the system fails whenever a pure hardware failure, a 

pure software failure, or a 𝐻𝑊/𝑆𝑊 interaction failure occurs. (2) Furthermore, it is assumed that 

these failure types are mutually independent. (3) For hardware model, the failures can be 

modeled with a NHPP Weibull process. (4) Software failures can be modeled with another 

NHPP model. (5) HW/SW interactions can be modeled by a Markov process, considering that 

hardware components go to a degraded state with a rate 𝜆1, which causes a 𝐻𝑊/𝑆𝑊 failure with 

a rate 𝜆2. 

The proposed model is projected to be used for hardware-software systems reliability 

estimation. For instance, modern embedded systems are often based on microcontrollers (i.e., 

microprocessors with integrated memory and peripheral interfaces) [230]. One of the 

applications of the proposed model is an embedded system, with the hardware block modeling 
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the microcontroller, the software representing the firmware, and the HW/SW interactions block 

modeling the hardware degradation leading to software failures causing eventual system failure. 

The proposed generic model can be used to represent other digital systems with hardware and 

software components as well, by making the appropriate modifications. For example, more than 

three blocks could be used to represent the complexity of larger systems with more degraded 

states. The proposed methodology will be demonstrated with data from Los Alamos National 

Laboratory [224]. An example of the required data is shown in Table 4, later in the case study, 

section 4.4. 

Since it is assumed that a system fails when pure hardware, pure software, or HW/SW 

interactions failure occurs, the appropriate reliability models are needed for each type of failure. 

4.3.1. Hardware reliability 

To estimate hardware reliability, a Weibull process [231], with an intensity function 

ℎ𝐻𝑊(𝑡) and mean value function 𝑚𝐻𝑊(𝑡 ) is proposed to model pure hardware failure times: 

ℎ𝐻𝑊(𝑡) = 𝜆𝛽𝑡
𝛽−1 (42) 

𝑚𝐻𝑊(𝑡) = 𝜆𝑡
𝛽  (43) 

where, 𝜆 is the intensity parameter, and 𝛽 is the shape parameter. Another equivalent 

parametrization is sometimes used considering the scale parameter 𝜃 [231], i.e., 𝑚𝐻𝑊(𝑡) = (
𝑡

𝜃
)
𝛽

 

and ℎ𝐻𝑊(𝑡) = (
𝛽

𝜃
) (

𝑡

𝜃
)
𝛽−1

, respectively. 𝛽 > 1, 𝛽 = 1, or 𝛽 < 1 indicates a deteriorating 

system, a homogeneous Poisson process, or reliability growth, respectively [231]. The reliability 

of hardware (𝑅𝐻𝑊) can be calculated as [22, 231]: 

𝑅𝐻𝑊(𝑡) = 𝑒
−𝜆𝑡𝛽 (44) 
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The parameters 𝜆 and 𝛽 can be estimated from failure data. Some of the reported 

hardware failures in system failure databases are, in reality, HW/SW interaction failures. In an 

effort to account for interaction failures, it has been assumed that the fraction of hardware 

failures, which are actually HW/SW failures, is a fixed value F [22, 228, 229]. However, this 

assumption does not necessarily mimic the real scenario. Even though the sensitivity analysis can 

be performed to analyze different scenarios of F, the actual proportion is usually unknown and 

most likely to be probabilistic in nature. Therefore, to calculate the hardware reliability, the 

parameters 𝜆 and 𝛽 need to be estimated considering variability or randomness of F. To consider 

the variability of F, stochastic optimization of the parameters 𝜆 and 𝛽 is proposed, as discussed 

later in this section. 

In general, not all the analyzed units (systems) reported in the failure databases start 

operating simultaneously, and hence, there are different starting times for these different units. 

For instance, some units may have started operating in period 1, other units in period 2, and so 

on. Therefore, for the analysis purpose, hardware failure data can be divided into 𝑝 groups, 

corresponding to 𝑝 periods of time considering the starting time of the units. The periods of time 

can be represented by weeks, months, years, etc., depending on the availability of data. Let the 

starting time of the 𝑖𝑡ℎ period be 𝑠𝑖, for 𝑖 = 1,2, …  𝑝, and 𝑛𝑖 be the number of units activated 

(started) at period 𝑖. The observed failures that occurred during a period are accounted for at the 

end of each time period. Let the end time of each period, i.e., the observation time be 𝑡𝑖, for 𝑖 =

1,2,…  𝑝. Therefore, the observation times 𝑡𝑖 are related to the starting times as follows (Figure 

14): 

𝑡𝑖−1 = 𝑠𝑖 (45) 
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Figure 14. Starting and observation times 

Let 𝑋𝑖 be the number of HW/SW interaction failures in the period 𝑖, and 𝑒𝑖 be the 

allocated number of hardware failures attributed to each period 𝑖. For each period 𝑖, the 

relationship between 𝑋𝑖 and 𝑒𝑖 is assumed to remain as [22, 23, 228]: 

𝐹 =
𝑋𝑖
𝑒𝑖
 (46) 

where 𝐹 is the fraction of reported hardware failures that are indeed HW/SW failures. This 

relationship is illustrated in Figure 15, 

 

Figure 15. HW-SW interaction failures as a fraction of the failures allocated and reported as 

hardware failures 

Assuming that each unit follows a Weibull process [231], from Equations (42) and (43), 

the hardware intensity function and mean value function for the 𝑟𝑡ℎ unit are given as [22]:  

ℎ𝐻𝑊𝑟(𝑡) = 𝜆𝛽(𝑡 − 𝑠𝑖𝑟)
𝛽−1

𝐼(𝑡 ≥ 𝑠𝑖𝑟) (47) 

𝑚𝐻𝑊𝑟(𝑡) = 𝜆(𝑡 − 𝑠𝑖𝑟)
𝛽
𝐼(𝑡 ≥ 𝑠𝑖𝑟) (48) 

where 𝑖𝑟 is the starting period of the 𝑟𝑡ℎ unit, i.e., 𝑖𝑟 ∈ {1,2 , … , 𝑝} , and 𝐼(∙) is the indicator 

function.  

Recalling that 𝑛𝑖 is the number of units activated at the beginning of period 𝑖, the 

expected number of failures through time 𝑡1 is given by 𝑛1𝜆(𝑡1 − 𝑠1)
𝛽. Similarly, the expected 

𝑋𝑖 = 𝑒𝑖𝐹

𝑒𝑖

𝑒𝑖 1 − 𝐹
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number of failures through time 𝑡2 is given by 𝑛1𝜆(𝑡2 − 𝑠1)
𝛽 + 𝑛2𝜆(𝑡2 − 𝑠2)

𝛽. Generalizing, let 

𝜇(𝑡𝑖) be the expected number of failures through time 𝑡𝑖, which can be given as: 

𝜇(𝑡𝑖) = ∑𝑛𝑗𝜆(𝑡𝑖 − 𝑠𝑗)
𝛽

𝑖

𝑗=1

, 𝑖 = 1,2,…𝑝 (49) 

Considering hardware and software interaction, the fraction F must be removed from the 

total failures 𝑂𝑖 reported as hardware failures. This fraction of failure, although reported as 

hardware failure in the database, treated as 𝐻𝑊/𝑆𝑊 interactions, will be used to fit the 𝐻𝑊/𝑆𝑊 

interactions model in the proposed approach. With this consideration, the parameters 𝜆 and 𝛽 can 

be estimated by minimizing the sum of squared errors (SSE): 

𝑆𝑆𝐸(𝜆, 𝛽) =∑(𝜇(𝑡𝑖) − 𝑂𝑖(1 − 𝐹))
2

𝑝

𝑖=1

 (50) 

where, 𝑂𝑖 represents the cumulative number of reported hardware failures recorded at the 

corresponding observation times 𝑡𝑖. 

If fixed values were assumed for HW/SW interaction failure fraction (F), the objective 

value 𝑆𝑆𝐸(𝜆, 𝛽) could be minimized by conventional non-linear optimization models. However, 

to consider the probabilistic nature of F, the proposed approach models it as a random variable. 

As a result of uncertainty in F, the objective function 𝑆𝑆𝐸(𝜆, 𝛽, 𝐹) is also a random variable that 

depends not only on the decision variables 𝜆, 𝛽, but also on the random parameter 𝐹. We, 

therefore, propose to minimize the expected value of 𝑆𝑆𝐸(𝜆, 𝛽, 𝐹). This problem falls within the 

category of stochastic programming [232, 233], and can be expressed as: 

min
𝜆,𝛽≥0 

𝔼(𝑆𝑆𝐸(𝜆, 𝛽, 𝐹)) (51) 

By considering the equivalence in Equation (50), the problem can be formulated as: 
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min
𝜆,𝛽≥0 

𝔼(∑(𝜇(𝑡𝑖) − 𝑂𝑖(1 − 𝐹))
2

𝑝

𝑖=1

) (52) 

The optimal parameter values 𝜆∗ and 𝛽∗ can then be used to estimate the reliability of 

hardware, 𝑅̂𝐻𝑊(𝑡), as given below: 

𝑅̂𝐻𝑊(𝑡) = 𝑅𝐻𝑊(𝑡, 𝜆
∗, 𝛽∗) (53) 

4.3.2. Software reliability 

Software reliability, 𝑅𝑆𝑊(𝑡) can be modeled by predictive NHPP approaches based on 

software testing failure data [119-122], which have proven to fit well with the real data. For 

instance, they were successfully used to predict firmware (software embedded in the hardware) 

reliability by Hewlett-Packard and software reliability by AT&T Bell Laboratories [234]. A 

stochastic counting process {𝑁(𝑡), 𝑡 ≥ 0} represents the cumulative number of errors detected by 

time 𝑡. 𝑁(𝑡) follows the Poisson distribution with a characteristic mean value function, 𝑚𝑆𝑊(𝑡), 

which represents the expected number of accumulated software failures at time 𝑡. A review of 

software reliability models by Pham [120] provides a detailed discussion. Each model has a 

particular 𝑚𝑆𝑊(𝑡, 𝜽) whose parameters set 𝜽 can be estimated from the software failure data.  

Software reliability 𝑅𝑆𝑊(𝑡|𝑇) is defined as the probability that a software failure does not 

occur in the interval (𝑇, 𝑇 + 𝑡), given that the last failure occurred at testing time 

𝑇 (𝑇 ≥ 0, 𝑡 > 0). The software component reliability is given as [120]: 

𝑅𝑆𝑊(𝑡|𝑇) =  𝑒𝑥𝑝
−[𝑚𝑆𝑊(𝑇+𝑡)−𝑚𝑆𝑊(𝑇)] (54) 

where 𝑚𝑆𝑊(∙) is the software mean value function of pure software failures. 

The estimated software reliability, 𝑅̂𝑆𝑊(𝑡|𝑇) is given as: 

𝑅̂𝑆𝑊(𝑡|𝑇) =  𝑒𝑥𝑝
−[𝑚𝑆𝑊(𝑇+𝑡;𝜽̂)−𝑚𝑆𝑊(𝑇;𝜽̂)] (55) 
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where 𝜽̂ is the vector of model parameters estimated using the maximum likelihood estimation 

(MLE) approach. 

4.3.3. Hardware/software interactions reliability 

Besides pure hardware and software component failures, the HW/SW interactions failure 

is also considered separately for the reliability assessment of the hardware-software system. A 

proportion (F) of the failures reported as hardware failures is considered to be related to HW/SW 

interaction failures. The HW/SW interactions can be modeled as a Markov process, as shown in 

Figure 16. In the initial state 0, the system is in a perfect working state. Over a period of time 

with regular usage, the hardware degrades and goes to a degraded state 1 with a transition rate 

𝜆1. A degraded hardware state may lead to a HW/SW failure state 2 with a transition rate 𝜆2.  

0 1 2λ1 λ2
 

Figure 16. State transitions for hardware-software/interactions. 

The equations that capture the proposed Markov process are given as: 

𝑄0
′ (𝑡) =  −𝜆1𝑄0(𝑡) (56) 

𝑄1
′(𝑡) =  𝜆1𝑄0(𝑡) − 𝜆2𝑄1(𝑡) (57) 

𝑄2
′ (𝑡) =  𝜆2𝑄1(𝑡) (58) 

where 𝑄𝑘(𝑡) is the probability of the Markov process being at the 𝑘𝑡ℎ state at time 𝑡, for 𝑘 =

0,1,2, and 𝑄𝑘
′ (𝑡) =

𝑑𝑄𝑘(𝑡)

𝑑𝑡
. 

By assuming a perfect operation at the starting time, the initial conditions are: 

𝑄0(0) = 1 (59) 

𝑄1(0) = 0 (60) 

𝑄2(0) =  0 (61) 
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The Equations (56-58), along with the initial conditions captured in Equations (59-61), 

thoroughly describe the process [235].  

𝑄2(𝑡) represents the probability of a HW/SW interaction failure. By solving the system 

of differential equations with the given initial conditions, 𝑄2(𝑡) is given as: 

𝑄2(𝑡) = 1 −
𝜆2 exp(−𝜆1𝑡) − 𝜆1 exp(−𝜆2𝑡)

𝜆2 − 𝜆1
 (62) 

Equation (62) is valid for 𝜆1 ≠ 𝜆2. In the case that 𝜆1 = 𝜆2, let 𝜆1 = 𝜆2 = 𝜆𝐻𝑊/𝑆𝑊, 𝑄2(𝑡) 

is given as: 

𝑄2(𝑡) = 1 − (𝜆𝐻𝑊/𝑆𝑊𝑡 + 1) exp(−𝜆𝐻𝑊/𝑆𝑊𝑡) (63) 

Therefore, since 𝑄2 is the probability of being at a HW/SW failure state, the reliability of 

HW/SW interactions 𝑅𝐻𝑊/𝑆𝑊(𝑡), is given as: 

𝑅𝐻𝑊/𝑆𝑊(𝑡) = 1 − 𝑄2(𝑡) (64) 

For the case when 𝜆1 ≠ 𝜆2, reliability estimate is given as: 

𝑅𝐻𝑊/𝑆𝑊(𝑡) =
𝜆2 exp(−𝜆1𝑡) − 𝜆1 exp(−𝜆2𝑡)

𝜆2 − 𝜆1
 (65) 

When 𝜆1 = 𝜆2 = 𝜆𝐻𝑊/𝑆𝑊, reliability of HW/SW interaction is estimated as:  

𝑅𝐻𝑊/𝑆𝑊(𝑡) = (𝜆𝐻𝑊/𝑆𝑊𝑡 + 1) exp(−𝜆𝐻𝑊/𝑆𝑊𝑡) (66) 

Let 𝑇𝑖 and 𝑋𝑖 (𝑋𝑖 = 𝐹𝑒𝑖, from equation (46)) represent the aggregate exposure time and 

number of HW/SW interactions failures, respectively, for each group of units that started 

operating at the 𝑖𝑡ℎ period. By assuming a renewal process for the HW/SW failure times for a 

particular unit, the approximated expected value of 𝑋𝑖 can be obtained by [52]: 

𝔼(𝑋𝑖) =
𝑇𝑖
𝜇
 (67) 

where 𝜇 is the mean time to HW/SW failures, which is given as: 
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𝜇 =
1

𝜆1
+
1

𝜆2
 (68) 

The estimated optimal values for 𝜆1 and 𝜆2 can be obtained by using the non-linear least-

squares method minimizing 𝑆𝑆𝐸(𝜆1, 𝜆2). 

𝑆𝑆𝐸(𝜆1, 𝜆2) = ∑(𝑋𝑖 −
𝑇𝑖

1
𝜆1
+
1
𝜆2

)

2
𝑝

𝑖=1

 (69) 

A known ratio of 
𝜆2

𝜆1
 would allow estimating 𝜆1, and 𝜆2 from Equation (69). However, if 

there is no information available on the ratio, 𝜆1 and 𝜆2 values cannot be uniquely determined. In 

that case, the reparameterization method can be used by letting 𝐺 =
𝜆2

𝜆1
 and setting 

𝜕𝑆𝑆𝐸

𝜕𝜆1
= 0. The 

estimated values of these parameters, 𝜆1̂ and 𝜆2̂ , are given as: 

𝜆1̂ = (1 +
1

𝐺
)
∑ 𝑋𝑖𝑇𝑖
𝑝
𝑖=1

∑ 𝑇𝑖
2𝑝

𝑖=1

 (70) 

Substituting 𝑋𝑖 from Equation (46), the optimal estimates of 𝜆1̂ and 𝜆2̂ are given as: 

𝜆1̂ = (1 +
1

𝐺
)
∑ 𝑒𝑖𝐹𝑇𝑖
𝑝
𝑖=1

∑ 𝑇𝑖
2𝑝

𝑖=1

 (71) 

𝜆2̂ = 𝐺𝜆1̂ (72) 

Since, 𝑋𝑖 depends on the selected value F (see Equation (46)), and when F is assumed to 

be a fixed value, the parameters 𝜆1̂ and 𝜆2̂ can be uniquely determined by using Equations (71) 

and (72). However, if F is assumed a random variable, the parameters 𝜆1̂ and 𝜆2̂ become random 

variables as well. Moreover, in this study, 𝐺 is also considered as a random variable. To deal 

with this situation, a Monte Carlo simulation method is proposed considering a sampled 

distribution for G, which results in sampled distributions for 𝜆1̂, 𝜆2̂, and HW/SW interactions 

reliability, 𝑅𝐻𝑊/𝑆𝑊(𝑡). The sampled median value of 𝑅𝐻𝑊/𝑆𝑊(𝑡) can be used as a point 
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estimator of the HW/SW reliability, 𝑅̂𝐻𝑊/𝑆𝑊(𝑡). Such estimator provides 50% confidence lower 

bounds. Confidence intervals and quantiles can also be obtained from a sampled distribution of 

𝑅𝐻𝑊/𝑆𝑊(𝑡). The HW/SW interaction reliability estimate is given as: 

𝑅̂𝐻𝑊/𝑆𝑊(𝑡) = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑅𝐻𝑊/𝑆𝑊(𝑡)) (73) 

4.3.4. System reliability 

A system is conceived as the series configuration which might fail due to hardware, 

software, or HW/SW interaction failures. Hence, the reliability of the system depends on the 

reliability of the hardware (𝑅𝐻𝑊), software (𝑅𝑆𝑊), and HW/SW interaction (𝑅𝐻𝑊/𝑆𝑊). 

Considering the series configuration and from assumptions (1) – (5), the reliability of the system, 

𝑅𝑆𝑌𝑆(𝑡) is given as: 

𝑅𝑆𝑌𝑆(𝑡) = 𝑅𝐻𝑊(𝑡)𝑅𝑆𝑊(𝑡)𝑅𝐻𝑊/𝑆𝑊(𝑡) (74) 

The system reliability point estimator is given as: 

𝑅̂𝑆𝑌𝑆(𝑡) = 𝑅̂𝐻𝑊(𝑡)𝑅̂𝑆𝑊(𝑡)𝑅̂𝐻𝑊/𝑆𝑊(𝑡) (75) 

𝑅̂𝑆𝑌𝑆(𝑡) = 𝑅𝐻𝑊(𝑡, 𝜆
∗, 𝛽∗)𝑅𝑆𝑊(𝑡, 𝜽̂)𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑅𝐻𝑊/𝑆𝑊(𝑡)) (76) 

In addition, sampled values of system reliability can be obtained by: 

𝑆𝑎𝑚𝑝𝑙𝑒𝑑 𝑅𝑆𝑌𝑆(𝑡) =  𝑅𝐻𝑊(𝑡, 𝜆
∗, 𝛽∗)𝑅𝑆𝑊(𝑡, 𝜽̂)𝑆𝑎𝑚𝑝𝑙𝑒𝑑 𝑅𝐻𝑊/𝑆𝑊(𝑡) (77) 

From the sampled values, statistical measures like mean, confidence intervals, quantiles, 

etc., can be calculated as well. 

4.4. Case study 

This section demonstrates the applicability of the proposed methodology. Failure data 

from a set of high-performance computing systems provided by Los Alamos National Laboratory 

[224] was used in this case study. Failure data of 15 systems from 1998 to 2003 were analyzed. 
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The selected systems (3 - 6, 8 - 14, 18 – 20, and 23) account for 96% of the nodes for which 

there are data available about installation dates. Each node integrates hardware and software, and 

therefore, was considered as a single unit (system) for the analysis. The deployment years for the 

nodes and the number of nodes activated are shown in Table 3. Such data were taken from the 

installation date of the original dataset.  

Table 3. Nodes deployed per year  

Year 1998 2001 2002 2003 

# of nodes 5 676 2,048 1,824 

 

Table 4. Failure data: hardware and software 

Period 

(Year), 

i 

Implied 

# of nodes 

Exposure 

Time 

(System-days) 

HW 

failures 

SW 

failures 

1 (1998) 5 1,825 6 22 

2 (1999) 5 1,825 8 17 

3 (2000) 5 1,825 8 15 

4 (2001) 681 248,565 48 9 

5 (2002) 2,729 996,085 1,486 431 

6 (2003) 4,553 1,661,845 2,231 643 

Total NA 2,911,970 3,787 1,137 

 

In the original dataset, the failures classified as hardware-related have 78 attributed 

causes, but we selected only the majority of causes, including CPU, Memory Dimm, Disk Drive, 

and Interconnect Soft Error. These account for more than 85% of the total hardware failures and 

some of them seem to be more related to the possibility of interaction with software failures. 

Similarly, for software failures, Operating System (OS), Parallel File System, Other Software, 

Scheduler Software, Resource Management System, Cluster File System, and Kernel software 

represented approximately 85 % of the total software failures and were selected to fit the 
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software reliability model. The total number of hardware and software failures is listed in 

columns 4 and 5 of Table 4. Column 2 shows the implied total number of nodes working in each 

period calculated as the cumulative values from Table 3. The exposure time in system days is 

calculated by summing over all periods as shown in Table 5 (row ‘Total’). 

Each year was considered an integer period resulting in six periods (1998 to 2003), i.e., 

𝑝 = 6. The number of deployed nodes in column 2 of Table 5 corresponds to the values are 

given in Table 3. The number of allocated hardware failures 𝑒𝑖 in column 10 of Table 5 was 

calculated by proportionally allocating the total number of hardware failures (3,787) according to 

the ratios of aggregated exposure time to the total aggregated exposure time (2,911,970 days). 

For instance, considering the fourth period, the number of allocated failures 963 is calculated as 

3,787 ×
740,220

2,911,970
. 

Table 5. Exposure time and hardware failures 

Period 

(Year), 

i 

# of 

nodes 

Period and number of days Aggregate 

exposure 

time, Ti 

Allocated 

# of 

failures, 

ei 

1 

365 

2 

365 

3 

365 

4 

365 

5 

365 

6 

365 

1 5 1,825 1,825 1,825 1,825 1,825 1,825 10,950 14 

2 - - - - - - - - - 

3 - - - - - - - - - 

4 676 - - - 246,740 246,740 246,740 740,220 963 

5 2,048 - - - - 747,520 747,520 1,495,040 1,944 

6 1,824 - - - - - 665,760 665,760 866 

Total 4553 1,825 1,825 1,825 248,565 996,085 1,661,845 2,911,970 3,787 

 

4.4.1. HW/SW interactions reliability estimation 

For simplicity, G was considered to follow a uniform distribution 𝑈(5, 10) as shown in 

Figure 17.  
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Figure 17. Simulated distribution for 𝐺 in scenarios 1 to 4 

Different parameters or distributions could be selected if the system under analysis would 

provide more information; for example, a historical ratio between the rates 𝜆1 and 𝜆2 from 

failure or root cause analysis data. For instance, modern hardware can provide self-monitoring 

alerts with timestamps reporting a degraded state. On the other hand, several distributions were 

considered to model F. Since F is essentially unknown, previous studies [22, 23] have assumed 

fixed values of F ranging from 0.05 and 0.25. To account for the variability, we consider F as a 

random variable that follows a distribution within the same range. As 𝜆1 and 𝜆2 will depend on 

the distributions of F and G, different scenarios are proposed for the analysis purpose. Four 

different distribution scenarios, considering uniform and truncated normal distributions, were 

investigated in this study:  

1.  𝐹 ~U (𝑎 = 0.05, 𝑏 = 0.25) 

2.  𝐹 ~Truncated N (𝜇 = 0.05, 𝜎2 = 0.032, 𝑎 = 0.05, 𝑏 = 0.25) 

3.  𝐹 ~Truncated N (𝜇 = 0.15, 𝜎2 = 0.032, 𝑎 = 0.05, 𝑏 = 0.25) 

4.  𝐹 ~Truncated N (𝜇 = 0.25, 𝜎2 = 0.032, 𝑎 = 0.05, 𝑏 = 0.25) 

The distributions for scenario 1 and scenario 3 cover smoothly and symmetrically the 

entire domain (0.05, 0.25) for the random variable F. The distributions for scenarios two and 

four aim to model extreme cases of distribution of F with modes at 0.05 and 0.25, respectively. 
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The truncated normal distribution is used to preserve a smooth distribution but limiting F to the 

predefined domain (0.05, 0.25). 

Rather than deriving the exact mathematical distributions for 𝜆1̂ and 𝜆2̂, which will result 

in different expressions depending on the assumed distributions for 𝐺 and 𝐹, a practical 

simulation approach was used to get quick results. R code was developed for this purpose. The 

standard function runif of R was used to generate samples from uniform distributions, whereas 

the package ‘truncnorm’ [236] was used to generate samples from truncated normal 

distributions. ‘matrixStats’ package [237] was used to calculate quantiles of the sampled 

distributions. Reliability prediction was calculated within approximately 1.5 seconds for a 1,095-

day horizon, which demonstrated the feasibility and convenience of the proposed approach. Figs. 

18 - 21 show the resultant sampled distributions of 𝜆1̂ and 𝜆2̂ obtained by simulating 10,000 

values of F and G. 

 It is worth mentioning that 𝜆1̂ and 𝜆2̂ do not necessarily follow distributions similar to 

the distribution of F. For instance, the resultant distributions of 𝜆1̂ and 𝜆2̂ in Figure 18 b and c, 

respectively, look trapezoidal, whereas F was assumed uniform. A similar result is obtained for 

𝜆2̂, which looks trapezoidal in Figure 21 c when it is assumed that F follows Truncated N 

(𝜇 = 0.25, 𝜎2 = 0.032, 𝑎 = 0.05, 𝑏 = 0.25). 

The HW/SW reliability 𝑅𝐻𝑊/𝑆𝑊(𝑡) at any given point of time is given by Equation (65), 

and since 𝜆1̂ and 𝜆2̂ are random variables, 𝑅𝐻𝑊/𝑆𝑊(𝑡) is also a random variable. To visualize this 

situation, consider an example at 𝑡 = 1 with 𝐹 ~Truncated N (𝜇 = 0.15, 𝜎2 = 0.032, 𝑎 =

0.05, 𝑏 = 0.25). The simulated distribution of 𝑅𝐻𝑊/𝑆𝑊(1) values are shown in Figure 22. 
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(a) 𝐹 

 

(b) 𝜆1̂ 

 

(c) 𝜆2̂ 

Figure 18. Simulated distributions for scenario 1 

 

 

(a) 𝐹 

 

(b) 𝜆1̂ 

 

(c) 𝜆2̂ 

Figure 19. Simulated distributions for scenario 2 

 

 

(a) 𝐹 

 

(b) 𝜆1̂ 

 

(c) 𝜆2̂ 

Figure 20. Simulated distributions for scenario 3 

 

 

(a) 𝐹 

 

(b) 𝜆1̂ 

 

(c) 𝜆2̂ 

Figure 21. Simulated distributions for scenario 4 
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Figure 22. Simulated distribution for 𝑅𝐻𝑊/𝑆𝑊(1) assuming 𝐹 ~Truncated N (𝜇 = 0.15, 𝜎2 =

0.032, 𝑎 = 0.05, 𝑏 = 0.25) 

Summary statistics for sampled 𝑅𝐻𝑊/𝑆𝑊(𝑡) considering different distributions for F are 

shown in Tables 6-9. The widest confidence intervals (Table 6) are obtained when F is assumed 

to follow a uniform distribution, which can be expected because the distribution of F is 

uniformly spread over the entire range (0.05, 0.25). Additionally, the distribution with the mode 

at 0.25 generates a lower 𝑅𝐻𝑊/𝑆𝑊(𝑡) reliability than the distribution with mode at 0.05. This 

occurs because a mode at 0.25 indicates higher HW/SW interaction than having a mode at 0.05. 

Table 6. Summary statistics of HW/SW interactions reliability for scenario 1  

𝑡 (Days) 1 548 1,095 

95% C.I. 0.9999995 1.0000000 0.9087141 0.9935149 0.7665665 0.9768527 

Median 0.9999998 0.9609935 0.8824369 

Mean 0.9999998 0.957793 0.8792081 

 

Table 7. Summary statistics of HW/SW interactions reliability for scenario 2  

𝑡 (Days) 1 548 1,095 

95% C.I. 0.9999999 1.000000 0.9736864 0.9948450 0.9176090 0.9813172 

Median 1.0000000 0.989682 0.9644654 

Mean 1.0000000 0.9882022 0.9603000 
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Table 8. Summary statistics of HW/SW interactions reliability for scenario 3  

𝑡 (Days) 1 548 1,095 

95% C.I. 0.9999996 0.9999999 0.9297811 0.9839945 0.8104245 0.9464829 

Median 0.9999998 0.9606466 0.8818387 

Mean 0.9999998 0.9596984 0.8809555 

 

Table 9. Summary statistics of HW/SW interactions reliability for scenario 4  

𝑡 (Days) 1 548 1,095 

95% C.I. 0.9999994 0.9999998 0.9025302 0.9474176 0.7562508 0.8461515 

Median 0.9999996 0.9216735 0.7890623 

Mean 0.9999996 0.9224262 0.7923520 

 

The median value of the sampled 𝑅𝐻𝑊/𝑆𝑊(𝑡) can be used as a point estimation of the 

HW/SW reliability, 𝑅̂𝐻𝑊/𝑆𝑊(𝑡). Such estimators provide 50% confidence lower bounds. 

4.4.2. Hardware reliability estimation 

The data in the form of starting times 𝑠𝑖, nodes activated 𝑛𝑖, observation times 𝑡𝑖, and 

cumulative failures 𝑂𝑖 are shown in Table 10. 𝑛𝑖 comes from Table 3. 𝑂𝑖 represents the 

cumulative hardware failures given in column 4 of Table 4. Starting times 𝑠𝑖 and observation 

times 𝑡𝑖 are the cumulative times corresponding to the 6 periods, each period having 365 days. 

The relationship between 𝑠𝑖 and 𝑡𝑖 is given by Equation (45). 
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Table 10. Cumulative failures, nodes, starting and observation times 

Start 

Time 

𝑠𝑖 (Days) 

Nodes 

Activated 

𝑛𝑖 

Observation 

Time 

𝑡𝑖 (Days) 

Cumulative 

Failures 

𝑂𝑖 

0 5 365 6 

365 0 730 14 

730 0 1,095 22 

1,095 676 1,460 70 

1,460 2,048 1,825 1,556 

1,825 1,824 2,190 3,787 

 

 The model was formulated and solved using GAMS solver with EMP framework [222] 

to find the optimal values of 𝜆 and 𝛽 that minimize the expected value of 𝑆𝑆𝐸(𝜆, 𝛽) in Equation 

(49) using the data from Table 10. GAMS solves the problem by using Monte Carlo sampling 

method [222]. The Monte Carlo sampling method generates a finite number of scenarios to 

approximate the continuous distributions assumed for 𝐹, and the problem is converted to a 

problem with a finite discrete distribution. The results are summarized in Table 11. 

Table 11. Stochastic optimization of parameters 𝜆, 𝛽  

Scenario 𝜆∗ 𝛽∗ 𝐸(𝑆𝑆𝐸) 

1 0.00020228 1.25874892 36457.29 

2 0.00022106 1.25874892 43346.10 

3 0.00020269 1.25874892 36472.11 

4 0.00018465 1.25874892 30251.18 

 

It is worth to notice that the parameter 𝛽 is not sensitive to the distribution of F, and it is 

greater than one, which indicates the wearing out or degradation behavior of the hardware. The 

optimal parameters 𝜆∗and 𝛽∗ are used in Equation (44) to estimate the reliability of hardware, 

𝑅̂𝐻𝑊(𝑡) = 𝑅𝐻𝑊(𝑡, 𝜆
∗, 𝛽∗).  
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4.4.3. Software reliability estimation 

An inflection S-shaped model [223] was chosen considering the S-shape of the available 

data and because it requires only three parameters. This model has been reported to generate the 

best fitting based on the SSE for an S-shaped dataset [120]. Figure 23 shows the actual number 

of software failures, 𝑚𝑆𝑊(𝑡) and the MLE estimated number of failures, 𝑚̂𝑆𝑊(𝑡).  

 

Figure 23. Cumulative software failures: actual software failures from data, 𝑚𝑆𝑊(𝑡) and 

estimated software failures with 𝑚̂𝑆𝑊(𝑡) 

The S-shaped model is defined by Equations (78) and (79). 

𝐷(𝑡) =
𝑑

1 + 𝛾𝑒−𝑑𝑡
 (78) 

where 𝐷(𝑡), a logistic function, represents the failure detection rate per fault, 𝑑 is the failure-

detection rate, and 𝛾 is the inflection factor. The mean value function is given by: 

𝑚(𝑡) =
𝑐

1 + 𝛾𝑒−𝑑𝑡
(1 − 𝑒−𝑑𝑡) (79) 

MLE parameters can be estimated by solving a system of equations [120].  

To fit the model, the testing times and software failures from the third and fifth columns 

of Table 4 were used. For computational convenience, the testing times in system-days were 

converted to system-years, as shown in Table 12 and Figure 23. The MLE parameter estimates 
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are: 𝑐̂ = 1468.8670801, 𝑑̂ = 0.00018739, 𝛾̂ = 0.00970647. Finally, the estimated software 

reliability 𝑅̂𝑆𝑊(𝑡/𝑇), where 𝑡 and 𝑇 are in days is, is given as: 

𝑅̂𝑆𝑊(𝑡/𝑇) =  𝑒𝑥𝑝
−[𝑚̂(

𝑇+𝑡
365

)−𝑚̂(
𝑇
365

)] (80) 

where 𝑚̂(𝑡) = 𝑚(𝑡, 𝑐̂, 𝑑̂, 𝛾̂). 

Table 12. Software failure data 

Period 

(Year), 

i 

Exposure 

Time 

(System-days) 

Exposure 

Time 

(System- years) 

SW 

failures 

Cumulative SW 

failures 

1 1,825 5 22 22 

2 3,650 10 17 39 

5 5,475 15 15 54 

4 254,040 696 9 63 

5 1,250,125 3,425 431 494 

6 2,911,970 7,978 643 1,137 

 

4.4.4. System reliability estimation 

The point estimate of system reliability is the product of hardware, software, and 

HW/SW interactions reliability: 

𝑅̂𝑆𝑌𝑆(𝑡) = 𝑅̂𝐻𝑊(𝑡)𝑅̂𝑆𝑊(𝑡)𝑅̂𝐻𝑊/𝑆𝑊(𝑡) (81) 

𝑅̂𝑆𝑌𝑆(𝑡) = 𝑅𝐻𝑊(𝑡, 𝜆
∗, 𝛽∗)𝑅𝑆𝑊(𝑡, 𝑐̂, 𝑑̂, 𝛾̂)𝑀𝑒𝑑𝑖𝑎𝑛 (𝑆𝑎𝑚𝑝𝑙𝑒𝑑 𝑅𝐻𝑊

𝑆𝑊

(𝑡)) (82) 

Sampled values of system reliability can be obtained by: 

𝑆𝑎𝑚𝑝𝑙𝑒𝑑 𝑅𝑆𝑌𝑆(𝑡) = 𝑅𝐻𝑊(𝑡, 𝜆
∗, 𝛽∗)𝑅𝑆𝑊(𝑡, 𝑐̂, 𝑑̂, 𝛾̂)𝑆𝑎𝑚𝑝𝑙𝑒𝑑 𝑅𝐻𝑊/𝑆𝑊(𝑡) (83) 

From sampled values, statistical measures like confidence intervals, quantiles, and mean 

can be calculated as well. 

The system reliability estimates based on the proposed approach are plotted in Figs. 24 - 

27, for scenarios 1 – 4, respectively. For each scenario, the system reliability median (Rsys 
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(Median)) is plotted along with a 95% confidence interval shaped by the lower bound (Rsys LB) 

and the upper bound (Rsys UB). It is worth noting that among the four tested distributions, the 

scenario with 𝐹 ~𝑈(𝑎 = 0.05, 𝑏 = 0.25) provides the widest 95% confidence interval which 

could be explained because of the “large” spread of F under uniform distribution assumption. 

The proposed approach is compared with the reliability obtained under no HW/SW 

interactions assumption, denoted by Rsys_indep. To estimate Rsys_indep, all hardware failure 

data are used without deducting or considering HW/SW interactions failure data. Therefore, 

under this assumption of independent hardware and software failures, the reliability of the 

system is just the product of hardware reliability and software reliability. Rsys_indep is included 

in Figures 24 - 27 for comparison. For better visualization of the difference between Rsys and 

Rsys_indep, zoomed images are placed on the top right corner of Figures 24 - 27.  

 

Figure 24. System reliability scenario 1 
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Figure 25. System reliability scenario 2 

 

Figure 26. System reliability scenario 3 
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Figure 27. System reliability scenario 4 

 

Figure 28. System reliability with fixed values 𝐹 = 0.25, 0.15, 0.05, 𝑎𝑛𝑑 0, 𝐺 = 10  

It can be seen that for all the assumed distributions for F, the median reliability (Rsys 

(Median)) is consistently above the Rsys_indep as shown in Figs. 24 - 27. Interestingly, even the 

97.5% lower bound (0.025 quantile) of Rsys is always greater than Rsys_indep, which means 

that Rsys_indep underestimates the “true” reliability. Moreover, From Figure 25 (distribution of 

F with the mode at 0.05) to Figure 27 (distribution of F with the mode at 0.25), it is observed that 
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for smaller mode values of F the system reliability (Rsys) confidence interval is closer to 

Rsys_indep, which seems plausible because smaller F values are “closer” to no HW/SW 

interaction assumption. This underestimation trend of Rsys_indep is revealed even when fixed 

values of F and G are considered, a common assumption in existing literature [22, 228, 229]. For 

instance, Figure 28. shows the system reliability calculated with fixed values 𝐹 =

0.25, 0.15, 0.05, and 0, 𝐺 = 10. Particularly, if F has a fixed value of 0, it is equivalent to no 

HW/SW interactions, which is also included in Figure 28. In all the combinations, the reliability 

obtained by assuming independence Rsys_indep (F=0) underestimated the “true” reliability Rsys 

calculated by considering HW/SW interaction with fixed values (F>0, G>0). The 

underestimation of Rsys_indep is therefore consistent for both types of assumptions for F and G, 

i.e., probabilistic and fixed values. 

It is worth noting that we considered a three-component series configuration for 

calculating Rsys. In contrast, a two-component series configuration is assumed for Rsys_indep. 

Interestingly, Rsys estimate turns out to be greater than Rsys_indep. To investigate this outcome, 

a few numerical examples are considered.  

Table 13 shows extreme cases of F and G combinations. These cases illustrate and 

corroborate the underestimation of system reliability when it is assumed that there are no 

HW/SW interaction failures, i.e., assuming F = 0. It can be observed from Table XI that the 

lowest system reliability estimates (Rsys) occur for the combination of F = 0.25 with G = 10. For 

instance, at time t=1 day, Rsys(1) = 0.9996503 > Rsys_indep(1) = 0.9995912. Similarly, at time 

t=1095 days, Rsys(1095) = 0.1873180 > Rsys_indep(1095) = 0.1676949. The reasoning of 

underestimation of Rsys_indep can be explained by comparing the differences in the individual 

components of system reliability, i.e., 𝑅𝐻𝑊, 𝑅𝑆𝑊, and 𝑅𝐻𝑊/𝑆𝑊. Consider the case at time t=1 
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day, under HW/SW interaction assumption, Rsys(1)=0.9996503 is the product of 𝑅𝐻𝑊(1) =

0.9998209, 𝑅𝑆𝑊(1) = 0.9998, and 𝑅𝐻𝑊/𝑆𝑊(1) = 0.9999994. On the other hand, under the 

independence assumption, Rsys_indep(1)=0.9995912 is the product of 𝑅𝐻𝑊(1) = 0.9997612 

and 𝑅𝑆𝑊(1) = 0.9998. However, for calculating Rsys_indep(1), 𝑅𝐻𝑊/𝑆𝑊(1) could be 

considered as equal to 1 because no HW/SW interactions are assumed. The first change occurs in 

𝑅𝐻𝑊, which is higher if HW/SW interactions are assumed because a fraction of HW failures are 

deducted from the “hardware” failures category and considered as HW/SW failures. This change 

resulted in a relative improvement of 𝑅𝐻𝑊 (difference between 0.9998209 and 0.9997612) by 

+5.971 × 10−5. Another change occurs in 𝑅𝐻𝑊/𝑆𝑊 because of the HW/SW interactions 

assumption. This causes a relative reduction in 𝑅𝐻𝑊/𝑆𝑊 (difference between 1 and 0.9999994) 

by 3.802 × 10−7 in 𝑅𝐻𝑊/𝑆𝑊. There is no change in 𝑅𝑆𝑊 because software failure data remains 

unchanged. A closer look at changes in reliability estimates of individual components (HW, SW, 

or HW/SW) shows a significant increase in 𝑅𝐻𝑊 as compared to the drop-in 𝑅𝐻𝑊/𝑆𝑊. This 

results in higher reliability estimate Rsys as compared to Rsys_indep when HW/SW interactions 

are considered.  

The proposed model is also compared with the existing approaches that assume fixed 

values for F and G [22, 228, 229]. Under the assumption of fixed values of F and G, these 

approaches provide point estimates for reliability, whereas our proposed approach provides a 

sampled distribution of reliability estimates and, therefore, is able to generate a confidence 

interval. Indeed, assuming fixed values for F and G would be a particular case of our proposed 

model by assuming degenerate distributions [238] for F and G. Since two scenarios, scenario 1 

(𝐹 ~𝑈(𝑎 = 0.05, 𝑏 = 0.25), and scenario 3 (𝐹 ~Truncated N (𝜇 = 0.15, 𝜎2 = 0.032, 𝑎 =

0.05, 𝑏 = 0.25)), have a mean value for F = 0.15 and for G = 7.5, we consider these two 
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scenarios to compare the proposed approach with existing methods treating fixed values F = 0.15 

and G = 7.5. Figures 29 and 30 show the confidence intervals generated with the proposed 

approach enclosing the reliability estimated obtained with fixed F and G values. Moreover, the 

median curve generated considering HW/SW interactions follows closely the point estimator 

curve obtained with fixed values of F and G. Realizing the uncertainty or randomness in F and G 

values, the proposed probabilistic proposed provides a possible range of reliability estimates and 

hence, helps quantify uncertainty in reliability estimates. Manufacturers find this very helpful for 

warranty planning and spare-parts inventory management, knowing the uncertainty in estimates 

and preparing worst-case scenarios. On the other hand, the consideration of fixed values only 

provides point estimates of reliability prediction, which is not of much use. However, the 

reliability band can be used for better tuning of the maintenance and/or warranty policies as more 

information is available to manufacturers/customers, e.g., a pessimistic scenario is given by the 

lower bound reliability. 

Table 13. System reliability estimation under extreme cases for F and G. Comparison between 

Rsys and Rsys_indep (F=0) 

t(days) F G λ1 λ2 λ 𝛽 𝑅̂𝐻𝑊(𝑡) 𝑅̂𝑆𝑊(𝑡) 𝑅̂𝐻𝑊/𝑆𝑊(𝑡) 𝑅̂𝑆𝑌𝑆(𝑡) 

1 0.25 5 0.00039 0.00195 0.00018 1.26 0.9998209 0.9998 0.9999996 0.9996505 

1 0.25 10 0.00036 0.00358 0.00018 1.26 0.9998209 0.9998 0.9999994 0.9996503 

1 0.00 NA NA NA 0.00024 1.26 0.9997612 0.9998 NA 0.9995912 

1,095 0.25 5 0.00039 0.00195 0.00018 1.26 0.3013019 0.8302 0.7858804 0.1965769 

1,095 0.25 10 0.00036 0.00358 0.00018 1.26 0.3013019 0.8302 0.7488650 0.1873180 

1,095 0.00 NA NA NA 0.00024 1.26 0.2019973 0.8302 NA 0.1676949 
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Figure 29. System reliability: calculated with the proposed method under scenario 1 

(𝐹 ~𝑈(𝑎 = 0.05, 𝑏 = 0.25)) and with fixed values (𝐹 =  0.15, 𝐺 = 7.5) 

 

Figure 30. System reliability: calculated with the proposed method under scenario 3 and with 

fixed values (𝐹 =  0.15, 𝐺 = 7.5) 

4.5. Discussion 

A combined hardware-software reliability model is considered in this chapter to include 

the effect of three components, i.e., hardware, software, and HW/SW interactions, in the 

reliability assessment of a system. Different from previous works, this study incorporates 
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uncertainty in the proportion of failures attributed to hardware that are in reality caused by 

HW/SW interactions. The proposed study treats the fraction of hardware failures F, representing 

HW/SW interaction failure as a random variable, and a Markov process is applied to model the 

HW/SW interaction failures. A Weibull process and an S-shaped NHPP are employed to model 

hardware and software failures, respectively. The stochastic optimization approach is used to 

estimate the parameters of the Weibull process and hardware reliability. Additionally, since 

failure databases do not usually provide information on transition rates of HW/SW interactions, a 

ratio (G) of transition rates is considered. The proposed approach considers this transition rate 

ratio value a random variable to capture the uncertainty. Monte Carlo simulation is applied to 

generate samples for distributions assumed for F and G.  

Real data were used to demonstrate the applicability of the proposed approach. Four 

scenarios were investigated by assuming different distributions for the random variables F and 

G. Reliability estimates for a 1,095-day horizon were provided for each scenario with an R script 

in approximately 1.5 seconds running on a laptop, which demonstrates the effectiveness and 

convenience of the approach. While analyzing all scenarios, it was found that the generated 

confidence intervals properly enclosed the point estimates obtained by assuming fixed values of 

F and G. The reliability band not only quantifies uncertainty in reliability estimates but also 

provides additional information that can assist manufacturers in defining better warranty and 

maintenance policies. It helps manufacturers to prepare for worst-case scenarios considering the 

lower bound of reliability if needed. The proposed methodology could be applied to embedded 

systems, computers, data centers, CPSs, or more general systems that integrate hardware and 

software.  
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It is also observed that reliability assessment models with no HW/SW interaction failures, 

assuming both hardware and software failures are independent, underestimate the system 

reliability. This is true for all the scenarios considered in the study, including fixed values of F 

and G. This finding suggests that even under higher uncertainty conditions of HW/SW 

interactions, it is possible to provide more reasonable reliability estimates. 
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CHAPTER 5. ALL-TERMINAL NETWORK RELIABILITY ESTIMATION WITH 

DEEP LEARNING APPROACHES3 

5.1. Abstract 

Usually, networks represent complex critical CPSs such as computer networks, piping 

systems, or power supply systems [40, 239, 240]. A network can be defined as a set of items 

(nodes or vertices) connected by edges or links [128]. Estimating the all-terminal network 

reliability by using artificial neural networks (ANNs) has emerged as a promissory alternative to 

classical exact NP-hard algorithms. Approaches based on traditional ANNs have usually 

considered the network reliability upper bound as part of the inputs, which implies additional 

time-consuming calculations during both training and testing phases. This chapter proposes the 

use of Convolutional Neural Networks (CNNs), without the reliability upper-bound as an input, 

to address the all-terminal network reliability estimation problem. The present study introduces a 

multidimensional matrix format to embed the topological and link reliability information of 

networks. The unique contribution of this work is the method to capture the topology of a 

network in terms of its adjacency matrix, link reliability, and topological attributes providing a 

novel use of CNN beyond image classification. Since CNNs have been successful for image 

 

 

3 The present chapter is based on the following papers: 

1. A. Davila-Frias and O. P. Yadav, "All-terminal network reliability estimation using convolutional neural 

networks,". Published in Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and 

Reliability, p. 1748006X20969465, 2020. 

Contribution of Alex Davila Frias: developing the mathematical models, analysis of the case study, 

discussion of the results, and drafting the paper. 

Contribution of Om Yadav: verification of the results and proofreading the draft paper. 

 

2. A. Davila-Frias, S. Salem, and O. P. Yadav, "Deep Neural Networks (DNNs) For All-Terminal Network 

Reliability Estimation," 2021. In 2021 Annual Reliability and Maintainability Symposium (RAMS). 

Presented. 

Contribution of Alex Davila Frias: developing the mathematical models, analysis of the case study, 

discussion of the results, and drafting the paper. 

Contribution of Saeed Salem and Om Yadav: verification of the results and proofreading the draft paper. 
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classification, appropriate modifications are needed and introduced to use them in the estimation 

of network reliability. A regression output layer is proposed, preceded by a sigmoid layer to 

achieve predictions within the range of reliability characteristic, a feature that some previous 

ANN-based works lack. Several training parameters together with a filter multiplier (CNN 

architecture parameter) were investigated. The actual values and the ones predicted with the best 

trained CNN were compared in the light of RMSE (0.04406) and p-value (0.3) showing non-

significant difference. This study provides evidence supporting the hypothesis that the network 

reliability can be estimated by CNNs from its topology and link reliability information, 

embedded as an image-like multidimensional matrix. Another important result of the proposed 

approach is the significant reduction in computational time. An average of 1.18 ms/network was 

achieved by the CNN, whereas backtracking exact algorithm took around 500 s/network. This 

CNN approach is based on our paper published in the Journal of Risk and Reliability [75] and is 

presented in section 5.2.  

In addition, in section 5.3 we present a DNN approach able to estimate the reliability of 

varying size networks. This DNN approach is based on our paper accepted for RAMS 2021 

conference [76]. To use DNNs for all-terminal network reliability estimation, an appropriate 

architecture of DNN needs to be developed. Different architectures are investigated by exploring 

parameters such as the number of hidden layers and the dropping probability parameter of a 

dropout layer to prevent overfitting. Hyperbolic tangent activation function limits the output to 

the range [0,1]. In addition, the network topology information needs to be preprocessed for the 

DNN to be able to process it and predict the network reliability. Graphs are used to represent the 

networks. Furthermore, to turn graphs into a computationally digestible format, advanced graph 

embedding methods (GEM) are employed. Different embedding methods and architectures are 
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investigated together by training them with the network reliability as target. The best DNN 

proposed here, based on the RMSE (0.01), outperforms a previous traditional ANN approach. 

There is also a significant computation time reduction achieved by using the proposed DNN, 

which does not require the reliability upper bound as an additional input as employed in previous 

studies based on ANN. 

5.2. Network reliability estimation with CNN [75] 

5.2.1. Introduction 

Usually, networks represent critical systems such as computer networks, piping systems, 

or power supply systems [40, 239, 240]. A network can be defined as a set of items (nodes or 

vertices) connected by edges or links [128]. Graphical models allow to visualize the 

interdependencies of the components in a system. Nodes characterize components and junctions 

of the system, and edges represent the connections. For example, busbars in power systems or 

switches in telecommunication systems are modeled by nodes, whereas edges characterize power 

lines in power systems and optical fibers in telecommunication systems. Such graphical models 

are commonly based on graph theory (GT), where a graph 𝐺 (𝑁, 𝐿) denotes the graph 𝐺 

composed by the set 𝑁 of nodes and the set 𝐿 of links or edges [36-38]. 

A network is modeled by a probabilistic graph 𝐺 = (𝑁, 𝐿, 𝑝𝐿), where 𝑁 is the set of 

nodes, 𝐿 is the set of links, and 𝑝𝐿 is the link reliability.  

At any time, only some links of 𝐺 might be operational. A state of 𝐺 is a sub-graph 

(𝑁, 𝐿′), where 𝐿′ is the set of operational links, 𝐿′ ⊆ L. The all-terminal network reliability of 

state 𝐿′ ⊆ L is [69]: 

𝑅(𝐺) =∑[∏𝑝𝐿
𝑗∈𝐿′

]

Ω

[ ∏ (1 − 𝑝𝐿)

𝑗∈(𝐿\𝐿′)

] (84) 
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Due to the exponential growth of number of states with the size of networks, the all-

terminal reliability calculation is an NP-hard problem [241]. As a part of the machine learning 

techniques, artificial neural networks (ANNs) have emerged as a promissory tool to estimate 

network reliability. ANNs have been usually trained with the network topology and edge 

reliability as inputs and with the target network reliability as desired output [42, 45, 131]. For 

example, Srivaree- Ratana et al. [42] utilized an ANN to predict the all-terminal network 

reliability; with the network architecture, the link reliability, and the network reliability upper 

bound (an approximation of network reliability which is not lower than the exact value [40, 46, 

242]) as inputs, and the exact network reliability as the target. More recently, Altiparmak et al. 

[45] proposed an ANN model to predict the all-terminal network reliability, which takes the node 

degree and other connectivity metrics and the upper bound network reliability as inputs to predict 

the network reliability. 

Approaches based in traditional ANNs have usually considered the reliability upper 

bound as part of the inputs, which implies additional time-consuming calculations during both 

training and testing phases. This study proposes the use of Convolutional Neural Networks 

(CNNs), without the reliability upper-bound as an input, to address the all-terminal network 

reliability estimation problem. The approach introduces a multidimensional matrix format to 

embed the topological and link reliability information of networks. Since CNNs have been 

successful for image classification [243, 244], appropriate modifications are needed and 

introduced in the present study, to use them in the estimation of network reliability. A regression 

output layer is proposed, preceded by a sigmoid layer to achieve predictions within the physical 

range of reliability, a feature that some previous ANN-based works lack. Several training 

parameters together with a filter multiplier (CNN architecture parameter) will be investigated. 
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The actual values and the ones predicted with the best CNN will be compared in the light of 

RMSE and p-value. 

5.2.2. The proposed CNN method 

This section proposes a CNN approach to estimate the all-terminal reliability of networks 

with a given number of nodes and a given set of possible links reliability values. The proposed 

model makes the following assumptions for the networks: 

1. The nodes are perfectly reliable. 

2. The links failure probabilities are independent [245, 246]. 

3. The link failure probabilities are equal. 

4. Each link is bi-directional.  

It is hypothesized in this study that the all-terminal network reliability can be estimated 

from its topology and link reliability information embedded as an image-like matrix which can 

be processed by CNNs. In this section, the proposed approach to capture the network topology as 

well as topological attributes of networks is presented. The information is stacked in a 

multidimensional matrix to meet the “image” format that a CNN can process.  

The topology of a network can be captured by its adjacency matrix. Given a graph 𝐺 =

(𝑁, 𝐿), with |𝑁| = 𝑛 nodes, it can be represented by its adjacency matrix, i.e., a 𝑛 × 𝑛 symmetric 

matrix 𝑨 defined as [247]: 

𝑨(𝑖, 𝑗) = {
1 𝑖𝑓 𝑛𝑖 𝑖𝑑 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑛𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (85) 

As an example, consider the sample network represented in Figure 31. Its adjacency 

matrix is given in equation (86), and the resultant image of the adjacency matrix is shown in 

Figure 32, where a “1” corresponds to a white pixel and a “0” corresponds to a black pixel. 
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Figure 31. Sample network with 10 nodes 

𝑨 =

[
 
 
 
 
 
 
 
 
 
0 1 0 1 1 1 1 1 1 1
1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 1 1 1 0
1 0 1 0 0 1 1 0 0 0
1 1 1 0 1 0 1 0 0 1
1 0 0 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0 1 0
1 0 1 1 0 0 0 1 0 1
1 1 0 0 0 1 0 0 1 0]

 
 
 
 
 
 
 
 
 

 (86) 

 

Figure 32. Image of the adjacency matrix corresponding to the sample network  

To provide more information to the CNN, topological attributes such as the nodes degree 

and the clustering coefficient are proposed to be part of the input. The node degree [41, 248] is 

believed to provide network reliability information. The node degree of a node 𝑛𝑖 is the number 

of its neighbors. A more general definition of the node degree, for weighted graphs, is given as 

[247]: 
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𝑑𝑖 =∑𝑨(𝑖, 𝑗)

𝑗

 (87) 

The clustering coefficient is considered a measure of the disconnectedness of a graph 

[249] and its cliquishness [250]. Let 𝐺𝑖 = (𝑁𝑖, 𝐿𝑖) be a subgraph induced by the neighbors of the 

node 𝑛𝑖. Let |𝑁𝑖| = 𝑛𝑖 be the number of neighbors of 𝑛𝑖, and |𝐿𝑖| = 𝑚𝑖 be the number of edges 

among the neighbors of 𝑛𝑖. The clustering coefficient of 𝑛𝑖 is defined as [247]: 

𝐶(𝑛𝑖) =
2𝑚𝑖

𝑛𝑖(𝑛𝑖 − 1)
 (88) 

In addition, the link reliability has a direct impact in the overall network reliability. 

Therefore, it is considered as part of the input as well. 

The proposed input format consists of layers of two-dimensional matrices concatenated 

along the third dimension. In the first layer, there is the adjacency matrix, like the one in 

equation (86). The diagonal of zeros of the adjacency matrix is replaced by the node degree, 

calculated using equation (87). The second layer is a diagonal matrix with the clustering 

coefficient calculated with equation (88). The third layer is a diagonal matrix with the link 

reliability. The resultant input format for each network is therefore a 𝑛 × 𝑛 × 3 matrix, i.e., a 

three-dimensional matrix. The proposed matrix might be enriched as needed by adding more 

layers with more information in matrix format. In this chapter we consider that the 𝑡𝑡ℎ network 

in the set of networks can be represented by the matrix 𝑿𝒕, where 𝑿𝒕 is formed by stacking three 

matrices: 𝑴𝒕𝟏,𝑴𝒕𝟐,𝑴𝒕𝟑. 

𝑴𝒕𝟏 = 𝑨𝒕 + 𝑑𝑖𝑎𝑔(𝑑𝑡1, 𝑑𝑡2, 𝑑𝑡3, … , 𝑑𝑡𝑛 ) (89) 

where 𝑨𝒕 is the adjacency matrix of the 𝑡𝑡ℎ network in the dataset, 𝑑𝑡𝑖 is the node degree of the 

𝑖𝑡ℎ node of the 𝑡𝑡ℎ network, and 𝑑𝑖𝑎𝑔(∙) is the diagonal matrix of a vector. 

𝑴𝒕𝟐 = 𝑑𝑖𝑎𝑔(𝐶(𝑛𝑡1), 𝐶(𝑛𝑡2), 𝐶(𝑛𝑡3), … , 𝐶(𝑛𝑡𝑛)) (90) 
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where 𝐶(𝑛𝑡𝑖) is the clustering coefficient of the 𝑖𝑡ℎ node of the 𝑡𝑡ℎ network. 

𝑴𝒕𝟑 = 𝑝𝑡𝐿𝑑𝑖𝑎𝑔(𝟏𝒏) (91) 

where, 𝑝𝑡𝐿 is the link reliability of the 𝑡𝑡ℎ network and 𝟏𝒏 is an n-sized row vector of ones. 

A graphical representation of a matrix 𝑿𝒕 for a network with 10 nodes is shown in Figure 

33. 

 

Figure 33. Graphical representation of the matrix 𝑿𝒕, formed by stacking three matrices: 

𝑴𝒕𝟏,𝑴𝒕𝟐,𝑴𝒕𝟑 

To illustrate this format, let us assume that the sample network shown in Figure 31, 

whose adjacency matrix is given in equation (86), is the first network of the set. Then, the first 

network can be represented by 𝑿𝟏, where 𝑿𝟏 is formed by stacking three matrices 

𝑴𝟏𝟏,𝑴𝟏𝟐,𝑴𝟏𝟑, which are given in equations (92), (93), and (94), respectively. 

𝑴𝟏𝟏 =

[
 
 
 
 
 
 
 
 
 
8 1 0 1 1 1 1 1 1 1
1 5 0 1 0 1 0 1 0 1
0 0 3 0 1 1 0 0 1 0
1 1 0 5 0 0 1 1 1 0
1 0 1 0 4 1 1 0 0 0
1 1 1 0 1 6 1 0 0 1
1 0 0 1 1 1 4 0 0 0
1 1 0 1 0 0 0 4 1 0
1 0 1 1 0 0 0 1 5 1
1 1 0 0 0 1 0 0 1 4]

 
 
 
 
 
 
 
 
 

 (92) 
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𝑴𝟏𝟐 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13

28
0 0 0 0 0 0 0 0 0

0
3

5
0 0 0 0 0 0 0 0

0 0
1

3
0 0 0 0 0 0 0

0 0 0
3

5
0 0 0 0 0 0

0 0 0 0
2

3
0 0 0 0 0

0 0 0 0 0
7

15
0 0 0 0

0 0 0 0 0 0
2

3
0 0 0

0 0 0 0 0 0 0
5

6
0 0

0 0 0 0 0 0 0 0
2

5
0

0 0 0 0 0 0 0 0 0
2

3]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (93) 

𝑴𝟏𝟑 =

[
 
 
 
 
 
 
 
 
 
0.8 0 0 0 0 0 0 0 0 0
0 0.8 0 0 0 0 0 0 0 0
0 0 0.8 0 0 0 0 0 0 0
0 0 0 0.8 0 0 0 0 0 0
0 0 0 0 0.8 0 0 0 0 0
0 0 0 0 0 0.8 0 0 0 0
0 0 0 0 0 0 0.8 0 0 0
0 0 0 0 0 0 0 0.8 0 0
0 0 0 0 0 0 0 0 0.8 0
0 0 0 0 0 0 0 0 0 0.8]

 
 
 
 
 
 
 
 
 

 (94) 

5.2.3. Base dataset 

A base dataset is formed by the pairs (𝑿𝒕, 𝑦𝑡), where 𝑿𝒕 is derived from equations (89), 

(90), and (91), and 𝑦𝑡 is corresponding exact reliability, for each network 𝑡 in the set of 

networks. For instance, considering the sample network 𝑿𝟏, the exact reliability 𝑦1 is 

0.984263933411563, calculated by using the backtracking algorithm [251]. The base dataset will 

be used to train and evaluate the CNN, whose architecture is presented in the next section. 
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5.2.4. Architecture of the proposed CNN 

The proposed CNN architecture is based on an image classifier with some appropriate 

modifications. Several layers of convolutional filters with their respective batch normalization 

and ReLU layers are proposed based on a generic CNN for image classification. The number of 

convolutional filters can be investigated for selection of the best number. Furthermore, three 

important changes are proposed in this study with the aim of predicting all-terminal network 

reliability. First, the softmax classification output layer needs to be substituted by a regression 

layer for approximating the target network reliability by minimizing the mean square error. 

Second, a sigmoid layer with the logistic activation function is placed between the fully 

connected layer and the output layer. The logistic activation function, as shown in equation (95), 

allows to ensure the output within the range [0,1], where reliability is defined. 

𝑔(𝑥) =
1

1 + 𝑒−𝑥
 (95) 

Third, a dropout layer is placed before the fully connected layer. The purpose of the 

dropout layer is to avoid overfitting by randomly dropping neurons during the training [252]. 

The probability of a neuron to survive is independent of other neurons and obeys to a given 

parameter.  

The generic proposed architecture is shown in Table 14. 
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Table 14. Proposed CNN architecture 

Topologies Input: (𝑿𝒕) 

Several layers of: 

• Convolution 

• Batch Normalization 

• ReLU 

Dropout 

Fully Connected 

Sigmoid Layer 

Regression Output: 𝑦𝑡̂ 

 

5.2.5. Training and evaluating 

Once a base dataset is available and the architecture of the CNN is defined, the remaining 

phases are training and evaluating. The base dataset is split in training and testing datasets. 

Several CNNs are obtained based on the proposed architecture by changing the hyperparameters. 

The CNNs are trained using the training dataset. After training, the CNNs are evaluated in terms 

of the error using the testing dataset. The process is illustrated in the flowchart as shown in 

Figure 34. 
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6. Train and evaluate:

1. Generate a set of networks: random networks, 
each one with n nodes

2. Calculate the exact reliability (yt) for each 
network (t) in the set, using Backtracking algorithm

3. Capture the information for each network (t) in 
the set: stack the matrices Mt1, Mt2, and Mt3 in the 
3D matrix  Xt

4. Obtain the base dataset: pairs (Xt, yt)

Divide the base dataset in train and test datasets

Train CNNs using training dataset

Evaluate CNNs using testing dataset

5. Define the architecture of the CNN

 

Figure 34. Process of reliability estimation using CNNs 

5.2.6. Case study 

Networks with 10 nodes will be considered, and the link reliability set is 

{0.80, 0.85, 0.90, 0.95, 0.99}. We propose to develop a CNN to be trained with a relatively small 

dataset of different topologies and link reliability values from the given set. In addition to the 

network topology, topological attributes will be part of the inputs, i.e., the information for each 

network will be embedded in 𝑿𝒕, as discussed earlier. The exact all-terminal network reliability 

will be the target during the training process, i.e., the 𝑦𝑡 values. The trained CNN is expected to 

estimate the all-terminal network reliability of previously unseen networks. These new unseen 

networks will have 10 nodes with a link reliability value of either 0.80, 0.85, 0.90, 0.95, or 0.99. 

5.2.6.1. Base dataset 

In the case study, for ten-node networks(𝑛 = 10), a set of 750 random networks is 

generated. The set size is chosen based on previous studies on all-terminal network reliability 
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estimation using machine learning [42, 45]. This set represents a very small fraction of the 

number of possible topologies, 1.76 × 1014. Only networks forming at least one spanning tree 

are to be considered, i.e., each network in the dataset has a reliability greater than 0. Based on 

this random set of networks, a base dataset of pairs (𝑿𝒕, 𝑦𝑡) is formed. The base dataset is 

divided in training and testing datasets with a proportion of 80% and 20%, a common validation 

approach in machine learning [42, 45, 253]. 

The root mean square error (RMSE) was used to evaluate the accuracy of the CNNs in 

the (unseen) testing dataset. 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑡𝑒𝑠𝑡
∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛𝑡𝑒𝑠𝑡

𝑖=1

 (96) 

where, 𝑛𝑡𝑒𝑠𝑡 is the number of elements in the test dataset, 𝑦𝑖 is the actual reliability value, and 𝑦𝑖̂ 

is the reliability value predicted by the CNN. 

5.2.6.2. Hyperparameters 

Different epochs and batch sizes were evaluated during the training. Epochs in the range 

between 20 and 50 are suggested for image processing with CNN [254, 255], whereas batch 

sizes in the range between 2 and 32 have been reported to produce the best performance for deep 

neural networks [256]. Accordingly, in this study, epochs of 30, 40, and 50 along with batch 

sizes of 8, 16, 32, and 64 were considered, which results in 12 different training configurations. 

Four convolutional layers with 8, 16, 32, and 32 filters, respectively were employed. 

Each convolutional layer was followed by batch normalization and ReLU layers, considering 

that such a structure generated successful results in a previous image classification study with 

CNN [254]. In addition to these initial values, different multiplier (mul) values of 1, 4, and 8 

were applied to the number of filters, i.e., combinations of number of filters (8, 16, 32, 32), (32, 
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64, 128, 128), and (64, 128, 256, 256) were investigated for selection of the best number of 

filters. The investigated CNN architecture is shown in Table 15. 

Table 15. Investigated CNN architecture – 19 layers 

# Type Description 

1 Topologies Input (𝑿𝒕) 10 × 10 × 3 input matrices 

2 Convolution 8xmul filters of size 3x3x3 with stride [1  1] and padding 'same' 

3 Batch Normalization Batch normalization with 8xmul channels 

4 ReLU ReLU 

5 Average Pooling 2x2 average pooling with stride [2  2] and padding [0  0  0  0] 

6 Convolution 16xmul filters of size 3x3x(8xmul) with stride [1  1] and padding 

'same' 

7 Batch Normalization Batch normalization with 16xmul channels 

8 ReLU ReLU 

9 Average Pooling 2x2 average pooling with stride [2   2] and padding [0  0  0  0] 

10 Convolution 32xmul filters of size 3x3x(16xmul) with stride [1 1] and padding 

'same' 

11 Batch Normalization Batch normalization with 32xmul channels 

12 ReLU ReLU 

13 Convolution 32xmul filters of size 3x3x32xmul with stride [1 1] and padding 

'same' 

14 Batch Normalization Batch normalization with 32xmul channels 

15 ReLU ReLU 

16 Dropout Dropout layer 

17 Fully Connected 1 fully connected layer 

18 Sigmoid Layer Sigmoid set - range: [0,1] 

19 Regression Output mean-squared-error based 

 

5.2.6.3. Best CNN architecture 

The best RMSE value of 0.04406 was obtained for the CNN with a filter multiplier value 

of 8, and with 30 epochs and an eight-sized batch as training parameters. Indeed, those are the 

parameters that produced the best RMSE of 0.04406, the measure used to select the best CNN. 

The proposed CNN outperformed the general ANN proposed by Srivaree-Ratana et al. [42], who 

reported an RMSE of 0.06260. The better performance might be attributed in part to the multiple 
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hidden layers of the CNN instead of only one hidden layer in the standard ANN architecture [42, 

45]. In addition, features such as momentum training [257], dropout, and regularization, are 

believed to enable higher predictive accuracy compared to typical ANNs [258]. The 

improvement in accuracy was attained without the need of providing the upper bound reliability 

as an input to the CNN. Considering upper bound would imply an additional calculation, often 

with high computational effort [46, 242], for both the training dataset and the new networks 

presented to the already trained CNN. In addition, in previous studies of network reliability 

prediction with ANNs, for some points, there were predicted values greater than 1 [42, 45], 

which, even infrequent, are not realistic. Such errors may lead to wrong calculations based on 

reliability prediction and subsequently wrong decisions. The CNN architecture presented in this 

work prevents this by introducing the sigmoid layer. 

A paired t-test between the actual reliability and the reliability predicted by the CNN was 

performed. It resulted in a p-value of 0.2794 and a 95% confidence interval for the mean 

difference of [-0.0032, 0.0110]. Therefore, there is no significant pairwise difference between 

actual and the predicted reliability. In addition, Figure 35 shows that the predicted reliability 

follows the actual reliability reasonably well. 

Despite the successful prediction suggested by the RMSE, the p-value, and the good fit 

(Figure 35), it is worth to notice that the CNN predicted reliability seems to be slightly deviated 

for extreme low and high reliability values. For instance, in the Figure 35 on the left side, actual 

network reliability values below 0.93 approximately, are overestimated. This might not be a big 

concern considering that networks are usually expected to exhibit very high reliability. 

Moreover, the first 90 samples (plotted on the left side) correspond to link reliability values of 

0.80, 0.85, and 0.90, as shown in Figure 36. Such values are unrealistic, as in practical 
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applications, links usually have higher reliabilities [259]. Therefore, they may not be present in a 

real scenario. Even if those cases of very low true reliability occur, the CNN would be useful. 

For instance, if at any given moment a network reaches a true reliability of 0.8 which probably 

be catastrophic, it would be good enough if the CNN can predict a (low) value of say 0.93, which 

could be used to trigger an alarm or take any appropriate action (manual or automated). It can be 

seen on Figure 35 that although the prediction performance deteriorates for low “valleys”, the 

predicted reliability curve follows them, i.e., generate valleys as well. 

 

Figure 35. CNN predicted reliability compared to actual reliability for the test dataset 

 

Figure 36. Link reliability of the sample networks in the test dataset 

On the other hand, for high values, approximately above 0.98, the CNN seems to 

underestimate the reliability. For example, if the actual reliability is 0.99, the system might 

predict 0.98, which will allow to take any appropriate action early (even before the actual 
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reliability drops to 0.98). Similar results were obtained by applying cross-validation, described in 

the next subsection (5.2.6.4). See for instance, the results for the second fold in Figure 37. The 

decreased accuracy at extremely low or high reliability values might be addressed, in a future 

research, by training specialized CNNs for low and/or high reliability values and integrating 

them in a hierarchical model.  

5.2.6.4. Cross-validation 

To further investigate the performance of the proposed approach, five-fold cross-

validation[253] is considered to compare the results obtained with different test sets from the 

same base dataset. The base dataset is (randomly) divided into five subsets (150 observations per 

subset). CNN training uses all but one subset, and the excluded subset is considered a test set for 

the trained CNN. The best CNN architecture and training parameters are considered for this 

process, i.e., a filter multiplier of 8, and training parameters batch size of 8 and 30 epochs are 

employed for each of the five CNNs to be trained and tested using cross-validation. For each 

fold, the resultant training and testing sets have the same proportion of link reliabilities. 

The average RMSE considering cross-validation can be estimated as[42, 253]: 

𝑅𝑀𝑆𝐸𝑐𝑣 = √
1

750
∑∑(𝑦(𝑔−1)×150+ℎ − 𝑦̂(𝑔−1)×150+ℎ)

2
150

ℎ=1

5

𝑔=1

 (97) 

where 𝑔 is the index of the subset left out, ℎ is the index of the observations in the left-out 

subset, and the sample. 𝑦(𝑔−1)×150+ℎ and 𝑦̂(𝑔−1)×150+ℎ are the actual and predicted reliability 

values, respectively. RMSE values for each fold as well as average RMSE considering cross-

validation are shown in Table 16.  
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Table 16. RMSE with cross-validation 

Fold RMSE 

1 0.04406 

2 0.04488 

3 0.05953 

4 0.05153 

5 0.05236 

Average 0.05079 

 

The first fold corresponds to the testing dataset obtained from initial division mentioned 

earlier in section 5.2.6.1. The performance of the CNNs is similar for the other four folds. For 

instance, the predicted and actual reliability for the second fold is shown in Figure 37, which is 

similar to Figure 35 (first fold). The average RMSE (0.05079) considering cross-validation is 

still better than 0.06260, achieved by a regular ANN [42]. 

 

Figure 37. CNN predicted reliability compared to actual reliability for the second fold test 

dataset 

5.2.6.5. Execution time 

Although the accuracy is compromised due to the approximation nature of the proposed 

approach, one of its major contributions is the reduction in calculation time. A PC with a 

processor Intel(R) Core (TM) i7-6700 CPU @ 3.40GHz, with 16GB in RAM, was used. The 

time to estimate the reliability with the best CNN was 0.177 seconds for 150 networks, i.e., an 
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average of 1.18 ms/network, whereas the backtracking (exact) algorithm took 299,198 seconds to 

calculate the reliability for 600 networks, i.e., an average of 499 s/network. 

5.2.7. Conclusion 

This section has proposed a CNN approach to estimate the reliability of networks based 

on their topology and topological attributes. The proposed deep learning methodology has 

generated empirical evidence that supports the hypothesis that the all-terminal reliability of a 

network can be estimated from its topology and link reliability information embedded as an 

image-like matrix which can be processed by CNNs. An appropriate format for the inputs and a 

CNN architecture has been proposed. Several training parameters were evaluated, and the results 

suggest that 30 epochs and a batch size of 8 are the best combination. In addition, a filter 

multiplier of 8 seems to be the best value to be considered in the CNN architecture. The best 

trained CNN proposed here, based on the RMSE, outperforms a previous traditional ANN 

approach [42], although for the present study the upper bound was not considered as an input. 

There is a significant computation time reduction achieved by using the proposed CNN.  

The proposed approximate method could be used in situations where exact reliability 

accuracy can be sacrificed to gain calculation speed, such as an online reliability monitoring 

system. For instance, if one or more links are suddenly broken, the topology of a network will 

change, and a CNN-based monitoring software would allow to quickly get information on the 

reliability and take proper action. Another potential use of this method could be during network 

optimization routines, which require recurrent calculations of networks reliability [42, 131].  
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5.3. Network reliability estimation with DNN [76] 

5.3.1. Introduction 

One limitation of previous approaches (including the CNN approach of section 5.2) is 

that the training and testing processes are specific for a fixed network size, e.g., 10 nodes. 

Different from previous works, the proposed approach in this section provides a way to predict 

the reliability of networks with varying graph sizes (i.e., number of vertices or edges). One 

contribution of this section is integrating several graph embedding methods (GEM) with several 

DNN architectures for network reliability prediction. This section evaluates six state-of-the-art 

GEMs with several DNN architectures with varying number of layers. Indeed, the DNN with one 

hidden layer can be considered a regular ANN. In addition, a dropout layer is placed before the 

output layer. The purpose of the dropout layer is to avoid overfitting by randomly dropping 

neurons during the training. The combinations of GEM and DNN architectures are evaluated in 

function of the error, considering cross-validation. To demonstrate the applicability of the 

proposed approach, a dataset of 6000 random networks was generated, which is significantly 

larger than previous datasets of 750 points used with ANNs [42, 45].  

5.3.2. Deep neural networks and graph embedding methods 

A Deep Neural Network (DNN) can be considered as a stack of multiple hidden layers 

instead of only one hidden layer in the standard ANN architecture. . A DNN can be used to 

approximate a function 𝑓∗. For instance, 𝑦 = 𝑓∗(𝑥) maps an input 𝒙 to a real value target 𝑦. 

During the DNN training, the goal is 𝑓(𝒙) to match 𝑓∗(𝒙). Graphs that represent networks 

cannot be directly fed to DNN, because DNN require real vectors as inputs. This study proposes 

to employ graph embedding methods (GEM) to learn vector representation of graphs, while 

preserving their properties. Six state-of-the-art GEM will be investigated in this study: 
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Graph2vec [260], Geometric Scattering for Graph Data Analysis [261], Graph Embedding 

Enriched by Line Graphs with Edge Features(GL2vec) [262], Family of graph spectral distances 

(FGSD) [263] Network Laplacian Spectral Descriptor (NetLSD) [264], and Simple and fast 

algorithm (SF) [265]. 

5.3.3. Proposed method 

This section proposes a DNN approach to estimate the all-terminal reliability of networks 

with varying graph sizes (i.e., number of vertices or edges) and a given set of possible links 

reliability values. The proposed model makes the following assumptions for the networks: 

1. The nodes are perfectly reliable. 

2. The links failure probabilities are independent. 

3. The link failure probabilities are equal. 

5.3.3.1. Generating the set of networks 

A set of Erdős-Rényi graphs is generated, assuming the following: 1) equal proportions 

of number of nodes from a given set, 2) equal proportions of link reliabilities from a given set, 

and 3) the probability of edge creation is within a given range [𝑝𝑚𝑖𝑛 , 𝑝𝑚𝑎𝑥]. 

5.3.3.2. Calculating the exact all-terminal reliability 

The exact all-terminal network reliability is calculated using the equation (84), as we did 

for the CNN approach. 

5.3.3.3. Capturing the network information 

It is hypothesized in this study that the all-terminal network reliability can be estimated 

from the graph vector representation learned by the GEMs. This vector representation of the 

graph will be used as the input for the different DNN architectures. 
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5.3.3.4. Base dataset 

A base dataset is formed by the pairs (𝑿𝒕, 𝑦𝑡), where 𝑿𝒕 is the vector representation 

generated by GEM, and 𝑦𝑡 is corresponding exact reliability, for each network 𝑡 in the set of 

networks.  

5.3.3.5. Architecture of the proposed DNN 

The proposed DNN architecture is based on feed-forward neural networks as they have 

proven to be effective function approximators [266]. Furthermore, a fully connected multi-layer 

perceptron (MLP) structure is employed. Rectified linear unit activation function (ReLU) is used 

as it is the default recommendation in modern neural networks. A hyperbolic tangent activation 

function is used at the output layer to ensure the reliability predicted falls within the range [0,1]. 

In addition, a dropout layer is placed before the output layer to avoid overfitting by 

randomly dropping neurons during the training. The generic proposed architecture is shown in 

Table 17. 

Table 17. Proposed DNN architecture 

Topologies Input: (𝑿𝒕) 

Fully connected layers with ReLU activation 

Dropout 

Output with tanh activation: 𝑦𝑡̂ 

 

5.3.3.6. Training and evaluating 

Once a base dataset is available and the architecture of the DNN is defined, the remaining 

phases are training and evaluating. Ten-fold cross-validation is considered to compare the results 

obtained with different test sets from the same base dataset. The base dataset is (randomly) 

divided into ten subsets of the same length. DNN training uses all but one subset, and the 

excluded subset is considered a test set for the trained DNN. 
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After training, the DNNs are evaluated in terms of the error using the testing datasets 

from cross-validation. The flowchart in Figure 38 illustrates the process. 

 

Figure 38. Process of reliability estimation using DNNs 

5.3.4. Case study 

Networks with 8, 9, and 10 nodes will be randomly generated. The link reliability set is 

{0.80, 0.85, 0.90, 0.95, 0.99}, and the probability of edge creation is in the range [0.3 ,0.6]. The 

information for each network will be embedded in a vector representation 𝑿𝒕, using the different 

GEM methods. The exact all-terminal network reliability will be the target during the training 

process, i.e., the 𝑦𝑡 values. The trained DNN is expected to estimate the all-terminal network 

reliability of previously unseen networks. These new unseen networks will have either 8, 9, or 10 

nodes with a link reliability value of either 0.80, 0.85, 0.90, 0.95, or 0.99, and edge density 

between 0.3, and 0.6. Python was used for both network dataset generation and DNN 

experiments. 
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5.3.4.1. Base dataset 

A dataset of 6000 networks is generated considering only connected graphs, i.e., each 

network in the dataset has a reliability greater than 0. Based on this random set of networks, a 

base dataset of pairs (𝑿𝒕, 𝑦𝑡) is formed. The base dataset is divided in training and testing 

datasets by applying ten-fold cross-validation.  

5.3.4.2. Experiments 

A number of hidden layers of one, two, and three is considered to investigate different 

depths. Dropout probability of 0 (no dropout), 0.25, and 0.5 are explored as well. This provides a 

total of nine experiments. Each experiment is performed for vector representations of the input 

graphs for each of the graph embedding methods. The number of nodes of the first hidden layer 

is set to 128 to match the default dimensionality of the vectors generated by the GEM. The 

subsequent layers are reduced by a factor of 50% [267]. Experiment 1 corresponds to a 

traditional ANN architecture, which is useful for comparison. 

Table 18. Experiments 

Experiment Hidden layers Dropout 

1 One: 128 neurons 0 

2 Two: 128, 64 neurons 0 

3 Three: 128, 64, 32 neurons 0 

4 One: 128 neurons 0.25 

5 Two: 128, 64 neurons 0.25 

6 Three: 128, 64, 32 neurons 0.25 

7 One: 128 neurons 0.5 

8 Two: 128, 64 neurons 0.5 

9 Three: 128, 64, 32 neurons 0.5 
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5.3.4.3. Error 

Table 19. RMSE results 
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1 0.14330 0.01678 0.12818 0.08723 0.10552 0.09056 

2 0.14600 0.01287 0.11325 0.08547 0.09594 0.08697 

3 0.14511 0.01069 0.11582 0.08579 0.09488 0.08724 

4 0.13890 0.02639 0.12116 0.08695 0.10550 0.09273 

5 0.14656 0.01598 0.11675 0.08638 0.09850 0.08789 

6 0.14702 0.01781 0.11542 0.08627 0.09474 0.08739 

7 0.13895 0.02936 0.11764 0.08759 0.11044 0.09476 

8 0.14730 0.02174 0.11585 0.08700 0.10166 0.08856 

9 0.14853 0.02242 0.11768 0.08700 0.09663 0.08754 

 

The root mean square error (RMSE), for each fold is given by equation (96), by letting 

𝑛𝑡𝑒𝑠𝑡 be the number of elements in the test dataset, 𝑦𝑖 the actual reliability value, and 𝑦𝑖̂ the 

reliability value predicted by the DNN. Similarly, the average RMSE considering cross-

validation can be estimated as [42]: 

𝑅𝑀𝑆𝐸𝑐𝑣=√
1

6000
∑∑(𝑦(𝑔−1)×600+ℎ − 𝑦̂(𝑔−1)×600+ℎ)

2
600

ℎ=1

10

𝑔=1

 (98) 

where 𝑔 is the index of the subset left out, ℎ is the index of the observations in the left-out 

subset, and the sample. 𝑦(𝑔−1)×600+ℎ and 𝑦̂(𝑔−1)×600+ℎ are the actual and predicted reliability 

values, respectively. 

The results of the RMSE for the nine experiments are shown in Table 19. The minimum 

RMSE for each GEM (column) is underlined, whereas the minimum RMSE for each experiment 

(row) is in Italic. The best RMSE value of 0.01069 was obtained for the DNN with 3 hidden 

layers and no dropout using geometric scattering embedding. Interestingly, for all the nine 
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experiments, the geometric scattering embedding produces the best results. This could be 

explained because this GEM utilizes topological attributes like the clustering coefficient, which 

is considered a measure of the disconnectedness of a graph [249], and disconnectedness impacts 

the reliability as shown in equation (81). The enhanced performance produced by geometric 

scattering embedding is believed to hold for all different networks’ topologies, which result from 

the varying studied parameters (e.g., number of nodes, and link density). This assumption seems 

plausible since the number of nodes, link reliabilities, and link densities were taken in uniform 

proportions to generate the (ten) testing datasets. It is also worth to notice that the traditional 

ANN approach (experiment 1) was outperformed by DNNs, as none of the experiment 1 results 

are the minimum for any of the GEMs. It is remarkable that DNNs without dropout achieved the 

minimum RMSE with four (out of six) GEMs: geometric scattering, GL2vec, FGSD, and SF. 

Moreover, 3 of such DNNs correspond to the architecture with 2 hidden layers (experiment 2). A 

dropout of 0.25 produced the minimum only for two GEMs: graph2vec and NetLSD. On the 

other hand, the dropout of 0.5 did not produce any minimum, which suggest that this value is too 

large for this application. 

The best DNN outperformed previous ANN-based approaches, e.g., RMSE of 0.06260 

[42] and RMSE of 0.01878 [45]. The enhanced performance of the proposed approach might be 

attributed in part to the multiple hidden layers of the DNN instead of only one hidden layer in the 

standard ANN architecture [42, 45]. In addition, features such as momentum training and 

regularization, are believed to enable higher predictive accuracy compared to typical ANNs. 

Moreover, the geometric scattering method seems to capture the topological attributes relevant to 

the reliability calculation. The improvement in accuracy was attained without the need of 

providing the upper bound reliability as an additional input, as in previous studies. In addition, in 
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previous studies of network reliability prediction with ANNs, for some points, there were 

predicted values greater than 1 [42, 45], which, even infrequent, are not realistic. Such errors 

may lead to wrong calculations based on reliability prediction and subsequently wrong decisions. 

The DNN architecture presented in this work prevents this by utilizing the hyperbolic tangent 

activation function. In addition to the RMSE metric, a paired t-test between the actual reliability 

and the reliability predicted by the DNN was performed. The null hypothesis is that the 

difference between the actual reliability and the predicted has a mean equal to zero. The test 

resulted in a p-value of 0.0820 and a 95% confidence interval for the mean difference of [-

0.00051, 0.00003]. The p-value greater than 0.05 suggests that there is not enough evidence to 

reject the null hypothesis. Therefore, there is not significant pairwise difference between actual 

and the predicted reliability. Furthermore, Figure 39 shows a that the predicted reliability curve 

follows the actual reliability. 

 

Figure 39. DNN predicted reliability vs. actual reliability 

5.3.4.4. Execution time 

Although the accuracy is compromised due to the approximation nature of the proposed 

approach, one of its major contributions is the reduction in calculation time. A PC with a 

processor Intel(R) Core (TM) i7-6700 CPU @ 3.40GHz, with 16GB in RAM, was used. The 

average time to estimate the reliability with the best DNN (and geo. scattering) was 

approximately 3 ms/network, whereas the exact algorithm took an average of 66 s/network.  
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5.3.5. Conclusion 

This section has proposed an approach based on the integration of DNN and GEM to 

estimate the reliability of varying size networks accurately and quickly. 
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CHAPTER 6. ALL-TERMINAL NETWORK RELIABILITY ASSESSMENT AND 

UPDATING OF PARAMETERS CONSIDERING DEGRADATION OF LINKS AND 

NODES4 

6.1. Abstract 

In most of previous research where reliability of complex CPS is modeled through 

networks, nodes are considered to have a binary state, i.e., functioning or failed. In this chapter 

we seek modeling a CPS by considering a network, whose nodes and edges degrade. As an initial 

approximation to the problem, in CHAPTER 5 only link failures were be considered in the 

reliability estimation of networks using deep learning approaches. On the other hand, in this 

chapter we relax the assumption of perfect nodes. Section 6.2 is based on our paper presented at 

IISE 2021 Annual Conference [77] and presents a DNN-MC approach to estimate the reliability 

of a network considering that both links and nodes can fail. Moreover, in section 6.3, a 

framework to estimate the reliability of a network considering not only failure but degradation of 

both links and nodes will be proposed. The proposed framework allows estimating the reliability 

of a network as a function of time, not only as point estimates but also as credible intervals. The 

 

 

4 The present chapter is based on the following papers: 

1. A. Davila-Frias, N. Yodo, T. Le, and O. P. Yadav, " A Deep Neural Network and Bayesian Method based 

Framework for All-Terminal Network Reliability Estimation Considering Degradation" 2021. In Reliability 

Engineering and System Safety. Submitted. 

Contribution of Alex Davila Frias: developing the mathematical models, analysis of the case study, 

discussion of the results, and drafting the paper. 

Contribution of Nita Yodo, Trung Le, and Om Yadav: verification of the results and proofreading the draft 

paper. 

 

2. A. Davila-Frias, O. P. Yadav, S. Salem, and B. Nepal, "All-Terminal Network Reliability Estimation with 

Monte Carlo and Deep Neural Networks," 2021. In IISE 2021 Annual Conference. Presented. 

Contribution of Alex Davila Frias: developing the mathematical models, analysis of the case study, 

discussion of the results, and drafting the paper. 

Contribution of Om Yadav, Saeed Salem, and Bimal Nepal: verification of the results and proofreading the 

draft paper. 
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proposed framework integrates BM, MC, and DNN, and is capable of incorporate new data, as 

they become available, for updating of both model parameters and reliability predictions. This 

section is based on our paper submitted to the journal Reliability Engineering and System Safety 

[78]. 

6.2. All-terminal network reliability estimation with Monte Carlo and deep neural 

networks [77] 

6.2.1. Introduction 

In most of the previous works on network reliability, only links have been considered to 

fail [40, 42, 45, 55, 75] and nodes have been considered perfect. However, in reality both kind of 

components, i.e., nodes and links, may fail. Even considering link failures only, the problem is 

complex and NP hard. Therefore, to overcome the complexity of network reliability estimation, 

traditional artificial neural networks (ANNs) have received attention recently [42, 45, 75]. ANNs 

have evolved to deep learning (DL) approaches such as deep neural networks (DNNs), 

convolutional neural networks (CNNs), and recurrent neural network (RNNs). These advanced 

DL methods have been utilized in the reliability estimation problem. Although DL has been 

applied for components reliability estimation, little evidence is available of its use for network 

reliability estimation. Moreover, in previous studies based on deep learning techniques, the exact 

reliability was used to train specialized ANNs. This algorithm, although exact, is time consuming 

and might not be practical for networks with more than ten nodes [42, 75]. Due to the complexity 

of the problem, and as an alternative to get fast estimations of the reliability of a network, an 

integration of Monte Carlo and DNNs is proposed. The aim of this study is to develop a 

framework to address the problem of network reliability estimation considering imperfect links 

and nodes. A method based on a Monte Carlo algorithm is proposed that can provide estimation 
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of network reliability for given nodes and links reliability values. To speed-up the calculation, a 

DNN is integrated into the framework. This work evaluates different architectures proposed for a 

DNN. The proposed architectures consider the sigmoid activation function, which will prevent 

predicting values out of the range as some obtained by ANNs in previous works [42, 45]. In 

addition, a dropout layer is placed before the output layer. The purpose of the dropout layer is to 

avoid overfitting by randomly dropping neurons during the training. The architectures are 

evaluated in function of the error, considering cross-validation. To demonstrate the applicability 

of the proposed approach, two complete networks with five and ten nodes, respectively, were 

generated. In addition, four real-world networks, with number of nodes ranging from 20 to 158, 

were analyzed using the proposed framework. 

6.2.2. Proposed method 

This section proposes a framework to estimate the all-terminal reliability of a network 

considering imperfect links and nodes. To this end, a network is modeled by a graph 

𝐺(𝑁, 𝐿, 𝑝𝐿 , 𝑝𝑁), where 𝑁 is the set of nodes, 𝐿 is the set of links, 𝑝𝐿 is the links reliability, and 𝑝𝑁 

is the nodes reliability. The proposed approach makes the following assumptions for the 

network: 

1. The links failure probabilities are independent.  

2. The link failure probabilities are equal.  

3. Similarly, the nodes failure probabilities are equal and independent. 

4. The network has bi-directional links. 

The proposed methodology involves four broad steps: 1) Estimate the all-terminal 

reliability with a method based on a Monte Carlo algorithm for a set of possible links and nodes 
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reliability values, to obtain a dataset 2) Define possible architectures of DNNs. 3) Train and 

evaluate the DNNs considering cross-validation. 4) Calculate the network reliability. 

6.2.2.1. Estimating the all-terminal reliability with a Monte Carlo algorithm 

At any time, only some links and/or nodes of 𝐺 might be operational. Since the all-

terminal reliability is the probability that every node can communicate with every other node in 

the network, the reliability of a network is given as: 

𝑅𝑛𝑒𝑡 = Pr{(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑘𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠)𝐴𝑁𝐷 (𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙)} (99) 

Even considering only link failures, and due to the exponential growth of number of 

states with the size of networks, the all-terminal reliability calculation is an NP-hard problem 

[241]. In previous studies based on deep learning techniques, the exact reliability was used to 

train specialized ANNs. This algorithm, although exact, is time consuming and might not be 

practical for networks with more than ten nodes [75]. For instance, the backtracking exact 

algorithm took on average about 500 seconds per network [75] on ten-node networks. 

As an alternative, a Monte Carlo method could be used to estimate the reliability of a 

network (𝑅𝑀𝐶). The algorithm should simulate 𝑀 states (replication) for the network. For each 

replication, the algorithm should simulate the nodes, considering the reliability of nodes 𝑝𝑁. If 

not all the nodes are present, then that state is not operational because there is not all-terminal 

communication. If all the nodes are present, the algorithm should simulate the links considering 

the reliability of links 𝑝𝐿. If the operational links provide all-terminal connectivity, then that state 

is operational for the network, and the accumulator variable 𝑟 (with initial value of zero) is 

increased by one. After 𝑀 replications, the estimated reliability would be given by the ratio of 

the number simulated operational states over the number of simulated states, i.e.: 

𝑅̂𝑛𝑒𝑡 = 𝑅𝑀𝐶 = 𝑟/𝑀 (100) 
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From equation (99) and assumptions 1 and 3, a more efficient way to estimate the 

network reliability can be derived. Given that the links and nodes reliability values are 

independent, equation (99) can be expressed as: 

𝑅𝑛𝑒𝑡 = Pr{(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑘𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠)} × Pr {(𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙)} (101) 

Let , 𝑅𝑙𝑖𝑛𝑘𝑠 = 𝑃𝑟{(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑘𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠)}, and 𝑅𝑛𝑜𝑑𝑒𝑠 =

𝑃𝑟{(𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙)}. 

Therefore, the reliability of the network can be expressed as the product of the reliability 

of links (𝑅𝑙𝑖𝑛𝑘𝑠) and reliability of nodes (𝑅𝑛𝑜𝑑𝑒𝑠) as: 

𝑅𝑛𝑒𝑡 = 𝑅𝑙𝑖𝑛𝑘𝑠 × 𝑅𝑛𝑜𝑑𝑒𝑠 (102) 

The reliability of nodes can be directly calculated by using the probability mass function 

(PMF) of binomial distribution 𝐵𝑖𝑛(|𝑁|, 𝑝𝑁) for |𝑁| successes. In other words, the reliability of 

nodes is given by equation (103). Consequently, the simulation of nodes is not required. 

𝑅𝑛𝑜𝑑𝑒𝑠 = 𝑝𝑁
|𝑁| (103) 

On the other hand, regarding the reliability of links, at any time, only some links of 𝐺 

might be operational. A state of 𝐺 is a sub-graph 𝐺′ = (𝑁, 𝐿′), where 𝐿′ is the set of operational 

links, 𝐿′ ⊆ L. The reliability of links of state 𝐿′ ⊆ L is: 

𝑅𝑙𝑖𝑛𝑘𝑠 =∑[∏𝑝𝐿
𝑗∈𝐿′

]

Ω

[ ∏ (1 − 𝑝𝐿)

𝑗∈(𝐿\𝐿′)

] (104) 

where, Ω is the set of all operational states. As mentioned before, due to the exponential growth 

of number of states with the size of network, the all-terminal reliability calculation is an NP-hard 

problem. Hence, only the reliability of links needs to be simulated with a Monte Carlo algorithm, 

which is proposed below: 
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Algorithm 6.1 

Let 𝑀 be the total number of independent replications for Monte Carlo simulation 

Let |𝑁| be the number of elements (nodes) in 𝑁 

𝑟 ← 0  

𝑘 ← 0  

while 𝑘 < 𝑀 do 

𝐿𝑘 ← 𝐿  

  //Simulate the links … 

  for each 𝑙𝑗 ∈ 𝐿𝑘 do 

generate a random number 𝑟𝑒𝑝𝑙𝑗 from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝐿) 

if 𝑟𝑒𝑝𝑙𝑗 = 0 then remove 𝑙𝑗 from 𝐿𝑘 

  //Check connectivity … 

if all-node connectivity in 𝐺(𝑁, 𝐿𝑘) then 𝑟 ← 𝑟 + 1 

  𝑘 ← 𝑘 + 1 

𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠 = 𝑟/𝑀  

By using the results of Algorithm 6.1 and equation (103), the network reliability can be 

estimated as: 

𝑅̂𝑛𝑒𝑡 = 𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠 × 𝑅𝑛𝑜𝑑𝑒𝑠 (105) 

where 𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠  is evaluated by algorithm 6.1 and 𝑅𝑛𝑜𝑑𝑒𝑠 is calculated with equation (103). 

A base dataset is formed by the pairs (𝑋𝑡, 𝑦𝑡), where 𝑋𝑡 is the links reliability value (𝑝𝐿), 

and 𝑦𝑡 is corresponding estimated reliability of links 𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠 , for each element in a set of link 

reliability values.  
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6.2.2.2. Architecture of DNN 

The proposed DNN architecture is based on feed-forward neural networks as they have 

proven to be effective function approximators [266]. Furthermore, a fully connected multi-layer 

perceptron (MLP) structure is employed. A sigmoid activation function is used at the output 

layer to ensure the reliability predicted falls within the range [0,1]. 

In addition, a dropout layer is placed before the output layer to avoid overfitting by 

randomly dropping neurons during the training. To summarize, the architecture is a stack of the 

following layers: input: (𝑋𝑡), fully connected hidden layers, dropout, output with sigmoid 

activation: 𝑦𝑡̂. 

6.2.2.3. Training and evaluating 

Once a base dataset is available and the architecture of the DNN is defined, the remaining 

phases are training and evaluating. Five-fold cross-validation is considered to compare the 

results obtained with different test sets from the same base dataset. The base dataset is 

(randomly) divided into five subsets of the same size. DNN training uses all but one subset, and 

the excluded subset is considered a test set for the trained DNN. After training, the DNNs are 

evaluated in terms of the error using the testing datasets from cross-validation.  

6.2.2.4. Calculating the network reliability 

The cross-validation error is used to select the best DNN. The best trained DNN can be 

used to estimate the reliability of links (𝑅̂𝑙𝑖𝑛𝑘𝑠) for a given links reliability value (𝑝𝐿). Further, 

the reliability of nodes (𝑅𝑛𝑜𝑑𝑒𝑠) for a given nodes reliability value (𝑝𝑁) is given by equation 

(103). Therefore, the estimated reliability of the network is given as: 

𝑅̂𝑛𝑒𝑡 = 𝐷𝑁𝑁(𝑝𝐿)⏟      
𝑅̂𝑙𝑖𝑛𝑘𝑠

× 𝑅𝑛𝑜𝑑𝑒𝑠(𝑝𝑁) = 𝐷𝑁𝑁(𝑝𝐿) × 𝑝𝑁
|𝑁| (106)
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6.2.3. Case study 

Six networks are evaluated to demonstrate the applicability of the proposed framework: 

(a) a synthetic five-nodes complete (10-links) network, (b) a synthetic ten-nodes complete (45-

links) network, (c) Arpanet (20 nodes, 32 links) [268], (d) Intellifiber (97 nodes, 73 links, USA), 

(e) Ion (125 nodes, 150 links, New York, USA), (f) US Carrier (158 nodes, 189 links, Georgia, 

Alabama, Florida, USA) [269]. Figure 40 shows the graphical representation of the six networks 

considered for the case study.  

 

(a) Five- 

nodes 

 

(b) Ten- 

nodes 

 

(c) Arpanet 

 

(d) Intellifiber 

 

(e) Ion 

 

(f) US 

Carrier 

Figure 40. Networks representation 

The estimated reliability of links (𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠), will be the target during the training process, 

i.e., the 𝑦𝑡 values. The best trained DNN for each network is expected to estimate the network 

reliability of links (𝑅̂𝑙𝑖𝑛𝑘𝑠) for any given value of 𝑝𝐿. The all-terminal network reliability will be 

calculated by using equation (106) for any given 𝑝𝐿 and 𝑝𝑁. 

6.2.3.1. Base dataset 

For each network, a dataset of 100 link reliability values is considered {0.01, 0.02, …, 

0.99, 1.00}. Based on this set of link reliability values, a base dataset of pairs (𝑋𝑡, 𝑦𝑡) is formed. 

The base dataset is divided in training and testing datasets by applying five-fold cross-validation.  

6.2.3.2. Experiments 

The DNN architecture has two hidden layers, and we investigate different number of 

neurons ({5, 10, 20, 30, 40, 50}) for each hidden layer [267]. The dropout probability values 
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from the set {0, 0.05, 0.10, 0.15, 0.20, 0.25}, where 0 indicates no dropout is employed. This 

provides a total of 216 experiments, performed for each of the six networks of the case study. 

The average root mean square error (RMSE) considering cross-validation is used to select the 

best DNN architecture. The best architecture for each network is shown in Table 20 (column 2). 

The architecture is expressed as the number of neurons in the first hidden layer, number of 

neurons in the second hidden layer, and dropout probability. For instance, (50, 50, 0) means 50 

neurons, 50 neurons, and 0 dropout probability. The final application DNN is trained using all 

the 100 members of the data set and its validation error is inferred using the average cross-

validation error (Table 20, column 3). The average cross validation-error is given by equation 

(107) [42, 75].  

𝑅𝑀𝑆𝐸𝑐𝑣=√
1

100
∑∑(𝑦(𝑔−1)×20+ℎ − 𝑦̂(𝑔−1)×20+ℎ)

2
20

ℎ=1

5

𝑔=1

 (107) 

Table 20. Summary of results 

 Architecture Error Paired t test Computation time 

Network Best DNN RMSE p-value 95% C.I. Monte Carlo [s] 
MC-DNN 

[ns] 

a 50, 10, 0 0.00351 0.0820 [-0.0001, 0.0013] 60.73 39.96 

b 50, 5, 0 0.00591 0.7136 [-0.0010, 0.0014] 161.23 41.56 

c 50, 10, 0 0.00477 0.9453 [-0.0010, 0.0009] 135.05 40.22 

d 5, 5, 0.1 0.01907 0.3981 [-0.0022, 0.0054] 790.98 46.45 

e 5, 30, 0.15 0.01460 0.1029 [-0.0005, 0.0053] 1223.59 46.43 

f 20, 10, 0.25 0.02213 0.2728 [-0.0019, 0.0068] 740.41 46.49 

 

There is a significant computation time difference between the pure Monte Carlo 

algorithm and the integrated framework based on Monte Carlo-DNN (Table 20, columns 6, 7). 

The Monte Carlo average time is based on 100 link reliability values. The DNN average 

computation time is estimated by dividing the time to compute the reliability of a 104 × 104 
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array by 108 (Used to plot Figure 42). In addition, the pure Monte Carlo method provides the 

reliability for a specific links reliability value (𝑝𝐿). On the other hand, the proposed framework 

estimates the network reliability for any given links reliability (𝑝𝐿) and nodes reliability (𝑝𝑁) 

values. The estimated network reliability for the combination of 10,000 values for both 𝑝𝐿 and 

𝑝𝑁 uniformly distributed between 0 and 1 is plotted in Figure 42. A PC with a processor Intel(R) 

Core (TM) i7-6700 CPU @ 3.40GHz, and 16GB in RAM was used.  

 

(a) Five- nodes 

 

(b) Ten-nodes 

 

(c) Arpanet 

 

(d) Intellifiber 

 

(e) Ion 

 

(f) US Carrier 

Figure 41. Estimated reliability of links (𝑅̂𝑙𝑖𝑛𝑘𝑠), as a function of links reliability (𝑝𝐿) 

The error (0.02213 in the worst case) is comparable with previous results achieved by 

ANN-based approaches, e.g., RMSE of 0.06260 [42] and RMSE of 0.04406 [75]. Also, a paired 

t-test between the actual reliability and the reliability predicted by the DNN was performed. p-

values and 95% confidence intervals (Table 20, columns 4, 5) for the mean difference show no 

significant pairwise difference between actual and the predicted values. Therefore, the DNN 

provides good fit, as shown in Figure 41. For the largest networks (d, e, and f), the prediction for 

links reliability values greater than 0.99 approximately underestimate the actual reliability. To 

improve this performance, a hierarchical approach that integrates specialized DNNs trained for 
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link reliabilities greater than 0.99, is used. The best specialized DNN architectures were (50, 50, 

0) for both networks d, and e, and (40, 20, 0) for network f. The hierarchical approach allows a 

smooth fit even at high reliability values, as shown in Figure 42. 

Figure 42 shows that, in general, the nodes reliability is more dominant than the links 

reliability, which can be explained because a failure in a node immediately interrupts the all-

terminal communication, whereas a link failure may be alleviated by communication trough 

other surviving links. In addition, larger networks (d, e, f) are less sensitive to low values of links 

reliability 𝑝𝐿, which can be explained by a larger number of links providing alternative 

communication paths when other links fail. 

 

(a) Five-nodes 

 

(b) Ten-nodes 

 

(c) Arpanet 

 

(d) Intellifiber 

 

(e) Ion 

 

(f) US Carrier 

Figure 42. Estimated reliability of networks (𝑅̂𝑛𝑒𝑡), as a function of links reliability (𝑝𝐿) and 

nodes reliability (𝑝𝑁) 

6.2.4. Conclusions and discussions 

A framework was proposed for fast reliability estimation of large networks considering 

imperfect links and nodes. Exact reliability algorithms may not be practical for networks with 

more than ten nodes. Therefore, to estimate the network reliability, a method based on Monte 
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Carlo – DNN is proposed, which leads to a significant computation time reduction. The 

framework performs reliability estimation in less than 100 ns for any given links and nodes 

reliability values, using a regular desktop PC. The results show that the nodes reliability is more 

dominating than the links reliability. The proposed framework can be used for real-time 

monitoring of network reliability, provided there is information of the links reliability and nodes 

reliability, which could be captured from degradation data collected by modern sensor 

technology. 

6.3. All-terminal network reliability estimation considering degradation with Bayesian 

methods, Monte Carlo, and deep neural networks [78] 

6.3.1. Abstract 

In most of previous research on network reliability, links are considered to have a binary 

state, i.e., functioning or failed, whereas nodes are considered perfect. In a more realistic 

scenario, both links and nodes might fail. Moreover, links and nodes may exhibit degradation 

behavior before failing. This study develops a framework to estimate the all-terminal reliability 

of a network, whose nodes and links not only have the possibility to fail but also exhibit 

degradation. Different from previous works on network reliability that have considered constant 

reliability for links, this study considers the reliability of links, nodes, and network as functions 

of time. To this end Bayesian methods (BM) are proposed to estimate reliability of links and 

nodes as functions of time considering degradation data. Due to the complexity of the all-

terminal reliability problem, and to get fast estimations of the reliability of a network, an 

integration of Monte Carlo (MC) and Deep Neural Networks (DNNs) is proposed. The proposed 

Monte Carlo-based algorithm can provide estimation of the network reliability for given nodes 

and links reliability values. To speed-up the calculation, a DNN model is integrated into the 
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framework, thus enabling accurate and fast estimation of network reliability for given link and 

node reliability values. The DNN accuracy, based on the RMSE (0.01460), outperforms previous 

traditional artificial neural network (ANN) approaches. Moreover, the DNN model takes 0.3 ms 

to compute the reliability for any given links and reliability values. The framework can provide 

not only reliability point estimates, but also credible intervals. Finally, we take advantage of 

Bayesian methods to integrate new data to the framework as they become available. The new 

data are used by the framework to refine and further update the degradation model parameters 

and the prediction of reliability of links, nodes, and the network. The proposed methodology has 

been demonstrated with the real-world network topology Ion (125 nodes, 150 links) considering 

real degradation data. 

6.3.2. Introduction 

In previous works on network reliability, binary states have been commonly assumed for 

links, and nodes have been considered perfect [40, 42, 45, 55, 131]. Even considering link 

failures only, the problem is complex and NP hard [40, 42]. Traditional network reliability 

methods include exact NP-hard methods [32, 39, 40, 129] or approximated methods. Among 

approximated methods, there are several methods such as graph reduction [39, 40], cut-set and 

tie-set approximations [40], Monte Carlo (MC) [30, 47-49, 270] and bounds [40, 50, 51]. On the 

other hand, among modern approximated approaches based on deep learning, artificial neural 

networks (ANNs) have emerged as a promissory tool to estimate network reliability. Indeed, 

ANNs have been claimed to be one of the most efficient methodologies developed so far for 

reliability estimation of networks [130].  

ANNs have been usually trained with the network topology and link reliability as inputs 

and with the target network reliability as desired output [42, 45, 131]. For example, Srivaree- 
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Ratana et al. [42] utilized an ANN to predict the all-terminal network reliability; with the 

network architecture, the link reliability, and the network reliability upper bound (an 

approximation of network reliability which is not lower than the exact value [40, 46, 242]) as 

inputs, and the exact network reliability as the target. More recently, Altiparmak et al. [45] 

proposed an ANN model to predict the all-terminal network reliability, which takes the node 

degree and other connectivity metrics and the upper bound network reliability as inputs to predict 

the network reliability. Traditional ANNs have evolved to deep learning (DL) approaches [271, 

272] such as deep neural networks (DNNs), convolutional neural networks (CNNs), and 

recurrent neural network (RNNs). These advanced DL methods have been utilized in the 

reliability estimation problem. For instance, RNNs have been successfully applied to predict 

health and remaining useful life of bearings [273], li-ion batteries [274]. Also, CNNs have been 

applied to evaluate online services reliability [275], software reliability [276] a robot's pose and 

reliability [277], rotating machinery reliability [278], and recently, network reliability [75]. 

Similarly, a DNN has been used for health prognostic of li-ion batteries [258, 279] and RUL of 

bearing [280]. Although DNNs have been applied for reliability estimation, little evidence is 

available of its use for network reliability estimation. 

Both traditional approximated methods like MC, and modern techniques, such as those 

based on ANN, have mostly considered link failures possibility only. However, in reality, both 

kind of components, i.e., nodes and links, may fail. Moreover, both links and nodes may not only 

fail but exhibit degradation with time. Such degradation can provide useful information to 

estimate the reliability of both links and nodes of a network as functions of time. Whereas most 

of the current work on network reliability considers that the reliability of links or nodes is 

constant or even perfect, the aim of this study is to consider the reliability of links and nodes as a 
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function of time in the prediction of all-terminal network reliability. One major contribution of 

this work is to integrate the concepts of component reliability based on degradation data, and 

network reliability, by modeling components (as nodes and links) that degrade. As a result, this 

work provides a framework to estimate the network (all-terminal) reliability as an indicator of 

the overall health condition of the network. This work proposes a framework to use degradation 

data from both links and nodes of a network to estimate its all-terminal reliability as a function of 

time, to account for its dynamic behavior. Due to the complexity of the problem, the proposed 

framework integrates BM, MC simulation, and DNNs. BM with low-information prior 

distributions are proposed to estimate the degradation parameters and to further evaluate the 

reliability (as functions of time) of links and nodes from degradation data. As a second step, a 

method based on a MC algorithm is proposed that can provide estimation of network reliability 

function for given links and nodes reliability functions. Since, the MC method provides good 

estimates but is time consuming, a DNN model is designed and integrated into the framework to 

speed-up the calculation. The DNN model is trained for a range of links and nodes reliability 

values to learn the all-terminal network reliability calculated with the MC method. In addition, 

the framework allows to incorporate new data, as they become available, to update the reliability 

predictions of links, nodes, and network. Moreover, the proposed framework provides not only 

point estimates, but also Bayesian credible intervals for the reliability functions of links, nodes, 

as well as for all-terminal network reliability function. To demonstrate the applicability of the 

proposed approach, the real-world network topology Ion (125 nodes, 150 links, New York, 

USA) [269, 281] was analyzed using the proposed framework. Real degradation data was 

considered for nodes [282]. Similarly, data was simulated based on real degradation data for 

links [59]. 
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6.3.3. Proposed methodology 

This section presents the proposed framework for all-terminal reliability function 

estimation of a network considering degradation of its links and nodes. Different from previous 

works, we relax the perfect nodes assumption. We propose to model a network by a graph 

𝐺(𝑁, 𝐿, 𝑝𝐿 , 𝑝𝑁), where 𝑁 is the set of nodes, 𝐿 is the set of links, 𝑝𝐿 is the links reliability, and 𝑝𝑁 

is the nodes reliability. For a given network, the reliability values 𝑝𝐿 and 𝑝𝑁 in reality are not 

constant, as both links and nodes may not only fail but degrade with time. Therefore, such values 

can be considered as functions of time that can be calculated from degradation data of the links 

and nodes, respectively. This section considers nodes and links as sample units from two 

populations because nodes and links represent different types of components and may exhibit 

different degradation profiles. A representation of a network with degradation in links and nodes 

is shown in Figure 43. Degradation data from both links and nodes will be used to estimate the 

reliability values 𝑝𝐿, and 𝑝𝑁 as functions of time, respectively. Degradation patterns for links are 

represented by solid curves, whereas degradation for nodes is symbolized by the dashed curves.  

 

Figure 43. Representation of a network with degradation in links and nodes 

The proposed approach makes the following assumptions for the network: 

1. The links failure probabilities are independent.  

2. The link failure probabilities are equal at a given time. 

3. Similarly, the nodes failure probabilities are equal and independent at a given time. 



 

130 

4. The network has bi-directional links 

5. Links and nodes have a performance variable that degrades with time. 

The proposed framework is broadly composed by 1) Links and nodes degradation models 

for reliability evaluation with BM. 2) Monte Carlo method for all-terminal network reliability 

estimation (for given reliability values of links and nodes). 3) a DNN model trained to learn the 

reliability values calculated with MC method. 4) Bayesian updating of parameters and network 

reliability. The four components of the framework are presented in sections 6.3.3.1 to 6.3.3.4 and 

summarized in section 6.3.3.5. 

6.3.3.1. Links and nodes degradation models for reliability evaluation  

Consider the actual degradation path of a particular element (link or node) of a network 

over time is denoted by 𝐷(𝑡), 𝑡 > 0. Samples are observed at discrete points in time 

𝑡1, 𝑡2, … 𝑡𝑗 , …. The observed sample degradation 𝑦𝑖𝑗 for sample 𝑖, at time 𝑡𝑗 in a general 

degradation path model is given as: 

𝑦𝑖𝑗 = 𝐷𝑖𝑗 + 𝜖𝑖𝑗 (108) 

where 𝐷𝑖𝑗 = 𝐷(𝑡𝑖𝑗, 𝛽1𝑖, … , 𝛽𝑘𝑖) is the actual path of the unit 𝑖 at time 𝑡𝑖𝑗 and 𝜖𝑖𝑗~𝑁(0, 𝜎𝜖
2) is a 

residual deviation for the unit 𝑖 at time 𝑡𝑗. The total number of observations on unit 𝑖 is 𝑚𝑖. For 

the 𝑖th unit, 𝛽1𝑖, … , 𝛽𝑘𝑖 is a vector of 𝑘 unknown parameters. A unit 𝑖 is assumed to fail when its 

degradation level first reaches to a predefined threshold level 𝐷𝑓. 

For simplicity, the unit-to-unit variability in model parameters 𝛽1, … , 𝛽𝑘 can be modeled 

with a multivariate normal distribution with mean vectors 𝝁𝜷 and covariance matrices 𝚺𝜷 [14]. It 

is generally assumed that the random parameters 𝛽1, … , 𝛽𝑘 are independent of the 𝜖𝑖𝑗 and that 𝜎𝜖 

is constant. Let 𝜽𝜷 = (𝝁𝜷, 𝚺𝜷) denote the overall population/process parameters. 

The likelihood for the random-parameter degradation model is given as [14]: 
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𝐿(𝜽𝜷, 𝜎𝜖|𝐷𝐴𝑇𝐴) =∏ ∫ …

∞

−∞

𝑛

𝑖=1

∫ [∏
1

𝜎𝜖
𝜑nor(𝜁𝑖𝑗)

𝑚𝑖

𝑗=1

]

∞

−∞

× 𝑓𝜷(𝛽1𝑖 , … , 𝛽𝑘𝑖; 𝜽𝜷)𝑑𝛽1𝑖, … , 𝛽𝑘𝑖 (109) 

where 𝜁𝑖𝑗 = [𝑦𝑖𝑗 − 𝐷(𝑡𝑖𝑗 , 𝛽1𝑖 , … , 𝛽𝑘𝑖)]/𝜎𝜖 , and 𝑓𝜷(𝛽1𝑖, … , 𝛽𝑘𝑖; 𝜽𝜷) is the multivariate normal 

distribution density function. The evaluation of equation (109) requires the numerical 

approximation of 𝑛 integrals of dimension 𝑘 (𝑛 is the number of sample paths and 𝑘 is the 

number of parameters for each path). Therefore, maximizing equation (109) with respect to 

(𝝁𝜷, 𝚺𝜷, 𝜎𝜖) directly can be extremely difficult, although there are methods [283] and software 

packages, e.g., ‘nmle’ [199] to calculate the maximum likelihood estimates (MLE). As an 

alternative to MLE methods, Bayesian estimation approaches, which allow incorporation of prior 

information, are receiving more attention recently and will be considered for this study to obtain 

both initial parameter estimates and updated estimates. 

Considering degradation of a performance variable, a fixed value 𝐷𝑓 is used to denote 

critical level for the degradation path. The failure time 𝑇 is defined as the time when the actual 

path 𝐷(𝑡) crosses the critical degradation level 𝐷𝑓. Therefore, if a unit fails at time 𝑡, i.e., the 

degradation level first reaches 𝐷𝑓 at time 𝑡, the cumulative distribution function (CDF) of the 

failure-time distribution is given as: 

𝐹(𝑡) = Pr(𝑇 ≤ 𝑡) =𝐹(𝑡, 𝜽𝜷) = Pr[𝐷(𝑡, 𝛽1, … , 𝛽𝑘) ≥ 𝐷𝑓] (110) 

For most practical cases, where 𝐷(𝑡) is nonlinear and 𝛽1, … , 𝛽𝑘 are random parameters, 

there is not closed-form expression for 𝐹(𝑡), and it has to be evaluated by methods such as 

numerical integration or MC [14].  

In the present study, degradation will be considered for both links and nodes. Therefore, 

there will be a CDF of failure-time distribution for links, 𝐹𝐿(𝑡), and another CDF for nodes, 

𝐹𝑁(𝑡). The functions 𝑝𝐿, and 𝑝𝑁, can be calculated by 𝑝𝐿(𝑡) = 1 − 𝐹𝐿(𝑡), and 𝑝𝑁(𝑡) = 1 −



 

132 

𝐹𝑁(𝑡), respectively. Furthermore, the functions 𝑝𝐿(𝑡) and 𝑝𝑁(𝑡) estimated from degradation data 

can be used to evaluate the overall network reliability by using the approach described later in 

section 6.3.3.3. 

The degradation patterns (e.g., linear, convex, or concave), and in consequence the 

reliability functions 𝑝𝐿(𝑡) and 𝑝𝑁(𝑡), will depend on the degradation characteristics of the links 

and the nodes of a particular network. The purpose of this section is to provide a generic 

approach to estimate the reliability of a network considering degradation of links and nodes, 

depending on the data available. To illustrate the detailed application of the proposed framework, 

particular models are described in the next sections (6.3.3.1.1 and 6.3.3.1.2) for links and nodes, 

as well as the expressions to evaluate the corresponding reliability functions 𝑝𝐿(𝑡) and 𝑝𝑁(𝑡). 

Although, sections 6.3.3.1.1 and 6.3.3.1.2 present a nonlinear degradation model to characterize 

links and a (transformed to) linear degradation model to describe nodes of a network, different 

degradation profiles can be considered depending on the actual network and its components. 

6.3.3.1.1. Link’s degradation modeling for reliability evaluation 

Usually, links represent communication paths between the nodes in a network. For 

instance, the links may represent the optical fibers of a network, which can be affected by crack 

growth [284, 285]. For instance, when the fiber is exposed to sustained stress, degradation occurs 

as crack growth [286, 287]. Moreover, cracks are a kind of failure mechanisms that lead to 

degradation of light transmission capabilities [288]. Hence, a crack growth model is assumed for 

degradation of links in this section. 

Let 𝑎(𝑡) be the size of a crack at time 𝑡. By the Paris-rule model [289], we have: 

𝑑𝑎(𝑡)

𝑑𝑡
= 𝐶 × [∆𝐾(𝑎)]𝑚 (111) 
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where, 𝐶 and 𝑚 are material properties and ∆𝐾(𝑎) is the stress intensity range function. 

Considering a small crack, ∆𝐾(𝑎) = 𝑆𝑡𝑟𝑒𝑠𝑠√𝜋𝑎. The solution to the differential equation (111) 

is: 

𝑎(𝑡) =

{
 

 
[(𝑎(0))

1−
𝑚
2 + (1 −

𝑚

2
) × 𝐶 × (𝑆𝑡𝑟𝑒𝑠𝑠√𝜋)

𝑚
× 𝑡]

2
2−𝑚

, 𝑚 ≠ 2

𝑎(0) × exp [𝐶 × (𝑆𝑡𝑟𝑒𝑠𝑠√𝜋)
2
× 𝑡] 𝑚 = 2

 (112) 

Considering the crack size as the links performance measure, the degradation path is 

given as 𝐷𝑖𝑗 = 𝑎(𝑡). Let 𝑆𝑡𝑟𝑒𝑠𝑠 = 1, 𝛽1 = 𝐶 × (√𝜋)
𝑚

, and 𝛽2 = 𝑚. 𝛽1 and 𝛽2 are modeled by 

a bivariate normal distribution with parameters (𝜇𝛽1 , 𝜇𝛽2 , 𝜎𝛽1 , 𝜎𝛽2 , 𝜌). Therefore, the general 

degradation path model for the observed degradation is given as: 

𝑦𝑖𝑗 = 𝑎(𝑡𝑖𝑗, 𝑎(0), 𝛽1𝑖, 𝛽2𝑖) + 𝜖𝑖𝑗 (113) 

To estimate the parameters, we propose to use BM instead of maximizing equation (109) 

with respect to (𝝁𝜷, 𝚺𝜷, 𝜎𝜖) or employing software such as ‘nmle’ [199] R package to calculate 

the MLE estimates. Bayesian estimation is a promising alternative to maximum likelihood (ML) 

and is getting attention recently. One advantage of Bayesian estimation is that modern Markov 

Chain Monte Carlo (MCMC) methods with low-information prior distributions provide 

estimation results close to ML estimates [290]. In addition, BM provides not only point estimates 

but also credible intervals, which can be derived from MCMC draws [290]. Credible intervals 

are commonly used to describe the Bayesian analog to non-Bayesian confidence intervals [290]. 

Another benefit of BM is that prior information, if available, can be incorporated into the 

analysis [291, 292], providing improvements in precision or testing cost savings. Moreover, from 

a practical point of view, Bayesian methods can handle complicated data-model combinations 

for which there is no maximum likelihood (ML) software or for which implementing ML would 
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be extremely challenging. For these reasons, in this study, Bayesian estimation is used for both 

initial estimation of parameters and updating of parameters with new degradation data. Bayesian 

estimation will be described in section 6.3.3.1.3. 

Once the parameters 𝛽1 and 𝛽2 are estimated, an expression is needed for the links 

reliability 𝑝𝐿(𝑡), as a function of time. Since the parameters  𝛽1 and  𝛽2 follow a bivariate normal 

distribution with parameters 𝜇𝛽1, 𝜇𝛽2, 𝜎𝛽
2

1
, 𝜎𝛽
2

2
 and 𝜌, then a numerical integration approach can 

be given as:  

𝐹𝐿(𝑡) = ∫ Φnor [−
𝑔(𝐷𝑓, 𝑡, 𝛽1) − 𝜇𝛽2|𝛽1

𝜎𝛽2|𝛽1
]
1

𝜎𝛽1

∞

−∞

 𝜑nor (
𝛽1 − 𝜇𝛽1
𝜎𝛽1

)𝑑𝛽1 (114) 

where, Φnor(∙) is the standardized normal CDF, 𝜑nor(∙) is the standardized normal PDF, 

𝑔(𝐷𝑓, 𝑡, 𝛽1) is the value of 𝛽2 that gives 𝐷(𝑡) = 𝐷𝑓 for specified 𝛽1, 𝜇𝛽2|𝛽1= 𝜇𝛽2 +

𝜌𝜎𝛽2 (
𝛽1−𝜇𝛽1

𝜎𝛽1
), and 𝜎𝛽2|𝛽1

2 = 𝜎𝛽2
2 (1 − 𝜌2) 

Therefore, the links reliability is given as: 

𝑝𝐿(𝑡) = 1 − ∫ Φnor [−
𝑔(𝐷𝑓 , 𝑡, 𝛽1) − 𝜇𝛽2|𝛽1

𝜎𝛽2|𝛽1
]
1

𝜎𝛽1

∞

−∞

 𝜑nor (
𝛽1 − 𝜇𝛽1
𝜎𝛽1

) 𝑑𝛽1 (115) 

6.3.3.1.2. Node’s degradation modeling for reliability evaluation 

Degradation may also affect the transmitter nodes in a fiber optic network [285, 293]. 

Thus, a light emitting diode (LED) degradation model is considered for nodes, as LEDs are used 

to generate the light in fiber optic networks [294]. 

In this section we consider the modeling for data from accelerated degradation test on 

LEDs reported by Pascual et al. [282]. Sample LEDs were tested at six different combinations of 

junction temperature and current. The performance characteristic was the light output. An 

approximately linear degradation path is obtained by applying a square-root transformation for 
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time axis only. Standard acceleration models are applied for temperature and current [14, 190, 

206]. The Arrhenius transformation is used on junction temperature in degrees Celsius (equation 

(116)) and the Black’s law for current (in milliamps) acceleration (equation (117)). 

𝑥1 =
11605

𝑇𝐶 + 273.15
 (116) 

𝑥2 = log(𝐼𝑚𝐴) (117) 

The mixed-effects model for the actual LED light-output degradation for the sample 𝑖 at 

(transformed) time 𝜏𝑗, for test condition 𝑘, based on normalized data is given as [290]: 

𝐷𝑖𝑗𝑘,𝑁 = 1 + 𝛽1,𝑁(𝑥1𝑘 − 𝑥1
0)𝜏𝑗 + 𝛽2,𝑁(𝑥2𝑘 − 𝑥2

0)𝜏𝑗 + 𝑏𝑖𝜏𝑗 (118) 

where 𝜏 ∝ √𝑡 because of the square-root transformation for time. The values 𝑥1
0 and 𝑥2

0 should 

be chosen to be near the center of the respective transformed variables to improve numerical 

stability [290]. The subscripts “, 𝑁” are used to refer to node’s degradation path and parameters, 

to avoid confusion with the degradation path and parameters of links. 

To model the randomness in the slopes for the different LED samples, 𝑏𝑖 is described by 

a normal distribution: 𝑏𝑖~𝑁(𝜇𝑏, 𝜎𝑏
2). The model for the observed degradation is then given as: 

𝑌𝑖𝑗𝑘,𝑁 = 𝐷𝑖𝑗𝑘,𝑁 + 𝜀𝑖𝑗𝑘,𝑁 = 1 + 𝛽1,𝑁(𝑥1𝑘 − 𝑥1
0)𝜏𝑗 + 𝛽2,𝑁(𝑥2𝑘 − 𝑥2

0)𝜏𝑗 + 𝑏𝑖𝜏𝑗 + 𝜀𝑖𝑗𝑘,𝑁 (119) 

where 𝜀𝑖𝑗𝑘,𝑁~𝑁(0, 𝜎𝜀
2) describes the measurement error, with the independence assumption of 

𝑏𝑖 and across time [290]. 

The parameters 𝛽1,𝑁, 𝛽2,𝑁 𝜇𝑏, and 𝜎𝑏 will be estimated by BM as well, as discussed 

earlier. The estimated parameters together with the critical light-output level 𝐷𝑓,𝑁 will determine 

the expression for the nodes reliability 𝑝𝑁(𝑡), as a function of time. 

Since the light-output exhibits a decreasing degradation pattern, the probability of failure 

is given as: 
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𝐹𝑁(𝑡) = Pr(𝑇 ≤ 𝑡) =Pr[𝐷 ≤ 𝐷𝑓,𝑁] (120) 

𝐹𝑁(𝑡) = Pr[1 + 𝛽1,𝑁(𝑥1 − 𝑥1
0)𝜏 + 𝛽2,𝑁(𝑥2 − 𝑥2

0)𝜏 + 𝑏𝑖𝜏 ≤ 𝐷𝑓,𝑁] (121) 

𝐹𝑁(𝑡) = Pr [𝑏𝑖 ≤
𝐷𝑓,𝑁 − (1 + 𝛽1,𝑁(𝑥1 − 𝑥1

0)𝜏 + 𝛽2,𝑁(𝑥2 − 𝑥2
0)𝜏)

𝜏
] (122) 

Since 𝑏𝑖~𝑁(𝜇𝑏, 𝜎𝑏
2),  

𝐹𝑁(𝑡) = Φnor [

𝐷𝑓,𝑁 − (1 + 𝛽1,𝑁(𝑥1 − 𝑥1
0)𝜏𝑗 + 𝛽2,𝑁(𝑥2 − 𝑥2

0)𝜏𝑗)
𝜏 − 𝜇𝑏

𝜎𝑏
] (123) 

𝐹𝑁(𝑡) = Φnor [
𝐷𝑓,𝑁 − (1 + 𝛽1,𝑁(𝑥1 − 𝑥1

0)𝜏 + 𝛽2,𝑁(𝑥2 − 𝑥2
0)𝜏 + 𝜇𝑏𝜏)

𝜏𝜎𝑏
] (124) 

Let 𝜇 = 1 + 𝛽1,𝑁(𝑥1 − 𝑥1
0)𝜏 + 𝛽2,𝑁(𝑥2 − 𝑥2

0)𝜏 + 𝜇𝑏𝜏, then 

𝐹𝑁(𝑡) = Φnor [
𝐷𝑓,𝑁 − 𝜇

𝜏𝜎𝑏
] (125) 

Therefore, the nodes reliability is given as: 

𝑝𝑁(𝑡) = 1 − Φnor [
𝐷𝑓,𝑁 − 𝜇

𝜏𝜎𝑏
] (126) 

6.3.3.1.3. Bayesian approach for parameter estimation and reliability evaluation of links and 

nodes 

Bayesian approach is based on Bayes’ theorem, which relates different kinds of 

conditional probabilities (or conditional probability density functions) to one another. The 

Bayesian method for statistical inference provides a mechanism to combine available data with 

prior information to obtain a posterior distribution that can be used to make inferences about 

some vector 𝜽 of unknown parameters. Bayes’ theorem for continuous parameters in 𝜽 is given 

as: 
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𝑓(𝜽|DATA) =
𝐿(DATA|𝜽)𝑓(𝜽)

∫ 𝐿(DATA|𝜽)𝑓(𝜽)𝑑𝜽
 (127) 

where the joint prior distribution 𝑓(𝜽) provides the available prior information about the 

unknown parameters in 𝜽. 𝑓(𝜽|DATA) is the joint posterior distribution for 𝜽, which combines 

the information from the data and the prior distribution. 𝐿(DATA|𝜽) is the likelihood function 

and depends on the assumed model for the data and the data itself. This function must be 

proportional to the probability of the data. The denominator of the equation (127) is a 

normalizing constant that assures that the joint distribution is a proper probability distribution 

[290].  

One of the reasons for controversy on the use of Bayesian methods is that it is possible 

that the prior distribution will have a strong influence on the resulting inferences, especially 

when the amount of information from the data is scarce. Therefore, the joint prior distribution 

must be carefully specified. If there is no agreement among interested parties, e.g., manufacturers 

and customers, a convenient alternative is to use noninformative prior distributions. When the 

joint prior distribution is diffuse or relatively flat over the values of 𝜽 for which the likelihood is 

non-negligible, and if the data dominates the joint prior, the likelihood is approximately 

proportional to the joint posterior distribution. As a result, Bayesian inferences are similar to 

those obtained from non-Bayesian methods, e.g., ML [290]. In this study, Bayesian inference 

with low-information distributions will be employed for initial estimation of parameters. 

The computation of the joint posterior distribution for 𝜽 (equation (127)) in closed form 

is impossible in many cases, because computing the integral in the denominator can be 

intractable. As an alternative, modern methods for Bayesian analysis overcome this complexity 

by obtaining inferences based on draws from the joint posterior distribution [290]. A powerful 

method for simulating a sample from a particular joint posterior distribution is Markov chain 
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Monte Carlo (MCMC) [292]. Gibbs sampling and MCMC [292] provides an efficient method to 

simulate draws from a discrete time continuous-space Markov chain. After reaching a steady-

state, the sequence of draws provides a sample from the desired joint posterior distribution [290]. 

The MCMC simulation proposed is summarized in the following Algorithm (6.2). WinBUGS 

software is an excellent alternative to perform the MCMC simulation [295] and will be used in 

the case study analysis to estimate the posterior parameters. 

Algorithm 6.2 

Step 1: Set low-information prior distributions for parameters of the distributions 

assumed for random parameters. For example, set low-information prior distributions for 

𝜇𝛽1
, 𝜇𝛽2

, 𝜎𝛽
2

1
, 𝜎𝛽
2

2
 and 𝜌, for the links degradation model 

Step 2: Generate a large number (T) of MCMC sample draws using prior distributions 

and degradation data from the assumed distributions until equilibrium is reached 

Step 3: Cut off (“burn-in”) the first B (e.g., B = 4,000) number of initial draws to omit 

the noise effect 

Step 4: Monitor the convergence of posterior equilibrium, if not, generate more sample 

draws. 

Step 5: Use MCMC sample draws of the model parameters (for both links and nodes 

degradation models) with equations (115) and (126), to evaluate the links and nodes reliability, 

respectively, for a large number of time values (e.g., between 0 to 10,000 hours). 

Step 6: From the reliability values evaluated for each time value, obtain the point 

estimates (median values) and credible intervals (e.g., 95% credible intervals). 

6.3.3.2. Monte Carlo method for all-terminal network reliability estimation 

We use the Monte Carlo method (Algorithm 6.1.) proposed in section 6.2.2.1.  
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6.3.3.3. Deep neural network model (DNN model) 

Given a network 𝐺(𝑁, 𝐿, 𝑝𝐿 , 𝑝𝑁), with links reliability 𝑝𝐿, and nodes reliability 𝑝𝑁, the 

all-terminal network reliability can be estimated by equation (105), with 𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠  evaluated by 

Algorithm 6.1. To speed-up the calculation, a DNN is proposed to be trained with the estimated 

reliability of links 𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠  as the target, as a function of the links reliability value 𝑝𝐿 as the 

input. The reliability of links for a set of links reliability values (𝑝𝐿) can be calculated by using 

the MC proposed method, before the training of the DNN. The DNN (to estimate the reliability 

of links 𝑅𝑙𝑖𝑛𝑘𝑠) along with equation (103) (to calculate the reliability of nodes 𝑅𝑛𝑜𝑑𝑒𝑠) conform a 

DNN model. The DNN model is expected to predict the network reliability (for new given 𝑝𝐿 

and 𝑝𝑁) accurately and quickly. A representation of the DNN model is shown in Figure 44. 

Deep Neural 
Network
Model

𝑅̂𝑛𝑒𝑡  

𝑝𝑁  

𝑝𝐿 

 

Figure 44. Deep neural network to estimate the reliability of a network 

A base dataset is formed by the pairs (𝑋𝑡, 𝑦𝑡), where 𝑋𝑡 is the links reliability value (𝑝𝐿) 

and 𝑦𝑡 is corresponding estimated reliability of links (𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠), for each element in a set of link 

reliability values, e.g., {0.01, 0.02, …, 0.99, 1.00}. 

6.3.3.3.1. DNN architecture 

The proposed DNN architecture is based on feed-forward neural networks as they have 

proven to be effective function approximators [266]. Furthermore, a fully connected multi-layer 

perceptron (MLP) structure is employed. A sigmoid activation function is used at the output 
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layer to ensure the reliability predicted falls within the range [0,1], a feature that some previous 

ANN-based works lack [42, 45].  

In addition, a dropout layer is placed before the output layer to avoid overfitting by 

randomly dropping neurons during the training [252]. To summarize, the architecture is a stack 

of the following layers: input: (𝑋𝑡), fully connected hidden layers, dropout, output with sigmoid 

activation: 𝑦𝑡̂. 

6.3.3.3.2. Training and evaluating 

Once a base dataset is available and the architecture of the DNN is defined, the remaining 

phases are training and evaluating. Five-fold cross-validation is considered to compare the 

results obtained with different test sets from the same base dataset. The base dataset is 

(randomly) divided into five subsets of the same size. DNN training uses all but one subset, and 

the excluded subset is considered a test set for the trained DNN. After training, the DNNs are 

evaluated in terms of the error using the testing datasets from cross-validation.  

6.3.3.3.3. Calculating the all-terminal network reliability 

The cross-validation error is used to select the best DNN. The best trained DNN can be 

used to estimate the reliability of links (𝑅̂𝑙𝑖𝑛𝑘𝑠) for a given links reliability value (𝑝𝐿). The 

reliability of links 𝑅𝑙𝑖𝑛𝑘𝑠 depends not only on 𝑝𝐿 but also on the topology of the network. These 

dependences are incorporated by the MC Algorithm 6.1 and learned by the DNN. Moreover, as 

expected, such dependences (captured by 𝑅̂𝑙𝑖𝑛𝑘𝑠) are reflected in the estimated network reliability 

𝑅̂𝑛𝑒𝑡, as shown in equation (106). Further, the reliability of nodes (𝑅𝑛𝑜𝑑𝑒𝑠) for a given nodes 

reliability value (𝑝𝑁) is given by equation (103). Therefore, the estimated all-terminal reliability 

of the network is given by the proposed DNN model as: 

𝑅̂𝑛𝑒𝑡 = 𝐷𝑁𝑁(𝑝𝐿)⏟      
𝑅̂𝑙𝑖𝑛𝑘𝑠

× 𝑅𝑛𝑜𝑑𝑒𝑠(𝑝𝑁) = 𝐷𝑁𝑁(𝑝𝐿) × 𝑝𝑁
|𝑁| (128)
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where 𝐷𝑁𝑁(𝑝𝐿) represents the estimation of the reliability of links provided by the best DNN, 

i.e., 𝑅̂𝑙𝑖𝑛𝑘𝑠 

6.3.3.4. Bayesian updates of parameters and network reliability prediction  

To further reduce the uncertainty in parameter estimates and network reliability 

prediction obtained from initial (possibly ADT) data and initial Bayesian parameter estimation, 

the framework allows to update the initial estimations with new data. The new data is 

incorporated according to the algorithm 6.3 proposed below: 

Algorithm 6.3 

Step 1: From the initial MCMC draws obtained by using Algorithm 6.2, obtain 

informative prior distributions for parameters of the distributions assumed for random 

parameters. For example, set low-information prior distributions for 𝜇𝛽1
, 𝜇𝛽2

, 𝜎𝛽
2

1
, 𝜎𝛽
2

2
 and 𝜌 in 

the case of the links degradation model. Besides information from historical data, experts 

opinion is another source of prior information [290]. 

Step 2: Generate a large number (𝑇2) of MCMC sample draws using prior distributions 

and new degradation data from the assumed distributions and until equilibrium is reached. 

Step 3: Cut off (“burn-in”) the first 𝐵2 (e.g., 𝐵2 = 4,000) number of initial draws to omit 

the noise effect. 

Step 4: Monitor the convergence of posterior equilibrium, if not, generate more sample 

draws. 

Step 5: Use MCMC sample draws of the model parameters (for both links and nodes 

degradation models) with equations (115) and (126) to evaluate the updated links and nodes 

reliability, respectively, for a large number of time values (e.g., between 0 to 10,000 hours). 
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Step 6: From the updated reliability values evaluated for each time value, obtain the 

updated point estimates (median values) and credible intervals (e.g., 95% credible intervals). 

This updating process can be repeated subsequently, if newer data become available as 

needed. Therefore, the proposed framework provides a method for continuous updating of 

parameters and reliability predictions of links, nodes, and network. 

6.3.3.5. Framework for network reliability estimation and updating of parameters  

To summarize, the overall proposed framework can estimate the reliability of a network, 

considering degradation data of links and nodes. The framework is broadly composed by a links 

degradation model, a nodes degradation model, and a DNN model (equation (106) and Figure 

44) trained using reliability values obtained by the Monte Carlo Algorithm 6.1. The links 

degradation model (Figure 45) provides the links reliability 𝑝𝐿(𝑡) based on degradation data. 

This model considers the updating of parameters if new data become available. Similar model is 

considered for the nodes degradation model, with the degradation data generated from nodes and 

an appropriate degradation model. The overall proposed framework is represented in Figure 46. 

The outputs 𝑝𝐿(𝑡) and 𝑝𝑁(𝑡) are fed to the DNN model for it to predict the network reliability 

𝑅̂𝑛𝑒𝑡. Moreover, the nodes reliability, the links reliability, and the overall network reliability can 

be updated as new data are available. 
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Figure 45. Links degradation model 
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Figure 46. Framework for all-terminal network reliability estimation 

6.3.4. Case study 

To demonstrate the proposed framework, the real-world network topology Ion (125 

nodes, 150 links, New York, USA [269, 281]), shown in Figure 47, was analyzed using the 

proposed approach (Figure 47). Real degradation data was considered to simulate additional 

degradation data for links [59]. Similarly, real degradation data was obtained for nodes from 

[282]. Since a crack growth model was assumed for the links, degradation data for 150 sample 

units would be needed. Lu and Meeker [59] reported crack size degradation data for 21 sample 

units only. In this study, the initial degradation parameters were estimated from such available 
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real degradation data. Based on these estimated parameters, degradation data for 150 sample 

units were simulated. On the other hand, a LED light-output degradation model was assumed for 

the nodes and hence, degradation data for 125 sample units are required. Pascual et al. [282] 

provided appropriate LED light-output degradation data. They reported degradation data for six 

groups, with 30 sample units per group and each group corresponding to a different test 

condition. Since the data from one of the extreme test conditions were reported to cause serious 

model-fit problems [282], possibly due to the occurrence of new failure mechanisms, we decided 

not to consider that set of data in this study. Also, data for five sample units from each of the 

remaining five groups were removed to obtain degradation data for a total of 125 sample units 

(five groups with 25 sample units per group).  

 

Figure 47. ION network graphical representation 

6.3.4.1. Links degradation modeling for reliability evaluation  

For degradation modeling of links, the original degradation data for 21 sample units 

obtained from [59] were considered (shown in Figure 48). Considering the degradation model 

given by equation (113), the random parameters 𝛽1 and 𝛽2 are modeled by a bivariate normal 

distribution with parameters (𝜇𝛽1 , 𝜇𝛽2 , 𝜎𝛽1 , 𝜎𝛽2 , 𝜌), and the residual deviation 𝜖 is described by a 

normal distribution with mean zero and standard deviation 𝜎𝜖. We propose Bayesian estimation 
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of such parameters. These parameters will be used to carryout simulation and obtain degradation 

data for 150 links of the network considered in this study. In addition to degradation data, prior 

distributions are needed for the parameters 𝜇𝛽1 , 𝜇𝛽2 , 𝜎𝛽1 , 𝜎𝛽2 , 𝜌, and 𝜎𝜖. 

 

Figure 48. Crack growth data 

The vector of random unknown parameters of the path model (
𝛽1
𝛽2
) described by a 

bivariate normal distribution, can be modeled as: 

(
𝛽1
𝛽2
)~𝑁 ((

𝜇𝛽1
𝜇𝛽2
) , (

𝜎𝛽1
2 𝜌𝜎𝛽1𝜎𝛽2

𝜌𝜎𝛽1𝜎𝛽2 𝜎𝛽2
2 )) (129) 

Or equivalently: 

(
𝛽1
𝛽2
)~𝑁(𝝁𝜷, 𝚺𝜷) (130) 

where, 𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
), and 𝚺𝜷 = (

𝜎𝛽1
2 𝜌𝜎𝛽1𝜎𝛽2

𝜌𝜎𝛽1𝜎𝛽2 𝜎𝛽2
2 ) 

Then, in the next paragraphs, low-information prior distributions are considered for the 

parameters 𝝁𝜷, 𝚺𝜷, and 𝜎𝜖.  
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For 𝝁𝜷 we assume a low-information bivariate normal distribution centered in 𝟎 with no 

correlation between and large variances for 𝜇𝛽1 and 𝜇𝛽2 [296]. In WinBUGS, the multivariate 

normal distribution is specified in terms of a mean vector and a precision matrix (inverse of 

covariance matrix), as shown in equation (131): 

𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
)~𝑁 (𝝁𝝁𝜷 , 𝐓𝝁𝜷

−1) (131) 

where 𝐓𝝁𝜷 is the precision matrix and given as 𝐓𝝁𝜷 = 𝚺𝝁𝜷
−1 

On the other hand, to represent a vague prior knowledge for 𝚺𝜷, a low-information 

Wishart distribution [291, 297] is used to describe the precision matrix 𝐓𝛃, where 𝐓𝛃 = 𝚺𝛃
−1, as 

shown in equation (132).  

𝐓𝛃 = 𝚺𝛃
−1~𝑊𝑝(𝐒𝟎

−𝟏, ν0) (132) 

The parameters of a Wishart distribution 𝑊𝑝 of a 𝑝 × 𝑝 symmetric positive definite 

matrix are the degrees of freedom ν0, and the 𝑝 × 𝑝 positive definite scale matrix 𝐒𝟎
−𝟏. In 

WinBUGS the inverse of the scale matrix, i.e., 𝐒𝟎, must be specified. 

In this case study 𝐓𝝁𝜷
−1 is a 2 × 2 matrix, then 𝑝 = 2. To represent low prior knowledge, 

the (low-information) Wishart distribution has the degrees of freedom as small as possible [291, 

296], i.e., ν0 = 𝑝, and 𝐒𝟎 represents a prior guess at the order of magnitude of the covariance 

matrix 𝚺𝛃 [296]. 

Finally, a prior distribution needs to be defined for the parameter 𝜎𝜖, which is considered 

to describe the residual deviation as 𝜖𝑖𝑗~𝑁(0, 𝜎𝜖
2). In WinBUGS, a precision (inverse of 

variance) parameter is used to specify normal distributions. Therefore, using WinBUGS 

parameters, the residual deviation can be described as: 

𝜖𝑖𝑗~𝑁(0, 𝜏𝜖
−1) (133) 
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where 𝜏𝜖 = 𝜎𝜖
−2 

𝜏𝜖 can be described by a gamma distribution 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) with shape and rate 

parameters 𝛼, 𝛽, respectively: 

𝜏𝜖 = 𝜎𝜖
−2~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) (134) 

A common low-information prior Gamma distribution is obtained by letting 𝛼 = 𝛽 =

0.001 [296], which provides a mean of 1 and a large variance of 1000. 

Table 21 summarizes the low-information prior distributions used for initial estimation of 

parameters. 

Table 21. Low-information prior distribution specifications for links degradation model 

Parameter Prior distribution 

𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
) 𝑁((

0
0
) , (1.0 × 10

−6 0
0 1.0 × 10−6

)
−1

) 

𝚺𝛃
−1 = 𝐓𝛃 = (

𝜎𝛽1
2 𝜌𝜎𝛽1𝜎𝛽2

𝜌𝜎𝛽1𝜎𝛽2 𝜎𝛽2
2 )

−1

 𝑊2 ((
1.0 × 10−3 0

0 1.0 × 10−3
)
−1

, 2) 

𝜎𝜖
−2 = 𝜏𝜖 𝐺𝑎𝑚𝑚𝑎(0.001,0.001) 

 

To summarize, a WinBUGS model was built considering the original degradation data 

[59], the degradation model given by equation (113), the distributions assumed for the 

parameters 𝛽1, 𝛽2 and 𝜖, and the low-information prior distributions assumed for parameters 𝝁𝜷, 

𝚺𝜷, and 𝜎𝜖 (see Table 21). The initial 4,000 MCMC sample draws were dropped (“burn-in”) and 

the sample draws were “thinned” [295] to reduce autocorrelation, by setting a lag parameter 𝐿 of 

30, i.e.; in the sequence, every 30th value was retained. In general, 𝐿 would be larger if 

autocorrelation is stronger in the preliminary experiments [290]. The point estimates are obtained 

by the median values from the MCMC sample draws [298]. The results are: 𝝁̂𝜷 = (
3.717
5.225

), 
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𝚺̂𝜷 = (
0.5219 −0.1735
−0.1735 0.2349

), and 𝜎̂𝜖 = 0.008008. WinBUGS also provides kernel density 

estimations. As an example, Figure 49 shows the kernel density estimations of parameter 𝝁𝜷 =

(
𝜇𝛽1
𝜇𝛽2
). 

 

Figure 49. Bayesian kernel density estimation of parameter 𝝁𝜷 

Using the estimated parameters 𝝁̂𝜷, 𝚺̂𝜷, and 𝜎̂𝜖,degradation data were simulated for 150 

sample units to match the number of links of the network analyzed. 12 measures were simulated 

for each sample unit, i.e., considering readings at 0.01, 0.02, 0.03, …, 0.12 Mcycles. The 

simulated data were divided in two parts: “initial data” , i.e., readings at times from 0.01 to 0.08 

Mcycles and “new data”, i.e., readings at times from 0.09 to 0.12 Mcycles. The purpose of this 

division is to illustrate the initial Bayesian estimation of parameters with the “initial data” and 

subsequently the Bayesian updating of parameters as “new data” become available. 

6.3.4.1.1. Bayesian estimation of parameters 

A WinBUGS model was built considering the “initial data”, the degradation model given 

by equation (113), the distributions assumed for the parameters 𝛽1, 𝛽2 and 𝜖, and the low-

information prior distributions assumed for parameters 𝝁𝜷, 𝚺𝜷, and 𝜎𝜖 as given in Table 21. The 

initial 4,000 MCMC sample draws were dropped (“burn-in”) and the sample draws were 

“thinned” to reduce autocorrelation, by setting a lag parameter 𝐿 of 60. The point estimates 

obtained by the median values from the MCMC sample draws are: 𝝁̂𝜷 = (
3.608
5.370

), 𝚺̂𝜷 =
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(
0.4458 −0.2215
−0.2215 0.2604

), and 𝜎̂𝜖 = 0.008012. Figure 50 shows the kernel density estimations of 

parameter 𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
).  

 

Figure 50. Bayesian kernel density estimation of parameter 𝝁𝜷 for “initial data” 

6.3.4.1.2. Links reliability estimation  

Both “initial data” and “new data”, for links, have Mcycles as “time” axis, whereas nodes 

degradation data, considered in section 6.3.4.2 have hours in the time axis. Therefore, to make 

the time units consistent for reliability calculations, an arbitrary scaling was adopted by setting 

64,000 hours as equivalent to one Mcycle for links “initial data” and “new data”.  

 The 10,000 MCMC sample draws from the joint posterior distributions of the model 

parameters were used in equation (115) to obtain links reliability draws for 1,001 time values 

between 0 and 10,000 hours. The median values (solid line) as well as the 95% credible bounds 

(dashed lines) are shown in Figure 51. 
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Figure 51. Links reliability and 95% credible intervals 

6.3.4.1.3. Bayesian updating of parameters  

As a result of the proposed time scaling, “new data” include degradation measures at time 

= 5,760 hours (i.e., 64,000 hours/Mcycle × 0.09 Mcycles), 6,400 hours, 7,040 hours, and 7,680 

hours. A WinBUGS model was built considering the “new data”, the degradation model given by 

equation (113), the distributions assumed for the parameters 𝛽1, 𝛽2 and 𝜖, and informative prior 

distributions assumed for parameters 𝝁𝜷, and 𝚺𝜷. Initial MCMC sample draws obtained in 

section 6.3.4.1.1 are used to estimate the parameters of informative prior distributions (see Table 

22). The prior distribution for 𝝁𝜷 is specified with the MLE estimates obtained for a bivariate 

normal distribution from the MCMC draws of 𝝁𝜷 (obtained in section 6.3.4.1.1). On the other 

hand, the prior Wishart distribution for 𝚺𝛃
−1 is specified by considering that the true covariance 

matrix 𝚺𝟎 can be estimated by the median values from the MCMC sample draws [298] obtained 

in section 6.3.4.1.1. To make 𝚺𝛃 closely centered around 𝚺𝟎, a large ν0 is selected [291], whereas 

𝐒𝟎 is given by equation (135) [291]:  

𝐒𝟎 = (ν0 − 𝑝 − 1)𝚺𝟎 (135) 
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Since this updating process is intended to take place with “new data” obtained during 

normal operation, which does not necessarily offer the same testing conditions as for “initial 

data”, a low-information prior is still considered for the precision parameter 𝜎𝜖
−2. 

The initial 4,000 MCMC sample draws were dropped (“burn-in”) and the sample draws 

were “thinned” to reduce autocorrelation, by setting a lag parameter 𝐿 of 100. The point 

estimates obtained by the median values from the MCMC sample draws are: 𝝁̂𝜷 = (
3.609
5.333

), 

𝚺̂𝜷 = (
0.4354 −0.1479
−0.1479 0.2221

), and 𝜎̂𝜖 = 0.008611. Figure 52 shows the kernel density 

estimations of parameter 𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
).  

Table 22. Informative prior distribution specifications for links degradation model 

Parameter Prior distribution 

𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
) 𝑁((

3.6084
5.3716

) , (
409.8462 131.6914
131.6914 247.8900

)
−1

) 

𝚺𝛃
−1 = 𝐓𝛃 = (

𝜎𝛽1
2 𝜌𝜎𝛽1𝜎𝛽2

𝜌𝜎𝛽1𝜎𝛽2 𝜎𝛽2
2 )

−1

 𝑊2 ((
3.1206 −1.5505
−1.5505 1.8228

)
−1

, 10) 

𝜎𝜖
−2 = 𝜏𝜖 𝐺𝑎𝑚𝑚𝑎(0.001,0.001) 

 

 

Figure 52. Bayesian kernel density estimation of parameter 𝝁𝜷 for “new data” 

To verify the robustness of the posterior distributions, we performed sensitivity analysis 

by considering an alternative plausible model with changes in informative prior distributions 

[295]. A natural sensitivity analysis is to consider longer-tailed alternatives instead of normal 

distributions [292]. Hence, in the alternative model, a prior distribution for 𝝁𝜷 was specified with 

the MLE estimates [299] obtained for a multivariate Student’s t distribution from the MCMC 
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draws obtained in section 6.3.4.1.1. In WinBUGS, the (noncentral) multivariate Student’s t 

distribution is specified in terms of mean vector, precision matrix (inverse of covariance matrix), 

and degrees of freedom. In the alternative model, the prior distribution for 𝝁𝜷 is given as 

𝑡 ((
3.6085
5.3715

) , (
422.0977 135.4642
135.4642 255.4619

)
−1

, 67). Table 23 shows the sensitivity of posterior 

inference in terms of the median and 95% credible intervals obtained from the MCMC sample 

draws. Minor differences are observed between the posteriors resulted by the model with normal 

distribution and the alternative model with t distribution. Therefore, the original model that 

considers the informative prior distributions in Table 22 was used for Bayesian updating of 

parameters. 

Table 23. Posterior median and 95% credible intervals of parameters under different prior 

assumptions  

Parameter 

Distribution for 𝝁𝜷 

Multivariate normal Multivariate Student’s t 

Posterior median 
95% posterior 

credible interval 
Posterior median 

95% posterior 

credible interval 

𝝁𝜷 (
3.609
5.333

) 
[3.533, 3.683]
[5.247, 5.416]

 (
3.609
5.333

) 
[3.534, 3.684]
[5.248, 5.418]

 

𝚺𝛃 (
0.4354 −0.1479
−0.1479 0.2221

) 
[
0.3531,
 0.5509

] [
−0.2288,
 −0.0815

]

[
−0.2288,
−0.0815

] [
0.1604,
 0.3093

]
 (

0.4359 −0.1490
−0.1490 0.2223

) 
[
0.3528,
 0.5497

] [
−0.2310,
 −0.0830

]

[
−0.2310,
 −0.0830

] [
0.1611,
 0.3089

]
 

𝜎𝜖 0.0086111 [0.008002, 0.009317] 0.008613 [0.00798, 0.009315] 

 

6.3.4.1.4. Links reliability estimation updating 

The updated 10,000 MCMC draws from the joint posterior distributions of the model 

parameters were used in equation (115) to compute links reliability draws for 1,001 time values 

between 0 and 10,000 hours. The median values as well as the 95% credible bounds are shown in 

Figure 53. As expected, the informative prior Bayesian updating improved the precision of the 

estimates. Figure 54 shows both the initial links reliability estimation and credible intervals in 
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blue solid lines. Figure 54 also shows the updated links reliability estimation along with credible 

intervals in red dashed lines. The updated reliability and credible intervals are shown from the 

time = 5,760 hours, when “new data” become available. The additional new data help to improve 

the credible interval with narrower band as compared to the initial credible interval. This is 

caused by reduction in uncertainty because of the availability of additional new data.  

 

Figure 53. Updated links reliability and 95% credible intervals 

 

Figure 54. Initial (solid lines) and updated (dashed lines) links reliability and 95% credible 

intervals 
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6.3.4.2. Nodes degradation modeling for reliability evaluation  

In this section, normalized (relative to an initial measurement taken on each unit) 

degradation data [282] for LED light-output are considered as shown in Figure 55. There is a 

decrease in light intensity output with time and LED failure is defined when the relative light 

intensity output reaches to 60% level of the initial value [282]. The sample degradation paths in 

the first 138 hours had a complicated irregular behavior for which LED experts had no 

explanation [282, 290]. Since, primary interest is in the long-run behavior of the LEDs, the first 

138 hours of data were omitted. The remaining data were renormalized so that all the units start 

with a (normalized) output value of 1 at time = 138 hours. The truncated renormalized data are 

shown in Figure 56. The group at 130 °C junction temperature and 40 mA current is believed to 

cause the occurrence of a new failure mechanism [282], hence the degradation data of this group 

were removed before the parameters estimation. Moreover, from each of the remaining five 

groups, the degradation data of five sample units were removed so that the “initial data” for the 

analysis contain degradation paths for 125 sample units (five groups with 25 sample units per 

group) to match the 125 nodes of the case study network. Bayesian parameter estimation based 

on the “initial data” will be described in the next section (6.3.4.2.1). Additionally, using the 

initial estimated parameters, “new data” will be generated to demonstrate the Bayesian parameter 

updating in section 6.3.4.2.3. 
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Figure 55. Original normalized LED degradation data 

 

Figure 56. Renormalized LED degradation data 

6.3.4.2.1. Bayesian estimation of parameters  

The degradation model is given by equation (119) with random parameters 𝑏 and 𝜀. 𝑏 

can be described by a normal distribution with parameters (𝜇𝑏, 𝜎𝑏), and the residual deviation 𝜀 

is described by a normal distribution with mean zero and standard deviation parameter 𝜎𝜀. We 

propose Bayesian estimation of such parameters as well as of the parameters 𝛽1,𝑁 and 𝛽2,𝑁. In 

addition to degradation data, prior distributions are needed for the parameters 𝜇𝑏, 𝜎𝑏, 𝛽1,𝑁, 𝛽2,𝑁, 

and 𝜎𝜀. Low-information distributions [290] will be considered for such parameters as shown in 

Table 24. “Flat” priors correspond to uniform distributions between −∞ and ∞ [290]. 
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Table 24. Low-information prior distribution specifications for nodes degradation model 

Parameter Prior distribution 

𝜇𝑏 𝐹𝑙𝑎𝑡 

𝜎𝑏 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1.0 × 10−5, 1.0 × 104) 

𝛽1,𝑁 𝐹𝑙𝑎𝑡 

𝛽2,𝑁 𝐹𝑙𝑎𝑡 

𝜎𝜀 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1.0 × 10−5, 1.0 × 104) 

 

A WinBUGS model was built considering the “initial data”, the degradation model given 

by equation (119), the distributions assumed for the parameters 𝑏 and 𝜀, and the low-

information prior distributions assumed parameters 𝜇𝑏, 𝜎𝑏, 𝛽1,𝑁, 𝛽2,𝑁, and 𝜎𝜀 given in Table 25. 

The initial 4,000 MCMC sample draws were dropped (“burn-in”) and the sample draws were 

“thinned” to reduce autocorrelation, by setting a lag parameter 𝐿 of 40. The point estimates 

obtained by the median values from the MCMC sample draws are: 𝜇̂𝑏 = −0.008122, σ̂𝑏 =

6.04 × 10−4, 𝛽1,𝑁 = 3.961 × 10
−4, 𝛽2,𝑁 = −0.002555, and 𝜎̂𝜖 = 0.004661. These parameters 

will be used to simulate “new data” at normal operating conditions, defined by the test engineers 

as 40°C junction temperature and 20 mA current [282]. Figure 57 shows the kernel density 

estimations of parameter 𝜇̂𝑏. 

 

Figure 57. Bayesian kernel density estimation of parameter 𝜇𝑏 for “initial data” 

6.3.4.2.2. Nodes reliability estimation  

The 10,000 MCMC sample draws from the joint posterior distributions of the model 

parameters, were used in equation (126) to obtain nodes reliability draws for 1,001 time values 
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between 0 and 10,000 hours. The median values (solid line) as well as the 95% credible bounds 

(dashed lines) are shown in Figure 58. 

 

Figure 58. Nodes reliability and 95% credible intervals 

6.3.4.2.3. Bayesian updating of parameters  

“New data” were simulated considering time = 5,760 hours, 6,400 hours, 7,040 hours, 

and 7,680 hours, i.e., at the same time values as the “new data” for the links. A WinBUGS model 

was built considering the “new data”, the degradation model given by equation (119), the 

distributions assumed for the parameters 𝑏 and 𝜀, and informative prior distributions assumed for 

parameters 𝜇𝑏, 𝜎𝑏 , 𝛽1,𝑁, and 𝛽2,𝑁. Initial MCMC sample draws obtained in section 6.3.4.2.1 were 

used to estimate the parameters of informative prior distributions (Table 25). The prior 

distributions for 𝜇𝑏, 𝛽1,𝑁, and 𝛽2,𝑁 are specified with the MLE estimates obtained for normal 

distributions from the MCMC draws obtained in section 6.3.4.2.1 of 𝜇𝑏 , 𝛽1,𝑁, and 𝛽2,𝑁, 

respectively. On the other hand, the prior Gamma distribution for 𝜎𝑏 is defined by the MLE 

estimates is obtained from the MCMC sample draws obtained in section 6.3.4.2.1. Since this 

updating process is intended to take place with “new data” obtained during normal operation, 
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which do not necessarily offer the same testing conditions as for “initial data”, a low-information 

prior is still considered for 𝜎𝜀. 

The initial 4,000 MCMC sample draws were dropped (“burn-in”) and the sample draws 

were “thinned” to reduce autocorrelation, by setting a lag parameter 𝐿 of 100. The point 

estimates obtained by the median values from the MCMC sample draws are: 𝜇̂𝑏 = −0.008117, 

σ̂𝑏 = 5.918 × 10
−4, 𝛽1,𝑁 = 4.019 × 10

−4, 𝛽2,𝑁 = −0.002658, and 𝜎̂𝜖 = 0.004668. Figure 59 

shows the kernel density estimations of parameter 𝜇̂𝑏.  

Table 25. Informative prior distribution specifications for links degradation model 

Parameter Prior distribution 

𝜇𝑏 𝑁(−0.008121648, 295558733−1) 

𝜎𝑏 𝐺𝑎𝑚𝑚𝑎(220.2973,363870.2) 

𝛽1,𝑁 𝑁(0.0003961045, 1012765573−1) 

𝛽2,𝑁 𝑁(−0.002557142, 6333426−1) 

𝜎𝜀 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1.0 × 10−5, 1.0 × 104) 

 

 

Figure 59. Bayesian kernel density estimation of parameter 𝜇𝑏 for “new data” 

Like the nodes case, we performed sensitivity analysis to verify the robustness of the 

posterior distributions. Longer-tailed distributions was considered instead of normal distributions 

[292, 295]. Hence, in the alternative model, prior distributions for 𝜇𝑏, 𝛽1,𝑁, and 𝛽2,𝑁 were 

specified with the MLE estimates obtained for Student’s t distributions from the MCMC draws 

obtained in section 6.3.4.2.1 of 𝜇𝑏 , 𝛽1,𝑁, and 𝛽2,𝑁, respectively. In WinBUGS, the (noncentral) 

Student’s t distribution is specified in terms of mean, precision (inverse of covariance), and 

degrees of freedom. In the alternative model, the prior distributions for 𝜇𝑏, 𝛽1,𝑁, and 𝛽2,𝑁 are 
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given as 𝑡(−0.008121633, 301507501−1, 100 ), 𝑡(0.000396097, 1059545212−1, 46 ), and 

𝑡(−0.002557149, 6460993−1, 100 ), respectively. Table 26 shows the sensitivity of posterior 

inference in terms of the median and 95% credible intervals obtained from the MCMC sample 

draws. Minor differences are observed between the posteriors resulted by the model with normal 

distributions and the alternative model with t distributions. Therefore, the original model that 

considers the informative prior distributions in Table 25 was used for Bayesian updating of 

parameters. 

Table 26. Posterior median and 95% credible intervals of parameters under different prior 

assumptions  

Param. 

Distributions for 𝜇𝑏, 𝛽1,𝑁, and 𝛽2,𝑁 

Normal Student’s t 

Posterior 

median 

95% posterior credible 

interval 

Posterior 

median 

95% posterior credible 

interval 

𝜇𝑏 −0.008117 [−0.008235,−0.008005] −0.008116 [−0.008230,−0.008006] 

𝜎𝑏 5.918 × 10−4 [5.394 × 10−4, 6.504 × 10−4] 5.910 × 10−4 [5.399 × 10−4, 6.480 × 10−4] 

𝛽1,𝑁 4.019 × 10−4 [3.531 × 10−4, 4.516 × 10−4] 4.023 × 10−4 [3.543 × 10−4, 4.529 × 10−4] 

𝛽2,𝑁 −0.002658 [−0.003160,−0.002164] −0.002648 [−0.003141,−0.002137] 

𝜎𝜀 0.004668 [0.004353, 0.005016] 0.004670 [0.004350, 0.005034] 

 

6.3.4.2.4. Nodes reliability estimation updating 

The updated 10,000 MCMC draws from the joint posterior distributions of the model 

parameters were used in equation (126) to compute links reliability draws for 1,001 time values 

between 0 and 10,000 hours. The median values (solid line) as well as the 95% credible bounds 

(dashed lines) are shown in Figure 60. As expected, the informative prior Bayesian updating 

improved the precision of the estimates. Figure 61 shows the initial nodes reliability estimation 

with credible intervals in blue solid lines. Figure 61 also shows the updated nodes reliability 

estimation along with credible intervals in red dashed lines. The updated reliability and credible 
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intervals start at time = 5,760 hours, i.e., when “new data” become available. Credible intervals 

for updated nodes reliability are narrower than the initial credible intervals. 

 

Figure 60. Updated nodes reliability and 95% credible intervals 

 

Figure 61. Initial and updated nodes reliability and 95% credible intervals 
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6.3.4.3. Monte Carlo method and deep neural network model for all-terminal network 

reliability estimation  

In this section, the use of MC method and DNN to evaluate the network reliability is 

illustrated. MC method (Algorithm 6.1) is applied to the selected Ion network to obtain a set of 

estimated reliability values of links (𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠). 𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠  will be the target during the training 

process, i.e., the 𝑦𝑡 values. The best trained DNN is expected to estimate the network reliability 

of links (𝑅̂𝑙𝑖𝑛𝑘𝑠) for any given value of 𝑝𝐿. Finally, the all-terminal network reliability will be 

calculated by using equation (106) for any given 𝑝𝐿 and 𝑝𝑁.  

A dataset of 100 link reliability values is considered, i.e., {0.01, 0.02, …, 0.99, 1.00}. 

Based on this set of link reliability values, a base dataset of pairs (𝑋𝑡 , 𝑦𝑡) is formed. 𝑋𝑡 is the 

links reliability value (𝑝𝐿) and 𝑦𝑡 is corresponding estimated reliability of links (𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠), for 

each element in the set of link reliability values. The base dataset is divided in training and 

testing datasets by applying five-fold cross-validation. 

The DNN architecture has two hidden layers. Different number of neurons ({5, 10, 20, 

30, 40, 50}) were investigated for each hidden layer [267]. The dropout probability values from 

the set {0, 0.05, 0.10, 0.15, 0.20, 0.25}, where 0 indicates no dropout were employed. This 

provides a total of 216 experiments (six numbers of neurons in the first layer, six numbers of 

neurons in the second layer, and six dropout values). The average root mean square error 

(RMSE) considering cross-validation [253] is used to select the best DNN architecture. The best 

architecture is (5, 30, 0.15), i.e., 5 and 30 neurons in the first and second hidden layers, 

respectively, with a dropout of 0.15. The final application DNN is trained using all the 100 

members of the data set and its validation error is inferred using the average cross-validation 
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error (Table 27, column 2). The average cross validation-error is given by equation (107) [42, 

75]. 

𝑅𝑀𝑆𝐸𝑐𝑣=√
1

100
∑∑(𝑦(𝑔−1)×20+ℎ − 𝑦̂(𝑔−1)×20+ℎ)

2
20

ℎ=1

5

𝑔=1

 (136) 

 

Figure 62. Estimated reliability of links (𝑅̂𝑙𝑖𝑛𝑘𝑠), as a function of links reliability (𝑝𝐿) 

Table 27. MC and DNN performance 

Architecture Error Paired t test Computation time 

Best DNN RMSE p-value 95% C.I. Monte Carlo [s] 
MC-DNN 

model [ms] 

5, 30, 0.15 0.01460 0.1029 [-0.0005, 0.0053] 1223.59 0.316 

 

The error (0.01460) outperforms previous results achieved by ANN-based approaches, 

e.g., RMSE of 0.06260 [42] and RMSE of 0.04406 [75]. Also, a paired t-test between the actual 

reliability and the reliability predicted by the DNN was performed. p-values and 95% confidence 

intervals (Table 27, columns 3, 4) for the mean difference show no significant pairwise 

difference between actual and the predicted values. Therefore, the DNN provides good fit as 
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shown in Figure 62. Figure 62 also shows that the predicted values (𝑅𝑙𝑖𝑛𝑘𝑠) noticeably 

underestimate the actual reliability when the links reliability values (𝑝𝐿) are greater than 0.99 

(approximately). To improve this performance, a hierarchical approach that integrates a 

specialized DNN trained for link reliabilities greater than 0.99, is used. The best specialized 

DNN architecture was (50, 50, 0). Therefore, the appropriate DNN should be selected in 

equation (106) when applied for network reliability estimation. 

There is a significant computation time difference between the pure MC algorithm and 

the integrated framework based on MC-DNN (Table 27, columns 5, 6). Table 27 (columns 5, 6) 

shows the computation time of a single network reliability value 𝑅̂𝑛𝑒𝑡, for a given combination of 

input pair of values (𝑝𝐿, 𝑝𝑁). The MC average time calculation (1223.59 s) for a single value 

𝑅̂𝑛𝑒𝑡 is based on the total time to estimate 100 link reliability values. On the other hand, the total 

time to compute the network reliability for 10,000 input pairs (links and nodes reliability draws) 

for a total of 1,001 time values (between 0 and 10,000 hours) was 3,162 seconds. However, the 

DNN model average computation time for a single value of 𝑅̂𝑛𝑒𝑡 is only 0.316 ms (i.e., 

3,162𝑠

10,000 ×1,001
). This time reduction is convenient for fast reliability estimation as in approximately 

3 seconds, 10,000 network reliability draws can be obtained providing not only a point estimate 

but also credible bounds for any given time value. A laptop with a processor Intel(R) Core (TM) 

i7-8565U CPU @ 1.80GHz, and 16GB in RAM was used.  

6.3.4.4. Network reliability estimation  

In this section the network reliability estimation is illustrated. The links reliability draws 

(section 6.3.4.1.2) and the nodes reliability draws (section 6.3.4.2.2) were fed to the hierarchical 

DNN model (equation (106) with the appropriate DNN) to obtain network reliability draws for 
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1,001 time values between 0 and 10,000 hours. The median values (solid line) as well as the 95% 

credible bounds (dashed lines) are shown in Figure 63. 

 

Figure 63. Network reliability and 95% credible intervals 

6.3.4.5. Network reliability estimation updating 

Once additional information becomes available, the updated links reliability draws 

(discussed in section 6.3.4.1.4) and nodes reliability draws (discussed in section 6.3.4.2.4) are 

fed to the proposed DNN model to obtain updated network reliability draws for the 

corresponding 1,001 time values between 0 and 10,000 hours. The median values (solid line) as 

well as the 95% credible bounds (dashed lines) are shown in Figure 64. As expected, the 

informative prior Bayesian updating improved the precision of the estimates. Figure 65 shows 

the initial network reliability estimation with credible intervals in blue solid lines. Figure 65 also 

shows the updated network reliability estimation with credible intervals in red dashed lines. The 

updated reliability and credible intervals start at time = 5,760 hours, i.e., when “new data” 

become available. Credible intervals for updated network reliability are narrower than the initial 

credible intervals. 
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Figure 64. Updated network reliability and 95% credible intervals 

 

Figure 65. Initial and updated network reliability and 95% credible intervals 

6.3.5. Conclusion 

Most of the current work on network reliability considers perfect nodes and that the 

reliability of links or nodes is constant or even perfect. This study has considered the reliability 

of both links and nodes as a function of time in the prediction of all-terminal network reliability. 

This work has proposed a framework to account the dynamic behavior of network by using 
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degradation data from both links and nodes of a network and to estimate its all-terminal 

reliability as a function of time. Due to the complexity of the problem, the proposed framework 

integrates BM, MC simulation, and DNN. BM allows both initial estimation of degradation 

model parameters and updating of parameters with new data. Links and nodes reliability 

estimates can be evaluated from the model parameters. In addition, an integration of MC-DNN 

with Bayesian approach provides accurate and fast estimation of both initial and updated 

predictions of links/nodes and/or all-terminal network reliability functions for any given time, 

not only as point estimates but as credible intervals.  

The proposed framework could be used in situations where fast links, nodes, and/or 

network reliability estimation and updating is required, such as an online reliability monitoring 

system. Based on (usually limited) initial accelerated degradation test data, the framework could 

provide estimates of reliability as a function of time. Furthermore, if during normal operation, 

links, nodes, or both change their degradation profile, this variation in new data can be captured 

by the framework for proper and timely updating of the reliability predictions. Therefore, the 

proposed framework is compatible with and provides a way to take advantage of modern sensors 

technology as sources of new degradation data to update the reliability predictions. The updated 

reliability predictions may provide valuable information to decision makers for taking proper 

actions regarding network operations management. This information is important for the users as 

well as for the manufacturers, especially in logistical decision making such as preventive 

maintenance, warranty policy, and spare parts management. 
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CHAPTER 7. CONCLUSION AND SUMMARY 

This dissertation presents a series of studies on the reliability analysis of complex CPSs. 

Reliability modeling and assessment approaches are provided considering physical components, 

hardware/software interactions, and overall CPS reliability modeled as networks.  

A generic model is proposed for reliability prediction of physical components of CPS. 

The proposed model considers multi-stress variables and multi-stress levels and is based on ADT 

test design and data analysis. An extensive review on FHE testing methods provides input for the 

ADT test design FHE. Although ADT data of FHE devices were used to demonstrate the 

developed ADT methods, most of them, with careful consideration of material properties, could 

be applied to other kind of physical components that exhibit degradation. The proposed model 

considers multi-stress factors combinations experiments whose resultant degradation data are 

used to fit a nonlinear mixed-effects regression model and estimate time-to-failure distributions 

parameters. The mean-time-to-failure estimates for different stress combinations are then used to 

fit a developed multi-stress factor stress-life (S-L) model. The S-L model, based on equivalent 

stress, allows estimating the product-life under given operating conditions. The framework also 

provides a method to estimate both the expected damage accumulation and its variability at any 

given time and operating conditions. Additionally, the framework provides a procedure to 

evaluate the reliability as a function of time and given operating conditions, useful for both 

constant and sequences of (varying) operating conditions. 

Since hardware, software, and their interactions constitute crucial aspects of CPSs, a 

reliability modeling and assessment approach is proposed to take into account such aspects. Most 

of the existing work has assumed either independence between hardware (HW) and software 

(SW) or a fixed proportion of hardware reported failures to represent HW/SW interactions. On 
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the other hand, this work proposes a reliability model for a system that captures the changing 

interactions between hardware and software based on probabilistic models. The randomness of 

the fraction of HW/SW interaction failures demands the use of stochastic programming methods 

to estimate the parameters of a hardware failure time distribution and the corresponding 

hardware reliability. To consider randomness, a stochastic optimization problem is formulated 

and solved with the general algebraic modeling system. Software reliability is modeled with a 

non-homogeneous Poisson process (NHPP) to fit the software failure data. To capture the 

interaction between hardware and software, a Markov process model is used by considering that 

a degraded hardware state leads to a HW/SW failure and eventually to a system failure. By 

considering this probabilistic approach, confidence intervals and quartiles can be obtained for 

system reliability in addition to point estimators. 

Complex CPSs can be modeled by networks, whose reliability estimation is a NP-hard 

problem. As an alternative to classical exact NP-hard algorithms, approaches based on deep 

learning are receiving attention. This dissertation proposes a CNN-based approach to estimate 

the all-terminal network reliability. This approach introduces a multidimensional matrix format 

to embed the topological and link reliability information of networks, providing a novel use of 

CNNs beyond image classification. Moreover, a DNN-based approach is proposed by integrating 

DNN and GEM. This integration allows the estimation of all-terminal network reliability 

considering varying network sizes. Neither proposed approach needs the reliability upper-bound 

as an input and outperform previous works in terms of the RMSE. Nevertheless, such approaches 

consider perfect nodes. 
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In addition, this dissertation proposes a DNN-MC approach to estimate the reliability of a 

network considering that both links and nodes can fail. The proposed DNN-MC framework can 

be used for real-time monitoring of network reliability.  

Finally, the relaxation of perfect nodes assumption as well as the consideration of 

degradation in the components of a network, makes a contribution to realistic reliability 

estimation of networks. Hence, this dissertation develops a framework to estimate the all-

terminal reliability of a network, whose nodes and links not only have the possibility to fail but 

also exhibit degradation. Degradation data provides useful information to estimate the all-

terminal network reliability as a function of time. Due to the complexity of the problem, the 

proposed framework integrates BM, MC, and DNN. BM is employed for both initial estimation 

of degradation model parameters and updating of parameters as new data become available. The 

case study results revealed that updating of parameter allows to reduce the uncertainty in 

parameters estimation by incorporating new data to the proposed framework. Moreover, the 

framework provides credible intervals on top of point estimates of reliability for links, nodes, and 

network. The initial and updated reliability predictions may provide valuable information to 

decision makers for taking proper actions regarding network operations management. This 

information is important for the users as well as for the manufacturers, especially in logistical 

decision making such as preventive maintenance, warranty policy, and spare parts management. 

7.1. Future research 

The proposed framework provides a way to take advantage of modern sensors technology 

that can capture multidimensional data in real-time. Such data is useful for network reliability 

estimation and updating of parameters. 
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After the proposed dissertation, future research direction may include areas such as the 

following: 

• MLE estimation of parameter was applied at component level in CHAPTER 3. 

Bayesian methods could be explored as well for parameter estimation and 

updating if new data are available. Bayesian methods would allow to obtain 

credible intervals on top of point estimates. 

• General degradation path model has been considered in this work at both 

component and system level. Stochastic processes, e.g., Wiener or gamma 

processes, could be investigated as well. 

• This work has assumed distributions for parameters for the hardware/software 

interactions model, based on the literature. To improve the accuracy, root cause 

analysis databases could provide statistical data on the proportion of failures 

classified as hardware that are actually HW/SW interactions failures. Such data 

could be used to provide more realistic estimate of the assumed distributions. 

• Deep learning methods such as DNN and CNN have been considered for all-

terminal network reliability estimation. More sophisticated approaches could be 

investigated, e.g., graph neural networks. An abstract about this research idea was 

recently submitted for RAMS 2022 Conference. 

• On top of the estimation of network reliability as a function of time proposed in 

CHAPTER 6, the RAUL can be estimated as well. RUL estimation could be 

based on the network reliability and a given threshold reliability for the network. 

RUL prediction can be a useful input for prognostic health management. 
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