
Contents lists available at ScienceDirect

Journal of Public Transportation

journal homepage: www.journals.elsevier.com/journal-of-public-transportation

Using artificial intelligence to derive a public transit risk index
Raj Bridgelall
North Dakota State University, USA

A R T I C L E I N F O

Keywords:
Data Mining
Policymaking
Risk Assessment
Supervised machine learning
Terrorism tactics
Vulnerability assessment

A B S T R A C T

A terrorist attack on the public transportation system of a city can cripple its economy. Uninformed investments
in countermeasures may result in a waste of resources if the risk is negligible. However, risks are difficult to
quantify in an objective manner because of uncertainties, speculations, and subjective assumptions. This study
contributes a probabilistic model, validated by ten different machine learning methods applied to the fusion of
six heterogeneous datasets, to objectively quantify risks at different jurisdictional scales. The risk index is
purposefully simple to quickly inform a proportional prioritization of resources to make fair investment deci-
sions that stakeholders can easily understand, and to guide policy formulation. The main finding is that the risk
indices among public transit jurisdictions in the United States distribute normally. This result enables agencies to
evaluate the quality of their risk index calculations by detecting an outlier or a large deviation from the expected
value.

1. Introduction

The U.S. public transit system is operated by approximately 6800
transit agencies in tribal, rural, small urban, and large urban commu-
nities (APTA, 2020a). In 2018, the system handled almost 10 billion
trips, representing a 21% increase from 1997. This increase in ridership
was more than the 19% increase in the U.S. population during the same
period. Recent studies indicate that millennials prefer public transpor-
tation over personal modes of mobility. This trend signals a continua-
tion of ridership growth (TCRP, 2018).

Public transit systems worldwide have the common characteristics
that they are large, open, populated, and highly interconnected. These
properties make them both attractive and vulnerable to terror attacks
(Needle and Renee, 1997). The consequences of a physical attack can
lead to fatalities, injuries, and damage that can cripple the system’s
ability move people. After the September 11, 2001, attacks the U.S.
government established the Transportation Security Administration
(TSA) to increase airport security by controlling access to commercial
aviation systems. A study shortly after found that there is a greater
willingness to pay for risk reduction in air travel (Carlsson et al., 2004).
However, a focus on aviation increases the risk that terrorists will divert
their attention toward public transit systems. Yet, agencies pay little
attention to physical security countermeasures because of uncertainties
about threats and vulnerabilities. Unlike aviation, it is not practical to
screen all public transit users (Jenkins and Butterworth, 2010). Instead,
transit agencies tend to focus risk assessments on concrete safety issues
such as susceptibility to natural hazards (FTA, 2019).

Terrorists are attracted to public transit systems because of the po-
tential for catastrophic impacts from loss of capacity, easy access, the

ability to act covertly within crowds, the ease of spreading agents and
weapons throughout the system, and the convenience of access to quick
escape routes (Bye et al., 2020). Attention generally turns to physical
security in reaction to a recent event (Sunstein, 2003). By then, the task
of conducting a risk assessment becomes daunting because it is im-
practical to consider all possible threats on a vast system. The most
popular method of probabilistic risk assessment was borrowed from
engineering to measure risk in direct proportion to levels of threat,
vulnerability, and consequences (Stewart and Robert, 1997). However,
such models are linear, and do not translate well to risk assessments
that must consider the non-linearities of attack motives and behaviors.
Subsequently, agencies must turn to empirical and subjective measures
(Brown and Louis Anthony Cox 2011).

The lack of objectivity in empirical assessments lead to incon-
sistencies in risk level comparison, hindering effective investment
prioritization, fair resource allocation, and policymaking. Hence, an
objective quantification of risk requires an analytical approach to vul-
nerability assessment. However, it is not practical to conduct a vul-
nerability assessment by speculating on all possible tactics and attack
targets. There is no model that can map attack tactics to likelihood of
success in a public transit environment.

The goal of this research is to create a risk index that objectively
quantifies the risk of attack on public transit systems. The Risk Analysis
and Management for Critical Asset Protection (RAMCAP™) framework
recommended by the U.S. Department of Homeland Security re-
commends (Brashear and William Jones, 2010) is a standard approach
to risk assessment. The RAMCAP framework defines risk (R) as the
product of threat (T), vulnerability (V), and consequences (C), com-
monly known as the TVC risk assessment. Threats are the specific modes
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of attack that terrorists can use against their target. Vulnerability is the
likelihood that an attack on the target will be successful when using the
specific threat mode. Consequences depend on the target. The U.S.
Federal Transit Administration (FTA) defines consequences as any harm
or damage involving “injury, illness, or death; damage to or loss of the
facilities, equipment, rolling stock, or infrastructure of a public trans-
portation system; or damage to the environment” (FTA, 2019).

The objective of this research is to define a purposely simple risk
index for public transit systems, derived using the RAMCAP framework.
The approach uses machine learning (ML) models, a subset of artificial
intelligence, to validate threats based on specific attack modes that
public transit systems can be vulnerable to.

The contribution of this work is an objective, easy-to-calculate
(simple), and scalable risk index that agencies can use to quantitatively
compare the relative risks of attacks on public transit systems, at dif-
ferent levels of jurisdiction, for example at the local, county, state, or
country levels. Ten complementary ML methods applied to the fusion of
six datasets identifies RAMCAP threat and vulnerability factors asso-
ciated with successful attacks. The main dataset is the Global Terrorism
Database™ (GTD™), maintained by the National Consortium for the
Study of Terrorism and Responses to Terrorism (START) at the
University of Maryland (START, 2020). The other five datasets merged
are from the U.S. Census Bureau, the Bureau of Transportation Statistics
(BTS), the Federal Transit Administration (FTA), and two from the
American Public Transportation Association (APTA).

The organization of the remainder of this paper is as follows: Section
2 surveys the literature to describe and compare related research that
used ML methods to assess the security risks of public transit systems.
Section 3 describes the data fusion, data preparation, and ML methods
used to validate the variables in the proposed risk model. Section 4
describes the ranking of features and their contribution towards pre-
dicting successful attacks, and a statistical characterization of the risk
index for cities where data is available. Section 5 discusses the results,
implications, limitations, and generalizations of the analytical ap-
proach. Section 6 concludes the study by summarizing the approach
and main findings, and hints briefly at extensions of this work for future
contributions.

2. Literature review

Early work on risk perception by the public found that a complex
mix of psychological, cultural, social, and institutional processes can
amplify or attenuate the direct physical consequence of an event (Renn,
et al. 1992). Both administrators and the public would similarly
prioritize risk management (Carlsson, Daruvala and Jaldell, 2012). The
public values the prevention of deaths from terrorism as much as they
value the prevention of deaths from traffic accidents (Viscusi, 2009).
Although not related to public transit security, Basuchoudhary and
James (2018) used ML regression methods to predict the frequency and
severity of terror attacks on countries (Basuchoudhary and James,
2018). They used the number of terror attacks from the GTD as a de-
pendent variable and sourced the independent variables from other
cross-national databases that contained measures of political, socio-
economic, cultural, ethnic, and religious divisions within a country. A
key finding is that random forest (RF) provided the best predictions on
the test data. The RF method builds a diverse set of decision trees for
final voting by incorporating randomness in both the tree-splitting
variable subset and the data sampling.

Regain and David (2017) applied association rule learning to the GTD
and found that in suicidal terrorist events there are strong associations
between the country of both the attacker and victims (Regian and
David, 2017). Although not strictly ML, Grant and Stewart (2015) ap-
plied a probability model to the GTD data and found that attacks using
improvised explosive devices (IEDs) in the United States are less likely
to succeed than those perpetrated in other parts of the Western world

(Grant and Stewart 2015). Similarly, Kirisci (2018) conducted a prob-
abilistic assessment of the GTD data and noticed that states with strong
bureaucracies tend to be better protected from domestic terrorism
(Kirisci, 2018).

There were a few studies about public transit security, but they did
not involve the use of ML models. Loukaitou-Sideris et al. (2006) de-
termined that the open and accessible nature of public transit systems
has attracted more frequent attacks (Loukaitou-Sideris et al., 2006). A
recent study found that passengers and operators experienced assaults
in 85% and 75% of the agencies surveyed, respectively (Bye et al.,
2020). Yet, only 25% of transit agencies have implemented a security-
risk-reduction program that they considered to be effective. Fiondella
et al. (2012) found that a mass-transit passenger screening checkpoint
will drastically reduce the flow of passengers (Fiondella, et al. 2012).
From a study of bus operations in the Los Angeles, California system,
Pearlstein and Wachs (1982) found that crime increase was directly
proportional to the growth in transit ridership, in both space and time
(Pearlstein and Wachs, 1982).

As transit agencies struggle to balance security countermeasures
with the openness and attractiveness of their systems, they find that a
partnership with intelligence and law-enforcement agencies becomes
inevitable and crucial. One study found that transit security profes-
sionals most often cite the deployment of a uniformed patrol as the
most effective method of deterring terrorist attacks (Needle and Renee,
1997). Another study suggests that deploying cameras and algorithms
to recognize human behaviors can be an effective countermeasure for
transit systems (Joshua et al., 2009). Some agencies have developed
smartphone apps that let passengers record and report any suspicious
activity (Sneider, 2016). However, not all transit agencies can afford to
deploy such tools across the entire system. Therefore, it is important to
be able to quantify relative risks, such as using a risk index, to focus
resources and attention where they are most needed.

General risk assessment frameworks, such as the RAMCAP can guide
the development of a risk index but they are subjective. Game theory
was a popular approach used to model the interactions among adver-
sarial agents to inform resource allocation for airport security (Jiang
et al., 2014). Delle et al. (2014) developed a general Bayesian Stack-
elberg game model to inform the dynamic allocation of security re-
sources in uncertain domains and applied it to a case study of Metro
trains in Los Angeles, California (Delle et al., 2014). Based on the lit-
erature search, the work presented in this paper will be the first to use
ML models to guide the development of a risk index for public transit
security. This is not surprising because there is extraordinarily little
overlap among the fields of physical security, public transportation, and
machine learning.

3. Method

The analytical workflow involves three layers of procedures as
shown in shown in Fig. 1. The data fusion layer prepares and cleans the
data for the ML layer. The processing layer uses a variety of ML
methods to systematically identify RAMCAP threat and vulnerability
features that are associated with successful attacks. The next subsec-
tions describe the procedures in each layer of the framework.

3.1. Data fusion

Table 1 describes the general structure of the six datasets used to build
the machine learning models. The GTD™ contains attributes and text
narratives that describe each terror attack (START, 2020). Attributes in-
clude the attack date, location, perpetrator group, tactics, weapons,
consequences, data source, variable descriptions, and text narratives. The
attack outcome variable “success” has a value of 0 when attacks failed.

The Topologically Integrated Geographic Encoding/Line (TIGER/
Line™) database from the U.S. Census Bureau encodes map data in a
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standard “shapefile” format (USCB, 2019). The database subset for U.S.
counties encodes the boundaries as polygons. The associated data tables
contain information about each county, such as their names, state,
Federal Information Processing Systems (FIPS) codes, centroid geos-
patial coordinates, land area, and water area. The “Populated Places”
database from the BTS contains 2010 census population and elevation
data for many populated places in the United States, including county,
state, geospatial coordinates, and FIPS codes (BTS, 2019).

The National Transit Database (NTD) from the FTA has many data
subsets that contain information about transit agencies, assets, fares,
expenses, ridership, and services (Anon, 2020). The extracted “Facilities
and Stations” dataset from the 2018 Annual Data Tables lists the
amount, type, and age distribution of passenger stations that each
agency used to provide bus, rail, and ferry services. The APTA database
contains transit statistics in several data subsets, including those that do
not report to the FTA-NTD (APTA, 2020b). The two APTA datasets are
the 2019 Vehicle Database (APTA-V) and the 2016 Infrastructure Da-
tabase (APTA-I). They augmented or reconciled data from the FTA
dataset.

3.2. Data wrangling

The series of methods used to prepare the fused dataset for machine
learning was data extraction, data cleaning, data merging, feature se-
lection, data filtering, data imputation, and variable transformation.
Data extraction identified and loaded only portions of large hetero-
geneous datasets that were relevant to the analysis. Data cleaning
identified and replaced erroneous or missing values for all attributes.
Data merging combined datasets by using either unique attribute keys or
geospatial intersections to fill missing values and to add attributes that
improve the classification accuracy. This process discovered errors
when records failed to merge, thus provided a feedback loop, as shown
in Fig. 1, to repeat earlier procedures until achieving convergence.
Feature selection identified attributes in the datasets that were relevant,
sufficiently dispersed, and without too many missing values. Data fil-
tering removed outliers to reduce model generalization and accuracy.
Data imputation populated missing data so that other features of the
observation could add information to the ML process without bias.
Variable transformation reduced the distribution skew of variables,

Fig. 1. The analytical workflow of the procedures used.

Table 1
Datasets used in the ML process.

Database Description Version and Structure

GTD™ Open-source database hosted by the University of Maryland. Contains information on terrorist incidents
around the globe since 1970. Variables include the attack location, attack type, target type, weapons used,
causalities, consequences, and many text narratives (START, 2020).

2019 Release: 135 fields; 191,474
records.
Separate 1993 records (35).

TIGER Provided by the US Census Bureau. A geographic information systems (GIS) map file (shapefile) and data
tables that include state and county names, FIPS codes, land area, and water area (USCB, 2019).

2019 Release: 11 fields; 3108 counties

BTS Provided by the BTS. Contains the 2010 census population and average county elevation relative to sea level
(BTS, 2019).

May 2019 Release: 19 fields; 38,186
records

FTA Provided by the FTA. The “Facilities and Stations” database provide a distribution of the number and types of
passenger facilities by the decade that they were completed. Includes the number of vehicles operated by
agencies to provide service at full capacity (Anon, 2020).

2018 Release: 21 fields; 4964 records.

APTA-I Provided by APTA. Contains a list of all significant infrastructure from 617 transit agencies in the United States
and Canada. Includes the number of types of passenger facilities used to provide bus, rail, and ferry services
(APTA, 2020b).

Infrastructure 2016 Release: 43 fields;
501 records.

APTA-V Provided by APTA. Contains information about fleet size and type from 160 transit agencies (APTA, 2020b). Vehicle 2019 Release: 36 fields; 67,94
records.
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normalized continuous variables, and encoded categorical variables
into binary representations that were suitable for the ML models.

Table 2 and Table 3 summarizes the final feature set of the cleaned
and merged tables. The amount of dispersion for each variable indicates
the relative amount of their variability or information content. Table 3
lists the categorical codes for the weapon type category (WTC), attack
type category (ATC), and target type category (TTC).

3.3. Machine learning

This subsection provides a succinct review of the ML methods used.
The next subsections describe the scoring methods used to rank feature
importance, the ML methods used to assess RAMCAP factors that con-
tribute to the prediction of successful attacks, a cross-validation method
to improve model generalization, and measures of model performance.

3.3.1. Data processing
The data transformation procedure reduced the skew of continuous

variables to improve the performance of some models by applying a
shifted log transformation (Géron 2019). With each decision loop in the
model development framework, the data filtering procedure removed
attributes and outlier observations that did not contribute to the pre-
dictive performance of the ML models. The data imputation procedure
used one of several known methods to fill missing values for features
that contributed to the ML performance (Géron 2019). To improve the
performance of some ML methods, the feature normalization procedure
converted the values of continuous variables to the [0,1] range. Some
models cannot work directly with categorical variables. Therefore, the
one-hot-encoding procedure created one new attribute per value in the
category such that the new attribute has a value of 1 if the attribute is
present and 0 otherwise (Potdar et al., 2017).

3.3.2. Feature scoring
Datasets with many features, relative to the number of instances,

can decrease the performance of ML methods because features may be
noisy, irrelevant, or contain redundant information (Yu and Liu, 2003).
There are a variety of methods available to score features based on the
amount of information they contribute towards class separation.
Table 4 provides a short description of each method and a reference
that details their theory of operations and implementation. Each
method tends to compensate for some weakness of the other, so the
rankings can differ (Wang et al., 2010).

3.3.3. K-fold cross validation
The technique of k-fold cross validation supports a measure of the

generalized performance of the tuned ML models by using the entire
dataset. Rather than setting aside a portion of the data as a test set, k-
fold cross validation partitions the data into k approximately equal size
subsets, each to be used only once for validation and the union of the
remainder for training the model. The average of the selected perfor-
mance metric across all k validation cycles is the measure of generalized
performance. Géron (2019) provides a hands-on treatment of the
method (Géron 2019).

3.3.4. Supervised learning
There are many different types of supervised ML models and each

tend to fit a type of dataset better than others (James, et al. 2013). This
section provides a brief overview of 10 different types of ML models

Table 2
Features selected or extracted for ML process.

Variable Description Type Dispersion Missing %

City City of attack Text – 0
State State of attack Text – 0
County County of attack Text – 0
FIPS5 Combined state and county FIPS code Text – 0
A_LAND Land area (square miles) Integer 1.700 0
A_WATER Water area (square miles) Integer 1.540 0
ELEV Average elevation of county (feet) Integer 1.970 0
POP_2010 2010 Census of county population Integer 1.274 0
Lat Latitude geospatial coordinates Real 0.125 0
Lon Longitude geospatial coordinates Real 0.206 0
DY Incident day Cat 0.599 0
MO Incident month Cat 0.541 0
WTC Weapon type category Cat:Table 3 1.240 0
ATC Attack type category Cat:Table 3 1.310 0
TTC Target type category Cat:Table 3 2.350 0
WTO Weapon type ordinated by frequency of use Ordinal 0.140 0
ATO Attack type ordinated by frequency of use Ordinal 0.170 0
TTO Target type ordinated by frequency Ordinal 0.210 0
Fac_Decade Number of transit facilities in attack decade Integer 1.571 34
Fac_2018 Number of transit facilities in 2018 Integer 0.770 53
Vehicles Number of transit vehicles Integer 1.151 31
success Attack success (1) or failure (0) Binary 0.452 0

Table 3
Categorical codes in the GTD for attack mode features.

WTC ATC TTC

1. Biological
2. Chemical
3. Radiological
4. Nuclear
5. Firearms
6. Explosives
7. Fake (weapons)
8. Fire

(incendiary)
9. Melee (fight)

10. Vehicle
11. Sabotage

(equipment)
12. Other
13. Unknown

1. Kill
2. Shoot
3. Explode

(bomb)
4. Hijack
5. Imprison

(hostage)
6. Kidnap

(hostage)
7. Vandalize

(facility)
8. Assault

(unarmed)
9. Unknown

1. Business
2. Government (general)
3. Police
4. Military
5. Abortion (related)
6. Aviation
7. Diplomats
8. Educational Institutions
9. Sustenance (food/

water)
10. Media (News outlets)
11. Maritime
12. Non-Gov. Organization
13. Other
14. Person (individuals)
15. Worship (related)
16. Telecommunication
17. Militias
18. Tourists
19. Transportation (non-

aviation)
20. Unknown
21. Utilities
22. Extremists (political

parties)

R. Bridgelall Journal of Public Transportation 24 (2022) 100009

4



used to predict attack outcome. Table 5 groups the models into four
broader categories: Tree-based Methods, Statistical Models, Decision
Boundaries, and Learned Functions. Many of the models have hy-
perparameters that require user adjustment to maximize performance.
Table 5 includes a brief description of each model, the hyperparameters
(HP) that need adjustment, overall advantages (A) and disadvantages
(D), and a reference that provides more detail about their theory of
operations and implementation.

The no-skill classifier provides a baseline measure of performance
for a classifier that simply predicts the dominant class each time. The
procedure will also evaluate the performance of a stacked metaclassi-
fier, which combines the outputs of several base classifiers. Géron

(2019) provides detailed descriptions of all the models and their theory
of operation (Géron 2019).

3.3.5. Performance evaluation
Various performance metrics guide the hyperparameter tuning to

yield the best generalized performance. The five metrics used are clas-
sification accuracy (CA), precision (Pc), recall (Rc), F1-score (F1), and
the area under the curve (AUC) of the receiver operating characteristic
(ROC). The definition of each metric uses the true positive (TP) and
false positive (FP) rates of the predictions. CA is the proportion of
correct predictions, whether positive or negative. Pc is the proportion of
correct positive predictions where Pc = TP/(TP + FP). Rc is the

Table 4
Feature scoring methods.

Method Description References

Information Gain The expected amount of entropy reduction. A decrease in entropy (uncertainty) based on the presence of another variable
will increase information.

(Yu and Liu, 2003)

Gini Decrease A measure of the inequality among values of a frequency distribution based on their statistical dispersion. A value of zero
and one represents perfect equality and inequality, respectively, of a variable and the class distributions.

(Han et al., 2016)

ANOVA Analysis of Variance (ANOVA) measures the difference between average values of the feature in different classes by using
the F distribution.

(Agresti, 2018)

Chi-Squared Measures a dependency or association between the feature and the class by using a chi-square statistic. (Wang et al., 2010)
FCBF Fast Correlation Based Filter (FCBF) measures entropy and accounts for redundancy among features without doing pairwise

correlations.
(Yu and Liu, 2003)

Table 5
Overview of ML models used.

Category Model Algorithm & Hyperparameters Advantages and Disadvantages

Tree-Based Methods Decision Tree (DT) Tree node splitting. HP: Minimum number of instances in
leaves (N), and minimum size of subsets (S) (Aggarwal,
2015).

A: Simple to interpret and to visualize. D: Tends to
overfit, resulting in low predictive power on new data.

Random Forest
(RF)

Build full trees for forest voting from a bootstrapped
dataset with randomly selected attributes. HP: Number of
trees (N) and minimum size of subsets (S) (Breiman,
2001).

A: Combines the simplicity of decision trees with less
tendency of overfit, thereby improving prediction
accuracy. D: incomplete trees diminish insights.

AdaBoost (AB) Sequentially build improved shallow trees for forest
voting. HP: Number of estimators (N), learning rate (R),
boosting algorithm, and regression loss function (James,
et al. 2013).

A: selects only those features that improve predictive
power, hence, reducing the computational burden for
datasets with very large dimensionality. Less sensitive to
overfitting. D: Sensitive to the presence of outliers and
data with high incoherence.

Extreme Gradient
Boost (XGB)

Sequentially build improved models that fit the errors of
previous models. HP: Number of estimators (N), learning
rate (R), maximum tree depth (S), loss function (Chen and
Guestrin, 2016).

A: efficient and good performance on large datasets;
inherently supports missing values. D: sensitive to
hyperparameter selection; requires manual intervention
to achieve the best configuration for a given dataset.

Statistical Models k-Nearest
Neighbors (k-NN)

Determine the class of an instance based on the majority
class of its k nearest neighbors. HP: Number of neighbors
(k), Distance method (Géron 2019).

A: simplicity of method. D: sensitive to a skewed class
distribution. The computational intensity grows
exponentially with the number of instances and
attributes.

Naïve Bayes (NB) HP: none (Aggarwal, 2015). A: fast and simple method. D: poor performance when
attributes are not independent.

NoSkill A trivial model that predicts the dominant class each
time. Used only as a baseline to compare the performance
score of skilled classifiers (Géron 2019).

N/A

Decision
Boundaries

Logistic
Regression (LR)

Establish a decision boundary by using a logistic function
to maximally separate classes. HP: Regularization
function and strength (C), and probability threshold
(Aggarwal, 2015).

A: inherits many of the advantages of linear regression;
precisions are easy to make. D: sensitive to noise in the
data such as outliers and incorrectly classified instances.
Model fitting may fail to converge if there are many
highly correlated features.

Support Vector
Machine (SVM)

Establish a decision boundary by finding a
multidimensional hyperplane to maximally separate
classes. HP: Kernel type, cost (C), and regression loss (ε)
(Platt, 2000).

A: high accuracy with low computational complexity. D:
sensitive to noisy data and multidimensional planes that
lack clear boundaries.

Learned Functions Stochastic
Gradient Descent
(SGD)

An optimization technique that fits a linear multivariate
function to the data. It works best when all features are
scaled. HP: loss function, learning rate method and
parameters (Aggarwal, 2015).

A: an efficient technique on large datasets.
D: sensitive to feature scaling; many hyperparameters;
and the true minima may not be achieved because the
gradient is only an approximation.

Artificial Neural
Network (ANN)

A weighted multilayer linear network that represents a
function. HP: Hidden layer neurons (N), Solver type,
regularization parameter (α), number of iterations (I)
(Aggarwal, 2015).

A: accuracy improves with use and feedback about
classification accuracy. D: requires many training
examples to improve classification accuracy.
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proportion of all the true positives predicted where Rc = TP/(TP +
FN). F1 is the harmonic mean of Pc and Rc where F1 = TP/(TP + α)
and α = (FN + FP)/2. The ROC is a plot of the TP rate against the FP
rate of a binary classifier, as a function of its discrimination threshold.
The AUC is the area under the ROC curve where 1.0 represents perfect
classification performance. As described by Krawczyk (2016), the AUC
is more complex to calculate but it is best suited for class imbalanced
data (Krawczyk, 2016). Fawcett (2006) provides further insights into
the interpretation of each performance metric (Fawcett, 2006).

3.4. Risk index

The ML models validated the threat factor of the RAMCAP frame-
work by ranking features of historical attacks that predicted successful
attacks. The ML models also rank key features of the public transit
system that increase the vulnerability factor of the RAMCAP framework.
Those key features are the number of transit vehicles (vehicles), number
of transit facilities (Fac_2018), number of facilities in the attack decade
(Fac_Decade), and the population of the county (POP_2010) that each
transit system served.

A risk index for public transit systems and infrastructure would be
proportional to the size of the attack surface. The terminology “attack
surface” in security refers to the number of vulnerable locations in a
system and does not necessarily refer to a contiguous “surface” in space.
This model defines the size of the attack surface S for the public transit
system as the sum of passenger access points—the number of passenger
transit facilities and fleet vehicles.

The proposed risk index (R) is a simple computation that is pro-
portional to the size of the attack surface (S) and to the number of
historical attacks (A) in the jurisdiction of the transit agency such that

= ×R ln S A( ) (1)

where ln is the natural log. The factor S encapsulates the threat and
vulnerability factors of the RAMCAP model that the ML methods vali-
date. It is important to note that if none of the ML models find that the
identified threat factors (attack modes) and vulnerability factors (attack
surface size) contribute towards the predictability of successful attacks,
then S = 0. Similarly, S = 0 if there were no attacks in a jurisdiction.
That is, the factor A characterizes the probability of an attack in the
jurisdiction, based on historical data. The frequency of attacks in a
jurisdiction may be associated with some attractiveness of that location,
even though not causally related to the potential for affecting public
transit systems there.

4. Results

This section presents the results of the feature ranking, machine
learning, and quantification of the risk index based on the models de-
scribed previously.

4.1. Feature scoring

Table 6 shows the top 30 features, sorted in the order ranked by the
ANOVA scoring method. The table shows the relative rankings of all
five methods. It is evident that all methods produce consistently high
ranking for the most lethal attack type categories of “Kill” and “Ex-
plode” but rank geospatial coordinates such as “Lat” and “Lon” near the
bottom. Table 7 shows the pairwise correlation of the ranking by all
methods. It is evident the Gini, Information Gain, ANOVA, and χ2

methods are all highly correlated, and this increases the confidence of
their relative strength of association with successful attacks. The FCBF
method had the least correlation among methods but had the highest
correlation with ANOVA.

The top ranked categorical values, with 1 being the most important,
indicated that the RAMCAP threat factors of killing or vandalizing
government interests with the use of explosives, guns, or fire are most

strongly associated with successful attacks. Indeed, the defined attack
surface S of public transit systems would be vulnerable to such attacks.

Fig. 2 shows that adding features beyond the top ranked 30 scored
by the ANOVA method did not appreciably improve the prediction
performance of the model.

Factors of the defined attack surface size, which were the number of
facilities in the decade of an attack, the number of public transit ve-
hicles, and the number of facilities in 2018 ranked 9, 13, and 14, re-
spectively. Those features, which are components of the RAMCAP

Table 6
Top 30 features ordered by the ANOVA ranking.

Variable Info. Gain Gini ANOVA χ2 FCBF

ATC=Kill 4 2 1 1 1
ATC=Explode 3 4 2 5 10
TTC=Government 7 5 3 2 3
ATC=Vandalize 5 6 4 4 11
ATC=Shoot 6 7 5 3 2
WTC=Biological 9 9 6 6 13
WTO 1 1 7 7 9
WTC=Guns 11 12 8 9 14
Fac_Dec_Log 10 10 9 10 4
TTC=Business 14 15 10 12 18
Land_Log 12 11 11 14 21
ATO 2 3 12 8 12
Veh_Log 15 14 13 11 25
Fac_2018_Log 13 13 14 21 20
WTC=Melee 18 20 15 13 15
WTC=Fake 28 23 16 15 22
ATC=Assault 26 24 17 16 23
ATC=Imprison 22 25 18 17 17
TTC=Worship 24 26 19 19 24
TTC=Utility 25 27 20 20 19
Elev_Log 21 21 21 25 32
TTC=Diplomat 30 28 22 22 27
POP_2010_Log 20 19 23 18 31
Lat 19 18 24 27 28
DAY 29 29 25 24 37
ATC=Kidnap 27 30 26 26 5
Lon 23 22 27 23 33
WTC=Sabotage 33 32 28 28 30
TTC=Aviation 37 33 29 29 36
ATC=Hijack 31 34 30 30 7

Table 7
Correlation of scoring methods.

Method A Method B Correlation

Gini Info. Gain 0.982
ANOVA χ2 0.962
ANOVA Gini 0.907
ANOVA Info. Gain 0.897
Gini χ2 0.885
Info. Gain χ2 0.873
ANOVA FCBF 0.673
FCBF χ2 0.664
FCBF Info. Gain 0.645
FCBF Gini 0.582

Fig. 2. AUC performance for top ANOVA ranked features.
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vulnerability factor, were within the model improvement region, sug-
gesting that they are positively associated with attack success.

4.2. Machine learning

The ML models provide a measure of association based on predictive
power. The next sections summarize the results of the ML performance
evaluation and assurance of individual model optimization by hy-
perparameter tuning.

4.2.1. Performance evaluation
Table 8 indicates that the best models can predict attack success

with an accuracy of 85% based on the threat and vulnerability features.
The top-ranking classifier had an AUC score of 0.75, which is sig-
nificantly greater than the AUC score of 0.50 for no-skill classifier. The
stacked metaclassifier performed best as expected, but only slightly
better than the kNN and RF methods. In general, the results indicate
that models that used loss functions or probabilities perform worst on
this fused dataset than methods that incorporate majority voting. For
instance, the kNN method and the RF method seeks a majority vote
among k nearest neighbors and N randomly grown decision trees, re-
spectively. The stacked metaclassifier seeks a majority vote among its
base classifiers.

4.2.2. Hyperparameter tuning
Fig. 3 shows the result of hyperparameter tuning for the top per-

forming individual classifiers, namely kNN and RF. The hyperpara-
meter N represents the number of trees for the RF, and the number of
nearest neighbors for kNN. The AUC and CA scores are the average
measures from a 10-fold cross validation that used all features to train
and test the models. To minimize bias, the cross-validation used stra-
tified sampling to equally represent the minority target class in each
fold. The trend indicates that the performance measures increase in an
asymptotic manner as the parameter increases.

The fluctuations reflect the randomness from fold creation in the
cross-validation process. The trend suggested that an empirical choice
for the number of RF trees would be 25. Similarly, considering the
asymptotic trend, an empirical choice for the number of nearest
neighbors would be 25. A combinatorics grid-search method derived
the best value for all the hyperparameters shown in Table 8.

4.3. Risk index assessment

Based on the ML outcome, an assessment that follows the RAMCAP
framework indicates that an attack on public transit systems using the
top-ranking attack modes will result in successful attacks with high
likelihood. Simply put, the defined attack surface would be vulnerable
to explosives and fire. Armed perpetrators can harm passengers or take
hostages. The feature ranking and predictive performance of the ML
models also indicated that the size of the attack surface is associated

Table 8
ML model performance and tuned hyperparameters.

Model AUC CA F1 Pc Rc Hyperparameters

Stack 0.741 0.857 0.820 0.848 0.857 Base: ANN, kNN, RF, LR, AB. Agg: LR
kNN 0.732 0.851 0.809 0.837 0.851 k = 25 (odd), Distance: Euclidean
RF 0.706 0.844 0.809 0.815 0.844 N = 25, S ≥ 5
XGB 0.702 0.844 0.913 0.855 0.979 Loss: LR, S = 6, R = 0.1
ANN 0.689 0.836 0.778 0.798 0.836 N = 200, Activation: ReLu, Solver: SGD, α = 10−4

AB 0.683 0.813 0.803 0.796 0.813 N = 100, R = 0.1, Boost: SAMME, Loss: Linear
LR 0.682 0.840 0.778 0.823 0.840 Reg: Ridge, C = 1
SGD 0.677 0.838 0.775 0.814 0.838 Loss: LR. Reg: L1 norm. Learn: IS (0.01, 0.6)
NB 0.656 0.727 0.744 0.765 0.727 None
Tree 0.582 0.810 0.790 0.779 0.810 N = 10, S = 5
SVM 0.561 0.745 0.745 0.746 0.745 Kernel: Sigmoid, C = 1, ε = 0.1
No-Skill 0.497 0.833 0.757 0.694 0.833 None

Fig. 3. Hyperparameter tuning for the RF and kNN models based on a) AUC
and b) CA.

Fig. 4. Distribution of risk indices.
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with successful attacks. Given this validation by the ML models, the
next subsections quantify the risk index and their distribution for all
GTD cities where information on public transit systems is also available
in the FTA and APTA databases. There were 212 jurisdictions in the
GTD that met this criterion.

4.3.1. Normal distribution
The bar chart of Fig. 4 shows a histogram of the calculated risk

indices and the line plot shows the best fit Gaussian function.
The best fit is determined by solving the optimization problem:
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distribution curve
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where Γ(k/2) is the gamma function in mathematics. The computed
probability, which is also known as the p-value, indicates that the null
hypothesis, which is that the distribution follows the fitted Gaussian,
cannot rejected when the value is greater than 0.05 (Agresti, 2018). The
p-value associated with this test was 0.823, which indicates that the
statistical test could not reject the hypothesis that the distribution fol-
lows a Gaussian.

4.3.2. Biased spatial dispersion
Fig. 5 shows how the risk indices distribute spatially across the

continental United States. Attacks appear to be broadly dispersed, albeit
with some overall bias towards major cities along the west coast,
northeast, and southern United States.

The map pattern indicates that low- and high-risk indices tend to
associate with cities that have low and high populations, respectively,
but not exclusively. This outcome of the objective ML process agrees
with the subjective intuition. Table 9 summarizes the cities with public
transit risk indices ranking in the top 10.

5. Discussion

The scalability of the risk index stems from its suitability for use at
any spatial scale to quantify security risks from microscopic to macro-
scopic levels. For example, agencies can compare risk indices among
townships, cities, counties, or states. Townships within a state that did
not experience terrorist attacks will have undefined indices. However,
aggregating up to the county level can produce a defined risk index by
aggregating attacks across townships within a county. The Gaussian
distribution of risk indices suggests that there is a structure that en-
capsulates some natural relationship among the attack surfaces (S) and
attack likelihood (A) among cities. That is, the central tendency of the
risk indices indicates a similarity relationship among agencies. The
distribution also identifies outliers. Therefore, agencies can use the
distribution as a quality check to gauge the likelihood of their calcu-
lated risk index, based on a Gaussian distribution.

The attack frequency and attack surface are not independent be-
cause there is a small positive correlation of 0.5 between them. This is
an indication that the attractiveness of a target is inherent in the size of
the transit system. There is also a weak association between the size of
the attack surface and the success of an attack. From Table 6, the
variables associated with public transit size ranked between 9 and 14 in
their association with successful attacks. The weak correlation between
the size of the attack surface, the attack frequency, and their association
with successful attacks will result in a weak non-linear amplification of
the risk index. Hence, the risk index inherently incorporates the de-
struction of property as a potential consequence. There is also a positive
and stronger correlation of 0.67 between population size and attack
surface. Hence, the risk index also inherently incorporates harm to
people as a potential consequence.

The risk index quantifies the risk of an attack, regardless of “hard-
ening” from security measures currently in place. Agencies could add a
“risk reduction factor” to account for “hardening” measures relative to
others. However, doing so would require much more data, which would

Fig. 5. Spatial distribution of risk indices.
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diminish the benefit of a simple first-pass risk calculation that could
preclude more expensive follow-up assessments. Also, adding a risk
reduction factor could lead to misjudgments and possible complacency
as terrorists continuously adapt their tactics and methods to exploit
vulnerabilities that managers might miss. Adversaries may also review
the literature on current risk management strategies and change their
tactics accordingly.

In addition to providing data-driven justification for RAMCAP threat
and vulnerability factors, the ML processes produced some insights about
characteristics of the dataset. Only four of the models had an AUC
performance above 0.70 with a corresponding classification accuracy of
85%, suggesting that all strategies were similarly affected by high noise
in the dataset. Noise can manifest as spillage into the margins that may
otherwise naturally separate clusters. Furthermore, noise can con-
taminate the homogeneity of clusters. The lack of clean boundaries is a
likely explanation for the poor performance of SVM, which seeks a clear
separating hyperplane in the global structure of feature space as ex-
plained previously. This finding is similar to those of Wang et al. (2010)
where SVM proved to be the worst performer on a highly imbalanced
dataset (Wang et al., 2010). Conversely, the majority vote type algo-
rithms of kNN and RF performed best because of their reliance on local
similarity and randomized global searches, respectively, as explained
previously.

Risk managers can generalize the framework to derive risk indices
for other types of facilities. For example, risk indices can be developed
for railroad, pipeline, and bridge networks based on the size and ac-
cessibility of their attack surface, and the vulnerability of their attack
surfaces to explosives or fire, which are the top ranking variables as-
sociated with successful attacks. Users of the model need not repeat the
predictive ML modeling because this work already assessed the re-
levance of the threat and vulnerability factors based on the RAMCAP
framework. That is, to quantify risk, users need only to define and
determine the size of their attack surface and the likelihood of attacks
based on the historical attack frequency. This simple model enables
low-cost first-order risk analysis that can use existing public domain
data.

This work does not suggest that the simple model could replace a
more complex and extensive analysis that requires internal data, expert
knowledge, and situational awareness across all agency products. One
limitation of this framework is that it does not define a risk index for
facilities within jurisdictions where terrorist attacks did not occur. The
reason for this limitation is that the ML models cannot predict the at-
tack frequency for a location with no attack history because of a lack of
relevant attributes. Therefore, it is important to note that an undefined
risk does not translate to zero risk, nor does it suggest that a jurisdiction
has no features that could attract terrorist activities.

6. Conclusions

Public transit systems are vast, open, populated, and critically im-
portant to the vitality of nations. Hence, they are attractive targets of
terrorism. Although it is impossible to predict the timing of terrorist

attacks, trends from the Global Terrorism Database (GTD™) show that
they are ongoing and widespread. Hence, response preparation through
regular risk assessments are critical. Yet, most agencies defer invest-
ments and lack policies on countermeasures to physical attacks. The
uncertainty of risks and the subjectivity of risk assessments can dis-
courage a focus on physical security. Furthermore, it is impractical and
cost prohibitive to implement security checkpoints in public transit
systems. Therefore, transportation managers and decision makers can
benefit from a more objective, focused, and probabilistic approach to
guide fair prioritization, investment decisions, and policymaking.

This research developed a simple transit security risk index that is
objective, easy to calculate, and scalable to multiple levels of jurisdic-
tions. It may be tempting to underestimate the power of the index due
to its simplicity. However, it is important to consider that the risk index
is a probabilistic function of attack likelihood and the size of the vul-
nerable attack surface, both of which the machine learning (ML) models
validated as relevant factors in predicting successful attacks. The size of
the attack surface in this case is the number of fleet vehicles, stations,
platforms, and other facilities that expose passengers to harm.

The framework applied ML to a fusion of the GTD and databases
from the U.S. Census Bureau, the Bureau of Transportation Statistics,
the Federal Transit Administration, and the American Public
Transportation Association. Ten complementary ML models provided
different levels of predictive performance. The best models were k-
nearest neighbors and random forest. They could predict attack success
with an accuracy of 85%.

The public transit risk indices distribute normally for jurisdictions in
the GTD where information was available to compute their attack
surface and attack frequency. This finding suggests that the proposed
risk index encapsulates a structural relationship between risk, attack
likelihood, and the size of public transit systems. Attack risk was spa-
tially dispersed, albeit a bit biased towards the largest U.S. cities with
huge public transit systems. This objective finding from the statistical
framework matches expectations. The Gaussian distribution provides a
means to assess the quality of the index by detecting outlier calculations
or a large deviation from the expected value.

Future work will explore the use of unsupervised methods of ma-
chine learning to produce additional insights about underlying struc-
tural relationships among terrorist incidents. Another study is un-
derway to apply ML to features of attacked versus spared locations to
understand factors that may have contributed to their attractiveness.
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Table 9
Cities with public transit risk indices ranking in the top 10.

Jurisdiction State Pop_2010 Attacks Success Vehicles Facilities Surfaces Risk Index

Brooklyn NY 2565,635 469 367 13,189 428 13,617 15.7
Los Angeles CA 3792,621 112 96 4508 18,568 23,076 14.8
Washington DC 601,723 85 64 3930 11,366 15,296 14.1
Chicago IL 2695,598 63 50 4792 11,533 16,325 13.8
Miami FL 399,457 87 79 1396 9013 10,409 13.7
San Francisco CA 805,235 98 79 1517 4242 5759 13.2
Seattle WA 608,660 41 33 4790 8406 13,196 13.2
Denver CO 600,158 24 23 1703 10,368 12,071 12.6
Houston TX 2099,451 21 18 2659 10,103 12,762 12.5
Boston MA 617,594 18 16 3252 8201 11,453 12.2
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