
ADDRESSING CHALLENGES IN DATA PRIVACY AND SECURITY: VARIOUS APPROACHES

TO SECURE DATA

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By Sayantica Pattanayak

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Computer Science

May 2021

Fargo, North Dakota

North Dakota State University

Graduate School

Title

ADDRESSING CHALLENGES IN DATA PRIVACY AND SECURITY:
VARIOUS APPROACHES TO SECURE DATA

 By

Sayantica Pattanayak

 The Supervisory Committee certifies that this disquisition complies with North

Dakota State University’s regulations and meets the accepted standards for the

degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

Dr. Simone A. Ludwig

 Chair

Dr. Anne Denton

Dr. Pratap Kotala

Dr. Dogan Comez

 Approved:

 August 21, 2021 Dr. Simone A. Ludwig
 Date Department Chair

iii

ABSTRACT

Emerging neural networks based machine learning techniques such as deep learning and

its variants have shown tremendous potential in many application domains. However, the

neural network models raise serious privacy concerns due to the risk of leakage of highly

privacy-sensitive data. In this dissertation, we propose various techniques to hide the sensitive

information and also evaluate the performance and efficacy of our proposed models.

In our first research work we propose a model, which can both encrypt and decrypt a

ciphertext. Our model is based on symmetric key encryption and back propagation neural

network. Our model takes the decimal values and converts them to ciphertext and then again to

decimal values.

In our second research work, we propose a remote password authentication scheme

using neural network. In this model, we have shown how an user can communicate securely

with more than one server. A user registers himself / herself with a trusted authority and gets a

user id and a password. The user uses the password and the user id to login to one or multiple

servers. The servers can validate the legitimacy of the user. Our experiments use different

classifiers to evaluate the accuracy and the efficiency of our proposed model.

In our third research paper, we develop a technique to securely send patient information

to differ- ent organizations. Our technique used different fuzzy membership functions to hide

the sensitive information about patients.

In our fourth research paper, we introduced an approach to substitute the sensitive

attributes with the non-sensitive attributes. We divide the data set into three different subsets:

desired, sensitive and non-sensitive subsets. The output of the denoising autoencoder will only

be the desired and non-sensitive subsets. The sensitive subsets are hidden by the non-sensitive

subsets. We evaluate the efficacy of our predictive model using three different flavors of

autoencoders. We measure the F1-score of our model against each of the three autoencoders. As

iv

our predictive model is based on privacy, we have also used a Generative Adversarial Neural

Network (GAN), which is used to show to what extend our model is secure.

v

ACKNOWLEDGEMENTS

First and foremost I wish to thank my academic advisor Dr. Simone A. Ludwig for her

constant support during my PHD program. Dr Ludwig has given me the freedom to pursue

various research without any objections. She also provided insightfull discusions about the

research. Dr Ludwig was not only my academic advisor but a mentor to me. The passion and

commitments she put into her students are highly appreciable .

I would like to extend my sincere thanks to Dr Pratap Kotala, Dr Anne Denton and Dr

Dogan Comez for serving on my graduate committee. They dedicated their valuable time to

provide feedback on my thesis and helping me in professional developments.

I would also like to thank Guy Hokanson, the system administrator of the department.

His constant help through emails and in-person in different technical issues has helped me to

finish my thesis in time. Also I would like to thank my lab members for their support.

My acknowledgement does not end without thanking my husband and my kids. Their

constant sacrifices, support and patience has inspired me to finish my defense. My only wish

was my Dad was around me to see me earn the degree. He would have been proud of me.

vi

DEDICATION

To my husband and my kids

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ..v

DEDICATION .. vi

LIST OF TABLES ...x

LIST OF FIGURES .. xii

1. INTRODUCTION ... 1

1.1. Cryptography .. 2

1.1.1. Cryptography Techniques .. 2

1.2. Cryptographic Algorithms .. 3

1.3. Homomorphic Encryption ... 3

1.4. Neural Cryptography .. 4

1.5. Artificial Neural Network ... 4

1.5.1. Perceptron .. 5

1.5.2. Feed Forward Neural Network (FF) .. 5

1.5.3. Radial Basis Neural Network (RBF) .. 5

1.5.4. Deep Feed Forward Neural Network (DFF) .. 5

1.5.5. Convolutional Neural Network (CNN) .. 6

1.5.6. Long Term Short Memory Neural Network (LSTM) .. 6

1.5.7. Autoencoder Neural Network (AE) ... 6

1.6. Motivation and Problem Definition ..7

1.6.1. Overfitting .. 8

1.6.2. Hyper-parameter Tuning .. 9

1.6.3. Resampling of Data ... 9

1.7. Contributions .. 9

1.8. Dissertation Overview ... 11

viii

2. ENCRYPTION BASED ON NEURAL CRYPTOGRAPHY .. 12

2.1. Related Work ... 12

2.2. Proposed Approach ... 13

2.3. Experimental Setup and Results... 16

2.3.1. Experimental Setup .. 16

2.4. Results ... 21

2.5. Summary .. 24

3. A SECURE ACCESS AUTHENTICATION SCHEME FOR MULTISERVER
ENVIRONMENTS USING NEURAL CRYPTOGRAPHY .. 26

3.1. Related Work .. 26

3.2. Our Proposed Approach .. 29

3.2.1. Registration Phase ... 29

3.2.2. Login Phase ... 30

3.2.3. Validation Phase .. 31

3.3. Experimentation ... 31

3.3.1. Training ... 32

3.3.2. Classification ... 32

3.4. Evaluations and Results ... 33

3.5. Security Analysis .. 36

3.5.1. Privacy ... 36

3.5.2. Nonforgability ... 37

3.5.3. Replay Resistance ... 38

3.6. Summary .. 42

4. IMPROVING DATA PRIVACY USING FUZZY LOGIC AND AUTOENCODER
NEURAL NETWORK .. 43

4.1. Related Work .. 43

4.2. Background .. 46

ix

4.2.1. Fuzzy Logic .. 46

4.2.2. Mathematical Notation ... 46

4.2.3. Artificial Neural Network ... 48

4.2.4. Autoencoder .. 48

4.3. Our Approach ... 49

4.4. Experimental Setup .. 51

4.5. Evaluation and Results .. 52

4.6. Summary .. 56

5. ANALYZING PRIVACY OF TIME SERIES DATA USING SUBSTITUTE
AUTOENCODER NEURAL NETWORK ... 58

5.1. Related Work .. 58

5.2. Proposed Approach ... 61

5.3. Experimental Setup ... 63

5.3.1. Data Set ... 63

5.3.2. Experimental Settings ... 64

5.4. Results .. 65

5.5. Security Model ... 74

5.6. Summary ... 77

6. CONCLUSION AND FUTURE WORK ... 79

REFERENCES .. 82

x

LIST OF TABLES

Table Page

2.1. Ciphertext (C1) with different optimizers .. 16

2.2. Ciphertext (C1) with step values .. 17

2.3. Ciphertext (C1) with learning rate ... 17

2.4. Ciphertext (C2) with different optimizers ... 17

2.5. Ciphertext (C2) with step values .. 18

2.6. Ciphertext (C2) with learning rates ... 18

2.7. Ciphertext (C3) with different optimizers ... 18

2.8. Ciphertext (C3) with step values .. 19

2.9. Ciphertext (C3) with learning rates ... 19

2.10. Ciphertext (C1) with different optimizers ... 20

2.11. Ciphertext (C1) with step values ... 20

2.12. Ciphertext (C1) with different learning rates .. 20

2.13. Ciphertext (C2) with different 0ptimizers ... 21

2.14. Ciphertext (C2) with step values .. 21

2.15. Ciphertext (C2) with different learning rates ... 22

2.16. Ciphertext (C3) with different optimizers .. 23

2.17. Ciphertext (C3) with step values ... 23

2.18. Ciphertext (C3) with different learning rates ... 23

3.1. SVM instances with corresponding parameters ... 34

3.2. Classification accuracy of different classifiers - Iterations 1-10 34

3.3. Classification accuracy of different classifiers .. 35

3.4. Grouping information of different classifiers ... 37

3.5. Difference of means to calculate statistical significant difference (STD) 39

4.1. Accuracy and loss value of drop column data set and without sparsity constraints 53

xi

4.2. Accuracy and loss value of drop column data set and with sparsity constraints 54

4.3. Accuracy and loss value of drop row data set with sparsity constraints 54

4.4. Accuracy and loss value of drop row data set and without sparsity constraints 55

4.5. Accuracy and loss value of mean data set and without sparsity constraints 56

4.6. Accuracy and loss value of mean data set with sparsity constraints 57

5.1. F1-score for CNN autoEncoder of Skoda data set (OF1 stands for original data set
and TF1 stands for transformed data set) ... 68

5.2. F1-score for Deep autoEncoder Skoda data set (OF1 stands for original data set
and TF1 stands for transformed data set) ... 69

5.3. F1-score for LSTM autoEncoder Skoda data set (OF1 stands for original data set
and TF1 stands for transformed data set) .. 70

5.4. F1-score for CNN autoEncoder Hand Gesture data set (OF1 stands for original
data set and TF1 stands for transformed data set) .. 71

5.5. F1-score for Deep autoEncoder Hand Gesture data set (OF1 stands for original
data set and TF1 stands for transformed data set) ... 72

5.6. F1-score for LSTM autoEncoder hand Gesture data set (OF1 stands for original
data set and TF1 stands for transformed data set) ... 73

xii

LIST OF FIGURES

Figure Page

2.1. Encryption model based artificial neural network. ... 14

2.2. Formation of ciphertext ... 15

2.3. Expected and predicted value of ciphertext C2. ... 24

2.4. Expected and predicted value of ciphertext C3. ... 25

3.1. Alice communication with two different servers .. 29

3.2. Classification accuracy chart of different classifiers ... 36

4.1. Different membership functions .. 47

4.2. Autoencoder neural network ... 51

5.1. A high level architecture: a privacy preserving trusted authority between user and
the server.. 61

5.2. An overview of the denoising autoencoder process .. 63

5.3. Confusion matrix of CNN autoencoder of Skoda data set .. 73

5.4. Confusion matrix of multilayer autoencoder of Skoda data set 74

5.5. Confusion matrix of LSTM autoencoder of Skoda dataset ... 74

5.6. Confusion matrix of CNN autoencoder of Hand Gesture data set 75

5.7. Confusion Matrix of Multilayer autoencoder of Hand Gesture Data Set 76

5.8. Confusion matrix of LSTM autoencoder of Hand Gesture data set 76

5.9. GAN accuracy is distinguishing from real, fake and randomly generated data
portion ... 77

1

1. INTRODUCTION

The value of collecting data has skyrocketed ever since Glaxo Smith Kline got access to

genetic data from the genomics and biotechnology company 23andMe [1]. The goal of the part-

nership was to gather insights and discover novel drug targets driving disease progression, and

to develop therapies for serious medical needs based on those discoveries. However, this lead to

serious privacy concerns among customers. Privacy Concern issues arose after several

breathtaking series of scandals. Cambridge Analytica [2] had collected and exploited Facebook

user data. Snowden [3] leaked highly classified documents of the National Security Agency. Also

millions of unique passport numbers had been stolen in a Marriott International data breach

[4]. The consequences of these scandals lead to an extensive rewrite of privacy law in Europe

[5]. As a result, companies tend to be incredibly protective of their data assets and very

conservative when it comes to share them with other companies. At the same time, data

scientists need access to large labeled data sets in order to validate their models. This constant

friction between privacy and learning has become a governing dynamic in modern machine

learning applications.

For any company, it will be immensely valuable to give access to their data to a large

group of data scientists and researchers so that they can extract information from it, compare

and evaluate mod- els, and arrive at a satisfactory solution. However, how can companies

guarantee that their data will be protected or that the interest of their customers will be

preserved or that some unscrupulous data scientists would not share their intelligence with the

competition? When confronted with that issue, many companies started anonymizing their data

sets but that is hardly a solution in many scenarios.

The following sections briefly describe the various privacy methods adapted. A brief

description of the background is presented in Sections 1.1-1.3. The motivation of the work is

discussed in Section 1.4. The contributions of the work is described in Section 1.5, and an

overview of the dissertation is listed in Section 1.6.

2

1.1. Cryptography

Cryptography is a method of protecting information and communication through the use

of codes so that only those for whom the information is intended can read and process it. The

pre-fix “crypt” means “hidden” or “vault”, and the suffix “graphy” stands for “writing”.

In computer science, cryptography refers to secure information and communication

techniques derived from mathematical concepts, and a set of rule-based calculations called

algorithms to transform messages in ways that are hard to decipher. These deterministic

algorithms are used for cryptographic key generation and digital signing and verification to

protect data privacy, web browsing on the internet, and confidential communications such as

credit card transactions and email.

1.1.1. Cryptography Techniques

Cryptography is closely related to the disciplines of cryptology and cryptanalysis. It

includes techniques such as microdots, merging words with images, and other ways to hide

information in storage or transit. However, in today’s computer-centric world, cryptography is

most often associated with scrambling plaintext (ordinary text, sometimes referred to as

cleartext) into ciphertext (a process called encryption), then back again (known as decryption).

Individuals who practice this field are known as cryptographers. Modern cryptography concerns

itself with the following four objectives:

• Confidentiality: the information cannot be understood by anyone for whom it was

unintended.

• Integrity: the information cannot be altered in storage or transit between sender and

intended receiver without the alteration being detected.

• Non-repudiation: the creator/sender of the information cannot deny at a later stage his

or her intentions in the creation or transmission of the information.

• Authentication: the sender and receiver can confirm each others identity and the

origin/destination of the information.

3

1.2. Cryptographic Algorithms

Cryptosystems use a set of procedures known as cryptographic algorithms, or ciphers, to

encrypt and decrypt messages to secure communications among computer systems, devices

such as smartphones, and applications.

• Symmetric Key Algorithm

Private-key or the symmetric-key encryption is a setting where two parties share some

secret information in advance. The private key encryption consists of an encryption algorithm,

Enc, and takes as input a key k and a plain text message m and outputs a ciphertext C.

It is denoted as

 C = Enck(m) (1.1)

The decryption algorithm, Dec, takes as input the same key k and a ciphertext C, and

outputs the plain text m.

It is denoted as

 m = Deck(C) (1.2)

• Asymmetric Key Algorithm

Public-key encryption or Asymmetric key encryption is a setting where one party

generates a pair of keys (pk, sk) called the public key and the private key, respectively. The

public key is used by the sender to encrypt a message for the receiver; the receiver then uses the

private key to decrypt the resulting ciphertext. The commonly known RSA algorithm [6],

abbreviated after the names of the inventors, is an example of public key encryption. The

algorithm implements a public key cryptosystem whose security rests in part of the difficulty in

factoring large numbers. The algorithm also permits secure communications to be established

without the use of couriers to carry keys and it also permits one to “sign” digitized documents.

1.3. Homomorphic Encryption

Homomorphic Encryptions is another form of hiding data. Homomorphic Encryptions

rep- resents one of the biggest breakthroughs in the cryptography space. This technique is likely

4

to become the foundation of many AI applications in the near future. Conceptually, the term Ho-

momorphic Encryption describes a class of encryption algorithms which satisfy the

Homomorphic property: that is certain operations, such as addition, can be carried out on

cipher texts directly so that upon decryption the same answer is obtained as operating on the

original messages. In the context of AI, Homomorphic Encryption could enable data scientists to

perform operations on encrypted data that will yield the same results as if they were operating

on clear data. The main issue with Homomorphic Encryption is that the technology is still too

computationally expensive to be considered in mainstream applications. Basic Homomorphic

Encryption techniques can turn 1 MB of data into 16 GB, which makes it completely impractical

form many AI scenarios.

1.4. Neural Cryptography

Somewhere between Anonymization methods and Homomorphic Encryption, a novel

tech- nique pioneered by Google, uses adversarial neural networks to protect information from

other neural network models. The technique is known as Neural Cryptography.

Traditionally, neural networks have been considered to be very bad at cryptographic

operations as they have a hard time performing a simple XOR computation. While that is true, it

turns out that neural networks can learn to protect the confidentiality of their data from other

neural networks. They discover forms of encryption and decryption, without being taught

specifically for these purposes. In short, Neural Cryptography is a branch of cryptography, which

is the most significant part of communication security [7].

1.5. Artificial Neural Network

Neural Cryptography uses Artificial Neural Network models to achieve privacy and

security. Artificial Neural Networks are computational models which work similar to the

functioning of a human nervous system. There are several kinds of artificial neural networks.

These type of networks are implemented based on the mathematical operations, and a set of

5

parameters required to determine the output. Different Neural Network models, which have

been used in this dissertation are described below:

1.5.1. Perceptron

This is the most simplest and the oldest form of Neural Network. The neuron takes the

inputs sum them up, applies some activation function, and passes the result to the output layer,

which consists of one neuron [8].

1.5.2. Feed Forward Neural Network (FF)

This type of Neural Network [9] model was originated in 1950. The Neural Network

model has more than one neuron. The model has at least one hidden layer between the input

and the output. All the inputs are connected to each of the nodes in the hidden layer. The

activation flows from input to output without back loops. In a Feed Forward Neural Network,

the sum of the products of the inputs and their weights are calculated. This is then fed to the

output. Feed forward neural networks are used for technologies such as face recognition and

computer vision.

1.5.3. Radial Basis Neural Network (RBF)

RBF uses the radial basis function as the activation function. This type of Neural

Network model works very well for classification and decision making. However, RBF do not

work so well with continuous values. A radial basis function considers the distance of any data

point relative to the center. Such Neural Networks have two layers; in the inner layer, the

features are combined with the radial basis function [10]. The radial basis function neural

network is applied extensively areas such as power restoration systems [11].

1.5.4. Deep Feed Forward Neural Network (DFF)

DFF is now the most applied of the different machine learning systems [12]. The network

uses more than one hidden layer. DFF covers the same purpose as FF. However, their

performance is much better than FF. DFF is used to classify data that cannot be separated

linearly. It is a type of artificial neural network that is fully connected. This is because every

6

single node in a layer is connected to each node in the following layer. This type of Neural

Network is applied extensively in speech recognition and machine translation technologies.

1.5.5. Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) uses a variation of multilayer perceptrons. A

CNN contains one or more than one convolutional layer(s). These layers can either be

completely interconnected or pooled. Before passing the result to the next layer, the

convolutional layer uses a convolutional operation on the input. Due to this convolutional

operation, the network can be much deeper but with much fewer parameters. Due to this ability,

convolutional neural networks show very effective results in image and video recognition,

natural language processing, and recommender systems [70].

1.5.6. Long Term Short Memory Neural Network (LSTM)

A LSTM Neural Network is a type of Artificial Neural Network in which the output of a

particular layer is saved and fed back to the input. This helps predict the outcome of the layer.

From each time-step to the next, each node will remember some information that it had in the

previous time-step. In other words, each node acts as a memory cell while computing and

carrying out operations. LSTM begins with the front propagation as usual but remembers the

information it may need to use later. This type of Neural Network is very effective in text-to-

speech conversion technology and time series analysis [14].

1.5.7. Autoencoder Neural Network (AE)

Autoencoder Neural Network [67] can be trained without supervision. Their number of

hidden cells is smaller than the number of input cells (and the number of output cells equals the

number of input cells), and when the AE is trained the way the output is as close to the input as

possible, forces AEs to generalize data and search for common patterns. Autoencoders are used

for classification, clustering, and feature compression.

7

1.6. Motivation and Problem Definition

Although everyone understands the concept of privacy, there is no universally accepted

definition of privacy. Privacy can be defined in three ways. Privacy in Information deals with the

handling and collection of private data. Communication Privacy deals with privacy while com-

municating. Territorial Privacy is concerned with the invasion of physical boundaries. With the

latest advancement in computer science, privacy in information and communication is getting

more attention. Many organization share information and messages to other organization for

analyzing the data. However, sharing raw information or messages is a potential threat to

privacy.

Confidentiality in communication or messages can be achieved using Neural

Cryptography 1.3. Neural Cryptography maintains confidentiality that is the core of information

security using mathematical techniques. The confidentiality is maintained with the construction

of a ciphertext (now called encryption scheme). The ciphertext 4.6 provides secret

communication between two parties either by symmetric key encryption or asymmetric key

encryption. In symmetric key encryption, both parties shares the same key. However, in

asymmetric key encryption both parties share different keys.

On the other hand privacy in information can be achieved by sanitizing the sensitive

information. When raw data is shared there is a chance of a privacy breach. For instance, banks

might wish to collaborate in order to detect the fraudulent behavior of customers. This requires

the bank to share financial records of the customer. Also, hospitals want to share data of

patients with the other hospitals for efficient diagnosis of diseases. In both cases, the bank and

the hospitals hold shared data without violating the privacy of the individual customer.

The motivation are summarized below:

Cryptography has been used as a tool for sending confidential data from one Neural

Network to another Neural Network. The two Neural Networks named Alice and Bob trained

their respective data sets. Alice trained the model using her encryption data set, and Bob trained

8

his model using his decryption data set. As Neural Networks learn from training, they can now

encrypt and de- crypt any confidential data sets. The two neural network share a same secret key

to secure their communication. Eve, an eves dropper, will not be able to learn the private

message they shared. Eve can only make a guess to the message.

Cryptography is also used as a tool in remote password authentication scheme for

multiple server. Here, a neural network can login into multiple servers using a single password.

The authentication scheme is made secure using Diffie Hellman Key exchange protocol [17]. The

key is shared with the user, server and the trusted party. The neural network is based on

supervised learning and back propagation Neural network.

Privacy is needed not only in communication. Privacy plays a very vital role when

sending in- formation. Nowadays many organizations share data. The sharing of data helps to

analyze the data for future research work. However, if the data contains personal information,

then the privacy is compromised. Fuzzy membership functions are use to sanitized the personal

information. The personal information are hidden with the boundary values of different fuzzy

membership functions. The sanitized data set is sent to other organization using Autoencoder

neural network. The Autoencoder neural network is used in compressing the attributes to most

important ones.

Analyzing the efficacy of the neural network model is very crucial. To improve the

efficiency we used different techniques. The various techniques are described below.

1.6.1. Overfitting

The first step in ensuring our neural network performs well on the testing data is to

verify that our neural network does not overfit. Overfitting happens when the model starts to

memorize values from the training data instead of learning from them. Overfitting can be

identified by observing training and testing accuracy. If the training accuracy is higher than the

testing accuracy then it is assumed that the model has overfitted. To avoid overfitting we used

following techniques:

9

• Regularization of data (L1 or L2): This technique reduces overfitting by adding a penalty

to the loss function [15].

• Early Stopping: This can be done by stopping the training before the weights have

converged [16].

• Dropout: At each training phase, individual neurons are dropped out of the network [15].

1.6.2. Hyper-parameter Tuning

Each neural network will have its best set of hyperparameters, which will lead to the

maxi- mum accuracy. Unfortunately, there is no direct method to identify the best set of

hyperparameter for each neural network, so it is mostly obtained through trial and error. The

hyperparameters which we used are the following:

• Learning Rate

• Optimizer and Loss Functions

• Batch Size and Number of Epochs

• Activation Functions

1.6.3. Resampling of Data

After performing all the above mentioned techniques, if our model did not obtain better

accuracy, we resampled the data set. Resampling the data set can be done by balancing an

unbalanced data sets. Also, by removing the columns and rows which have most missing values.

1.7. Contributions

This dissertation makes several contributions towards data privacy using cryptography

and Neural Networks. The first chapter proposes a model which can secure privacy in

communication. Two Neural Networks communicate securely in presence of a third Neural

Network although the third Neural Network will not have any information of their

communication. The dissertation also proposes a technique where one Neural Network can

communicate securely with more than one Neural Network. The proposed technique is achieved

through a remote password authentication method. Using this technique an user can log into

10

one or multiple servers securely. Privacy plays a very vital role not only in communication but

also in sharing information. Hence in this dissertation we also propose an approach of hiding

the sensitive attributes of patients. Our technique can not only hide the sensitive attributes but

also send the attributes to other organizations securely. This technique could help in sharing

patients’ data without compromising their privacy. Finally, LSTM and denoising neural network

is proposed to replace the sensitive information with non-sensitive information. The

contributions can be summarized as follows:

A method for both encrypting and decrypting a ciphertext using a neural network is

proposed. The model takes decimal values as input and converts them to ciphertext, and then

again to the desired output. The model is secured against brute force attacks thereby preserving

privacy and security. The model is experimented with ciphertexts of different length and with

different other parameters like network structure, learning rates, optimizers and step values.

Details of the proposed method is discussed in Chapter 2.

A password authentication scheme based on Neural Networks is developed. The system

identify legitimate users in real time using a pattern classification technique. The scheme is

applicable to multiserver network architectures. The new scheme also shows how to securely

establish a shared secret key, which is the key that will be used for encrypting/decrypting the

password. Details of the proposed model is discussed in Chapter 3.

In Chapter 4, the proposed model uses fuzzy membership to hide the sensitive attributes.

By hiding the data using different fuzzy membership functions, it will be difficult for some other

party to identify the patient. Furthermore, to send data to different organizations an

Autoencoder neural network was used. The Autoencoder retrieves the original data as input.

In chapter 5, the proposed approach shows how a predictive model substitutes the

sensitive at- tributes of a data set with non-sensitive attributes. The time series data sets are

divided into three information sets: desired, sensitive and non-sensitive. The desired

information will be used by other organizations for analysis. The sensitive information in the

11

data sets is replaced by non-sensitive information. We used a deep autoencoder, which extracts

the sensitive information and replaces those with non-sensitive information.

1.8. Dissertation Overview

This dissertation is a paper-based version, where each chapter has been derived from the

papers published during the PhD work. This is an overview of the remaining chapters of this

dissertation.

In Chapter 2, a method for encrypting and decrypting ciphertext is proposed. The

chapter is derived from the following publication:

• Sayantica Pattanayak and Simone A. Ludwig. “Encryption based on Neural

Cryptography.” In International Conference on Health Information Science (pp. 321-

330), New Delhi, India, December 2017.

In Chapter 3, a remote access authentication method is proposed. The chapter is derived

from the following publication:

• Sayantica Pattanayak and Simone A. Ludwig. “A Secure Access Authentication Scheme

for Multiserver Environments Using Neural Cryptography”, Journal Of Information

Assurance And Security , 13(1), (2018),56-65.

In Chapter 4, a technique was developed not to hide the data but to send the data to

other organizations securely. The chapter is derived from the following publication:

• Sayantica Pattanayak and Simone A. Ludwig. “Improving Data Privacy using Fuzzy Logic

and Autoencoder Neural Network”, 2019 IEEE International Conference on Fuzzy

Systems, New Orleans, USA, June 2019.

In Chapter 5, a technique was developed to substitute sensitive attributes with non-

sensitive attributes. The chapter is derived from the following publication:

• Sayantica Pattanayak and Simone A. Ludwig. “ Analyzing Privacy of Time Series Data

using Substitute Autoencoder Neural Network”, IEEE Symposium on Computational

Intelligence (SSCI 2020), Cranberra, Australia, December 2020.

12

2. ENCRYPTION BASED ON NEURAL CRYPTOGRAPHY

Neural Network Cryptography is an interesting area of research in the field of computer

science. This chapter proposes a new model to encrypt/decrypt a secret code using Neural Net-

works, which is an interesting potential source of private key cryptography model that is not

based on number theoretic functions. In the first part of the chapter we proposed our model as

well as analyze the privacy and security of the model thereby explaining why an attacker with a

similar neural network model is unlikely to pose a threat to the system. This proves that the

model is pretty secure. In the second part of the chapter, we experiment with the neural network

model using three different ciphertexts of different length. Parameters of the network that are

tested are different learning rates, optimizers and step values. The experimental results show

how to enhance the accuracy of our model even further. Furthermore, our proposed model is

more efficient and accurate compared to other models for encryption and decryption.

2.1. Related Work

Until now, there has been a large number of studies concerned with the usage of neural

networks in cryptography. Neural cryptography applications were researched first in [18]. The

paper defined a new identification scheme which can be used in smart cards because of small

size data and easy operations. They proved how their identification scheme is secure against the

most efficient attack known using a technique called simulated annealing.

A symmetric probabilistic encryption scheme based on the chaotic classified properties

of Hopfield neural networks was studied in [19]. The authors showed how a discrete Hopfield

Neural Network (HNN) model is favorable for neural cryptography. The HNN is usually referred

to as an associative memory network because the stable states of the network are in the form of

system attractors, which can be used to store patterns and correct error messages by a Minimum

Hamming Distance (MHD). In the case of overstorage, i.e., the Overstoraged HNN (OHNN), the

number of stored patterns will be larger than that of a HNN and the system initial state will then

converge to one of the system attractors compared to conventional HNN [20]. Conventional

13

HNN used a property of HNN to randomize the outcome of an event which can eventually be

used for encryption schemes.

Another chaotic neural network and its VLSI architecture for digital signal encryption

and decryption was proposed in 2000 [80]. Chaotic neural network are used for encryption as

well as for decryption because of high security, no distortion in signal and also suitability of

system integration. In [75], the authors demonstrate that neural networks can learn to protect

communications. The learning does not require prescribing a particular set of cryptographic

algorithms, nor indicating ways of applying these algorithms. The learning is based only on a

secrecy specification represented by the training objectives. Precisely, the paper relates the

application of neural network to multiagent tasks.

Another paper proposed the basis of the Neural Key Exchange protocol [23]. Neural Key

Exchange Protocol is based on the synchronization of the weights of a Tree Parity Machine

(TPM) [24]. Similar to the selection of chaotic oscillators in chaos communication. In other

words, the knowledge of the output does not uniquely determine the internal representation, so

the observer cannot tell which input vector was updated. However, the Neural Key Exchange is

vulnerable to three types of attacks [25]. The attacks are Geometric attack [26], Genetic attack

[27], and probabilistic analysis [28]. These attacks can be fixed by addition of a feedback

mechanism [29].

Authors in [30] proposed an encryption key based Artificial Neural Network (ANN). The

plain text message consists of bits. Then, the bits are transmitted to the recipient. The paper

proposed a backpropagation network for their proposed approach.

2.2. Proposed Approach

Our neural network model is based on Backpropagation network [31]. A

Backpropagation network is one of the most complex neural networks used for supervised

learning. The algorithm assumes a feedforward NN architecture.

14

Our proposed model (Fig 2.1) is based on symmetric key encryption. Like in

cryptography we have Alice and Bob, here we will assume that Alice and Bob want to

communicate secretly. Alice and Bob share their secret keys with each other using symmetric

key encryption. Then, Alice shares her 317 characters with Bob. Alice and Bob create their own

training sets. To achieve this goal, Alice will create a training set as she has the secret keys. The

training set will consists of ASCII codes (decimal values) of 317 characters with their

corresponding three different ciphertexts (C1, C2 and C3). The ciphertexts C1, C2 and C3 are of

different lengths.

Figure 2.1. Encryption model based artificial neural network.

The ciphertext are formed by padding the decimal digits with secret keys as shown in

Figure 2.2. Bob will create his own training set with three different ciphertexts (C1, C2 and C3)

as feature vectors and predicting the ASCII values of the 317 characters.

15

Figure 2.2. Formation of ciphertext

For instance, the ciphertext C1 is formed by taking a secret key and padding the

ciphertext with that key. The secret key is randomly generated. Alice will then share the secret

key with Bob. Alice and Bob will share the 317 characters with each other. Alice and Bob will

create their own training set as they have the secret key. Both Alice and Bob will train their

neural networks with their training data. Alice will train her neural network by using the

ASCII/Decimal values as the feature vector and predicting the ciphertext. Bob on the other hand

will train his neural network by taking the ciphertext as the feature vector and predicting the

decimal value.

As Alice wants to share some secret information with Bob, she has to convert the secret

information or test the message to ASCII (decimal) values. The decimal values will be the input

to the first neural network. The first neural network will then produce an output or a ciphertext.

Afterwards, Alice will hand over the ciphertext to Bob. Bob will use this ciphertext as an input to

the second neural network and will get the decrypted text message.

As our proposed model is based on cryptology, we proved that our proposed model

cannot be attacked by any other adversary [32]. For instance, suppose Eve (an adversary) wants

to eavesdrop to Alice’s and Bob’s conversation. To do this, Eve can attack the model in two ways.

First, Eve can mimic the two neural networks, however, that is impossible for Eve to do because

he does not have the training set. Secondly, Eve can randomly start guessing the ciphertexts,

however, in cryptography privacy is preserved against efficient adversaries that run in a feasible

amount of time [33]. Thus, Eve who has ‘computational power polynomial in time’ would not be

16

able to go through all keys if we use random keys. For privacy, we keep on changing the key for

each sets of messages so that no adversary can guess the right key. Hence, our model is most

secured to maintain confidentiality and integrity of the data.

2.3. Experimental Setup and Results

We divided this section into experimental setup and findings. The experimental set is

divided into Encryption setting and Decryption Setting. For both the settings we included

different parameters with different cipher text to measure the accuracy of our model. The length

of different ciphertext C1, C2 and C3 are medium, small and large respectively. The parameters

are hidden network structures, step values, learning rates and optimizers. The result includes

the evaluation of the best ciphertext with the best network structure for both encryption and

decryption.

2.3.1. Experimental Setup

In the encryption setting we considered evaluating the performance of three different ci-

phertexts. First we consider evaluating the performance of C1, which is of medium length. For

evaluation we included different hidden layers network structure and different optimizers Table

2.1.

Table 2.1. Ciphertext (C1) with different optimizers

Hidden Layers Optimizers RMSE

[350,350,350] Default 6.22

[350,350,350] Adam 0.371

[350,350,350] Adagrad 243.101

[350,350,350] Proximal 3.913

[350,350] Default 0.493

[350,350] Adam 0.455

[350,350] Adagrad 1125.941

[350,350] Proximal 16.672

[350] Default 47.806

[350] Adam 3.609

[350] Adagrad 1224.041

[350] Proximal 1044.983

17

In the next step as the RMSE value with three layer hidden network structure and with

Adam optimizer gave us a good score, we increased the step value to see how it effects the RMSE

value as shown in Table 2.2. We also applied the same network structure with step value of

3,000 to different learning rates as shown in Table 2.3.

Table 2.2. Ciphertext (C1) with step values

Step values RMSE

1000 0.371

2000 0.341

3000 0.224

4000 0.533

Now for ciphertext C2 which is of small length, we experimented with three different

hidden network structure. First we took three layers [350, 350, 350], then [350, 350] and [350]

keeping the step value to 1000. The results are summarized in Table 2.4.

Table 2.3. Ciphertext (C1) with learning rate

Learning Rates RMSE

0.010 0.224

0.001 0.901

0.0001 24.756

Table 2.4. Ciphertext (C2) with different optimizers

Hidden Layers Optimizers RMSE

[350,350,350] Default 0.741

[350,350,350] Adam 0.028

[350,350,350] Adagrad 29.342

[350,350,350] Proximal 0.261

[350,350] Default 0.091

[350,350] Adam 0.037

[350,350] Adagrad 148.662

[350,350] Proximal 0.926

[350] Default 1.4333

[350] Adam 0.272

[350] Adagrad 229.961

[350] Proximal 64.143

18

Now as we see that the Ciphertext C2 gives a best RMSE value with two layer [350,350]

hidden network structure and Adam optimizer. So we evaluated this hidden layer structure with

different step values in 2.5. Now we evaluated the learning rates with two layer hidden network

structure 2.6. We kept the step value to 4000 and used Adam optimizer as this gave a good

RMSE

Table 2.5. Ciphertext (C2) with step values

Step values RMSE

1000 0.091

2000 0.064

3000 0.202

4000 0.033

Table 2.6. Ciphertext (C2) with learning rates

Learning Rates RMSE

0.010 0.037

0.001 0.931

0.0001 27.721

We evaluated the ciphertext C3 with hidden network structure [350, 350, 350], [350,

350], [350] and summarized in Table 2.3.1. Here we took the step value as 4000 as the length

ciphertext C3 is very large.

Table 2.7. Ciphertext (C3) with different optimizers

Hidden Layers Optimizers RMSE

[350,350,350] Default 11.804

[350,350,350] Adam 4.590

[350,350,350] Adagrad 19.976

[350,350,350] Proximal 18.762

[350,350] Default 17.743

[350,350] Adam 4.519

[350,350] Adagrad 14471.780

[350,350] Proximal 163.521

[350] Default 3231.150

[350] Adam 15.045

[350] Adagrad 15155.403

19

From the Table we can interpret that for the Ciphertext C3 RMSE value is best when we

use three layer network structure with Adam optimizer and step value of 4000. Table 2.8 shows

how different step values changes the RMSE values. As we have seen learning rates play a very

important role in Ciphertexts C1 and C2. We experimented C3 with different leaning rates and

with three layer hidden network structure and Adam optimizer Table 2.9.

Table 2.8. Ciphertext (C3) with step values

Step values RMSE

4000 4.590

5000 16.935

6000 16.443

7000 14.309

Table 2.9. Ciphertext (C3) with learning rates

Learning Rates RMSE

0.01 4.963

0.001 8.335

0.0001 148.581

In the Decrypting setting, to decrypt the test message which is encrypted with the

Cipher- text C1 we use different network structure with step value of 1000 and proximal

gradient descent optimizer. We tried to find how good the neural network can decrypt the test

message with different optimizer Table 2.10.

Now we use the three layer hidden network structure and try to find if different step

values can give us a better RMSE value. The output is in Table 2.11. From the table we can say

that that proximal gradient optimizer with three layer hidden network and step values we got a

best RMSE value, so we interpret the optimizer with different learning rates Table 2.12 For

decrypting the message encrypted using the Ciphertext C2 we use three different network

structure. The hidden layer network structure are [150, 150, 150], [150, 150], [150] with step

value of 1000. The output is in Table 2.13.

20

Here also we interpret the different hidden layer network structure of C2 and

implemented two layer network structure with proximal gradient descent optimizer to different

step values Table

2.14. Also we implemented the three layer hidden network structure with proximal

gradient optimizer and step value 1000 to different learning rates Table 2.15.

Table 2.10. Ciphertext (C1) with different optimizers

Hidden Layers Optimizers RMSE

[150,150,150] Default 0.333

[150,150,150] Adam 19.743

[150,150,150] Adagrad 40.671

[150,150,150] Proximal 0.175

[150,150] Default 0.082

[150,150] Adam 111.951

[150,150] Adagrad 161.564

[150,150] Proximal 1.721

[150] Default 1.754

[150] Adam 185.184

[150] Adagrad 186.592

[150] Proximal 93.032

Table 2.11. Ciphertext (C1) with step values

Step values RMSE

1000 0.333

2000 0.139

3000 0.1120

4000 0.144

Table 2.12. Ciphertext (C1) with different learning rates

Learning Rates RMSE

0.01 0.175

0.001 43.976

0.0001 187.124

For decrypting the test message with Ciphertext C3, we implemented three different

hidden layer network structure as before with step value of 3000 and the output is summarized

21

in Table 2.16.We implemented different step values with three layer hidden network structure

and proximal gradient descent optimizer Table 2.17 and different learning rates with the same

hidden layer network structure and proximal gradient optimizer Table 2.18.

2.4. Results

Table 2.13. Ciphertext (C2) with different 0ptimizers

Hidden Layers Optimizers RMSE

[150,150,150] Default 0.168

[150,150,150] Adam 21.271

[150,150,150] Adagrad 53.487

[150,150,150] Proximal 0.170

[150,150] Default 0.110

[150,150] Adam 101.217

[150,150] Adagrad 168.567

[150,150] Proximal 1.872

[150] Default 0.110

[150] Adam 101.217

[150] Adagrad 168.567

[150] Proximal 1.872

Table 2.14. Ciphertext (C2) with step values

Step values RMSE

1000 0.115

2000 0.099

3000 0.087

4000 0.086

22

We evaluated both the encryption and the decryption setting separately. From Table 2.1,

2.2 and 2.3 we found that for encryption setting the best network structure to use, when we are

encrypting the test message with Ciphertext C1 will be the three layer hidden network structure,

with Adam Optimizer and learning rate as 0.01. For Encrypting with Ciphertext C2 the best

network structure to use is the two layer network structure with Adam optimizer and learning

rate of 0.01 (Table 2.4, 2.5, 2.6). For both of them step value was 1000. For encrypting with

ciphertext C3, the best network structure will be the three layer network structure with Adam

optimizer and step value of 3000 (Table 2.7, 2.8, 2.9). The best network structure among all the

ciphertext for encrypting a test message is with ciphertext C2 with hidden layer [350, 350],

learning rate 0.01 and step value of 1000. Fig 2.3 shows the plot of the behavior of the ciphertext

C2 if we split the training data into training and test of size 0.2. However to maintain

confidentiality and authenticity we should always try to use a very long key, even if the

ciphertext C3 does not give us a good RMSE value.

Table 2.15. Ciphertext (C2) with different learning rates

Learning Rates RMSE

0.01 0.170

0.001 38.341

0.0001 187.099

23

Table 2.16. Ciphertext (C3) with different optimizers

Hidden Layers Optimizers RMSE

[150,150,150] Default 0.174

[150,150,150] Adam 0.595

[150,150,150] Adagrad 17.755

[150,150,150] Proximal 0.1296

[150,150] Default 0.043

[150,150] Adam 6.981

[150,150] Adagrad 111.393

[150,150] Proximal 0.278

[150] Default 0.260

[150] Adam 166.589

[150] Adagrad 184.544

[150] Proximal 15.242

Table 2.17. Ciphertext (C3) with step values

Step values RMSE

3000 0.174

4000 0.232

5000 0.162

6000 0.094

Table 2.18. Ciphertext (C3) with different learning rates

Learning Rates RMSE

0.01 0.1296

0.001 4.134

0.0001 183.270

24

Figure 2.3. Expected and predicted value of ciphertext C2.

From Table 2.10, 2.11, 2.12, 2.13, 2.14, 2.15 we found that decrypting with ciphertext C1

and C2, two layer hidden network structure with proximal descent optimizer is the best neural

network to use. From Table 2.16, 2.17, 2.18 we found that to decrypt a message with ciphertext

C3 the three layer hidden network structure with proximal gradient descent optimizer is the best

one. The best network structure among all the ciphertext that decrypt a test message is with

ciphertext C3 with hidden layer [150, 150] and step value of 3000. Fig 2.4 shows the plot of the

behavior of the ciphertext C3 when we split the training data into training and test of size 0.2.

2.5. Summary

In this chapter we reviewed the several work done in neural cryptography. In our disser-

tation we proposed a method for both encrypting and decrypting a ciphertext. Our model takes

decimal values input and convert them to ciphertext and then again to the desired output. We

proved how are model is secured against Brute Force attack. Thereby preserving the privacy and

security.

25

Figure 2.4. Expected and predicted value of ciphertext C3.

The experiments shows that how different network structure performs with different

learning rates as well as step values and optimizers. Also the RMSE value of the training data

played a vital role. Though we have shown the ciphertext which is of small length perform the

best in encrypting and decrypting the test message. We highly recommend to use ciphertext of

large length to prevent confidentiality of data. If the ciphertext is large than it would be very

difficult for the adversary to traverse through all the keys in polynomial time.

26

3. A SECURE ACCESS AUTHENTICATION SCHEME FOR

MULTISERVER ENVIRONMENTS USING NEURAL

CRYPTOGRAPHY

With the rapid growth of network technologies, remote servers provide resources to be

accessed over an open network around the world. Mainly due to the convenience of the Internet,

distant users can share information with each other. In a distributed environment, secure

communication in insecure communication networks is a very important issue that needs to be

addressed. Hence, user authentication and secret key distribution become the most important

security services for communication networks. A common feature of conventional password

authentication schemes is that they use a verification table. The verification table consists of

users identities and the encrypted passwords. The verification table is securely stored by the

server. If the verification table is stolen or modified by an adversary, the system will be

breached. Also, the conventional password authentication system is applicable to a single server.

In this chapter, we designed a re- mote password authentication scheme for a multiserver

environment. Our remote password based authentication method is based on artificial neural

networks. In the first part of the chapter we will show how users will communicate with

different servers securely. In the second part of the chapter we experimented with 540

passwords applying different classifiers. The experimental results show how the accuracy of our

model can be even further improved. Furthermore, our proposed model is a more efficient and

accurate authentication scheme for multiserver environments compared to other models.

3.1. Related Work

In this section, related work in the area of remote password based authentication

schemes are introduced. The authors in [34] describe an efficient and secure authentication

scheme for multi- server environments. Their scheme uses a hashing function to implement the

mutual verification and session key agreement. The scheme does not manage the secret key

27

table of the users and yet achieves users’ anonymity. Their scheme is also nounce-based to avoid

time synchronization problems. This protocol uses only a cryptographic one-way hash function

for the implementation.

In the same year, Hsiang and Shih [35] found that Liao and Wangs’ protocol [34] is

susceptible to insider attack, masquerade attack, server spoofing attack, and registration center

spoofing attack, and does not provide mutual authentication. To overcome these drawbacks, the

authors proposed an improved scheme over Liao and Wangs’ scheme [34]. Then in 2010, the

authors in [36] showed that Hsiang and Shihs’ scheme [35] is insecure against the replay attack,

impersonation attack and stolen smart card attack.

To overcome these problems Amin [37] proposed an efficient dynamic ID-based remote

user password authentication scheme for multi-server environments. Amin claimed that his

scheme could resist off-line identity guessing attack, off-line password guessing attack,

privileged insider attack, user impersonation attack, many logged-in users’ attack, smart card

stolen attack, and session key recovery attack. However, the authors in [38] showed that the

scheme proposed by Amin is vulnerable to off-line identity guessing and off-line password

guessing with the smart card stolen attack.

Going back to 2003, the authors in [39] proposed a multi-server authentication protocol

based on the ElGamal digital signature scheme [40] that uses simple geometric properties of the

Euclidean and discrete logarithm problem concept. The server does not require to keep any veri-

fication table but the use of public keys makes this protocol computation intensive. In that same

year, the authors in [41] proposed two multi-server password authentication protocols in which

the user has to communicate in parallel with all authentication servers. They proved that these

protocols are provably secure in the standard model. The attacker has to compromise a

minimum threshold number of servers to gain any meaningful information regarding the

password of a user. These two protocols differ in the way the client interacts with the different

servers. However, in these schemes, the servers are equally exposed to the user as well as to the

28

attacker. The authors in [42] proposed a password based two-server authentication protocol in

which only one server was exposed to the users. The use of public keys makes this system

computationally intensive. More- over, it uses Secure Socket Layer (SSL) to establish a session

key between a user and the front-end server to provide authentication but it provides only

unilateral authentication.

So far we reviewed the work in password authentication based on neural networks. In

1994, the password authentication scheme based on a neural networks was initially proposed in

[43]. This paper presents a new multilayer neural networks approach to identify computer

users. The input vectors were made up of the time intervals between successive keystrokes

created by users while typing a known sequence of characters. In 1997, the same authors [43]

presented their work as a continuation of their previous work. In their previous paper only

interkey times was used as feature vectors. Here, the authors used key hold time as features

vectors. They found that hold times were more efficient than inter key times and the best

identification performance was achieved by using both time measurements. However, both the

schemes cannot withstand the replay attack [44].

Another password authentication approach based on neural networks was proposed in

[45]. In this approach, a neural network is trained with the back-propagation (BP) algorithm to

store the user IDs and the corresponding encrypted passwords. In this method, the system

stores the weights of the trained neural network instead of the verification table [46]. As a result,

the security of the system is increased. However, the scheme is not applicable for multiserver

environments. In [39], the authors came up with a password authentication system based on

neural networks. The scheme is applicable to multiserver environments. The authors used three

types of neural network models to evaluate their performance. They used the Diffie Hellman key

exchange protocol to send the password from a user to the Trusted Authority. However, the

scheme is vulnerable to the man-in-the-middle attack. To overcome this drawback our proposed

29

scheme uses the three party Diffie Hellman Key exchange protocol. Hence, our scheme is not

susceptible to the man-in-the- middle-attack.

3.2. Our Proposed Approach

We propose a remote password authentication scheme using Neural Networks. This

scheme is designed for multiserver environments. In our previous chapter [87], we have shown

how Alice can communicate with only Bob secretly. In this chapter, we developed a scheme in

which Al- ice can communicate with multiple servers. To do that she has to register herself with

a Central Authority. The Central Authority will give an access key to Alice to securely

communicate with multiple servers. Fig. 3.1 shows how Alice is communicating with different

servers.

Our scheme has three participants. The participants are Trusted Authority (TA), Users,

Servers. The entire process is divided into three phases: 1) Registration phase, 2) Login phase,

and 3) Validation phase.

Figure 3.1. Alice communication with two different servers

3.2.1. Registration Phase

In the registration phase the new user first registers with the Trusted Authority (TA) by

sharing some legitimate information. The user is granted registration for certain servers. The

steps of the registration phase are as follows:

30

• Using the Diffie Hellman Key exchange protocol, the Users, TA and the serviceable

servers create a shared secret key. The User (Ui) computes

 IDi= Ek (pw)

and sends IDi to the TA. Here pw is the password created by the user. Without the key k

no one can compute IDi.

• In this step, the TA computes the password of user i as (pw) using

 pw = Dk (IDi)

Then, TA creates a training pattern using the password of the user i. TA adds the training

pattern of the new user to create a neural network. The input units of the training

pattern are the password characters. The password characters consist of English letters

and/or numerals. Each password is made up of eight characters. Then, each of the

password characters are mapped into a value ranging from 0 to 62 according to a

mapping table. The mapping table consists of characters like lowercase letters, uppercase

letters and numerals from 0 to 9.

Each of these characters are assigned a number from 0 to 62. After mapping the

characters, the training set for the neural network is created. The training set consists of an

output too. The output of the training set includes the number of serviceable servers. Our system

has two servers denoted as “serverone” and “servertwo”. For example, if a user wants to log in to

both the servers, then the output will be “serverboth”. Once the training process is over, the TA

sends IDi to the user.

3.2.2. Login Phase

In the login phase, suppose that Ui wants to log in to a server. The steps are as follows:

• The user obtains a time sequence T , which is like a time stamp.

• Then, the user computes W as such

W = gpwT mod p

• Afterwards, the user delivers IDi, W and T to the server.

31

3.2.3. Validation Phase

In the validation phase, the server receives W , ID, T at time T t. Now, the server

performs the following tasks to validate the user login request:

• First, the server calculates ∆T. ∆T denotes the expected legal time interval for the trans-

mission delay between the login terminal and the system servers. Then, the server checks

the validity of the time stamp. If the time interval between T and T t is greater than ∆T,

the server rejects the request.

• If the time stamp T is within the valid period ∆T, the server decrypts IDi using the shared

secret key

pw = Dk (IDi).

• The Server after obtaining the password pw, verifies if the following equation holds

W = gpwT mod p.

• If the previous verification holds, the server validates the user. To provide service to the

user, the server first maps each of the eight characters of the password into a value

according t0 the mapping table. Then, the server sends these values as an input to the

neural network to obtain the output. The output represents that the user is authorized to

use the server.

3.3. Experimentation

In the experimentation phase, we used the training pattern to test the learning ability

and performance of our neural network model. Our method is a supervised learning method. We

used the python programming language to implement the model. We also used the sklearn

machine learning library which provides state-of-the-art machine learning algorithms. We

assumed the multiserver has two servers denoted as “serverone” and “servertwo”. Using our

remote password authentication scheme, the user can log in to any one of the servers or both the

servers. We also assumed that our multiserver authentication scheme has 540 users. Each user

password consists of eight characters. Therefore, our neural network model has eight inputs and

32

one output. The output of the neural network consists of “serverone”, “servertwo” and

“serverboth”. For instance, the password of U1 is “kf12ghty” and the user is granted registration

for server one and server two. Then, the expected output of the neural network will be

“serverboth”.

3.3.1. Training

Our neural network is based on the multilayer perceptron model (MLP) [48]. Each

training pattern has 9 values. The feature vectors are each represented by “a”, “b”, “c”, “d”, “e”,

“f”, “g”, “h”. In this experiment, we assume that we have 540 users and two servers. Hence, there

are 8 inputs and one output. The training set is then the input to train the network.

3.3.2. Classification

After the training phase, each server validates if the pw, ID and W are correct. If ID, pw

and W are correct, the server accepts the request. Then, the server will input the password as

feature vectors to compute the classification output. To compare the accuracy and performance

of our neural network we used different classifiers. The classifiers that we used are as follows

[49]:

• GaussianNB is based on Naive Bayes Methods. Naive Bayes methods are a set of

supervised learning algorithms based on applying Bayes’ theorem with the “naive”

assumption of independence between every pair of features. GaussianNB implements the

Gaussian Naive Bayes algorithm for classification.

• Decision Tree is a non-parametric supervised learning method used for classification and

regression. The goal is to create a model that predicts the value of a target variable by

learning simple decision rules inferred from the data features.

• Support Vector machine is denoted as SVM and is a set of supervised learning methods

used for classification, regression and outlier detection. These SVM are effective in high

dimensional spaces as different kernel functions can be specified for the decision

functions. In addition, they are versatile too. Support Vector Classifiers supports kernels

33

like “rbf”, “sigmoid”, “poly” and “linear”. Table 3.1 list the different instances used with

their corresponding parameters.

• Gradient Boosting (GB) is a machine learning technique for regression and classification.

GB builds an additive model in a forward stage-wise fashion.

• A Random Forest is a meta estimator that fits a number of decision tree classifiers on

various sub-samples of the data set and uses averaging to improve the predictive

accuracy and controls over-fitting.

• The Extra Tree class implements a meta estimator that fits a number of randomized

decision trees (a.k.a. extra-trees) on various sub-samples of the data set and uses

averaging to improve the predictive accuracy and controls over-fitting.

• The Logistic Regression class implements regularized logistic regression using the

‘liblinear’ library, ‘newton-cg’, ‘sag’, and ‘lbfgs’ solvers. It can handle both dense and

sparse input.

• K-nearest Neighbors implements learning based on the k-nearest neighbors of each

query point, where k is an integer value specified by the user.

3.4. Evaluations and Results

For the experiments, we evaluated the accuracy of the different classifiers mentioned

above. Each classifier is executed ten times and then the average of them was taken. Then, we

compared the results of each classifier. Table 3.2 shows the first ten iterations of different

classifiers.

34

Table 3.1. SVM instances with corresponding parameters

Classifier Parameters

SVC 1 kernel=“rbf”,C=1,=0.8

SVC 2 kernel=“rbf”,C=0.001,=1

SVC 3 kernel=“sigmoid”,C=1,=0.8

SVC 4 kernel=“sigmoid”,C=0.001,=1

SVC 5 kernel=“Linear”,C=1

SVC 6 kernel=“Linear”,C=0.001

SVC 7 kernel=“poly”,C=1,=0.8,degree=3

SVC 8 kernel=“poly”,C=0.001,=1,degree=3

SVC 9 kernel=“poly”,C=0.001,=1,degree=2

SVC 10 kernel=“poly”,C=0.001,=1,degree=1

LinearSVC 1 LinearSVC,multi-class=“ovr”,C=1

LinearSVC 2 LinearSVC,multi-class=“crammer”,C=11

Table 3.2. Classification accuracy of different classifiers - Iterations 1-10

Iterations 1 2 3 4 5 6 7 8 9 10

GaussianNB 0.8657 0.8287 0.6829 0.7617 0.8333 0.8218 0.7708 0.7708 0.8426 0.8542

DecisionTree 0.9796 0.8981 0.8611 0.8519 0.8125 0.8241 0.8704 0.8567 0.9120 0.8519

GradientBoosting 0.9097 0.9097 0.8843 0.9097 0.9190 0.8912 0.8912 0.8889 0.9097 0.9097

RandomForest 0.9144 0.9120 0.9213 0.9167 0.8958 0.8912 0.8981 0.9028 0.9144 0.9028

ExtraTree 0.8634 0.8889 0.8958 0.8727 0.8819 0.8773 0.8750 0.9028 0.9020 0.8704

LogisticRegression 0.9051 0.9005 0.9236 0.9097 0.9120 0.9213 0.9329 0.9259 0.9051 0.9282

Kneighbors 0.9120 0.9213 0.8843 0.9074 0.8750 0.8819 0.9167 0.9074 0.8958 0.9120

LinearSVC 1 0.8380 0.5116 0.9282 0.7986 0.8958 0.7593 0.9144 0.8333 0.9190 0.4722

LinearSVC 2 0.6898 0.7824 0.1806 0.6227 0.4074 0.6481 0.5579 0.1389 0.5486 0.3079

SVC 1 0.8935 0.9074 0.8750 0.9074 0.8843 0.8634 0.8981 0.9074 0.8704 0.8889

SVC 2 0.9282 0.0602 0.0255 0.9259 0.0579 0.0440 0.9282 0.0208 0.0463 0.0532

SVC 3 0.9282 0.0162 0.9282 0.0417 0.0208 0.0162 0.0231 0.0255 0.0556 0.0440

SVC 4 0.0622 0.9282 0.0162 0.0208 0.0255 0.0519 0.0532 0.0208 0.0509 0.9236

SVC 5 0.6111 0.7824 0.8264 0.6644 0.7917 0.7014 0.7037 0.6296 0.4907 0.2523

SVC 6 0.3889 0.4468 0.5602 0.6088 0.4792 0.7616 0.4931 0.5556 0.4190 0.4884

SVC 7 0.7593 0.7639 0.8079 0.8218 0.8356 0.8380 0.7963 0.7083 0.8218 0.8148

SVC 8 0.8819 0.8333 0.8241 0.8657 0.8380 0.8843 0.9005 0.7454 0.8912 0.8356

SVC 9 0.8611 0.8472 0.8102 0.8750 0.8218 0.8773 0.8310 0.8981 0.8727 0.8611

SVC 10 0.5949 0.5972 0.6574 0.4722 0.4884 0.4792 0.6505 0.5718 0.5532 0.5463

Since Support Vector Classifiers (SVC) have different kernels, we have listed all the

kernels in our classification table (Table 3.3). Table 3.3 shows the average iterations of all the

classifiers mentioned above. From Table 3.3, we can see that Gradient Boosting, Random

Forest, Logistic Regression and Kneighbors outperforms the other classifiers. Fig. 3.2 shows the

box plot of the classifiers accuracy with their standard deviations. The figures gives us a sketch

35

of significance difference of the classifiers. However, to get a detailed understanding of the

statistical significance we used the Tukey’s significance difference test.

Table 3.3. Classification accuracy of different classifiers

Classifiers Accuracy

GaussianNB 0.80324

Decisian Tree 0.86180

Gradient Boosting 0.90231

Random Forest 0.90695

Extra Tree 0.88310

Logistic Regression 0.91643

KNeighbors 0.90138

LinearSVC 1,c=1 0.78700

LinearSVC 2,c=1 0.48840

SVC 1 0.88950

SVC 2 0.30902

SVC 3 0.20995

SVC 4 0.37466

SVC 5 0.69537

SVC 6 0.52016

SVC 7 0.79677

SVC 8 0.85000

SVC 9 0.85550

SVC 10 0.56110

Table 3.4 shows the way the classifiers are grouped into different classes. From the

table, we can say that the means which do not share the same classes are statistically

significantly different. Clas- sifiers such as Logistic Regression, Random Forest, Gradient

Boosting, Kneighbors, SVC 1, Extra Tree, Decision tree, SVC 10, SVC 8, GaussianNB, SVC 7,

LinearSVC 1, SVC 5 are statistically significantly different from SVC 2, SVC 4 and SVC 3. Also

GaussianNB, SVC 7, LinearSVC 1 are statistically significantly different from LinearSVC 2, SVC

2, SVC 4 and SVC 3. Table 3.5, 3.6 and 3.7 shows the pairwise comparison of different classifiers

with respect to their statistical significance difference and p value. We denoted the statistical

significant difference as “positive” if their p value is less than or equal to 0.005.

36

3.5. Security Analysis

In this section, we analyzed the security part of our neural network model. Since our new

remote authentication method is based on the generation and distribution of the keys, we

should be aware that there can be possible attacks on our neural network model. In this section,

we will investigate privacy, nonforgability and replay resistance.

Figure 3.2. Classification accuracy chart of different classifiers

3.5.1. Privacy

In our authentication scheme we used the Diffie Hellman Key (DHK) exchange protocol.

To keep the password secret and yet transfer the password to the server and TA, the generation

of the keys is done by the DHK exchange protocol. A third party can try to change the shared

secret key while the user and the server are communicating (man-in-the-middle-attack). Then,

the third party has to change the key while the server and TA or TA and the User are

communicating. It is not possible for the same third party to be present in both places at one

time. Also, the third party has to continue to be in the middle. If the third party is ever absent,

then the user and the server will get to know about his/her presence. Also, for our security the

key is established once.

37

We choose our prime number p to be very large, so that it is not possible for any

adversary to traverse through all the prime numbers in polynomial time. The message W cannot

be broken. The security benefit comes from the difficulty of solving the discrete logarithm [50]

problem. Also, the trusted authority gives the key only to the server/servers the user wants to log

in. If the user wants to log in to a different server, the user again has to go through the

registration phase to receive a different key.

Table 3.4. Grouping information of different classifiers

Factor N Mean Class

Logistic Regression 10 0.91643 A

Random Forest 10 0.90695 A

Gradient Boosting 10 0.90231 A

Kneighbors 10 0.90138 A

SVC 1 10 0.88958 A

Extra Tree 10 0.88310 A

Decision tree 10 0.86181 A

SVC 10 10 0.85555 A

SVC 8 10 0.85000 A

GaussianNB 10 0.80320 A,B

SVC 7 10 0.79680 A,B,C

LinearSVC 1 10 0.78700 A,B,C

SVC 5 10 0.69540 A,B,C,D

SVC 9 10 0.56110 B,C,D,E

SVC 6 10 0.52020 C,D,E

LinearSVC 2 10 0.48840 D,E,F

SVC 2 10 0.30900 E,F

SVC 4 10 0.21600 F

SVC 3 10 0.21000 F

3.5.2. Nonforgability

A legal user wants to access a non-serviceable server. The server will accept the ID to

decrypt it. Then, the server will provide it as input to the neural network to receive its output. If

the output is different then the server will not accept the request. Hence, our new remote server

authentication/validation scheme is nonforgeable.

38

3.5.3. Replay Resistance

A replay attack is a form of network attack in which a valid data transmission is

maliciously or fraudulently repeated or delayed. This is carried out either by the originator or by

an adversary who intercepts the data and re-transmits it. To prevent the replay attack our

scheme associates a time T with ID. When an adversary replays a intercepted message to

pretend a valid user, he/she has to pass Step 1 of the validation phase. The adversary will create

a timestamp T ∗ such that T ” − T ∗ ≤ ∆T. Once T is changed to T ∗ then W changes and

hence the password, thus the adversary will fail the validation phase. However, if ∆T is too large,

the server cannot resist the replay attack. Hence, it is very important to choose an appropriate

∆T

39

Table 3.5. Difference of means to calculate statistical significant difference (STD)

Levels Means P value Difference (STD)
Decision tree - GaussianNB 0.0586 1 Negative
Gradient Boosting - Gaussian NB 0.0991 0.99896 Negative
Random Forest - Gaussian NB 0.1037 0.99815 Negative
Extra Tree - GaussianNB 0.0799 0.99995 Negative
Logistic Reg - GaussianNB 0.1132 0.99471 Negative
Kneighbors - GaussianNB 0.0981 0.99908 Negative
LinearSVC 1 - GaussianNB -0.0162 1 Negative
LinearSVC 2 - GaussianNB -0.3148 0.01077 Positive
SVC 1 - GaussianNB 0.0863 0.99984 Negative
SVC 2 - GaussianNB -0.4942 5.8E-05 Positive
SVC 3 - GaussianNB -0.5933 5.8E-05 Positive
SVC 4 - GaussianNB -0.5875 5.8E-05 Positive
SVC 5 - GaussianNB -0.1079 0.99701 Negative
SVC 6- GaussianNB -0.2831 0.04199 Positive
SVC 7 - GaussianNB -0.0065 1 Negative
SVC 8 - GaussianNB 0.0468 1 Negative
SVC 9 - GaussianNB 0.0523 1 Negative
SVC 10 - GaussianNB -0.2421 0.17933 Negative
Gradient Boosting-Decision tree 0.0405 1 Negative
Random Forest - Decision tree 0.0451 1 Negative
Extra Tree - Decision tree 0.0213 1 Negative
Logistic Reg - Decision tree 0.0546 1 Negative
Kneighbors - Decision tree 0.0396 1 Negative
LinearSVC 1 - Decision tree -0.0748 0.99998 Negative
LinearSVc 2 - Decision tree -0.3734 0.00061 Positive
SVC 1 - Decision tree 0.0278 1 Negative
SVC 2 - Decision tree -0.5528 5.8E-05 Positive
SVC 3 - Decision tree -0.6519 5.8E-05 Positive
SVC 4 - Decision tree -0.6461 5.8E-05 Positive
SVC 5 - Decision tree -0.1664 0.81444 Negative
SVC 6 - Decision tree -0.3417 0.003 Positive
SVC 7 - Decision tree -0.0650 1 Negative
SVC 8 - Decision tree -0.0118 1 Negative
SVC 9- Decision tree -0.0063 1 Negative
SVC 10 - Decision tree -0.3007 0.02017 Positive
Random Forest - Gradient Boosting 0.0046 1 Negative
Extra Tree - Gradient Boosting -0.0192 1 Negative
Logistic Reg - Gradient Boosting 0.0141 1 Negative
Kneighbors - Gradient Boosting -0.0009 1 Negative
LinearSVC 1 - Gradient Boosting -0.1153 0.99348 Negative
LinearSVC 2 - Gradient Boosting -0.4139 0.00011 Positive
SVC 1 - Gradient Boosting -0.0127 1 Negative
SVC 2 - Gradient Boosting -0.5933 5.8E-05 Positive
SVC 3 - Gradient Boosting -0.6924 5.8E-05 Positive
SVC 4 - Gradient Boosting -0.6866 5.8E-05 Positive
SVC 5 - Gradient Boosting -0.2069 0.44581 Negative
SVC 6 - Gradient Boosting -0.3821 0.0004 Positive
SVC 7 - Gradient Boosting -0.1055 0.99771 Negative
SVC 8 - Gradient Boosting -0.0523 1 Negative
SVC 9 - Gradient Boosting -0.0468 1 Negative
SVC 10 - Gradient Boosting -0.3412 0.00307 Positive
Extra Tree - Random Forest -0.0239 1 Negative
Logistic Reg - Random Forest 0.0095 1 Negative
Kneighbors - Random Forest -0.0056 1 Negative

40

Table 3.5. Difference of means to calculate statistical significant difference (STD) (continued)

Levels Means P value Difference (STD)
LinearSVC 1 - Random Forest -0.1199 0.98986 Negative
SVC 1 - Extra Tree -0.5741 0.000058 Positive
SVC 3 - Extra Tree -0.6732 0.000058 Positive
SVC 4 - Extra Tree -0.6674 0.000058 Positive
SVC 5 - Extra Tree -0.1877 0.630259 Negative
SVC 6 - Extra Tree -0.3629 0.001031 Positive
SVC 7- Extra Tree -0.0863 0.999837 Negative
SVC 8- Extra Tree -0.0331 1 Negative
SVC 9 - Extra Tree -0.0275 1 Negative
SVC 10 - Extra Tree -0.3220 0.007728 Positive
Kneighbors - Logistic Reg -0.0151 1 Negative
LinearSVC 1 - Logistic Reg -0.1294 0.977455 Negative
LinearSVC 2- Logistic Reg -0.4280 0.00008 Positive
SVC 1 - Logistic Reg -0.0269 1 Negative
SVC 2 - Logistic Reg -0.6074 0.000058 Positive
SVC 3 - Logistic Reg -0.7065 0.000058 Positive
SVC 4 - Logistic Reg -0.7007 0.000058 Positive
SVC 5 - Logistic Reg -0.2211 0.32243 Negative
SVC 6 - Logistic Reg -0.3963 0.000209 Positive
SVC 7 - Logistic Reg -0.1197 0.990088 Negative
SVC 8 - Logistic Reg -0.0664 0.999997 Negative
SVC 9 - Logistic Reg -0.0609 0.999999 Negative
SVC 10 - Logistic Reg -0.3553 0.001515 Positive
LinearSVC 1 - Kneighbors -0.1143 0.994052 Negative
LinearSVC 2 - Kneighbors -0.4129 0.000114 Positive
SVC 1 - Kneighbors -0.0118 1 Negative
SVC 2 - Kneighbors -0.5924 0.000058 Positive
SVC 3 - Kneighbors -0.6914 0.000058 Positive
SVC 4 - Kneighbors -0.6856 0.000058 Positive
SVC 5 - Kneighbors -0.2060 0.454487 Negative
SVC 6 - Kneighbors -0.3812 0.000415 Positive
SVC 7 - Kneighbors -0.1046 0.997942 Negative
SVC 8 - Kneighbors -0.0514 1 Negative
SVC 9 - Kneighbors -0.0458 1 Negative
SVC 10 - Kneighbors -0.3403 0.003212 Positive
LinearSVC 1- LinearSVC 2 -0.2986 0.022071 Positive
SVC 1- LinearSVC 1 0.1025 0.998396 Negative
SVC 2 - LinearSVC 2 -0.4780 0.000059 Positive
SVC 3 - LinearSVC 1 -0.5771 0.000058 Positive
SVC 4 - LinearSVC 2 -0.5713 0.000058 Positive
SVC 5 - LinearSVC 1 -0.0917 0.999628 Negative
SVC 6 - LinearSVC 2 -0.2669 0.078013 Positive
SVC 7 - LinearSVC 1 0.0097 1 Negative
SVC 8 - LinearSVC 2 0.0630 0.999999 Negative
SVC 9 - LinearSVC 1 0.0685 0.999995 Negative
SVC 10 -LinearSVC 2 -0.2259 0.284575 Negative
SVC 1 - LinearSVC 1 0.4011 0.000171 Positive
SVC 2 - LinearSVC 2 -0.1794 0.707607 Negative
SVC 3 - LinearSVC 1 -0.2785 0.050346 Positive
SVC 4 - LinearSVC 2 -0.2727 0.06285 Negative
SVC 5 - LinearSVC 1 0.2069 0.445806 Negative
SVC 6 - LinearSVC 2 0.0317 1 Negative
SVC 7 - LinearSVC 1 0.3083 0.01442 Positive
SVC 8 - LinearSVC 2 0.3616 0.001105 Positive

41

Table 3.5. Difference of means to calculate statistical significant difference (STD) (continued)

Levels Means P value Difference (STD)
SVC 9 - LinearSVC 1 0.3671 0.000835 Positive
SVC 10 - LinearSVC 2 0.0727 0.999987 Negative
SVC 2 - SVC 1 -0.5806 0.000058 Positive
SVC 3 - SVC 1 -0.6796 0.000058 Positive
SVC 4 - SVC 1 -0.6738 0.000058 Positive
SVC 5 - SVC 1 -0.1942 0.567748 Negative
SVC 6 - SVC 1 -0.3694 0.000743 Positive
SVC 7 - SVC 1 -0.0928 0.999561 Negative
SVC 8 - SVC 1 -0.0396 1 Negative
SVC 9 - SVC 1 -0.0340 1 Negative
SVC 10 - SVC 1 -0.3285 0.00569 Positive
SVC 3 - SVC 2 -0.0991 0.998964 Negative
SVC 4 - SVC 2 -0.0933 0.999529 Negative
SVC 5 - SVC 2 0.3863 0.000324 Positive
SVC 6 - SVC 2 0.2111 0.407299 Negative
SVC 7 - SVC 2 0.4878 0.000058 Positive
SVC 8 - SVC 2 0.5410 0.000058 Positive
SVC 9 - SVC 2 0.5465 0.000058 Positive
SVC 10 - SVC 2 0.2521 0.130564 Negative
SVC 4 - SVC 3 0.0058 1 Negative
SVC 5 - SVC 3 0.4854 0.000059 Positive
SVC 6 - SVC 3 0.3102 0.013264 Positive
SVC 7 - SVC 3 0.5868 0.000058 Positive
SVC 8 - SVC 3 0.6400 0.000058 Positive
SVC 9 - SVC 3 0.6456 0.000058 Positive
SVC 10 -SVC 3 0.3512 0.001869 Positive
SVC 5 - SVC 4 0.4796 0.000059 Positive
SVC 6 - SVC 4 0.3044 0.017145 Positive
SVC 7 - SVC 4 0.5810 0.000058 Positive
SVC 8 - SVC 4 0.6343 0.000058 Positive
SVC 9 - SVC 4 0.6398 0.000058 Positive
SVC 10 - SVC 4 0.3454 0.002494 Positive
SVC 6 - SVC 5 -0.1752 0.744437 Negative
SVC 7 - SVC 5 0.1014 0.998607 Negative
SVC 8 - SVC 5 0.1546 0.890284 Negative
SVC 9 - SVC 5 0.1602 0.857492 Negative
SVC 10 - SVC 5 -0.1343 0.967608 Negative
SVC 7 - SVC 5 0.2766 0.054134 Positive
SVC 8 -SVC 5 0.3298 0.00533 Positive
SVC 9 -SVC 5 0.3354 0.004078 Positive
SVC 10 - SVC 5 0.0410 1 Negative
SVC 7 - SVC 6 0.0532 1 Negative
SVC 8 - SVC 6 0.0588 1 Negative
SVC 9 - SVC 6 -0.2357 0.217453 Negative
SVC 10 - SVC 6 0.0056 1 Negative
SVC 9 -SVC 8 -0.2889 0.03319 Positive
SVC 10 - SVC 8 -0.2944 0.026349 Positive

42

3.6. Summary

In this chapter, we designed a remote password authentication scheme for multiserver

environments. The user will register first with a trusted authority to become a legitimate user.

Each legitimate user has its own ID and password. Then, the user types his/her user ID and

password to log in to any of the servers. Later, during the authentication phase the servers

validate the legitimacy of the remote login user. The remote password authentication scheme for

multiserver environments is based on artificial neural networks. To overcome the problem of the

man-in-the- middle-attack we created our shared secret key using the three party Diffie Hellman

Key exchange protocol.

For the experimentation, we use 540 users with different passwords of eight characters.

Each of these eight characters represent the input feature vectors of our neural network. The

output represents a number of serviceable servers. Each user can log in to any one of the servers

or both the server at one time. After training the neural network, we compared different

classifiers in terms of efficiency and accuracy.

Our findings shows that Gradient Boosting, Random Forest, Logistic Regression and K

neighbors outperforms the other classifiers. However, to identify whether a classifier is

statistically significantly different from the other we used the Tukeys test method. The test

method found that Logistic Regression, Random Forest, Gradient Boosting and Kneighbors are

not statistically significantly different from SVC 1, Extra Tree, Decision tree, SVC 8, SVC 10 and

Gaussian NB. From Tables 3.5, 3.6 and 3.7 we get a more accurate picture of statistical

significant difference of each classifier as compared to other classifier.

43

4. IMPROVING DATA PRIVACY USING FUZZY LOGIC AND

AUTOENCODER NEURAL NETWORK

Data privacy is a very important problem while sharing data among multiple

organizations and has become a very crucial problem in the health sectors since multiple

organizations such as hospitals are storing data of the patients in the form of Electronic Health

Records. Stored data is used with other organizations or research analysts to improve the health

care of patients. However, the data records contain sensitive information such as age, sex, and

date of birth of the patients. Revealing sensitive data can cause a privacy breach of the

individuals. This has triggered research that has led to many different privacy preserving

techniques being introduced. Thus, we designed a technique that not only encrypts / hides the

sensitive information but also sends the data to different organizations securely. To encrypt

sensitive data we use different fuzzy logic membership functions. We then use an autoencoder

neural network to send the modified data. The output data of the autoencoder can then be used

by different organizations for research analysis. The advantage of using an autoencoder neural

network is that it learns the input feature vector.

4.1. Related Work

There has been a surge in recent research activity in privacy preserving of sensitive data.

Several papers have been published on various aspects of privacy preserving. We discuss here

some of the previous work related to our approach.

Several data hiding technique exists on different assumptions. Data swapping is the com-

monly used data hiding technique. It refers to a method of swapping information from one

record to another [51],[52]. The amount of swapping to be done in a database is dependent on

the ap- plication and the need of the organization. There exist various variants of swapping. The

records for swapping are purposely or randomly chosen since they are believed to have a greater

risk of re-identification. The advantage of swapping is that it can be easily implemented and is

44

one of the best methods of preserving confidentiality. Its main disadvantage is that even with a

very low swapping rate, it can destroy analytic properties, particularly sub-domains.

To overcome the disadvantage of the earlier two methods, the authors introduced a con-

trolled way of swapping in 1995 [53]. In this approach, the values of an individual record are

sorted and swapped in a range of k-percent of the total range. Randomization determines the

specific values of the record value to be swapped. The procedure is repeated for each variable

until all variables have been swapped. The main disadvantage of this approach is the

determination of k. If k is relatively small, then analytic distortions on the entire file may be

small for simple regression analysis. If k is large, there is an assumption that the re-

identification risk may be reduced [54]. The authors provided methods for aggregating several

attributes simultaneously. The methods are based on multi-variable metrics for clustering

variables into the most similar groups. The methods are not as easily implemented because they

can involve sophisticated optimization algorithms. For computational efficiency, the methods

are applied from two to four attributes simultaneously whereas many public use files contain 12

or more attributes. The advantage of the multi-variable aggregation method is that it provides

better protection against re-identification. Its disadvantage is that analytic properties can be

severely compromised, particularly if two or three uncorrelated attributes are used in the

aggregation process. The attributes that are not micro-aggregated may themselves allow re-

identification.

Micro-aggregation is another technique for data masking [56],[55]. It aggregates the

record values of attributes and is intended to reduce the re-identification risk. In single ranking

micro- aggregation, each attribute is aggregated independently of other attributes. The method

is easy to implement and the values of attributes are sorted and divided into groups of size k. In

practice, k is taken to be three or four to reduce analytic distortions. In each group, the values

are replaced by an aggregate such as the mean or the median. The micro-aggregation is repeated

for each of the attributes that are considered to be usable for re-identification.

45

Adding noise to the data sets showed that it is theoretically possible to recover the mean

and covariance of a given record for arbitrary sub-domains [91],[58]. Both of the papers showed

that the masked data set by adding noise provides good analytic properties such as regression

analysis that closely reproduce regression analysis of the unmasked data. The authors reasoned

that adding noise can yield files with moderate re-identification rates. In 2017, the authors [87]

used symmetric key encryption to hide the data before sending it to the other party using neural

network. In 2018, the same authors [59] used the hiding technique to encrypt the password to

log in to multiple servers. However, both encryption approaches used the symmetric key

method. In symmetric key encryption the shared secret key has to be secured. In 2017, the

authors in [60] came up with the idea of adding noise to the data set using neural networks. The

authors achieved privacy by hiding two of the attributes. The disadvantages of using this

approach is that they classified age into groups, i.e., two different ages will fall into the same

group.

In [61], the authors introduced fuzzy logic for privacy preserving. They claim their

technique is useful for both numerical and categorical attributes. However, the authors did not

use any data mining technique to prove that their modified data is the same as the raw data. The

authors in [62] published a paper showing a comparative study of data perturbation They also

used fuzzy logic to preserve privacy. The authors used different classifiers like SVM, ID3 and

C4.5 on the original as well as on the perturbed data.

Though different techniques have been applied to preserve privacy, however, each of

them has their own limitations. First of all, the data swapping method has a very low swapping

rate. Then, in order to overcome the randomization problem, micro-aggregation was used. Both

of these techniques have a limitation in determining the split of the data records. In order to

avoid this limitation, a data set was created by adding noise using fuzzy logic and neural

networks. The authors of the papers did not show how to send the data securely to different

46

other organizations. In addition, the authors added noise only to the attributes that are

numerical and categorical.

In our dissertation, we used fuzzy membership functions and an Autoencoder neural

network to modify the sensitive information. Our new technique not only hides numerical and

categorical attributes but also real attributes. After the fuzzification of three sensitive data, we

send the modified data to an Autoencoder neural network. The current approach retains both

privacy and the accuracy of the result. Our dissertation is different from the earlier work done so

far by combining fuzzy logic with an autoencoder neural network.

4.2. Background

This section explains the background information used in our proposed approach. In our

proposed approach we used fuzzy membership functions [63] and an Autoencoder Neural

Network.

4.2.1. Fuzzy Logic

Fuzzy logic was introduced in 1965 by Zadeh in his research paper “Fuzzy Sets” [64]. He

is considered as the father of fuzzy logic. Fuzzy logic resembles the human decision-making

methodology by dealing with vague and imprecise information. Fuzzy logic is applied to many

real-world problems since it is based on degrees of truth rather than based on Boolean logic.

Fuzzy logic is best understood within the context of set membership. Basically fuzzy logic allows

partial membership, which means that it contains elements that have varying degrees of

membership within the set. Furthermore, membership functions characterize fuzziness whether

the elements in the fuzzy sets are discrete or continuous. We have used different membership

functions in our approach, which are explained below.

4.2.2. Mathematical Notation

Here, we elaborate of the different membership functions which have been used to

perturb the raw data. Figure 5.1 shows the plot of different membership functions.

47

Figure 4.1. Different membership functions

• Triangle Membership Function: This membership function uses the following

relationship

TriMF (D : X, Y, Z) = 0 when D < X

= (D − X)/(Y − D) when X ≤ D ≤ Y

= (Z − D)/(Z − Y) when Y ≤ D ≤ Z

= 0 when D > Z

Here, D represents the value in the data set. X, Y and Z are three boundary points.

• Gaussian Membership Function: This membership function has the following relation

GaussMF (D : C, W) = EXP −(D − C)
2
/W

2

In the above relation, D is the value in the data set. C is the center, and W is the width of

the function.

• S-Shaped Membership Function: For this membership function we have the following

relation

48

SMF (D : X, Y) = 0 when D ≤ X

= 2 ∗ [(D − X)/(Y − X)]
2
 when X ≤ D ≤ (X + Y)/2

= 1 − 2 ∗ [(D − Y)/(Y − X)]
2 when (X + Y)/2 ≤ D ≤ Y

= 1 when D ≥ Y

where D is the value in the data set. X is the minimum, and Y is the maximum value in the data

set.

Our model is based on privacy and security. Hence we kept the boundary points in

triangular membership functions, center and the width parameters in Gaussian Membership

function and maximum and minimum values in s-shaped membership function secured. These

values are know only to the sender and the receiver.

4.2.3. Artificial Neural Network

Artificial neural networks are one of the main tools used in machine learning. As the

“neural” part of the name suggests, the networks are brain-inspired systems, which are intended

to replicate the way that we humans learn. Neural networks consist of input and output layers as

well as (in most cases) a hidden layer consisting of units that transform the input into something

that the output layer can use. Artificial neural networks are excellent tools for finding patterns

which are far too complex or numerous for a human programmer to extract or to teach the

machine to recognize. While neural networks (also called “Perceptrons”) have been around since

the 1940s, it is only in the last several decades that they have become a major part of artificial

intelligence.

4.2.4. Autoencoder

In our work we used an autoencoder [65] neural network. The Autoencoder has a

multilayer percepepton (MLP) like structure with input layer, hidden layer and output layer.

However, unlike an MLP, Autoencoder neural networks do not require any target data since the

network tries to learn the input itself. The Autoencoder consists of two parts: encoder and

49

decoder. The encoder compresses the inputs to the most important features. The decoder

reconstructs the original input from the encoder. The hidden layer compresses the input of the

most important feature vectors. Therefore, the number of feature vectors are reduced in the

hidden layer. Autoencoders are very frequently used for dimensionality reduction and feature

selections.

Our proposed model is divided into two tasks. The first task is based on hiding the

sensitive information. The second task is to send the perturbed data to different organization

using an Autoencoder. Thus, in our proposed approach in order to accomplished the first task

we used fuzzy membership functions to hide the sensitive attributes. These are the attributes

which the patient does not want to share. By hiding the data using different fuzzy membership

functions this will make it difficult for some other party to identify the patient. Next, to send

data to different organizations we used an Autoencoder. By using an Autoencoder we can keep

the raw data and the perturbed data set almost similar otherwise no other organization will be

interested in a totally perturbed data set.

4.3. Our Approach

In our approach, we focused on how to improve the data privacy of the patients. Data

pri- vacy could be improved if we could hide the sensitive information of the patient before

sending the data to different organizations. Also, the modified data and the raw data should

almost be same. Otherwise the modified data set will be misleading. The research analyst will

not be interested in using such a modified data set.

In our approach, we selected a recent cervical cancer (risk factor) data set from UCI data

repository [66]. This data set focuses on the prediction of indicators / diagnosis of cervical

cancer. The data set was collected by the “Hospital Universitario de Caracas” in Caracas,

Venezuela. The data set compromises demographic information, habits and historic medical

records of 858 patients. The 36 attributes are boolean or real valued. The data set has 4 target

variables, which are Hinselmann, Schiller, Cytology, Biopsy.

50

We first formatted the data set. As an Autoencoder learns the feature vector and recon-

structs the output, we reformatted the data set. We included the target variables in the feature.

We then sent all the features as the feature vector to an Autoencoder. We modified the data set

using the following ways:

• First we identified the sensitive attributes from the data set. We identified age, number

of sexual partners, and first sexual intercourse as sensitive information. This is the

information which most of the patients do not want to share since their identity could be

revealed by sharing this information.

• We perturbed or hide these three attributes using three fuzzy membership functions. The

three fuzzy membership functions are S-shaped, Gaussian and Triangular. These three

membership functions are described in the preliminaries section. These membership

functions require boundary points, which are selected by the organization which owns

the data set. In our approach, the hospital which has the raw data will select the

boundary points. These boundary points should be securely stored by the hospital. The

boundary points should not be shared with any other organization since these could

reveal the patients’ identity. The rest of the attributes are left as they are in the raw data

set.

To share the data with different organizations we used an autoencoder neural network.

We are not interested in the class which predicts the cervical cancer rather we are interested in

the feature vectors as the output. So we consider all the features including the target variables as

feature vectors. An auto encoder is one of the neural networks which learns its own input. Thus,

we used an autoencoder to send the data set to different other organizations. Fig. 5.2 outlines

the autoencoder used in our approach.

From the figure we can see that we used 36 feature vectors as input. The hidden layer

compresses the 36 feature vectors to 20. These 20 feature vectors are the most important

attributes. The decoder reconstructs those 36 attributes from the encoder. Since the auto

51

encoder neural network is reconstructing the 36 feature vectors again, we measure the accuracy

with different loss functions. The output of the auto encoder is sent as a data set to different

organizations. The data set shares the same information as the raw data set without

compromising the privacy of the patients.

4.4. Experimental Setup

The cervical cancer data set which we used in our experiment consists of 36 attributes.

Among them we consider the first three attributes as sensitive. We have hidden those attributes

with three fuzzy membership functions. The three fuzzy membership functions which we used

are Gaussian, S-shaped and Triangular. Thus, in total we have 42 attributes instead of 36

attributes in our data set.

Figure 4.2. Autoencoder neural network

Next, we have to send the modified data set to another party using an Autoencoder. We

dropped two columns ‘Time since first diagnosis’ and ‘Time since last diagnosis’ since these two

columns have the most missing values. Thus, we are left with 40 columns. Though we have 40

attributes, but at one time we are sending only 34 attributes through the Autoencoder. These 34

attributes exclude the attributes created by different other membership functions. These 34

52

attributes are the feature vectors/ input to the Autoencoder. The hidden layer/layers tries to

compress the input features to a latent space representation. The output is reconstructed from

this representation. This is how the output of our Autoencoder is created. The reconstructed

output includes all the feature vectors. To obtain a better accuracy of our modified data set we

processed the modified data set. The processing has been done in following three ways:

• Dropping the columns which has missing values.

• Dropping the rows which have missing values.

• Replacing the missing values with the mean of that particular column.

4.5. Evaluation and Results

In this section, we summarize our observations and results. We measure the accuracy

against different loss functions and also with and without sparsity constraints enabled in the

autoencoder. The sparsity constraints regularize the autoencoder [67].

The parameters which are considered are as follows:

• Random State = 150

• Epoch = 500

• Optimizer = Adadelta

• Activation function = tanh

• train_split= 0.8

• activity_regularizers= 0.000001

Table 5.1 shows the accuracy of different membership functions. We considered the

modified data set without sparsity constraints by dropping the missing columns. From the table

we can see that Logcosh used as the loss function achieves the best value of 81.60% for the three

different membership functions. Also, we can say from the values in the table that MSE (Mean

Square Error) as a loss function obtains the best accuracy of 81.15% for the S-shaped function.

53

In Table 5.2, we evaluated the same data set with the sparsity constraints. We can see

that the Gaussian membership function with MSE as the loss function obtains the best accuracy

of 87.34%.

Then, we evaluated the data set by dropping the rows which have missing values and ran

the autoencoder without the sparsity constraints. The results are given in Table 5.3. From the

table we can summarize that the Gaussian and Triangular membership functions with hinge

value both obtains the best accuracy of 62.51%. Table 5.4 summarizes the evaluation of the data

set running the autoencoder with the sparsity constraints. We can see that the Gaussian

membership function with logcosh obtains the best accuracy of 62.51%.

Table 4.1. Accuracy and loss value of drop column data set and without sparsity constraints

Membership function Loss function Loss value Accuracy

Gaussian Mean_Absolute 0.1313 0.7588

Gaussian MSE 0.1278 0.8020

Gaussian Categorical_crossentropy 1.0206 0.0207

Gaussian Logcosh 0.1364 0.8160

Gaussian Hinge 0.7107 0.2447

S-shaped Mean_ Absolute 0.1316 0.7835

S-shaped MSE 0.1272 0.8115

S-shaped Categorical_crossentropy 1.0756 0.0166

S-shaped Logcosh 0.1280 0.8127

S-shaped Hinge 0.7038 0.2606

Traingular Mean_ Absolute 0.1356 0.7769

Triangular MSE 0.1273 0.8063

Triangular Categorical_crossentropy 0.9532 0.0433

Triangular Logcosh 0.1280 0.8146

Triangular Hinge 0.6738 0.2142

54

Table 4.2. Accuracy and loss value of drop column data set and with sparsity constraints

Membership function Loss function Loss value Accuracy

Gaussian Mean_Absolute 0.1313 0.7409

Gaussian MSE 0.1260 0.8734

Gaussian Categorical_crossentropy 0.9451 0.0058

Gaussian Logcosh 0.1263 0.8122

Gaussian Hinge 0.7091 0.1135

S-shaped Mean_Absolute 0.1326 0.8180

S-shaped MSE 0.1261 0.8457

S-shaped Categorical_crossentropy 1.0220 0.0291

S-shaped Logcosh 0.1266 0.8239

S-shaped Hinge 0.6954 0.1397

Triangular Mean_Absolute 0.1313 0.8122

Triangular MSE 0.1278 0.8457

Triangular Categorical_crossentropy 0.2936 0.0015

Triangular Logcosh 0.1267 0.8384

Triangular Hinge 0.7059 0.1266

Table 4.3. Accuracy and loss value of drop row data set with sparsity constraints

Membership function Loss function Loss value Accuracy

Gaussian Mean_Absolute 4.4915 0.1458

Gaussian MSE 6.2613 0.3125

Gaussian Categorical_crossentropy 4.0312 0.3750

Gaussian Logcosh 4.2236 0.2708

Gaussian Hinge 1.1200 0.6251

S-shaped Mean_Absolute 4.3112 0.4565

Sshaped MSE 4.2674 0.2917

S-shaped Categorical_crossentropy 5.8769 0.0333

S-shaped Logcosh 4.4675 0.1667

S-shaped Hinge 5.5678 0.0000

Triangular Mean_Absolute 4.2978 0.0833

Triangular MSE 4.2634 0.2708

Triangular Categorical_crossentropy 5.7617 0.0208

Triangular Logcosh 5.5876 0.1875

Triangular Hinge 1.7665 0.6250

55

Table 4.4. Accuracy and loss value of drop row data set and without sparsity constraints

Membership function Loss function Loss value Accuracy

Gaussian Mean_Absolute 4.3342 0.0208

Gaussian MSE 4.2642 0.2708

Gaussian Categorical_crossentropy 5.8342 0.0627

Gaussian Logcosh 4.3421 0.3542

Gaussian Hinge 4.7213 0.0000

S-shaped Mean_Absolute 4.3124 0.2292

S-shaped MSE 4.2343 0.1875

S-shaped Categorical_crossentropy 6.2212 0.0625

S-shaped Logcosh 4.3427 0.2083

S-shaped Hinge 4.7453 0.0417

Triangular Mean_Absolute 4.2634 0.1458

Triangular MSE 4.5674 0.1875

Triangular Categorical_crossentropy 6.0354 0.0417

Triangular Logcosh 2.2354 0.3750

Triangular Hinge 4.7123 0.0000

We also evaluated the data set in which the missing values are replaced by the mean of

that particular column. We evaluated that data set running the autoencoder without the sparsity

constraints. The results are given in Table 5.5. We can summarize that the Gaussian

membership function with logcosh as the loss function returns the best value of 62.52%. From

Table 5.6 we can say that the Gaussian membership function with MSE and using the sparsity

constraints returns the best value of 64.57%.

56

Table 4.5. Accuracy and loss value of mean data set and without sparsity constraints

Membership function Loss function Loss value Accuracy

Gaussian Mean_Absolute 0.2648 0.6250

Gaussian MSE 4.3532 0.2500

Gaussian Categorical_crossentropy 2.5200 0.0000

Gaussian Logcosh 1.3600 0.6252

Gaussian Hinge 2.1500 0.0000

Sshaped Mean_Absolute 1.3800 0.2086

Sshaped MSE 1.3600 0.5331

S-shaped Categorical_crossentropy 2.2000 0.0000

S-shaped Logcosh 1.3600 0.5993

S-shaped Hinge 2.1400 0.0000

Traingular Mean_Absolute 1.3600 0.5397

Triangular MSE 1.3600 0.5199

Triangular Categorical_crossentropy 2.2200 0.1192

Triangular Logcosh 1.3600 0.3543

Triangular Hinge 2.0900 0.0000

4.6. Summary

This chapter described a technique that encrypts and hides sensitive information but

also sends the data to different organizations securely. In order to encrypt sensitive data, our

approach used three different fuzzy logic membership functions. We kept the boundary points

secure. The boundary points are know only to sender and receiver Then, we used an

Autoencoder to learn the input feature vectors of the modified data set which then allows us to

send the output of the Autoencoder to share data with other organizations. As for the

experiments, we evaluated three types of data sets. The data sets were modified by dropping

columns, dropping rows and mean. We then evaluated the accuracy against different loss

functions and measured the accuracy of the Autoencoder with and without sparsity constraints.

From all the results we evaluated, we found that the ‘dropping column data set’ and running the

Autoencoder with sparsity constraints obtained the best accuracy. From all the results, we can

say that the best accuracy we obtain is by using the Autoencoder with sparsity constraints.

Among all the fuzzy set functions, the Gaussian membership function with MSE as the loss

57

function using the data set with the dropped column obtained both a very good accuracy and

also a low loss value. Hence, the Gaussian membership function can be used to hide / encrypt

sensitive information. Also, to send the data we used an Autoencoder with MSE as the loss

function and obtained an accuracy of 87.34%.

Table 4.6. Accuracy and loss value of mean data set with sparsity constraints

Membership function Loss function Loss value Accuracy

Gaussian Mean_Absolute 1.3777 0.1556

Gaussian MSE 1.0600 0.6457

Gaussian Categorical_crossentropy 2.9306 0.0000

Gaussian Logcosh 1.3600 0.2815

Gaussian Hinge 2.1100 0.0000

S-shaped Mean_Absolute 1.1382 0.1854

S-shaped MSE 1.3600 0.4437

S-shaped Categorical_crossentropy 2.6700 0.0000

S-shaped Logcosh 1.3600 0.2119

S-shaped Hinge 2.1300 0.0000

Traingular Mean_Absolute 1.3770 0.1589

Triangular MSE 1.3685 0.6159

Triangular Categorical_crossentropy 2.5670 0.5960

Triangular Logcosh 1.3693 0.2848

Triangular Hinge 2.1100 0.0000

In summary, as our technique is based on data privacy we kept the boundary conditions

of the Gaussian Membership functions protected. Also for better privacy results the boundary

conditions should be used only once. If the hospital has to send data again, they should use

different boundary conditions. Thus, the adversary would not be able to guess the correct

boundary conditions. Our method can assure patients that their sensitive information will be

kept secret, and furthermore, other organizations or data analysts will receive the data that is

very similar to the raw data.

58

5. ANALYZING PRIVACY OF TIME SERIES DATA USING

SUBSTITUTE AUTOENCODER NEURAL NETWORK

Nowadays people are very concerned about their health. For example, people want to

keep track of how often they are active throughout the day. Hence many smart devices are

equipped with sensors which help to keep track of the activities. Examples are smart phones and

smart watches, which keep track of jogging, sleeping, sitting, walking, and drinking. Users who

use these sensors want to share the information to be analyzed for their own health benefits.

However, at the same time the users do not want to share the sensitive information. For

example, users might want to share jogging and walking data, but not sleeping and drinking

data. In this paper, we propose a privacy preserving predictive model. We used the concept of

denoising autoencoder to hide the sensitive attributes of a user. We used two data sets. One is

the Skoda data set and the other one is the hand gesture data set. We divided the data sets into

three different subsets: desired, sensitive, and non sensitive subsets. The output of the denoising

autoencoder will only be the desired and non-sensitive subsets. The sensitive subsets are hidden

by the non-sensitive subsets. We evaluated the efficacy of our predictive model using three

different flavors of autoencoders. We used CNN autoencoder, Deep autoencoder and LSTM

autoencoder. All three autoencoders have the property of denoising autoencoder. To retain the

accuracy as similar as possible compared to the original data set, we used a convolutional neural

network for classification. We measured the F1-score of our model against each of the three

autoencoders. As our predictive model is based on privacy, we have also used a Generative

Adversarial Neural Network (GAN), which is used to show to what extend our model is secure.

5.1. Related Work

In this section we describe the various approaches related to our privacy preserving

model. The various approaches, which are described here are the differential privacy method

[72], the filtering method, data mapping method, and finally the substitution method.

59

Differential Privacy (DP) [73] is an approach, which adds constraints on the algorithm

used to publish aggregate information. DP limits the disclosure of private information of records

in the data sets. Furthermore, DP permits companies to access a large number of sensitive data

for research analysis and business analysis without privacy breach. Also, research institutions

use differential privacy technology to automate privacy processes within cloud-sharing

communities across countries. For example, Apple uses DP to protect the privacy of users and

resolve data sharing problem. The authors in [74] have shown the amount of noise to be added

in differential privacy to make data secure. The authors have shown that by adding gaussian

noise instead of laplacian noise will increase the computational efficiency. Also, the authors in

[75] used differential privacy with machine learning. The authors used two standard public data

sets, MNIST [76] and CIFAR-10 [77]. They improved the privacy of the data sets by introducing

the Stochastic Gradient Descent (SGD) [78] algorithm. The major disadvantage of differential

privacy is to add more noise if more data has to be hidden. This decreases the efficiency of a data

set.

Another approach to maintain privacy in the data is by filtering. Instead of adding con-

straints on the algorithm, the filtering technique filters the sensitive information. Collaborative

filtering is a very secure way to filter the sensitive information. This type of filtering has been

best used for giving recommendation to the users. In [79], the authors used collaborative filter-

ing for privacy preserving. They aimed at solving this problem by the systematic collection of

sensitive information of preferences. They partitioned the data between parties to ensure

privacy. Different techniques of collaborative filtering are mentioned in [80]. The paper gives an

overview of the model-based, memory-based and hybrid-based collaborative filtering

techniques. The key disadvantage of collaborative filtering is that it does not work well with

sparse data sets [81].

Data Mapping is another technique to hide data. Data Mapping is a process to map data

fields from the source fields to the target fields. One of the data mapping techniques used in

60

healthcare privacy is geomasking [82]. The authors provide protection for individual addresses

while maintaining spatial resolution for mapping purposes using geomasking. In [83], a new

adaptive geomasking technique known as donut geomasking was proposed. The new technique

extends the current method of geomasking by ensuring a user defined minimum level of

geoprivacy. The authors in [84] propose another geographic masking technique known as

location swapping. When locations of individual-level health data are released in the form of

published maps, the identity of these individuals could be identified through reverse geocoding.

Location swapping replaces an original location with a masked location selected from all

possible locations with similar geographic characteristics within a specified neighborhood. The

main disadvantage of this method that it is impossible to say that the feature extracted from the

raw data set does not contain any sensitive information. Another way of perturbing data is

known as randomization of data. Randomization of data is a process of making data random.

This could be done by generating a random permutation of a sequence, generating a random

numbers, or by selecting random samples of the population. The authors in [85] proposed an

approach whereby many clients can protect their personal information in a server. The clients

can use a randomization algorithm to randomize the data and then sent it to the server. The

authors have chosen the randomization technique so that the aggregate properties can be

recovered with sufficient precision. The authors in [86] introduce a family of geometric data

transformation methods (GDTMs) that distort confidential numerical attributes in order to meet

privacy protection in clustering analysis. In [59], the authors used symmetric key encryption to

randomize the password. Different classifiers were used to analyze the accuracy of the model.

Also, the authors in [87] randomized the sensitive attributes of a patient data set using fuzzy

membership [61] functions to hide the sensitive data. However, these randomization methods

have not been applied to time series data. The data sets used in all the above mentioned related

work are not time series data sets. The authors in [88] introduce the concept of replacement

technique with time series data sets. Data replacement or data substitution is a technique that

61

can be used with time series data. The technique replaces the sensitive data of a user by non-

sensitive data. Then, the transformed data is sent to the cloud. The authors first divided the data

sets into three subsets: desired, sensitive, and nonsensitive. Then, the authors replaced the

sensitive attributes with the non-sensitive attributes. The authors applied the denoising

autoencoder to transformed the data set. However, the authors limited their approach to only

multilayer autoencoder. Thus, in our paper we are experimenting different time series data sets

with several different autoencoder neural networks. We showed and compare the efficiency of

different flavors of autoencoder in our paper.

5.2. Proposed Approach

This section shows the predictive model to substitute the sensitive attributes of a data set

with nonsensitive attributes. The modified data set can be used by a cloud server. Our proposed

approach consists of three parties: user, trusted authority, and server. Figure 5.1 shows the high-

level architecture of our privacy preserving model.

Figure 5.1. A high level architecture: a privacy preserving trusted authority between user and the
server

To accomplish the privacy policy of the user we divided the data set. Our data set has

been grouped into three subsets: black listed, white listed, and gray listed. The black listed

subset consists of sensitive attributes, which the user does not want to reveal. The white listed

subset consists of the desired information about the user. This information can benefit the user

62

when shared. The gray listed subset consists of non-sensitive information. The user does not

worry about the information if it is shared. Tasks of each three parties are explained below:

User: The user / subject wore a sensor both in the left hand and the right hand. The

sensors generate time series data. The data consists of classes ‘write on notepad’, ‘open hood’,

‘close hood’, ‘check gap on the front door’, ‘open left front door’, ‘close left front door’, ‘check

trunk gaps’, ‘open and close trunk’, and ‘check steering wheel’. The user wants to receive a

benefit from the cloud by sharing this information. However, at the same time the user does not

want to share the sensitive attributes.

Trusted Authority: The user trusts only the trusted authority. The trusted authority is a

machine learning platform. The user sends the original time series data set to the Trusted

Authority. The detailed diagram is given in Figure 5.2. Along with the data set, the user also

sends the list of the three subsets. The three subsets consist of the desired, sensitive, and non-

sensitive information provided by the user. Inspired by the denoising autoencoder, we

implemented the model in our proposed approach. First, we substitute the black listed subset

with the gray listed subset. To add more privacy we generated a noisy gaussian digit and clip the

images between 0 and 1. Then, we added it to the transformed black listed subset. The

transformed training set consists now of the original white listed subset, the original grey listed

subset, and the transformed black listed subset. As we substitute the sensitive information with

non-sensitive information, we call our autoencoder as substitute autoencoder. Then, we train

the substitute autoencoder to map the transformed data set to the original data set.

Server: The server is a third party who needs the desired information for further

analysis. The user requests service from the server. The server allows the user to upload the time

series data after sharing some information. The user does not trust the server, thus the user does

not give the original data set to the server. The user gives the original data set to the trusted

authority. The trusted authority is trusted by both the server and the user. The trusted authority

63

transforms the data set by substituting the black subset with the grey subset. The transformed

data set is then given to the server.

Figure 5.2. An overview of the denoising autoencoder process

5.3. Experimental Setup

5.3.1. Data Set

Experiments are conducted on two data sets. The data sets are the Skoda [93] and the

Hand gesture data set [94].

64

• Skoda Data set: This data set describes the activities of assembly-line workers in a car

production environment. The data set considers the recognition of 11 activity classes

performed for one of the quality assurance checkpoints of the production plan. In the

study, one subject wore nineteen 3D accelerometers on both arms and performed a set of

experiments using sensors placed on the two arms of a tester (10 sensors on the right

arm, and 9 sensor on the left arm). The Skoda data set has been employed to evaluate

deep learning techniques in sensor networks, which makes it an appropriate data set to

evaluate our proposed substitute autoencoder framework.

• Hand Gesture Data set: In this data set, the sensory data from hand gestures are

recorded for two subjects. The data is recorded using an accelerometer and gyroscope

worn by the subjects. The data sets consist of 12 classes/activities performed. The 12

classes include 8 regular gestures and 3 gestures for playing tennis. The data set also

includes a null activity where no gesture is performed.

5.3.2. Experimental Settings

The Skoda and Hand gesture data sets are human activity and context recognition data

sets. The data sets have different classes. We divided the classes into three different subsets:

desired, sensitive, and non-sensitive subsets. We mentioned the desired and non-sensitive

classes to the server. The user did not provide the sensitive subset to the server but only to the

trusted authority. To send the transformed data set to the server, the following steps were

performed:

• First we took the sliding window size d = 30 and step size w = 3. Then, each of the

classes/activities are mapped to numbers starting from zero. Afterwards, using the train

split we created the training and testing data set. The training and testing data sets are in

the shape of (samples, features, window size).

• In the second step, we created three data sets: White (desired), Black (sensitive), Gray

(non sensitive) subsets. These subsets will be used to train the substitute autoencoder.

65

• We created a transformed data set, which will hide the sensitive attributes. To hide the

sensitive attributes we substitute the non-sensitive or gray data set with the black data

set. After substitution, we added gaussian noise to the transformed black subset using

the following commands:

rnd_idx train = np.random.choice(g train data.shape[0], b train data.shape[0], replace=False)

b_ train_ transformed = g train data[rnd_idx train,:]

b_ train_transformed = x_train_transformed + 0.5 * np.random.normal(loc=0.0, scale=1.0,
size=b_train_transformed.shape)

b_train_transformed = np.clip(b_train_transformed, 0., 1.)

rnd_idx_test = np.random.choice(g_test_data.shape[0], b_test_data.shape[0], replace=False)

b_ test_transformed = g_test_data[rnd idx test,:]

b_test_transformed = x_test_transformed + 0.5 * np.random.normal(loc=0.0, scale=1.0, size=b
test transformed.shape)

b_ test_transformed = np.clip(b_test_transformed, 0, 1)

Now, the transformed data set consists of white, grey and black transformed subsets. We

substitute the black subset with the grey subset. Then, the substitute autoencoder maps the

transformed data set to the original data set. The output will be the transformed data set where

the black subset has been substituted by the grey subset.

5.4. Results

To analyze the efficacy of our model we used different flavors of autoencoders. We

analyzed our model with the deep autoencoder [95], convolutional autoencoder [96], and finally

analyzed with the LSTM autoencoder [97]. As our data sets are time series data, that contain

repeated patterns. So we choose deep, convolutional and LSTM autoencoders. Deep

autoencoder: We first reshaped the Skoda and the Hand Gesture data sets from 3d to 2d

shape. Then, we used three layers for encoding as well as three layers for decoding. The

activation function for the input and the output layers is ‘Linear’. For all hidden layers we used

66

the Scaled exponential Linear Unit (Selu). We used the Mean Square Error (MSE) as loss

function.

Convolutional Denoising Autoencoder: Here we used a 1d convolutional

autoencoder. We used ‘relu’ as the activation function in all layers except the output layer. In the

output layer, we applied ‘sigmoid’ as the activation function. Here, we also used MSE as the loss

function.

LSTM Denoising Autoencoder: LSTM Autoencoder can learn a compressed

represen- tation of sequence data and has been used on video, text, audio, and time series

sequence data. Inspired by its application in time series data analysis, we implemented LSTM in

our model. Here we reshaped the data into (samples, 1, windowsize×features). Hence, for the

left hand the data is reshaped into (samples, 1, 30 × 54), and for the right hand the data is

reshaped into (samples, 1, 30 × 60) since the right hand and the left hand have 60 and 54,

respectively. For the Hand gesture data set for both Subject 1 and 2 the data is reshaped into

(samples, 1, 30 × 15).

Finally, the output of each of the different autoencoders is sent to the server for

classification. The server is a machine learning platform, which contains a convolutional neural

network. However, we need to check the efficiency of both the original and the transformed data

set. If the transformed data set does not have the efficiency as the raw data set, then it is referred

to as a misleading data set. The data set will be of no use to the server. Thus, we evaluated the

performance of both the original and the transformed data sets with the convolutional

autoencoder in the server.

For the Skoda data set, the results are summarized in Table 5.1, Table 5.2 and Table 5.3.

Table 5.1 shows the F1-score of both the original and the transformed data set for the CNN de-

noising autoencoder. Table 5.2 shows the F1-score of both the original and the transformed data

67

set for the Deep denoising autoencoder. Table 5.3 summarizes the F1-score of the LSTM

denoising autoencoder.

For the Hand Gesture data set, the results are summarized in Table 5.4, Table 5.5 and

Table 5.6. Table 5.4 shows the F1-score of both the original and transformed data set for the

CNN denoising autoencoder. Table 5.5 shows the F1-score of both the original and the

transformed data set for the Deep denoising autoencoder. Table 5.6 summarizes the F1-score of

the LSTM denoising autoencoder.

Finally, we plot the confusion matrix of different substitute autoencoders of two data sets

to evaluate the performance of our model. Figure 5.3, 5.4 and 5.5 shows the transformed Skoda

data sets using CNN, multilayer, and LSTM as autoencoder, respectively. The confusion matrics

are for the left hand Skoda data set with Sw={4, 8, 9, 10}, Sb={1, 5, 6, 7}, and Sg={0, 2, 3}. For the

Skoda data set, we can say that the LSTM substitute autoencoder performs best. We can see that

the white subsets of the LSTM data set has a low false positive rate. The white subset is the

desired subset, which will be used by the third party. Thus, we can use the LSTM autoencoder to

hide the sensitive subsets. The other two substitute autoencoders have a very high false positive

rate as compared to LSTM. Also, by looking at the confusion matrix of the LSTM and the

original data set we can say that the true positive rate of the white (desired) data set is almost

equal.

68

Table 5.1. F1-score for CNN autoEncoder of Skoda data set (OF1 stands for original data set and
TF1 stands for transformed data set)

Hand List of subsets OF1 TF1

Left Sw={4,8,9,10}

Sb={1,5,6,7}

Sg={0,2,3}

94.19

87.21

90.95

18.13

00.10

62.83

Left Sw={0,2,3}

Sb={1,5,6,7}

Sg={4,8,9,10}

90.95

87.21

94.19

65.69

02.72

15.56

Left Sw={4,8,9,10}

Sb={1,5,6}

Sg={0,2,3,7}

94.19

87.58

90.27

15.37

00.04

60.68

Left Sw={4,8,9,10}

Sb={1,5}

Sg={0,2,3,6,7}

96.26

92.47

90.18

14.98

04.26

57.48

Right Sw={4,8,9,10}

Sb={1,5,6,7}

Sg={0,2,3}

96.42

91.41

88.30

11.18

00.31

63.36

Right Sw={1,4,10}

Sb={2,3,8,9}

Sg={0,5,6,7}

95.90

91.41

88.30

11.18

00.31

63.36

Right Sw={1,4,10}

Sb={2,3,9}

Sg={0,5,6,7,8}

95.90

89.87

90.76

01.16

07.33

52.36

Right Sw={4,9}

Sb={1,2,3}

Sg={0,5,6,7,8,10}

96.87

89.44

91.17

26.45

09.63

52.14

69

Table 5.2. F1-score for Deep autoEncoder Skoda data set (OF1 stands for original data set and
TF1 stands for transformed data set)

Hand List of subsets OF1 TF1

Left Sw={4,8,9,10}

Sb={1,5,6,7}

Sg={0,2,3}

95.47

87.04

87.83

56.54

00.09

66.21

Left Sw={0,2,3}

Sb={1,5,6,7}

Sg={4,8,9,10}

87.83

87.04

95.47

81.78

00.14

89.51

Left Sw={1,3,5,7}

Sb={0,2}

Sg={4,6,8,9,10}

93.50

88.90

94.76

76.37

12.17

83.27

Left Sw={1,5,6,7}

Sb={0,2,3}

Sg={4,8,9,10}

87.04

87.83

95.47

13.46

52.50

30.18

Right Sw={2,3,9}

Sb={0,5,6,10}

Sg={1,4,7,8}

89.87

90.19

93.12

01.18

14.28

09.92

Right Sw={2,3,9,10}

Sb={0,5,6}

Sg={1,4,7,8}

97.93

91.53

97.90

06.55

63.77

05.48

Right Sw={2,3,9}

Sb={0,5,6}

Sg={1,4,7,8,10}

89.87

89.53

94.77

82.17

01.14

90.10

Right Sw={2,3,9,10}

Sb={0,4,5,6}

Sg={1,7,8}

97.93

92.56

98.12

19.60

02.28

19.40

70

Table 5.3. F1-score for LSTM autoEncoder Skoda data set (OF1 stands for original data set and
TF1 stands for transformed data set)

Hand List of subsets OF1 TF1

Left Sw={4,8,9,10}

Sb={1,5,6,7}

Sg={0,2,3}

95.95

88.00

91.89

93.89

00.04

92.05

Left Sw={0,2,3}

Sb={1,5,6,7}

Sg={4,8,9,10}

91.89

88.00

95.95

91.80

00.26

93.28

Left Sw={4,8,9,10}

Sb={1,5,6}

Sg={0,2,3,7}

95.95

87.52

91.49

94.35

00.19

91.13

Left Sw={4,8,9,10}

Sb={1,5}

Sg={0,2,3,6,7}

95.95

92.88

89.88

93.91

00.34

88.33

Right Sw={4,8,9,10}

Sb={1,5,6,7}

Sg={0,2,3}

96.42

91.41

88.33

94.72

04.14

87.55

Right Sw={1,4,10}

Sb={2,3,8,9}

Sg={0,5,6,7}

95.90

91.37

89.59

95.26

00.05

89.46

Right Sw={1,4,10}

Sb={2,3,9}

Sg={0,5,6,7,8}

95.90

89.87

90.76

95.55

00.02

90.58

Right Sw={2,3,9}

Sb={1,4}

Sg={0,5,6,7,8,10}

89.87

96.41

91.17

86.63

00.66

89.79

71

Table 5.4. F1-score for CNN autoEncoder Hand Gesture data set (OF1 stands for original data
set and TF1 stands for transformed data set)

Subject List of subsets OF1 TF1

1 Sw={1,2,3}

Sb={0,8,9,10,11}

Sg={4,5,6,7}

90.48

92.30

90.28

33.51

63.83

0.34

1 Sw={0,4,5,6,7}

Sb={1,2,3}

Sg={8,9,10,11}

92.63

90.40

91.14

60.45

31.98

1.93

1 Sw={8,9,10,11}

Sb={1,2,3}

Sg={0,4,5,6,7}

91.14

90.40

92.63

0.17

16.55

58.87

1 Sw={4,8,9,10}

Sb={1,5}

Sg={0,2,3,6,7}

91.14

91.48

92.29

2.73

45.01

55.24

2 Sw={1,2,3}

Sb={0,8,9,10,11}

Sg={4,5,6,7}

92.00

92.55

94.02

10.83

70.63

2.88

Figure 5.6, 5.7 and 5.8 shows the transformed Hand gesture data sets of CNN,

multilayer, and LSTM as autoencoder, respectively. The confusion matrices are for subject 1 data

set with Sw={8, 9, 10, 11}, Sb={1, 2, 3}, and Sg={0, 2, 4, 5, 6, 7}. For the Hand Gesture data set of

Subject 1 we can say that the LSTM substitute autoencoder performs best. We can see that the

white subsets of the LSTM data set has a low false positive rate. The white subset is the desired

subset, which will be used by the third party. Thus, we can use the LSTM autoencoder to hide

the sensitive subsets. The other two substitute autoencoders have a very high false positive rate

as compared to LSTM. Also, by looking at the confusion matrix of the LSTM and the original

data set we can see that the true positive rate of the white (desired) data set is almost equal.

72

Table 5.5. F1-score for Deep autoEncoder Hand Gesture data set (OF1 stands for original data
set and TF1 stands for transformed data set)

Subject List of subsets OF1 TF1

1 Sw={1,2,3}

Sb={0,8,9,10,11}

Sg={4,5,6,7}

91.58

91.32

90.79

83.67

65.34

84.70

1 Sw={1,8,9,10,11}

Sb={2,3}

Sg={0,4,5,6,7}

89.37

92.68

91.58

81.78

01.33

89.96

1 Sw={8,9,10,11}

Sb={1,3}

Sg={0,2,4,5,6,7}

89.50

91.58

91.58

88.01

04.38

90.58

1 Sw={8,9,10,11}

Sb={1,3}

Sg={0,2,4,5,6,7}

89.50

91.86

91.58

88.80

0.5

88.80

2 Sw={8,9,10,11}

Sb={1,3}

Sg={0,2,4,5,6,7}

92.55

92.02

93.49

89.82

01.13

91.33

2 Sw={1,3,10,11}

Sb={8,9}

Sg={0,2,4,5,6,7}

92.18

92.52

93.49

88.45

06.76

92.75

2 Sw={1,8,10,11}

Sb={2,3}

Sg={0,4,5,6,7,9}

93.40

91.46

93.42

88.56

0.18

92.95

2 Sw={1,3,8,10}

Sb={2,4,11}

Sg={0,5,6,7,9}

93.6

89.24

93.73

86.22

0.74

93.47

73

Figure 5.3. Confusion matrix of CNN autoencoder of Skoda data set

Table 5.6. F1-score for LSTM autoEncoder hand Gesture data set (OF1 stands for original data
set and TF1 stands for transformed data set)

Subject List of subsets OF1 TF1

1 Sw={1,2,3}

Sb={0,8,9,10,11}

Sg={4,5,6,7}

39.98

52.52

81.08

38.78

00.37

80.41

1 Sw={0,4,5,6,7}

Sb={1,2,3}

Sg={8,9,10,11}

91.64

91.86

90.83

89.33

00.33

88.33

1 Sw={8,9,10,11}

Sb={1,2,3}

Sg={0,4,5,6,7}

92.04

92.06

92.00

85.99

00.21

88.77

1 Sw={8,9,10,11}

Sb={1,3}

Sg={0,2,4,5,6,7}

90.20

91.27

91.63

89.82

01.20

88.77

2 Sw={8,9,10,11}

Sb={1,3}

Sg={0,2, 4,5,6,7}

92.55

92.02

93.49

89.82

01.13

91.33

2 Sw={1,3,10,11}

Sb={8,9}

Sg={0,4,5,6,7,9}

93.40

91.46

93.42

88.56

00.18

92.95

2 Sw={1,3,8,10}

Sb={2,4,11}

Sg={0,5,6,7,9}

93.60

89.24

93.73

86.22

00.74

93.47

2 Sw={2,3,9}

Sb={1,4}

Sg={0,5,6,7,8,10}

89.87

96.41

91.17

86.63

00.66

89.79

74

Figure 5.4. Confusion matrix of multilayer autoencoder of Skoda data set

Figure 5.5. Confusion matrix of LSTM autoencoder of Skoda dataset

5.5. Security Model

As our model is based on the privacy of the sensitive data, we have to look at the security

part of the model. In our security model, we first assumed that the adversaries know both the

real data set and the transformed data set. When the adversary sees the transformed data set,

the adversary will immediately know that it is a fake data set. Our main objective is to trick the

adversary. By looking at the transformed data the adversary will not be able to distinguish if it is

75

real or fake. To determine to what extent the original data set is indistinguishable from the

transformed data set, we used a Generative Adversarial Neural Network.

For our Skoda data set model we train the GAN with the real grey subset. After training,

the generator learns to produce a random data set very similar to the real one. On the other

hand, the discriminator learns to distinguish between the fake and the real data set. After

training, we separate the discriminator. We give the discriminator the real, transformed, and the

randomly generated grey subset as input. From Figure 5.9, we can say that after 30 epochs the

accuracy rate of the real and the randomly generated data set becomes almost equal. Hence, we

should keep the original data set secure. If the original data set is revealed then the adversary

will be able to generate a random data set, which will give the same efficiency as that of the real

data set.

Figure 5.6. Confusion matrix of CNN autoencoder of Hand Gesture data set

76

Figure 5.7. Confusion Matrix of Multilayer autoencoder of Hand Gesture Data Set

Figure 5.8. Confusion matrix of LSTM autoencoder of Hand Gesture data set

77

Figure 5.9. GAN accuracy is distinguishing from real, fake and randomly generated data portion

5.6. Summary

Privacy preserving of time series data is a very challenging issue especially when part of

the information is private. Here, in this paper we focused on how to hide the sensitive part of

time series data. We divided the data into three parts. The parts are sensitive, non-sensitive and

desired. The desired part will be used for further analysis by the server. The user as well as the

server is not bothered about the non-sensitive portion. At the same time, the user does not want

the server to know about the sensitive portion. The sensitive portion will not be used by the

server for further analysis. Thus, we substitute the sensitive portion with the non-sensitive

portion. We used the property of denoising autoencoder. However, instead of only using

external noise to hide data, we substitute the sensitive information with non-sensitive

information. After that we add noise to the transformed sensitive information. We named the

autoencoder as substitute autoencoder.

To measure the efficacy of our model, we used three different autoencoders: Deep

autoen- coder, LSTM autoencoder and Convolutional autoencoder for our two different data

sets. We measured the F1-score for each of the three autoencoders with both the original and the

trans- formed data sets. The F1-score was also analyzed with the three different subsets. We

found Skoda data set of the left hand with subsets Sw = {4, 8, 9, 10}, Sb = {1, 5, 6}, Sg = {0, 2, 3}

78

achieved the best F1-score. By comparing the original F1-score with the transformed F1-score,

the black subset has been reduced from 88% to almost 0% (0.04%), while at the same time the

gray and the white subset is almost the same as the original subset. For the right hand data set

with subsets Sw = {1, 4, 10}, Sb = {2, 3, 8, 9}, Sg = {0, 5, 6, 7} resulted in a good F1-score. The F1-

score for the black subset has been reduced from 91.37% to almost 0% (0.04%). For the Hand

gesture data set of Subject 1 with subsets Sw = {1, 2, 3}, Sb = {0, 8, 9, 10, 11}, Sg = {4, 5, 6, 7}

achieved the best F1-score. By comparing the original F1-score with the transformed F1-score,

the black subset has been reduced from 53% to 0.37, while at the same time the gray and the

white subset is almost the same as the original subset. Subject 2 with subsets Sw = {1, 3, 10, 11},

Sb = {8, 9}, Sg ={0, 4, 5, 6, 7, 9} resulted in the best F1-score. The F1-score for the black subset

has been reduced from 91.46% to 0.18%. We also plotted the confusion matrix of the three

autoencoders of the left hand Skoda data set and Subject 1 of the hand gesture data set. Overall,

we see that the LSTM performed better than the deep autoencoder, and the convolutional

autoencoder.

We used GAN as an adversary neural network to look at the security of the skoda data

set. We used the generator of the GAN to generate random noise time series data. Then, we used

the random noise signal, the original gray data set, and the transformed gray data set as input to

the discriminator. We can say that after 30 epochs the discriminator is not able to distinguish

between the random and the real gray subsets. Hence, for security reason, the original data set

should not be revealed.

79

6. CONCLUSION AND FUTURE WORK

In this dissertation we have used deep learning tools to achieve data privacy and

security. Along with deep learning we have used different cryptographic techniques and fuzzy

membership functions to achieve security. We have also shown how each of the proposed

approaches is secured against different adversary attacks. To analyze the accuracy of the models

we have used different optimizers, different classifiers, different noise functions, and different

neural network architectures. In this dissertation we first proposed a method for both

encrypting and decrypting a ciphertext. Our goal was to show how two neural networks can

communicate secretly without the third party knowing about their communication. To achieve

the goal, our model takes decimal values as input and converts them to ciphertext and then

again back to the desired output. The proposed method shows how different network structures

perform with different step values, different learning rates, and optimizers. Though the

ciphertext of small length performed well, ciphertext of large length is highly recommended. The

large length ciphertext will maintain the confidentiality of the secret message. The proposed

method has also been proved to be secure against Brute force attack.

Secondly, we proposed a remote password authentication scheme for multiserver

environments. The main idea of the proposed work is to find how a user can connect to more

than one servers securely. Our proposed method has been experimented with different

classifiers. The proposed method generate the keys with Diffie-Hellman key exchange protocol

to make the model secure.

Thirdly, we proposed a technique that encrypts and hides sensitive information but also

sends the data to different organizations securely. The main idea is to send the patient

information to different organizations without compromising privacy. In order to encrypt

sensitive data, our approach used three different fuzzy logic membership functions. The

boundary points of the fuzzy member- ship functions are know only to sender and receiver.

80

Finally we proposed a different technique to hide the sensitive attributes of the data sets.

Instead of perturbing the sensitive information, we substitute the sensitive information. We

used a technique to substitute the sensitive attributes with non-sensitive attributes. We used two

different time series data sets and measured the efficacy of our models with different flavors of

autoencoders. The autoencoders which we used to measure the efficacy are LSTM, CNN and

MultiLayer Autoencoder. We plotted the confusion matrix of the two data sets to evaluate the

performance of our model. We evaluated the security part of the model using Generative

Adversarial Neural Network (GAN). To retain the accuracy of our model we evaluated the

performance of both the original and the substitute data sets using CNN as the classifier.

For the future work, various shortcomings of our proposed models should be focused on.

In our first proposed approach asymmetric key encryption rather than symmetric key

encryption should be used to improve the integrity and confidentiality of the data. As our first

proposed approach used two neural networks, thus, the time complexity is larger in our

proposed neural network model. To overcome the shortcoming, future work should also involve

finding a neural network that can do both encryption and decryption. Our second proposed

model used three parties to create a password secretly. The improvement to our second

proposed approach could focus on a decentralized system. So that we would have only users and

the servers without a trusted authority. This would make the password authentication scheme

more secure and time efficient. The user should only communicate and register with the servers

without sharing any legitimate information with the servers. However, the servers will

authenticate the user to communicate with the servers. For our third approach we have hidden

the sensitive data with Gaussian, Triangular and S-shaped membership functions. Our future

work should focus on hiding the data with L- functions, R-functions and trapezoidal functions.

Also, we can use different flavors of Autoencoder for sending data from the sender to different

trusted organizations. Finally, more different time series data sets should be investigated using

precision and F1-score as the measure. Finally, in our fourth approach we did not hide the

81

sensitive information. Instead we substituted the sensitive information with the non-sensitive

information. This technique of data transforming is very useful in activity tracking and health

monitoring. In future, we should focus on extending the model without the Trusted Authority

(TA). Besides applying GANs, we would like to look at other possible attacks and their

appropriate responses.

82

REFERENCES

[1] Martin N., How DNA Companies Like Ancestry And 23 and Me are using Genetic data,
https://www.forbes.com/sites/nicolemartin1/2018/12/05/ how-dna-companies-like-
ancestry-and-23andme-are-using-your-genetic-data/ #65b51d5e6189, Last date
accessed: October, 2019.

[2] Grainville K., Facebook and Cambridge Analytica: What You Need to Know as Fallout
Widens, https://www.nytimes.com/2018/03/19/technology/ facebook-cambridge-
analytica-explained.html, Last date accessed: October, 2019.

[3] Bicchierai L.F., The 10 Biggest Revelations From Edward Snowden’s Leaks https://
mashable.com/2014/06/05/edward-snowden-revelations/, Last date accessed: October,
2019.

[4] Gressin s., The Marriott data breach, https://www.consumer.ftc.gov/blog/2018/12/
marriott-data-breach, Last date accessed: October, 2019.

[5] The EU General Data Protection Regulation (GDPR) is the most important change in
data privacy regulation in 20 years, https://eugdpr.org/, Last date accessed: October,
2019.

[6] Rivest, Ronald L., Adi S., and Leonard A. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21.2 (1978): 120-126.

[7] Arvandi, M., et al. Symmetric cipher design using recurrent neural networks.
IJCNN’06. In- ternational Joint Conference on. IEEE, 2006.

[8] Chandra Akshay. L., Perceptron Learning Algorithm:A Graphi cal Explanation Of Why
It Works, https://towardsdatascience.com/ perceptron-learning-algorithm-
d5db0deab975, Last date accessed: October, 2019.

[9] Gupta T., DeepLearning: Feedforward Neural Network,
https://towardsdatascience.com/ deep-learning-feedforward-neural-network-
26a6705dbdc7, Last date accessed: October, 2019.

[10] Touretzky D.S., Radial Basis Functions, https://www.cs.cmu.edu/afs/cs/academic/
class/15883-f17/slides/rbf.pdf, Last date accessed: October, 2019.

[11] Sadeghkhani, I., Ketabi, A., Feuillet, R. Radial basis function neural network
application to power system restoration studies. Computational Intelligence and
Neuroscience, 2012.

[12] Gupta T., Deep Learning, https://towardsdatascience.com/ deep-learning-
d5fe55326e57#.16qz1128q, Last date accessed: October, 2019.

[13] Convolutional Neural Network http://deeplearning.stanford.edu/tutorial/
supervised/ConvolutionalNeuralNetwork/, Last date accessed: October, 2019.

https://www.forbes.com/sites/nicolemartin1/2018/12/05/how-dna-companies-like-ancestry-and-23andme-are-using-your-genetic-data/#65b51d5e6189
https://www.forbes.com/sites/nicolemartin1/2018/12/05/how-dna-companies-like-ancestry-and-23andme-are-using-your-genetic-data/#65b51d5e6189
https://www.forbes.com/sites/nicolemartin1/2018/12/05/how-dna-companies-like-ancestry-and-23andme-are-using-your-genetic-data/#65b51d5e6189
https://www.forbes.com/sites/nicolemartin1/2018/12/05/how-dna-companies-like-ancestry-and-23andme-are-using-your-genetic-data/#65b51d5e6189
https://www.nytimes.com/2018/03/19/technology/facebook-cambridge-analytica-explained.html
https://www.nytimes.com/2018/03/19/technology/facebook-cambridge-analytica-explained.html
https://www.nytimes.com/2018/03/19/technology/facebook-cambridge-analytica-explained.html
https://mashable.com/2014/06/05/edward-snowden-revelations/
https://mashable.com/2014/06/05/edward-snowden-revelations/
https://www.consumer.ftc.gov/blog/2018/12/marriott-data-breach
https://www.consumer.ftc.gov/blog/2018/12/marriott-data-breach
https://eugdpr.org/
https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
https://towardsdatascience.com/deep-learning-feedforward-neural-network-26a6705dbdc7
https://towardsdatascience.com/deep-learning-feedforward-neural-network-26a6705dbdc7
https://towardsdatascience.com/deep-learning-feedforward-neural-network-26a6705dbdc7
https://www.cs.cmu.edu/afs/cs/academic/class/15883-f17/slides/rbf.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15883-f17/slides/rbf.pdf
https://towardsdatascience.com/deep-learning-d5fe55326e57#.16qz1128q
https://towardsdatascience.com/deep-learning-d5fe55326e57#.16qz1128q
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

83

[14] Keras LSTM tutorial – How to easily build a powerful deep learning language model,
https:// adventuresinmachinelearning.com/keras-lstm-tutorial/, Last date accessed:
October, 2019.

[15] Budhiraja A., Dropout in (Deep) Machine learning

[16] Early stopping, https://metacademy.org/graphs/concepts/early_stopping, Last date ac
cessed: October, 2019.

[17] Pathak H. K, Sanghi M. Simple Three Party Key Exchange Protocol via Twin Diffie-
Hellman Problem. IJ Network Security, pp. 256-264, 2013.

[18] Pointcheval D. Neural Networks and their Cryptographic Applications.Pascale Charpin
Ed. India, 1994.

[19] Guo, D., Lee-Ming C., and Cheng L. L. A new symmetric probabilistic encryption
scheme based on chaotic attractors of neural networks. Applied Intelligence 10.1 (1999):
71-84.

[20] Yu, W., and Jinde C. Cryptography based on delayed chaotic neural networks. Physics
Letters A 356.4 (2006): 333-338.

[21] Su, S., Alvin L., and Jui-Cheng Y. Design and realization of a new chaotic neural
encryp- tion/decryption network. Circuits and Systems, 2000. IEEE APCCAS 2000. The
2000 IEEE Asia-Pacific Conference on. IEEE, 2000.

[22] Abadi, M., and David G. A. Learning to protect communications with adversarial
neural cryp- tography. arXiv:1610.06918 (2016).

[23] Kinzel, W., and Ido K. Neural cryptography. Neural Information Processing, 2002.
ICONIP’02. Proceedings of the 9th International Conference on. Vol. 3. IEEE, 2002.

[24] Rosen-Zvi, M., et al. Mutual learning in a tree parity machine and its application to
cryptog- raphy. Physical Review E 66.6 (2002): 066135.

[25] Klimov, A., Anton M., and Adi S. Analysis of neural cryptography. International
Conference on the Theory and Application of Cryptology and Information Security.
Springer, Berlin, Heidelberg, 2002.

[26] Ruttor, A., et al. Neural cryptography with feedback. Physical Review E 69.4 (2004):
046110.

[27] Ruttor, A., et al. Genetic attack on neural cryptography. Physical Review E 73.3 (2006):
036121.

[28] Sarasamma, S. T., Qiuming A. Z., and Julie H. Hierarchical Kohonenen net for anomaly
detection in network security. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 35.2 (2005): 302-312.

[29] Prabakaran, N., Loganathan P., and Vivekanandan P. Neural cryptography with
multiple trans- fers functions and multiple learning rule. International journal of soft
computing 3.3 (2008): 177-181.

https://adventuresinmachinelearning.com/keras-lstm-tutorial/
https://adventuresinmachinelearning.com/keras-lstm-tutorial/
https://metacademy.org/graphs/concepts/early_stopping

84

[30] Volna, E., et al. Cryptography Based On Neural Network. ECMS. 2012.

[31] Hecht-Nielsen, R. Theory of the backpropagation neural network. Neural Networks
1.Supplement-1 (1988): 445-448.

[32] Stallings, W., and Tahiliani M. P. Cryptography and network security: principles and
practice. Vol. 6. London: Pearson, 2014.

[33] Micali, S., and Leonid R.. Physically observable cryptography. Theory of Cryptography
Con- ference. Springer, Berlin, Heidelberg, 2004.

[34] Liao Y.P , Wang S.S. A secure dynamic ID based remote user authentication scheme for
multi- server environment. Computer Standards & Interfaces, pp. 24-29, 2009.

[35] Hsiang H.C, Shih W.K. Improvement of the secure dynamic ID based remote user
authentica- tion scheme for multi-server environment. Computer Standards &
Interfaces, pp. 1118-1123, 2009.

[36] Sood S.K, Sarje A.K, Singh K. A secure dynamic identity based authentication protocol
for multi-server architecture. Journal of Network and Computer Applications, pp. 609-
618, 2011.

[37] Amin R. Cryptanalysis and Efficient Dynamic ID Based Remote User Authentication
Scheme in Multi-server Environment Using Smart Card. IJ Network Security, pp. 172-
181, 2016.

[38] Pan H.T, Pan C.S, Tsaur S.C, Hwang M.S. Cryptanalysis of Efficient Dynamic ID Based
Remote User Authentication Scheme in Multi-server Environment Using Smart Card.
Compu- tational Intelligence and Security (CIS), 12th International Conference on.
IEEE, pp. 590-593, 2016.

[39] Li L.H., Lin L.C, Hwang M.S. A remote password authentication scheme for multiserver
archi- tecture using neural networks. IEEE Transactions on Neural Networks, pp. 1498-
1504, 2001.

[40] ElGamal T. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, pp. 469-472, 1985.

[41] Raimondo M.D, Gennaro R. Provably secure threshold password-authenticated key
exchange. International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, Berlin, Heidelberg, pp. 507-523, 2003.

[42] Brainard J.G, Juels A., Kaliski B., Szydlo M. A New Two-Server Approach for
Authentication with Short Secrets. USENIX Security Symposium, pp. 201-214, 2003.

[43] Obaidat M.S., Macchairolo D.T. A multilayer neural network system for computer
access se- curity, IEEE Transactions on Systems, Man, and Cybernetics, pp. 806-813,
1994.

[44] Yang J., Park J., Lee H., Ren K., Kim K. Mutual authentication protocol, Workshop on
RFID and lightweight crypto, 2005.

85

[45] Reyhani S.Z., Mahdavi M. User authentication using neural network in smart home
networks, International Journal of Smart Home, pp. 147-154, 2007.

[46] Iuon-Chang L., Ou H.H., Hwang M.S. A user authentication system using back-
propagation network, Neural Computing & Applications, pp. 243-249, 2005.

[47] Pattanayak S., and Ludwig S. A. Encryption Based on Neural Cryptography,
International Conference on Health Information Science. Springer, Cham, 2017.

[48] Rosenblatt F. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms, Spartan Books, Washington DC, 1961.

[49] Scikit-learn - Machine Learning in Python, scikit-learn.org, Last date accessed May
2018.

[50] Bresson E., Chevassut O., Pointcheval D. Provably authenticated group Diffie-Hellman
key exchange. Proceedings of the 8th ACM conference on Computer and
Communications Security ACM, pp. 255-265, 2001.

[51] Dalenius T., and Reiss S. P. Data-swapping: a technique for disclosure control. Journal
of statistical planning and inference, 6(1), pp.73-85,1982.

[52] Reiss S. P. Practical data-swapping: the first steps ACM Transactions on Database
Systems (TODS), pp.68–73, 1984.

[53] Moore R. , and Richard A. Controlled data-swapping techniques for masking public use
micro- data sets Statistical Research Division Report Series (1996): 96-04.

[54] Domingo-Ferrer J., and Mateo-Sanz J. M. An empirical comparison of SDC methods for
con- tinuous microdata in terms of information loss and disclosure risk Proc. Joint
ECE/Eurostat Work Session Stat. Data Confidentiality, Conf. Eur. Satisticians, 2001.

[55] Defays D., and Anwar M. N. Masking microdata using micro-aggregation. Journal of
Official Statistics 14.4 (1998): 449.

[56] Domingo-Ferrer J., and Mateo-Sanz J. M. Practical data-oriented microaggregation for
statis- tical disclosure control. IEEE Transactions on Knowledge and data Engineering
14.1 (2002): 189-201.

[57] Kim J. J., and Winkler W. E. Masking microdata files. Proceedings of the Survey
Research Methods Section, American Statistical Association, 1995.

[58] Fuller W. Masking procedures for microdata disclosure. Journal of Official Statistics 9,
no. 2 (1993): 383-406.

[59] Pattanayak S., and Ludwig S. A. A secure access authentication scheme for multiserver
en- vironments using neural cryptography. Journal Of Information Assurance And
Security, 13.1 (2018): 56-65.

[60] Manikandan G., Sairam N., and Priya M. Sathya A new approach for ensuring medical
data privacy using neural networks. Biomedical Research 28.3 (2017).

86

[61] Kumari V. V., Rao S. S., Raju K. V. S. V. N, and Ramana K. V. Fuzzy based approach for
privacy preserving publication of data. International Journal of Computer Science and
Network Security, 8(1), 115-121 (2008).

[62] Jahan T., Narasimha G., and Rao C. V. Guru. A Comparative Study of Data
Perturbation Us- ing Fuzzy Logic to Preserve Privacy. Networks and Communications
(NetCom2013), Springer, Cham, 2014. 161-170.

[63] Fuzzy Logic - Membership Function https://www.tutorialspoint.cfuzzy/logicfuzzy/
logic_membership/function.htm. Last Date accessed: October, 2019.

[64] Zadeh L. A., “Fuzzy sets,” Information and control 8.3 (1965): 338-353.

[65] Hinton G. E., and Salakhutdinov R. R. Reducing the dimensionality of data with neural
net- works. science, 313(5786), 504-507, (2006).

[66] Cervical cancer (Risk Factors) Data Set, https://archive.ics.uci.edu/ml/datasets/
Cervical+cancer+%28Risk+Factors%29, Last date accessed: October,2019

[67] Dertat A., Applied Deep Learning - Part 3: Autoencoders, https://towardsdatascience.
com/applied-deep-learning-part-3-autoencoders-1c083af4d798, Last date accessed:
October, 2019.

[68] Baccouche M., et al., Sequential deep learning for human action recognition
International workshop on human behavior understanding. Springer, Berlin, Heidelberg,
2011.

[69] Dai J., et al., Towards privacy-preserving recognition of human activities, 2015 IEEE
interna- tional conference on image processing (ICIP). IEEE, 2015.

[70] CNN-wyzelab, http://www.cnn.com/2019/12/30/tech/wyze-data-breach/index.html,
Last date accessed: December, 2019.

[71] Joye M., et al., A scalable scheme for privacy-preserving aggregation of time-series
data, In- ternational Conference on Financial Cryptography and Data Security. Springer,
Berlin, Hei- delberg, 2013.

[72] Dwork C., et al., The algorithmic foundations of differential privacy, Foundations and
TrendsQR in Theoretical Computer Science 9.3-4: 211-407, 2014.

[73] Tang J., et al., Privacy loss in apple’s implementation of differential privacy on macos,
10.12. arXiv preprint arXiv:1709.02753, 2017.

[74] Dwork C., Differential privacy. Encyclopedia of Cryptography and Security, pp: 338-
340, 2011.

[75] Abadi M., et al., Deep learning with differential privacy, Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2016.

[76] MNIST, http://yann.lecun.com/exdb/mnist/, Last date accessed: December 2019.

https://archive.ics.uci.edu/ml/datasets/Cervical%2Bcancer%2B%28Risk%2BFactors%29
https://archive.ics.uci.edu/ml/datasets/Cervical%2Bcancer%2B%28Risk%2BFactors%29
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
http://www.cnn.com/2019/12/30/tech/wyze-data-breach/index.html
http://yann.lecun.com/exdb/mnist/

87

[77] CIFAR, http://www.cs.toronto.edu/~kriz/cifar.html, Last Date accessed: December
2019.

[78] Friedman J. H., Stochastic gradient boosting. Computational statistics & data analysis,
38.4: 367-378, 2002.

[79] Casino F., et al., A k-anonymous approach to privacy preserving collaborative filtering,
Journal of Computer and System Sciences 81.6: 1000-1011, 2015.

[80] Xiaoyuan S. , et al., A survey of collaborative filtering techniques, Advances in artificial
intel- ligence 2009.

[81] Hu B., et al., Data sparsity: a key disadvantage of user-based collaborative filtering,
Asia-Pacific Web Conference. Springer, Berlin, Heidelberg, 2012.

[82] Dave S. , Procedures for geomasking to protect patient confidentiality, ESRI
international health GIS conference, 2004.

[83] Hamton K. H. , et al., Mapping health data: improved privacy protection with donut
method geomasking, American journal of epidemiology 172.9: 1062-1069, 2010.

[84] Zhang S. , et al., The location swapping method for geomasking, Cartography and
Geographic Information Science 44.1: 22-34, 2017.

[85] Evfimievski A., Randomization in privacy preserving data mining, ACM Sigkdd
Explorations Newsletter 4.2: 43-48, 2002.

[86] Oliveira S. R. M., et al., Privacy preserving clustering by data transformation, Journal
of Information and Data Management 1.1: 37-37, 2010.

[87] Pattanayak S., et al., Improving Data Privacy Using Fuzzy Logic and Autoencoder
Neural Network, 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
2019.

[88] Malekzadeh M., et al.,Replacement autoencoder: A privacy-preserving algorithm for
sensory data analysis, arXiv preprint arXiv:1710.06564 2017.

[89] Pasal V., et al., Extracting and composing robust features with denoising autoencoders,
Pro- ceedings of the 25th international conference on Machine learning. ACM, 2008.

[90] Lawrence S., et al., Face recognition: A convolutional neural-network approach, IEEE
transac- tions on neural networks 8.1: 98-113, 1997.

[91] Kim Y., Convolutional neural networks for sentence classification, arXiv preprint
arXiv:1408.5882 2014.

[92] Goodfellow I., et al., Generative adversarial nets. Advances in neural information
processing systems, 2014.

[93] Skoda-dataset, har-dataset.org, Last date accessed: December 2019.

http://www.cs.toronto.edu/~kriz/cifar.html

88

[94] Bulling A., et al., A tutorial on human activity recognition using body-worn inertial
sensors, ACM Computing Surveys, vol. 46, no. 3, pp. 33:1–33:33, 2014.

[95] Alguliyev R. M., et al.,Privacy-preserving deep learning algorithm for big personal
data anal- ysis, Journal of Industrial Information Integration 15: 1-14, 2019.

[96] Chen M., et al., Deep features learning for medical image analysis with convolutional
autoen- coder neural network, IEEE Transactions on Big Data, 2017.

[97] Gensler A., et al., Deep Learning for solar power forecasting-An approach using
AutoEncoder and LSTM Neural Networks, 2016 IEEE international conference on
systems, man, and cyber- netics (SMC). IEEE, 2016.

