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ABSTRACT 

Emerging neural networks based machine learning techniques such as deep learning and 

its variants have shown tremendous potential in many application domains. However, the 

neural network models raise serious privacy concerns due to the risk of leakage of highly 

privacy-sensitive data. In this dissertation, we propose various techniques to hide the sensitive 

information and also evaluate the performance and efficacy of our proposed models. 

In our first research work we propose a model, which can both encrypt and decrypt a 

ciphertext. Our model is based on symmetric key encryption and back propagation neural 

network. Our model takes the decimal values and converts them to ciphertext and then again to 

decimal values.  

In our second research work, we propose a remote password authentication scheme 

using neural network. In this model, we have shown how an user can communicate securely 

with more than one server. A user registers himself / herself with a trusted authority and gets a 

user id and a password. The user uses the password and the user id to login to one or multiple 

servers. The servers can validate the legitimacy of the user. Our experiments use different 

classifiers to evaluate the accuracy and the efficiency of our proposed model.  

In our third research paper, we develop a technique to securely send patient information 

to differ- ent organizations. Our technique used different fuzzy membership functions to hide 

the sensitive information about patients.  

In our fourth research paper, we introduced an approach to substitute the sensitive 

attributes with the non-sensitive attributes. We divide the data set into three different subsets: 

desired, sensitive and non-sensitive subsets. The output of the denoising autoencoder will only 

be the desired and non-sensitive subsets. The sensitive subsets are hidden by the non-sensitive 

subsets. We evaluate the efficacy of our predictive model using three different flavors of 

autoencoders. We measure the F1-score of our model against each of the three autoencoders. As 
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our predictive model is based on privacy, we have also used a Generative Adversarial Neural 

Network (GAN), which is used to show to what extend our model is secure. 
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1. INTRODUCTION 

The value of collecting data has skyrocketed ever since Glaxo Smith Kline got access to 

genetic data from the genomics and biotechnology company 23andMe [1]. The goal of the part- 

nership was to gather insights and discover novel drug targets driving disease progression, and 

to develop therapies for serious medical needs based on those discoveries. However, this lead to 

serious privacy concerns among customers. Privacy Concern issues arose after several 

breathtaking series of scandals. Cambridge Analytica [2] had collected and exploited Facebook 

user data. Snowden [3] leaked highly classified documents of the National Security Agency. Also 

millions of unique passport numbers had been stolen in a Marriott International data breach 

[4]. The consequences of these scandals lead to an extensive rewrite of privacy law in Europe 

[5]. As a result, companies tend to be incredibly protective of their data assets and very 

conservative when it comes to share them with other companies. At the same time, data 

scientists need access to large labeled data sets in order to validate their models. This constant 

friction between privacy and learning has become a governing dynamic in modern machine 

learning applications. 

For any company, it will be immensely valuable to give access to their data to a large 

group of data scientists and researchers so that they can extract information from it, compare 

and evaluate mod- els, and arrive at a satisfactory solution. However, how can companies 

guarantee that their data will be protected or that the interest of their customers will be 

preserved or that some unscrupulous data scientists would not share their intelligence with the 

competition? When confronted with that issue, many companies started anonymizing their data 

sets but that is hardly a solution in many scenarios. 

The following sections briefly describe the various privacy methods adapted. A brief 

description of the background is presented in Sections 1.1-1.3. The motivation of the work is 

discussed in Section 1.4. The contributions of the work is described in Section 1.5, and an 

overview of the dissertation is listed in Section 1.6. 
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1.1. Cryptography 

Cryptography is a method of protecting information and communication through the use 

of codes so that only those for whom the information is intended can read and process it. The 

pre-fix “crypt” means “hidden” or “vault”, and the suffix “graphy” stands for “writing”. 

In computer science, cryptography refers to secure information and communication 

techniques derived from mathematical concepts, and a set of rule-based calculations called 

algorithms to transform messages in ways that are hard to decipher. These deterministic 

algorithms are used for cryptographic key generation and digital signing and verification to 

protect data privacy, web browsing on the internet, and confidential communications such as 

credit card transactions and email. 

1.1.1. Cryptography Techniques 

Cryptography is closely related to the disciplines of cryptology and cryptanalysis. It 

includes techniques such as microdots, merging words with images, and other ways to hide 

information in storage or transit. However, in today’s computer-centric world, cryptography is 

most often associated with scrambling plaintext (ordinary text, sometimes referred to as 

cleartext) into ciphertext (a process called encryption), then back again (known as decryption). 

Individuals who practice this field are known as cryptographers. Modern cryptography concerns 

itself with the following four objectives: 

• Confidentiality: the information cannot be understood by anyone for whom it was 

unintended. 

• Integrity: the information cannot be altered in storage or transit between sender and 

intended receiver without the alteration being detected. 

• Non-repudiation: the creator/sender of the information cannot deny at a later stage his 

or her intentions in the creation or transmission of the information. 

• Authentication: the sender and receiver can confirm each others identity and the 

origin/destination of the information. 
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1.2. Cryptographic Algorithms 

Cryptosystems use a set of procedures known as cryptographic algorithms, or ciphers, to 

encrypt and decrypt messages to secure communications among computer systems, devices 

such as smartphones, and applications. 

• Symmetric Key Algorithm 

Private-key or the symmetric-key encryption is a setting where two parties share some 

secret information in advance. The private key encryption consists of an encryption algorithm, 

Enc, and takes as input a key k and a plain text message m and outputs a ciphertext C. 

It is denoted as 

 C = Enck(m) (1.1) 

The decryption algorithm, Dec, takes as input the same key k and a ciphertext C, and 

outputs the plain text m. 

It is denoted as 

 m = Deck(C) (1.2) 

• Asymmetric Key Algorithm 

Public-key encryption or Asymmetric key encryption is a setting where one party 

generates a pair of keys (pk, sk) called the public key and the private key, respectively. The 

public key is used by the sender to encrypt a message for the receiver; the receiver then uses the 

private key to decrypt the resulting ciphertext. The commonly known RSA algorithm [6], 

abbreviated after the names of the inventors, is an example of public key encryption. The 

algorithm implements a public key cryptosystem whose security rests in part of the difficulty in 

factoring large numbers. The algorithm also permits secure communications to be established 

without the use of couriers to carry keys and it also permits one to “sign” digitized documents. 

1.3. Homomorphic Encryption 

Homomorphic Encryptions is another form of hiding data. Homomorphic Encryptions 

rep- resents one of the biggest breakthroughs in the cryptography space. This technique is likely 
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to become the foundation of many AI applications in the near future. Conceptually, the term Ho- 

momorphic Encryption describes a class of encryption algorithms which satisfy the 

Homomorphic property: that is certain operations, such as addition, can be carried out on 

cipher texts directly so that upon decryption the same answer is obtained as operating on the 

original messages. In the context of AI, Homomorphic Encryption could enable data scientists to 

perform operations on encrypted data that will yield the same results as if they were operating 

on clear data. The main issue with Homomorphic Encryption is that the technology is still too 

computationally expensive to be considered in mainstream applications. Basic Homomorphic 

Encryption techniques can turn 1 MB of data into 16 GB, which makes it completely impractical 

form many AI scenarios. 

1.4. Neural Cryptography 

Somewhere between Anonymization methods and Homomorphic Encryption, a novel 

tech- nique pioneered by Google, uses adversarial neural networks to protect information from 

other neural network models. The technique is known as Neural Cryptography. 

Traditionally, neural networks have been considered to be very bad at cryptographic 

operations as they have a hard time performing a simple XOR computation. While that is true, it 

turns out that neural networks can learn to protect the confidentiality of their data from other 

neural networks. They discover forms of encryption and decryption, without being taught 

specifically for these purposes. In short, Neural Cryptography is a branch of cryptography, which 

is the most significant part of communication security [7]. 

1.5. Artificial Neural Network 

Neural Cryptography uses Artificial Neural Network models to achieve privacy and 

security. Artificial Neural Networks are computational models which work similar to the 

functioning of a human nervous system. There are several kinds of artificial neural networks. 

These type of networks are implemented based on the mathematical operations, and a set of 
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parameters required to determine the output. Different Neural Network models, which have 

been used in this dissertation are described below: 

1.5.1. Perceptron 

This is the most simplest and the oldest form of Neural Network. The neuron takes the 

inputs sum them up, applies some activation function, and passes the result to the output layer, 

which consists of one neuron [8].  

1.5.2. Feed Forward Neural Network (FF) 

This type of Neural Network [9] model was originated in 1950. The Neural Network 

model has more than one neuron. The model has at least one hidden layer between the input 

and the output. All the inputs are connected to each of the nodes in the hidden layer. The 

activation flows from input to output without back loops. In a Feed Forward Neural Network, 

the sum of the products of the inputs and their weights are calculated. This is then fed to the 

output. Feed forward neural networks are used for technologies such as face recognition and 

computer vision. 

1.5.3. Radial Basis Neural Network (RBF) 

RBF uses the radial basis function as the activation function. This type of Neural 

Network model works very well for classification and decision making. However, RBF do not 

work so well with continuous values. A radial basis function considers the distance of any data 

point relative to the center. Such Neural Networks have two layers; in the inner layer, the 

features are combined with the radial basis function [10]. The radial basis function neural 

network is applied extensively areas such as power restoration systems [11]. 

1.5.4. Deep Feed Forward Neural Network (DFF) 

DFF is now the most applied of the different machine learning systems [12]. The network 

uses more than one hidden layer. DFF covers the same purpose as FF. However, their 

performance is much better than FF. DFF is used to classify data that cannot be separated 

linearly. It is a type of artificial neural network that is fully connected. This is because every 
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single node in a layer is connected to each node in the following layer. This type of Neural 

Network is applied extensively in speech recognition and machine translation technologies. 

1.5.5. Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) uses a variation of multilayer perceptrons. A 

CNN contains one or more than one convolutional layer(s). These layers can either be 

completely interconnected or pooled. Before passing the result to the next layer, the 

convolutional layer uses a convolutional operation on the input. Due to this convolutional 

operation, the network can be much deeper but with much fewer parameters. Due to this ability, 

convolutional neural networks show very effective results in image and video recognition, 

natural language processing, and recommender systems [70]. 

1.5.6. Long Term Short Memory Neural Network (LSTM) 

A LSTM Neural Network is a type of Artificial Neural Network in which the output of a 

particular layer is saved and fed back to the input. This helps predict the outcome of the layer. 

From each time-step to the next, each node will remember some information that it had in the 

previous time-step. In other words, each node acts as a memory cell while computing and 

carrying out operations. LSTM begins with the front propagation as usual but remembers the 

information it may need to use later. This type of Neural Network is very effective in text-to-

speech conversion technology and time series analysis [14]. 

1.5.7. Autoencoder Neural Network (AE) 

Autoencoder Neural Network [67] can be trained without supervision. Their number of 

hidden cells is smaller than the number of input cells (and the number of output cells equals the 

number of input cells), and when the AE is trained the way the output is as close to the input as 

possible, forces AEs to generalize data and search for common patterns. Autoencoders are used 

for classification, clustering, and feature compression. 
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1.6. Motivation and Problem Definition 

Although everyone understands the concept of privacy, there is no universally accepted 

definition of privacy. Privacy can be defined in three ways. Privacy in Information deals with the 

handling and collection of private data. Communication Privacy deals with privacy while com- 

municating. Territorial Privacy is concerned with the invasion of physical boundaries. With the 

latest advancement in computer science, privacy in information and communication is getting 

more attention. Many organization share information and messages to other organization for 

analyzing the data. However, sharing raw information or messages is a potential threat to 

privacy. 

Confidentiality in communication or messages can be achieved using Neural 

Cryptography 1.3. Neural Cryptography maintains confidentiality that is the core of information 

security using mathematical techniques. The confidentiality is maintained with the construction 

of a ciphertext (now called encryption scheme). The ciphertext 4.6 provides secret 

communication between two parties either by symmetric key encryption or asymmetric key 

encryption. In symmetric key encryption, both parties shares the same key. However, in 

asymmetric key encryption both parties share different keys. 

On the other hand privacy in information can be achieved by sanitizing the sensitive 

information. When raw data is shared there is a chance of a privacy breach. For instance, banks 

might wish to collaborate in order to detect the fraudulent behavior of customers. This requires 

the bank to share financial records of the customer. Also, hospitals want to share data of 

patients with the other hospitals for efficient diagnosis of diseases. In both cases, the bank and 

the hospitals hold shared data without violating the privacy of the individual customer. 

The motivation are summarized below: 

Cryptography has been used as a tool for sending confidential data from one Neural 

Network to another Neural Network. The two Neural Networks named Alice and Bob trained 

their respective data sets. Alice trained the model using her encryption data set, and Bob trained 
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his model using his decryption data set. As Neural Networks learn from training, they can now 

encrypt and de- crypt any confidential data sets. The two neural network share a same secret key 

to secure their communication. Eve, an eves dropper, will not be able to learn the private 

message they shared. Eve can only make a guess to the message. 

Cryptography is also used as a tool in remote password authentication scheme for 

multiple server. Here, a neural network can login into multiple servers using a single password. 

The authentication scheme is made secure using Diffie Hellman Key exchange protocol [17]. The 

key is shared with the user, server and the trusted party. The neural network is based on 

supervised learning and back propagation Neural network. 

Privacy is needed not only in communication. Privacy plays a very vital role when 

sending in- formation. Nowadays many organizations share data. The sharing of data helps to 

analyze the data for future research work. However, if the data contains personal information, 

then the privacy is compromised. Fuzzy membership functions are use to sanitized the personal 

information. The personal information are hidden with the boundary values of different fuzzy 

membership functions. The sanitized data set is sent to other organization using Autoencoder 

neural network. The Autoencoder neural network is used in compressing the attributes to most 

important ones. 

Analyzing the efficacy of the neural network model is very crucial. To improve the 

efficiency we used different techniques. The various techniques are described below. 

1.6.1. Overfitting 

The first step in ensuring our neural network performs well on the testing data is to 

verify that our neural network does not overfit. Overfitting happens when the model starts to 

memorize values from the training data instead of learning from them. Overfitting can be 

identified by observing training and testing accuracy. If the training accuracy is higher than the 

testing accuracy then it is assumed that the model has overfitted. To avoid overfitting we used 

following techniques: 
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• Regularization of data (L1 or L2): This technique reduces overfitting by adding a penalty 

to the loss function [15]. 

• Early Stopping: This can be done by stopping the training before the weights have 

converged [16]. 

• Dropout: At each training phase, individual neurons are dropped out of the network [15]. 

1.6.2. Hyper-parameter Tuning 

Each neural network will have its best set of hyperparameters, which will lead to the 

maxi- mum accuracy. Unfortunately, there is no direct method to identify the best set of 

hyperparameter for each neural network, so it is mostly obtained through trial and error. The 

hyperparameters which we used are the following: 

• Learning Rate 

• Optimizer and Loss Functions 

• Batch Size and Number of Epochs 

• Activation Functions 

1.6.3. Resampling of Data 

After performing all the above mentioned techniques, if our model did not obtain better 

accuracy, we resampled the data set. Resampling the data set can be done by balancing an 

unbalanced data sets. Also, by removing the columns and rows which have most missing values. 

1.7. Contributions 

This dissertation makes several contributions towards data privacy using cryptography 

and Neural Networks. The first chapter proposes a model which can secure privacy in 

communication. Two Neural Networks communicate securely in presence of a third Neural 

Network although the third Neural Network will not have any information of their 

communication. The dissertation also proposes a technique where one Neural Network can 

communicate securely with more than one Neural Network. The proposed technique is achieved 

through a remote password authentication method. Using this technique an user can log into 
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one or multiple servers securely. Privacy plays a very vital role not only in communication but 

also in sharing information. Hence in this dissertation we also propose an approach of hiding 

the sensitive attributes of patients. Our technique can not only hide the sensitive attributes but 

also send the attributes to other organizations securely. This technique could help in sharing 

patients’ data without compromising their privacy. Finally, LSTM and denoising neural network 

is proposed to replace the sensitive information with non-sensitive information.  The 

contributions can be summarized as follows: 

A method for both encrypting and decrypting a ciphertext using a neural network is 

proposed. The model takes decimal values as input and converts them to ciphertext, and then 

again to the desired output. The model is secured against brute force attacks thereby preserving 

privacy and security. The model is experimented with ciphertexts of different length and with 

different other parameters like network structure, learning rates, optimizers and step values. 

Details of the proposed method is discussed in Chapter 2. 

A password authentication scheme based on Neural Networks is developed. The system 

identify legitimate users in real time using a pattern classification technique. The scheme is 

applicable to multiserver network architectures. The new scheme also shows how to securely 

establish a shared secret key, which is the key that will be used for encrypting/decrypting the 

password. Details of the proposed model is discussed in Chapter 3. 

In Chapter 4, the proposed model uses fuzzy membership to hide the sensitive attributes. 

By hiding the data using different fuzzy membership functions, it will be difficult for some other 

party to identify the patient. Furthermore, to send data to different organizations an 

Autoencoder neural network was used. The Autoencoder retrieves the original data as input. 

In chapter 5, the proposed approach shows how a predictive model substitutes the 

sensitive at- tributes of a data set with non-sensitive attributes. The time series data sets are 

divided into three information sets: desired, sensitive and non-sensitive. The desired 

information will be used by other organizations for analysis. The sensitive information in the 
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data sets is replaced by non-sensitive information. We used a deep autoencoder, which extracts 

the sensitive information and replaces those with non-sensitive information. 

1.8. Dissertation Overview 

This dissertation is a paper-based version, where each chapter has been derived from the 

papers published during the PhD work. This is an overview of the remaining chapters of this 

dissertation. 

In Chapter 2, a method for encrypting and decrypting ciphertext is proposed. The 

chapter is derived from the following publication: 

• Sayantica Pattanayak and Simone A. Ludwig. “Encryption based on Neural 

Cryptography.” In International Conference on Health Information Science (pp. 321-

330), New Delhi, India, December 2017. 

In Chapter 3, a remote access authentication method is proposed. The chapter is derived 

from the following publication: 

• Sayantica Pattanayak and Simone A. Ludwig. “A Secure Access Authentication Scheme 

for Multiserver Environments Using Neural Cryptography”, Journal Of Information 

Assurance And Security , 13(1), (2018),56-65. 

In Chapter 4, a technique was developed not to hide the data but to send the data to 

other organizations securely. The chapter is derived from the following publication: 

• Sayantica Pattanayak and Simone A. Ludwig. “Improving Data Privacy using Fuzzy Logic 

and Autoencoder Neural Network”, 2019 IEEE International Conference on Fuzzy 

Systems, New Orleans, USA, June 2019. 

In Chapter 5, a technique was developed to substitute sensitive attributes with non-

sensitive attributes. The chapter is derived from the following publication: 

• Sayantica Pattanayak and Simone A. Ludwig. “ Analyzing Privacy of Time Series Data 

using Substitute Autoencoder Neural Network”, IEEE Symposium on Computational 

Intelligence (SSCI 2020), Cranberra, Australia, December 2020.  
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2. ENCRYPTION BASED ON NEURAL CRYPTOGRAPHY 

Neural Network Cryptography is an interesting area of research in the field of computer 

science. This chapter proposes a new model to encrypt/decrypt a secret code using Neural Net- 

works, which is an interesting potential source of private key cryptography model that is not 

based on number theoretic functions. In the first part of the chapter we proposed our model as 

well as analyze the privacy and security of the model thereby explaining why an attacker with a 

similar neural network model is unlikely to pose a threat to the system. This proves that the 

model is pretty secure. In the second part of the chapter, we experiment with the neural network 

model using three different ciphertexts of different length. Parameters of the network that are 

tested are different learning rates, optimizers and step values. The experimental results show 

how to enhance the accuracy of our model even further. Furthermore, our proposed model is 

more efficient and accurate compared to other models for encryption and decryption. 

2.1. Related Work 

Until now, there has been a large number of studies concerned with the usage of neural 

networks in cryptography. Neural cryptography applications were researched first in [18]. The 

paper defined a new identification scheme which can be used in smart cards because of small 

size data and easy operations. They proved how their identification scheme is secure against the 

most efficient attack known using a technique called simulated annealing. 

A symmetric probabilistic encryption scheme based on the chaotic classified properties 

of Hopfield neural networks was studied in [19]. The authors showed how a discrete Hopfield 

Neural Network (HNN) model is favorable for neural cryptography. The HNN is usually referred 

to as an associative memory network because the stable states of the network are in the form of 

system attractors, which can be used to store patterns and correct error messages by a Minimum 

Hamming Distance (MHD). In the case of overstorage, i.e., the Overstoraged HNN (OHNN), the 

number of stored patterns will be larger than that of a HNN and the system initial state will then 

converge to one of the system attractors compared to conventional HNN [20]. Conventional 
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HNN used a property of HNN to randomize the outcome of an event which can eventually be 

used for encryption schemes. 

Another chaotic neural network and its VLSI architecture for digital signal encryption 

and decryption was proposed in 2000 [80]. Chaotic neural network are used for encryption as 

well as for decryption because of high security, no distortion in signal and also suitability of 

system integration. In [75], the authors demonstrate that neural networks can learn to protect 

communications. The learning does not require prescribing a particular set of cryptographic 

algorithms, nor indicating ways of applying these algorithms. The learning is based only on a 

secrecy specification represented by the training objectives. Precisely, the paper relates the 

application of neural network to multiagent tasks. 

Another paper proposed the basis of the Neural Key Exchange protocol [23]. Neural Key 

Exchange Protocol is based on the synchronization of the weights of a Tree Parity Machine 

(TPM) [24]. Similar to the selection of chaotic oscillators in chaos communication. In other 

words, the knowledge of the output does not uniquely determine the internal representation, so 

the observer cannot tell which input vector was updated. However, the Neural Key Exchange is 

vulnerable to three types of attacks [25]. The attacks are Geometric attack [26], Genetic attack 

[27], and probabilistic analysis [28]. These attacks can be fixed by addition of a feedback 

mechanism [29]. 

Authors in [30] proposed an encryption key based Artificial Neural Network (ANN). The 

plain text message consists of bits. Then, the bits are transmitted to the recipient. The paper 

proposed a backpropagation network for their proposed approach. 

2.2. Proposed Approach 

Our neural network model is based on Backpropagation network [31]. A 

Backpropagation network is one of the most complex neural networks used for supervised 

learning. The algorithm assumes a feedforward NN architecture. 
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Our proposed model (Fig 2.1) is based on symmetric key encryption. Like in 

cryptography we have Alice and Bob, here we will assume that Alice and Bob want to 

communicate secretly. Alice and Bob share their secret keys with each other using symmetric 

key encryption. Then, Alice shares her 317 characters with Bob. Alice and Bob create their own 

training sets. To achieve this goal, Alice will create a training set as she has the secret keys. The 

training set will consists of ASCII codes (decimal values) of 317 characters with their 

corresponding three different ciphertexts (C1, C2 and C3). The ciphertexts C1, C2 and C3 are of 

different lengths.  

 

Figure 2.1. Encryption model based artificial neural network. 

The ciphertext are formed by padding the decimal digits with secret keys as shown in 

Figure 2.2. Bob will create his own training set with three different ciphertexts (C1, C2 and C3) 

as feature vectors and predicting the ASCII values of the 317 characters. 
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Figure 2.2. Formation of ciphertext 

For instance, the ciphertext C1 is formed by taking a secret key and padding the 

ciphertext with that key. The secret key is randomly generated. Alice will then share the secret 

key with Bob. Alice and Bob will share the 317 characters with each other. Alice and Bob will 

create their own training set as they have the secret key. Both Alice and Bob will train their 

neural networks with their training data. Alice will train her neural network by using the 

ASCII/Decimal values as the feature vector and predicting the ciphertext. Bob on the other hand 

will train his neural network by taking the ciphertext as the feature vector and predicting the 

decimal value. 

As Alice wants to share some secret information with Bob, she has to convert the secret 

information or test the message to ASCII (decimal) values. The decimal values will be the input 

to the first neural network. The first neural network will then produce an output or a ciphertext. 

Afterwards, Alice will hand over the ciphertext to Bob. Bob will use this ciphertext as an input to 

the second neural network and will get the decrypted text message. 

As our proposed model is based on cryptology, we proved that our proposed model 

cannot be attacked by any other adversary [32]. For instance, suppose Eve (an adversary) wants 

to eavesdrop to Alice’s and Bob’s conversation. To do this, Eve can attack the model in two ways. 

First, Eve can mimic the two neural networks, however, that is impossible for Eve to do because 

he does not have the training set. Secondly, Eve can randomly start guessing the ciphertexts, 

however, in cryptography privacy is preserved against efficient adversaries that run in a feasible 

amount of time [33]. Thus, Eve who has ‘computational power polynomial in time’ would not be 
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able to go through all keys if we use random keys. For privacy, we keep on changing the key for 

each sets of messages so that no adversary can guess the right key. Hence, our model is most 

secured to maintain confidentiality and integrity of the data. 

2.3. Experimental Setup and Results 

We divided this section into experimental setup and findings. The experimental set is 

divided into Encryption setting and Decryption Setting. For both the settings we included 

different parameters with different cipher text to measure the accuracy of our model. The length 

of different ciphertext C1, C2 and C3 are medium, small and large respectively. The parameters 

are hidden network structures, step values, learning rates and optimizers. The result includes 

the evaluation of the best ciphertext with the best network structure for both encryption and 

decryption. 

2.3.1. Experimental Setup 

In the encryption setting we considered evaluating the performance of three different ci- 

phertexts. First we consider evaluating the performance of C1, which is of medium length. For 

evaluation we included different hidden layers network structure and different optimizers Table 

2.1. 

Table 2.1. Ciphertext (C1) with different optimizers 

Hidden Layers Optimizers RMSE 

[350,350,350] Default 6.22 

[350,350,350] Adam 0.371 

[350,350,350] Adagrad 243.101 

[350,350,350] Proximal 3.913 

[350,350] Default 0.493 

[350,350] Adam 0.455 

[350,350] Adagrad 1125.941 

[350,350] Proximal 16.672 

[350] Default 47.806 

[350] Adam 3.609 

[350] Adagrad 1224.041 

[350] Proximal 1044.983 
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In the next step as the RMSE value with three layer hidden network structure and with 

Adam optimizer gave us a good score, we increased the step value to see how it effects the RMSE 

value as shown in Table 2.2. We also applied the same network structure with step value of 

3,000 to different learning rates as shown in Table 2.3. 

Table 2.2. Ciphertext (C1) with step values 

Step values RMSE 

1000 0.371 

2000 0.341 

3000 0.224 

4000 0.533 

 
Now for ciphertext C2 which is of small length, we experimented with three different 

hidden network structure. First we took three layers [350, 350, 350], then [350, 350] and [350] 

keeping the step value to 1000. The results are summarized in Table 2.4. 

Table 2.3. Ciphertext (C1) with learning rate 

Learning Rates RMSE 

0.010 0.224 

0.001 0.901 

0.0001 24.756 

 

Table 2.4. Ciphertext (C2) with different optimizers 

Hidden Layers Optimizers RMSE 

[350,350,350] Default 0.741 

[350,350,350] Adam 0.028 

[350,350,350] Adagrad 29.342 

[350,350,350] Proximal 0.261 

[350,350] Default 0.091 

[350,350] Adam 0.037 

[350,350] Adagrad 148.662 

[350,350] Proximal 0.926 

[350] Default 1.4333 

[350] Adam 0.272 

[350] Adagrad 229.961 

[350] Proximal 64.143 
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Now as we see that the Ciphertext C2 gives a best RMSE value with two layer [350,350] 

hidden network structure and Adam optimizer. So we evaluated this hidden layer structure with 

different step values in 2.5. Now we evaluated the learning rates with two layer hidden network 

structure 2.6. We kept the step value to 4000 and used Adam optimizer as this gave a good 

RMSE 

Table 2.5. Ciphertext (C2) with step values 

Step values RMSE 

1000 0.091 

2000 0.064 

3000 0.202 

4000 0.033 

 
Table 2.6. Ciphertext (C2) with learning rates 

Learning Rates RMSE 

0.010 0.037 

0.001 0.931 

0.0001 27.721 

We evaluated the ciphertext C3 with hidden network structure [350, 350, 350], [350, 

350], [350] and summarized in Table 2.3.1. Here we took the step value as 4000 as the length 

ciphertext C3 is very large. 

Table 2.7. Ciphertext (C3) with different optimizers 

Hidden Layers Optimizers RMSE 

[350,350,350] Default 11.804 

[350,350,350] Adam 4.590 

[350,350,350] Adagrad 19.976 

[350,350,350] Proximal 18.762 

[350,350] Default 17.743 

[350,350] Adam 4.519 

[350,350] Adagrad 14471.780 

[350,350] Proximal 163.521 

[350] Default 3231.150 

[350] Adam 15.045 

[350] Adagrad 15155.403 

 
 



19 

From the Table we can interpret that for the Ciphertext C3 RMSE value is best when we 

use three layer network structure with Adam optimizer and step value of 4000. Table 2.8 shows 

how different step values changes the RMSE values. As we have seen learning rates play a very 

important role in Ciphertexts C1 and C2. We experimented C3 with different leaning rates and 

with three layer hidden network structure and Adam optimizer Table 2.9. 

Table 2.8. Ciphertext (C3) with step values 

Step values RMSE 

4000 4.590 

5000 16.935 

6000 16.443 

7000 14.309 

Table 2.9. Ciphertext (C3) with learning rates 

Learning Rates RMSE 

0.01 4.963 

0.001 8.335 

0.0001 148.581 

In the Decrypting setting, to decrypt the test message which is encrypted with the 

Cipher- text C1 we use different network structure with step value of 1000 and proximal 

gradient descent optimizer. We tried to find how good the neural network can decrypt the test 

message with different optimizer Table 2.10. 

Now we use the three layer hidden network structure and try to find if different step 

values can give us a better RMSE value. The output is in Table 2.11. From the table we can say 

that that proximal gradient optimizer with three layer hidden network and step values we got a 

best RMSE value, so we interpret the optimizer with different learning rates Table 2.12 For 

decrypting the message encrypted using the Ciphertext C2 we use three different network 

structure. The hidden layer network structure are [150, 150, 150], [150, 150], [150] with step 

value of 1000. The output is in Table 2.13. 
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Here also we interpret the different hidden layer network structure of C2 and 

implemented two layer network structure with proximal gradient descent optimizer to different 

step values Table 

2.14. Also we implemented the three layer hidden network structure with proximal 

gradient optimizer and step value 1000 to different learning rates Table 2.15. 

Table 2.10. Ciphertext (C1) with different optimizers 

Hidden Layers Optimizers RMSE 

[150,150,150] Default 0.333 

[150,150,150] Adam 19.743 

[150,150,150] Adagrad 40.671 

[150,150,150] Proximal 0.175 

[150,150] Default 0.082 

[150,150] Adam 111.951 

[150,150] Adagrad 161.564 

[150,150] Proximal 1.721 

[150] Default 1.754 

[150] Adam 185.184 

[150] Adagrad 186.592 

[150] Proximal 93.032 

Table 2.11. Ciphertext (C1) with step values 

Step values RMSE 

1000 0.333 

2000 0.139 

3000 0.1120 

4000 0.144 

Table 2.12. Ciphertext (C1) with different learning rates 

Learning Rates RMSE 

0.01 0.175 

0.001 43.976 

0.0001 187.124 

For decrypting the test message with Ciphertext C3, we implemented three different 

hidden layer network structure as before with step value of 3000 and the output is summarized 



 

21 

in Table 2.16.We implemented different step values with three layer hidden network structure 

and proximal gradient descent optimizer Table 2.17 and different learning rates with the same 

hidden layer network structure and proximal gradient optimizer Table 2.18. 

2.4. Results 

Table 2.13. Ciphertext (C2) with different 0ptimizers 

Hidden Layers Optimizers RMSE 

[150,150,150] Default 0.168 

[150,150,150] Adam 21.271 

[150,150,150] Adagrad 53.487 

[150,150,150] Proximal 0.170 

[150,150] Default 0.110 

[150,150] Adam 101.217 

[150,150] Adagrad 168.567 

[150,150] Proximal 1.872 

[150] Default 0.110 

[150] Adam 101.217 

[150] Adagrad 168.567 

[150] Proximal 1.872 

 

Table 2.14. Ciphertext (C2) with step values 

Step values RMSE 

1000 0.115 

2000 0.099 

3000 0.087 

4000 0.086 
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We evaluated both the encryption and the decryption setting separately. From Table 2.1, 

2.2 and 2.3 we found that for encryption setting the best network structure to use, when we are 

encrypting the test message with Ciphertext C1 will be the three layer hidden network structure, 

with Adam Optimizer and learning rate as 0.01. For Encrypting with Ciphertext C2 the best 

network structure to use is the two layer network structure with Adam optimizer and learning 

rate of 0.01 (Table 2.4, 2.5, 2.6). For both of them step value was 1000. For encrypting with 

ciphertext C3, the best network structure will be the three layer network structure with Adam 

optimizer and step value of 3000 (Table 2.7, 2.8, 2.9). The best network structure among all the 

ciphertext for encrypting a test message is with ciphertext C2 with hidden layer [350, 350], 

learning rate 0.01 and step value of 1000. Fig 2.3 shows the plot of the behavior of the ciphertext 

C2 if we split the training data into training and test of size 0.2. However to maintain 

confidentiality and authenticity we should always try to use a very long key, even if the 

ciphertext C3 does not give us a good RMSE value. 

Table 2.15. Ciphertext (C2) with different learning rates 

Learning Rates RMSE 

0.01 0.170 

0.001 38.341 

0.0001 187.099 
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Table 2.16. Ciphertext (C3) with different optimizers 

Hidden Layers Optimizers RMSE 

[150,150,150] Default 0.174 

[150,150,150] Adam 0.595 

[150,150,150] Adagrad 17.755 

[150,150,150] Proximal 0.1296 

[150,150] Default 0.043 

[150,150] Adam 6.981 

[150,150] Adagrad 111.393 

[150,150] Proximal 0.278 

[150] Default 0.260 

[150] Adam 166.589 

[150] Adagrad 184.544 

[150] Proximal 15.242 

 

Table 2.17. Ciphertext (C3) with step values 

Step values RMSE 

3000 0.174 

4000 0.232 

5000 0.162 

6000 0.094 

 

Table 2.18. Ciphertext (C3) with different learning rates 

Learning Rates RMSE 

0.01 0.1296 

0.001 4.134 

0.0001 183.270 
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Figure 2.3. Expected and predicted value of ciphertext C2. 

From Table 2.10, 2.11, 2.12, 2.13, 2.14, 2.15 we found that decrypting with ciphertext C1 

and C2, two layer hidden network structure with proximal descent optimizer is the best neural 

network to use. From Table 2.16, 2.17, 2.18 we found that to decrypt a message with ciphertext 

C3 the three layer hidden network structure with proximal gradient descent optimizer is the best 

one. The best network structure among all the ciphertext that decrypt a test message is with 

ciphertext C3 with hidden layer [150, 150] and step value of 3000. Fig 2.4 shows the plot of the 

behavior of the ciphertext C3 when we split the training data into training and test of size 0.2. 

2.5. Summary 

In this chapter we reviewed the several work done in neural cryptography. In our disser- 

tation we proposed a method for both encrypting and decrypting a ciphertext. Our model takes 

decimal values input and convert them to ciphertext and then again to the desired output. We 

proved how are model is secured against Brute Force attack. Thereby preserving the privacy and 

security. 
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Figure 2.4. Expected and predicted value of ciphertext C3. 

The experiments shows that how different network structure performs with different 

learning rates as well as step values and optimizers. Also the RMSE value of the training data 

played a vital role. Though we have shown the ciphertext which is of small length perform the 

best in encrypting and decrypting the test message. We highly recommend to use ciphertext of 

large length to prevent confidentiality of data. If the ciphertext is large than it would be very 

difficult for the adversary to traverse through all the keys in polynomial time. 
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3. A SECURE ACCESS AUTHENTICATION SCHEME FOR 

MULTISERVER ENVIRONMENTS USING NEURAL 

CRYPTOGRAPHY 

With the rapid growth of network technologies, remote servers provide resources to be 

accessed over an open network around the world. Mainly due to the convenience of the Internet, 

distant users can share information with each other. In a distributed environment, secure 

communication in insecure communication networks is a very important issue that needs to be 

addressed. Hence, user authentication and secret key distribution become the most important 

security services for communication networks. A common feature of conventional password 

authentication schemes is that they use a verification table. The verification table consists of 

users identities and the encrypted passwords. The verification table is securely stored by the 

server. If the verification table is stolen or modified by an adversary, the system will be 

breached. Also, the conventional password authentication system is applicable to a single server. 

In this chapter, we designed a re- mote password authentication scheme for a multiserver 

environment. Our remote password based authentication method is based on artificial neural 

networks. In the first part of the chapter we will show how users will communicate with 

different servers securely. In the second part of the chapter we experimented with 540 

passwords applying different classifiers. The experimental results show how the accuracy of our 

model can be even further improved. Furthermore, our proposed model is a more efficient and 

accurate authentication scheme for multiserver environments compared to other models. 

3.1. Related Work 

In this section, related work in the area of remote password based authentication 

schemes are introduced. The authors in [34] describe an efficient and secure authentication 

scheme for multi- server environments. Their scheme uses a hashing function to implement the 

mutual verification and session key agreement. The scheme does not manage the secret key 
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table of the users and yet achieves users’ anonymity. Their scheme is also nounce-based to avoid 

time synchronization problems. This protocol uses only a cryptographic one-way hash function 

for the implementation. 

In the same year, Hsiang and Shih [35] found that Liao and Wangs’ protocol [34] is 

susceptible to insider attack, masquerade attack, server spoofing attack, and registration center 

spoofing attack, and does not provide mutual authentication. To overcome these drawbacks, the 

authors proposed an improved scheme over Liao and Wangs’ scheme [34]. Then in 2010, the 

authors in [36] showed that Hsiang and Shihs’ scheme [35] is insecure against the replay attack, 

impersonation attack and stolen smart card attack. 

To overcome these problems Amin [37] proposed an efficient dynamic ID-based remote 

user password authentication scheme for multi-server environments. Amin claimed that his 

scheme could resist off-line identity guessing attack, off-line password guessing attack, 

privileged insider attack, user impersonation attack, many logged-in users’ attack, smart card 

stolen attack, and session key recovery attack. However, the authors in [38] showed that the 

scheme proposed by Amin is vulnerable to off-line identity guessing and off-line password 

guessing with the smart card stolen attack. 

Going back to 2003, the authors in [39] proposed a multi-server authentication protocol 

based on the ElGamal digital signature scheme [40] that uses simple geometric properties of the 

Euclidean and discrete logarithm problem concept. The server does not require to keep any veri- 

fication table but the use of public keys makes this protocol computation intensive. In that same 

year, the authors in [41] proposed two multi-server password authentication protocols in which 

the user has to communicate in parallel with all authentication servers. They proved that these 

protocols are provably secure in the standard model. The attacker has to compromise a 

minimum threshold number of servers to gain any meaningful information regarding the 

password of a user. These two protocols differ in the way the client interacts with the different 

servers. However, in these schemes, the servers are equally exposed to the user as well as to the 



 

28 

attacker. The authors in [42] proposed a password based two-server authentication protocol in 

which only one server was exposed to the users. The use of public keys makes this system 

computationally intensive. More- over, it uses Secure Socket Layer (SSL) to establish a session 

key between a user and the front-end server to provide authentication but it provides only 

unilateral authentication. 

So far we reviewed the work in password authentication based on neural networks. In 

1994, the password authentication scheme based on a neural networks was initially proposed in 

[43]. This paper presents a new multilayer neural networks approach to identify computer 

users. The input vectors were made up of the time intervals between successive keystrokes 

created by users while typing a known sequence of characters. In 1997, the same authors [43] 

presented their work as a continuation of their previous work. In their previous paper only 

interkey times was used as feature vectors. Here, the authors used key hold time as features 

vectors. They found that hold times were more efficient than inter key times and the best 

identification performance was achieved by using both time measurements. However, both the 

schemes cannot withstand the replay attack [44]. 

Another password authentication approach based on neural networks was proposed in 

[45]. In this approach, a neural network is trained with the back-propagation (BP) algorithm to 

store the user IDs and the corresponding encrypted passwords. In this method, the system 

stores the weights of the trained neural network instead of the verification table [46]. As a result, 

the security of the system is increased. However, the scheme is not applicable for multiserver 

environments. In [39], the authors came up with a password authentication system based on 

neural networks. The scheme is applicable to multiserver environments. The authors used three 

types of neural network models to evaluate their performance. They used the Diffie Hellman key 

exchange protocol to send the password from a user to the Trusted Authority. However, the 

scheme is vulnerable to the man-in-the-middle attack. To overcome this drawback our proposed 
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scheme uses the three party Diffie Hellman Key exchange protocol. Hence, our scheme is not 

susceptible to the man-in-the- middle-attack. 

3.2. Our Proposed Approach 

We propose a remote password authentication scheme using Neural Networks. This 

scheme is designed for multiserver environments. In our previous chapter [87], we have shown 

how Alice can communicate with only Bob secretly. In this chapter, we developed a scheme in 

which Al- ice can communicate with multiple servers. To do that she has to register herself with 

a Central Authority. The Central Authority will give an access key to Alice to securely 

communicate with multiple servers. Fig. 3.1 shows how Alice is communicating with different 

servers. 

Our scheme has three participants. The participants are Trusted Authority (TA), Users, 

Servers. The entire process is divided into three phases: 1) Registration phase, 2) Login phase, 

and 3) Validation phase. 

 

Figure 3.1. Alice communication with two different servers 

3.2.1. Registration Phase 

In the registration phase the new user first registers with the Trusted Authority (TA) by 

sharing some legitimate information. The user is granted registration for certain servers. The 

steps of the registration phase are as follows: 
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• Using the Diffie Hellman Key exchange protocol, the Users, TA and the serviceable 

servers create a shared secret key. The User (Ui) computes 

 IDi= Ek (pw)  

and sends IDi to the TA. Here pw is the password created by the user. Without the key k 

no one can compute IDi. 

• In this step, the TA computes the password of user i as (pw) using 

 pw = Dk (IDi)   

Then, TA creates a training pattern using the password of the user i. TA adds the training 

pattern of the new user to create a neural network. The input units of the training 

pattern are the password characters. The password characters consist of English letters 

and/or numerals. Each password is made up of eight characters. Then, each of the 

password characters are mapped into a value ranging from 0 to 62 according to a 

mapping table. The mapping table consists of characters like lowercase letters, uppercase 

letters and numerals from 0 to 9.  

Each of these characters are assigned a number from 0 to 62. After mapping the 

characters, the training set for the neural network is created. The training set consists of an 

output too. The output of the training set includes the number of serviceable servers. Our system 

has two servers denoted as “serverone” and “servertwo”. For example, if a user wants to log in to 

both the servers, then the output will be “serverboth”. Once the training process is over, the TA 

sends IDi to the user. 

3.2.2. Login Phase 

In the login phase, suppose that Ui wants to log in to a server. The steps are as follows: 

• The user obtains a time sequence T , which is like a time stamp. 

• Then, the user computes W as such 

W = gpwT mod p 

• Afterwards, the user delivers IDi, W and T to the server. 



 

31 

3.2.3. Validation Phase 

In the validation phase, the server receives W , ID, T at time T t. Now, the server 

performs the following tasks to validate the user login request: 

• First, the server calculates ∆T. ∆T denotes the expected legal time interval for the trans- 

mission delay between the login terminal and the system servers. Then, the server checks 

the validity of the time stamp. If the time interval between T and T t is greater than ∆T, 

the server rejects the request. 

• If the time stamp T is within the valid period ∆T, the server decrypts IDi using the shared 

secret key 

pw = Dk (IDi). 

• The Server after obtaining the password pw, verifies if the following equation holds 

W = gpwT mod p. 

• If the previous verification holds, the server validates the user. To provide service to the 

user, the server first maps each of the eight characters of the password into a value 

according t0 the mapping table. Then, the server sends these values as an input to the 

neural network to obtain the output. The output represents that the user is authorized to 

use the server. 

3.3. Experimentation 

In the experimentation phase, we used the training pattern to test the learning ability 

and performance of our neural network model. Our method is a supervised learning method. We 

used the python programming language to implement the model. We also used the sklearn 

machine learning library which provides state-of-the-art machine learning algorithms. We 

assumed the multiserver has two servers denoted as “serverone” and “servertwo”. Using our 

remote password authentication scheme, the user can log in to any one of the servers or both the 

servers. We also assumed that our multiserver authentication scheme has 540 users. Each user 

password consists of eight characters. Therefore, our neural network model has eight inputs and 
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one output. The output of the neural network consists of “serverone”, “servertwo” and 

“serverboth”. For instance, the password of U1 is “kf12ghty” and the user is granted registration 

for server one and server two. Then, the expected output of the neural network will be 

“serverboth”. 

3.3.1. Training 

Our neural network is based on the multilayer perceptron model (MLP) [48]. Each 

training pattern has 9 values. The feature vectors are each represented by “a”, “b”, “c”, “d”, “e”, 

“f”, “g”, “h”. In this experiment, we assume that we have 540 users and two servers. Hence, there 

are 8 inputs and one output. The training set is then the input to train the network. 

3.3.2. Classification 

After the training phase, each server validates if the pw, ID and W are correct. If ID, pw 

and W are correct, the server accepts the request. Then, the server will input the password as 

feature vectors to compute the classification output. To compare the accuracy and performance 

of our neural network we used different classifiers. The classifiers that we used are as follows 

[49]: 

• GaussianNB is based on Naive Bayes Methods. Naive Bayes methods are a set of 

supervised learning algorithms based on applying Bayes’ theorem with the “naive” 

assumption of independence between every pair of features. GaussianNB implements the 

Gaussian Naive Bayes algorithm for classification. 

• Decision Tree is a non-parametric supervised learning method used for classification and 

regression. The goal is to create a model that predicts the value of a target variable by 

learning simple decision rules inferred from the data features. 

• Support Vector machine is denoted as SVM and is a set of supervised learning methods 

used for classification, regression and outlier detection. These SVM are effective in high 

dimensional spaces as different kernel functions can be specified for the decision 

functions. In addition, they are versatile too. Support Vector Classifiers supports kernels 
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like “rbf”, “sigmoid”, “poly” and “linear”. Table 3.1 list the different instances used with 

their corresponding parameters. 

• Gradient Boosting (GB) is a machine learning technique for regression and classification. 

GB builds an additive model in a forward stage-wise fashion. 

• A Random Forest is a meta estimator that fits a number of decision tree classifiers on 

various sub-samples of the data set and uses averaging to improve the predictive 

accuracy and controls over-fitting. 

• The Extra Tree class implements a meta estimator that fits a number of randomized 

decision trees (a.k.a. extra-trees) on various sub-samples of the data set and uses 

averaging to improve the predictive accuracy and controls over-fitting. 

• The Logistic Regression class implements regularized logistic regression using the 

‘liblinear’ library, ‘newton-cg’, ‘sag’, and ‘lbfgs’ solvers. It can handle both dense and 

sparse input. 

• K-nearest Neighbors implements learning based on the k-nearest neighbors of each 

query point, where k is an integer value specified by the user. 

3.4. Evaluations and Results 

For the experiments, we evaluated the accuracy of the different classifiers mentioned 

above. Each classifier is executed ten times and then the average of them was taken. Then, we 

compared the results of each classifier. Table 3.2 shows the first ten iterations of different 

classifiers. 
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Table 3.1. SVM instances with corresponding parameters 

Classifier Parameters 

SVC 1 kernel=“rbf”,C=1,=0.8 

SVC 2 kernel=“rbf”,C=0.001,=1 

SVC 3 kernel=“sigmoid”,C=1,=0.8 

SVC 4 kernel=“sigmoid”,C=0.001,=1 

SVC 5 kernel=“Linear”,C=1 

SVC 6 kernel=“Linear”,C=0.001 

SVC 7 kernel=“poly”,C=1,=0.8,degree=3 

SVC 8 kernel=“poly”,C=0.001,=1,degree=3 

SVC 9 kernel=“poly”,C=0.001,=1,degree=2 

SVC 10 kernel=“poly”,C=0.001,=1,degree=1 

LinearSVC 1 LinearSVC,multi-class=“ovr”,C=1 

LinearSVC 2 LinearSVC,multi-class=“crammer”,C=11 

 

Table 3.2. Classification accuracy of different classifiers - Iterations 1-10 

Iterations 1 2 3 4 5 6 7 8 9 10 

GaussianNB 0.8657 0.8287 0.6829 0.7617 0.8333 0.8218 0.7708 0.7708 0.8426 0.8542 

DecisionTree 0.9796 0.8981 0.8611 0.8519 0.8125 0.8241 0.8704 0.8567 0.9120 0.8519 

GradientBoosting 0.9097 0.9097 0.8843 0.9097 0.9190 0.8912 0.8912 0.8889 0.9097 0.9097 

RandomForest 0.9144 0.9120 0.9213 0.9167 0.8958 0.8912 0.8981 0.9028 0.9144 0.9028 

ExtraTree 0.8634 0.8889 0.8958 0.8727 0.8819 0.8773 0.8750 0.9028 0.9020 0.8704 

LogisticRegression 0.9051 0.9005 0.9236 0.9097 0.9120 0.9213 0.9329 0.9259 0.9051 0.9282 

Kneighbors 0.9120 0.9213 0.8843 0.9074 0.8750 0.8819 0.9167 0.9074 0.8958 0.9120 

LinearSVC 1 0.8380 0.5116 0.9282 0.7986 0.8958 0.7593 0.9144 0.8333 0.9190 0.4722 

LinearSVC 2 0.6898 0.7824 0.1806 0.6227 0.4074 0.6481 0.5579 0.1389 0.5486 0.3079 

SVC 1 0.8935 0.9074 0.8750 0.9074 0.8843 0.8634 0.8981 0.9074 0.8704 0.8889 

SVC 2 0.9282 0.0602 0.0255 0.9259 0.0579 0.0440 0.9282 0.0208 0.0463 0.0532 

SVC 3 0.9282 0.0162 0.9282 0.0417 0.0208 0.0162 0.0231 0.0255 0.0556 0.0440 

SVC 4 0.0622 0.9282 0.0162 0.0208 0.0255 0.0519 0.0532 0.0208 0.0509 0.9236 

SVC 5 0.6111 0.7824 0.8264 0.6644 0.7917 0.7014 0.7037 0.6296 0.4907 0.2523 

SVC 6 0.3889 0.4468 0.5602 0.6088 0.4792 0.7616 0.4931 0.5556 0.4190 0.4884 

SVC 7 0.7593 0.7639 0.8079 0.8218 0.8356 0.8380 0.7963 0.7083 0.8218 0.8148 

SVC 8 0.8819 0.8333 0.8241 0.8657 0.8380 0.8843 0.9005 0.7454 0.8912 0.8356 

SVC 9 0.8611 0.8472 0.8102 0.8750 0.8218 0.8773 0.8310 0.8981 0.8727 0.8611 

SVC 10 0.5949 0.5972 0.6574 0.4722 0.4884 0.4792 0.6505 0.5718 0.5532 0.5463 

 
Since Support Vector Classifiers (SVC) have different kernels, we have listed all the 

kernels in our classification table (Table 3.3). Table 3.3 shows the average iterations of all the 

classifiers mentioned above. From Table 3.3, we can see that Gradient Boosting, Random 

Forest, Logistic Regression and Kneighbors outperforms the other classifiers. Fig. 3.2 shows the 

box plot of the classifiers accuracy with their standard deviations. The figures gives us a sketch 



 

35 

of significance difference of the classifiers. However, to get a detailed understanding of the 

statistical significance we used the Tukey’s significance difference test.  

Table 3.3. Classification accuracy of different classifiers 

Classifiers Accuracy 

GaussianNB 0.80324 

Decisian Tree 0.86180 

Gradient Boosting 0.90231 

Random Forest 0.90695 

Extra Tree 0.88310 

Logistic Regression 0.91643 

KNeighbors 0.90138 

LinearSVC 1,c=1 0.78700 

LinearSVC 2,c=1 0.48840 

SVC 1 0.88950 

SVC 2 0.30902 

SVC 3 0.20995 

SVC 4 0.37466 

SVC 5 0.69537 

SVC 6 0.52016 

SVC 7 0.79677 

SVC 8 0.85000 

SVC 9 0.85550 

SVC 10 0.56110 

 
Table  3.4 shows the way the classifiers are grouped into different classes. From the 

table, we can say that the means which do not share the same classes are statistically 

significantly different. Clas- sifiers such as Logistic Regression, Random Forest, Gradient 

Boosting, Kneighbors, SVC 1, Extra Tree, Decision tree, SVC 10, SVC 8, GaussianNB, SVC 7, 

LinearSVC 1, SVC 5 are statistically  significantly different from SVC 2, SVC 4 and SVC 3. Also 

GaussianNB, SVC 7, LinearSVC 1  are statistically significantly different from LinearSVC 2, SVC 

2, SVC 4 and SVC 3. Table 3.5, 3.6 and 3.7 shows the pairwise comparison of different classifiers 

with respect to their statistical significance difference and p value. We denoted the statistical 

significant difference as “positive” if their p value is less than or equal to 0.005. 
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3.5. Security Analysis 

In this section, we analyzed the security part of our neural network model. Since our new 

remote authentication method is based on the generation and distribution of the keys, we 

should be aware that there can be possible attacks on our neural network model. In this section, 

we will investigate privacy, nonforgability and replay resistance. 

 

Figure 3.2. Classification accuracy chart of different classifiers 

3.5.1. Privacy 

In our authentication scheme we used the Diffie Hellman Key (DHK) exchange protocol. 

To keep the password secret and yet transfer the password to the server and TA, the generation 

of the keys is done by the DHK exchange protocol. A third party can try to change the shared 

secret key while the user and the server are communicating (man-in-the-middle-attack). Then, 

the third party has to change the key while the server and TA or TA and the User are 

communicating. It is not possible for the same third party to be present in both places at one 

time. Also, the third party has to continue to be in the middle. If the third party is ever absent, 

then the user and the server will get to know about his/her presence. Also, for our security the 

key is established once. 
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We choose our prime number p to be very large, so that it is not possible for any 

adversary to traverse through all the prime numbers in polynomial time. The message W cannot 

be broken. The security benefit comes from the difficulty of solving the discrete logarithm [50] 

problem. Also, the trusted authority gives the key only to the server/servers the user wants to log 

in. If the user wants to log in to a different server, the user again has to go through the 

registration phase to receive a different key. 

Table 3.4. Grouping information of different classifiers 

Factor N Mean Class 

Logistic Regression 10 0.91643 A 

Random Forest 10 0.90695 A 

Gradient Boosting 10 0.90231 A 

Kneighbors 10 0.90138 A 

SVC 1 10 0.88958 A 

Extra Tree 10 0.88310 A 

Decision tree 10 0.86181 A 

SVC 10 10 0.85555 A 

SVC 8 10 0.85000 A 

GaussianNB 10 0.80320 A,B 

SVC 7 10 0.79680 A,B,C 

LinearSVC 1 10 0.78700 A,B,C 

SVC 5 10 0.69540 A,B,C,D 

SVC 9 10 0.56110 B,C,D,E 

SVC 6 10 0.52020 C,D,E 

LinearSVC 2 10 0.48840 D,E,F 

SVC 2 10 0.30900 E,F 

SVC 4 10 0.21600 F 

SVC 3 10 0.21000 F 

 
3.5.2. Nonforgability 

A legal user wants to access a non-serviceable server. The server will accept the ID to 

decrypt it. Then, the server will provide it as input to the neural network to receive its output. If 

the output is different then the server will not accept the request. Hence, our new remote server 

authentication/validation scheme is nonforgeable. 
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3.5.3. Replay Resistance 

A replay attack is a form of network attack in which a valid data transmission is 

maliciously or fraudulently repeated or delayed. This is carried out either by the originator or by 

an adversary who intercepts the data and re-transmits it. To prevent the replay attack our 

scheme associates a time T with ID. When an adversary replays a intercepted message to 

pretend a valid user, he/she has to pass Step 1 of the validation phase. The adversary will create 

a timestamp T ∗ such that T ” − T ∗ ≤ ∆T. Once T is changed to T ∗ then W changes and 

hence the password, thus the adversary will fail the validation phase. However, if ∆T is too large, 

the server cannot resist the replay attack. Hence, it is very important to choose an appropriate 

∆T  
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Table 3.5. Difference of means to calculate statistical significant difference (STD) 

Levels Means P value Difference (STD) 
Decision tree - GaussianNB 0.0586 1 Negative 
Gradient Boosting  -  Gaussian NB 0.0991 0.99896 Negative 
Random    Forest   -    Gaussian NB 0.1037 0.99815 Negative 
Extra Tree - GaussianNB 0.0799 0.99995 Negative 
Logistic Reg - GaussianNB 0.1132 0.99471 Negative 
Kneighbors - GaussianNB 0.0981 0.99908 Negative 
LinearSVC 1 - GaussianNB -0.0162 1 Negative 
LinearSVC 2 - GaussianNB -0.3148 0.01077 Positive 
SVC 1 - GaussianNB 0.0863 0.99984 Negative 
SVC 2 - GaussianNB -0.4942 5.8E-05 Positive 
SVC 3 - GaussianNB -0.5933 5.8E-05 Positive 
SVC 4 - GaussianNB -0.5875 5.8E-05 Positive 
SVC 5 - GaussianNB -0.1079 0.99701 Negative 
SVC 6- GaussianNB -0.2831 0.04199 Positive 
SVC 7 - GaussianNB -0.0065 1 Negative 
SVC 8 - GaussianNB 0.0468 1 Negative 
SVC 9 - GaussianNB 0.0523 1 Negative 
SVC 10 - GaussianNB -0.2421 0.17933 Negative 
Gradient  Boosting-Decision tree 0.0405 1 Negative 
Random Forest  -  Decision tree 0.0451 1 Negative 
Extra Tree - Decision tree 0.0213 1 Negative 
Logistic Reg - Decision tree 0.0546 1 Negative 
Kneighbors - Decision tree 0.0396 1 Negative 
LinearSVC 1 - Decision tree -0.0748 0.99998 Negative 
LinearSVc 2 - Decision tree -0.3734 0.00061 Positive 
SVC 1 - Decision tree 0.0278 1 Negative 
SVC 2 - Decision tree -0.5528 5.8E-05 Positive 
SVC 3 - Decision tree -0.6519 5.8E-05 Positive 
SVC 4 - Decision tree -0.6461 5.8E-05 Positive 
SVC 5 - Decision tree -0.1664 0.81444 Negative 
SVC 6 - Decision tree -0.3417 0.003 Positive 
SVC 7 - Decision tree -0.0650 1 Negative 
SVC 8 - Decision tree -0.0118 1 Negative 
SVC 9- Decision tree -0.0063 1 Negative 
SVC 10 - Decision tree -0.3007 0.02017 Positive 
Random Forest  -  Gradient Boosting 0.0046 1 Negative 
Extra Tree - Gradient Boosting -0.0192 1 Negative 
Logistic    Reg    -    Gradient Boosting 0.0141 1 Negative 
Kneighbors - Gradient Boosting -0.0009 1 Negative 
LinearSVC  1   -  Gradient Boosting -0.1153 0.99348 Negative 
LinearSVC  2   -  Gradient Boosting -0.4139 0.00011 Positive 
SVC 1 - Gradient Boosting -0.0127 1 Negative 
SVC 2 - Gradient Boosting -0.5933 5.8E-05 Positive 
SVC 3 - Gradient Boosting -0.6924 5.8E-05 Positive 
SVC 4 - Gradient Boosting -0.6866 5.8E-05 Positive 
SVC 5 - Gradient Boosting -0.2069 0.44581 Negative 
SVC 6 - Gradient Boosting -0.3821 0.0004 Positive 
SVC 7 - Gradient Boosting -0.1055 0.99771 Negative 
SVC 8 - Gradient Boosting -0.0523 1 Negative 
SVC 9 - Gradient Boosting -0.0468 1 Negative 
SVC 10 - Gradient Boosting -0.3412 0.00307 Positive 
Extra Tree - Random Forest -0.0239 1 Negative 
Logistic Reg - Random Forest 0.0095 1 Negative 
Kneighbors - Random Forest -0.0056 1 Negative 
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Table 3.5. Difference of means to calculate statistical significant difference (STD) (continued) 
 
Levels Means P value Difference (STD) 
LinearSVC 1 - Random Forest -0.1199 0.98986 Negative 
SVC 1 - Extra Tree -0.5741 0.000058 Positive 
SVC 3 - Extra Tree -0.6732 0.000058 Positive 
SVC 4 - Extra Tree -0.6674 0.000058 Positive 
SVC 5 - Extra Tree -0.1877 0.630259 Negative 
SVC 6 - Extra Tree -0.3629 0.001031 Positive 
SVC 7- Extra Tree -0.0863 0.999837 Negative 
SVC 8- Extra Tree -0.0331 1 Negative 
SVC 9 - Extra Tree -0.0275 1 Negative 
SVC 10 - Extra Tree -0.3220 0.007728 Positive 
Kneighbors - Logistic Reg -0.0151 1 Negative 
LinearSVC 1 - Logistic Reg -0.1294 0.977455 Negative 
LinearSVC 2- Logistic Reg -0.4280 0.00008 Positive 
SVC 1 - Logistic Reg -0.0269 1 Negative 
SVC 2 - Logistic Reg -0.6074 0.000058 Positive 
SVC 3 - Logistic Reg -0.7065 0.000058 Positive 
SVC 4 - Logistic Reg -0.7007 0.000058 Positive 
SVC 5 - Logistic Reg -0.2211 0.32243 Negative 
SVC 6 - Logistic Reg -0.3963 0.000209 Positive 
SVC 7 - Logistic Reg -0.1197 0.990088 Negative 
SVC 8 - Logistic Reg -0.0664 0.999997 Negative 
SVC 9 - Logistic Reg -0.0609 0.999999 Negative 
SVC 10 - Logistic Reg -0.3553 0.001515 Positive 
LinearSVC 1 - Kneighbors -0.1143 0.994052 Negative 
LinearSVC 2 - Kneighbors -0.4129 0.000114 Positive 
SVC 1 - Kneighbors -0.0118 1 Negative 
SVC 2 - Kneighbors -0.5924 0.000058 Positive 
SVC 3 - Kneighbors -0.6914 0.000058 Positive 
SVC 4 - Kneighbors -0.6856 0.000058 Positive 
SVC 5 - Kneighbors -0.2060 0.454487 Negative 
SVC 6 - Kneighbors -0.3812 0.000415 Positive 
SVC 7 - Kneighbors -0.1046 0.997942 Negative 
SVC 8 - Kneighbors -0.0514 1 Negative 
SVC 9 - Kneighbors -0.0458 1 Negative 
SVC 10 - Kneighbors -0.3403 0.003212 Positive 
LinearSVC 1- LinearSVC 2 -0.2986 0.022071 Positive 
SVC 1- LinearSVC 1 0.1025 0.998396 Negative 
SVC 2 - LinearSVC 2 -0.4780 0.000059 Positive 
SVC 3 - LinearSVC 1 -0.5771 0.000058 Positive 
SVC 4 - LinearSVC 2 -0.5713 0.000058 Positive 
SVC 5 - LinearSVC 1 -0.0917 0.999628 Negative 
SVC 6 - LinearSVC 2 -0.2669 0.078013 Positive 
SVC 7 - LinearSVC 1 0.0097 1 Negative 
SVC 8 - LinearSVC 2 0.0630 0.999999 Negative 
SVC 9 - LinearSVC 1 0.0685 0.999995 Negative 
SVC 10 -LinearSVC 2 -0.2259 0.284575 Negative 
SVC 1 - LinearSVC 1 0.4011 0.000171 Positive 
SVC 2 - LinearSVC 2 -0.1794 0.707607 Negative 
SVC 3 - LinearSVC 1 -0.2785 0.050346 Positive 
SVC 4 - LinearSVC 2 -0.2727 0.06285 Negative 
SVC 5 - LinearSVC 1 0.2069 0.445806 Negative 
SVC 6 - LinearSVC 2 0.0317 1 Negative 
SVC 7 - LinearSVC 1 0.3083 0.01442 Positive 
SVC 8 - LinearSVC 2 0.3616 0.001105 Positive 
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Table 3.5. Difference of means to calculate statistical significant difference (STD) (continued) 
 
Levels Means P value Difference (STD) 
SVC 9 - LinearSVC 1 0.3671 0.000835 Positive 
SVC 10 - LinearSVC 2 0.0727 0.999987 Negative 
SVC 2 - SVC 1 -0.5806 0.000058 Positive 
SVC 3 - SVC 1 -0.6796 0.000058 Positive 
SVC 4 - SVC 1 -0.6738 0.000058 Positive 
SVC 5 - SVC 1 -0.1942 0.567748 Negative 
SVC 6 - SVC 1 -0.3694 0.000743 Positive 
SVC 7 - SVC 1 -0.0928 0.999561 Negative 
SVC 8 - SVC 1 -0.0396 1 Negative 
SVC 9 - SVC 1 -0.0340 1 Negative 
SVC 10 - SVC 1 -0.3285 0.00569 Positive 
SVC 3 - SVC 2 -0.0991 0.998964 Negative 
SVC 4 - SVC 2 -0.0933 0.999529 Negative 
SVC 5 - SVC 2 0.3863 0.000324 Positive 
SVC 6 - SVC 2 0.2111 0.407299 Negative 
SVC 7 - SVC 2 0.4878 0.000058 Positive 
SVC 8 - SVC 2 0.5410 0.000058 Positive 
SVC 9 - SVC 2 0.5465 0.000058 Positive 
SVC 10 - SVC 2 0.2521 0.130564 Negative 
SVC 4 - SVC 3 0.0058 1 Negative 
SVC 5 - SVC 3 0.4854 0.000059 Positive 
SVC 6 - SVC 3 0.3102 0.013264 Positive 
SVC 7 - SVC 3 0.5868 0.000058 Positive 
SVC 8 - SVC 3 0.6400 0.000058 Positive 
SVC 9 - SVC 3 0.6456 0.000058 Positive 
SVC 10 -SVC 3 0.3512 0.001869 Positive 
SVC 5 - SVC 4 0.4796 0.000059 Positive 
SVC 6 - SVC 4 0.3044 0.017145 Positive 
SVC 7 - SVC 4 0.5810 0.000058 Positive 
SVC 8 - SVC 4 0.6343 0.000058 Positive 
SVC 9 - SVC 4 0.6398 0.000058 Positive 
SVC 10 - SVC 4 0.3454 0.002494 Positive 
SVC 6 - SVC 5 -0.1752 0.744437 Negative 
SVC 7 - SVC 5 0.1014 0.998607 Negative 
SVC 8 - SVC 5 0.1546 0.890284 Negative 
SVC 9 - SVC 5 0.1602 0.857492 Negative 
SVC 10 - SVC 5 -0.1343 0.967608 Negative 
SVC 7 - SVC 5 0.2766 0.054134 Positive 
SVC 8 -SVC 5 0.3298 0.00533 Positive 
SVC 9 -SVC 5 0.3354 0.004078 Positive 
SVC 10 - SVC 5 0.0410 1 Negative 
SVC 7 - SVC 6 0.0532 1 Negative 
SVC 8 - SVC 6 0.0588 1 Negative 
SVC 9 - SVC 6 -0.2357 0.217453 Negative 
SVC 10 - SVC 6 0.0056 1 Negative 
SVC 9 -SVC 8 -0.2889 0.03319 Positive 
SVC 10 - SVC 8 -0.2944 0.026349 Positive 
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3.6. Summary 

In this chapter, we designed a remote password authentication scheme for multiserver 

environments. The user will register first with a trusted authority to become a legitimate user. 

Each legitimate user has its own ID and password. Then, the user types his/her user ID and 

password to log in to any of the servers. Later, during the authentication phase the servers 

validate the legitimacy of the remote login user. The remote password authentication scheme for 

multiserver environments is based on artificial neural networks. To overcome the problem of the 

man-in-the- middle-attack we created our shared secret key using the three party Diffie Hellman 

Key exchange protocol. 

For the experimentation, we use 540 users with different passwords of eight characters. 

Each of these eight characters represent the input feature vectors of our neural network. The 

output represents a number of serviceable servers. Each user can log in to any one of the servers 

or both the server at one time. After training the neural network, we compared different 

classifiers in terms of efficiency and accuracy. 

Our findings shows that Gradient Boosting, Random Forest, Logistic Regression and K 

neighbors outperforms the other classifiers. However, to identify whether a classifier is 

statistically significantly different from the other we used the Tukeys test method. The test 

method found that Logistic Regression, Random Forest, Gradient Boosting and Kneighbors are 

not statistically significantly different from SVC 1, Extra Tree, Decision tree, SVC 8, SVC 10 and 

Gaussian NB. From Tables 3.5, 3.6 and 3.7  we get a more accurate picture of statistical 

significant difference of each classifier as compared to other classifier. 
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4. IMPROVING DATA PRIVACY USING FUZZY LOGIC AND 

AUTOENCODER NEURAL NETWORK 

Data privacy is a very important problem while sharing data among multiple 

organizations and has become a very crucial problem in the health sectors since multiple 

organizations such as hospitals are storing data of the patients in the form of Electronic Health 

Records. Stored data is used with other organizations or research analysts to improve the health 

care of patients. However, the data records contain sensitive information such as age, sex, and 

date of birth of the patients. Revealing sensitive data can cause a privacy breach of the 

individuals. This has triggered research that has led to many different privacy preserving 

techniques being introduced. Thus, we designed a technique that not only encrypts / hides the 

sensitive information but also sends the data to different organizations securely. To encrypt 

sensitive data we use different fuzzy logic membership functions. We then use an autoencoder 

neural network to send the modified data. The output data of the autoencoder can then be used 

by different organizations for research analysis. The advantage of using an autoencoder neural 

network is that it learns the input feature vector. 

4.1. Related Work 

There has been a surge in recent research activity in privacy preserving of sensitive data. 

Several papers have been published on various aspects of privacy preserving. We discuss here 

some of the previous work related to our approach. 

Several data hiding technique exists on different assumptions. Data swapping is the com- 

monly used data hiding technique. It refers to a method of swapping information from one 

record to another [51],[52]. The amount of swapping to be done in a database is dependent on 

the ap- plication and the need of the organization. There exist various variants of swapping. The 

records for swapping are purposely or randomly chosen since they are believed to have a greater 

risk of re-identification. The advantage of swapping is that it can be easily implemented and is 
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one of the best methods of preserving confidentiality. Its main disadvantage is that even with a 

very low swapping rate, it can destroy analytic properties, particularly sub-domains. 

To overcome the disadvantage of the earlier two methods, the authors introduced a con- 

trolled way of swapping in 1995 [53]. In this approach, the values of an individual record are 

sorted and swapped in a range of k-percent of the total range. Randomization determines the 

specific values of the record value to be swapped. The procedure is repeated for each variable 

until all variables have been swapped. The main disadvantage of this approach is the 

determination of k. If k is relatively small, then analytic distortions on the entire file may be 

small for simple regression analysis. If k is large, there is an assumption that the re-

identification risk may be reduced [54]. The authors provided methods for aggregating several 

attributes simultaneously. The methods are based on multi-variable metrics for clustering 

variables into the most similar groups. The methods are not as easily implemented because they 

can involve sophisticated optimization algorithms. For computational efficiency, the methods 

are applied from two to four attributes simultaneously whereas many public use files contain 12 

or more attributes. The advantage of the multi-variable aggregation method is that it provides 

better protection against re-identification. Its disadvantage is that analytic properties can be 

severely compromised, particularly if two or three uncorrelated attributes are used in the 

aggregation process. The attributes that are not micro-aggregated may themselves allow re-

identification. 

Micro-aggregation is another technique for data masking [56],[55]. It aggregates the 

record values of attributes and is intended to reduce the re-identification risk. In single ranking 

micro- aggregation, each attribute is aggregated independently of other attributes. The method 

is easy to implement and the values of attributes are sorted and divided into groups of size k. In 

practice, k is taken to be three or four to reduce analytic distortions. In each group, the values 

are replaced by an aggregate such as the mean or the median. The micro-aggregation is repeated 

for each of the attributes that are considered to be usable for re-identification. 
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Adding noise to the data sets showed that it is theoretically possible to recover the mean 

and covariance of a given record for arbitrary sub-domains [91],[58]. Both of the papers showed 

that the masked data set by adding noise provides good analytic properties such as regression 

analysis that closely reproduce regression analysis of the unmasked data. The authors reasoned 

that adding noise can yield files with moderate re-identification rates. In 2017, the authors [87] 

used symmetric key encryption to hide the data before sending it to the other party using neural 

network. In 2018, the same authors [59] used the hiding technique to encrypt the password to 

log in to multiple servers. However, both encryption approaches used the symmetric key 

method. In symmetric key encryption the shared secret key has to be secured. In 2017, the 

authors in [60] came up with the idea of adding noise to the data set using neural networks. The 

authors achieved privacy by hiding two of the attributes. The disadvantages of using this 

approach is that they classified age into groups, i.e., two different ages will fall into the same 

group. 

In [61], the authors introduced fuzzy logic for privacy preserving. They claim their 

technique is useful for both numerical and categorical attributes. However, the authors did not 

use any data mining technique to prove that their modified data is the same as the raw data. The 

authors in [62] published a paper showing a comparative study of data perturbation They also 

used fuzzy logic to preserve privacy. The authors used different classifiers like SVM, ID3 and 

C4.5 on the original as well as on the perturbed data. 

Though different techniques have been applied to preserve privacy, however, each of 

them has their own limitations. First of all, the data swapping method has a very low swapping 

rate. Then, in order to overcome the randomization problem, micro-aggregation was used. Both 

of these techniques have a limitation in determining the split of the data records. In order to 

avoid this limitation, a data set was created by adding noise using fuzzy logic and neural 

networks. The authors of the papers did not show how to send the data securely to different 
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other organizations. In addition, the authors added noise only to the attributes that are 

numerical and categorical. 

In our dissertation, we used fuzzy membership functions and an Autoencoder neural 

network to modify the sensitive information. Our new technique not only hides numerical and 

categorical attributes but also real attributes. After the fuzzification of three sensitive data, we 

send the modified data to an Autoencoder neural network.   The current approach retains both 

privacy and the accuracy of the result. Our dissertation is different from the earlier work done so 

far by combining fuzzy logic with an autoencoder neural network. 

4.2. Background 

This section explains the background information used in our proposed approach. In our 

proposed approach we used fuzzy membership functions [63] and an Autoencoder Neural 

Network. 

4.2.1. Fuzzy Logic 

Fuzzy logic was introduced in 1965 by Zadeh in his research paper “Fuzzy Sets” [64]. He 

is considered as the father of fuzzy logic. Fuzzy logic resembles the human decision-making 

methodology by dealing with vague and imprecise information. Fuzzy logic is applied to many 

real-world problems since it is based on degrees of truth rather than based on Boolean logic. 

Fuzzy logic is best understood within the context of set membership. Basically fuzzy logic allows 

partial membership, which means that it contains elements that have varying degrees of 

membership within the set. Furthermore, membership functions characterize fuzziness whether 

the elements in the fuzzy sets are discrete or continuous. We have used different membership 

functions in our approach, which are explained below. 

4.2.2. Mathematical Notation 

Here, we elaborate of the different membership functions which have been used to 

perturb the raw data. Figure 5.1 shows the plot of different membership functions. 
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Figure 4.1. Different membership functions 

• Triangle Membership Function: This membership function uses the following 

relationship 

TriMF (D : X, Y, Z) = 0 when D < X 

= (D − X)/(Y − D) when X ≤ D ≤ Y 

= (Z − D)/(Z − Y ) when Y ≤ D ≤ Z 

= 0 when D > Z 

Here, D represents the value in the data set. X, Y and Z are three boundary points. 

• Gaussian Membership Function: This membership function has the following relation 

GaussMF (D : C, W ) = EXP −(D − C)
2
/W 

2 

In the above relation, D is the value in the data set. C is the center, and W is the width of 

the function. 

• S-Shaped Membership Function: For this membership function we have the following 

relation 
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SMF (D : X, Y ) = 0 when D ≤ X 

= 2 ∗ [(D − X)/(Y − X)]
2
 when X ≤ D ≤ (X + Y )/2 

= 1 − 2 ∗ [(D − Y )/(Y − X)]
2 when (X + Y )/2 ≤ D ≤ Y 

= 1 when D ≥ Y 

where D is the value in the data set. X is the minimum, and Y is the maximum value in the data 

set. 

Our model is based on privacy and security. Hence we kept the boundary points in 

triangular membership functions, center and the width parameters in Gaussian Membership 

function and maximum and minimum values in s-shaped membership function secured. These 

values are know only to the sender and the receiver. 

4.2.3. Artificial Neural Network 

Artificial neural networks are one of the main tools used in machine learning. As the 

“neural” part of the name suggests, the networks are brain-inspired systems, which are intended 

to replicate the way that we humans learn. Neural networks consist of input and output layers as 

well as (in most cases) a hidden layer consisting of units that transform the input into something 

that the output layer can use. Artificial neural networks are excellent tools for finding patterns 

which are far too complex or numerous for a human programmer to extract or to teach the 

machine to recognize. While neural networks (also called “Perceptrons”) have been around since 

the 1940s, it is only in the last several decades that they have become a major part of artificial 

intelligence. 

4.2.4. Autoencoder 

In our work we used an autoencoder [65] neural network. The Autoencoder has a 

multilayer percepepton (MLP) like structure with input layer, hidden layer and output layer. 

However, unlike an MLP, Autoencoder neural networks do not require any target data since the 

network tries to learn the input itself. The Autoencoder consists of two parts: encoder and 
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decoder. The encoder compresses the inputs to the most important features. The decoder 

reconstructs the original input from the encoder. The hidden layer compresses the input of the 

most important feature vectors. Therefore, the number of feature vectors are reduced in the 

hidden layer. Autoencoders are very frequently used for dimensionality reduction and feature 

selections. 

Our proposed model is divided into two tasks. The first task is based on hiding the 

sensitive information. The second task is to send the perturbed data to different organization 

using an Autoencoder. Thus, in our proposed approach in order to accomplished the first task 

we used fuzzy membership functions to hide the sensitive attributes. These are the attributes 

which the patient does not want to share. By hiding the data using different fuzzy membership 

functions this will make it difficult for some other party to identify the patient. Next, to send 

data to different organizations we used an Autoencoder. By using an Autoencoder we can keep 

the raw data and the perturbed data set almost similar otherwise no other organization will be 

interested in a totally perturbed data set. 

4.3. Our Approach 

In our approach, we focused on how to improve the data privacy of the patients. Data 

pri- vacy could be improved if we could hide the sensitive information of the patient before 

sending the data to different organizations. Also, the modified data and the raw data should 

almost be same. Otherwise the modified data set will be misleading. The research analyst will 

not be interested in using such a modified data set. 

In our approach, we selected a recent cervical cancer (risk factor) data set from UCI data 

repository [66]. This data set focuses on the prediction of indicators / diagnosis of cervical 

cancer. The data set was collected by the “Hospital Universitario de Caracas” in Caracas, 

Venezuela. The data set compromises demographic information, habits and historic medical 

records of 858 patients. The 36 attributes are boolean or real valued. The data set has 4 target 

variables, which are Hinselmann, Schiller, Cytology, Biopsy. 
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We first formatted the data set. As an Autoencoder learns the feature vector and recon- 

structs the output, we reformatted the data set. We included the target variables in the feature. 

We then sent all the features as the feature vector to an Autoencoder. We modified the data set 

using the following ways: 

• First we identified the sensitive attributes from the data set. We identified age, number 

of sexual partners, and first sexual intercourse as sensitive information. This is the 

information which most of the patients do not want to share since their identity could be 

revealed by sharing this information. 

• We perturbed or hide these three attributes using three fuzzy membership functions. The 

three fuzzy membership functions are S-shaped, Gaussian and Triangular. These three 

membership functions are described in the preliminaries section. These membership 

functions require boundary points, which are selected by the organization which owns 

the data set. In our approach, the hospital which has the raw data will select the 

boundary points. These boundary points should be securely stored by the hospital. The 

boundary points should not be shared with any other organization since these could 

reveal the patients’ identity. The rest of the attributes are left as they are in the raw data 

set. 

To share the data with different organizations we used an autoencoder neural network. 

We are not interested in the class which predicts the cervical cancer rather we are interested in 

the feature vectors as the output. So we consider all the features including the target variables as 

feature vectors. An auto encoder is one of the neural networks which learns its own input. Thus, 

we used an autoencoder to send the data set to different other organizations. Fig. 5.2 outlines 

the autoencoder used in our approach. 

From the figure we can see that we used 36 feature vectors as input. The hidden layer 

compresses the 36 feature vectors to 20. These 20 feature vectors are the most important 

attributes. The decoder reconstructs those 36 attributes from the encoder. Since the auto 
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encoder neural network is reconstructing the 36 feature vectors again, we measure the accuracy 

with different loss functions. The output of the auto encoder is sent as a data set to different 

organizations. The data set shares the same information as the raw data set without 

compromising the privacy of the patients. 

4.4. Experimental Setup 

The cervical cancer data set which we used in our experiment consists of 36 attributes. 

Among them we consider the first three attributes as sensitive. We have hidden those attributes 

with three fuzzy membership functions. The three fuzzy membership functions which we used 

are Gaussian, S-shaped and Triangular. Thus, in total we have 42 attributes instead of 36 

attributes    in our data set. 

 

 

Figure 4.2. Autoencoder neural network 

Next, we have to send the modified data set to another party using an Autoencoder. We 

dropped two columns ‘Time since first diagnosis’ and ‘Time since last diagnosis’ since these two 

columns have the most missing values. Thus, we are left with 40 columns. Though we have 40 

attributes, but at one time we are sending only 34 attributes through the Autoencoder. These 34 

attributes exclude the attributes created by different other membership functions. These 34 
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attributes are the feature vectors/ input to the Autoencoder. The hidden layer/layers tries to 

compress the input features to a latent space representation. The output is reconstructed from 

this representation. This is how the output of our Autoencoder is created. The reconstructed 

output includes all the feature vectors. To obtain a better accuracy of our modified data set we 

processed the modified data set. The processing has been done in following three ways: 

• Dropping the columns which has missing values. 

• Dropping the rows which have missing values. 

• Replacing the missing values with the mean of that particular column. 

4.5. Evaluation and Results 

In this section, we summarize our observations and results. We measure the accuracy 

against different loss functions and also with and without sparsity constraints enabled in the 

autoencoder. The sparsity constraints regularize the autoencoder [67]. 

The parameters which are considered are as follows: 

• Random State = 150 

• Epoch = 500 

• Optimizer = Adadelta 

• Activation function = tanh 

• train_split= 0.8 

• activity_regularizers= 0.000001 

Table 5.1 shows the accuracy of different membership functions. We considered the 

modified data set without sparsity constraints by dropping the missing columns. From the table 

we can see that Logcosh used as the loss function achieves the best value of 81.60% for the three 

different membership functions. Also, we can say from the values in the table that MSE (Mean 

Square Error) as a loss function obtains the best accuracy of 81.15% for the S-shaped function. 
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In Table 5.2, we evaluated the same data set with the sparsity constraints. We can see 

that the Gaussian membership function with MSE as the loss function obtains the best accuracy 

of 87.34%. 

Then, we evaluated the data set by dropping the rows which have missing values and ran 

the autoencoder without the sparsity constraints. The results are given in Table 5.3. From the 

table we can summarize that the Gaussian and Triangular membership functions with hinge 

value both obtains the best accuracy of 62.51%. Table 5.4 summarizes the evaluation of the data 

set running the autoencoder with the sparsity constraints. We can see that the Gaussian 

membership function with logcosh obtains the best accuracy of 62.51%. 

Table 4.1. Accuracy and loss value of drop column data set and without sparsity constraints 

Membership function Loss function Loss value Accuracy 

Gaussian Mean_Absolute 0.1313 0.7588 

Gaussian MSE 0.1278 0.8020 

Gaussian Categorical_crossentropy 1.0206 0.0207 

Gaussian Logcosh 0.1364 0.8160 

Gaussian Hinge 0.7107 0.2447 

S-shaped Mean_ Absolute 0.1316 0.7835 

S-shaped MSE 0.1272 0.8115 

S-shaped Categorical_crossentropy 1.0756 0.0166 

S-shaped Logcosh 0.1280 0.8127 

S-shaped Hinge 0.7038 0.2606 

Traingular Mean_ Absolute 0.1356 0.7769 

Triangular MSE 0.1273 0.8063 

Triangular Categorical_crossentropy 0.9532 0.0433 

Triangular Logcosh 0.1280 0.8146 

Triangular Hinge 0.6738 0.2142 
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Table 4.2. Accuracy and loss value of drop column data set and with sparsity constraints 

Membership function Loss function Loss value Accuracy 

Gaussian Mean_Absolute 0.1313 0.7409 

Gaussian MSE 0.1260 0.8734 

Gaussian Categorical_crossentropy 0.9451 0.0058 

Gaussian Logcosh 0.1263 0.8122 

Gaussian Hinge 0.7091 0.1135 

S-shaped Mean_Absolute 0.1326 0.8180 

S-shaped MSE 0.1261 0.8457 

S-shaped Categorical_crossentropy 1.0220 0.0291 

S-shaped Logcosh 0.1266 0.8239 

S-shaped Hinge 0.6954 0.1397 

Triangular Mean_Absolute 0.1313 0.8122 

Triangular MSE 0.1278 0.8457 

Triangular Categorical_crossentropy 0.2936 0.0015 

Triangular Logcosh 0.1267 0.8384 

Triangular Hinge 0.7059 0.1266 

 

Table 4.3. Accuracy and loss value of drop row data set with sparsity constraints 

Membership function Loss function Loss value Accuracy 

Gaussian Mean_Absolute 4.4915 0.1458 

Gaussian MSE 6.2613 0.3125 

Gaussian Categorical_crossentropy 4.0312 0.3750 

Gaussian Logcosh 4.2236 0.2708 

Gaussian Hinge 1.1200 0.6251 

S-shaped Mean_Absolute 4.3112 0.4565 

Sshaped MSE 4.2674 0.2917 

S-shaped Categorical_crossentropy 5.8769 0.0333 

S-shaped Logcosh 4.4675 0.1667 

S-shaped Hinge 5.5678 0.0000 

Triangular Mean_Absolute 4.2978 0.0833 

Triangular MSE 4.2634 0.2708 

Triangular Categorical_crossentropy 5.7617 0.0208 

Triangular Logcosh 5.5876 0.1875 

Triangular Hinge 1.7665 0.6250 
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Table 4.4. Accuracy and loss value of drop row data set and without sparsity constraints 

Membership function Loss function Loss value Accuracy 

Gaussian Mean_Absolute 4.3342 0.0208 

Gaussian MSE 4.2642 0.2708 

Gaussian Categorical_crossentropy 5.8342 0.0627 

Gaussian Logcosh 4.3421 0.3542 

Gaussian Hinge 4.7213 0.0000 

S-shaped Mean_Absolute 4.3124 0.2292 

S-shaped MSE 4.2343 0.1875 

S-shaped Categorical_crossentropy 6.2212 0.0625 

S-shaped Logcosh 4.3427 0.2083 

S-shaped Hinge 4.7453 0.0417 

Triangular Mean_Absolute 4.2634 0.1458 

Triangular MSE 4.5674 0.1875 

Triangular Categorical_crossentropy 6.0354 0.0417 

Triangular Logcosh 2.2354 0.3750 

Triangular Hinge 4.7123 0.0000 

 

We also evaluated the data set in which the missing values are replaced by the mean of 

that particular column. We evaluated that data set running the autoencoder without the sparsity 

constraints. The results are given in Table 5.5. We can summarize that the Gaussian 

membership function with logcosh as the loss function returns the best value of 62.52%. From 

Table 5.6 we can say that the Gaussian membership function with MSE and using the sparsity 

constraints returns the best value of 64.57%. 
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Table 4.5. Accuracy and loss value of mean data set and without sparsity constraints 

Membership function Loss function Loss value Accuracy 

Gaussian Mean_Absolute 0.2648 0.6250 

Gaussian MSE 4.3532 0.2500 

Gaussian Categorical_crossentropy 2.5200 0.0000 

Gaussian Logcosh 1.3600 0.6252 

Gaussian Hinge 2.1500 0.0000 

Sshaped Mean_Absolute 1.3800 0.2086 

Sshaped MSE 1.3600 0.5331 

S-shaped Categorical_crossentropy 2.2000 0.0000 

S-shaped Logcosh 1.3600 0.5993 

S-shaped Hinge 2.1400 0.0000 

Traingular Mean_Absolute 1.3600 0.5397 

Triangular MSE 1.3600 0.5199 

Triangular Categorical_crossentropy 2.2200 0.1192 

Triangular Logcosh 1.3600 0.3543 

Triangular Hinge 2.0900 0.0000 

 

4.6. Summary 

This chapter described a technique that encrypts and hides sensitive information but 

also sends the data to different organizations securely. In order to encrypt sensitive data, our 

approach used three different fuzzy logic membership functions. We kept the boundary points 

secure. The boundary points are know only to sender and receiver Then, we used an 

Autoencoder to learn the input feature vectors of the modified data set which then allows us to 

send the output of the Autoencoder to share data with other organizations. As for the 

experiments, we evaluated three types of data sets. The data sets were modified by dropping 

columns, dropping rows and mean. We then evaluated the accuracy against different loss 

functions and measured the accuracy of the Autoencoder with and without sparsity constraints. 

From all the results we evaluated, we found that the ‘dropping column data set’ and running the 

Autoencoder with sparsity constraints obtained the best accuracy. From all the results, we can 

say that the best accuracy we obtain is by using the Autoencoder with sparsity constraints. 

Among all the fuzzy set functions, the Gaussian membership function with MSE as the loss 
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function using the data set with the dropped column obtained both a very good accuracy and 

also a low loss value. Hence, the Gaussian membership function can be used to hide / encrypt 

sensitive information. Also, to send the data we used an Autoencoder with MSE as the loss 

function and obtained an accuracy of 87.34%. 

Table 4.6. Accuracy and loss value of mean data set with sparsity constraints 

Membership function Loss function Loss value Accuracy 

Gaussian Mean_Absolute 1.3777 0.1556 

Gaussian MSE 1.0600 0.6457 

Gaussian Categorical_crossentropy 2.9306 0.0000 

Gaussian Logcosh 1.3600 0.2815 

Gaussian Hinge 2.1100 0.0000 

S-shaped Mean_Absolute 1.1382 0.1854 

S-shaped MSE 1.3600 0.4437 

S-shaped Categorical_crossentropy 2.6700 0.0000 

S-shaped Logcosh 1.3600 0.2119 

S-shaped Hinge 2.1300 0.0000 

Traingular Mean_Absolute 1.3770 0.1589 

Triangular MSE 1.3685 0.6159 

Triangular Categorical_crossentropy 2.5670 0.5960 

Triangular Logcosh 1.3693 0.2848 

Triangular Hinge 2.1100 0.0000 

 
In summary, as our technique is based on data privacy we kept the boundary conditions 

of the Gaussian Membership functions protected. Also for better privacy results the boundary 

conditions should be used only once. If the hospital has to send data again, they should use 

different boundary conditions. Thus, the adversary would not be able to guess the correct 

boundary conditions. Our method can assure patients that their sensitive information will be 

kept secret, and furthermore, other organizations or data analysts will receive the data that is 

very similar to the raw data. 
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5. ANALYZING PRIVACY OF TIME SERIES DATA USING 

SUBSTITUTE AUTOENCODER NEURAL NETWORK 

Nowadays people are very concerned about their health. For example, people want to 

keep track of how often they are active throughout the day. Hence many smart devices are 

equipped with sensors which help to keep track of the activities. Examples are smart phones and 

smart watches, which keep track of jogging, sleeping, sitting, walking, and drinking. Users who 

use these sensors want to share the information to be analyzed for their own health benefits. 

However, at the same time the users do not want to share the sensitive information. For 

example, users might want to share jogging and walking data, but not sleeping and drinking 

data. In this paper, we propose a privacy preserving predictive model. We used the concept of 

denoising autoencoder to hide the sensitive attributes of a user. We used two data sets. One is 

the Skoda data set and the other one is the hand gesture data set. We divided the data sets into 

three different subsets: desired, sensitive, and non sensitive subsets. The output of the denoising 

autoencoder will only be the desired and non-sensitive subsets. The sensitive subsets are hidden 

by the non-sensitive subsets. We evaluated the efficacy of our predictive model using three 

different flavors of autoencoders. We used CNN autoencoder, Deep autoencoder and LSTM 

autoencoder. All three autoencoders have the property of denoising autoencoder. To retain the 

accuracy as similar as possible compared to the original data set, we used a convolutional neural 

network for classification. We measured the F1-score of our model against each of the three 

autoencoders. As our predictive model is based on privacy, we have also used a Generative 

Adversarial Neural Network (GAN), which is used to show to what extend our model is secure. 

5.1. Related Work 

In this section we describe the various approaches related to our privacy preserving 

model. The various approaches, which are described here are the differential privacy method 

[72], the filtering method, data mapping method, and finally the substitution method. 
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Differential Privacy (DP) [73] is an approach, which adds constraints on the algorithm 

used to publish aggregate information. DP limits the disclosure of private information of records 

in the data sets. Furthermore, DP permits companies to access a large number of sensitive data 

for research analysis and business analysis without privacy breach. Also, research institutions 

use differential privacy technology to automate privacy processes within cloud-sharing 

communities across countries. For example, Apple uses DP to protect the privacy of users and 

resolve data sharing problem. The authors in [74] have shown the amount of noise to be added 

in differential privacy to make data secure. The authors have shown that by adding gaussian 

noise instead of laplacian noise will increase the computational efficiency. Also, the authors in 

[75] used differential privacy with machine learning. The authors used two standard public data 

sets, MNIST [76] and CIFAR-10 [77]. They improved the privacy of the data sets by introducing 

the Stochastic Gradient Descent (SGD) [78] algorithm. The major disadvantage of differential 

privacy is to add more noise if more data has to be hidden. This decreases the efficiency of a data 

set. 

Another approach to maintain privacy in the data is by filtering. Instead of adding con- 

straints on the algorithm, the filtering technique filters the sensitive information. Collaborative 

filtering is a very secure way to filter the sensitive information. This type of filtering has been 

best used for giving recommendation to the users. In [79], the authors used collaborative filter- 

ing for privacy preserving. They aimed at solving this problem by the systematic collection of 

sensitive information of preferences. They partitioned the data between parties to ensure 

privacy. Different techniques of collaborative filtering are mentioned in [80]. The paper gives an 

overview of the model-based, memory-based and hybrid-based collaborative filtering 

techniques. The key disadvantage of collaborative filtering is that it does not work well with 

sparse data sets [81]. 

Data Mapping is another technique to hide data. Data Mapping is a process to map data 

fields from the source fields to the target fields. One of the data mapping techniques used in 
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healthcare privacy is geomasking [82]. The authors provide protection for individual addresses 

while maintaining spatial resolution for mapping purposes using geomasking. In [83], a new 

adaptive geomasking technique known as donut geomasking was proposed. The new technique 

extends the current method of geomasking by ensuring a user defined minimum level of 

geoprivacy. The authors in [84] propose another geographic masking technique known as 

location swapping. When locations of individual-level health data are released in the form of 

published maps, the identity of these individuals could be identified through reverse geocoding. 

Location swapping replaces an original location with a masked location selected from all 

possible locations with similar geographic characteristics within a specified neighborhood. The 

main disadvantage of this method that it is impossible to say that the feature extracted from the 

raw data set does not contain any sensitive information. Another way of perturbing data is 

known as randomization of data. Randomization of data is a process of making data random. 

This could be done by generating a random permutation of a sequence, generating a random 

numbers, or by selecting random samples of the population. The authors in [85] proposed an 

approach whereby many clients can protect their personal information in a server. The clients 

can use a randomization algorithm to randomize the data and then sent it to the server. The 

authors have chosen the randomization technique so that the aggregate properties can be 

recovered with sufficient precision. The authors in [86] introduce a family of geometric data 

transformation methods (GDTMs) that distort confidential numerical attributes in order to meet 

privacy protection in clustering analysis. In [59], the authors used symmetric key encryption to 

randomize the password. Different classifiers were used to analyze the accuracy of the model. 

Also, the authors in [87] randomized the sensitive attributes of a patient data set using fuzzy 

membership [61] functions to hide the sensitive data. However, these randomization methods 

have not been applied to time series data. The data sets used in all the above mentioned related 

work are not time series data sets. The authors in [88] introduce the concept of replacement 

technique with time series data sets. Data replacement or data substitution is a technique that 
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can be used with time series data. The technique replaces the sensitive data of a user by non-

sensitive data. Then, the transformed data is sent to the cloud. The authors first divided the data 

sets into three subsets: desired, sensitive, and nonsensitive. Then, the authors replaced the 

sensitive attributes with the non-sensitive attributes. The authors applied the denoising 

autoencoder to transformed the data set. However, the authors limited their approach to only 

multilayer autoencoder. Thus, in our paper we are experimenting different time series data sets 

with several different autoencoder neural networks. We showed and compare the efficiency of 

different flavors of autoencoder in our paper. 

5.2. Proposed Approach 

This section shows the predictive model to substitute the sensitive attributes of a data set 

with nonsensitive attributes. The modified data set can be used by a cloud server. Our proposed 

approach consists of three parties: user, trusted authority, and server. Figure 5.1 shows the high-

level architecture of our privacy preserving model. 

 

 

Figure 5.1. A high level architecture: a privacy preserving trusted authority between user and the 
server 

To accomplish the privacy policy of the user we divided the data set. Our data set has 

been grouped into three subsets: black listed, white listed, and gray listed. The black listed 

subset consists of sensitive attributes, which the user does not want to reveal. The white listed 

subset consists of the desired information about the user. This information can benefit the user 
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when shared. The gray listed subset consists of non-sensitive information. The user does not 

worry about the information if it is shared. Tasks of each three parties are explained below: 

User: The user / subject wore a sensor both in the left hand and the right hand. The 

sensors generate time series data. The data consists of classes ‘write on notepad’, ‘open hood’, 

‘close hood’, ‘check gap on the front door’, ‘open left front door’, ‘close left front door’, ‘check 

trunk gaps’, ‘open and close trunk’, and ‘check steering wheel’. The user wants to receive a 

benefit from the cloud by sharing this information. However, at the same time the user does not 

want to share the sensitive attributes. 

Trusted Authority: The user trusts only the trusted authority. The trusted authority is a 

machine learning platform. The user sends the original time series data set to the Trusted 

Authority. The detailed diagram is given in Figure 5.2. Along with the data set, the user also 

sends the list of the three subsets. The three subsets consist of the desired, sensitive, and non-

sensitive information provided by the user. Inspired by the denoising autoencoder, we 

implemented the model in our proposed approach. First, we substitute the black listed subset 

with the gray listed subset. To add more privacy we generated a noisy gaussian digit and clip the 

images between 0 and 1. Then, we added it to the transformed black listed subset. The 

transformed training set consists now of the original white listed subset, the original grey listed 

subset, and the transformed black listed subset. As we substitute the sensitive information with 

non-sensitive information, we call our autoencoder as substitute autoencoder. Then, we train 

the substitute autoencoder to map the transformed data set to the original data set. 

Server: The server is a third party who needs the desired information for further 

analysis. The user requests service from the server. The server allows the user to upload the time 

series data after sharing some information. The user does not trust the server, thus the user does 

not give the original data set to the server. The user gives the original data set to the trusted 

authority. The trusted authority is trusted by both the server and the user. The trusted authority 



 

63 

transforms the data set by substituting the black subset with the grey subset. The transformed 

data set is then given to the server. 

 

Figure 5.2. An overview of the denoising autoencoder process 

5.3. Experimental Setup 

5.3.1. Data Set 

Experiments are conducted on two data sets. The data sets are the Skoda [93] and the 

Hand gesture data set [94]. 
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• Skoda Data set: This data set describes the activities of assembly-line workers in a car 

production environment. The data set considers the recognition of 11 activity classes 

performed for one of the quality assurance checkpoints of the production plan. In the 

study, one subject wore nineteen 3D accelerometers on both arms and performed a set of 

experiments using sensors placed on the two arms of a tester (10 sensors on the right 

arm, and 9 sensor on the left arm). The Skoda data set has been employed to evaluate 

deep learning techniques in sensor networks, which makes it an appropriate data set to 

evaluate our proposed substitute autoencoder framework.  

• Hand Gesture Data set: In this data set, the sensory data from hand gestures are 

recorded for two subjects. The data is recorded using an accelerometer and gyroscope 

worn by the subjects. The data sets consist of 12 classes/activities performed. The 12 

classes include 8 regular gestures and 3 gestures for playing tennis. The data set also 

includes a null activity where no gesture is performed. 

5.3.2. Experimental Settings 

The Skoda and Hand gesture data sets are human activity and context recognition data 

sets. The data sets have different classes. We divided the classes into three different subsets: 

desired, sensitive, and non-sensitive subsets. We mentioned the desired and non-sensitive 

classes to the server. The user did not provide the sensitive subset to the server but only to the 

trusted authority. To send the transformed data set to the server, the following steps were 

performed: 

• First we took the sliding window size d = 30 and step size w = 3. Then, each of the 

classes/activities are mapped to numbers starting from zero. Afterwards, using the train 

split we created the training and testing data set. The training and testing data sets are in 

the shape of (samples, features, window size). 

• In the second step, we created three data sets: White (desired), Black (sensitive), Gray 

(non sensitive) subsets. These subsets will be used to train the substitute autoencoder. 



 

65 

• We created a transformed data set, which will hide the sensitive attributes. To hide the 

sensitive attributes we substitute the non-sensitive or gray data set with the black data 

set. After substitution, we added gaussian noise to the transformed black subset using 

the following commands: 

rnd_idx train = np.random.choice(g train data.shape[0], b train data.shape[0], replace=False) 

b_ train_ transformed = g train data[rnd_idx train,:] 

b_ train_transformed = x_train_transformed + 0.5 * np.random.normal(loc=0.0, scale=1.0, 
size=b_train_transformed.shape) 

b_train_transformed = np.clip(b_train_transformed, 0., 1.) 

rnd_idx_test = np.random.choice(g_test_data.shape[0], b_test_data.shape[0], replace=False) 

b_ test_transformed = g_test_data[rnd idx test,:] 

b_test_transformed = x_test_transformed + 0.5 * np.random.normal(loc=0.0, scale=1.0, size=b 
test transformed.shape) 

b_ test_transformed = np.clip(b_test_transformed, 0, 1) 

Now, the transformed data set consists of white, grey and black transformed subsets. We      

substitute the black subset with the grey subset. Then, the substitute autoencoder maps the 

transformed data set to the original data set. The output will be the transformed data set where 

the black subset has been substituted by the grey subset. 

5.4. Results 

To analyze the efficacy of our model we used different flavors of autoencoders. We 

analyzed our model with the deep autoencoder [95], convolutional autoencoder [96], and finally 

analyzed with the LSTM autoencoder [97]. As our data sets are time series data, that contain 

repeated patterns. So we choose deep, convolutional and LSTM autoencoders. Deep 

autoencoder: We first reshaped the Skoda and the Hand Gesture data sets from 3d to 2d 

shape. Then, we used three layers for encoding as well as three layers for decoding. The 

activation function for the input and the output layers is ‘Linear’. For all hidden layers we used 
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the Scaled exponential Linear Unit (Selu). We used the Mean Square Error (MSE) as loss 

function. 

Convolutional Denoising Autoencoder: Here we used a 1d convolutional 

autoencoder. We used ‘relu’ as the activation function in all layers except the output layer. In the 

output layer, we applied ‘sigmoid’ as the activation function. Here, we also used MSE as the loss 

function. 

LSTM Denoising Autoencoder: LSTM Autoencoder can learn a compressed 

represen- tation of sequence data and has been used on video, text, audio, and time series 

sequence data. Inspired by its application in time series data analysis, we implemented LSTM in 

our model. Here we reshaped the data into (samples, 1, windowsize×features). Hence, for the 

left hand the data is reshaped into (samples, 1, 30 × 54), and for the right hand the data is 

reshaped into (samples, 1, 30 × 60) since the right hand and the left hand have 60 and 54, 

respectively. For the Hand gesture data set for both Subject 1 and 2 the data is reshaped into 

(samples, 1, 30 × 15). 

Finally, the output of each of the different autoencoders is sent to the server for 

classification. The server is a machine learning platform, which contains a convolutional neural 

network. However, we need to check the efficiency of both the original and the transformed data 

set. If the transformed data set does not have the efficiency as the raw data set, then it is referred 

to as a misleading data set. The data set will be of no use to the server. Thus, we evaluated the 

performance of both the original and the transformed data sets with the convolutional 

autoencoder in the server. 

For the Skoda data set, the results are summarized in Table 5.1, Table 5.2 and Table 5.3. 

Table 5.1 shows the F1-score of both the original and the transformed data set for the CNN de- 

noising autoencoder. Table 5.2 shows the F1-score of both the original and the transformed data 
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set for the Deep denoising autoencoder. Table 5.3 summarizes the F1-score of the LSTM 

denoising autoencoder. 

For the Hand Gesture data set, the results are summarized in Table 5.4, Table 5.5 and 

Table 5.6. Table 5.4 shows the F1-score of both the original and transformed data set for the 

CNN denoising autoencoder. Table 5.5 shows the F1-score of both the original and the 

transformed data set for the Deep denoising autoencoder. Table 5.6 summarizes the F1-score of 

the LSTM denoising autoencoder. 

Finally, we plot the confusion matrix of different substitute autoencoders of two data sets 

to evaluate the performance of our model. Figure 5.3, 5.4 and 5.5 shows the transformed Skoda 

data sets using CNN, multilayer, and LSTM as autoencoder, respectively. The confusion matrics 

are for the left hand Skoda data set with Sw={4, 8, 9, 10}, Sb={1, 5, 6, 7}, and Sg={0, 2, 3}. For the 

Skoda data set, we can say that the LSTM substitute autoencoder performs best. We can see that 

the white subsets of the LSTM data set has a low false positive rate. The white subset is the 

desired subset, which will be used by the third party. Thus, we can use the LSTM autoencoder to 

hide the sensitive subsets. The other two substitute autoencoders have a very high false positive 

rate as compared to LSTM. Also, by looking at the confusion matrix of the LSTM and the 

original data set we can say that the true positive rate of the white (desired) data set is almost 

equal. 
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Table 5.1. F1-score for CNN autoEncoder of Skoda data set (OF1 stands for original data set and 
TF1 stands for transformed data set) 

Hand List of subsets OF1 TF1 

Left Sw={4,8,9,10} 

Sb={1,5,6,7} 

Sg={0,2,3} 

94.19 

87.21 

90.95 

18.13 

00.10 

62.83 

Left Sw={0,2,3} 

Sb={1,5,6,7} 

Sg={4,8,9,10} 

90.95 

87.21 

94.19 

65.69 

02.72 

15.56 

Left Sw={4,8,9,10} 

Sb={1,5,6} 

Sg={0,2,3,7} 

94.19 

87.58 

90.27 

15.37 

00.04 

60.68 

Left Sw={4,8,9,10} 

Sb={1,5} 

Sg={0,2,3,6,7} 

96.26 

92.47 

90.18 

14.98 

04.26 

57.48 

Right Sw={4,8,9,10} 

Sb={1,5,6,7} 

Sg={0,2,3} 

96.42 

91.41 

88.30 

11.18 

00.31 

63.36 

Right Sw={1,4,10} 

Sb={2,3,8,9} 

Sg={0,5,6,7} 

95.90 

91.41 

88.30 

11.18 

00.31 

63.36 

Right Sw={1,4,10} 

Sb={2,3,9} 

Sg={0,5,6,7,8} 

95.90 

89.87 

90.76 

01.16 

07.33 

52.36 

Right Sw={4,9} 

Sb={1,2,3} 

Sg={0,5,6,7,8,10} 

96.87 

89.44 

91.17 

26.45 

09.63 

52.14 
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Table 5.2. F1-score for Deep autoEncoder Skoda data set (OF1 stands for original data set and 
TF1 stands for transformed data set) 

Hand List of subsets OF1 TF1 

Left Sw={4,8,9,10} 

Sb={1,5,6,7} 

Sg={0,2,3} 

95.47 

87.04 

87.83 

56.54 

00.09 

66.21 

Left Sw={0,2,3} 

Sb={1,5,6,7} 

Sg={4,8,9,10} 

87.83 

87.04 

95.47 

81.78 

00.14 

89.51 

Left Sw={1,3,5,7} 

Sb={0,2} 

Sg={4,6,8,9,10} 

93.50 

88.90 

94.76 

76.37 

12.17 

83.27 

Left Sw={1,5,6,7} 

Sb={0,2,3} 

Sg={4,8,9,10} 

87.04 

87.83 

95.47 

13.46 

52.50 

30.18 

Right Sw={2,3,9} 

Sb={0,5,6,10} 

Sg={1,4,7,8} 

89.87 

90.19 

93.12 

01.18 

14.28 

09.92 

Right Sw={2,3,9,10} 

Sb={0,5,6} 

Sg={1,4,7,8} 

97.93 

91.53 

97.90 

06.55 

63.77 

05.48 

Right Sw={2,3,9} 

Sb={0,5,6} 

Sg={1,4,7,8,10} 

89.87 

89.53 

94.77 

82.17 

01.14 

90.10 

Right Sw={2,3,9,10} 

Sb={0,4,5,6} 

Sg={1,7,8} 

97.93 

92.56 

98.12 

19.60 

02.28 

19.40 
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Table 5.3. F1-score for LSTM autoEncoder Skoda data set (OF1 stands for original data set and  
TF1 stands for transformed data set) 

Hand List of subsets OF1 TF1 

Left Sw={4,8,9,10} 

Sb={1,5,6,7} 

Sg={0,2,3} 

95.95 

88.00 

91.89 

93.89 

00.04 

92.05 

Left Sw={0,2,3} 

Sb={1,5,6,7} 

Sg={4,8,9,10} 

91.89 

88.00 

95.95 

91.80 

00.26 

93.28 

Left Sw={4,8,9,10} 

Sb={1,5,6} 

Sg={0,2,3,7} 

95.95 

87.52 

91.49 

94.35 

00.19 

91.13 

Left Sw={4,8,9,10} 

Sb={1,5} 

Sg={0,2,3,6,7} 

95.95 

92.88 

89.88 

93.91 

00.34 

88.33 

Right Sw={4,8,9,10} 

Sb={1,5,6,7} 

Sg={0,2,3} 

96.42 

91.41 

88.33 

94.72 

04.14 

87.55 

Right Sw={1,4,10} 

Sb={2,3,8,9} 

Sg={0,5,6,7} 

95.90 

91.37 

89.59 

95.26 

00.05 

89.46 

Right Sw={1,4,10} 

Sb={2,3,9} 

Sg={0,5,6,7,8} 

95.90 

89.87 

90.76 

95.55 

00.02 

90.58 

Right Sw={2,3,9} 

Sb={1,4} 

Sg={0,5,6,7,8,10} 

89.87 

96.41 

91.17 

86.63 

00.66 

89.79 
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Table 5.4. F1-score for CNN autoEncoder Hand Gesture data set (OF1 stands for original data 
set and TF1 stands for transformed data set) 

Subject List of subsets OF1 TF1 

1 Sw={1,2,3} 

Sb={0,8,9,10,11} 

Sg={4,5,6,7} 

90.48 

92.30 

90.28 

33.51 

63.83 

0.34 

1 Sw={0,4,5,6,7} 

Sb={1,2,3} 

Sg={8,9,10,11} 

92.63 

90.40 

91.14 

60.45 

31.98 

1.93 

1 Sw={8,9,10,11} 

Sb={1,2,3} 

Sg={0,4,5,6,7} 

91.14 

90.40 

92.63 

0.17 

16.55 

58.87 

1 Sw={4,8,9,10} 

Sb={1,5} 

Sg={0,2,3,6,7} 

91.14 

91.48 

92.29 

2.73 

45.01 

55.24 

2 Sw={1,2,3} 

Sb={0,8,9,10,11} 

Sg={4,5,6,7} 

92.00 

92.55 

94.02 

10.83 

70.63 

2.88 

 
Figure 5.6, 5.7 and 5.8 shows the transformed Hand gesture data sets of CNN, 

multilayer, and LSTM as autoencoder, respectively. The confusion matrices are for subject 1 data 

set with Sw={8, 9, 10, 11}, Sb={1, 2, 3}, and Sg={0, 2, 4, 5, 6, 7}. For the Hand Gesture data set of 

Subject 1 we can say that the LSTM substitute autoencoder performs best. We can see that the 

white subsets of the LSTM data set has a low false positive rate. The white subset is the desired 

subset, which will be used by the third party. Thus, we can use the LSTM autoencoder to hide 

the sensitive subsets. The other two substitute autoencoders have a very high false positive rate 

as compared to LSTM. Also, by looking at the confusion matrix of the LSTM and the original 

data set we can see that the true positive rate of the white (desired) data set is almost equal. 
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Table 5.5. F1-score for Deep autoEncoder Hand Gesture data set (OF1 stands for original data 
set and TF1 stands for transformed data set) 

Subject List of subsets OF1 TF1 

1 Sw={1,2,3} 

Sb={0,8,9,10,11} 

Sg={4,5,6,7} 

91.58 

91.32 

90.79 

83.67 

65.34 

84.70 

1 Sw={1,8,9,10,11} 

Sb={2,3} 

Sg={0,4,5,6,7} 

89.37 

92.68 

91.58 

81.78 

01.33 

89.96 

1 Sw={8,9,10,11} 

Sb={1,3} 

Sg={0,2,4,5,6,7} 

89.50 

91.58 

91.58 

88.01 

04.38 

90.58 

1 Sw={8,9,10,11} 

Sb={1,3} 

Sg={0,2,4,5,6,7} 

89.50 

91.86 

91.58 

88.80 

0.5 

88.80 

2 Sw={8,9,10,11} 

Sb={1,3} 

Sg={0,2,4,5,6,7} 

92.55 

92.02 

93.49 

89.82 

01.13 

91.33 

2 Sw={1,3,10,11} 

Sb={8,9} 

Sg={0,2,4,5,6,7} 

92.18 

92.52 

93.49 

88.45 

06.76 

92.75 

2 Sw={1,8,10,11} 

Sb={2,3} 

Sg={0,4,5,6,7,9} 

93.40 

91.46 

93.42 

88.56 

0.18 

92.95 

2 Sw={1,3,8,10} 

Sb={2,4,11} 

Sg={0,5,6,7,9} 

93.6 

89.24 

93.73 

86.22 

0.74 

93.47 
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Figure 5.3. Confusion matrix of CNN autoencoder of Skoda data set 

Table 5.6. F1-score for LSTM autoEncoder hand Gesture data set (OF1 stands for original data 
set and TF1 stands for transformed data set) 

Subject List of subsets OF1 TF1 

1 Sw={1,2,3} 

Sb={0,8,9,10,11} 

Sg={4,5,6,7} 

39.98 

52.52 

81.08 

38.78 

00.37 

80.41 

1 Sw={0,4,5,6,7} 

Sb={1,2,3} 

Sg={8,9,10,11} 

91.64 

91.86 

90.83 

89.33 

00.33 

88.33 

1 Sw={8,9,10,11} 

Sb={1,2,3} 

Sg={0,4,5,6,7} 

92.04 

92.06 

92.00 

85.99 

00.21 

88.77 

1 Sw={8,9,10,11} 

Sb={1,3} 

Sg={0,2,4,5,6,7} 

90.20 

91.27 

91.63 

89.82 

01.20 

88.77 

2 Sw={8,9,10,11} 

Sb={1,3} 

Sg={0,2, 4,5,6,7} 

92.55 

92.02 

93.49 

89.82 

01.13 

91.33 

2 Sw={1,3,10,11} 

Sb={8,9} 

Sg={0,4,5,6,7,9} 

93.40 

91.46 

93.42 

88.56 

00.18 

92.95 

2 Sw={1,3,8,10} 

Sb={2,4,11} 

Sg={0,5,6,7,9} 

93.60 

89.24 

93.73 

86.22 

00.74 

93.47 

2 Sw={2,3,9} 

Sb={1,4} 

Sg={0,5,6,7,8,10} 

89.87 

96.41 

91.17 

86.63 

00.66 

89.79 
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Figure 5.4. Confusion matrix of multilayer autoencoder of Skoda data set 

 

Figure 5.5. Confusion matrix of LSTM autoencoder of Skoda dataset 

5.5. Security Model 

As our model is based on the privacy of the sensitive data, we have to look at the security 

part of the model. In our security model, we first assumed that the adversaries know both the 

real data set and the transformed data set. When the adversary sees the transformed data set, 

the adversary will immediately know that it is a fake data set. Our main objective is to trick the 

adversary. By looking at the transformed data the adversary will not be able to distinguish if it is 
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real or fake. To determine to what extent the original data set is indistinguishable from the 

transformed data set, we used a Generative Adversarial Neural Network. 

For our Skoda data set model we train the GAN with the real grey subset. After training, 

the generator learns to produce a random data set very similar to the real one. On the other 

hand, the discriminator learns to distinguish between the fake and the real data set. After 

training, we separate the discriminator. We give the discriminator the real, transformed, and the 

randomly generated grey subset as input. From Figure 5.9, we can say that after 30 epochs the 

accuracy rate of the real and the randomly generated data set becomes almost equal. Hence, we 

should keep the original data set secure. If the original data set is revealed then the adversary 

will be able to generate a random data set, which will give the same efficiency as that of the real 

data set. 

 

Figure 5.6. Confusion matrix of CNN autoencoder of Hand Gesture data set 
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Figure 5.7. Confusion Matrix of Multilayer autoencoder of Hand Gesture Data Set 

 

Figure 5.8. Confusion matrix of LSTM autoencoder of Hand Gesture data set 
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Figure 5.9. GAN accuracy is distinguishing from real, fake and randomly generated data portion 

5.6. Summary 

Privacy preserving of time series data is a very challenging issue especially when part of 

the information is private. Here, in this paper we focused on how to hide the sensitive part of 

time series data. We divided the data into three parts. The parts are sensitive, non-sensitive and 

desired. The desired part will be used for further analysis by the server. The user as well as the 

server is not bothered about the non-sensitive portion. At the same time, the user does not want 

the server to know about the sensitive portion. The sensitive portion will not be used by the 

server for further analysis. Thus, we substitute the sensitive portion with the non-sensitive 

portion. We used the property of denoising autoencoder. However, instead of only using 

external noise to hide data, we substitute the sensitive information with non-sensitive 

information. After that we add noise to the transformed sensitive information. We named the 

autoencoder as substitute autoencoder. 

To measure the efficacy of our model, we used three different autoencoders: Deep 

autoen- coder, LSTM autoencoder and Convolutional autoencoder for our two different data 

sets. We measured the F1-score for each of the three autoencoders with both the original and the 

trans- formed data sets. The F1-score was also analyzed with the three different subsets. We 

found Skoda data set of the left hand with subsets Sw = {4, 8, 9, 10}, Sb = {1, 5, 6}, Sg = {0, 2, 3} 
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achieved the best F1-score. By comparing the original F1-score with the transformed F1-score, 

the black subset has been reduced from 88% to almost 0% (0.04%), while at the same time the 

gray and the white subset is almost the same as the original subset. For the right hand data set 

with subsets  Sw = {1, 4, 10}, Sb = {2, 3, 8, 9}, Sg = {0, 5, 6, 7} resulted in a good F1-score. The F1-

score for the black subset has been reduced from 91.37% to almost 0% (0.04%). For the Hand 

gesture data set of Subject 1 with subsets Sw = {1, 2, 3}, Sb = {0, 8, 9, 10, 11}, Sg = {4, 5, 6, 7} 

achieved the best F1-score. By comparing the original F1-score with the transformed F1-score, 

the black subset has been reduced from 53% to 0.37, while at the same time the gray and the 

white subset is almost the same as the original subset. Subject 2 with subsets Sw = {1, 3, 10, 11}, 

Sb = {8, 9}, Sg ={0, 4, 5, 6, 7, 9} resulted in the best F1-score. The F1-score for the black subset 

has been reduced from 91.46% to 0.18%. We also plotted the confusion matrix of the three 

autoencoders of the left hand Skoda data set and Subject 1 of the hand gesture data set. Overall, 

we see that the LSTM performed better than the deep autoencoder, and the convolutional 

autoencoder. 

We used GAN as an adversary neural network to look at the security of the skoda data 

set. We used the generator of the GAN to generate random noise time series data. Then, we used 

the random noise signal, the original gray data set, and the transformed gray data set as input to 

the discriminator. We can say that after 30 epochs the discriminator is not able to distinguish 

between the random and the real gray subsets. Hence, for security reason, the original data set 

should not be revealed. 
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6. CONCLUSION AND FUTURE WORK 

In this dissertation we have used deep learning tools to achieve data privacy and 

security. Along with deep learning we have used different cryptographic techniques and fuzzy 

membership functions to achieve security. We have also shown how each of the proposed 

approaches is secured against different adversary attacks. To analyze the accuracy of the models 

we have used different optimizers, different classifiers, different noise functions, and different 

neural network architectures. In this dissertation we first proposed a method for both 

encrypting and decrypting a ciphertext. Our goal was to show how two neural networks can 

communicate secretly without the third party knowing about their communication. To achieve 

the goal, our model takes decimal values as input and converts them to ciphertext and then 

again back to the desired output. The proposed method shows how different network structures 

perform with different step values, different learning rates, and optimizers. Though the 

ciphertext of small length performed well, ciphertext of large length is highly recommended. The 

large length ciphertext will maintain the confidentiality of the secret message. The proposed 

method has also been proved to be secure against Brute force attack. 

Secondly, we proposed a remote password authentication scheme for multiserver 

environments. The main idea of the proposed work is to find how a user can connect to more 

than one servers securely. Our proposed method has been experimented with different 

classifiers. The proposed method generate the keys with Diffie-Hellman key exchange protocol 

to make the model secure. 

Thirdly, we proposed a technique that encrypts and hides sensitive information but also 

sends the data to different organizations securely. The main idea is to send the patient 

information to different organizations without compromising privacy. In order to encrypt 

sensitive data, our approach used three different fuzzy logic membership functions. The 

boundary points of the fuzzy member- ship functions are know only to sender and receiver. 
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Finally we proposed a different technique to hide the sensitive attributes of the data sets. 

Instead of perturbing the sensitive information, we substitute the sensitive information. We 

used a technique to substitute the sensitive attributes with non-sensitive attributes. We used two 

different time series data sets and measured the efficacy of our models with different flavors of 

autoencoders. The autoencoders which we used to measure the efficacy are LSTM, CNN and 

MultiLayer Autoencoder. We plotted the confusion matrix of the two data sets to evaluate the 

performance of our model. We evaluated the security part of the model using Generative 

Adversarial Neural Network  (GAN). To retain the accuracy of our model we evaluated the 

performance of both the original and       the substitute data sets using CNN as the classifier. 

For the future work, various shortcomings of our proposed models should be focused on. 

In our first proposed approach asymmetric key encryption rather than symmetric key 

encryption should be used to improve the integrity and confidentiality of the data. As our first 

proposed approach used two neural networks, thus, the time complexity is larger in our 

proposed neural network model. To overcome the shortcoming, future work should also involve 

finding a neural network that can do both encryption and decryption. Our second proposed 

model used three parties to create a password secretly. The improvement to our second 

proposed approach could focus on a decentralized system. So that we would have only users and 

the servers without a trusted authority. This would make the password authentication scheme 

more secure and time efficient. The user should only communicate and register with the servers 

without sharing any legitimate information with the servers. However, the servers will 

authenticate the user to communicate with the servers. For our third approach we have hidden 

the sensitive data with Gaussian, Triangular and S-shaped membership functions. Our future 

work should focus on hiding the data with L- functions, R-functions and trapezoidal functions. 

Also, we can use different flavors of Autoencoder for sending data from the sender to different 

trusted organizations. Finally, more different time series data sets should be investigated using 

precision and F1-score as the measure. Finally, in our fourth approach we did not hide the 
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sensitive information. Instead we substituted the sensitive information with the non-sensitive 

information. This technique of data transforming is very useful in activity tracking and health 

monitoring. In future, we should focus on extending the model without the Trusted Authority 

(TA). Besides applying GANs, we would like to look at other possible attacks and their 

appropriate responses. 
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