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Budgeting the Adoption of Sensors on Connected Trains  

Abstract 

Railroads can save millions of dollars by deploying multi-sensor track scanners on connected 

trains to detect track and roadbed problems that could cause accidents. However, uncertainties 

about performance and return-on-investment impeded the development and deployment of such 

sensor systems. This research develops a budget model that both manufacturers and railroads can 

use to decide on a suitable tradeoff between price affordability and achievable performance. A 

case study of five Class 1 railroads demonstrates that a payback within two years is achievable at 

$4,000 per device and an annual maintenance cost of one-quarter the system deployment cost. 

 

Keywords: Benefit-cost analysis; non-destructive evaluation; payback period; positive train 

control; railroad safety; return-on-investment. 

  



 

 

 

1. Introduction 

Railroads use less energy to move more bulk freight across longer distances than any other mode 

of transportation (BTS 2020). Hence, their safe, efficient, and reliable operation is critical to the 

economic health of a nation. Nevertheless, U.S. railroads had an annual average of 2,570 

accidents over the past decade (Figure 1), based on the authors’ analysis of the Federal Railroad 

Administration (FRA) railroad accident database (FRA 2020). Those accidents resulted in an 

industry average financial loss of $376 million each year (Figure 1). Human errors caused more 

than 35% of those accidents. Consequently, railroads recently deployed a government-mandated 

system called positive train control (PTC) to prevent accidents due to human errors (Bridgelall 

and Tolliver 2020). 

The next dominant accident cause after human errors was track and roadbed (T&R) 

problems, which consistently accounted for more than 23% of the accidents each year. Railroads 

currently use multisensory track scanning (MTS) systems on dedicated railroad inspection 

vehicles to scan for T&R problems (Chia, et al. 2018). However, this method has several 

disadvantages. First, railroads lose revenue service capacity when dedicated condition 

monitoring vehicles and track inspectors occupy the maintenance-of-way. Second, the finite 

allocation of track inspection resources limits the space-time coverage of the network (Peng and 

Ouyang 2012). Third, infrequent scanning can result in failure to detect problems that develop 

between scanning cycles (Rahimikelarijani, Mohassel and Hamidi 2020).  Furthermore, the 

prediction of track geometry degradation is challenging (Cárdenas-Gallo, et al. 2017) 

(Karimpour, et al. 2018). Those issues led to a growing body of research to overcome the 

challenges of installing MTS systems on revenue service trains (Weston, et al. 2015). 



 

 

 

An MTS system consists of a suite of sensors, wireless communications, power supply, and 

software that can intelligently detect many T&R problems. Sensor types include optical, 

acoustic, radar, LiDAR, inertial, and electromagnetic (Chia, et al. 2018). There is no one type of 

sensor that can detect all types of T&R problems. Therefore, MTS systems must combine 

multiple types of sensors and the appropriate signal processing methods (Li, et al. 2017). Earlier 

efforts focused on wireless sensor networks (WSN) to combine the data from multiple sensors 

situated throughout the train (Hodge, et al. 2014). More recently, the Internet-of-Things (IOT) 

movement generalized the concept of connected railroads (Fraga-Lamas, Fernández-Caramés 

and Castedo 2017). PTC is an example of connected railroads that can communicate train 

operating parameters to a cloud-based system for decision making about operating and 

maintenance strategies (Brezulianu, et al. 2020). 

Steady reductions in price, power consumption, and size continue to improve the feasibility 

of adding sensors to connected trains (Bernal, Spiryagin and Cole 2018). However, railroads 

have not yet deployed MTS systems on service trains because of uncertainties about the upfront 

capital needed, performance, and the timing of a return-on-investment (ROI).  

To further the development of PTC-compatible MTS systems, manufacturers need to 

determine a price target that railroads can evaluate for affordability, and conduct engineering to 

determine product feasibility. The objective of this research is to develop a closed-form price 

budget model that both railroads and engineering can use to quickly explore scenarios that could 

be mutually beneficial. Section 2 explains how this work relates to similar research involving the 

benefit-cost analysis (BCA) of railroad technology deployments. The contributions of this 

research are: 



 

 

 

• The derivation of a closed-form mathematical price budget model that researchers can 

customize for their own applications (Section 3) 

• Descriptive analysis of trends in Class 1 railroad financial loss from accidents that MTS 

systems could help to prevent (Section 4.1) 

• A case study of railroad-specific device price budgets (DPB) to guide product 

development and deployment decisions (Sections 4.2 to 4.5). 

• A sensitivity analysis for each Class 1 railroad to explore the effects of trading off 

system performance and annual maintenance cost (Section 4.6) 

The discussion (Section 5) provides some additional insights about model usage and some 

limitations of the data used. Section 6 concludes with a discussion of the generalization of the 

model for other application areas and briefly describes future work already in progress. 

2. Related Works 

Early attempts to investigate the use of onboard devices to automatically monitor for T&R 

condition focused on feasibility assessment and performance evaluation. Lee et al. (2012) 

mounted accelerometers to the axle box and the bogie of a high-speed train to estimate track 

geometry measurements from the lateral and vertical accelerations (Lee, et al. 2012). Around the 

same time, Mori et al. (2013) reported that a compact size, battery-powered device could 

effectively estimate track irregularities from car body dynamics (Mori, et al. 2013). 

The continuous cost reduction of smartphone technology and advancements in their sensing 

capabilities led to more recent studies about their potential use on trains. Paixão et al. (2019) 

found that acceleration measurements using smartphones can identify critical situations that 

increase derailment risks (Paixão, Fortunato and Calçada 2019). Bridgelall & Tolliver (2020) 

demonstrated that localization errors from GPS reception issues can be improved by combining 



 

 

the signals from multiple train traversals (Bridgelall and Tolliver 2020). Balouchi et al. (2020) 

developed a cab-based track monitoring system and found good agreement with ground truth 

measurements (Balouchi, Bevan and Formston 2020). 

The continuous advancements in data mining, artificial intelligence, and machine learning 

has motivated their application to the analysis of data from vibration, sound, and image sensors 

aboard passing trains. Tsunashima (2019) reported that machine learning algorithms could 

classify detected track faults from their vibration signatures (Tsunashima 2019). Farlik and 

Tabaszewski (2020) trained three independent neural networks with vibration signals to detect 

track issues and found that the solution is sensitive to train speed (Firlik and Tabaszewski 2020). 

Sun et al. (2020) applied machine learning algorithms to sound signals and found that support 

vector machines provided the best performance in predicting track switch condition (Sun, et al. 

2020). On the other hand, Bukhsh et al. (2019) found that using tree-based classification 

techniques to predict the maintenance needs for railway switches can provide greater 

interpretability than other types of machine learning models (Bukhsh, et al. 2019). Sysyn et al. 

(2019) found that applying machine learning to high-resolution images of rail crossings can 

detect surface cracks that are evidence of rail contact fatigue (Sysyn, et al. 2019). Lasisi and 

Attoh-Okine (2019) combined bagging and boosting ensemble classifiers to enhance the 

prediction accuracy of annual fatigue track defects (Lasisi and Attoh-Okine 2019). 

A recent survey found that even though freight railroads believe that the adoption of 

automation technologies will bring future benefits, they have significant concerns around 

training, deskilling, and technology performance (Brooks, et al. 2017). There has been little 

analysis at the intersection of engineering and railroad decision making about technology 

adoption. There were no efforts reported in the literature to develop a model that could help 

 



 

 

 

engineering and railroads evaluate the tradeoffs among price, device performance, and ROI. This 

work will help to reduce uncertainties about the affordability and performance of onboard MTS 

systems that are suitable for deployment on connected service trains. 

3. Methods 

The next subsections develop the DPB as a function of the desired payback period, discount rate, 

annual maintenance cost, and system performance. 

3.1 Return on Investment 

The theory of BCA determines an ROI by accumulating the annual net benefits from an initial 

investment or cost to acquire a system. The definition of cumulative discounted net benefit is 

ROI = ∑
𝐵𝑖 − 𝐶𝑖

(1 + 𝑟)𝑖

𝑌

𝑖=1

 (1) 

where Bi and Ci are the discounted annual benefits and costs of maintaining the system, 

respectively. The variable r is the discount rate, i is the future year, and Y is the total number of 

years for payback. The convention is to equate ROI with the discounted net benefits accumulated 

after Y years only. Therefore, any additional net benefits realized after the Y years of payback is 

bonus savings beyond the ROI. 

In this application of BCA, the annual benefits are the average amount that the MTS system 

will save a railroad in accident prevention. The annual costs are the average annual amount that 

the railroad will spend to operate and maintain the installed system, including software licensing 

fees. The payback period is the value of Y that solves 

∑
𝐵𝑖 − 𝐶𝑖

(1 + 𝑟)𝑖

𝑌

𝑖=1

= 𝐶T (2) 



 

 

 

where CT is the capital cost to deploy the system. The modeling treats CT as the system price 

budget (SPB) that railroads will evaluate to consider affordability. Analyst use an average value 

for benefit and cost when the annual fluctuations are unknown. For example, it is not possible to 

predict the exact financial loss from accidents each year. Therefore, using the historic average 

annual financial loss serves as the best estimate of future annual financial losses from accidents, 

if everything else remains unchanged. Similarly, it is not possible to know the future cost of 

maintenance each year. However, an average value based on empirical knowledge of railroad 

operations and maintenance would be the best estimate. Furthermore, using an average value for 

each year helps to simplify the model and expose smoothed trends. 

The average value is unchanged each year, therefore, the model can treat it as a constant. 

This also enables normalization with other variables. Selecting the estimate of the average 

annual benefit as the constant produces the following normalization: CT can be a proportion η of 

Bi and Ci can be a proportion λ of Bi. This normalization transforms Equation (2) to the form 

∑
𝐵𝑖 − 𝜆𝐵𝑖

(1 + 𝑟)𝑖

𝑌

𝑖=1

− 𝜂𝐵𝑖 = 0 (3) 

Given that Bi is a constant each year, it can move outside of the summation. Then, dividing both 

sides by Bi reduces the expression to 

(1 − 𝜆) ∑
1

(1 + 𝑟)𝑖

𝑌

𝑖=1

− 𝜂 = 0 (4) 

which is independent of the estimated average annual benefit. The normalization with respect to 

the average value for annual benefits allows an analyst to parameterize costs in direct proportion 

to estimates of the average annual benefits. Such parameterization enables future sensitivity 

analysis to gain insights. 



 

 

 

The variable normalization refines the model with parameterization, but it is still not in 

closed form. That is, a solution for η as a function of Y is necessary. Such a solution cannot be 

determined algebraically. Therefore, the strategy was to develop a numerical solution by 

formulating an optimization problem for a set of Y values as 

Minimize: 

Subject to: 

  

(1 − 𝜆) ∑
1

(1 + 𝑟)𝑖

𝑌

𝑖=1

− 𝜂 

𝜂 > 0 

𝑌 𝜖 {1, 2, … , 20} 

(5) 

Subsequently, fitting a logarithmic function to the solution set {Y, η} yielded a closed-form 

solution as 

𝜂 = 𝛼 ln 𝑌 + 𝛽 (6) 

where the parameters α and β were determined by minimizing the sum-of-squared error between 

the solution set and the estimated function. 

Accounting for the normalization, the SPB, CT, is 

𝐶T = 𝜂𝐵A = 𝐵A(𝛼 ln 𝑌 + 𝛽) (7) 

where BA is the estimate average annual benefits realized as expenses prevented from T&R 

accidents each year. Depending on the average performance of the system, the value of BA will 

be in direct proportion, Pn, to the average annual financial loss, AT, due to accidents that the 

system can help to prevent. Hence, 

𝐵A = 𝐴T𝑃𝑛 (8) 

and after combining equations, the SPB becomes 

𝐶T = 𝐴T𝑃𝑛(𝛼 ln 𝑌 + 𝛽) (9) 

where Pn depends on the system performance developed in the next subsection. 



 

 

 

3.2 System Performance 

The proportion Pn of annual accidents that the system can detect is the probability of detecting an 

existing problem after some number of attempts. The detection probability is a function of the 

first-scan probability, P1, which characterizes the system performance in an environment. That 

is, P1 is the probability that the system can detect a problem after the first scan. Hence, the 

probability of not detecting the problem after the first scan is (1 - P1). Furthermore, the 

probability of not detecting the problem after n consecutive and independent scans is (1 − 𝑃1)𝑛. 

Therefore, the probability of detecting the problem after n consecutive scans is 

𝑃n = 1 − (1 − 𝑃1)𝑛. (10) 

The theory of signal detection involves a fundamental tradeoff between the false negative 

rate (missed detections) and the false positive rate (noise detected as signal) of a system. Figure 2 

illustrates the relationships between the first-scan probability, the signal detection threshold, and 

the statistical separation between signal and noise. The example shows a hypothetical 

distribution of noise amplitude relative to a distribution of signal amplitude for a given data 

collection environment. The relative distributions can differ under conditions of lighting, 

electromagnetic interference, and other environmental factors that could affect the system 

performance, regardless of the detection threshold setting. The value of P1 is the area under the 

normalized signal distribution curve and above the signal detection threshold. This example 

shows that for a normally distributed signal, setting a detection threshold at the mean a1 will 

yield an area under the upper half of the curve of P1 = 0.50. Alternatively, setting a detection 

threshold at the first upper standard deviation a2 will result in P1 = 0.364. At the a2 threshold 

setting (P1 = 0.364) the false positive rate will be zero (or negligibly low) because the noise 

amplitude never exceeds that threshold. However, decreasing the threshold below a2 will further 



 

 

 

increase P1 because the area under the signal distribution curve will increase. However, the area 

under the noise distribution curve, above the lower threshold, will also increase, which will 

increase the false positive rate. 

False positives are costly to railroads because they must send human inspectors to the 

location to verify a problem detection. Decreasing P1 by increasing the signal detection threshold 

will reduce the false positive rate. However, doing so will also increase the number of scans 

required to detect a problem as governed by Equation (10). The network traffic constrains the 

average number of scans per day achieved across any segment of track. 

3.3 Data Mining 

The average annual financial loss from accidents due to T&R problems was determined by 

mining the FRA railroad accident data (FRA 2020). The database labels the cause of an accident 

into one of five broad categories: human error, T&R problem, mechanical failure, equipment 

failure, and signaling error. The analyzed scenarios focused on Class 1 railroads (Friebel, 

McCullough and Angulo 2014) because they will benefit most from deploying MTS systems. 

The data mining revealed that only five of the Class 1 railroads consistently reported accidents 

for the decade 2009 to 2019, so the case study focused on those railroads. 

Locomotives (power-units) must host MTS systems because they are typically the only 

source of power and communications on a train. Consequently, the size of the initial investment 

for maximum network coverage would be directly proportional to the locomotive fleet size. The 

number of in-service locomotives LM for a railroad was determined from their annual report to 

the U.S. Surface Transportation Board (STB). To minimize the upfront capital required, only one 

of the power-units of a multi-locomotive train need to host the MTS system. Therefore, the 

number of MTS systems to install, NS, is 



 

 

 

𝑁S =
𝐿M

𝐿σ
 (11) 

where Lσ is the average number of locomotives per train and LM is the number of locomotives in 

service. The value of Lσ was determined as a ratio of the annual locomotive miles to the annual 

train miles listed in the STB report. 

The value of n needed to determine the probabilistic performance of the system is a function 

of the annual train traffic of a railroad. That is, the average number of scans per day per track 

segment is the average network traffic measured in trains per day, Td. Hence, n = Td, which the 

STB report lists. The average annual train traffic across the network is the ratio of the number of 

train miles to the number of track miles used to move those trains. The STB report has both 

values for each operating year. 

3.4 System Price Budget 

The SPB is the maximum purchase price that would allow a railroad to achieve an ROI or 

payback in Y years. The SPB is a function of the installation cost, CI, and the DPB such that 

𝐶T = 𝐶I ⌈
𝑁S

𝐾S
⌉ + 𝑁S𝐶D (12) 

where NS is the number of devices to install and CD is the DPB. The model accommodates 

installation cost by batches of KS devices. The ceiling function ⌈∙⌉ assures that the number of 

batches is an integer. This model generalizes for a fixed price to retrofit a group of locomotives 

in a yard. To the extreme, KS = 1 when there is no group pricing for installations. Substituting 

Equation (9) into Equation (12) yields 

𝐶I ⌈
𝑁S

𝐾S
⌉ + 𝑁S𝐶D = 𝐴T𝑃𝑛(𝛼 ln 𝑌 + 𝛽) (13) 



 

 

 

3.5 Device Price Budget 

Substituting Equation (10) into Equation (13) and solving for the DPB, CD, yields 

𝐶D =
𝐴T(1 − (1 − 𝑃1)𝑛)(𝛼 ln 𝑌 + 𝛽) − 𝐶I ⌈

𝑁S

𝐾S
⌉

𝑁S
 (14) 

Substituting n for Td as derived from the STB report and Equation (11) into Equation (14) yields 

the full closed-form cost model as 

𝐶D =
𝐿σ

𝐿M
[𝐴T(1 − (1 − 𝑃1)𝑇D)(𝛼 ln 𝑌 + 𝛽) − 𝐶I ⌈

𝐿M

𝐿σ𝐾S
⌉]. (15) 

 

4. Results 

Each subsection of this section parallels those of the methods section to provide the results of the 

BCA modeling, data mining of the FRA accident database, and the data extraction from the STB 

reports. 

4.1 Return on Investment 

Figure 3 shows the numerical solution of the BCA for three scenarios of annual maintenance cost 

at 5%, 15%, and 25% of the SPB. The overlapping dotted lines are the functions fitted to the 

series of SPB results for each payback year. Each scenario used the standard FRA discount rate 

of 7% for BCA (FRA 2016). The scenario for annual maintenance cost at 15% of the SPB uses 

the recommended FRA discount rate of 3% to assess the sensitivity. The analysis indicates that 

lowering the discount rate from 7% to 3% produces a relatively small increase in the SPB within 

the first five years and increases by a factor of 13% two decades later. The insets show the best 

fit functions to the numerical solutions for each scenario of the BCA. The goodness-of-fit 



 

 

 

measure is based on the coefficient of determination, R2. Table 1 summarizes the parameter 

estimates in Equation (6) and the R2 values for each scenario. 

4.2 System Performance 

As discussed previously, the first-scan probability depends on the signal detection threshold and 

the amount of separation between signal and noise during data collection. Figure 4 shows the 

probability of detection, Pn, as a function of the first-scan probability and three values for the 

number of scans, n, per track segment each day. As observed, the sensitivity of Pn to P1 increases 

rapidly as the number of scans exceed 10. 

4.3 Data Mining 

Three Class 1 railroads did not consistently report data for accidents each year of the past 

decade, so they did not qualify for the case study. Figure 5 illustrates the cumulative trend in 

financial loss, AT, from accidents due to T&R problems. The ranking of financial loss from most 

to least were from BNSF Railway Company (BNSF), Union Pacific Corporation (UP), CSX 

Transportation (CSX), Norfolk Southern (NS), and Kansas City Southern (KCS). The table also 

summarizes the main statistics needed from the 2019 STB reports, and the calculated metrics as 

previously described. The scenarios analyzed focused on revenue freight trains where 

locomotives moved unit, way, and through trains across the networks. Table 2 summarizes the 

financial loss for each railroad, averaged over the past decade. 

4.4 System Price Budget 

The SPB involved a trade-off between the installation cost and the DPB. That is, given a fixed 

SPB, an increase in the batch installation cost requires a proportional decrease in DPB. The 

sensitivity is determined by taking the derivative of DPB with respect to the installation cost 

where 



 

 

 

𝑑𝐶D

𝑑𝐶I
= −

1

𝐾S
 (16) 

This result indicates that for KS = 1, each unit of price increase for installation requires an equal 

unit of DPB decrease. However, any amount of DPB decrease will increase the difficulty of 

developing a high-performance device within a smaller cost budget. Increasing the batch size 

will reduce the sensitivity but doing so will also increase the labor requirements for each 

installation. This result points to a better strategy, which is to eliminate the installation cost and 

rely on a higher annual maintenance fee to recover related expenses over time. Doing so will 

maximize the DPB that engineering can work with to develop a viable product. 

4.5 Device Price Budget 

Table 3 summarizes results of the SPB, DPB, and annual maintenance costs calculated for 

nominal parameter values. Those nominal values are a discount rate of 7%, zero installation 

charge, an annual maintenance proportion of 25% of the total system cost, a desired payback 

period of 2 years, and a first-scan probability P1 = 0.50. 

4.6 Sensitivity Analysis 

Figure 6 displays the DPB sensitivities to P1 and λ for each of the railroad analyzed. 

The horizontal axis is the desired payback year after deployment. The vertical axis is the DPB. 

A regression analysis between the DPB and the accident cost per train revealed a strong 

correlation with a coefficient of determination, R2, ranging from 0.94 to 1.0. Figure 7 shows the 

regression for three scenarios of P1. The regression fit is a linear relationship for a given payback 

period and annual maintenance cost proportion of the SPB. For example, if the annual 

maintenance cost is 25% of the SPB and the desired payback period is 2 years, the minimum 



 

 

 

DPB ranges from $44,000 to $6,000 when first-scan probabilities range from 15% to 50%, 

respectively. 

5. Discussion 

Data mining the FRA accident database reveals that since 2013, the analyzed Class 1 railroads 

experienced a declining trend in financial loss from accidents due to T&R problems. The decline 

was less than $30 million over 7 years. The trend shows that the financial losses for the five 

railroads have plateaued near $50 million in the recent 3 years. Increasing pressure to move more 

freight over the same tracks is likely to cause more wear and increase the burden of frequent 

T&R inspections. These factors suggest that increasing the frequency of track inspections with 

onboard MTS devices could help to break the plateau in the accident trend without reducing 

revenue service capacity. 

The numerical solution to the normalized BCA shows that the SPB as a factor of the average 

annual benefits from T&R accident prevention best fits a natural log function of payback period 

in years. The R2 values summarized in Table 1 for all scenarios are greater than 98%, thus 

showing that the natural log function is a good fit. In general, the SPB increases with the desired 

payback period, and the rate of increase slows with an increase in the annual maintenance cost 

proportion of the SPB. The increase for all scenarios is nonlinear, with a more pronounced 

increase within the first five years. 

The optimization separately derived each function for different values of discount rate, r, 

and maintenance cost as a proportion of the SPB, η. The FRA recommended a discount rate of 

r = 7%, so it is a fixed parameter that reduces the complexity of estimating α and β as a function 

of λ. Practically, discrete models for scenarios of λ = {0.05, 0.15, 0.25} will supply enough 

information for decision making because other intermediate values can be interpolated visually 



 

 

 

from the trends. The BCA solution shows that for each scenario, a higher value of λ decreases 

the sensitivity of the SPB to the desired payback period after the first five years. By extension, 

selecting a payback period within the first five years would produce the largest impact on DPB. 

The average train traffic is a gross approximation by the ratio of annual train miles to track 

miles that the railroad operated. This estimate reflects average daily train traffic across the entire 

network. However, the distribution of traffic varies across segments of the network. The STB 

report lists train and locomotive miles separately for track categories A, B, C, D, and E. 

Railroads define the track categories according to thresholds of freight density that they 

supported. Therefore, the sensitivity of problem detection probability, Pn, to first-scan 

probability, P1, will vary according to Figure 4, for different track segments. That is, an increase 

in Pn with respect to P1 will be more pronounced for those track segments with higher traffic and 

vice versa. 

To encourage adoption, manufacturers can reduce some of the upfront capital required for 

system deployment by instead recovering installation costs through higher annual maintenance 

fees. Taking that concept to the extreme, manufacturers may elect to adopt a subscription model 

that moves the initial system cost into an annual maintenance fee. In that case, the model must 

change to reflect that the railroad will accumulate a net benefit G as a function of deployment 

years Y such that 

𝐺(𝑌) = ∑
𝐵𝑖 − 𝜆𝐵𝑖

(1 + 𝑟)𝑖

𝑌

𝑖=1

 (17) 

and there will be no initial capital. Instead, the manufacture will seek an ROI R as a function of 

the deployment years Y such that 



 

 

 

𝑅(𝑌) = ∑
𝜆𝐵𝑖

(1 + 𝑟)𝑖
= 𝐶T = 𝜂𝐵𝑖

𝑌

𝑖=1

 (18) 

and a numerical solution can follow as before to complete the DPB model. 

The sensitivity analysis for all railroads analyzed shows that a lower value of P1 decreases 

the sensitivity of the DPB to the desired payback period after the first five years. Similarly, a 

higher maintenance cost proportion, λ, of the SPB decreases the sensitivity of the DPB to the 

desired payback period after the first five years. Hence, the device manufacturer can balance the 

maintenance cost proportion with an achievable DPB based on a desired payback period and the 

anticipated P1 performance achievable.  

The regression analysis shows that the DPB is predictable as a linear function of the accident 

cost per equipped train, given a desired payback period and maintenance cost proportion of SPB. 

If a larger DPB is necessary to engineer a feasible product, then the trade-off will be one or more 

combinations of increasing the desired payback period, decreasing the annual maintenance cost 

proportion, and increasing the first-scan probability. The DPB will be lower for railroads that 

experienced few accidents per train. Therefore, initially targeting railroads with a high number of 

accidents per train will seed the marketplace and allow for subsequent economies of scale to 

influence further cost reduction and greater market penetration. 

One limitation of using the FRA accident data is that the benefits realized per railroad does 

not include externalities such as improved inspection efficiency and reduced track closures. 

Another limitation is that the FRA dataset may not list accidents with damages below $10,500 

because railroads need not report those. The reported costs include the loss and/or repair of cars 

and locomotives, the repair of signal systems and other structures, and the repair of roadbed and 

track. The reported financial losses do not include those associated with clean up, lost freight, 



 

 

 

societal damages, fatalities, injuries, and line closures. Therefore, the DPB for the railroads 

analyzed may be a conservative estimate. 

6. Conclusions 

Connected trains are part of the Smart Cities and associated Internet-of-Things (IoT) movements 

that seek benefits in operational safety and efficiency through intelligent sensing and data-driven 

decision making. The recent deployment of positive train control (PTC) enables trains to 

communicate their operational situation in real-time and prevent accidents due to human errors. 

However, the system cannot help to prevent accidents from other causes such as track and 

roadbed (T&R) problems. 

During the past decade, researchers have focused on the viability of placing equipment 

onboard revenue service trains to detect T&R problems. However, railroads have not adopted the 

approach because of uncertainties in the achievable performance and the return-on-investment. 

This research developed a price budget model to guide the development of viable and affordable 

multi-sensor track scanning (MTS) systems. Manufacturers can use the model to determine the 

engineering feasibility of MTS systems with adequate performance, within a specific price 

budget. Railroads can use the model to determine affordability and a payback period based on 

the anticipated level of performance. The model is based on deriving a closed-form model from a 

set of point-based benefit-cost analyses with a standard discount rate and several levels of annual 

maintenance cost. A case study for five Class 1 railroads found that the minimum device price 

budget for early adopters would be $4,000. The scenario for this price budget is a 2-year payback 

period and an annual maintenance cost of one-quarter the initial system deployment cost. 

Readers can use the same approach to create closed-form models that can help determine 

device price budgets for many other applications where users will realize financial benefits from 



 

 

 

deploying some quantity of devices. The model helps both the device manufacturer and the first 

adopters to evaluate the tradeoff price for payback period as a function of performance 

expectations. Future work will develop additional closed-form models to guide technology 

deployments in other forms of intelligent transportation systems. 
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Figure 1. Railroad accident statistics. 



 

 

 

 

  

Figure 2. Tradeoff between false positive and false negative rates. 



 

 

 

 

  

Figure 3. SPB factor of annual savings as a function of payback period. 



 

 

 

 

  

Figure 4. Probability of detection as a function of first-scan probability and number of scans. 



 

 

 

 

  

Figure 5. Financial loss from accidents due to T&R problems, by railroad. 



 

 

 

 

  

Figure 6. Railroad specific sensitivity analysis to first-scan probability and maintenance cost proportion. 



 

 

 

 

  

Figure 7. Prediction of DPB by accident cost per train with first-scan probability scenarios (λ = 0.25). 



 

 

 

Table 1. BCA Parameter Estimates by Scenario 

Scenario r λ α β R2 
1 0.07 0.25 0.73 0.81 0.99 
2 0.07 0.15 1.15 0.71 1.00 
3 0.07 0.05 2.21 0.16 0.98 

  



 

 

 

Table 2. Data Mined for Select Class 1 Railroads 

Parameter  BNSF CSX UP KCS NS 
Data Source (BNSF 2019) (CSX 2019) (UP 2019) (KCS 2019) (NS 2019) 
T&R Accident (mean) $28,471,572 $10,962,435 $29,665,807 $1,906,782 $6,003,679 
Locomotives Operated 6,578 3,440  7,969 535 2,812 
Track Miles Operated 39,858 28,949 43,625 4,084 28,422 
Train Miles 161,392,821 61,671,368 115,212,273  8,654,805   70,588,362  
Locomotive Miles 532,407,992  127,435,787 352,728,786 22,083,995 158,376,020 
      
Locomotives/Train 3.3 2.1 3.1 2.6 2.2 
Train Trips 4,049.2 2,130.3 2,641.0 2,119.2 2,483.6 
Trains/Day 11.1 5.8 7.2 5.8 6.8 
Accident Cost/Train $14,279 $6,588 $11,401 $9,123 $4,791 
  



 

 

 

Table 3. SPB, DPB, and Annual Maintenance Cost for Individual Class 1 Railroads 

Parameter  BNSF CSX UP KCS NS 
Sensors Installed, NS 1,984 1,664 2,602 209 1,253 
Detect Proportion, Pn 1.000 0.969 0.992 0.969 0.984 
DPB, CD $18,781 $8,399 $14,887 $11,631 $6,207 
SPB, CT $37,450,294 $13,975,734 $38,735,200 $2,430,909 $7,777,392 
Annual Maintenance $5,617,544 $2,096,360 $5,810,280 $364,636 $1,166,609 
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