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Detecting Sources of Ride Roughness by Ensemble Connected Vehicle 
Signals 

Abstract 

It is expensive and impractical to scale existing methods of road condition monitoring for more 

frequent and network-wide coverage. Consequently, defects that increase ride roughness or can 

cause accidents will go undetected. This paper presents a method to enable network-wide, 

continuous monitoring by using low-cost GPS receivers and accelerometers on board regular 

vehicles. The technique leverages the large volume of sensor signals from multiple traversals of a 

road segment to enhance the signal quality by ensemble averaging. However, ensemble averaging 

requires position-repeatable signals which is not possible because of the low resolution and low 

accuracy of GPS receivers and the non-uniform sampling of accelerometers. This research overcame 

those challenges by integrating methods of interpolation, signal resampling, and correlation 

alignment. The experiments showed that the approach doubled the peak of the composite signal by 

decreasing signal misalignment by a factor of 67. The signal-to-noise ratio increased by 10 dBs after 

combining the signals from only 6 traversals. A probabilistic model developed to estimate a dynamic 

signal-detection threshold demonstrated that both the false-positive and false-negative rates 

approached zero after combining the signals from 15 traversals. The method will augment the 

efficiency of follow-up inspections by focusing resources to locations that consistently produce 

rough rides. 

Keywords: Ensemble Averaging; Feature Extraction; GPS Errors; Signal Alignment; Signal-to-

Noise Ratio  



1 Introduction 

Without frequent, network-wide condition assessments, roadway defects that increase ride roughness 

can go undetected and cause damages that exceed billions of dollars annually (El-Wakeel, et al., 

2018). Potholes and other roadway defects that produce roughness cause many accidents (Jo & Ryu, 

2015). Road roughness also adversely affects ride comfort (Cantisani & Loprencipe, 2010) and 

potentially human health (Múčka, 2020). Conventional approaches that use specialized vehicles and 

trained personnel to monitor roadways are expensive and impractical to scale across the entire 

network (Pierce & Weitzel, 2019). Consequently, there has been a proliferation of studies to evaluate 

the use of low-cost GPS receivers and accelerometers on board regular vehicles to continuously 

monitor the condition of roadways (Wessels & Steyn, 2020). The widespread use of smartphones 

equipped with all the required sensors and network connectivity have spurred many experiments. 

The ongoing development of standards for connected vehicles (USDOT, 2015) and the Internet-of-

Things (IoT) movement has the potential for using sensors on board regular vehicles to significantly 

reduce the cost of network-wide and continuous condition monitoring. 

The signals from low-cost accelerometers and GPS receivers in regular vehicles are likely to 

become available for condition monitoring applications, but their performance is not currently 

suitable for such high-accuracy and high-precision applications (Bridgelall, et al., 2019). Therefore, 

the goal of this research is to develop a technique that can leverage the large volume of signals 

available in a connected vehicle environment to enhance signal quality. The objective is to combine 

the signals from multiple traversals of a segment by ensemble averaging to reduce noise and enhance 

position resolution. The technique works because information signals are correlated and noise 

signals are uncorrelated (C.L., et al., 1975). That is, ensemble averaging will boost the information 



and reduce the noise in signals, assuming that the signals are position repeatable. However, GPS and 

sampling errors create signal misalignment. 

The main contributions of this paper are a method of signal position alignment to improve 

the quality of the ensemble averaging, and a method of optimally setting the signal detection 

threshold for the composite signal from each additional traversal to minimize both false positives 

and false negatives (Section 3). Section 2 discusses related work that investigated methods of 

processing signals from on board sensors to assess the condition of roadways. Section 4 discusses 

the results by quantifying the benefits of the signal alignment method. Section 5 discusses some 

practical considerations when applying the method. Section 6 provides some concluding remarks 

about the findings, prospects for generalizing the application, and comments on future work. 

2 Related Works 

Studies about roadway condition monitoring using connected vehicles began to gain popularity 

around 2014 (Bridgelall, 2014) (Dennis, et al., 2014). A recent survey of such applications revealed 

that the technology has matured to a point where some commercial products have become available, 

but many challenges remain (Salau, et al., 2019). That recent survey covered many applications of 

onboard sensors to monitor roadway conditions; we incorporate the survey by reference here to help 

keep this literature review section short. 

Roadway features that causes rough rides may include speed bumps, potholes, cracks, utility 

covers, construction panels, debris, and rumble strips. Therefore, agencies must tag the locations of 

purposeful roughness features to avoid false positive detections of pavement defects. The literature 

also demonstrates that based on time-series data collected with smartphones, traversing rough spots 

such as potholes and bumps produce mainly vertical accelerations whereas vehicle acceleration and 

deceleration produce mainly longitudinal and rotational accelerations (Aleadelat, et al., 2018). The 



vertical acceleration signals from traversing rough spots are essentially differentiated versions of the 

road profile that contains large peaks and valleys (Goenaga, et al., 2017). 

Medina et al. (2020) found that measurements to estimate ride quality from a population of 

vehicles can overcome or mitigate the effects of measurement variability among different vehicles 

(Medina, et al., 2020). Wang et al. (2020) found that machine learning can account for variabilities 

in the vehicle type, speed and the type of smartphone to produce reliable predictions of vertical 

acceleration (Wang, et al., 2020). Except for a study that proposed several tactics to extract 

maximally aligned signals from a dataset without repositioning the signals (Bridgelall, et al., 2019), 

there have been no other demonstrations of signal quality improvement that combine the signals 

from multiple traversals of a road segment. Hence, there are no other work to review here. 

3 Methodology 

3.1 Data Collection 

Given that the main purpose of this work is to demonstrate how the proposed signal alignment and 

ensemble averaging technique can improve signal quality to detect rough spots on a roadway more 

accurately, it was important that the data collection remained consistent for all traversals. Therefore, 

the experiments used the same vehicle (2011 Chevy Traverse), smartphone device (iPhone® 6S), 

and position in the vehicle (dashboard). The driver also attempted to maintain the same steady speed 

for each traversal. The collected data was from an experiment that the authors conducted in June 

2015, using what the Minnesota Road Research Facility (MnROAD) labeled as Cell 40 at that time. 

There was an asphalt transitional section from Cell 40 to the adjacent cell at the time. Figure 1 shows 

the transition from the Cell 40 concrete panel to the asphalt section, which provided the consistent 

rough spot. Hence, traversing the transition produced a single isolated peak inertial event (PIE) in 

the signal of all traversals. 



As connected vehicles were not available at the time, we emulated one by attaching a 

smartphone to the dashboard of a sedan. The smartphone contained all the sensors that a future 

connected vehicle will have to record the vertical accelerations, speed, and timestamps needed. 

Table 1 shows the format of the points data collected. The GPS resolution of only 3 decimal places 

is for illustrative purposes only. The method is independent of the type of accelerometer and GPS 

used, so any smartphone model would suffice for replicating the data collection when using the free 

PAVVET app (Lu & Bridgelall, 2016). 

 

Figure 1. Roadway and bump traversed for the data collection. 

The reference provides further details about the app and its operation. The points dataset contains 

geospatially tagged inertial signals from 53 traversals of a road segment that contained a single 



isolated bump. The columns from left to right are time in milliseconds, vertical acceleration in g-

force, instantaneous traversal speed in meters-per-second, latitude in degrees, and longitude in 

degrees. The pair of latitude and longitude coordinates codes the position of each GPS block as a 

point Gi on the map layer. Figure 2 shows the distribution of the accelerometer sampling period. The 

primary mode at approximately 11 milliseconds indicates that the accelerometer sampled at the rate 

setting most of the time, but the sample periods ranged from 1 and 18 milliseconds. 

 

Figure 2. Sample period distribution for the inertial sensor. 

The latitude and longitude remained unchanged for blocks of inertial samples because the GPS 

updated at approximately 1 hertz. Figure 3 graphically illustrates how the positions of the GPS 

updates and the accelerometer updates distribute non-uniformly both within and across traversal 

datasets. In the figure, N is the number of traversals and j is the traversal index. The next section 

describes the technique used to extract approximately equal distance traversals that are bisected by 

the center point. 

Figure 4 plots of a small section of the first two extracted traversals, starting from the 

interpolated zero distance position. 



 

Table 1. Points Data Format 

Time 
(Seconds) 

Gz 
(G-Force) 

Speed 
(m s-

1) 

Lat 
(Degrees) 

Lon 
(Degrees) 

44.142 -1.057 9.586 45.263 -93.711 
46.768 -1.216 9.586 45.263 -93.711 
50.260 -1.087 9.586 45.263 -93.711 
62.927 -0.854 9.586 45.263 -93.711 
73.909 -0.912 9.586 45.263 -93.711 
86.754 -0.942 9.586 45.263 -93.711 
95.669 -1.001 9.586 45.263 -93.711 

110.365 -1.022 9.586 45.263 -93.711 
118.253 -1.096 9.586 45.263 -93.711 
128.695 -1.013 9.586 45.263 -93.711 

 
 

 

Figure 3. Spatial distribution of GPS and inertial sample updates among traversals. 

The relative positions of the PIE show the amount of misalignment between the two signals. The 

negative peak and the positive peak of the PIE reflects the maxima and minima of the vertical 

acceleration profile from traversing the bump. The signals from traversing a pothole were similar but 

inverted. 



 

Figure 4. Position variation of the a) GPS updates b) PIE in the interpolated signal. 

3.2 Problem Illustration 

The effects of ensemble averaging misaligned signals are illustrated by simulating a signal using the 

Gaussian variant of a radial basis function (Press, et al., 2007) defined as  

𝑅𝑅(𝑟𝑟) = 𝑒𝑒−[𝜖𝜖(𝑟𝑟−𝜌𝜌)]2 + 𝜂𝜂 (1) 

where r is the distance in meters from a reference position on the traversal path, ε is the shape 

parameter that sets the width of the signal, ρ is the distance of the peak, and η is noise from random 

vibrations and electrical interference. Figure 5a simulates the position misalignment of three signals, 

R1 to R3, which are the elevation profiles from traversing a single isolated bump on a smooth 

surface. Figure 5b shows the ensemble average of the position misaligned signals relative to the 

position aligned signals. The simulation of a bump is a generalization of a rough spot that produces 

signal peaks and valleys. For instance, the inverse of a bump would simulate a simple pothole—

inverses of the signals in Figure 5a. That is, multiplying the radial basis function by -1 achieves the 

simulation of a pothole. Hence, the signal detector identifies either negative or positive peaks as 

rough spots. Taking the absolute value of the signal simplifies the peak detection by using only 



positive thresholds. Ensemble averaging reduced the noise by a factor of two for either the aligned or 

non-aligned signals. 

 
Figure 5. Simulation of a) individual signals and b) their ensemble averages. 

However, a misalignment spread of 0.7 meters for a one-meter-wide bump signal decreased the peak 

of the composite signal by one-third, biased the peak by 0.4 meters, and nearly doubled the width. 

Hence, these adverse effects decreased both the accuracy and precision of estimating the position of 

a rough spot that produced the signal. At a hypothetical signal detection threshold of 0.8, signal 

misalignment would have caused a false negative for the composite signal. Section 3.8 discusses a 

method for selecting the best threshold. 

Position misalignment is due to the following: 

1. Accelerometer non-uniform sample period and spatially asynchronous updates 

(Bridgelall, 2014). 

2. GPS receiver low accuracy, low precision, and spatially asynchronous updates (Bajaj, et 

al., 2002). 

Figure 2 illustrates the first source of misalignment, which was the accelerometer sample period 

variation. The non-uniform sampling caused each signal to have a different number of samples, and 

the distances associated with each sample was also non-uniformly distributed. Even with uniform 



sampling, the distances associated with each sample will be misaligned because of the asynchronous 

spatial updates among traversals. 

GPS, the second source of misalignment, has the following five characteristics: 

1. Standard low-cost GPS receivers provide position updates each second (Hunter, et al., 

2009). Hence, GPS coordinates will update after groups of 64 inertial samples when 

using an inertial sensor that samples at 64 hertz. Therefore, blocks of 64 samples will 

have the same GPS coordinate tags. These GPS blocks lower position resolution lacks 

information for signal alignment. 

2. Position updates among traversals are not repeatable in space. That is, each traversal will 

have different geospatial coordinates along the path, and some updates will miss signal 

peaks. 

3. Some position updates will deviate from the travel path because of two-dimensional 

position errors. 

4. The GPS position error along the traversal path is three to five meters (Hughes, 2016). 

5. Clouds, trees, or tunnels could block the reception of GPS signals in some locations 

(Groves, et al., 2012). 

Figure 6 illustrates the second, third, and fourth sources of misalignment from GPS issues. The 

figure plots the geospatial position updates for the first two traversals taken from the dataset used in 

this study. The square and star symbols are the GPS updates from Traversal 1 and Traversal 2, 

respectively. The geospatial updates for each traversal appear uniform. However, the updates 

between the two traversals are spatially asynchronous because they occur in different locations and 

time, which illustrates the second issue. It is also evident that the geospatial position updates of 

Traversal 2 are mostly off the traversal path, which illustrates the third issue. The small cluster of 



points shown in Figure 6 that falls to the right of the reference line R0 are the geospatial positions of 

the GPS blocks containing the PIE from each traversal. Although the bump did not move, the 

position spread of the PIE in the signal was 30.4 meters along the traversal path and 14.5 meters 

perpendicular to the traversal path, which illustrates the fourth issue. Hence, the variations in the 

relative distances of the PIE in this dataset characterizes the amount of signal misalignment that 

would be expected. 

 

Figure 6. Geospatial position variation of the GPS updates among traversals. 

3.3 Signal Processing Workflow 

The signal processing workflow begins by using a geographic information system (GIS) to identify, 

from a map, the road segments for analysis. Figure 7 shows the procedures of the signal processing 

workflow. The first procedure uses GIS to create a network layer with points Pc that mark the center 

of each segment that has associated data. Each point of the segment layer must also contain an 



attribute L to specify the length of the marked segment. The second procedure uses a GIS technique 

that spatially joins the points layer of traversal data to the marked segment layer. The third 

procedure extracts data representing approximately equal length traversals on either side of point Pc. 

The fourth procedure resamples the accelerometer signals with uniform distance spacings, which 

prepares the signals for the fifth procedure of correlation alignment. The sixth and final procedure 

ensemble averages the position aligned signals to achieve enhanced SNR. The signal processing 

workflow does not show the final application of setting an optimum signal detection threshold to 

minimize both false positives and false negatives. 

 

 

Figure 7. Signal processing workflow for ensemble signal combination. 

The next subsections describe the algorithms for each of the procedures in the signal processing 

workflow. 

3.4 Interpolated Equidistant Extraction 

Distance interpolation is needed to tag the inertial signal samples with higher-precision distances 

because GPS provides only a course update of distance from the center point Pc. The interpolation 

uses the speed and sample intervals in the dataset to accumulate distances from a reference point. 

The distance for the first reference point x0 is set to zero, and the distance xn for subsequent samples 

are 



𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛−1 + 𝑣𝑣𝑛𝑛 × ∆𝜏𝜏𝑛𝑛 (2) 

where n is the sample number, vn is the instantaneous speed for sample n, and ∆τn is associated with 

the sample period. The distance precision is dictated by the accelerometer sample period, which is 

several orders of magnitude smaller than the GPS update interval. 

Figure 8 displays the algorithm for interpolated equidistant extractions. The algorithm is applied to 

every traversal in the data set. The algorithm first finds the GPS block that is closest to the left of 

point Pc and then distance interpolates the accelerometer samples to the right until the distance is 

closest to the position of Pc. This marks the starting index for leftward interpolation to reach an 

approximate distance equal to L/2, which would be the first sample g0 for the extracted traversal. 

Finally, interpolating distance rightward to approximately L yields the last sample gL for the 

extracted traversal. Alternatively, interpolating left and then right from the sample closest to Pc to 

approximately L/2 would be more efficient, but that would require an additional step to relabel 

positive and negative distances to positive only distances, starting with distance zero. The proposed 

approach is compatible with traditional linear referencing techniques that specify distances from a 

reference position such as a milepost or a landmark to improve accuracy and practicality in 

fieldwork (Curtin, et al., 2007). In this case, the geospatial reference position for distance zero will 

be the coordinates of a point located at the path distance of L/2, to the left of Pc. The operator 

‖𝑃𝑃𝑐𝑐 − 𝐺𝐺𝑖𝑖‖ shown in the algorithm produces the geodesic distance between two perpendicular lines 

that bisect the geospatial points Pc and Gi. The min
 Left

{} function is a GIS procedure that finds the GPS 

point i that is closest to the left of Pc. 



Interpolated Equidistant Extraction 
Inputs: 
    L    # Length of segment 
    Pc   # Coordinates of a point at the center of the segment 
    V   # Points table [speed, sample time, GPS coordinates] 
Begin: 
    Vc ←  min

 Left
{‖Pc − V{Gi}‖,∀i}  # Get the GPS block Vc closest to the left of Pc 

    Vc{x0} ← 0    # Add distance column with first sample distance = 0 
    do 
       Vc{xk+1} ← Vc{xk} + Vc{vk+1} × Vc{Δτk+1}  # Interpolate next distance 
         k ← k + 1    # Increment table index to the right 
    until min

k
{‖Pc − Vc{G}‖ −  Vc{xk}}  # Stop after finding sample closest to Pc 

    Vc{xk} ←  0  # Initialize as starting sample for left interpolation 
    do 
        V{xk+1} ← V{xk} + V{vk+1} × V{Δτk+1}  # Interpolate distance (entire table) 
        k ← k − 1   # Decrement table index to the left 
    until min (L

2
− V{xk}) # Stop after distance is closest to L/2 

    g0 ←  k  # Store first index of the extracted traversal 
    V{xk} ←  0  # Initialize starting distance 
    do 
        V{xk+1} ← V{xk} + V{vk+1} × V{Δτk+1}  # Interpolate next distance 
        k ← k + 1   # Increment table index to the right 
    until min (L − V{xk}) # Stop after distance is closest to L 
    gL ←  k  # Store last index of the extracted traversal 
End: 
Outputs: g0, gL   # Start and end table indices (extracted traversal) 

Figure 8. Traversal extraction algorithm with linear referencing. 

3.5 Uniform Signal Resample 

The distance interpolated traversals have approximately equal distances. However, the number of 

samples vary because of non-uniform sampling. The cross-correlation approach requires that all 

signals have the same number of samples and represent the same distance positions. The solution 

was to resample all the signals at the same uniformly spaced distances by using a signal interpolation 

technique. Figure 9 displays the uniform signal resample algorithm. The inputs SM and DM are the 

numbers of samples and distance of a reference signal in the dataset. The reference signal is selected 

as the signal with the most samples because it represents the highest distance precision available in 

the dataset. For each traversal, the uniform signal resample algorithm first defines the function f(x) 

based on the original distance vector x and the signal vector y. The algorithm next creates a new 



vector x̂ that has the same number of samples and distances as the reference signal. Using the 

defined function f, the algorithm then estimates a new signal by evaluating the function at the new 

uniformly spaced distances in vector x̂. Several signal interpolation techniques can be used to 

estimate the values of the function at new distance positions. One of the simplest is linear 

interpolation. Given samples yi and xi, linear interpolation produces a new sample ŷ within the 

interval (yi, yi+1) that is associated with a value of x within the interval (xi, xi+1) such that 

𝑦𝑦� =
𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖

(𝑥𝑥 − 𝑥𝑥𝑖𝑖) + 𝑦𝑦𝑖𝑖 (3) 

With all extracted traversals resampled at identical and uniformly spaced distances, they are now 

ready for correlation alignment. 

Uniform Signal Resample 
Inputs: 
    𝕋𝕋   # Extracted traversal tables [signal, distance] 
    SM   # Number of samples (rows) of reference signal. 
    DM   # Distance of reference signal. 
Begin: 
     For ∀j ∈ 𝕋𝕋 

yij = f(xij)     # Define y(x) at the original distances 
x�ij = i DM

SM
, i = {0,1, … (SM − 1)} # Create new uniformly sampled distances 

y�ij = f(x�ij)     # Estimate y(x) at new distances 
End: 
Outputs: 
𝕋𝕋    # Uniformly resampled traversals (Signal, Distance) 
R   # Index of the reference signal in the dataset 

Figure 9. Traversal interpolation algorithm. 

3.6 Correlation Alignment 

The inputs to the correlation alignment algorithm, shown in Figure 10, are the tables of uniformly 

resampled signals, the reference signal identified by its index R, and the number of samples SM in the 

reference signal. The algorithm performs a cross-correlation between the reference signal and the 

signals of all the other traversals. The shift position of maximum cross-correlation is determined by 

the function max
∀𝑘𝑘

(𝑟𝑟𝑘𝑘). It is possible that there will be more than one value that is equal to the 



maximum value in the cross-correlation vector rk. Therefore, the operator 〈∙〉 is used to return the 

index of the first maximum value. The shift position is relative to the distance of the first sample of 

the reference signal, which is zero. Hence, the position of zero shift is when the distance labels of 

both vectors overlap. This is the default shift position when there are no signals to correlate, which 

means that all the sensor samples contain only noise. Negative and positive shift values represent 

shifts to the left and right of the overlapping position, respectively. The shifted signal inherits the 

distance labels of the reference signal. When the shift is positive, the first sample of the shifted 

signal will inherit the distance labels starting at the shifted number of positions to the right of the 

distance vector of the reference signal. 

Correlation Alignment 
Inputs: 
    𝕋𝕋   # Uniformly resampled signal tables [signal, distance] 
    R   # Index of reference signal 
    SM   # Number of samples in the reference signal. 
Begin: 
     For ∀𝑗𝑗 ∈ 𝕋𝕋 

𝑟𝑟𝑘𝑘𝑘𝑘 = ∑ 𝑥𝑥�𝑛𝑛,𝑘𝑘 × 𝑥𝑥�𝑛𝑛−𝑘𝑘+𝑆𝑆𝑀𝑀−1,𝑅𝑅
𝑆𝑆𝑀𝑀−1
𝑛𝑛=0 , 𝑘𝑘 = {0,1, … (2𝑆𝑆𝑀𝑀 − 2)}   # Cross-correlate 

𝑠𝑠𝑘𝑘 ← 〈max
∀𝑘𝑘

�𝑟𝑟𝑘𝑘𝑘𝑘�〉 − 𝑆𝑆𝑀𝑀 + 1   # Shift position of maximum cross-correlation 
     If 𝑠𝑠𝑘𝑘 > 0    # Positive shift 

𝑥𝑥𝑖𝑖𝑘𝑘 = 𝑥𝑥�𝑖𝑖𝑘𝑘 ,   𝑖𝑖 = �𝑠𝑠𝑘𝑘 , 𝑠𝑠𝑘𝑘 + 1, … (𝑆𝑆𝑀𝑀 − 1)�  # Advance distance vector 
𝑦𝑦𝑖𝑖𝑘𝑘 = 𝑦𝑦�𝑖𝑖𝑘𝑘 ,   𝑖𝑖 = �0,1, … (𝑆𝑆𝑀𝑀 − 1 − 𝑠𝑠𝑘𝑘)�  # Truncate signal vector 

     Else 
𝑥𝑥𝑖𝑖𝑘𝑘 = 𝑥𝑥�𝑖𝑖𝑘𝑘 ,   𝑖𝑖 = �0,1, … (𝑆𝑆𝑀𝑀 − 1 − �𝑠𝑠𝑘𝑘�)�  # Truncate distance vector 
𝑦𝑦𝑖𝑖𝑘𝑘 = 𝑦𝑦�𝑖𝑖𝑘𝑘 ,   𝑖𝑖 = ��𝑠𝑠𝑘𝑘�, �𝑠𝑠𝑘𝑘� + 1, … (𝑆𝑆𝑀𝑀 − 1)�  # Advance signal vector 

End: 
Outputs: 𝕋𝕋   # Aligned signal tables [signal, distance] 

Figure 10. Correlation alignment algorithm. 

This is equivalent to advancing the distance vector of the signal by the number of shift positions for 

maximum cross-correlation. The tail will be ahead of the last sample of the reference signal because 

the signal is advanced, and is, therefore, truncated. The reverse procedure is used when the shift 

position for maximum cross-correlation is negative. 



3.7 Ensemble Average 

The realignment of signals resulted in a variation of the distance positions for the first and last 

samples across the aligned traversal dataset. Hence, prior to ensemble averaging, the algorithm trims 

the aligned signals so that the beginning and ending positions are equal to the maximum and 

minimum values, respectively. Finally, the ensemble average of the signal at position k is the mean 

value of the signal across all traversals, at that position. Figure 11 shows the ensemble averaging 

algorithm. 

Ensemble Average 
Inputs: 
    𝕋𝕋   # Tables of aligned signals [signal, distance] 
    SM   # Number of samples 
Begin: 
     For ∀𝑗𝑗 ∈ 𝕋𝕋 

𝐿𝐿max ← max
∀𝑘𝑘∈𝕋𝕋

𝑥𝑥0,𝑘𝑘      # Maximum of starting distances 

𝑅𝑅min ← min
∀𝑘𝑘∈𝕋𝕋

𝑥𝑥𝑆𝑆𝑀𝑀−1,𝑘𝑘    # Minimum of ending distances 

𝑥𝑥𝐿𝐿𝑘𝑘 ← min
∀𝑘𝑘

�𝑥𝑥𝑘𝑘𝑘𝑘 − 𝐿𝐿max�, 𝑥𝑥𝑅𝑅𝑘𝑘 ← min
∀𝑘𝑘

�𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑅𝑅max�  # First and last samples 

     𝑌𝑌𝑘𝑘 = 1
𝑇𝑇
∑ 𝑦𝑦𝑘𝑘𝑘𝑘𝑇𝑇−1
𝑘𝑘=0 , 𝑘𝑘 = {0,1, … }    # Ensemble average signal across position k 

End: 
Outputs: W    # Vector [ensemble averaged signal, distance] 

Figure 11. Ensemble averaging algorithm. 

3.8 Detection Threshold Model 

In signal detection theory, a false positive or type I error means that the detector falsely reported a 

noise event as an inertial event. A false negative or type II error means that the detector failed to 

identify a true inertial event in the signal. Setting the optimum signal detection threshold for a given 

SNR involves a tradeoff that minimizes both types of errors (Chen, 2004). Setting the threshold too 

low will increase false positives because noise will trigger a detection. Increasing the threshold will 

decrease false positives but setting the threshold too high will increase false negatives because the 

detector could miss signals. 



Figure 5b shows that the ensemble average of aligned signals produces a clearly isolated 

signal peak, whereas signal misalignment lowers the signal level and broadens the peak. Hence, 

signal misalignment forces a lowering of the signal detection threshold to prevent a false negative, 

which also increases the probability of a false positive from noise peaks. As shown, in both cases 

ensemble averaging decreases the noise, which increases the SNR asymptotically with each 

additional signal combined. A larger SNR increases the gap between signals and noise so that the 

optimum signal detection threshold would further minimize both type I and type II errors. Hence, a 

model is needed to inform the optimum signal detection threshold for the composite signal as a 

function of the number of traversals combined. 

From statistics, if P1 is the probability of detecting the signal, then the probability of not 

detecting the signal is (1 – P1). Hence, the probability of still not detecting the signal after n 

consecutive traversals is (1 – P1)n so long as the detection attempts are independent. Therefore, the 

probability of detecting the signal after n consecutive traversals is 

𝑃𝑃(𝑛𝑛) = 1 − (1 − 𝑃𝑃1)𝑛𝑛 (4) 

with a boundary condition check that when n = 1 the function evaluates to P(1) =  P1. Figure 12a 

plots the function P(n) for various values of P1 and n. This n-trial probability asymptotically 

approaches 100% and the rate of approach is faster as P1 increases. 

The probability P1 of detecting the signal as a function of a signal detection threshold x can 

be determined from the dataset by estimating a probability density function f(x) from a histogram of 

the signal peaks. Then the cumulative probability F(x) of detecting signal levels below x is 

𝐹𝐹(𝑥𝑥) = � 𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝑥𝑥

0
 (5) 



Finally, the reverse cumulative probability function R(x) = 1 – F(x) relates the signal detection 

threshold x to the probability of signal detection P1 where 

𝑥𝑥 = 𝑅𝑅−1(𝑃𝑃1). (6) 

Figure 12b illustrates the probability of signal detection P1 as a function of the signal detection 

threshold x for a Gaussian distribution of peak signal values. For illustration, the simulation uses a 

mean signal peak value of 0.5 g and a standard deviation of 0.1 g. Hence, setting a signal detection 

threshold at 0.4, for example, will result in detecting the signal in the first attempt with a probability 

of 80%. Lowering the threshold towards zero increases P1 towards 100%. However, unless noise is 

reduced, lowering the threshold will also increase false positives by erroneously detecting noise 

peaks as signals. Ensemble averaging reduces noise asymptotically towards zero as the signal level 

approaches the mean value. Therefore, the SNR will increase asymptotically. 

 

Figure 12. Probability of detection a) after n trials and b) as a function of threshold level. 

It is natural to estimate the n-trial probability from measurements of the SNR because both 

functions increase asymptotically with the inclusion of additional signals into the ensemble average. 

The association is a direct proportionality such that 



𝑆𝑆𝑆𝑆𝑅𝑅(𝑛𝑛) = 𝛼𝛼[1 − (1 − 𝑃𝑃1)𝑛𝑛] (7) 

where α and P1 are constants that can be estimated from the data. The initial signal detection 

threshold will be the value associated with the estimate of P1 as determined from a histogram of the 

signal peaks. Subsequently, the technique to evaluate the potential type I and type II error rates as a 

function of the number of traversals combined uses the following procedure: 

1. After signal alignment, compute the SNR from an ensemble average of n signals. 

2. Fit the n-trial probability function to the SNR data to estimate P1 . 

3. Plot a reverse cumulative histogram of the signal peak to identify the initial signal detection 

threshold x1 associated with P1. 

4. Record the factor γ = x1/ρ1 where ρ1 is the root-mean-squared value of the noise level of the 

first signal.  

5. Determine the minimum number of traversals N needed for PN to approach 1, which 

represents a false negative rate approaching zero. 

6. Determine the new noise level ρN of the composite signal combining N traversals. 

7. Determine the associated signal detection threshold level as xN = γ ρN. 

This procedure reduces the signal detection threshold by the same amount as the noise reduction 

achieved with each additional signal included in the ensemble average. Hence, the procedure lowers 

the signal detection threshold while keeping it above the new noise level by the same factor γ. The 

result is a consistent lowering of the signal detection threshold towards the minimum signal value to 

approach zero false-negative without changing the false positive rate. 

4 Results 

Signal position alignment and ensemble averaging boosted the signal and decreased the noise by 

reducing the positional variation of the signal. Table 2 compares the means (μ) and standard 



deviations (σ) of the distance differences between the PIE of each signal and that of the reference 

signal, denoted as ∆PIE. 

Table 2. Evaluation of the Signal Alignment Method 

 ∆PIE (m) EA Peak 
Description μ σ (g) 
Non-aligned signals 0.57 6.07 0.46 
Aligned signals 0.11 0.09 0.99 
Improvement Factor 5.1 67.4 2.14 

 

After applying the centroid truncate method prior to alignment, the spread of ∆PIE was more than 6 

meters. The subsequent application of correlation alignment decreased the mean and the spread of 

∆PIE by a factor of more than 5 and 67, respectively. The improvement in alignment boosted the 

peak of the ensemble averaged (EA) signals by a factor of more than two, which is approximately 3 

dBs of signal gain. 

Figure 13 plots the SNR of the ensemble-averaged signals as a function of the number of 

traversals combined. In engineering, it is customary to report SNR measurements in decibel (dB) 

units where increasing values indicate improvement. The results show that ensemble averaging 

increased the SNR by 9.8 dB after combining the signals from the first 6 traversals. With perfect 

alignment, the SNR will increase continuously. However, because the alignment is not perfect, 

random variations in the relative position of the signal peaks cause a jagged SNR trend in the 

composite signal, albeit with the overall trend increasing asymptotically to a maximum value. Fitting 

the n-trial probability function to the SNR data provided an estimate of 0.51 for Pt. Table 3a 

summarizes the parameter estimates, and Table 3b lists the SNR data and values evaluated for the 

best fit. The coefficient of determination R2 of 0.90 suggests that the fit is very good. 

For this dataset, a reverse cumulative histogram of the signal peaks established that a signal 

detection threshold associated with Pt  = 0.51 would be γ = 4.4 times above the noise level. 



Table 3. a) Parameters of Best-fit Function and b) the SNR Data 

a) Function Parameters 
R2 Pt α 

0.90 0.51 23.25 
 

b) SNR Data and Fit 
N Data (dB) Fit (dB) 
1 14.31 11.84 
2 16.83 17.66 
3 18.99 20.51 
4 20.87 21.91 
5 21.74 22.59 
6 24.13 22.93 
7 22.77 23.10 
8 22.85 23.18 
9 23.19 23.22 

10 24.51 23.24 
11 23.44 23.25 
12 23.39 23.25 
13 23.66 23.25 
14 23.21 23.25 
15 23.11 23.25 

 
 

 

Figure 13. SNR and fitted n-trial probability function. 



At that level, there were no false positives in the dataset. However, the false negative rate at signal 

detection threshold x1 was [1 - Pt ] = 0.49 for individual signal detections. For the dataset, there were 

no false negatives for the threshold x6. This required maintaining the signal detection threshold at γ = 

4.4 times above each of the new noise levels ρn after ensemble averaging. As shown in Figure 13, the 

fitted probability curve suggests that with α = 1, the false-negative rate will approach zero after 

combining the signals from 15 traversals. 

5 Discussion 

To apply the method in practice, a method of linear referencing is needed to identify the zero-

distance position. Many textbooks on geographic information systems (GIS) include an in-depth 

discussion on methods of linear referencing (Curtin, et al., 2007). In its simplest form, the geospatial 

position associated with a landmark or a milepost is most often used in transportation-related 

fieldwork. When applying the method developed in this paper, the reference position would be a 

geospatial coordinate associated with the first GPS block of the aligned signals. However, given the 

large variation in GPS positions, a method is needed to identify a single geospatial position. The 

recommended approach is to use the common “snap” feature of most GIS tools to move the points of 

all GPS blocks onto the centerline of the path, and then to compute the centroid of the resulting 

points from the first adjusted GPS block of the aligned signals. The centroid is a good statistical 

estimator for the spatial position of the zero-distance position along the traversal path. Subsequently, 

a follow-up inspection will locate the rough spot by following any lane of the curvilinear path, from 

the reference centroid location to the specified offset distance. The rough spot could be on any lane 

of the curvilinear path but still within line-of-sight of an inspector. 

Another consideration is that, because the ensemble averaging required truncating the signals 

to approximately equal length after realignment, the segments to be analyzed should be overlapped 



by at least the measured spread of the first GPS block. This will avoid the potential miss of a rough 

spot at the segment fringes due to signal truncation. 

The proposed method estimated the best signal detection threshold based on the data that was 

collected. The best signal detection threshold depends on the level of signal alignment achieved. 

That is, the signal detection threshold depends on the SNR trend, which provides an estimate for the 

probability of detecting a signal after a single attempt. The accuracy of signal alignment is affected 

by variations in the signal levels, GPS update rate, and accelerometer update rate among traversals. 

Hence, a repeat of the procedures in the proposed method is recommended for any new data 

collected with different sensors, placement of sensors, vehicles used, and traversal speeds. 

Yang et al. (2020) recently addressed issues relating to the need for sensor calibration to 

account for sensor and vehicle variations (Yang, et al., 2020). That is, the signal level depends on the 

dampening effects of the sensor, the vehicle suspension system, and the vehicle speed. Hence, 

Bridgelall et al. (2019) addressed issues related to non-uniform vehicle speeds (Bridgelall, et al., 

2019). This work focused on enhancing the signal-to-noise ratio through ensemble averaging of 

aligned signals, regardless of such anticipated variations in the signal measurement conditions. To 

avoid averaging low signal levels due to exceptionally low speed traversals or excessive suspension 

system dampening, the workflow removed traversals without absolute value signal peaks that are 

twice the average noise level. Although obvious, it is important to note that the method detects rough 

spots only on paths that vehicles traverse. 

6 Conclusion 

The ubiquitous connectivity of vehicles can enable frequent and network-wide monitoring of 

infrastructure condition by using on board sensors to measure and report roughness levels. However, 

the application of signal detection techniques to sensor data from a single traversal can lead to high 



false-positive and high false-negative rates. Ensemble averaging the signals from multiple traversals 

can reduce noise and, therefore, reduce the false-positive rate for a given signal detection threshold. 

However, signal position misalignment from variations in the accelerometer update rate, GPS 

position errors, and low distance resolution degrades the quality of the composite signal. This work 

developed a technique that uses distance interpolation, signal resampling, and cross-correlation to 

align the position of all signals of the dataset. 

The correlation alignment method decreased the mean deviation and spread from a reference 

signal by a factor of more than 5 and 67, respectively. The signal peak from ensemble averaging all 

the aligned signals of the dataset was double that of the result from ensemble averaging the non-

aligned signals. Adding aligned signals to the ensemble averaging resulted in a 10 dB increase in 

SNR after combining the first 6 signals. An n-trial probability model fitted to the data informed the 

optimum threshold for signal detection as a function of the number of traversal signals combined. 

The result was that both the false positive and false negative rates approached zero after combining 

the signals from the first 15 traversals. The model suggests that the signal quality will improve 

continuously as more data becomes available. Hence, the method of correlation alignment with 

ensemble averaging can be generalized for applications that produce geospatial sensor data from 

multiple observations of a phenomenon. 

Future work will extract features from the composite signals to develop machine learning 

models that can be trained to classify the types of rough spots detected. This capability will inform 

preparations for a follow-up inspection to select the appropriate tools and equipment that can further 

validate the presence of that type of issue. 
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