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ABSTRACT 

This work addresses decision-making for robot systems that can self-replicate. With the 

advent of 3D printing technology, the development of self-replicating robot systems is more 

feasible to implement than it was previously. This opens the door to various opportunities in this 

area of robotics. 

A major benefit of having robots that are able to make more robots is that the survivability 

of the multi-robot system increases dramatically. A single surviving robot that has the necessary 

capabilities to self-replicate could prospectively repopulate an entire ‘colony’ of robots, given 

sufficient resources and time. This gives robots an opportunity to take more risks in trying to 

accomplish an objective in missions where robots must be used instead of humans due to distance, 

environmental, safety and other concerns. Autonomy is key to maximizing the efficacy of this 

functionality (or allowing this functionality in a communication limited/denied environment) for 

this type of robotic system. 

A challenge of analyzing self-replicating robot systems, and the decision-making 

algorithms for those systems, is that there isn’t currently a standard means to simulate these 

systems. Thus, for the purpose of this work, a simulation system was developed to do just this. 

Experiments were conducted using this simulation system and the results are presented. 

In this dissertation, the configuration and decision-making of self-replicating 3D printed 

robot systems are analyzed. First, an introduction to the concepts and topics is provided. Second, 

relevant background information is reviewed. Third, a simulation, used to model self-replicating 

robot systems to perform the experiments in later chapters, is detailed. Then, experiments are 

conducted utilizing this simulation model. These include the analysis of the impact of replication 

categories on system efficacy, the analysis of the comparative performance of multiple decision-
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making algorithms, and cybersecurity threats for self-replicating robot systems. For each, data is 

presented and analyzed, and conclusions are drawn. Finally, this dissertation concludes with a 

summary of the results presented throughout the document and a discussion of the broader findings 

from the experiments. 
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1. INTRODUCTION1 

In this dissertation, the configuration and decision-making of self-replicating 3D printed 

robot systems are analyzed. First, an introduction to the topic is provided. Second, relevant 

background information is reviewed. Third, a simulation system developed to model self-

replicating robot systems is detailed. Then, experiments are conducted which utilize this 

simulation system and the data from these experiments is presented and analyzed. These 

experiments include analysis of the impact of system configurations (as discussed in Section 1.2) 

on system efficacy, the analysis of the comparative performance of multiple decision-making 

algorithms, and the assessment of cybersecurity threats for self-replicating robot systems. Finally, 

this dissertation concludes with a summary of the results presented throughout the document and 

a discussion of the broader findings from the experiments.  

1.1.  Introduction 

The concept of self-replicating robots has been around for some time—dating back to 

before the 1940s [1]. With the advent of 3D printing technology, the actual development of 

functional self-replicating robots is more feasible to implement than it was previously, opening the 

door to a multitude of research opportunities in this newly possible area of robotics. 

A major benefit of having robots that are able to make more robots is that the survivability 

of the multi-robot system increases dramatically. A single surviving robot that has the necessary 

capabilities to self-replicate could prospectively repopulate an entire ‘colony’ of robots given 

sufficient resources and time. This gives robots an opportunity to take more risks in trying to 

 

 

 

1 This chapter is derived from previous work in: A. Jones and J. Straub, “Concepts for 3D Printing-Based Self-

Replicating Robot Command and Coordination Techniques,” Machines, vol. 5, no. 2, Apr. 2017. 
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accomplish an objective in missions where robots must be used instead of humans due to distance, 

environmental, safety and other concerns. Autonomy is key to maximizing the efficacy of this 

functionality for this type of robotic system [2].  

The remainder of this chapter is organized as follows. First, a categorization scheme for 

self-replicating robot systems is proposed. Second, the critical requirements for 3D printed self-

replicating robots are outlined. Third, usable materials and acquisition of those materials by a robot 

system are discussed. Fourth, the decision-making criteria for self-replicating robot systems are 

detailed. Then, a conceptual prototype is presented. Finally, the aerospace applications of self-

replicating robot systems are discussed. 

1.2. Proposed Replication Categorization 

In this subsection, the categorization scheme utilized for the experimentation is detailed. 

There are many attributes that could be used to characterize an overall replication scheme. For 

instance, whether multiple robots need to be involved in making a new robot, or if the 

hardware/design evolves over time [3] are both possible criteria. However, the categorization 

approach used for this work is to categorize the system based on what types of robots the system 

can build and which of those types have a replication-related capability. This (replication-related 

capability) means a capability used for fabricating, building, or assembling parts for a new robot. 

The utilized categorization consists of a combination of two separate classifications The 

first classification, the replication approach, consists of centralized, decentralized, and 

hierarchical. The second classification, the production approach, consists of heterogeneous and 

homogeneous. 
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1.2.1. Centralized Replication Approach 

With the centralized replication approach, robots that have a replication-related capability 

are not buildable by the robot system itself. Initial or factory-made robots are solely used for 

replication related capabilities. A replicator robot is setup and acts as a replication center, as 

depicted in Figure 1.1. It is able to build robots that don’t have replication-related capabilities that 

can collect resources or accomplish other goals.  

Having a central node dedicated to the replication process has benefits and drawbacks. One 

benefit to this approach is that the regular robots (produced by the central node) don’t have to have 

the replication equipment installed, allowing the materials to be used for other purposes (i.e., it 

reduces material usage). However, a key drawback to this approach is that if the central replicator 

node malfunctions, it is a central point of system failure [2].  

Replicator

Non-Replicator

Non-Replicator Non-Replicator

Non-Replicator

 

Figure 1.1. Centralized replication category. 

Another benefit, for some applications, is that all of the replication-related materials 

collected are brought to a centralized stockpile. This prevents the replication process from getting 

bottlenecked by poor resource exchange between robots (although this could be potentially 
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remedied by the implementation of a cooperation scheme in non-centralized systems) [2]. 

However, the requirement to bring all replication resources to the central node also presents 

drawbacks. This is particularly problematic when the resources needed for robotic production and 

the location needing the robots produced from these resources are located far away from the central 

production location. 

1.2.2. Decentralized Replication Approach 

The decentralized replication approach, which is depicted in Figure 1.2, includes 

replication capabilities in all of the robots in the robot system. A benefit to this approach is that, 

in the event of a catastrophic event, if one robot survives and has replication resources available, 

it could potentially make more robots to repopulate the system. This capability leads to increased 

survivability of the multi-robot system [2]. It may also allow the multi-robot system to split into 

multiple groups that do not have a dependency on a central hub (as they would in the centralized 

configuration). A drawback to this approach is that each robot needs to include replication 

equipment, which may be rare or specialized equipment. Even if it doesn’t require rare resources 

or equipment, the approach is likely to require additional standard resources. Another potential 

drawback is that a specialized replicator robot could potentially be made with higher quality 

equipment, which may make it more versatile in transforming raw materials into new robots or 

result in higher quality being produced. Not having the ability to use a wide array of raw materials 

may cause problems in certain environments. 
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Replicator

Replicator

Replicator

Replicator

Replicator

Replicator

Replicator

Replicator

 

Figure 1.2. Decentralized replication category. 

1.2.3. Hierarchical Replication Approach 

The hierarchical replication approach, which is depicted in Figure 1.3., is a combination of 

the centralized and decentralized approaches. Systems of this type are capable of building robots 

with replication-related capabilities as well as robots without these capabilities. The benefits and 

drawbacks of this approach are dependent on the ratio of robots with replication-related 

capabilities to non-replicating robots. At the extremes, the benefits and drawbacks approximate 

those of the centralized or decentralized approach. 
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Replicator

Non-Replicator

Non-Replicator Non-Replicator

Replicator

Non-Replicator

Non-ReplicatorReplicator

 

Figure 1.3. Hierarchical replication category. 

1.2.4. Production Approach: Homogeneous or Heterogeneous 

The production approach categorization is made in addition to (and is distinct from) the 

replication approach categorization. The production approach consists of two classifications, 

homogeneous and heterogeneous. For multi-robot systems, in general, a homogeneous system is 

composed of robots that are all of the same design, while having multiple types of robots makes 

the system heterogeneous [4]. Under the replication classification scheme used herein, the 

characterization of a multi-robot system as homogeneous or heterogeneous, in terms of replication, 

is as follows: the homogeneous production approach means that the system uses a single robot 

type that has all of the necessary replication-related capabilities. In contrast, the heterogeneous 

production approach means that the system uses two or more robot types that have replication-

related capabilities. The replication-related capabilities used across the robot types used in the 

system must be partially independent of each other to qualify for this classification. 
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 The benefits of a homogeneous system include the potential reduction in task allocation 

complexity, as only one robot is needed for replication tasks. This approach may also increase the 

survivability of the system as a single surviving robot could repopulate the robot system (given 

sufficient resources and time).  

The benefits of a heterogeneous system include resource savings. Using the minimum 

amount of materials required to produce a functional robot—meeting relevant quality standards—

is desirable. The heterogeneous approach allows the greatest number of robots possible to be 

constructed, given the available level of in-situ collected and stored materials. Tailoring robots to 

specific roles ensures that each robot only includes the necessary functionality, saving resources 

[5]. Another consideration is the selection of a design that makes use of resources that are available 

and abundant [2]. Choosing a design that utilizes locally abundant resources maximizes the 

number of robots that can be produced. A homogeneous approach would preclude this type of 

adaptation. 

1.2.5. Parallels with Biological Organisms 

The centralized replication approach has parallels with eusocial species. Eusociality is 

defined by the following characteristics: cooperative brood care, overlapping generations within a 

colony of adults, and a division of labor into reproductive and non-reproductive groups [6]. Some 

examples of species exhibiting eusociality include ants, termites, and certain species of bees [7]. 

In this regard, organisms with this social structure typically have a queen (also called a gyne) that 

gives birth to workers or other sterile castes. Thus, the reproduction is conceptually similar to the 

centralized approach. However, in the event of the queen dying or being otherwise indisposed, a 

member of certain other specialized castes can become the new queen (although this varies from 

species to species) [7]. Thus, the analogy is imperfect in that there isn’t the central point of failure 
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(perhaps if a species such as this existed, it may have gone extinct for this reason). The hierarchical 

approach has parallels to this as well in that there are groups that are reproductive and those that 

are sterile (although it would be a multiple queen dynamic). In contrast, the decentralized approach 

has parallels to organisms without sterile castes (most organisms). Furthermore, the categorization 

of homogeneous versus heterogeneous has parallels to asexual and sexual reproduction, 

respectively.  

1.3. Requirements for 3D Printed Self-Replicating Robots 

The capability to perform replication activities is a core functionality of a self-replicating 

robot system. The replication process can be performed in a single step or consist of multiple stages 

of construction, such as the fabrication of parts and their subsequent assembly. In this section, the 

required components for a self-replicating robot, based on 3D printing technology, are discussed. 

1.3.1. 3D Printer 

There are many different 3D printer designs and configurations that have been 

demonstrated. In terms of overall critical functionality, the necessary components of a 3D printer 

can be divided into four categories: material extrusion, cartesian movement, print bed, and control 

electronics. 

1.3.1.1. Material Extrusion 

The component of a 3D printer that carries out the additive manufacturing process is the 

extruder. The extruder consists of a material driving mechanism and a print head/nozzle [8]. In the 

relatively common 3D printing method of Fused Deposition Modeling (FDM), the print head is a 

thermal ‘hot end’ that forms molten beads from the polymer which is fed through by the driving 

mechanism. The solid filament being fed in acts as a piston, building pressure to force the molten 

polymer out of the nozzle [9]. 
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1.3.1.2. Cartesian Movement 

A 3D printer is a cartesian robot, or a machine that can move in three linear directions (x-, 

y-, and z-axes). Most 3D printer models use stepper motors to achieve this (one or more motors 

per axis), due to the high precision and accuracy required [8]. The stepper motors typically control 

the motion of the axes through timing belts or threaded rods. However, this is not the only design 

possible. For example, recently the Snappy RepRap design utilized a 3D printed gear system for 

the same purpose [10].  

The cartesian movement mechanisms also benefit from, or may require, a frame that 

stabilizes the printer’s axes. However, the design of a 3D printer incorporated in or mounted on a 

robot may instead choose to focus on combining the robot’s frame with that of the 3D printer. This 

setup may make the printer more stable overall (due to complete structural integration). However, 

movement of the robot may cause the printer to shake or tilt.  

1.3.1.3. Print Bed 

The print bed is the surface which the 3D printer builds the printed object on. Feasibly, a 

print bed can be any reasonably level surface that can keep the printed object from moving while 

the print is in progress. However, this can prove challenging for various reasons – some of which 

are material dependent. While 3D printing materials must self-adhere and may adhere to similar 

materials, one of the key challenges in print bed design is getting the first layer to adhere to the 

print bed during the print and then being able to remove the printed object upon completion [8].  

For FDM type 3D printers, the surface of the print bed is commonly made from either glass 

or aluminum in order to provide a cost effective smooth and level surface. In many cases this is 

covered by additional material. In addition, using a heating element to create a ‘heated bed’ works 
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well with these materials because the heat spreads across the surface [8]. Some example types of 

covering materials that are used include painter’s tape, Kapton tape, and PEI. 

1.3.1.4. Control Electronics 

Typically, the control electronics of a 3D printer consist of one or more microcontrollers 

and a main computer board [8]. In some models, these two components are combined into a single 

module. The microcontrollers run the software or firmware and controls the operations of the 3D 

printer. The main board interconnects all the components of the printer and distributes power to 

the individual components. It also relays commands to the components from the microcontroller. 

1.3.2. Assembly Equipment 

Work has been conducted on 3D printing articulated models without the need for a separate 

assembly system [11]. However, some sort of assembly capability may be well suited for allowing 

robots to print similarly sized robots. If the printing robot cannot produce and connect multiple 

small parts (or expand the printing area in some way), each subsequent generation of robots would 

be constrained to be smaller than the originals, so that they could be printed in the printing area 

[12]. 

Techniques for robotic assembly are well understood. Robotic assembly has been used for 

applications ranging from assembling small parts [13] to buildings [14]. Techniques for both 

independent and cooperative robotic assembly have been previously proposed [15], [16]. For 

example, a printing unit could be grouped with robotic arms (either on a single robot, or from a 

second cooperating robot). These arms could be used to assemble printed, stored, or otherwise 

obtained parts into their needed configuration. 
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1.3.3. Mobility 

A requirement for self-replicating robot systems is the need for a capability that can be 

used for acquiring the needed materials to build new robots. These materials could be gathered in-

situ, through robot foraging, or delivered by an outside source. Robot foraging is broadly defined 

as robots searching for and collecting objects, and subsequently bringing them to a collection point 

[17]. Robot mobility is necessary in order to collect resources and utilize them. The means of 

mobility that are appropriate for use depend on the operating environment, the expected available 

resources, and other considerations. 

1.3.4. Communication 

The coordination of a multi-robot system is heavily dependent on the ability of the robots 

to communicate. Communicating can be accomplished with various techniques and technologies. 

For instance, including radios in each robot would enable them to communicate at a distance, as 

well as removing the necessity to have a line of sight between them for communications (although 

obstacles and environmental factors could interfere with the signal). Alternatively, a coded visual 

system, such as blinking LED lights, could be used for relaying messages [2]. An even more range 

restricted approach would be to use physically attached wires that temporarily connect robots. 

Physical connections might be desirable for secure or high data transmission needs. 

1.3.5. Processing 

Each robot needs one or more computer units. Fabricating such a device in a factory setting 

with exact materials, machinery, and a relatively controlled environment is well understood. For 

self-replicating robots, especially those designed to forage for resources, growth is constrained by 

the availability of suitable materials, which would necessarily include either computer units or the 

raw materials to make them (if the fabricating robots possessed applicable fabrication capabilities) 
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[2]. Currently, processor fabrication uses large, heavy, and expensive equipment. This makes in-

situ processor fabrication impractical. In the longer term, with suitable resources available in-situ, 

the development of a small, low cost processor fabrication capability may be possible. In the short 

term, however, processor availability is a limiting factor. It may be the primary determination of 

how many robots can be produced for a given mission, if computer units cannot be fabricated 

locally [2]. 

1.3.6. Sensors 

Sensing of the environment is important for performing mission tasks, gathering resources, 

and navigating the terrain. Required sensing can include visual, audio, tactile, and magnetic 

capabilities. Robots may need to relay sensor data to other robots without sensing capabilities for 

some applications [2]. 

1.4. Material Usage and Acquisition 

A self-replicating robot system inherently requires resources for robot fabrication, and 

(depending on mission objectives) would likely need a capability to acquire more. The availability 

of resources is a major constraint on the ability to assemble a new robot, as depicted in Figure 1.4. 

In this section, the materials that are suitable for 3D printing are discussed. Then, the means of 

acquiring resources by a robot system are reviewed. 
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Figure 1.4. Robot assembly requirements. 

1.4.1. Useable Materials 

A planning requirement for fabricating a new robot is to have (or project having) the 

materials that are needed to build it. Various materials can be used in this process, with the 

constraints largely driven by the specific capabilities of the replication equipment. For robot 

systems operating at distant locations, the use of in-situ resources may be necessary to reach the 

desired mission duration and, potentially, facilitate having a greater ability to take risks while 

meeting other missions requirements and constraints [12]. Examples of in-situ resources being 

used for distant 3D printing include the use of basalt printing of structures for Martian exploration 

[18]. The use of a D-shape printer for building infrastructure out of regolith on the Earth’s moon 

[19], and the use of a collection of simple self-replicating robots to exploit lunar material and 

energy resources [20], have also been previously proposed. 
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1.4.1.1. Printing Materials 

An in-situ mission would likely not use current-generation commercial or consumer-grade 

3D printing technology, however, this has been used for the purposes of experimentation. Most 

modern FDM 3D printers use filament of a specific diameter. Irregularities in the diameter of the 

filament can potentially cause jams and other problems [8]. This potential preparation is not 

desirable when considering the acquisition and potential preparation of suitable printing materials 

by a robot system, especially if using in-situ resource acquisition. An alternative FDM approach 

is the use of pellets in conjunction with a pellet compatible extruder. This would be similar to a 

foraging approach, as pellets are simply placed in a funnel to supply the extruder.  

Other types of (non-FDM) 3D printing have different material requirements. Other 3D 

printing methods include the use of an ultraviolet laser to harden a photosensitive polymer 

(stereolithography), or using a laser to selectively melt metal or polymeric powder (laser sintering) 

[21]. 

1.4.1.2. Non-Printable Components 

While some components may not currently be printable, this should be seen as topics for 

future research instead of a conceptual limitation. Advances in 3D printing technology continue to 

push the boundary of what is printable. For instance, conductive filament has been used to print 

simple circuits [22]. Certain types of actuators, such as soft dielectric elastomer actuators, have 

also been 3D printed [23].  

Components that cannot be 3D printed would need to be supplied to the robot system or 

fabricated using another method. For instance, milling (subtractive manufacturing) [24] 

capabilities could be used in conjunction with 3D printing, in order to work with certain metals 
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and other materials that cannot be 3D printed. Another potential benefit of milling includes 

rectifying issues detected on a printed object or component.  

1.4.2. Acquiring Materials 

A constraint for self-replicating robot systems is the means of acquiring the needed 

materials to build a new robot. These materials could be gathered in-situ through robot foraging 

or delivered by an outside source [12].  

1.4.2.1. Robot Foraging  

Robot foraging is broadly defined as robots searching for and collecting objects, and 

subsequently bringing them to a collection point [17]. This can be divided into multiple challenges; 

this includes the need for techniques for recognizing resources and collecting them. 

Recognizing resources in a given environment can be accomplished in many ways. For 

example, reflection seismology (similar in concept to radar) has been used to discover oil and 

natural gas [25]. Magnetic surveys can used to detect ore deposits [26]. The visual recognition of 

surface resources can be accomplished by processing images using trained deep convolutional 

neural networks [27]. The foregoing techniques could be used to identify many of the resources 

required for robot replication. Alternate techniques may be needed for robots with additional 

resource identification needs. 

Once resources are identified, the robots must have the capability to autonomously collect 

them. A number of examples of prior work demonstrate relevant capabilities. For example, Green 

and Vogt [28] proposed a multi-robot system that could cooperatively and autonomously mine ore 

using rock drills. Dunker, et al. [29] demonstrated a proof of concept for utilizing teams of robots 

that could automatically gather regolith on the surface of the Moon with an actuated scoop and 

bring it to a central processing station. Each of the foregoing is a capability that could be integrated 
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into the self-replication robots’ design to provide basic functionality. As with resource 

identification, the resource collection capabilities of robots (both in terms of physical collection 

hardware and commanding software) may need to be augmented to support mission-specific 

collection requirements [2]. 

1.4.2.2. Delivered Resources  

Resources that cannot be printed or otherwise made from in-situ materials may need to be 

delivered from an outside source. A special case of delivered resources is the initial deployment 

of the robot system. The initial resources would include the initial robot(s) and, potentially, a 

supply of important non-fabricable components (i.e., processors for subsequent robots) [5].   

1.5. Decision to Replicate 

The decision of when a self-replicating robot system should replicate is affected by several 

factors. These factors include the available resources, available replication equipment, current 

objectives, and robot capacity. These factors are depicted in Figure 1.5 and are discussed in the 

following subsections. 
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Figure 1.5. Key decision-making factors for the new robot construction decision. 
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1.5.1. Available Resources 

Resource availability is critical to the decision to build a robot. Multiple factors, as shown 

in Figure 1.6, contribute to the resource availability characterization that is supplied to the 

decision-making algorithm. A requirement for fabricating a new robot is to have (or project having, 

at the requisite time) the materials that are needed to build it. Another factor to consider is the 

quality or purity of the resources. Poor quality resources could impact the quality of the finished 

product. This (ideally) should be considered when deciding whether to move forward with the 

replication process. 

Resources

Quality Available Proximity

Collected Located

 

Figure 1.6. Mission resource characterization. 

1.5.2. Replication Equipment 

The replication equipment present needs to have the capability to produce the needed 

design, otherwise the process cannot move forward. There is a probability of success associated 

with a given unit of equipment’s capability to perform a given printing task. If this value is known, 

it can be factored into the decision-making process. This probability value can be estimated based 

on factors such as known wear or damage to the equipment and the performance of the equipment 

in pristine condition [2]. This value can also be determined empirically by measuring the results 

of production and comparing them to the expected results [30]. Even if a given equipment 

configuration can build a desired design, it may have known limitations and certainly has the 
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potential to encounter errors. Issues can include the equipment jamming, printed parts not fitting 

together properly, and adverse environmental conditions. 

1.5.3. Objectives 

The current mission objectives, as shown in Figure 1.7, are relevant to the decision to build 

a new robot (or not). These objectives determine the necessity for fabricating a new robot, and 

what design it should have. This information would drive the need (if required) for increasing the 

quantity of robots or optimizing a design for a specific capability. 

An increase in the quantity of robots may be needed for certain exploration efforts, or to 

support planned future robot fabrication predictions [2]. An alternative consideration is that a new 

robot of a particular design may be needed for a specific task that has a necessary benefit, such as 

reaching and collecting a resource that is out of reach of the current robots in the system.  
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Figure 1.7. Generic objectives for robot creation. 

1.5.4. Capacity 

Depending on user choices or implementation and design constraints, it may be that the 

robot system is capped at having a certain maximum number of robots. The system capacity factor, 

depicted in Figure 1.8, characterizes the ability of the system to support more robots, to inform the 

build-or-not decision-making process [2]. One example of a restriction is having limited 

centralized command and communication capabilities, such that the number of robots that the 

central robot can command or communicate with is limited. Another restriction would be the need 
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for a certain resource to continue functioning over time, such as energy or replacement parts. 

Finally, the number of robots that a system can have may also be restricted by the space available 

in the operating environment. Small spaces would necessitate having a fewer number of robots for 

optimal performance. This notion of an optimal number of robots as opposed to a maximum is also 

a more general consideration. 
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Central 

Communications
Environmental 

Space
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Figure 1.8. Example constraints on the maximum number of robots needed. 

1.5.5. Example Implementation of System Operations 

An example of the operations of a self-replicating robot system is now considered. Figure 

1.9 depicts the general decision-making process undertaken by each robot in the example system. 

This diagram assumes a limited set of objectives, including repairing robots, building robots, 

idling, gathering resources, exploring, and performing other mission-related objectives.  

One point of interest is the flow of locating resources, to collecting resources, to having 

them available to use as materials (for new robots or for repairs to existing ones). The ‘explore’ 

objective locates resources and contributes to the terrain map. Located resources can subsequently 

be gathered by a robot that is pursuing the ‘gather resources’ objective. Gathering resources 

contributes to the available resources, which may then be used to build or repair robots. These 

different steps can be performed by the same robot or performed by different robots, depending on 

robot capabilities and decision making. Communication amongst the robots in the system updates 

relevant databases to reflect changes in resource status. This is important because this data is used 
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as part of the decision-making process, such as to decide whether the system carries out a task or 

not. It is also used to assign robots tasks, based on the task allocation scheme. For example, a 

construction robot could be tasked with updating data regarding resources available in the resource 

pool to indicate that certain materials are no longer available, as they are used to construct or repair 

a robot. 

 

Figure 1.9. Example system decision-making diagram. 

1.6. Conceptual Prototype 

A conceptual example robot system, a (mostly) 3D printed 3D printer, was built (depicted 

in Figure 1.10). Its design is a slightly modified version of the “Snappy” RepRap [10]. Its frame 

is 3D printed and ‘snaps’ together using the mechanical design of the printed components. The 

nonprintable components include stepper motors (for moving parts), a heating block and an 

extruder, a heated print bed (for print adherence), and control electronics. It is capable of 3D 
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printing components that could be used to assemble an additional 3D printer or robot. However, 

the prototype system does not include an automated assembly capability. 

 

Figure 1.10. 3D printed 3D printer (left). 3D printed ‘normal’ robot (right). 

In addition, a small (mostly) 3D printed robot was constructed and programmed with 

software that allows it to perform simple resource location tasks (i.e. find a colored spool of 3D 

printer filament). This small 3D printed robot is meant to compliment the 3D printed 3D printer 

for the purposes of the example implementation. It consists of a 3D printed chassis and 3D printed 

tracks which are driven by two servo motors (based on design from [31]). Its on-board computer 

is a Nvidia Jetson Nano, which processes the visual data from the Zed Mini stereo-camera in order 

to perform simple resource identification and localization. It is powered by a rechargeable lithium 

ion battery pack that fits within the chassis. 

1.7. Aerospace Applications 

The application areas for self-replicating robot systems include areas that are difficult for 

humans to access or where it is prohibitive to bring the materials and supplies required for crewed 

missions. This type of robot system could theoretically be used in a wide variety of applications. 
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An application domain that may especially benefit from self-replicating robots is space 

exploration. Launching materials into space can be prohibitively expensive, which may drive a 

need for utilizing in-situ materials [12]. In this section, example aerospace applications that may 

benefit from the use of self-replicating robots are discussed. 

1.7.1. Planetary Exploration 

A self-replicating robot system could be used for planetary exploration. This would be 

especially useful due to the high cost of transporting materials to remote planets. Constructing 

additional robots could facilitate a faster exploration rate, compared to a fixed number of robots. 

Furthermore, a single surviving robot that is able to self-replicate could repopulate an entire 

‘colony’ of robots with sufficient resources and time. This would give the robots an opportunity 

to take more risks in trying to accomplish an objective. However, the usefulness of this approach 

would largely depend on the presence of in-situ resources and how usable those resources are in 

terms of constructing additional robots. For example, basalt 3D printing could be useful on Mars, 

due to its abundance [18].  

1.7.2. Satellites 

Three-dimensional printed self-replicating satellite systems could be used for a variety of 

applications. One of the associated benefits with this type of system is that constructing a structure 

or craft in microgravity has the benefit of it only having to be structurally designed for microgravity 

(instead of terrestrial gravity and launch forces) [5]. Some estimates suggest that roughly 30% of 

a spacecraft’s structural mass could be removed if that craft were built in space rather than on 

Earth [32]. However, acquiring materials in space can pose a problem in most cases, so materials 

would either need to be supplied or mined from planetary body surfaces. 
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One specific example is that a  self-replicating robot/satellite system could be used to mine 

asteroids. The use of this type of system for mining missions may also solve the problem of 

supplying the replication materials needed to construct new craft. In this case, regolith and 

powdered metal from the asteroids could potentially be used to 3D print components for new craft 

[33]. For energy, solar power could be utilized in situations where it is available in sufficient 

amounts (i.e., at an appropriate distance from the sun and with few obstructions to sunlight). To 

this end, certain materials harvested from asteroids could potentially be used to construct portions 

of solar arrays [34]. Alternative sources of power could come from harvested resources, such as 

water (which could also be used as a propellant [33]). 

1.8. Conclusion 

In this chapter, an introduction to the concepts and topics of this work was provided. In 

Chapter 2, relevant background information is reviewed. In Chapter 3, a simulation, used to model 

self-replicating robot systems to perform the experiments in later chapters, is detailed. Then, 

experiments are conducted utilizing this simulation model. These include the analysis of the impact 

of system categories on system efficacy (Chapter 4), the analysis of the comparative performance 

of multiple decision-making algorithms (Chapter 5), and cybersecurity threats for self-replicating 

robot systems (Chapter 6). For each, data is presented and analyzed, and conclusions are drawn. 

Finally, this dissertation concludes with a summary of the results presented throughout the 

document and a discussion of the broader findings from the experiments (Chapter 7). 
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2. BACKGROUND 

In this chapter, a review of relevant prior work is provided. First, information on self-

replicating robots and related fields is discussed. Second, the parallels between self-replicating 

machines and biological organisms is presented. Last, certain relevant aspects of robotic artificial 

intelligence is detailed. 

2.1. Self-Replicating Robots 

In this section, the research topics of self-replication, self-assembly, additive 

manufacturing, in-situ material usage, and soft robots are discussed. 

2.1.1. Self-Replication 

Von Neumann is seen by many as the father of self-replicating machines [2]. In the 1940s, 

he investigated the logical foundations of self-replication [1]. In the 1950s, he proposed a self-

replicating structure [35]. This work was presented in Scientific American [36], bringing it into 

the consciousness of the general public. After von Neumann’s death [35], Burks completed his 

design for a 29-state automaton and published it in 1966 [37]. More recently, the technology to 

actually perform self-replication has become feasible. Beuchat and Haenni [35], for example, 

created a hardware implementation of cellular automaton and published the results of its analysis 

in 2000. 

In [38], Lee, Moses, and Chirikjian follow a von Neumann-inspired framework and, in this 

context, define the degree of self-replication and task complexity. Self-replication complexity is 

presented in terms of an equation that compares the complexity among subsystems and overall 

system complexity. Mathematically, this can be presented as: 

𝐷𝑠 =
𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥
∗

𝐶𝑡𝑜𝑡𝑎𝑙

𝐶𝑎𝑣𝑒
∗

1

𝐶𝑎𝑣𝑒
 (Eq. 1) 
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Where Cmin is the module under test with the least complexity and Cmax is the module with 

the most complexity. Ctotal and Cavg present the sum and mathematical mean, respectively. Entropy 

(based on Sanderson’s model [39]) is used as a measure of task complexity. 

In addition to logical and theoretical works, a number of efforts have been made to create 

hardware systems. Suthakorn, Kwon, and Chirikjian [40], for example, demonstrated the 

operations of a semi-autonomous robot made from LEGO Mindstorm kit parts, that performs 

supervised replication. In [40], they built upon previous work (in [41]), where a concept and initial 

remote-controlled replication were presented. In [42], machine vision and other capabilities were 

added to the system, to facilitate autonomous operations. Similarly, Zykov, et al. [43] 

demonstrated real-world replication using modular robots based on specially-produced cubes. 

These robots collect cubes from feeder troughs and use them to produce equivalent copies. Even 

more flexible is the work presented in [44], where an algorithm for duplicating shapes using ‘smart 

sand’ replicates the shape of presented 3D objects. This work’s efficacy was demonstrated via 

hundreds of simulated test runs. 

More practically, the RepRap 3D printer [45] has been used as a template for the creation 

of numerous consumer-grade 3D printers. A RepRap printer is based—in part—on the use of parts 

printed on another 3D printer. Once a user has a working RepRap printer, he or she can produce 

many of the mechanical parts required to make another RepRap printer for his or her own use or 

for use by another person. Unlike the systems proposed herein, which use autonomous replication, 

RepRap printer construction requires significant human involvement. 

2.1.2. Self-Assembly 

Self-assembly is the autonomous organization of components into patterns or structures 

without human intervention [5][46]. In robotics, this can either refer to the ability of a kinematic 
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machine to manipulate a series of parts into an assembled copy of itself [45] or the capability of a 

group of mobile robots to autonomously connect to and disconnect from each other (modular 

robotics) [47]. This differs from self-replication in that the resulting system is not necessarily 

capable of making, catalyzing, or in some way inducing more copies of itself [48]. 

Von Neumann proposed a self-assembler (that used a cache of spare parts) [1]. Whitesides  

and Grzybowski [46] demonstrated the similarity of natural and mechanized self-assembly. Butler, 

Murata, and Rus [49] advanced mechanized self-assembly by developing algorithms for a generic 

self-reconfiguring robot to divide and reform into different configurations. Sahin, et al. [50] 

demonstrated how self-assembly and disassembly can be used to allow a swarm of robots to 

collaborate, in some instances, while retaining the capability to perform tasks independently and 

in smaller groups, in other instances. Cooperation [47] and colonies [51] of self-assembling robots 

have also been proposed. 

2.1.3. Additive Manufacturing 

Additive manufacturing (AM) is a process of joining materials to make objects from 3D 

model data, usually building by printing layer upon layer [52][53]. AM methodologies, such as 

3D printing, have been used for various commercial purposes. These application areas include 

fabricating prototypes, replacement parts, automobile components, aircraft components, robotic 

components, hearing aid molds, dental crowns, eyeglass frames, and prosthetic limbs [21][54][55]. 

A common AM method, widely used in modern commercial 3D printing, is fused 

deposition modeling (FDM), which is also referred to as fused filament fabrication. This method 

involves extruding polymer through heated nozzles to create a part’s cross sections [9]. Various 

other AM methods are used in industry, including the use of an ultraviolet laser to harden a 
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photosensitive polymer (stereolithography), or using a laser to selectively melt metal or polymeric 

powder (laser sintering) [21]. 

2.1.4. Robot 3D Printing and the Use of In-Situ Resources 

Creating robots with 3D printing has been demonstrated numerous times [2]. A variety of 

robots and robot parts have been created using 3D printing. The MU-L8 robot [56], for example, 

utilized 3D printed limbs to emulate human movements and play robot soccer. For more distant 

applications, the use of in-situ resources is necessary to prolong mission duration and, potentially, 

facilitates having a greater ability to take risks.  

Examples of in-situ resources being used for 3D printing include the use of basalt printing 

of structures for Martian exploration [18]. The use of a D-shape printer for building infrastructure 

out of regolith on the Earth’s moon [19], and the use of a collection of simple self-replicating 

robots to exploit lunar material and energy resources [20], have also been previously proposed. 

2.1.5. Soft Robots 

Soft Robotics refers to robotic devices that are fabricated from soft, flexible, materials, 

instead of the hard plastics and metals traditionally used in robotics [23], [57]. Soft robots could 

be beneficial for self-replicating systems since they may require fewer nonprintable components, 

due to less reliance on motors. An overall trend is that they tend to trade precision and deterministic 

control for bioinspired compliance and physical robustness [58]. An overview of how they have 

been designed, fabricated, and controlled is presented in [59].  

Hiller and Lipson [58] demonstrated the automatic design of freeform soft robots for 

forward locomotion, using soft volumetrically expanding actuator materials. In [57], “smart 

materials” (materials which change their physical properties in response to external stimuli) were 

demonstrated and used to create a tentacle-like active structure which was employed for 
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movement. In [60], Bartlett, et al. employed multi-material 3D printing to manufacture a 

combustion powered robot whose body transitions from a rigid core to a soft exterior. The robot 

is powered by the combustion of Butane and Oxygen and can perform untethered jumping. 

2.2. Parallels with Biological Organisms 

It is beneficial to consider design concepts based on nature. In [61], Pfeifer, Lungarella, 

and Lida present a discussion of how robots will eventually be able to exhibit certain desirable 

properties of biological organisms, such as adaptivity, robustness, versatility, and agility. 

Biological organisms also provide a model for replication, reproducing in many ways and adapting 

to their environment through the process of natural selection [62]. Similar to this, self-replicating 

robots could build other robots that are better suited to the environment or to objective-related 

needs [2].  

The behavior of certain species of organisms can also provide design inspiration for robots. 

For instance, certain social animals, such as ants and birds, exhibit intelligent collective behavior. 

Observations of these animals provided inspiration for swarm intelligence [63].  

However, while biology provides many insights, certain design considerations cannot be 

directly inferred by studying organic life. For instance, robots do not share certain constraints that 

animals have, such as the need to maintain a running metabolism. Certain technological solutions 

may also be superior to natural counterparts. Pfeifer, et al. [61], for example, suggested that this 

was the case for the wheel.  

In terms of future applications, Dickinson [64] speculates that, as mechanical capabilities 

increase and are able to implement such designs, engineers may adopt more and more design 

concepts from nature. In this section, the topics of organic materials and self-perpetuating systems 

are discussed. 
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2.2.1. Organic Materials 

Organic materials can prospectively be used as part of a robot’s electronic system [2]. For 

instance, organic semiconductors such as organic thin film transistors (OTFT) may be able to be 

used as printable low-cost materials for a wide variety of applications [65]. This may make 

producing robots from in-situ resources easier to accomplish and increase possible fabrication 

options so that specific resource scarcity may become less burdensome. Furthermore, it may be 

possible to grow the organic compounds necessary to craft organic electronics [65]. 

2.2.2. Self-Perpetuating Systems 

Self-perpetuation refers to the capability of something to cause itself to continue to exist. 

Self-replication is a subset of self-perpetuation. Self-perpetuating systems present special 

challenges which have been documented in numerous fields beyond robotics. Numerous examples 

of such systems exist within nature.  

In biology, cell signaling and feedback mechanisms have been shown to be able to enter 

non-reversible states with either a positive or double negative feedback loop [66].  Platelets have 

been shown to have a potential role in a similar signaling self-perpetuating loop that may be 

associated with acute coronary syndrome [67]. A connection has also been suggested between in 

utero processes, which become self-perpetuating, and hypertension later in life [68] and self-

perpetuating brain protein truncation leading to Alzheimer’s, Parkinson’s and Huntington’s 

diseases [69]. Duchenne muscular dystrophy has also been suggested to be tied to a self-

perpetuating feedback mechanism [70]. A collagen is produced that inhibits the regeneration of 

muscles and leads to more collagen production. A similar self-perpetuating cycle was 

demonstrated with prion protein conversion that can be triggered by proteasome inhibitors and 
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potentially spread to brain tissue [71]. Self-perpetuation has also been suggested as a potential 

cause for human autoimmune disease [72]. 

In geology, faults in atomic configuration stacking have been demonstrated to create self-

perpetuating steps in crystals [73]. In astrophysics, a self-perpetuating coating with a catalytic has 

been suggested as a reason for macromolecular carbon in some meteorites [74]. Self-perpetration 

has also been demonstrated at a much larger scale with D’Onghia, Vogelsberger and Hernquist 

[75] demonstrating these properties for disk galaxies’ spiral-shaped arms. 

Self-perpetuation is clearly present extensively throughout nature. Key to this is the 

creation of successive generations by the current generation. When a similar concept exists in 

computing, cybersecurity or robotics, these natural properties may be instructive in assessing its 

impact and implications. 

2.3. Robotics and Artificial Intelligence 

In this section, the topics of robot autonomy, robot foraging, manufacturing automation, 

multi-robot coordination, and swarm robotic control are discussed. 

2.3.1. Robot Autonomy 

Robot autonomy can be described as a system’s capability to carry out its own processes 

and operations [76]. Further criteria may include a robot’s sensing, decisional and actuation 

capacities, as well as its behavior in regard to its current environment [77]. Over the years, robots 

have been developed with varying levels of autonomy – depending upon application requirements 

and the technology available [5]. An example is the development of self-driving cars (also known 

as autonomous vehicles), which has progressed at an unanticipated pace in recent years [78].  

For self-replicating robots, autonomy will need to factor in the use of multi-robot 

coordination (even for a system starting with a single robot, the replication process would make it 
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a multi-robot system). Considerations for this include using centralized or decentralized decision-

making, task and motion planning, and resource conflict resolution techniques [4]. One example 

coordination system, developed by Xu, et al. [79] was the Adaptive Parameter EXploration 

(APEX) algorithm. This algorithm is capable of adapting an arbitrary robot system to dynamic 

changes in task objectives and conditions during a session. 

2.3.2. Robot Foraging 

Robot foraging is broadly defined as robots searching for and collecting objects, and 

subsequently bringing them to a collection point [17]. This can be divided into multiple separate 

stages, such as the problem of recognizing resources and the problem of collecting them [2]. 

Recognizing resources in a given environment can be accomplished in many ways. For 

example, reflection seismology (similar in concept to radar) has been used to discover oil and 

natural gas [25]. The visual recognition of surface resources can be accomplished by processing 

images using trained deep convolutional neural networks [27]. Magnetic surveys can used to detect 

ore deposits [26]. The foregoing techniques could identify many of the resources required for robot 

replication. Additional techniques may be needed for robots with additional resource identification 

needs [2]. 

Once appropriate resources are identified, the robots must be able to autonomously collect 

them. A number of prior experiments and applications demonstrate relevant capabilities. For 

example, Green and Vogt [28] proposed a multi-robot system that could cooperatively and 

autonomously mine ore using rock drills. Similarly, Shaffer and Stentz [80] tested a robotic system 

for coal mining that could autonomously navigate and reposition itself underground using a laser 

range finder. Dunker, et al. [29] demonstrated a proof of concept for utilizing teams of robots that 
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could automatically gather regolith on the surface of the Moon with an actuated scoop. It would 

then bring the collected materials to a central processing station. 

For the coordination aspect of foraging, Baldassano and Leonard [81] described measures 

of performance that can be used to allocate tasks amongst multiple robots in a system. Cai [82] 

developed a learning algorithm to handle foraging tasks in completely unknown environments. 

Some coordination strategies have drawn inspiration from nature, such as work done by Fibla and 

Bernardet [83]. This work demonstrated a strategy for robot foraging based on the behavior of 

rodents. Similarly, Hecker, Carmichael, and Moses [84] described a resource cluster prediction 

algorithm, inspired by ant foraging behavior, that exploited the natural clustering of resources to 

efficiently direct robots to find and collect them.  

2.3.3. Manufacturing Automation 

Manufacturing automation uses electrical-, mechanical-, and computer-based solutions to 

operate and control a production process [85]. It is becoming more popular as markets drive rapid 

product enhancements and the customization of products requires the use of flexible automation 

infrastructures [86]. To this end, Saliba, Zammit, and Azzopardi [87] presented a strategy and 

proposed a set of practical guidelines for reconfigurable manufacturing automation. 

For a machine to be self-replicating, it must be able to automatically manufacture a replica 

of itself. Collaborative robots that are used in manufacturing plants are becoming more flexible 

and efficient [88]. Robots are now considered as an integral part of some industries, due to their 

role in improving accuracy, repeatability reliability, preciseness, and efficiency [85]. 

The software that manages the automation process, referred to as manufacturing 

automation software projects (MASP), includes information regarding applied automation 

hardware and is becoming more complex. In [89], an approach for model driven development of 
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automation software, based on the systems modeling language, is discussed. In addition, Vyatkin 

[90] provides an overview of state-of-the-art software engineering for industrial automation. 

The increasing capabilities (hardware and software) created for manufacturing automation 

make a significant contribution to work on self-replicating robotics [2]. The automation of the 

replication process is a necessity for robots to be truly self-replicating. 

2.3.4. Multi-Robot Coordination 

The study of multi-robot coordinated systems, according to Yan, Jouandeau, and Cherif 

[4], has recently increased “significantly in size and importance”. They attribute this to the 

resolution of many previously vexing issues in single robot systems, as well as to specific multi-

robot system needs. A number of key decisions define the coordination of a multi-robot system 

[4]. These include decisions related to the use of static or dynamic coordination, explicit or implicit 

communications, cooperative or competitive approaches, and centralized or decentralized 

decision-making. Task and motion planning and resource conflict resolution techniques also need 

to be identified. 

Several examples of coordination approaches exist. Nieto-Granda, Rogers, and Christensen 

[91], for example, compared three exploring and mapping strategies: the reserves, divide and 

conquer, and buddy system approaches. Under the reserves approach, extra robots wait in the 

starting area until they are needed and are then given tasks. Under the divide and conquer approach, 

robots travel in as large of a group as possible and split in half when new navigation goals are 

uncovered. Finally, with the buddy system approach, robots travel in teams of two, until new 

navigation goals are detected. Similar to the divide and conquer approach, the team will then split, 

following both paths. 
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Portugal and Rocha [92] compared two techniques for commanding a multi-robot system 

used for the patrolling of a given area. The first technique seeks to optimize local gain (using a 

greedy Bayesian strategy). The other technique seeks to reduce interference and foster scalability 

(using a state exchange Bayesian strategy). They found that both approaches sufficiently solve the 

problem; however, the state exchange strategy outperformed the greedy strategy. 

A wide number of examples of multi-robot coordination use exists. Liu, et al. [93], for 

example, presented a control system for a collection of life science laboratory mobile robots. 

Pennisi, et al. [94] presented the use of multi-robot surveillance (for indoor public places) using a 

distributed sensor network that combines RFID tags, mobile robots, and RGBD cameras. Starke, 

et al. [95] demonstrated close-proximity multi-robot operations for a welding automation 

application. 

To meet the challenges presented by distributed systems, a variety of approaches have been 

suggested. Caliskanelli, Broecker, and Tuyls [96] presented a swarm-inspired method (based on 

the pheromone signaling behavior of honey bees), called BeePCo, to maximize the total area 

covered by a robot network in an environment. Swarm control styles are discussed in greater detail 

in the subsequent subsection. Straub [97] proposed a boundary node-based Blackboard 

Architecture approach for limiting the data replication traffic, to facilitate local robot decision-

making. Jullian, et al. [98] proposed an information theoretic approach that iteratively estimates 

the environment state using a sequential Bayesian filter and a gradient of mutual information for 

the purposes of distributed control. Jin, XingJie, and ZengRong [99] explored the use of robot 

coordinated adaptive tracking. They presented a control algorithm with the distinctive feature that 

only a subset of followers would need to access the position information of a dynamic leader in 

the task space, reducing communications and other resource needs. 



 

35 

2.3.5. Swarm Robotic Control 

With swarm robotic control, simplistic local rules are used to create complex behaviors 

[100]. This approach is patterned on insect colonies where groups of insects perform behaviors 

that are too complicated to be coordinated by any one insect’s capabilities [100]. Sahin [101] 

proffers that swarm robotics involves the use of a “large number of relatively simple physically 

embodied agents” from which a “desired collective behavior emerges from the local interactions 

among agents and between the agents and the environment”. Practically, this means that members 

of the robotic system can have simplistic command software and reduced processing capabilities, 

but still produce a complex outcome. Several efforts to classify swarm robotic systems have been 

performed. Abukhalil, Patil, and Sobh [102] define four high-level categories for robotic systems: 

swarm, self-replicating, self-reconfigurable, and modular. Significant overlap between these 

categories exists. Groβ, Dorigo, and Yamakita [51], for example, combined self-

assembly/reconfiguration and swarm control (this approach is also discussed by Barca and 

Sekercioglu [103]).  

Brambilla, et al. [63] take an alternate approach in, like Abukhalil, et al. [102], categorizing 

prior articles on swarm intelligence. Unlike Abukhalil, Ptali, and Sobh’s approach, Brambilla, et 

al. classify systems into the categories of method-based and collective behavior-based. The 

method-based category is further divided into two sub-categories (design and analysis methods), 

that are further divided into five sub-categories (behavior-based, automatic design, microscopic, 

macroscopic, and real-robot analysis). Collective behaviors are divided into four sub-categories 

(spatially organizing, navigation, collective decision-making, and other), which are further divided 

into ten sub-categories.  
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Swarm control has been demonstrated for a variety of applications, including robotic self-

assembly [51], dynamic cleaning [104], exploration and mapping [105], foraging [106], object 

movement and interaction [105], and coordinating cooperation [105], [107]. Systems 

implementing swarm approaches, according to Sahin [101], have benefitted from system 

robustness, flexibility, and scalability benefits, provided by the approach. Barca and Sekercioglu 

[103] also identify a number of application-specific benefits [2]. 

  



 

37 

3. SIMULATION2,3 

A key challenge relating to analyzing self-replicating robot systems, and the decision-

making algorithms for those systems, is that there isn’t currently a standard means to simulate 

these systems. Thus, for the purpose of this work, a simulation system was developed to provide 

a means to accomplish this. In this chapter, this simulation system works is detailed. 

3.1. Simulation Overview 

The simulation system consists of a self-replicating robot system interacting with an 

environment. There is no graphical/visual aspect of the simulation system, other than textual 

output. The goal of the simulation system is to further understand the constraints and variables 

involved in self-replicating robot system configurations and decision-making strategies.  

A simulation run is divided into a number of iterations (time-steps). The number of time-

steps for a given run is determined by an input number. Each time-step corresponds to a block of 

time, with the simulation starting at step zero and progressing until the desired number of time-

steps is reached. In each time-step of the simulation, robots in the robot system perform tasks 

which involve acquiring resources, converting resources, or assembling new robots. The following 

sections describe these in more detail, along with the operation of the simulation from a wholistic 

standpoint. 

 

 

 

2 This chapter is derived from: A. Jones and J. Straub, “Simulation and Analysis of Self-Replicating Robot Decision 

Making Systems,”  Comput., vol. 10, no. 1, 2021. 
3 This chapter is partially derived from: A. Jones and J. Straub, “Software Simulation System for Self-Replicating 

Robot Decision-Making,” (under preparation for submission to) SoftwareX. 
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3.2. Resources and Task Types 

There are three different types of resources in the simulation, which were presented in 

previous work [2][5]. These types are as follows: 

• Nonprintable Components: a resource type of components that the robot system 

doesn’t have the capability to print (or make in-situ) such as control units (processors) 

and motors.  

• Printable Components: a resource type of printable components that are fabricated by 

the robot system over the course of the simulation, such as frames (or structural 

elements) for new robots.  

• Raw Printing Materials: a resource type of materials that are used in the printing 

process. The printing process would yield the printable component resource type, so 

this raw type requires a fabricating step before materials are useable to build new 

robots. 

The simulated robot system begins the simulation run with an initial amount of each type 

of resource. Furthermore, the environment has a certain amount of raw printing materials available 

which robots could collect.  

For the purposes of the simulation, each of these component types are represented by a 

single numerical quantity. The nonprintable components are combined into a single numerical 

quantity which refers to a volume (or mass) of components. In practice, the nonprintable 

components themselves would likely be a diverse range of different parts that wouldn’t necessarily 

be interchangeable with one another. The simulation could be run beforehand and used to project 

which nonprintable components would need to be stored in that allotted volume. For the printable 
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component resource type, the components are assumed to be interchangeable for simplicity. In 

practice, a system would be needed to predict what type of printable components should be crafted.  

Collectible
Raw Printing

Materials

Raw Printing
Materials

Printable
Components

Non-Printable
Components

[Task Type]
Collect

[Task Type]
Print

[Task Type]
Assemble

 

Figure 3.1. Diagram depicting how task types are related to resource types. 

There are four task types in the simulation, three which perform an action (depicted in 

Figure 3.1) and one which represents a default state indicating that a robot is currently performing 

no action (idle). The description of the task types are as follows: 

• Collect: a task type which involves a robot gathering raw printing materials from the 

environment and adding the gathered materials to the robot system’s inventory. This 

task type has a time-step duration of 1, meaning that if a robot is assigned this task type 

it would complete it in a single time-step. Upon completion of this task, raw printing 

materials are removed from the environment and added to the robot system’s resource 

pool. The amount collected upon completion is a parameter (Collect_Amount), which 
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represents an average amount returned per time-step (as it would vary based on 

resource sparsity). 

• Print: a task type which involves a robot taking raw printing materials and crafting 

them into printable components. This task type has a time-step duration of 1, meaning 

that if a robot is assigned this task type it would complete it in a single time-step. Upon 

completion of this task, raw printing materials would be removed (Print_Amount) from 

the robot system’s resource pool and printable components would be added to the robot 

system’s resource pool. This represents an average amount of components printed per 

time-step (including failed prints). The conversion factor of raw printing materials to 

printable components is a parameter (Print_Efficiency). 

• Assemble: a task type which involves a robot taking nonprintable components and 

printable components from the robot system’s resource pool and assembling them into 

a new robot. This task type has a duration that varies by the robot type being assembled. 

Upon completion of this task, the newly assembled robot would be added to the robot 

system.  

• Idle: a default task type which is assigned to any robot not performing any other action 

during a time-step. This task type has no associated duration, because it doesn’t have 

any completion actions/events. 

3.3. Robot Types 

In the simulation, there are four types of robots: normal, printer, assembler, and replicator. 

In each time-step, each robot is either idle, gathering resources, printing components, or 

assembling a new robot. However, certain robot types are restricted in what types of tasks that they 
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can perform (listed in Table 3.1). All robot types are capable of being idle. Not all types of robots 

must be included in any given simulation run. 

The robots in the simulation are single-task robots that carry out single-robot tasks with a 

time-extended assignment. Thus, the robot systems in the simulation would be categorized as ST-

SR-TA, according to the task allocation taxonomy proposed by Gerkey in [108]. 

Table 3.1. Robot capabilities based on type of robot. 

Robot Type Collect 

Resources 

Print 

Components 

Assemble 

Robots 

Normal    

Assembler    

Printer    

Replicator    

 

The material cost of each robot type is directly related to its capabilities. Capability costs 

for each included capability are added together to determine the cost of the robot type. For 

example, the normal robot type cost is just the base cost, while the printer robot type’s cost is 

calculated by adding the base cost plus the printing capability cost. The default values for these 

costs are listed in Table 3.2. These values are simulation parameters and can be adjusted from run 

to run of the simulation, to determine what is being studied by each simulation run.  

Table 3.2. Default resource costs by capability. 

Cost per Capability Nonprintable 

Cost 

Printable 

Cost 

Build Duration 

Cost 

Base (Collect Capability) 1 2 2 

Printing Capability 1 2 2 

Assembly Capability 1 2 2 
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3.4. Replication System Configurations 

In this section, the system configurations of self-replicating robot systems used in the 

simulation are discussed and presented. The replication system configurations are a combination 

of choices from two sets. The first set, the replication approach, consists of centralized, 

decentralized, and hierarchical. This determines how many robots have a replication-related 

capability. The replication-related capabilities, for this simulation, include the assembly and print 

task types. The characteristics of this set are as follows: 

• Centralized: robots that have a replication-related capability are not buildable by the 

robot system. These systems exclusively use initial/factory-made robots for replication 

related capabilities. 

• Decentralized: all robots in this type of system have one or more replication-related 

capabilities. These systems require that built robots have some capability in terms of 

replication. 

• Hierarchical: buildable robots in this type of system may or may not have replication-

related capabilities. These systems are a combination of the centralized and 

decentralized approaches and do not impose strict replication-related capability 

requirements on buildable robot types (although at least one of each is present).  

The second set, the production approach, consists of homogeneous and heterogeneous. 

This set is combined with the previous set to derive the replication system configurations used for 

the simulation (listed in Table 3.3). The characteristics of the members of this set are as follows: 

• Homogeneous: these systems have a single robot type for all the replication-related 

capabilities. In the listed simulation robot types, this is the replicator robot type. 
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• Heterogeneous: these systems have multiple robot types that have replication-related 

capabilities. In the listed simulation robot types, this consists of the assembler and 

printer robot types. 

Table 3.3. Buildable robot types by system configuration. 

Buildable Robot Types Centralized Decentralized Hierarchical 

Homogeneous Normal Replicator Replicator, Normal,  

Heterogeneous Normal Assembler, Printer Assembler, Printer, Normal 

 

Based on the combination of the selections from the two sets, the utilized replication system 

configurations are formed. The system configurations of self-replicating robot systems used in this 

work are listed in Table 3.4. The variable ‘n’ denotes the total number of robots in the system. 

Thus, as the number of robots in the system changes, the ratio of the robot types is related to ‘n’. 

Any range that contains ‘n’ indicates that that robot type is buildable in that system configuration.  

Table 3.4. System configurations utilized in the simulation system. 

System Configuration 
Robot Type 

Normal Printers Assemblers Replicators 

Centralized - Homogeneous n - 1 - - 1 

Decentralized - Homogeneous - - - n 

Hierarchical - Homogeneous [1, n - 1] - - [1, n - 1] 

Centralized - Heterogeneous n - 2 1 1 - 

Decentralized - Heterogeneous - [1, n - 1] [1, n - 1] - 

Hierarchical - Heterogeneous [1, n - 2] [1, n - 2] [1, n - 2] - 

 

The details of each of the system configurations are as follows: 

• Centralized Homogeneous (CHO): One robot is responsible for both printing 

components and assembling them. Constructed robots are of the normal type and either 

gather resources or complete other objectives. 

• Decentralized Homogeneous (DHO): All robots have the capability to print 

components, assemble them, and gather resources or complete other objectives.  
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• Hierarchical Homogeneous (HHO): There are a variable number of robots capable 

of printing components and assembling them. There are also a variable number of 

normal type robots. 

• Centralized Heterogeneous (CHE): One robot is responsible for printing 

components, and another (distinct) robot is responsible for assembling them. 

Constructed robots are of the normal type and either gather resources or complete other 

objectives. 

• Decentralized Heterogeneous (DHE): Robots have either the capability to print 

components or the capability to assemble them. All robots can gather resources or 

complete other objectives. 

• Hierarchical Heterogeneous (HHE): There are a variable number of robots capable 

of printing components, a variable number capable of assembling them (distinct from 

printing group), and a variable number of normal type robots. All robots can gather 

resources or complete other objectives. 

For the purposes of the simulation, the homogeneous systems start with a single replicator 

robot, while the heterogeneous systems start with two robots - an assembler robot and a printer 

robot. The non-assembly capable robot types would have a maximum of ‘n’ – 1 in all of the 

configurations since, without a robot capable of assembling additional robots, the robot system 

would not be considered to be self-replicating by any version of the definition. 

3.5. Robot Build Quality and Task Risks 

In this section, the topics of robot build quality and the risks of each task type are discussed. 
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3.5.1. Robot Build Quality 

An important capability of a self-replicating robot system is the ability to fabricate parts 

and assemble new robots. This introduces the question of the quality of the built robot, as a robot 

built in-situ may have quality defects (without the ability to simply discard it with minimal impact, 

like in a factory setting). To facilitate assessment, the simulation assigns each robot a build quality. 

A robot’s build quality value ranges from zero to one, with one being very high quality and zero 

being very poor quality. The quality value is a decimal value and not a binary one or zero value.  

Parameters are used with estimated values to model possible changes in build quality. 

These parameters and their default values are listed in Table 3.5. These values are rough 

predictions used to demonstrate principles. The actual quality metrics would vary significantly, 

based on hardware aspects and operating environment. Furthermore, these values are varied during 

experimentation in order to determine their relative impact on the system. In this regard, the 

relative impact of build quality, from generation to generation, is of interest (more than the precise 

values).  

Table 3.5. Parameters for assigning the build quality of newly assembled robots. 

Build Quality  

Determination 
Chance Lower Bound Upper Bound 

Quality Increase (Quality_incr) 5% 0.01 0.05 

Quality Decrease (Quality_decr) 50% 0.01 0.25 

 

The build quality value is determined as follows. When a new robot is built, it has a build 

quality value determined based on the robot that assembled it. First, a random value is generated, 

and if the value is above one minus the increase quality chance (the default value for this is listed 

in Table 3.5), then the newly assembled robot’s build quality equals the build quality of the 

assembling robot plus a random number between the increase quality lower and upper bound 
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parameter values (zero and one are a strictly enforced minimum and maximum). If not within the 

increase chance, then it is compared to the decrease quality chance parameter. Similar to before, 

if the random number is below the decrease quality chance then the newly assembled robot’s build 

quality equals its builder’s quality minus a random number between the upper and lower bounds. 

The pseudocode for this process is shown in Equation 2. The variable RobotQuality refers to the build 

quality of the newly constructed robot, AssemblerQuality refers to the build quality of the robot that 

assembled it, and the quality parameters refer to the values in Table 3.5. 

rand  random(0, 1) 

if rand > (1.0 - Quality_incr_Chance): 

    RobotQuality  AssemblerQuality  +  random(Quality_incr_Lower, Quality_incr_Upper) 

else if rand < Quality_decr_Chance: 

    RobotQuality  AssemblerQuality  -  random(Quality_decr_Lower, Quality_decr_Upper) 

else: 

    RobotQuality  AssemblerQuality 

(Eq. 2) 

 

In the simulation, a robot’s build quality has three effects. First and foremost, there is a 

basic functionality quality threshold parameter (QualityThreshold). If the quality of a newly built 

robot is below the quality threshold parameter, then the robot is considered non-functional and 

destroyed in the simulation. The rationale behind this is that a robot of sufficiently low quality 

would fall apart or be otherwise non-functional for the purposes of task assignment. A factor that 

may heavily contribute to this is the robot system’s operating environment. More hazardous 

environments, for example, may be less forgiving in terms of defects. The second effect of build 

quality is that the quality of the assembling robot is used to determine the quality of the built robot. 

Thus, this effect only impacts assembly-capable robot types. The rationale behind this is that a 

robot with defects may not be capable of assembling a robot as well as one without (or with less) 

defects. Third, a robot’s build quality is a factor in task risk calculations, as described below. 
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3.5.2. Task Risks 

Tasks have a risk of failing in a manner which harms or destroys the robot performing the 

task. For the purpose of the simulation, this is taken into account with the parameters listed in 

Table 3.6. The listed risk amount values are adjustable parameters. The rationale behind the 

particular consequence of each task type is as follows. Collecting resources involves robots 

foraging in an environment. This puts them at risk of being stuck, trapped, navigationally lost, or 

otherwise lost due to environmental hazards. This isn’t the case with printing or assembling, as 

navigating the environment wouldn’t be part of these tasks. The task of printing was chosen to 

have the consequence of the robot’s printing capabilities being lost due to a significant hardware 

malfunction occurring. Similarly, the assemble task has the potential consequence of the assembly 

hardware breaking down. The default risk amounts were chosen based on estimations but would 

likely vary significantly based on hardware specifications and environmental factors. These are 

configurable parameters within the simulation system, to facilitate experimentation. 

Table 3.6. Default values for risk chance and consequences of tasks based on task type. 

Task Type: Collect Print Assemble 

RiskTask_Type 1% 0.1% 0.1% 

Consequence Robot Lost Printing Capability Lost Assembly Capability Lost 

 

The build quality of the robot performing a task may also affect the associated risks of 

performing a given task. The rationale behind this is that as the quality of a robot decreases, the 

risk of it encountering problems performing a task would likely increase. Thus, Equation 3 was 

utilized in order to address this. The variable RiskTask_Type refers to the values in Table 3.6 

(corresponding to the task type) and the variable RobotQuality refers to the build quality of the robot 

performing the task. 
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𝑅𝑖𝑠𝑘𝑇𝑎𝑠𝑘  = 𝑅𝑖𝑠𝑘𝑇𝑎𝑠𝑘_𝑇𝑦𝑝𝑒 + (1.0 − 𝑅𝑜𝑏𝑜𝑡𝑄𝑢𝑎𝑙𝑖𝑡𝑦) ∗ 𝑅𝑖𝑠𝑘𝑇𝑎𝑠𝑘_𝑇𝑦𝑝𝑒 ∗ 𝑅𝑖𝑠𝑘𝑄𝑢𝑎𝑙𝑖𝑡𝑦_𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑟 

𝑖𝑓 𝑅𝑜𝑏𝑜𝑡 ∈ 𝐹𝑎𝑐𝑡𝑜𝑟𝑦𝑀𝑎𝑑𝑒:   𝑅𝑖𝑠𝑘𝑇𝑎𝑠𝑘  = 𝑅𝑖𝑠𝑘𝑇𝑎𝑠𝑘 ∗ 𝑅𝑖𝑠𝑘𝐹𝑎𝑐𝑡𝑜𝑟𝑦_𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑟 
(Eq. 3) 

 

In Equation 3, a robot’s lack of quality increases the risk in a manner related to the task 

type’s risk. Omitting RiskTask_Type in the multiplication would increase the risk by a constant, which 

could end up being a dominating factor and negating the relevance of the task’s inherit risk. A risk 

modifier parameter (RiskQuality_Modifier) is then applied in order to add a weighting factor for 

the impact of quality on the risk. 

Another consideration is that the initial robots of the robot system would likely be factory 

built and tested to a high degree. Thus, the associated risk amount of these (likely thoroughly 

tested) initial factory-built robots would be less than robots built by the robot system. In this regard, 

a parameter (RiskFactory_Modifier) is used to scale the risk cost of factory-built robots performing 

a task. 

3.6. Simulation Operation 

In this section, the programmatic flow and operation of the simulation is detailed. The 

simulation is divided into a number of iterations (time-steps), determined by an input parameter. 

Each time-step corresponds to a block of time, with the simulation starting at step zero and 

progressing until the input number of time-steps is reached. A time-step corresponds to an iteration 

of the main loop in Figure 3.2. In the main loop, the simulation events are evaluated followed by 

decision-making (planning) by the robot system. These are discussed in the following subsections. 
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Figure 3.2. Diagram of the high-level operation of the simulation. 

3.6.1. Simulation Events 

The simulation events process informs robots of the results of the current actions of the 

robot system, while the decision-making process is used for determining what actions to perform 

in future steps. In each time-step of the simulation, robots in the robot system perform tasks which 

involve acquiring resources, converting resources, or assembling new robots. The simulation 

events process determines the results of these actions by the robot system. 
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Figure 3.3. Diagram depicting the operation of simulation events. 

The process for processing simulation events, depicted in Figure 3.3, consists of looping 

through the tasks currently being performed. For each of the tasks in progress by the robot system, 

the risk of performing the task is used to determine (with random input) if it failed or succeeded 

in the current time-step. If it succeeded, the task’s remaining duration is decremented by one. If its 

remaining duration is now zero, then its completion actions are performed (i.e., the resources are 

gathered, the part is fabricated, or the robot is assembled). In the case where it failed, then the task 

failure actions are performed, and it is removed from the active tasks, as a failed task is abandoned.  
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3.6.2. Decision-Making 

The decision-making process primarily consists of the robot system assigning tasks to the 

robots. The decision-making algorithm is setup so that it functions as a programmatic interface 

(i.e., a different algorithm could instantiate the interface and be used instead of the base algorithm). 

In this sense, it takes the robot system as an input and assigns the tasks to the robots in the system 

(depicted in Figure 3.4). 
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Call

Return

 

Figure 3.4. Overview of the decision-making algorithm’s task assignments to the robot system. 

Certain parameters and variables in the simulation are considered known to the robot 

system, while other parameters are considered unknown. The unknown parameters aren’t available 

to the decision-making algorithm. These include task risk and robot build quality related values. 

The decision-making system could predict these values over time, based on observations. 

However, the exact values used are unavailable to it. Examples of known parameters include the 

build costs of each robot type, the robot system’s current robots (including characteristics of each 

robot), and the robot system’s current resources. 
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The details of the utilized decision-making algorithms are presented in subsequent 

chapters. The next chapter discusses using a base decision-making algorithm and comparing the 

results from the simulation runs in order to derive decision-making criteria. The determined 

decision-making criteria are then used in a subsequent chapter to derive and compare different 

decision-making algorithms.  

3.6.3. Stochastic Processes in the Simulation System 

The simulation system has certain procedures and parameters that are stochastic. Due to 

this, the experiments conducted are run one hundred times (with the same conditions/inputs) and 

have the results averaged together from those runs.  
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Figure 3.5. Diagram of the role of stochastic processes in the simulation system. 
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The components of the simulation system that involve stochastic processes include: the 

determination of build quality for newly assembled robots and the evaluation of task risk (depicted 

in Figure 3.5). The equation for determining build quality was provided in Equation 2, and the 

equation for evaluating task risk was provided in Equation 3. Averaging the results over one 

hundred simulation runs is used to account for these stochastic aspects of the simulation system in 

the experiments conducted in subsequent chapters. 

3.6.4. Simulation Parameters 

Simulation parameters are used as inputs into each simulation run. These values are varied 

between the experimental conditions (introduced in subsequent chapters) in order to facilitate 

analysis of their impact on the outcome of each simulation run. The simulation parameters and 

their default values (when not being altered for a particular experimental condition) are listed and 

described in Tables 3.7 and 3.8. 
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Table 3.7. Description of simulation parameters (part 1). 

Parameter 
Default 

Value 
Description 

Num_Steps - Number of iterations/time-steps that the simulation goes through. 

Num_Runs 100 Number of times the simulation is run with the input parameters. 

Initial_NonPr 300.0 

The robot system’s starting quantity of nonprintable components. This 

parameter is an upper bound on the robot system’s growth [2]. It is 

initially set to a value 3x that of the initial printable components. 

Initial_Printable 100.0 
The robot system’s starting quantity of printable components. This would 

vary based on mission-related constraints [2]. 

Initial_Materials 50.0 

The robot system’s starting quantity of raw printing materials. This 

would vary based on mission-related constraints. Initially set to ½ that of 

the initial printable components. 

Env_Materials 500.0 

The environment’s quantity of collectable raw printing materials. 

Represents the amount of in-situ resources that can be utilized for the 

robot system [12]. Initially set to greater than the initial nonprintable in 

order to simulate an environment with abundant (but not limitless) in-situ 

resource availability. 

BaseCost_NonPr 1 
Base robot cost of nonprintable components. Initially set to 1, with equal 

volume of nonprintable components needed for all capabilities. 

PrintCost_NonPr 1 
Print capability cost of nonprintable components. Initially set to 1, with 

equal volume of nonprintable components needed for all capabilities. 

AssembleCost_NonPr 1 

Assemble capability cost of nonprintable components. Initially set to 1, 

with equal volume of nonprintable components needed for all 

capabilities. 

BaseCost_Pr 2 Base robot cost of printable components. Initially set to 2 to . 

PrintCost_Pr 2 
Print capability cost of printable components. Initially set to 2x the cost 

of print-capability nonprintable components. 

AssembleCost_Pr 2 
Assemble capability cost of printable components. Initially set to 2x the 

cost of assemble-capability nonprintable components. 

BaseCost_Time 2 

Base robot cost of build time. This simulates the amount of time it takes 

to assemble a base robot. Initially set to 2 based on ratio of collection and 

printing of components. 

PrintCost_Time 2 

Print capability cost of build time. This simulates the amount of 

additional time needed to add the print capability to a robot under 

construction. Initially set to be equal to BaseCost_Time in order for the 

time increase to be linear. 

AssembleCost_Time 2 

Assemble capability cost of build time. This simulates the amount of 

additional time needed to add the assemble capability to a robot under 

construction. Initially set to be equal to BaseCost_Time in order for the 

time increase to be linear. 

Print_Efficiency 1.0 

Factor that scales raw printing materials to printable components. 

Conversion ratio from raw material quantities to printable component 

quantities. Initially set to 1:1 conversion. 

Print_Amount 1.0 

Amount of raw materials converted per print task. Quantity that is scaled 

by the print efficiency parameter to determine how many raw materials 

are converted per print task completion. 

Collect_Amount 1.0 Raw printing materials per collecting robot per timestep. 
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Table 3.8. Description of simulation parameters (part 2). 

Parameter 
Default 

Value 
Description 

QualityThreshold 0.5 

Robots with a quality below this are non-functional. This parameter is 

used to model the build quality at which the necessary functionality of 

the robot is degraded beyond usability. Initially set to 0.5 such that the 

quality of generations has a mid-level threshold. 

Quality_incr_Chance 5.0% 

Chance that a new robot’s build quality will increase. This value was 

chosen based on the comparatively low estimated percentage chance of 

the build quality increasing over generations for self-replicating robot 

systems, although this would have hardware dependencies. This is based 

on previous work in [5]. Initial value of 1/10th to that of the decrease 

chance. 

Quality_incr_Lower 0.01 
Lower bound for quality increase amount. Initially set to 0.01 such that 

the range does not have a significant minimum quality increase. 

Quality_incr_Upper 0.05 

Upper bound for quality increase amount. This value is less than that of 

the upper bound of the decrease chance due to a lower quality assembling 

robot potentially not being able to assemble a robot with a quality much 

greater than its own [5]. Although this is impacted by hardware 

implementation. 

Quality_decr_Chance 50.0% 

Chance that a new robot’s build quality will decrease. This value was 

chosen based on the comparatively high estimated percentage chance of 

the build quality decreasing over generations for self-replicating robot 

systems, although this would have hardware dependencies. This is based 

on previous work in [5]. Initial ratio of 10x that of the increase chance. 

Quality_decr_Lower 0.01 
Lower bound for quality decrease amount. Initially set to 0.01 such that 

the range does not have a significant minimum quality decrease.  

Quality_decr_Upper 0.25 

Upper bound for quality decrease amount. This value is greater than that 

of the upper bound of the increase chance due to both the predicted 

probability and severity of defects occurring over generations [5]. 

Although this is impacted by hardware implementation. 

RiskAmount_Collect 1.0% 

Risk chance for the collect task type. This signifies the estimated foraging 

risk, which is impacted by environment and robotic hardware aspects [2]. 

Initially set to 1% to simulate a moderate foraging risk. 

RiskAmount_Assemble 0.1% 

Risk chance for the assemble task type. Assembly equipment break-down 

rate initially set to 1/1000th , although this would vary based on hardware 

and the operating environment (among other factors). 

RiskAmount_Print 0.1% 

Risk chance for the print task type. 3D printer break-down rate initially 

set to 1/1000th , although this would vary based on hardware and the 

operating environment (among other factors). 

RiskQuality_Modifier 5.0 
Multiplier for impact of quality defects on risk amount. The initial value 

of 5 was chosen based on trials of the simulation system. 

RiskFactory_Modifier 0.1 

Multiplier for impact of factory-made robots on risk amount. Thoroughly 

tested robots would have a lower probability of failure. This initial value 

would scale the risk by 1/10th. 
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3.6.5. Software Overview 

The implementation of the simulation system used in the subsequent chapters was written 

in the Python programming language. An overview class diagram of the program is depicted in 

Figure 3.6.  

Robot

Resource_Stockpile

Robot_System

Simulator

Task_Type

Task

DecisionMakingAlgorithm

+ current_task : Task
+ build_quality : float
+ capabilities : Task_Type[]
# PrintableCost : int
# NonprintableCost : int
# BuildTime : int

# Raw_Materials : float
# Printable_Components : float
# NonPrintable_Components : float

# robots : Robot[] 
# buildable : Robot_Type[]
# resources : Resource_Stockpile

- robot_system : Robot_System
- algorithm : DecisionMakingAlgorithm
- EnvMaterials : float
- Current_Step : int
-------------------------------------------------
+ RunSimulation(Parameters) : void
- SimulationEvents() : void
- DecisionMaking() : void

# identifier : string
# TaskDuration : int
# Risk : float

- Duration : int
+ tasktype : Task_Type
------------------------------------------------
- CompletionActions() : void
- FailureActions() : void
+ Evaluate() : boolean

# assign_assemble(Robot_System rs) : Robots[]
# assign_print(Robot_System rs) : Robots[]
# assign_collect(Robot_System rs) : Robots[]

 

Figure 3.6. Overview class diagram of the utilized simulation system implementation. 

The design of the simulation system was focused on the use of encapsulation in order to 

allow changes and new features to be integrated more easily. The development of the software 

went through three separate iterations: base functionality, experimental condition features 
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(discussed in Chapter 4), and cybersecurity features (discussed in Chapter 6, not shown in Figure 

3.6). ‘Bug fixing’ and validation of previous features was conducted to ensure functionality during 

each of the three development iterations. The functionality of the simulation system was verified 

through several test runs and the step by step logging of events and variables.  

The ‘Simulator’ class is responsible for running the simulation. It is first initialized with an 

instance of the ‘DecisionMakingAlgorithm’ class. Then, the input parameters are passed to it via 

the ‘RunSimulation’ method, which runs the simulation Num_Runs amount of times. The results 

of each run are stored in memory and the average of each result field is taken once all the runs 

have completed. The averaged results are written to a CSV file (which is subsequently imported 

and merged with the data in the database).  

The ‘Robot’ class is the base class for each robot type used in the simulation. A sub-class 

is made for each robot type, which modifies the capabilities variable based on the task types that 

it is capable of performing. The costs are based on parameters and are set by the ‘Simulator’ class 

at the start of each run. The ‘Task_Type’ class is also a base class for each task type used in the 

simulation, where the duration and risk of each sub-class is changed by the ‘Simulator’ based on 

parameter values. Similarly, the ‘DecisionMakingAlgorithm’ class is also the base class which 

each of the decision-making algorithms (discussed in the subsequent chapters) inherit. 
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4. SYSTEM CONFIGURATION EXPERIMENT4 

In this chapter, an experiment that was performed utilizing the simulation system described 

in the previous chapter is presented and analyzed.  

4.1. Experiment Overview 

The goal of this experiment was to collect data and use the knowledge gained from its 

analysis to develop decision-making criteria for a decision-making algorithm. The decision-

making algorithms are derived and compared in Chapter 5. This chapter focuses on establishing 

the decision-making criteria for the decision-making algorithms to utilize. In this section, the 

system configurations that were utilized are reviewed, and the base decision algorithm used for the 

experiment is presented. 

4.1.1. Replication System Configurations 

In this subsection, information on the replication system configuration (discussed in the 

previous chapter) is provided for reference. Two sets of approaches are combined to form the 

replication system configurations used in the experiment. The result of combining the higher-level 

categories is listed in Table 4.1. The first set (replication approach) is as follows: 

• Centralized (prefix: C): A system where robots that have a replication-related 

capability are not buildable by the robot system. These systems exclusively use pre-

existing, factory-made robots to provide replication related capabilities. 

 

 

 

4 This chapter is derived from: A. Jones and J. Straub, “Simulation and Analysis of Self-Replicating Robot Decision 

Making Systems,” Comput., vol. 10, no. 1, 2021. 
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• Decentralized (prefix: D): A system where all robots have one or more replication-

related capabilities. These systems mandate that all built robots have some capability 

in terms of replication. 

• Hierarchical (prefix: H): A system where buildable robots may or may not have 

replication-related capabilities. These systems are a combination of the centralized and 

decentralized approaches and do not impose strict replication-related capability 

requirements on buildable robot types (although at least one of each is present). 

The first set is then combined with the second set of categories. The second set (production 

approach) is as follows. 

• Homogeneous (suffix: HO): a system that uses a single robot type for all the 

replication-related capabilities. In the current simulation setup, this is the replicator 

robot type. 

• Heterogeneous (suffix: HE): a system that uses multiple robot types that have 

replication-related capabilities. In the current simulation setup, this consists of the 

assembler and printer robot types. 

Table 4.1. Buildable robot types by system configuration. 

System Configuration Robot Type 

ID Name Normal Printers Assemblers Replicators 

CHO Centralized Homogeneous  - - ○ 

DHO Decentralized Homogeneous - - -  

HHO Hierarchical Homogeneous  - -  

CHE Centralized Heterogeneous  ○ ○ - 

DHE Decentralized Heterogeneous -   - 

HHE Hierarchical Heterogeneous    - 

*Buildable robot types are denoted with the filled in circle, and robots that are present (but not 

buildable) are denoted with a hollow circle. 
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4.1.2. Base Decision-Making Algorithm 

To perform the experiment in this chapter, a simplistic decision-making algorithm was 

utilized to analyze trends in the performance of the different system configurations under multiple 

experimental conditions. This decision-making algorithm is now discussed. 

In the base decision-making algorithm, the choice of when to build a new robot, and what 

type it should be, is decided with simple criteria. This involves finding all idle assembly-capable 

robots and then taking the buildable robot type list (see Table 4.2) and repeating it (in order) until 

there are enough robots in the build queue for each idle assembly-capable robot. Resource 

constraints are not checked initially. If a robot cannot be built, the would-be assembler simply 

remains idle. The analysis and the improvement of this portion of the decision-making system is a 

key goal of this experiment. The impact and consideration of multiple factors may allow an 

improved decision-making system to make more optimal choices based on the criteria considered. 

Table 4.2. Robot build list by system configuration. 

Buildable Robot Types Centralized Decentralized Hierarchical 

Homogeneous Normal Replicator Replicator, Normal  

Heterogeneous Normal Assembler, Printer Assembler, Printer, Normal 

 

After determining what each of the robots need to assemble (if anything), the base decision-

making algorithm assigns all currently idle print-capable robots to fabricate printable components. 

This is limited by the robot system’s current amount of available raw printing materials (robots 

will not be assigned to printing tasks that materials are not available for). This is shown in Equation 

4, where ‘AssignedPrint’ represents the set of robots that are assigned the print task at a given 

time-step and the ‘MaxPrint’ variable denotes the maximum number or robots that could print 

given the robot systems’ current supply of raw materials. 
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𝑀𝑎𝑥𝑃𝑟𝑖𝑛𝑡 ∶=  ⌊
𝑅𝑜𝑏𝑜𝑡𝑆𝑦𝑠𝑡𝑒𝑚𝑅𝑎𝑤𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠

𝑃𝑟𝑖𝑛𝑡𝐴𝑚𝑜𝑢𝑛𝑡

⌋   

𝐶𝑎𝑛𝑃𝑟𝑖𝑛𝑡 ∶= {∀𝑅𝑜𝑏𝑜𝑡: (𝑅𝑜𝑏𝑜𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑎𝑠𝑘 == 𝐼𝑑𝑙𝑒) ∧ (𝑃𝑟𝑖𝑛𝑡 ∈ 𝑅𝑜𝑏𝑜𝑡𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)} 

𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑃𝑟𝑖𝑛𝑡 ∶= 𝑆 | (𝑆 ⊆ 𝐶𝑎𝑛𝑃𝑟𝑖𝑛𝑡) ∧ (|𝑆| == 𝑀𝐼𝑁(|𝐶𝑎𝑛𝑃𝑟𝑖𝑛𝑡|, 𝑀𝑎𝑥𝑃𝑟𝑖𝑛𝑡))  

… 

𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐶𝑜𝑙𝑙𝑒𝑐𝑡 ∶= {∀𝑅𝑜𝑏𝑜𝑡: (𝑅𝑜𝑏𝑜𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑎𝑠𝑘 == 𝐼𝑑𝑙𝑒) ∧ (𝐶𝑜𝑙𝑙𝑒𝑐𝑡 ∈ 𝑅𝑜𝑏𝑜𝑡𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)} 

(Eq. 4) 

 

After these assignments, all robots that are idle are assigned to collect materials from the 

environment. This is represented by the ‘AssignedCollect’ set of robots in Equation 4. If robots 

return no materials, then it is assumed that the environment is out of raw materials and the system 

stops assigning any robots to the collection task once this happens. The task risk associated with 

the collection task is the motivation for discontinuing unfruitful collection. However, the stage at 

which it can be assumed that no further resources are available to collect may be more complex in 

real world instances. 

4.2. Experiment Methodology 

In this section, the metrics, experimental conditions, and hypotheses are presented. 

4.2.1. Output Metrics 

There are two types of metrics recorded for each simulation run. These types are primary 

and secondary. The primary metrics are categorized as such since they are of higher interest than 

the secondary metrics for the purposes of this experiment. The primary metrics measured and 

recorded by the simulation include: 

• Assembly Potential: the number of robots that have the assembly capability at the end 

of a simulation run. This includes replicator and assembler robot types, which haven’t 

succumbed to a task risk and lost their capability. The standard deviation of this value, 

among the simulation runs, is also recorded. 
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• Collection potential: the number of robots that have the collect capability at the end 

of a simulation run. All robot types have this capability in this simulation, so this is 

always equal to the current number of robots in the system. The standard deviation of 

this value, among the simulation runs, is also recorded. 

• Print Potential: the number of robots that have the print capability at the end of a 

simulation run. This includes replicator and printer robot types, which haven’t 

succumbed to a task risk and lost their capability. The standard deviation of this value, 

among the simulation runs, is also recorded. 

The secondary metrics measured and recorded by the simulation include: 

• Current Number of Robots: The current number of robots in the system during the 

final time-step of the simulation. This does not include robots that were destroyed or 

lost due to succumbing to task risks. 

• Total Number of Robots: The total number of robots in the system. This includes 

robots that were destroyed or lost due to task risks. 

• Average Robot Quality: The average build quality of the current robots in the system 

during the final time-step of the simulation.  

• Assemble Ratio: The ratio of robots that have the assemble capability to the current 

overall number of robots. 

• Print Ratio: The ratio of robots that have the print capability to the current overall 

number of robots. 

• Collect Ratio: The ratio of robots that have the collect capability to the current overall 

number of robots. In the current simulation setup, this is the same as the current number 

of robots since they all have the collect capability. 
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• Number of Robots Destroyed (Build Quality): The number of robots that, when 

assembled, had a quality lower than the QualityThreshold parameter (and were 

therefore considered non-functional at the end of their fabrication process). 

• Number of Robots Destroyed (Task Risk): The number of robots that were destroyed 

due to succumbing to task risks. For the current simulation setup, this is a hazard risk 

of the collect task type. 

• Number of Capabilities Lost: The number of robots that lost one or more capabilities 

due to succumbing to a task risk. For the current simulation setup, this is a hazard of 

the print and assemble task types. 

4.2.2. Simulation Parameters 

Simulation parameters are used as inputs into each simulation run. These values are varied 

between the experimental conditions in order to facilitate analysis of their impact on the outcome 

of each simulation run. The simulation parameters and their default values (when not being altered 

for a particular experimental condition) are listed in Table 4.3. 
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Table 4.3. List and description of the simulation parameters. 

Parameter 
Default 

Value 
Description 

Num_Steps - Number of iterations/time-steps that the simulation goes through. 

Num_Runs 100 Number of times the simulation is run with the input parameters. 

Initial_NonPr 300.0 The robot system’s starting quantity of nonprintable components. 

Initial_Printable 100.0 The robot system’s starting quantity of printable components. 

Initial_Materials 50.0 The robot system’s starting quantity of raw printing materials. 

Env_Materials 500.0 The environment’s quantity of collectable raw printing materials. 

BaseCost_NonPr 1 Base robot cost of nonprintable components. 

PrintCost_NonPr 1 Print capability cost of nonprintable components. 

AssembleCost_NonPr 1 Assemble capability cost of nonprintable components. 

BaseCost_Pr 2 Base robot cost of printable components. 

PrintCost_Pr 2 Print capability cost of printable components. 

AssembleCost_Pr 2 Assemble capability cost of printable components. 

BaseCost_Time 2 Base robot cost of build time. 

PrintCost_Time 2 Print capability cost of build time 

AssembleCost_Time 2 Assemble capability cost of build time. 

Print_Efficiency 1.0 Factor that scales raw printing materials to printable components. 

Print_Amount 1.0 Amount of raw materials converted per print task. 

Collect_Amount 1.0 Raw printing materials per collecting robot per timestep. 

QualityThreshold 0.5 Robots with a quality below this are non-functional. 

Quality_incr_Chance 5.0% Chance that a new robot’s build quality will increase. 

Quality_incr_Lower 0.01 Lower bound for quality increase amount. 

Quality_incr_Upper 0.05 Upper bound for quality increase amount. 

Quality_decr_Chance 50.0% Chance that a new robot’s build quality will decrease. 

Quality_decr_Lower 0.01 Lower bound for quality decrease amount. 

Quality_decr_Upper 0.25 Upper bound for quality decrease amount. 

RiskAmount_Collect 1.0% Risk chance for the collect task type. 

RiskAmount_Assemble 0.1% Risk chance for the assemble task type. 

RiskAmount_Print 0.1% Risk chance for the print task type. 

RiskQuality_Modifier 5.0 Multiplier for impact of quality defects on risk amount. 

RiskFactory_Modifier 0.1 Multiplier for impact of factory-made robots on risk amount. 

 

4.2.3. Experimental Conditions 

Each experimental condition was run with three different time-step inputs (“Num_Steps” 

parameter). These input values were 30, 50, and 70. As listed in Table 4.4, each experimental 

condition was run one hundred times for each system configuration and time-step input. The results 

were averaged together from the runs of each system configuration on each experimental condition 

and time-step.  
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Table 4.4. Breakdown of number of runs per experimental condition. 

Number of time-steps (Num_Steps) 30 Steps 50 Steps 70 Steps  

Number of runs per configuration (Num_Runs) 100 100 100 Total 

Runs per experimental condition 600 600 600 1800 

 

The experimental conditions are divided into four classifications. Members of 

experimental classification ‘A’, which are listed in Table 4.5, involve varying the build costs for 

the different robot types. These costs include the printable and nonprintable components required, 

as well as the build duration. Second, experimental condition classification ‘B’ (listed in Table 

4.6) involves varying the parameters: Print_Efficiency, Print_Amount, and Collect_Amount. These 

parameters affect the resource gathering and conversion ratios. Third, experimental condition 

classification ‘C’ (listed in Table 4.7) involves varying the parameters that affect robots’ build 

quality and task risk levels. Finally, experimental condition classification ‘D’ (listed in Table 4.8) 

involves varying the initial resource amounts available in the simulation that are held by the robot 

system and the raw printing materials available in the environment. 
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Table 4.5. Experimental condition classification ‘A’ (robot cost). 

ID Experimental Condition Description 

A0 (Default) Default values for all parameters. 

A1 BaseCost_Pr + 1 BaseCost_Pr increased from 2 to 3. 

A2 BaseCost_Pr + 3 BaseCost_Pr increased from 2 to 5. 

A3 BaseCost_Pr + 5 BaseCost_Pr increased from 2  to 7. 

A4 PrintCost_Pr + 1 PrintCost_Pr increased from 2 to 3. 

A5 PrintCost_Pr + 3 PrintCost_Pr increased from 2 to 5. 

A6 PrintCost_Pr + 5 PrintCost_Pr increased from 2 to 7. 

A7 AssembleCost_Pr + 1 AssembleCost_Pr increased from 2 to 3. 

A8 AssembleCost_Pr + 3 AssembleCost_Pr increased from 2 to 5. 

A9 AssembleCost_Pr + 5 AssembleCost_Pr increased from 2 to 7. 

A10 BaseCost_Time + 2 BaseCost_Time increased from 2 to 4. 

A11 BaseCost_Time - 1 BaseCost_Time decreased from 2 to 1. 

A12 PrintCost_Time + 2 PrintCost_Time increased from 2 to 4. 

A13 PrintCost_Time - 1 PrintCost_Time decreased from 2 to 1. 

A14 AssembleCost_Time + 2 AssembleCost_Time increased from 2 to 4. 

A15 AssembleCost_Time - 1 AssembleCost_Time decreased from 2 to 1. 

A16 Print & Assemble Time + 2 PrintCost_Time and AssembleCost_Time increased to 4. 

A17 BaseCost_NonPr + 1 BaseCost_NonPr increased from 1 to 2. 

A18 PrintCost_NonPr + 1 PrintCost_NonPr increased from 1 to 2. 

A19 AssembleCost_NonPr + 1 AssembleCost_NonPr increased from 1 to 2. 

A20 [All]CostPrintable + 1 Base-, Print-, and AssembleCost_Pr increased to 3. 

A21 [All]CostPrintable + 2 Base-, Print-, and AssembleCost_Pr increased to 4. 

A22 Print & Assemble Pr + 2 PrintCost_Pr and AssembleCost_Pr increased to 4. 

A23 Base & Print Pr + 2 BaseCost_Pr and PrintCost_Pr increased to 4. 

A24 Base & Assemble Pr + 2 BaseCost_Pr and AssembleCost_Pr increased to 4. 

A25 [All]CostPrintable - 1 Base-, Print-, and AssembleCost_Pr decreased to 1. 

A26 AssembleCost_Pr - 1 AssembleCost_Pr decreased from 2 to 1. 

A27 PrintCost_Pr - 1 PrintCost_Pr decreased from 2  to 1. 

A28 BaseCost_Pr - 1 BaseCost_Pr decreased from 2 to 1. 

Table 4.6. Experimental condition classification ‘B’ (resource acquisition). 

ID Experimental Condition Description 

B1 Print_Efficiency = 0.25 Print_Efficiency decreased from 1.0 to 0.25. 

B2 Print_Efficiency = 0.5 Print_Efficiency decreased from 1.0 to 0.5. 

B3 Print_Efficiency = 1.5 Print_Efficiency increased from 1.0 to 1.5. 

B4 Collect_Amount = 0.25 Collect_Amount decreased from 1.0 to 0.25. 

B5 Collect_Amount = 0.5 Collect_Amount decreased from 1.0 to 0.5. 

B6 Collect_Amount = 1.5 Collect_Amount increased from 1.0 to 1.5. 

B7 Print_Amount = 0.25 Print_Amount decreased from 1.0 to 0.25. 

B8 Print_Amount = 0.5 Print_Amount decreased from 1.0  to 0.5. 

B9 Print_Amount = 1.5 Print_Amount increased from 1.0 to 1.5. 

B10 Collect & Print Amount = 0.5 Collect_Amount and Print_Amount decreased to 0.5. 
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Table 4.7. Experimental condition classification ‘C’ (quality and risk). 

ID Experimental Condition Description 

C1 QualityThreshold + 0.1 QualityThreshold increased from 0.5 to 0.6. 

C2 QualityThreshold + 0.2 QualityThreshold increased from 0.5 to 0.7. 

C3 QualityThreshold + 0.3 QualityThreshold increased from 0.5 to 0.8. 

C4 QualityThreshold + 0.4 QualityThreshold increased from 0.5 to 0.9. 

C5 RiskAmount_Print = 1% RiskAmount_Print increased from 0.1% to 1%. 

C6 RiskAmount_Assemble = 1% RiskAmount_Assemble increased from 0.1% to 1%. 

C7 RiskAmount Pr & As = 10% RiskAmount_Print & RiskAmount_Assemble = 10%. 

C8 RiskAmount Pr & As = 15% RiskAmount_Print & RiskAmount_Assemble = 15%. 

C9 RiskAmount_Assemble = 15% RiskAmount_Assemble increased from 0.1% to 15%. 

C10 Quality_incr_Chance = 0.01% Quality_incr_Chance decreased from 5% to 0.01%. 

C11 Quality_decr_Chance = 25% Quality_decr_Chance decreased from 50% to 25%. 

C12 Quality_decr_Chance = 75% Quality_decr_Chance increased from 50% to 75%. 

C13 Quality_decr_Upper = 0.5 Quality_decr_Upper increased from 0.25 to 0.5. 

C14 Qual_incr Chance & Upper * 2 Quality_incr_Chance = 10% & Quality_incr_Upper = 0.1. 

C15 RiskQuality_Modifier = 10.0 RiskQuality_Modifier increased from 5.0 to 10.0. 

C16 RiskQuality_Modifier = 25.0 RiskQuality_Modifier increased from 5.0 to 25.0. 

C17 RiskFactory_Modifier = 0.5 RiskFactory_Modifier increased from 0.1 to 0.5. 

C18 RiskFactory_Modifier = 1.0 RiskFactory_Modifier increased from 0.1 to 1.0. 

C19 Quality Thres & decr_Chance QualityThreshold = 0.9 & Quality_decr_Chance = 75%. 

Table 4.8. Experimental condition classification ‘D’ (initial resources). 

ID Experimental Condition Description 

D1 Initial_Printable / 2.0 Initial_Printable decreased from 100 to 50. 

D2 Initial_Printable * 2.0 Initial_Printable increased from 100 to 200. 

D3 Initial_Materials = 0 Initial_Materials decreased from 50 to 0. 

D4 Initial_Materials / 2.0 Initial_Materials decreased from 50 to 25. 

D5 Initial_Materials * 2.0 Initial_Materials increased from 50 to 100. 

D6 Env_Materials / 2.0 Env_Materials decreased from 500 to 250. 

D7 Env_Materials * 2.0 Env_Materials increased from 500 to 1000. 

D8 Env_Materials * 100 Env_Materials increased from 500 to 50000. 

D9 Initial_NonPr / 2.0 Initial_NonPr decreased from 300 to 150. 

D10 Initial_NonPr * 2.0 Initial_NonPr increased from 300 to 600. 

D11 Initial NonPr & Env * 2.0 [D7, D10] 

D12 Initial NonPr & Env * 2.0, Raw=0 [D3, D7, D10] 

 

4.2.4. Hypotheses 

There are three hypotheses that form the basis for the experiments presented in this chapter. 

There is a hypothesis specific to the centralized replication approach, one specific to the 

decentralized and hierarchical replication approaches, and one specific to the homogeneous and 

heterogeneous production approaches. Each is presented in this section. 
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4.2.4.1. Hypothesis 1: Centralized Replication Approach 

The hypothesis for the centralized replication approach is that robot build quality will be 

higher than the decentralized and hierarchical replication approaches. The disadvantage of the 

centralized approach is that the assembly and printing capabilities are limited to the initial robots, 

and therefore its assembly and print potentials will be lower than the other replication approaches. 

Thus, the system collection potential and average build quality are the metrics of interest. The 

average build quality is expected to be higher for the centralized replication approach compared 

to the non-centralized replication approaches for all experimental conditions. 

Systems using the centralized replication approach are not expected to have higher 

collection potential for the default case, since one assembling robot can only do so much in a given 

time period. In this regard, the experimental condition classification ‘C’ cases may have instances 

where the collection potential begins to favor the centralized replication approach in conditions 

with increased task risks and build quality demands. More specifically, the higher penalty 

experimental conditions C4, C7, C8, C9, C12, C13, and C19 are expected to show systems using 

the centralized approach being more competitive in terms of collection potential. Secondly, the 

costs associated with the assemble and print capability don’t affect the centralized approach (as 

only non-replicating robots are built). Thus, a significant enough increase in these parameters may 

make the centralized approach more competitive in terms of collection potential. The experimental 

conditions A6, A9, and A16 are examples where these parameters are significantly increased and 

are predicted to potentially have this occur. 

Experimental condition C18 shows how the benefit of the centralized approach affects the 

outcome. This benefit is that only the initial robots are assembly capable. The initial robots are 

assumed to be well tested and therefore have a lower task risk level (simulated using 
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RiskFactory_Modifier). Thus, condition C18 shows the results of the system when that modifier 

is set to 1.0 (i.e., no task risk reduction for initial robots). It is expected that the collection potential 

would be lower due to the robots with an assembly capability succumbing to a task risk more often 

(on average), and therefore not being able to produce any more robots. The experimental condition 

C17 is expected to show a similar effect, but to a lesser extent (as it sets the modifier to 0.5). 

4.2.4.2. Hypothesis 2: Decentralized versus Hierarchical 

The hypothesis comparing the decentralized approach to the hierarchical approach is now 

discussed. The prediction is that the assembly and print potential will be higher in the decentralized 

approach as compared to the hierarchical approach. However, the collection potential for the 

decentralized approach is expected to be lower than that for the hierarchical approach, as systems 

using the decentralized approach do not build normal robots (i.e., lower production cost robots that 

can only collect). Furthermore, the production approach of the system (whether its homogeneous 

or heterogeneous), may impact performance in this area as well. Thus, it will primarily be of 

interest to compare the systems using the decentralized replication approach to their hierarchical 

approach counterpart (and vise-versa). In this regard, the DHE configuration would be compared 

to the HHE configuration and the DHO configuration would be compared to the HHO 

configuration. 

The collection potential may be more equivalent between the decentralized and hierarchical 

replication approaches when the base production cost values of the robots are increased (and be 

farther apart when the base production costs are lowered). This prediction is due to the production 

cost of the normal robots being proportionally raised, which would therefore create a higher cost 

of building any robot. Experimental conditions A1, A2, and A3 affect the printable components’ 

costs. A10 increases the required build duration, and A17 increases the nonprintable component 
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costs for all robot types. Given this, it is predicted that under experimental conditions A1, A2, A3, 

A10, and A17, systems using the decentralized replication approach will have a more equivalent  

collection potential (as compared to the default case) to systems using the hierarchical replication 

approach. However, the nonprintable component cost increase under experimental condition A17 

would only affect the system in the later stages (if it affects it at all) due to potentially causing the 

system to run out of this resource type. 

Systems using the hierarchical replication approach may have a closer print and assembly 

potential to systems using the decentralized replication approach in instances where resource 

collection is more costly. Without enough resources, systems using the decentralized replication 

approach may not be able to produce robots as quickly. Because of this, it is estimated that under 

experimental conditions B4 and B5, systems using the hierarchical replication approach may be 

more competitive, in terms of assembly and print potential, as compared to systems using the 

decentralized approach. In addition, in the early stages (time-step 30), the experimental conditions 

D3 and D4 may show a similar effect. Experimental conditions B4 and B5 reduce the 

Collect_Amount parameter, which means that each robot collects less materials per time-step. 

Experimental conditions D3 and D4 involve reducing the amount of initial raw materials that the 

robot system begins the simulation with. 

4.2.4.3. Hypothesis 3: Homogeneous versus Heterogeneous 

The hypothesis for the comparison of the homogeneous and heterogeneous approaches is 

that the heterogeneous approach will be able to increase the number of robots more rapidly. This 

estimate is based on the heterogeneous production approach using specialized robots and having a 

lower production cost compared to the homogeneous approach (an exception to this is the CHE 

configuration, due to its reliance on initial robots). However, over time, the heterogeneous 
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production approach would run out of nonprintable components. Therefore, it is predicted that 

systems using the homogeneous production approach will have a comparatively greater assembly 

potential and print potential at these later stages. This prediction is due to the homogeneous 

approach using the replicator robot type, which has both print and assemble capabilities. Therefore, 

fundamentally this test is a comparison of the value of versatility versus the value of build speed. 

Experimental conditions D6 and D9 are predicted to have this occur earlier, in terms of time-steps, 

due to there being less available resources in these experimental conditions.  

Another mission planning consideration is the relative production costs of the various robot 

types (both the resources and build time required). Having an asymmetrical cost for the print 

capability and assemble capability is considered, as the base cost affects both roughly equally. 

Because of this, it is predicted that experimental conditions A4, A5, A6, A7, A8 and A9 will result 

in the DHE and HHE configurations outperforming the DHO and HHO configurations in terms of 

collect, print, and assembly potential.  

The parameters RiskAmount_Print and RiskAmount_Assemble may also influence the 

results. These may affect the homogeneous and heterogeneous production approaches differently. 

Experimental conditions C5 and C6 are predicted to result in the DHO and HHO configurations 

outperforming the DHE and HHE configurations in terms of print and assembly potential. This is 

because the replicator robots have both assemble and print capabilities and may be less affected 

by losing one of the two capabilities. However, the potential for an assemble task to fail, while 

producing a more resource expensive replicator robot, may be a counter balancing drawback. The 

higher risk level under experimental conditions C7, C8, and C9 may show a more pronounced 

effect, and equally impair the DHO, HHO, DHE, and HHE configurations. 
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4.3. Results 

In this section, the results of the experiments performed are summarized. Full result tables 

for the primary metrics at time-steps 30, 50, and 70 are provided in Appendix A. In Table 4.9, the 

results for the default case of A0 (which sets all parameters at their default values) are listed for 

each system configuration and time-step. 

Table 4.9. Results for each system configuration on the default case (A0). 

A0 Assembly Potential Print Potential Collection potential 

Values 30 50 70 30 50 70 30 50 70 

CHE 0.99 1.00 1.00 1.00 0.98 1.00 13.77 20.25 29.21 

CHO 1.00 1.00 1.00 1.00 1.00 1.00 12.84 18.81 28.24 

DHE 22.67 69.88 73.82 18.36 58.22 62.10 41.33 129.48 137.41 

DHO 15.70 38.93 82.95 15.66 38.81 82.99 15.78 39.28 83.85 

HHE 18.35 63.27 63.79 13.57 53.07 53.81 44.19 164.48 165.53 

HHO 13.56 32.19 70.91 13.67 32.19 70.67 23.19 66.46 142.48 

 

An overview of the results for each system configuration, across an entire classification of 

experimental conditions, is provided in Tables 4.11-4.14. These tables report the percent share of 

the total of each column in terms of the sum of each system configuration across the experimental 

condition classification. Due to the variance of each experimental condition in the experimental 

condition classification, this percentage may be skewed toward high-performing experimental 

conditions over low-performing experimental conditions. 

Table 4.10 shows the percentage breakdown of the values in Table 4.9 (default case). Table 

4.11 shows this for experimental condition classification ‘A’ (28 experimental conditions). Table 

4.12 shows this for experimental condition classification ‘B’ (10 experimental conditions). Table 

4.13 shows this for experimental condition classification ‘C’ (19 experimental conditions). Table 

4.14 shows this for experimental condition classification ‘D’ (12 experimental conditions). 
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Table 4.10. Percentage of total for each system configuration for the default case (A0). 

A0 Assembly Potential Print Potential Collection Potential 

Percentage 30 50 70 30 50 70 30 50 70 

CHE 1.37% 0.48% 0.34% 1.58% 0.53% 0.37% 9.11% 4.62% 4.98% 

CHO 1.38% 0.48% 0.34% 1.58% 0.54% 0.37% 8.50% 4.29% 4.81% 

DHE 31.37% 33.88% 25.15% 29.02% 31.59% 22.87% 27.35% 29.51% 23.42% 

DHO 21.72% 18.87% 28.27% 24.75% 21.06% 30.56% 10.44% 8.95% 14.29% 

HHE 25.39% 30.67% 21.74% 21.45% 28.80% 19.81% 29.25% 37.49% 28.21% 

HHO 18.76% 15.61% 24.16% 21.61% 17.47% 26.02% 15.35% 15.15% 24.28% 

Table 4.11. Percentage of total for experimental condition classification ‘A’. 

Sum of 

Classification ‘A’ 

Assembly Potential Print Potential Collection Potential 

30 50 70 30 50 70 30 50 70 

CHE 1.56% 0.64% 0.45% 1.88% 0.76% 0.53% 10.29% 6.10% 6.26% 

CHO 1.56% 0.64% 0.45% 1.89% 0.76% 0.53% 9.54% 5.73% 5.71% 

DHE 31.16% 32.78% 28.97% 26.72% 29.47% 25.41% 25.26% 27.03% 24.05% 

DHO 21.84% 21.27% 25.68% 26.37% 25.13% 30.25% 10.33% 9.93% 12.20% 

HHE 26.38% 28.86% 25.27% 21.97% 25.19% 20.69% 28.44% 32.94% 28.64% 

HHO 17.49% 15.80% 19.18% 21.18% 18.68% 22.58% 16.13% 18.28% 23.15% 
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Table 4.12. Percentage of total for experimental condition classification ‘B’. 

Sum of 

Classification ‘B’ 

Assembly Potential Print Potential Collection Potential 

30 50 70 30 50 70 30 50 70 

CHE 1.44% 0.66% 0.45% 1.65% 0.77% 0.52% 9.53% 6.29% 6.12% 

CHO 1.43% 0.66% 0.45% 1.65% 0.77% 0.52% 8.85% 6.01% 5.91% 

DHE 29.98% 32.00% 28.12% 27.66% 29.29% 24.80% 26.23% 27.51% 24.13% 

DHO 22.36% 21.90% 25.71% 25.70% 25.48% 29.73% 10.82% 10.50% 12.49% 

HHE 25.21% 27.17% 23.52% 20.77% 23.18% 19.23% 28.49% 31.87% 28.20% 

HHO 19.59% 17.62% 21.75% 22.58% 20.52% 25.20% 16.08% 17.82% 23.15% 

Table 4.13. Percentage of total for experimental condition classification ‘C’. 

Sum of 

Classification ‘C’ 

Assembly Potential Print Potential Collection potential 

30 50 70 30 50 70 30 50 70 

CHE 1.71% 0.61% 0.41% 1.97% 0.70% 0.46% 10.47% 5.50% 5.70% 

CHO 1.70% 0.62% 0.41% 2.03% 0.74% 0.49% 9.60% 5.22% 5.41% 

DHE 31.31% 33.02% 26.19% 28.24% 30.37% 23.54% 26.75% 28.46% 23.78% 

DHO 21.12% 19.47% 26.69% 24.73% 22.01% 29.15% 10.23% 9.29% 13.23% 

HHE 25.28% 30.33% 22.53% 20.86% 28.05% 20.32% 27.94% 36.42% 28.43% 

HHO 18.89% 15.95% 23.76% 22.17% 18.12% 26.04% 15.02% 15.11% 23.45% 

Table 4.14. Percentage of total for experimental condition classification ‘D’. 

Sum of 

Classification ‘D’ 

Assembly Potential Print Potential Collection potential 

30 50 70 30 50 70 30 50 70 

CHE 1.41% 0.52% 0.35% 1.63% 0.58% 0.38% 9.17% 4.92% 4.79% 

CHO 1.41% 0.52% 0.35% 1.63% 0.58% 0.38% 8.56% 4.60% 4.57% 

DHE 31.36% 32.76% 27.47% 28.75% 30.31% 25.71% 26.96% 28.23% 25.18% 

DHO 21.34% 20.21% 25.98% 24.73% 22.46% 27.75% 10.23% 9.48% 12.66% 

HHE 25.93% 29.85% 23.46% 21.69% 28.13% 21.96% 29.24% 36.46% 29.98% 

HHO 18.55% 16.15% 22.39% 21.57% 17.95% 23.83% 15.83% 16.32% 22.81% 

 

4.3.1. Robot Build Rate Comparison 

In this subsection, the robot build rate for each system configuration under experimental 

condition A0 (the default case) is presented. Figure 4.1 depicts the build rate for the DHE 

configuration. Figure 4.2 depicts the build rate for the DHO configuration. Figure 4.3 depicts the 

build rate for the HHE configuration, and Figure 4.4 depicts the build rate for the HHO 

configuration. Figure 4.5 depicts the build rate for the CHE and CHO configurations. 
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Figure 4.1. Robot build rate of the DHE configuration on experimental condition A0. 

 

Figure 4.2. Robot build rate of the DHO configuration on experimental condition A0. 
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Figure 4.3. Robot build rate of the HHE configuration on experimental condition A0. 

 

Figure 4.4. Robot build rate of the HHO configuration on experimental condition A0. 
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Figure 4.5. Robot build rate of the CHE and CHO configurations on experimental condition A0. 

4.4. Analysis 

In this section, the results are analyzed to determine if the hypotheses are supported or 

refuted by the data. 

4.4.1. Evaluation of Hypothesis 1: Centralized Replication Approach 

The average build quality was predicted to be higher for the system configurations using 

the centralized replication approach (CHE and CHO) as compared to the other replication 

approaches. Analysis supports the hypothesis of average robot build quality being higher for 

systems using the centralized approach. An average of all experimental conditions for each system 

configuration for the metric of average robot build quality is presented in Table 4.15, and the 

individual results for each experimental condition are provided in Table A.13 (Appendix A). 

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

R
o
b
o
ts

Time-Step

CHE and CHO

Num Being Built Num Current Current + Being Built



 

78 

Table 4.15. Average robot build quality across all experimental conditions. 

Average CHE CHO DHE DHO HHE HHO 

Time-Step: 30 0.945 0.942 0.875 0.887 0.876 0.875 

Time-Step: 50 0.942 0.940 0.854 0.873 0.852 0.855 

Time-Step: 70 0.941 0.939 0.850 0.860 0.850 0.846 

 

In terms of collection potential, experimental conditions A6 and A9 did not lower the 

production of robots for most of the non-centralized configurations enough to make the collection 

potential of these systems more comparable to the centralized configurations CHE and CHO. An 

exception is the DHO configuration, which was lowered enough to be roughly equivalent to the 

CHE and CHO configurations in terms of collection potential at time-step 30 (Table 4.16) and 50 

(Table 4.17). Furthermore, the collection potential of the CHE and CHO configurations was close 

to standard deviation range of the DHO configuration at time-step 70 (Table 4.18).  

Table 4.16. Centralized hypothesis-related data for time-step 30. 

(30) Experimental Condition Collection Potential 

CHE CHO DHE DHO HHE HHO 

A0 (Default) 13.77 12.84 41.33 15.78 44.19 23.19 

A6 PrintCost_Pr + 5 13.42 12.67 31.96 11.77 39.31 26.25 

A9 AssembleCost_Pr + 5 13.93 12.83 26.57 11.75 33.99 25.83 

A16 Print & Assemble Time + 2 13.73 12.57 12.73 3.95 17.26 6.61 

C4 QualityThreshold + 0.4 10.72 9.30 21.23 8.20 21.75 11.12 

C7 RiskAmount Pr & As = 10% 12.24 11.07 14.15 6.79 13.93 8.70 

C8 RiskAmount Pr & As = 15% 11.32 10.45 10.92 5.00 10.71 7.03 

C9 RiskAmount_Assemble = 15% 11.87 10.35 10.67 5.04 11.53 6.95 

C12 Quality_decr_Chance = 75% 13.40 12.34 39.71 15.26 42.87 22.26 

C13 Quality_decr_Upper = 0.5 13.15 12.57 35.69 12.96 38.06 20.12 

C17 RiskFactory_Modifier = 0.5 13.81 12.72 41.68 15.73 43.42 23.16 

C18 RiskFactory_Modifier = 1.0 13.41 12.26 40.87 15.54 43.41 22.88 

C19 Quality Thres & Chance 8.73 7.23 12.64 5.21 12.04 7.22 
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Table 4.17. Centralized hypothesis-related data for time-step 50. 

(50) Collection Potential Collection Potential Std Dev 

CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

A0 20.25 18.81 129.48 39.28 164.48 66.46 2.07 1.98 11.67 3.15 7.92 3.83 

A6 19.88 19.24 71.88 19.72 97.06 63.05 2.11 2.58 5.00 2.14 5.12 4.35 

A9 19.96 18.77 57.51 19.20 80.82 62.44 2.29 2.07 5.44 2.70 7.47 4.60 

A16 19.43 18.79 54.32 15.43 70.05 27.61 2.27 2.06 3.19 0.82 5.00 2.54 

C4 15.02 14.79 53.19 20.79 64.19 30.73 2.58 2.32 12.13 4.93 16.30 9.35 

C7 16.01 14.89 22.62 11.48 23.07 15.44 6.71 6.76 9.99 5.86 10.40 8.41 

C8 14.68 12.54 13.89 7.75 15.13 10.50 6.71 6.93 7.19 4.14 8.47 5.99 

C9 13.39 13.55 16.45 9.10 15.17 10.65 6.63 6.58 8.95 4.96 9.79 5.74 

C12 19.23 18.83 116.78 37.37 154.73 60.54 2.16 1.75 16.05 3.89 10.31 8.66 

C13 19.10 18.02 96.00 32.29 126.82 53.09 2.28 2.17 16.01 5.33 21.26 7.68 

C17 19.53 18.70 128.11 39.37 161.86 65.10 3.29 2.38 12.15 2.92 18.17 5.21 

C18 18.83 18.38 126.89 38.79 163.25 64.46 4.18 2.65 12.45 4.73 17.89 7.91 

C19 12.14 11.40 27.43 12.44 30.75 18.61 2.04 2.48 7.83 4.09 11.14 6.48 

 

Table 4.18. Centralized hypothesis-related data for time-step 70. 

(70) Collection Potential Collection Potential Std Dev 

CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

A0 29.21 28.24 137.41 83.85 165.53 142.48 2.85 2.19 6.86 8.50 6.04 6.29 

A6 29.54 28.08 110.92 31.99 159.15 105.12 2.84 3.33 7.52 4.07 24.72 6.57 

A9 28.68 28.17 89.92 31.94 115.32 105.25 2.86 3.60 3.64 3.38 7.68 7.86 

A16 29.23 28.02 136.69 34.41 162.49 65.89 3.28 2.62 7.47 2.65 6.65 7.01 

C4 20.44 19.13 90.84 34.33 111.84 64.04 4.01 3.09 13.12 9.22 9.01 18.44 

C7 20.18 19.63 27.74 12.39 27.14 21.88 11.03 11.13 12.98 7.09 15.75 13.75 

C8 18.29 14.95 14.47 7.75 16.26 12.28 10.82 11.32 9.28 4.59 9.60 8.39 

C9 17.86 16.50 17.22 9.25 16.88 12.25 11.09 10.88 10.59 6.68 12.55 9.09 

C12 28.69 27.19 129.48 75.31 156.02 133.79 2.65 3.48 8.48 11.56 8.99 9.89 

C13 28.42 27.10 117.49 61.40 142.8 115.38 2.72 2.89 10.95 13.29 12.22 17.27 

C17 28.69 27.48 138.77 84.03 165.39 142.07 3.09 3.75 5.62 8.74 5.58 6.56 

C18 28.01 26.54 138.39 84.24 165.67 143.67 5.05 7.48 4.78 8.59 6.16 5.66 

C19 15.69 14.48 50.78 19.77 58.54 33.24 3.43 3.51 16.58 6.97 21.04 12.46 

 

For experimental conditions C4 and C19, the homogeneous configurations DHO and HHO 

performed similar to the centralized configurations in terms of collection potential at the early 

stages (time-step 30). In the later stages, the HHO configuration was notably higher than the 

centralized configurations under experimental conditions C4 and C19, while the DHO 

configuration’s performance remained comparable. In contrast, experimental condition C12 did 
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not result in a significantly different collection potential, as compared to the default case, and C13 

did not lower the collection potential of the other configurations enough to be similar in value to 

the CHE and CHO configurations. 

The higher risk experimental conditions (C7, C8, and C9) lowered the collection potential 

of the non-centralized configurations enough such that the CHE and CHO configurations were 

competitive. This appears to be primarily attributable to the non-factory built assemble-capable 

robots having too high a task risk level to assemble, to a functional level, properly in these cases. 

In comparison, the experimental condition C4 corresponds to having a high rate of build failure 

(the robot construction failed). Under experimental conditions C7, C8, and C9, the dynamic is 

slightly different in that the risk involves the assembling robot failing during the assembly process 

and thus losing the assemble capability. In this case, not only does the build fail, but the assembling 

robot also loses its capability. The results support the hypothesis that the non-centralized 

configurations are, to some extent, able to better cope with a high rate of build failure but are less 

able to cope with a high rate of assembly equipment failure. 

Finally, experimental conditions C17 and C18 did not show a significant impairment of 

collection potential, as compared to the default case. With a 0.1% chance of the assembly robot 

losing the assemble capability per time-step (due to the task risk level), failure did not occur 

enough to have a significant impact. 

4.4.2. Evaluation of Hypothesis 2: Decentralized Versus Hierarchical 

The descriptions of the experimental conditions used to evaluate this hypothesis are listed 

in Table 4.19. The results of condition A0 (default case) support the hypothesis that the hierarchical 

configurations have a higher collection potential compared to their decentralized counterparts. 
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Furthermore, the decentralized configurations had an increased print and assembly potential 

compared to their hierarchical counterpart. This supports the hypothesis as well. 

Table 4.19. Description of experimental conditions for hypothesis 2. 

ID Experimental Condition Description 

A0 (Default) Default values for all parameters. 

A1 BaseCost_Pr + 1 BaseCost_Pr increased from 2 to 3. 

A2 BaseCost_Pr + 3 BaseCost_Pr increased from 2 to 5. 

A3 BaseCost_Pr + 5 BaseCost_Pr increased from 2 to 7. 

A10 BaseCost_Time + 2 BaseCost_Time increased from 2 to 4. 

A17 BaseCost_NonPr + 1 BaseCost_NonPr increased from 1 to 2. 

B4 Collect_Amount = 0.25 Collect_Amount decreased from 1.0 to 0.25. 

B5 Collect_Amount = 0.5 Collect_Amount decreased from 1.0 to 0.5. 

D3 Initial_Materials = 0 Initial_Materials decreased from 50 to 0. 

D4 Initial_Materials / 2.0 Initial_Materials decreased from 50 to 25. 

 

Experimental conditions A1, A2, and A3 affect the Base_CostPr parameter on an 

increasing scale. For these three experimental conditions, the decentralized configurations were 

closer, in terms of collection potential, to the hierarchical configurations than the default case 

(shown in Table 4.20). Unexpectedly, the DHE configuration outperformed the HHE configuration 

under experimental condition A2 at the time-steps of 50 and 70. In addition, it outperformed for 

experimental condition A3 by a marginal amount at time-step 50 (and was approximately 

equivalent to the highest performing conditions at time-steps 30 and 70). This supports the 

hypothesis that raising the base production cost of robots (in terms of printable components) 

increases the comparative performance of decentralized configurations, compared to hierarchical 

configurations, in terms of collection potential. Although, it is more prevalent for the DHE 

configuration, as compared to the HHE configuration, and more marginal of a comparative gain 

for the DHO configuration versus the HHO configuration. 
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Experimental condition A10 involves increasing the BaseCost_Time parameter, which 

affects how long it takes to build all robot types. While this was hypothesized to potentially favor 

the collection potential of decentralized configurations over hierarchical configurations, the results 

showed a pattern similar to  a slowly progressing default case (A0). Experimental condition A17 

increases the nonprintable component cost for all robots (BaseCost_NonPr), and the results 

indicate that this didn’t significantly enhance the comparative performance of the decentralized 

approach, as compared to the hierarchical approach. 

Table 4.20. Collection potential and standard deviation for certain experimental conditions. 

ID Collection Potential Collection Potential Std Dev 

DHE DHO HHE HHO DHE DHO HHE HHO 

 Time-Step: 30 

A0 41.33 15.78 44.19 23.19 2.33 0.52 4.96 1.59 

A1 32.89 15.63 39.33 22.23 1.59 0.71 2.01 1.88 

A2 26.34 13.52 26.79 18.51 1.18 1.03 1.62 1.31 

A3 19.27 11.74 19.87 13.31 1.16 0.54 1.33 0.84 

A10 12.74 7.92 15.55 10.44 0.69 0.37 0.89 0.90 

A17 41.58 15.53 44.65 23.04 2.04 1.11 1.88 1.90 

 Time-Step: 50 

A0 129.4 39.28 164.4 66.46 11.67 3.15 7.92 3.83 

A1 94.52 33.40 114.8 53.66 12.34 2.66 8.97 4.17 

A2 53.32 24.71 40.87 32.92 5.97 2.27 2.84 2.34 

A3 28.39 19.93 26.87 27.19 2.57 1.99 2.52 1.84 

A10 54.78 24.96 53.74 30.26 3.67 1.42 3.45 2.27 

A17 90.59 39.15 100.3 65.49 4.69 3.06 4.99 4.00 

 Time-Step: 70 

A0 137.4 83.85 165.5 142.4 6.86 8.50 6.04 6.29 

A1 120.9 64.89 136.8 118.3 4.89 7.09 4.86 6.75 

A2 81.21 43.74 60.85 70.66 9.35 4.90 3.65 5.65 

A3 38.96 31.35 37.59 46.97 4.35 3.92 3.71 5.95 

A10 137.4 49.71 161.3 74.59 8.61 4.36 9.53 5.91 

A17 91.32 65.36 102.3 90.65 4.54 3.33 4.28 4.57 

 

Experimental conditions B4 and B5 involve reducing the Collect_Amount parameter, 

where B4 reduces it by a factor of four and B5 reduces it by half. These two experimental 

conditions affected the performance of the decentralized configurations, as compared to the 
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hierarchical configurations in terms of assembly potential and print potential (shown in Table 

4.21). The HHE configuration was approximately equal to the DHE configuration in terms of print 

and assembly potentials under experimental conditions B4 and B5 at time-step 50. However, under 

experimental condition B5, this converged to approximately the same as the default case by time-

step 70, presumably due to reaching the maximum number of robots within resource constraints. 

The HHO configuration approximately equaled the DHO configuration at time-step 50 and notably 

outperformed it at time-step 70. These results differ from the default case, where the DHO 

configuration outperformed the HHO configuration, and the DHE configuration outperformed the 

HHE configuration. 

In contrast, experimental conditions D3 and D4 did not significantly impact the relative 

performance of decentralized configurations compared to hierarchical configurations in terms of 

assembly potential and print potential. These experimental conditions did, though, marginally 

impact the DHO configuration (but not the DHE configuration) at time-steps 50 and 70. 
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Table 4.21. Assembly and print potentials for relevant experimental conditions. 

ID Assembly Potential Print Potential 

DHE DHO HHE HHO DHE DHO HHE HHO 

 Time-Step: 30 

A0 22.67 15.70 18.35 13.56 18.36 15.66 13.57 13.67 

B4 21.37 15.64 17.88 13.54 16.22 15.68 12.80 13.68 

B5 21.71 15.44 18.51 13.66 17.36 15.45 13.09 13.72 

D3 19.90 14.72 18.41 13.69 14.05 14.85 13.12 13.76 

D4 20.82 15.20 18.38 13.55 16.53 15.27 13.52 13.63 

 Time-Step: 50 

A0 69.88 38.93 63.27 32.19 58.22 38.81 53.07 32.19 

B4 35.77 27.58 33.34 27.21 25.67 27.66 26.15 27.19 

B5 50.36 32.61 49.53 31.55 37.97 32.72 38.59 31.68 

D3 61.08 32.42 59.32 31.91 48.43 32.46 48.97 31.91 

D4 65.55 36.50 63.05 32.02 54.61 36.58 52.18 31.96 

 Time-Step: 70 

A0 73.82 82.95 63.79 70.91 62.10 82.99 53.81 70.67 

B4 59.86 36.52 56.97 42.05 42.11 36.65 44.21 42.20 

B5 72.88 55.79 62.25 68.92 57.16 55.65 49.88 68.98 

D3 76.38 70.16 64.35 70.62 61.34 70.10 52.42 70.50 

D4 74.91 77.87 63.54 70.91 62.96 78.02 53.38 70.74 

 

4.4.3. Evaluation of Hypothesis 3: Heterogeneous Versus Homogeneous 

The descriptions of the experimental conditions used in the evaluation of this hypothesis 

are listed in Table 4.22. The results of the default case (A0) support the hypothesis that the 

(heterogeneous) DHE and HHE configurations produce robots more rapidly than the 

(homogeneous) DHO and HHO configurations. Under this experimental condition, the DHE and 

HHE configurations had reached the resource-constraint-based maximum number of robots by 

time-step 50 (depicted in Figures 4.1 and 4.3). In contrast, the DHO and HHO configurations had 

a more linear build rate, which reached the maximum number of robots around time-step 70 

(depicted in Figures 4.2 and 4.4). In this regard, the DHO and HHO configurations outperform 

their heterogeneous counterpart in terms of assembly and print potentials by time-step 70. This 

supports the hypothesis that the homogeneous production approach would have a greater assembly 

potential and print potential than the heterogeneous production approach at later time-steps. 
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Table 4.22. Description of experimental conditions for hypothesis 3. 

 ID    Experimental Condition Description 

A0 (Default) Default values for all parameters. 

A4 PrintCost_Pr + 1 PrintCost_Pr increased from 2 to 3. 

A5 PrintCost_Pr + 3 PrintCost_Pr increased from 2 to 5. 

A6 PrintCost_Pr + 5 PrintCost_Pr increased from 2 to 7. 

A7 AssembleCost_Pr + 1 AssembleCost_Pr increased from 2 to 3. 

A8 AssembleCost_Pr + 3 AssembleCost_Pr increased from 2 to 5. 

A9 AssembleCost_Pr + 5 AssembleCost_Pr increased from 2 to 7. 

C5 RiskAmount_Print = 1% RiskAmount_Print increased from 0.1% to 1%. 

C6 RiskAmount_Assemble = 1% RiskAmount_Assemble increased from 0.1% to 1%. 

D6 Env_Materials / 2.0 Env_Materials decreased from 500 to 250. 

D9 Initial_NonPr / 2.0 Initial_NonPr decreased from 300 to 150. 

 

In terms of assembly potential, the DHE and HHE configurations continued to outperform 

their homogeneous counterparts at time-step 70 under experimental conditions A5, A6, A8, and 

A9 (as shown in Table 4.23). Similarly, in terms of print potential, the DHE and HHE 

configurations outperformed under experimental conditions A5, A8, and A9 (but not for A6) at 

time-step 70. 

The experimental conditions A4 and A7, which increase printable cost to a lesser extent, 

resulted in the DHE and HHE configurations performing closer (as compared to A0) to their 

homogeneous counterpart at time-step 70, for both assembly and print potentials. Thus, the 

increase in the printable component cost appears to comparatively favor the heterogeneous 

production approach over the homogeneous production approach. This provides support for the 

hypothesis that the heterogeneous production approach is able to continue to outperform the 

homogeneous approach, in terms of assembly and print potentials, for these experimental 

conditions, even when robot numbers reach a resource constrained maximum. 
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Table 4.23. Results of the DHE, DHO, HHE, and HHO configurations for conditions A4 to A9. 

ID Assembly Potential Print Potential Collection Potential 

DHE DHO HHE HHO DHE DHO HHE HHO DHE DHO HHE HHO 

 Time-Step: 30 

A0 22.67 15.70 18.35 13.56 18.36 15.66 13.57 13.67 41.3 15.8 44.2 23.2 

A4 20.23 15.38 18.33 12.77 16.43 15.43 13.59 12.79 37.0 15.5 43.6 23.2 

A5 19.67 13.57 18.02 10.86 12.96 13.55 12.64 10.88 32.9 13.6 40.7 22.6 

A6 21.24 11.75 16.87 8.89 10.46 11.73 10.61 8.94 32.0 11.8 39.3 26.3 

A7 19.73 15.40 18.36 12.84 16.45 15.37 13.60 12.86 36.5 15.5 44.0 23.4 

A8 16.71 13.59 16.96 10.76 14.14 13.55 10.86 10.82 31.2 13.7 38.4 22.1 

A9 14.97 11.73 12.94 8.79 11.33 11.63 11.80 8.91 26.6 11.8 34.0 25.8 

 Time-Step: 50 

A0 69.88 38.93 63.27 32.19 58.22 38.81 53.07 32.19 129.5 39.3 164.5 66.5 

A4 63.96 32.79 58.35 28.63 49.52 32.74 48.30 28.70 114.7 33.1 157.0 62.0 

A5 52.84 25.08 47.18 11.81 36.22 24.88 35.05 11.92 90.1 25.2 122.6 72.4 

A6 53.66 19.64 51.73 8.76 17.49 19.49 10.56 8.81 71.9 19.7 97.1 63.1 

A7 57.25 33.15 57.76 28.25 49.53 32.98 51.31 28.16 108.1 33.3 155.7 61.1 

A8 41.04 24.50 38.25 11.60 40.86 24.50 33.49 11.69 83.0 24.8 103.3 71.9 

A9 30.11 19.04 29.67 8.71 26.67 19.04 27.31 8.76 57.5 19.2 80.8 62.4 

 Time-Step: 70 

A0 73.82 82.95 63.79 70.91 62.10 82.99 53.81 70.67 137.4 83.9 165.5 142.5 

A4 74.39 64.88 63.08 64.86 58.28 64.81 52.29 64.59 134.1 65.6 166.3 142.6 

A5 68.39 43.22 57.32 12.28 46.18 43.09 42.55 12.21 115.7 43.6 145.4 129.9 

A6 81.63 31.83 87.07 8.60 27.88 31.49 10.42 8.62 110.9 32.0 159.2 105.1 

A7 70.58 65.45 61.10 64.63 61.38 65.50 53.65 64.50 133.4 66.2 161.6 143.0 

A8 53.52 44.33 50.21 12.08 53.50 44.26 45.33 12.15 108.3 44.6 135.0 130.9 

A9 44.90 31.69 42.78 8.68 44.07 31.48 38.49 8.69 89.9 31.9 115.3 105.3 

 

Under experimental condition D9, the DHO and HHO configurations were more equal to 

DHE and HHE (as compared to A0), in terms of assembly and print potentials, at time-step 50 (as 

shown in Table 4.24). Moreover, the DHO configuration already outperformed the DHE and HHE 

configurations for these metrics at time-step 50. In the default case, this happened at a later time-

step. Experimental condition D9 supported the hypothesis that a configuration using the 

homogeneous production approach would overtake one using the heterogeneous production 

approach at an earlier time-step. Under experimental condition D6, the performance of the 

homogeneous configurations was closer to the heterogeneous configurations, as compared to the 

default case. The DHO configuration outperformed, in terms of print potential, for this 
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experimental condition at time-step 50, but it was still marginally lower, in terms of assembly 

potential. While not outperforming in terms of both print and assembly potentials for experimental 

condition D6, it still provides limited support for the hypothesis that homogeneous configurations 

would outperform heterogeneous configurations at earlier time-steps. 

Table 4.24. Results of DHE, DHO, HHE, and HHO on select experimental conditions. 

ID Assembly Potential Print Potential 

DHE DHO HHE HHO DHE DHO HHE HHO 

 Time-Step: 30 

A0 22.67 15.70 18.35 13.56 18.36 15.66 13.57 13.67 

C5 22.65 15.51 18.30 13.54 17.39 14.91 12.30 13.26 

C6 20.17 12.25 14.35 11.42 17.19 13.47 11.28 12.46 

D6 22.72 15.37 18.44 13.70 18.78 15.46 13.56 13.76 

D9 22.56 15.57 18.59 13.76 18.42 15.60 13.71 13.81 

 Time-Step: 50 

A0 69.88 38.93 63.27 32.19 58.22 38.81 53.07 32.19 

C5 68.48 38.90 58.65 30.95 50.03 36.46 41.12 27.90 

C6 54.06 32.56 52.65 26.35 49.10 35.31 49.28 29.57 

D6 52.84 39.20 44.59 31.97 42.11 39.17 35.76 31.86 

D9 34.72 39.17 32.11 31.96 30.67 39.04 26.56 31.95 

 Time-Step: 70 

A0 73.82 82.95 63.79 70.91 62.10 82.99 53.81 70.67 

C5 74.97 81.29 64.50 70.31 55.53 73.98 45.09 62.55 

C6 65.19 64.16 54.20 58.08 59.30 70.22 51.31 65.23 

D6 52.30 59.44 44.80 48.24 42.24 59.77 36.04 48.43 

D9 35.24 40.38 32.25 36.19 31.02 40.10 26.46 35.96 

 

Experimental condition C6, which increases the assemble task risk level, resulted in the 

opposite of what was predicted. The results of experimental condition C6 indicate that the 

heterogeneous approach outperformed the homogeneous approach. Compared to the default case, 

the DHE, DHO, HHE, and HHO configurations were more equal, in terms of assembly potential, 

and were reduced approximately equally, in terms of print potential, at time-step 70. Earlier time-

steps did not significantly show either the homogeneous or heterogeneous production approaches 

outperforming the other. 
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Experimental condition C5, which increases the print task risk level, did not result in 

performance that deviated significantly from the results of the default case in terms of assembly 

potential. There was a slight deviation, in terms of print potential; however, this did not result in 

superior performance from the homogeneous configurations. The high-risk experimental 

conditions (C7, C8, and C9) did not show significant differences in the comparative performance 

of the homogeneous or heterogeneous approaches. Thus, the hypothesis of the parameters 

RiskAmount_Print and RiskAmount_Assemble affecting the comparative performance of the 

hierarchical approach versus the homogeneous approach was not supported by the results. 

4.5. Summary 

In this chapter, an experiment was conducted using the simulation system presented in 

Chapter 3 to study the differences in performance caused by the system configurations of CHE, 

CHO, DHE, DHO, HHE, and HHO. The centralized configurations CHE and CHO were shown to 

only marginally outperform in high-risk cases in terms of collection potential, as compared to other 

configurations. The heterogeneous configurations of DHE and HHE (not configuration CHE) were 

shown to reach a maximum number of robots (based on available resources) more quickly than 

their homogeneous configuration counterparts. However, the homogeneous configurations (DHO 

and HHO) outperformed them in terms of assembly potential and print potential in later time-steps 

(for many experimental conditions). Finally, the decentralized configurations (DHE and DHO) 

outperformed their hierarchical counterpart in terms of assembly potential and print potential for 

most experimental conditions; however, they had a lower collection potential. Whether a system 

was a homogeneous or heterogeneous configuration was shown to be a more significant factor 

overall. These findings, along with the data acquired from the experiment in this chapter, were 
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used to establish the decision-making criteria for the decision-making algorithms. These decision-

making algorithms are presented in the next chapter. 
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5. DECISION-MAKING EXPERIMENT5 

In this chapter, the decision-making algorithms devised from the results from the work 

presented in Chapter 4 are discussed. The decision-making algorithm used for a system will depend 

on the system’s mission objectives. For instance, maximizing the number of robots with a 

particular capability may be a requirement for a mission. This might be the case if the end goal 

was to print a large structure and a number of 3D print-capable robots are needed.  Martian habitat 

creation using in situ material 3D printing [18] is an example of one use for this type of capability. 

Similarly, a mission involving assembling a large structure, which will be assembled from pre-

fabricated components, could necessitate maximizing the number of assembly-capable robots. In 

contrast, a more even distribution of robot types (or of robots with differing capabilities) may be 

needed for other missions with multiple objectives or uncertain conditions. 

The performance of these algorithms is compared to the results of the base algorithm. The 

presented algorithms are also compared to each other. First, a review of the operation of the base 

algorithm is provided. Then, the cycle decision-making algorithm is discussed. Third, the variable 

decision-making algorithm is presented. Last, the strategic decision-making algorithm is detailed. 

The results of each of these decision-making algorithms are provided and analyzed.  

5.1. Base Decision-Making Algorithm 

In the base decision-making algorithm, the choice of when to build a new robot and what 

type it should be is decided with simple criteria. The algorithm finds all idle assembly-capable 

robots and takes the buildable robot type list (see Table 5.1) and choose the next type from the list, 

 

 

 

5 This chapter is derived from: A. Jones and J. Straub, “ Evaluation of Algorithms for Heuristic Decision-Making for 

3D Printed Self-Replicating Robots,” (submitted to) J. Intell. Robot. Syst., 2020. 
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repeating the list, in order, until there are enough robots in the build queue for each idle assembly-

capable robot. Under this algorithm, resource constraints are not checked initially. If a robot cannot 

be built, the would-be assembler simply remains idle. 

Table 5.1. Buildable robot types for each system configuration. 

Buildable Robot Types Centralized Decentralized Hierarchical 

Homogeneous Normal Replicator Replicator, Normal  

Heterogeneous Normal Assembler, Printer Assembler, Printer, Normal 

 

After determining what each of the robots need to assemble (if anything), the base decision-

making algorithm assigns all currently idle print-capable robots to fabricate printable components. 

This is limited by the robot system’s current amount of available raw printing materials (robots 

will not be assigned to printing tasks that materials are not available for).  

After these assignments, all robots that are idle are assigned to collect materials from the 

environment. If all of the robots return no materials during a given time-step, then it is assumed 

that the environment is out of raw materials and the system stops assigning robots to the collection 

task once this happens. The task risk associated with collection motivates discontinuing unfruitful 

collection. However, the stage at which it can be assumed that no further resources are available 

to collect may be more complex in real world instances. 

5.2. Cycle Decision-Making Algorithm 

In the cycle decision-making algorithm, the process for choosing when to build a new robot 

and what type it should be is very similar to the approach used in the base algorithm. The algorithm 

begins by finding all idle assembly-capable robots and sequentially assigning them robot types to 

build from the buildable robot type list (see Table 5.1). Ordered assignment is repeated until each 

idle assembly-capable robot has been assigned a task.  
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The difference between the cycle algorithm and the base algorithm is that the position in 

the build order that is used for assignment is retained from the previous time-step (shown in Figure 

5.1). Thus, the base algorithm will always restart at the first robot type in the list, which means it 

will favor the first robot type early on (when there are a limited number of assemble-capable 

robots). It will also slightly favor robot types earlier in the list throughout all operations. Retaining 

the position in the build order ensures that the ratio of robot types in the system is more balanced. 

However, this only makes a difference for systems’ behavior when the system has more than one 

buildable robot type. The CHE, CHO, and DHO configurations are therefore unaffected by the 

differences between the two. The versions of the DHE, HHE, and HHO configurations utilizing 

the cycle algorithm are denoted with the prefix: “Cycle-” (i.e., Cycle-HHE). 

 

Figure 5.1. Diagram of the cycle decision-making algorithm. 

The process of assigning robots to the print and collect tasks under the cycle algorithm is 

identical to the base algorithm. The cycle decision-making algorithm assigns all currently idle 

print-capable robots to fabricate new printable components. Assignments are limited by the robot 

system’s current amount of available raw printing materials as robots will not be assigned to 

printing tasks that materials are not available for. After printing assignments, all robots that are 

NormalPrinterAssembler

NormalPrinterAssembler
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still idle are assigned to collect materials from the environment. The system stops sending robots 

out to collect resources based on the same criteria as the base algorithm. 

5.2.1. Hypothesis 

The performance of the cycle algorithm is predicted to differ from the base algorithm in 

the early time-steps. This prediction is because, once there are enough assemblers and resources, 

the build list may be long enough such that the difference between the algorithms has little impact 

on cycling in the later time-steps. Specifically, it is expected that the cycle decision-making 

algorithm will have a higher print potential for the DHE and HHE configurations in early stages 

(as compared to the base algorithm), and a minor increased potential in later stages. The HHO 

configuration is excluded from this prediction because of the use of replicator robots. This makes 

the print and assembly potentials equal. Instead, the cycle-HHO configuration is predicted to have 

a slightly increased collection potential as compared to the base algorithm, as more normal robots 

may be constructed. 

Table 5.2. Experimental conditions where DHE, HHE, and HHO had atypical ratio results. 

Time-Step (70) ID Assemble Ratio Print Ratio Assembly Potential Print Potential 

Experimental Condition DHE HHE HHO DHE HHE HHO DHE HHE HHO DHE HHE HHO 

(Default) A0 0.54 0.39 0.49 0.45 0.32 0.49 74.6 64.6 70.1 62.9 53.4 70.4 

BaseCost_Pr + 5 A3 0.85 0.59 0.70 0.14 0.13 0.70 34.1 21.4 31.3 5.7 4.6 31.0 

PrintCost_Pr + 5 A6 0.74 0.53 0.08 0.25 0.06 0.08 81.8 84.1 8.5 27.3 9.7 8.8 

AssembleCost_Pr + 5 A9 0.50 0.37 0.08 0.48 0.35 0.08 44.7 42.4 8.3 42.9 40.1 8.7 

[All]CostPrintable + 2 A21 0.85 0.58 0.12 0.14 0.11 0.12 40.9 34.9 7.9 6.5 6.4 7.7 

Base & Print Pr + 2 A23 0.88 0.66 0.12 0.11 0.09 0.12 67.9 51.6 8.7 8.1 7.4 8.4 

Print_Efficiency = 0.25 B1 0.76 0.35 0.20 0.22 0.15 0.19 39.5 24.2 14.5 11.7 10.3 14.1 

Print_Amount = 0.25 B7 0.76 0.35 0.20 0.23 0.15 0.20 41.6 24.1 14.5 12.2 10.1 14.4 

 

Based on results from the base algorithm (chapter 4), under certain experimental conditions 

the assemble ratio and print ratio significantly differed from the typical values (as observed in most 

other conditions) for the DHE, HHE, and HHO configurations. The experimental conditions where 



 

94 

this was most pronounced were: A3, A6, A9, A21, A23, B1, and B7. The values of the assemble 

ratio, print ratio, assembly potential, and print potential for these cases are listed in Table 5.2.   

The DHE and HHE configurations were less affected by experimental conditions A6 and 

A9 and may remain relatively unchanged when using the cycle algorithm. The more significant 

changes are predicted to occur under experimental conditions A3, A21, A23, B1, and B7. Under 

these experimental conditions, it is predicted that the assemble and print ratios will be more 

balanced for the DHE and HHE configurations when using the cycle algorithm. In addition, it is 

predicted that the assembly potential will be lower, and the print potential will be higher for the 

DHE and HHE configurations, as compared to their performance with the base algorithm. 

For the HHO configuration, the use of the cycle algorithm may be less favorable, in terms 

of both the assembly potential and the print potential. The problem that the base algorithm HHO 

configuration may have been facing, under experimental conditions A6, A9, A21 and A23, is that 

the printable component cost of replicator robots was significantly higher than the cost of normal 

robots. Under these conditions, more normal robots will be built regardless of the build order, as 

the robot system wouldn’t have enough resources to build the replicator robots. In experimental 

conditions B1 and B7, a similar issue may be caused by printable component acquisition. This 

results in the same dynamic as the previously discussed experimental conditions, since the limited 

components will be assigned to producing the lower production cost normal robots. Thus, the 

hypothesis for the Cycle-HHO configuration is that it will underperform, as compared to the base 

algorithm, in terms of assembly potential and print potential in these experimental conditions; 

however, it may outperform in terms of collection potential. 
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5.3. Variable Decision-Making Algorithm 

The variable decision-making algorithm (VAR) is less constrained than the base and cycle 

algorithms. It is able to change system configurations during a simulation run. The variable 

algorithm uses a system configuration of the same name – “variable”. This system configuration 

is capable of building any robot type. The algorithm alters its buildable robot list to match other 

system configurations, based on which one is deemed to be the most favorable to the input 

parameters. Different system configurations may be more favorable for different criteria, so an 

input is needed as to which attribute is desirable to optimize for. The attributes/metrics that are 

selected to be optimized for by the algorithm include collection potential, assembly potential, and 

print potential. 

The ability to switch to a known high performing configuration (in terms of an input metric) 

functions as a heuristic. The switches represent a greedy algorithm that chooses the configuration 

based on data-driven values to improve the expected performance. 

The choice of system configuration is based on the results from Chapter 4 (base algorithm), 

as well as the performance of the cycle algorithm. Specifically, the input metric to optimize for 

(i.e., collection potential) is used with the analysis of the simulation parameters known to the robot 

system to determine the system configuration that is estimated to perform the best in the applicable 

conditions. A ‘lookup’ table is used for this purpose. Since the input metric will affect its 

performance, the variable algorithm cases are denoted as follows: 

• Variable-A (VAR-A): variable decision-making algorithm with an inputted 

optimization metric of assembly potential. 

• Variable-C (VAR-C): variable decision-making algorithm with an inputted 

optimization metric of collection potential. 
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• Variable-P (VAR-P): variable decision-making algorithm with an inputted 

optimization metric of print potential. 

The variable decision-making algorithm can switch system configurations at any given 

time-step. This is dependent on which time-steps there are result data for, so the time-steps at 

which the switches happen in the experimental runs are time-steps 30, 50, and 70. The first system 

configuration is selected based on the best performance (for the input metric) at time-step 30. Upon 

reaching time-step 30, the system configuration is switched to the one that performs best at time-

step 50. The same is done for the transition at time-step 50. If the same system configuration is 

estimated to perform best at a given interval, then no switch occurs (i.e., it would switch to the 

same configuration, resulting in no change).  

Only the simulation parameters that are known to the robot system are used to switch 

system configurations. Of course, it is not possible to plan based on unknown simulation 

parameters. A list of which simulation parameters are known and which are unknown to the robot 

system is provided in Table 5.3. For the experimental conditions where unknown simulation 

parameters are altered from default values, the starting system configuration selected is the one 

that optimizes for the base case (or whichever case best fits the known parameters). Then, the 

current state of the robot system is compared with the data from the lookup table and switched if 

the state aligns with data from an experimental condition where an unknown parameter was 

altered. Thus, the first possible switch due to unknown parameters could happen at time-step 30, 

for cases where the unknown parameters have been changed. 
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Table 5.3. Parameters known (visible) to the robot system. 

Known Unknown 

Num_Steps QualityThreshold 

Initial_NonPr Quality_incr_Chance 

Initial_Printable Quality_incr_Lower 

Initial_Materials Quality_incr_Upper 

Env_Materials Quality_decr_Chance 

BaseCost_NonPr Quality_decr_Lower 

BaseCost_Pr Quality_decr_Upper 

BaseCost_Time RiskAmount_Collect 

PrintCost_NonPr RiskAmount_Print 

PrintCost_Pr RiskAmount_Assemble 

PrintCost_Time RiskQuality_Modifier 

AssembleCost_NonPr RiskFactory_Modifier 

AssembleCost_Pr  

AssembleCost_Time  

Print_Efficiency  

Print_Amount  

Collect_Amount  

 

The process for assigning robots to the print and collect tasks is identical to the base and 

cycle algorithms. All currently idle print-capable robots are assigned to fabricate new printable 

components. The ability to do this is limited by the robot system’s current amount of available raw 

printing materials (robots are not assigned to printing tasks that materials are not available for). 

After these assignments, all robots that are idle are assigned to collect materials from the 

environment. The system stops sending robots out to collect resources based on the same criteria 

as the base and cycle algorithms. 

5.3.1. Lookup Charts 

The build list lookup charts contain the information as to which system configuration the 

variable decision-making algorithm should change to, and at what stage. The lookup chart for 



 

98 

experimental conditions with classification ‘A’ is presented in Table 5.4. The list for experimental 

conditions with classification ‘B’, ‘C’, and ‘D’ are listed in Tables 5.5, 5.6, and 5.7, respectively. 

The stages listed in the lookup charts are as follows: 

• Early: Starts at timestep 0 and ends at timestep 30. 

• Mid: Starts at timestep 30 and ends at timestep 50. 

• Late: Starts at timestep 50 and ends at timestep 70. 

Experimental condition classification ‘C’ involves parameters unknown to the robot 

system, so initially the system is set to optimize for the default case. The lookup chart assumes 

that a distinguishable pattern will be evident by the mid stage. 
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Table 5.4. Build chart for experimental condition classification ‘A’. 

ID Assembly Collection Print 

Early Mid Late Early Mid Late Early Mid Late 

A0 DHE DHE DHO HHE HHE Cycle-HHE DHE Cycle-DHE DHO 

A1 DHE DHE DHO HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE DHO 

A2 DHE DHE DHE Cycle-HHE Cycle-HHE Cycle-HHE DHO Cycle-DHE DHO 

A3 DHE DHE DHE Cycle-HHE Cycle-DHE Cycle-DHE DHO Cycle-DHE Cycle-DHE 

A4 DHE DHE DHE HHE HHE HHE Cycle-DHE Cycle-DHE HHO 

A5 DHE DHE DHE HHE HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

A6 DHE HHE HHE HHE Cycle-HHE HHE DHO Cycle-DHE Cycle-DHE 

A7 DHE HHE DHE HHE HHE Cycle-HHE Cycle-DHE HHE Cycle-DHE 

A8 HHE DHE DHE HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

A9 DHE DHE DHE HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

A10 DHE DHE DHE HHE DHE HHE DHO DHO Cycle-DHE 

A11 DHE DHE DHO Cycle-HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE DHO 

A12 DHE DHE DHE HHE HHE HHE DHE Cycle-DHE Cycle-DHE 

A13 DHE DHE DHO HHE HHE Cycle-HHE DHO Cycle-DHE DHO 

A14 DHE DHE DHE HHE HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

A15 DHE DHE DHO HHE HHE HHE Cycle-DHE Cycle-DHE DHO 

A16 DHE DHE DHE HHE HHE HHE Cycle-HHE Cycle-DHE DHE 

A17 DHE DHE DHO HHE HHE Cycle-HHE Cycle-DHE Cycle-DHE DHO 

A18 DHE DHE DHO HHE HHE HHE DHE Cycle-DHE DHO 

A19 DHE DHE DHO HHE Cycle-HHE HHE DHE Cycle-DHE DHO 

A20 DHE DHE DHE HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

A21 DHE DHE DHE Cycle-HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

A22 DHE DHE DHE HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

A23 DHE DHE DHE HHE Cycle-HHE Cycle-HHE DHO Cycle-DHE Cycle-DHE 

A24 DHE DHE DHE Cycle-HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

A25 DHE DHO DHO DHE HHE Cycle-HHE DHE DHO DHO 

A26 DHE DHE DHO DHE HHE Cycle-HHE DHE Cycle-DHE DHO 

A27 DHE DHE DHO DHE HHE Cycle-HHE DHE DHE DHO 

A28 DHE DHE DHO DHE HHE Cycle-HHO DHE Cycle-DHE DHO 
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Table 5.5. Build chart for experimental condition classification ‘B’. 

ID Assembly Collection Print 

Early Mid Late Early Mid Late Early Mid Late 

B1 DHE DHE DHE HHE Cycle-HHE HHO DHO Cycle-DHE DHO 

B2 DHE DHE HHE HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE HHO 

B3 DHE DHE DHO DHE HHE Cycle-HHE DHE Cycle-DHE DHO 

B4 DHE DHE DHE HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-HHE 

B5 DHE HHE DHE HHE HHE Cycle-HHE Cycle-DHE Cycle-DHE HHO 

B6 DHE DHE DHO HHE HHE Cycle-HHE Cycle-DHE Cycle-DHE DHO 

B7 DHE DHE DHE HHE Cycle-HHE Cycle-HHE Cycle-DHE DHO Cycle-DHE 

B8 DHE DHE DHE HHE Cycle-DHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

B9 DHE DHE DHO HHE HHE HHE DHE DHE DHO 

B10 DHE DHE DHE HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

 

Table 5.6. Build chart for experimental condition classification ‘C’. 

ID Assembly Collection Print 

Early Mid Late Early Mid Late Early Mid Late 

C1 DHE DHE DHO HHE HHE Cycle-HHE DHE DHE DHO 

C2 DHE DHE DHE HHE HHE HHE DHE DHE DHO 

C3 DHE DHE DHE HHE HHE HHE DHE DHE DHO 

C4 DHE DHE DHE HHE HHE HHE DHE Cycle-DHE Cycle-DHE 

C5 DHE DHE DHO HHE HHE Cycle-HHE DHE Cycle-DHE DHO 

C6 DHE DHE DHO HHE HHE HHE DHE DHE DHO 

C7 DHE DHE DHO HHE DHE HHO DHE DHO HHO 

C8 DHE DHO DHE HHE CHE CHE DHE DHO DHO 

C9 DHE HHO DHE HHE CHE DHE DHE HHO DHO 

C10 DHE DHE DHO HHE HHE HHE DHE DHE DHO 

C11 DHE DHE DHO HHE HHE Cycle-HHE DHE Cycle-DHE DHO 

C12 DHE DHE DHO HHE HHE Cycle-HHE DHE Cycle-DHE DHO 

C13 DHE DHE DHE HHE HHE HHE DHE HHE HHO 

C14 DHE DHE DHO HHE HHE Cycle-HHE DHE DHE DHO 

C15 DHE DHE DHO HHE HHE Cycle-HHE DHE Cycle-DHE DHO 

C16 DHE HHE HHO HHE HHE Cycle-HHE DHE HHE HHO 

C17 DHE DHE DHO HHE HHE HHE DHE DHE DHO 

C18 DHE DHE DHO HHE HHE HHE DHE DHE DHO 

C19 DHE DHE DHE HHE HHE HHE DHE DHO Cycle-DHE 
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Table 5.7. Build chart for experimental condition classification ‘D’. 

ID Assembly Collection Print 

Early Mid Late Early Mid Late Early Mid Late 

D1 DHE DHE DHE HHE Cycle-HHE Cycle-HHE Cycle-DHE Cycle-DHE Cycle-DHE 

D2 DHE DHE DHO DHE HHE Cycle-HHE DHE Cycle-DHE DHO 

D3 DHE DHE DHE HHE HHE Cycle-HHE Cycle-DHE Cycle-DHE DHO 

D4 DHE DHE DHO HHE HHE HHE Cycle-DHE Cycle-DHE DHO 

D5 DHE DHE DHO DHE HHE HHE DHE Cycle-DHE DHO 

D6 DHE DHE DHO HHE Cycle-HHE HHE DHE Cycle-DHE DHO 

D7 DHE DHE DHO HHE HHE HHE DHE Cycle-DHE DHO 

D8 DHE DHE DHO HHE HHE Cycle-HHE DHE DHE DHO 

D9 DHE DHO DHO HHE Cycle-HHE Cycle-HHE DHE DHO DHO 

D10 DHE DHE DHO HHE HHE HHE DHE DHE DHO 

D11 DHE DHE DHE HHE HHE HHE Cycle-DHE Cycle-DHE Cycle-DHE 

D12 DHE DHE DHE HHE Cycle-HHE HHE Cycle-DHE Cycle-DHE Cycle-DHE 

 

5.3.2. Hypothesis 

Since the algorithm has its first possible decision-making point at time-step 30, comparing 

its results at that stage would be the same as comparing the first item in its lookup chart at time-

step 30. Thus, instead of measuring at time-step 30 for the variable decision-making algorithm, 

the measurement is taken at time-step 40 instead. Therefore, the time-steps that results are collected 

for are: 40, 50, and 70. 

The variable decision-making algorithm is predicted to have the highest performance, in 

terms of its selected metric for optimization, at time-steps 40 and 50 for most experimental 

conditions (as compared to the base and cycle decision-making algorithms). In certain 

experimental conditions where heterogeneous configurations are favored early on, the robot 

system may run out of resources. Thus, the heterogeneous configurations are expected to reach 

capacity faster and be outperformed in the later stages by the homogeneous configurations. Based 

on the data presented in chapter 4, this would only affect the print potential and assembly potential. 

Thus, the variable-P and variable-A approaches are predicted to have potentially lower 



 

102 

performance, with regards to their respective metric, at time-step 70 under experimental conditions 

A11, A13, A15, A17, A18, A19, A25, A26, A27, A28, B3, B6, B9, D2, D5, D6, and D9. Under 

these experimental conditions, the maximum number of robots (based on resource constraints) was 

reached in earlier time-steps (with the base algorithm) as compared to the base case of A0. 

In terms of collection potential, the variable-C approach is predicted to have the highest 

(or be tied for highest) in terms of collection potential for all of the experimental conditions and 

time-steps. Ties are predicted because, in certain experimental conditions, the variable-C approach 

has the same system configuration for all of its stages. In these cases, in effect it is the same as that 

system configuration (or close to it). The possibility of ties due to this also applies to the variable-

P and variable-A approaches in regard to their respective optimization metric. 

Second, the variable decision-making algorithm is predicted to slightly outperform the base 

and cycle decision-making algorithms for the high-risk experimental conditions C7, C8, and C9. 

This is predicted because the system is predicted to switch configuration in order to adapt to the 

higher task risk levels. However, the increase is not anticipated to be significant, and in some cases 

no increase may occur. 

5.4. Strategic Decision-Making Algorithm 

The strategic decision-making algorithm (STR) is even less constrained than the variable 

decision-making algorithm. Similar to the variable algorithm, it also uses a variable system 

configuration. It adjusts the configuration according to what is estimated to perform the best for 

the given circumstances. However, the strategic algorithm will use any build list of robots that it 

projects that it needs. Therefore, it isn’t constrained to known system configurations. The strategic 

decision-making algorithm also utilizes an input attribute/metric that is desired to be optimized 

for. For the experimental runs, the input optimization metrics are the same as used in the variable 
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algorithm: collection potential (STR-C), print potential (STR-P), and assembly potential (STR-A). 

In addition, the algorithm also utilizes a time-step input goal. For the experimental runs, this is the 

Num_Steps parameter. 

Build
Robots that

Optimize
Input Metric

Build
Core

Robots

Switch
Phase
Step

Optimization
Metric

Step
Goal

 

Figure 5.2. Diagram of the overall operation of the strategic decision-making algorithm. 

For the strategic decision-making algorithm, the overall plan of which robot types to build 

is divided into two phases. The first phase involves building up a ‘core’ number of robots which 

have (or are projected to have) the needed capabilities to build the robots for the second phase. 

The second phase consists of building robots targeted to increase performance in terms of the input 

optimization metric. For example, if the optimization metric is print potential, then the second 

phase would consist of only building printer robots and/or replicator robots, since they have the 

requisite print capability. An overview of this process is depicted in Figure 5.2. 
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The choice of which robot types to build for the first phase is dependent on the optimization 

metric, the time-step goal, and the known simulation parameters. For instance, if the input metric 

is print potential, then the robot types of the core robots would be selected to ensure that adequate 

assemble-capable and collect-capable robots are built. Thus, in phase 1 the metric that is optimized 

for is based on providing a utility in later stages (i.e., in phase two). In phase one (early stage), the 

focus is on producing a sufficient quantity of robots with the desired capabilities.  

The time-step goal (i.e., at which step the simulation stops) affects which robots are built 

in phase one as well. For instance, if the goal is in the later stages (i.e., step 70), then (based on the 

data presented in chapter 4) it may be more beneficial to build replicator robots as compared to 

assembler or printer robots.  

The time-step goal affects the point at which the phase switches from one to two. The time-

steps where the switch takes place between phase one and phase two are listed in Table 5.8. These 

were decided as follows. Based on the data presented in chapter 4, time-step 30 is a point where 

the systems configurations had used approximately a third or less of their available nonprintable 

components. In comparison, at time-step 50 certain system configurations had utilized all of their 

available nonprintable components. Switching to phase two without any nonprintable components 

remaining would be counterproductive. Thus, for the purposes of the experiment, the time-step at 

which to switch to phase two will be set to time-step 30. However, in the case where the step goal 

is 30, switching then is too late – so the time-step at which to switch for this case was set to be 

time-step 15. 

Table 5.8. Step at which to switch to phase 2. 

Step Goal 30 50 70 

Switch to Phase 2 15 30 30 
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The algorithm used for assigning robots to the print and collection tasks is the same as for 

the base and cycle algorithms. The system assigns all currently idle print-capable robots to 

fabricate new printable components. Assignment is limited by the robot system’s current amount 

of available raw printing materials, as robots will not be assigned to printing tasks that materials 

are not available for. After these assignments are made, all robots that are idle are assigned to 

collect materials from the environment. Furthermore, this algorithm stops sending robots out to 

collect resources based on the same criteria as the base and cycle algorithms. 

5.4.1. Initial Build Chart 

The initial build chart for the strategic algorithm is listed in Table 5.9. cycle-DHE 

algorithm was chosen to use to build the core robots for the strategic-A algorithm due to its high 

early-stage print potential. This is needed when the system is mostly building assembly-capable 

robots. This was also the rationale for choosing it for phase 1 of the strategic-C algorithm. 

However, when attempting to maximize for the print potential metric, as is the case with strategic-

P, it is necessary to build assembly-capable robots in phase one. Because of this, DHE was chosen 

to provide the increased assembly potential to the strategic-P algorithm in phase 1. 

Table 5.9. Initial build chart. 

Listing Input Metric Phase 1 Phase 2 

Step Goal=30 Step Goal =50 Step Goal =70 

Strategic-C Collection potential Cycle-DHE Cycle-DHE Cycle-DHE Normal 

Strategic-P Print potential DHE DHE DHE Printer 

Strategic-A Assembly potential Cycle-DHE Cycle-DHE Cycle-DHE Assembler 

 

The initial results for running the strategic decision-making algorithm with experimental 

condition A0 are listed in Table 5.10. The strategic decision-making algorithm outperformed the 

other decision-making algorithms for the selected optimization metric. However, the base 

algorithm (HHE configuration) performed the same as the strategic-C algorithm, in terms of 
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collection potential, at time-step 30. Specifically, both the strategic-C algorithm and HHE had a 

collection potential of approximately 44 (with a standard deviation of 2.98 for HHE and 4.01 for 

strategic-C) at time-step 30.  

Table 5.10. Initial run data of the strategic algorithm for experimental condition A0. 

Strategic 

(Initial) 

Assembly Potential Collection Potential Print Potential 

30 50 70 30 50 70 30 50 70 

Strategic-A 34.9 91.1 117.4 40.6 113.7 139.9 5.4 21.3 21.1 

Strategic-C 5.8 21.6 22.2 44.3 206.7 238.8 5.8 21.0 21.0 

Strategic-P 7.8 23.9 24.2 35.2 120.1 139.9 27.2 94.9 114.2 

 

5.4.2. Hypothesis 

The strategic decision-making algorithm is predicted to perform the best in terms of its 

inputted optimization metric for most experimental conditions. This is inclusive of the results from 

the variable decision-making algorithm. Likely exceptions to this include the higher task risk 

experimental conditions such as C7, C8, and C9, due to the high rate of robot failure in these 

conditions.  

A factor that may alter the algorithm’s performance is the rate at which the robot system 

produces robots and the rate at which available resources are depleted. To accommodate conditions 

that are affected by this, the time-step where the switch from phase one to phase two occurs may 

need to be adjusted. It is predicted that the phase switch time-step may need to be adjusted upwards 

to accommodate experimental conditions such as D11 and D12, where the robot system has more 

resources and therefore takes longer to reach the maximum number of robots. Similarly, in 

experimental conditions where it takes longer to build robots, such as A10, A12, A14, and A16, 

the number of robots built in phase one may not have reached a sufficient number to build the 

robots in phase two. This is predicted to affect the collect, print, and assembly potentials and 
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therefore it will affect all three of the strategic input metrics (strategic-A, strategic-C, and strategic-

P). 

Second, in the later stages of certain experimental conditions (time-step goal of 70), where 

available resources constrain the robot system to a lower maximum number of robots, other 

decision-making algorithms may be able to reach this same maximum. Experimental conditions 

D1 and D9 (where the initial nonprintable or printable components are reduced) along with 

experimental conditions B1, B4, B7 (where the gathering rate of resources is decreased) are cases 

that are predicted to potentially demonstrate this.  

5.5. Results 

In this section, the results are summarized. Full result tables for the cycle, variable, and 

strategic decision-making algorithms are provided in Appendix B. In Table 5.11, the results for 

the base case of A0 (all parameters at default values) are listed for each decision-making algorithm 

and time-step.  
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Table 5.11. Results for the decision-making algorithms on experimental condition A0. 

A0 

Values 

Assembly Potential Print Potential Collection Potential 

30 50 70 30 50 70 30 50 70 

CHE 0.99 1.00 1.00 1.00 0.98 1.00 13.77 20.25 29.21 

CHO 1.00 1.00 1.00 1.00 1.00 1.00 12.84 18.81 28.24 

DHE 22.67 69.88 73.82 18.36 58.22 62.10 41.33 129.48 137.41 

DHO 15.70 38.93 82.95 15.66 38.81 82.99 15.78 39.28 83.85 

HHE 18.35 63.27 63.79 13.57 53.07 53.81 44.19 164.48 165.53 

HHO 13.56 32.19 70.91 13.67 32.19 70.67 23.19 66.46 142.48 

Cycle-DHE 20.20 56.92 68.12 18.15 56.99 67.89 38.63 115.44 137.53 

Cycle-HHE 10.75 52.61 57.63 10.54 52.35 57.02 31.95 156.38 167.48 

Cycle-HHO 11.62 23.71 54.78 11.74 23.74 54.68 25.50 63.14 149.20 

VAR-A 22.81 69.71 74.13 18.52 58.58 62.52 41.61 129.52 138.00 

VAR-C 18.16 63.80 63.95 13.33 53.50 53.95 43.61 166.27 165.59 

VAR-P 22.80 66.97 69.36 18.20 63.02 65.88 41.25 131.39 136.67 

STR-A 33.65 91.05 116.90 5.45 21.50 21.35 39.45 113.60 139.85 

STR-C 5.95 22.50 21.75 5.95 22.25 21.25 43.95 216.70 234.60 

STR-P 7.80 24.60 24.35 25.85 100.40 114.00 33.95 126.10 139.65 

 

An overview of the results of each decision-making algorithm, across an entire 

classification of experimental conditions, is provided in Tables 5.12 to 5.15. In these tables, the 

percentage shown is the percent share of the total of each column, in terms of the sum of each 

decision-making algorithm across the experimental condition classification. Due to the variance 

of each experimental condition in the experimental condition classification, this percentage may 

skew to favor higher-performing experimental conditions over low performing experimental 

conditions. To this end, the values for each decision-making algorithm and experimental condition 

are listed in Appendix B. 

Table 5.12 shows the details for experimental condition classification ‘A’ (28 experimental 

conditions). Table 5.13 shows the details for experimental condition classification ‘B’ (10 

experimental conditions). Table 5.14 shows the details for experimental condition classification 
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‘C’ (19 experimental conditions). Table 5.15 shows the details for experimental condition 

classification ‘D’ (12 experimental conditions). 

Table 5.12. Percentage of column total on experimental condition classification ‘A’. 

Classification 

‘A’ 

Assembly Potential Print Potential Collection potential 

30 50 70 30 50 70 30 50 70 

CHE 0.51% 0.20% 0.15% 0.60% 0.22% 0.17% 3.23% 1.68% 1.82% 

CHO 0.51% 0.20% 0.15% 0.60% 0.22% 0.17% 2.99% 1.58% 1.66% 

DHE 10.19% 10.16% 9.68% 8.53% 8.51% 7.96% 7.92% 7.44% 7.00% 

DHO 7.14% 6.59% 8.58% 8.41% 7.25% 9.47% 3.24% 2.73% 3.55% 

HHE 8.62% 8.95% 8.44% 7.01% 7.27% 6.48% 8.92% 9.07% 8.33% 

HHO 5.72% 4.90% 6.41% 6.76% 5.39% 7.07% 5.06% 5.03% 6.74% 

Cycle-DHE 8.23% 8.75% 8.40% 9.21% 9.76% 9.43% 7.30% 7.33% 7.02% 

Cycle-HHE 5.49% 7.28% 6.91% 6.29% 8.02% 7.64% 7.31% 9.14% 8.53% 

Cycle-HHO 4.88% 3.62% 4.90% 5.78% 3.99% 5.40% 5.20% 4.84% 6.68% 

VAR-A 10.18% 10.21% 9.70% 8.50% 8.52% 7.94% 7.99% 7.52% 7.08% 

VAR-C 8.80% 8.60% 7.92% 7.85% 7.99% 7.51% 9.10% 9.32% 8.62% 

VAR-P 8.97% 8.91% 8.69% 9.75% 9.50% 9.38% 7.22% 6.95% 6.73% 

STR-A 13.98% 13.62% 13.99% 3.29% 4.00% 3.06% 7.61% 7.17% 6.94% 

STR-C 2.95% 3.68% 2.81% 3.44% 4.06% 3.10% 9.79% 12.63% 12.24% 

STR-P 3.83% 4.34% 3.27% 13.98% 15.28% 15.22% 7.14% 7.57% 7.06% 
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Table 5.13. Percentage of column total on experimental condition classification ‘B’. 

Classification 

‘B’ 

Assembly Potential Print Potential Collection potential 

30 50 70 30 50 70 30 50 70 

CHE 0.47% 0.21% 0.15% 0.54% 0.22% 0.16% 2.95% 1.73% 1.76% 

CHO 0.47% 0.21% 0.15% 0.54% 0.23% 0.16% 2.74% 1.65% 1.70% 

DHE 9.77% 10.09% 9.55% 9.05% 8.58% 7.81% 8.12% 7.57% 6.94% 

DHO 7.28% 6.91% 8.73% 8.41% 7.46% 9.37% 3.35% 2.89% 3.59% 

HHE 8.21% 8.57% 7.98% 6.79% 6.79% 6.06% 8.82% 8.78% 8.11% 

HHO 6.38% 5.56% 7.39% 7.39% 6.01% 7.94% 4.98% 4.91% 6.66% 

Cycle-DHE 8.57% 8.72% 8.33% 9.36% 9.68% 9.29% 7.69% 7.43% 7.01% 

Cycle-HHE 4.96% 6.92% 6.93% 5.60% 7.49% 7.39% 6.73% 8.86% 8.73% 

Cycle-HHO 5.45% 4.15% 5.84% 6.33% 4.50% 6.26% 5.25% 5.04% 6.98% 

VAR-A 9.78% 9.98% 9.40% 9.05% 8.52% 7.70% 8.13% 7.72% 7.02% 

VAR-C 8.56% 8.25% 7.59% 7.26% 7.27% 6.86% 8.91% 8.90% 8.57% 

VAR-P 9.04% 9.02% 8.51% 9.71% 9.57% 9.21% 7.73% 7.28% 7.01% 

STR-A 14.69% 13.16% 13.52% 3.00% 4.27% 3.07% 7.97% 7.19% 6.75% 

STR-C 2.76% 3.96% 2.84% 3.14% 4.35% 3.14% 9.40% 12.39% 11.94% 

STR-P 3.60% 4.32% 3.10% 13.85% 15.07% 15.57% 7.21% 7.66% 7.24% 

Table 5.14. Percentage of column total on experimental condition classification ‘C’. 

Classification 

‘C’ 

Assembly Potential Print Potential Collection potential 

30 50 70 30 50 70 30 50 70 

CHE 0.55% 0.19% 0.14% 0.66% 0.21% 0.16% 3.30% 1.50% 1.68% 

CHO 0.55% 0.19% 0.14% 0.68% 0.22% 0.17% 3.02% 1.43% 1.60% 

DHE 10.07% 10.19% 9.00% 9.46% 9.05% 8.03% 8.42% 7.78% 7.02% 

DHO 6.79% 6.01% 9.17% 8.29% 6.56% 9.95% 3.22% 2.54% 3.91% 

HHE 8.13% 9.36% 7.74% 6.99% 8.36% 6.94% 8.80% 9.96% 8.39% 

HHO 6.07% 4.92% 8.16% 7.43% 5.40% 8.89% 4.73% 4.13% 6.92% 

Cycle-DHE 8.43% 8.40% 8.04% 9.18% 9.03% 8.69% 7.50% 7.00% 6.85% 

Cycle-HHE 4.74% 7.27% 6.71% 5.54% 7.80% 7.24% 6.42% 8.91% 8.24% 

Cycle-HHO 5.14% 3.63% 5.96% 6.30% 4.01% 6.50% 5.13% 4.01% 6.98% 

VAR-A 10.05% 10.17% 8.99% 9.40% 9.09% 8.03% 8.39% 7.89% 7.07% 

VAR-C 8.19% 9.37% 7.75% 7.00% 8.35% 6.92% 8.84% 10.00% 8.41% 

VAR-P 10.05% 9.98% 8.72% 9.40% 9.30% 8.28% 8.39% 7.97% 7.07% 

STR-A 15.06% 13.23% 14.14% 2.97% 3.55% 2.64% 8.12% 6.87% 7.03% 

STR-C 2.68% 3.38% 2.51% 3.18% 3.57% 2.69% 8.73% 12.47% 11.78% 

STR-P 3.50% 3.72% 2.83% 13.54% 15.51% 14.89% 6.98% 7.55% 7.05% 
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Table 5.15. Percentage of column total on experimental condition classification ‘D’. 

Classification 

‘D’ 

Assembly Potential Print Potential Collection potential 

30 50 70 30 50 70 30 50 70 

CHE 0.45% 0.16% 0.12% 0.53% 0.17% 0.12% 2.83% 1.34% 1.38% 

CHO 0.45% 0.16% 0.12% 0.53% 0.17% 0.12% 2.64% 1.25% 1.32% 

DHE 10.00% 10.05% 9.24% 9.36% 8.92% 8.44% 8.31% 7.67% 7.27% 

DHO 6.81% 6.20% 8.74% 8.05% 6.61% 9.11% 3.15% 2.58% 3.66% 

HHE 8.27% 9.15% 7.89% 7.06% 8.28% 7.21% 9.01% 9.91% 8.66% 

HHO 5.92% 4.95% 7.53% 7.02% 5.28% 7.82% 4.88% 4.43% 6.59% 

Cycle-DHE 8.58% 8.58% 8.42% 9.30% 9.16% 9.05% 7.62% 7.16% 7.17% 

Cycle-HHE 4.80% 7.63% 7.12% 5.51% 8.10% 7.59% 6.52% 9.39% 8.72% 

Cycle-HHO 5.10% 3.80% 5.87% 6.06% 4.06% 6.10% 5.19% 4.29% 6.54% 

VAR-A 10.02% 10.09% 9.27% 9.31% 9.03% 8.46% 8.30% 7.65% 7.23% 

VAR-C 8.83% 9.06% 7.83% 7.77% 8.41% 7.30% 9.13% 9.87% 8.64% 

VAR-P 9.57% 9.24% 8.76% 9.65% 9.29% 8.92% 8.22% 7.40% 7.16% 

STR-A 15.08% 13.37% 13.69% 2.90% 3.67% 2.61% 8.10% 7.00% 6.78% 

STR-C 2.63% 3.57% 2.56% 3.05% 3.70% 2.65% 9.04% 12.51% 11.86% 

STR-P 3.49% 3.98% 2.85% 13.89% 15.13% 14.49% 7.07% 7.57% 7.02% 

 

5.6. Analysis 

In this section, an analysis of the results, as they relate to the previously discussed 

hypotheses, is presented.  

5.6.1. Evaluation of the Cycle Decision-Making Algorithm Hypothesis 

The experimental conditions that formed the hypothesis for the cycle decision-making 

algorithm are provided in Table 5.16, for reference. The accuracy of the hypothesis for the cycle-

decision making algorithm is now evaluated. 
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Table 5.16. Experimental condition reference for cycle decision-making results. 

ID Experimental Condition Description 

A0 (Default) Default values for all parameters. 

A3 BaseCost_Pr + 5 BaseCost_Pr increased from 2  to 7. 

A6 PrintCost_Pr + 5 PrintCost_Pr increased from 2 to 7. 

A9 AssembleCost_Pr + 5 AssembleCost_Pr increased from 2 to 7. 

A21 [All]CostPrintable + 2 Base-, Print-, and AssembleCost_Pr increased to 4. 

A23 Base & Print Pr + 2 BaseCost_Pr and PrintCost_Pr increased to 4. 

B1 Print_Efficiency = 0.25 Print_Efficiency decreased from 1.0 to 0.25. 

B7 Print_Amount = 0.25 Print_Amount decreased from 1.0 to 0.25. 

 

It was hypothesized that the DHE and HHE configurations would have a higher print 

potential and lower assembly potential under experimental conditions A3, A21, A23, B1, and B7, 

as compared to using the base algorithm. Based on the experimentation results, the cycle-DHE and 

cycle-HHE algorithms outperformed the base algorithm, in terms of print potential, for 

experimental conditions A3, A21, A23, B1, and B7 (as shown in Table 5.17). This was also the 

case for experimental conditions A6 and A9, which had the previously discussed ratio 

discrepancies, when utilizing the base algorithm.  These were not predicted to be affected by the 

use of the cycle algorithm. Furthermore, the assembly potential was higher when the base 

algorithm was used (as shown in Table 5.18) in all of the listed experimental conditions. Thus, this 

aspect of the hypothesis was supported by the results. 

In broader terms, the cycle-DHE and cycle-HHE algorithm did not outperform the base 

algorithm in terms of print potential for many experimental conditions during the early stages (up 

to time-step 30). This is contrary to the prediction that the cycle algorithm would improve the 

performance of the DHE and HHE configurations in the early stages of operations. At time-steps 

50 and 70, however, the cycle-DHE and cycle-HHE algorithms did outperform their base 

algorithm counterpart in nearly all experimental conditions, in terms of print potential. However, 

their assembly potential was lower than their base algorithm counterpart for all of the experimental 
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conditions, regardless of time-steps. Thus, the results support the conclusion that the cycle-DHE 

and cycle-HHE algorithms have an increased or equivalent print potential in later stages, as 

compared to the base algorithm, for almost all of the tested circumstances; however, they have a 

reduced assembly potential. This is presumably due to the printer robot type appearing in the build 

queue more often when using the cycle algorithm with the heterogeneous configurations, as the 

build list index is retained from where it left off in the previous iteration. Based on the results, this 

has more of an impact on the later stages.  This is contrary to the prediction that it would have 

more of a significant impact at the early stage (up to time-step 30). 

Table 5.17. Print potential of the cycle-DHE and cycle-HHE algorithms. 

 
Print Potential 

 
Time-Step: 30 Time-Step: 50 Time-Step: 70 

ID Cycle Base Cycle Base Cycle Base 

DHE HHE DHE HHE DHE HHE DHE HHE DHE HHE DHE HHE 

A0 17.9 10.8 18.3 13.5 58.1 50.1 58.0 53.9 67.6 57.5 63.0 53.5 

A3 10.2 7.5 5.8 4.8 20.9 12.0 5.8 4.9 34.1 17.2 5.7 4.7 

A6 11.8 10.5 10.6 10.5 28.5 28.0 19.2 10.7 41.4 34.7 27.3 9.8 

A9 15.8 10.8 11.1 11.9 41.9 37.1 25.5 28.3 59.1 45.4 42.9 40.1 

A21 11.1 9.3 6.8 6.9 24.2 15.0 6.7 6.9 37.7 26.4 6.6 6.4 

A23 11.4 9.3 8.8 7.9 27.9 20.8 8.8 7.7 40.9 31.8 8.2 7.4 

B1 14.0 10.6 12.2 10.8 21.9 16.7 12.1 10.4 25.9 19.7 11.7 10.4 

B7 16.3 9.9 12.6 10.9 26.0 15.9 12.3 10.4 43.1 20.8 12.3 10.0 
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Table 5.18. Assembly potential of the cycle-DHE and cycle-HHE algorithms. 

 
Assembly Potential 

 
Time-Step: 30 Time-Step: 50 Time-Step: 70 

ID Cycle Base Cycle Base Cycle Base 

DHE HHE DHE HHE DHE HHE DHE HHE DHE HHE DHE HHE 

A0 19.7 10.8 22.8 18.5 58.4 52.4 68.8 64.2 68.9 57.6 74.7 64.7 

A3 10.0 6.6 13.4 10.6 18.5 10.2 21.9 15.4 29.3 18.0 34.1 21.5 

A6 15.6 10.8 20.5 17.1 40.1 33.3 52.5 53.2 58.6 44.3 81.9 84.1 

A9 12.3 10.6 15.1 13.5 28.9 29.5 30.0 30.0 38.7 36.9 44.7 42.4 

A21 11.4 9.7 15.5 12.8 22.0 17.3 26.9 22.6 35.0 29.4 41.0 34.9 

A23 13.3 11.0 19.3 15.7 28.2 21.6 40.4 32.3 42.7 32.6 67.9 51.7 

B1 14.8 10.7 16.2 15.0 18.3 13.6 26.2 17.8 24.6 19.4 39.6 24.3 

B7 15.2 10.1 18.3 15.4 22.8 14.4 27.8 18.4 36.0 20.8 41.6 24.1 

 

For the cycle-HHO algorithm, there was a marginal increase in the collection potential at 

time-step 30, as compared to the base algorithm HHO (as shown in Table 5.19). However, the 

cycle-HHO algorithm underperformed the base algorithm HHO by a small amount in later 

timesteps. Therefore, the predicted better performance of the cycle-HHO algorithm, in terms of 

collection potential, for these cases, is largely unsupported by the results. 

The cycle-HHO algorithm had a slightly lower assembly and print potential for 

experimental conditions A6, A9, A21, A23, B1, and B7 (as shown in Table 5.20). A more 

significantly inferior performance was shown under experimental condition A3, where the cycle-

HHO algorithm appears to have stalled the production of replicator robots. However, this stall in 

replicator robot production is shown in the other listed experimental conditions as well – it just did 

not occur for experimental condition A3 when using the base algorithm.  

Due to the Cycle-HHO algorithm underperforming its base algorithm counterpart in most 

experimental conditions, it is not projected to be a strong option for use in applications similar to 

most of the tested circumstances. 
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Table 5.19. Collection potential for the cycle-HHO algorithm. 

Collection Potential 

Time-Step: 30 50 70 

ID Cycle Base Cycle Base Cycle Base 

HHO HHO HHO HHO HHO HHO 

A0 24.4 23.4 66.9 67.3 144.8 142.7 

A3 15.1 13.1 24.7 26.8 34.1 44.8 

A6 25.5 26.3 59.1 62.2 95.7 106.0 

A9 24.8 25.6 61.5 63.2 98.1 105.5 

A21 18.8 19.9 35.5 38.0 59.9 65.4 

A23 20.4 21.0 39.9 44.1 63.5 71.1 

B1 23.7 21.5 43.2 44.9 64.8 73.4 

B7 23.3 21.3 41.6 44.1 66.4 73.8 

Table 5.20. Assembly potential and print potential for the cycle-HHO algorithm. 

 

Assembly Potential Print Potential  

30 50 70 30 50 70 

ID Cycle Base Cycle Base Cycle Base Cycle Base Cycle Base Cycle Base 

HHO HHO HHO HHO HHO HHO HHO HHO HHO HHO HHO HHO 

A0 11.3 13.5 24.1 32.2 51.6 70.1 11.4 13.7 23.9 31.8 51.8 70.4 

A3 6.0 9.7 5.9 16.7 5.9 31.3 6.0 9.7 5.8 16.7 5.7 31.0 

A6 8.0 8.8 7.7 8.8 7.7 8.5 8.0 8.8 7.9 9.0 7.5 8.8 

A9 7.7 8.8 7.9 8.7 7.7 8.3 7.9 8.8 7.9 8.9 7.7 8.7 

A21 6.8 7.8 6.8 7.7 6.9 7.9 6.8 7.9 6.9 7.8 6.8 7.7 

A23 7.7 8.7 7.5 8.9 7.8 8.7 7.8 8.8 7.6 8.8 7.8 8.4 

B1 11.4 13.7 12.6 14.7 12.4 14.5 11.6 13.7 12.3 14.6 12.0 14.1 

B7 11.3 13.7 12.6 14.3 12.5 14.5 11.4 13.8 12.3 14.3 12.3 14.4 

 

5.6.2. Evaluation of the Variable Decision-Making Algorithm Hypothesis 

In this subsection, the hypothesis regarding the variable decision-making algorithm is 

evaluated and compared with the results obtained. 

The variable-P algorithm was within standard deviation of the highest print potential for 

most experimental conditions at time-steps 40 and 50. It also performed the best for approximately 

35% of all experimental conditions and the second best in an additional 35% of all experimental 

conditions, for both time-steps 40 and 50. Considering standard deviation, at time-step 40 it 

underperformed the base-DHE algorithm for experimental condition A16, and Cycle-DHE for 

experimental conditions A6 and A13 (as shown in Table 5.21). At time-step 50, it underperformed 
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as compared to the Cycle-DHE algorithm for experimental conditions A6, A13, A16, and A23 as 

well as compared to base-DHO, for experimental condition D9. Thus, the prediction that the 

variable-P algorithm would perform the best for most experimental conditions at time-steps 40 and 

50 is supported by the results. 

At time-step 70, the variable-P algorithm was hypothesized to underperform for 

experimental conditions A11, A13, A15, A17, A18, A19, A25, A26, A27, A28, B3, B6, B9, D2, 

D5, D6, and D9 due to reaching the maximum number of robots as limited by resource constraints. 

Based on the results, it underperformed under all of the experimental conditions that were 

hypothesized, as well as for A0, A7, B5, D8, D7, D4, and D10. This supports the hypothesis that 

it would reach a suboptimal maximum, in terms of print potential, for the experimental conditions 

where the heterogeneous approach underperformed the homogeneous approach in Chapter 4. 

Table 5.21. Select results for the variable-P algorithm at time-steps 40 and 50. 

VAR-P Print Potential 

ID Highest Score VAR-P Diff Std Dev 

(40) Time-Step: 40 

A6 Cycle-DHE 18.9 14.9 -4.0 1.2 

A13 Cycle-DHE 41.5 37.2 -4.3 2.9 

A16 DHE 13.4 9.5 -3.9 1.0 

(50) Time-Step: 50 

A6 Cycle-DHE 28.6 18.3 -10.3 2.3 

A13 Cycle-DHE 69.4 57.9 -11.5 4.7 

A16 Cycle-DHE 24.6 18.0 -6.6 2.0 

A23 Cycle-DHE 26.8 21.7 -5.1 2.7 

D9 DHO 39.0 35.0 -4.0 2.0 

 

The variable-A algorithm was within the standard deviation of the highest performing 

algorithm, in terms assembly potential, for all experimental conditions at time-step 50. At time-

step 40, it was within the standard deviation of the best performing algorithm for all experimental 

conditions except B5. For experimental condition B5, it underperformed, as compared to the base-

DHE configuration (as shown in Table 5.22). Thus, the prediction that the variable-A algorithm 
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would outperform the base and cycle algorithms for most experimental conditions at time-steps 40 

and 50, is supported by the results. 

At time-step 70, it underperformed under all of the experimental conditions hypothesized 

(the same conditions hypothesized for the variable-P algorithm), as well as under experimental 

conditions A7, B5, D7, and D8. This supports the hypothesis that it would reach a suboptimal 

maximum, in terms of assembly potential, for the experimental conditions where the 

heterogeneous approach underperformed the homogeneous approach in Chapter 4. 

Table 5.22. Select results for the variable-A algorithm at time-step 40. 

(40) Assembly Potential 

ID Highest Score VAR-A Diff Std Dev 

B5 DHE 33.4 30.3 -3.2 2.2 

 

The variable-C algorithm did not perform nearly as well as predicted. It had some success 

in the earlier stages, except for under experimental conditions A10, A26, A27, B8 and D2, where 

it wasn’t within the standard deviation range from the best performing algorithm at time-step 40 

(as shown in Table 5.23). For time-steps 50 and 70, it underperformed across several experimental 

conditions. Therefore, the prediction that the variable-C algorithm would outperform other 

algorithms for all experimental conditions is unsupported by the results. 

Table 5.23. Select results for the variable-C algorithm at time-step 40. 

(40) Collection Potential 

ID Highest Score VAR-C Diff Std Dev 

A10 Variable-A 31.2 27.2 -4.0 2.0 

A26 HHE 105.5 94.5 -11.0 7.0 

A27 HHE 103.7 90.3 -13.4 7.3 

B8 Cycle-HHE 58.5 51.0 -7.5 2.9 

D2 HHE 112.1 104.8 -7.3 6.2 
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The variable-P and variable-A algorithms did not perform better than the base and cycle 

algorithms on the high-risk experimental conditions of C7, C8, and C9. The variable-C algorithm 

performed the best under experimental conditions C8 and C9 at time-steps 40 and 50, although the 

difference between them was less than half of the standard deviation (the standard deviation on 

those experimental conditions is notably quite high). Therefore, this portion of the hypothesis is 

weakly supported with regards to the variable-C algorithm being able to better cope with high task 

risk levels. However, this result is inconclusive. 

5.6.3. Evaluation of the Strategic Decision-Making Algorithm Hypothesis 

Due to their high task risk levels, experimental conditions C7, C8, and C9 were predicted 

to be an exception to the strategic algorithm outperforming the other algorithms, in terms of the 

selected optimization metric. This prediction is supported by the results. In certain cases, the 

strategic decision-making algorithm outperformed other algorithms under one or more of these 

experimental conditions. However, the strategic algorithm’s observed performance over the other 

algorithms was limited for these conditions (even at time-step 70). This data, thus, supports the 

prediction that these high-risk experimental conditions are an exception. However, this is 

identified as an exception due the to experimentation being inconclusive and not an indication of 

consistent better or worse performance. Because of this, the discussions of the results herein 

generally excludes experimental conditions C7, C8, and C9, due to their inconclusiveness.  

The strategic-A algorithm was the highest performing algorithm in terms of assembly 

potential for most experimental conditions and time-steps (shown in Table 5.24). At time-step 30, 

this algorithm marginally underperformed (but it was within the standard deviation range) the 

variable-A algorithm for experimental condition A3. It also underperformed the base-DHE 

algorithm for experimental condition A14. Furthermore, it marginally outperformed the other 
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algorithms under experimental conditions A10, A16, A21, and C19. It substantially (12%-42%) 

outperformed for the other experimental conditions.  

At time-step 50, the Strategic-A algorithm marginally underperformed (but was within the 

standard deviation range of) the base-DHE algorithm under experimental condition B1. It 

marginally outperformed under experimental conditions A12, A14, A23, B4, B7, C19, and D9, 

and substantially outperformed (by 14%-35%) under the other experimental conditions. At time-

step 70, it marginally underperformed the base-DHE algorithm for experimental condition B1. 

However, it marginally outperformed for experimental conditions A16, A17, B7, C10, D8, and 

D9, and substantially outperformed (15%-43%) for the other experimental conditions. 
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Table 5.24. Select results for the strategic algorithm. 

 
Assembly Potential 

(Strategic-A) 

Collection Potential 

(Strategic-C) 

Print Potential 

(Strategic-P) 

ID 30 50 70 30 50 70 30 50 70 

A0 33.7 91.1 117.0 44.0 216.7 234.6 25.9 100.5 114.0 

A3 13.5 26.9 48.9 24.4 46.9 78.0 13.8 24.1 53.5 

A6 28.7 68.8 123.5 44.0 145.1 243.2 17.1 41.1 58.3 

A9 16.0 37.2 56.6 44.4 145.2 246.2 26.3 59.7 111.1 

A10 8.0 42.9 95.5 15.0 44.5 138.5 7.4 37.9 96.9 

A12 32.0 65.0 117.7 36.3 150.9 235.9 13.5 61.7 116.2 

A14 11.2 45.5 90.6 27.2 111.9 217.2 15.3 62.3 120.6 

A16 8.0 41.4 75.1 25.6 84.8 163.2 7.7 38.3 61.3 

A17 35.3 67.2 67.5 43.2 115.0 115.4 26.5 66.2 66.6 

A21 15.8 33.0 59.8 37.2 77.5 127.6 15.9 30.0 60.1 

A23 21.3 42.6 79.9 37.7 81.4 133.6 17.9 36.0 61.2 

A25 45.6 109.7 109.3 44.2 216.3 222.7 27.1 100.2 99.4 

A26 41.7 108.6 112.0 45.1 227.0 232.0 26.3 107.1 110.3 

A27 36.5 97.4 115.2 42.4 223.3 231.7 27.4 109.3 111.1 

A28 45.0 112.4 111.5 43.0 221.9 221.0 26.3 104.3 105.7 

B1 22.6 24.3 37.1 42.5 59.0 80.3 21.4 26.9 37.8 

B4 32.7 41.4 82.2 43.6 114.4 221.5 26.1 39.9 85.3 

B7 23.6 29.5 47.6 44.0 66.8 106.2 23.8 29.5 78.8 

B9 37.2 112.3 117.6 43.4 222.2 234.0 25.9 110.2 113.1 

D1 23.1 76.6 123.6 44.2 176.7 248.6 23.5 78.4 120.8 

D2 44.1 111.4 113.0 42.0 226.8 228.0 26.4 104.1 102.9 

D5 39.3 96.2 113.1 42.2 230.2 234.8 27.6 108.1 113.3 

D8 35.4 88.8 88.2 43.6 194.8 167.6 26.8 99.6 97.5 

D9 34.7 42.7 44.0 43.8 93.1 92.6 26.5 45.0 43.7 

 

The strategic-C algorithm had the highest collection potential for most experimental 

conditions at time-steps 50 and 70. At time-step 30, it performed comparatively well, as compared 

to the other algorithms, but it was not the highest, under most experimental conditions. At time-

step 50, the strategic-C algorithm notably underperformed the base-DHE algorithm for 

experimental condition A10 (it was not even within the standard deviation range). It also 

marginally underperformed the base-HHE algorithm under experimental condition C4. However, 

it outperformed under the other experimental conditions by a substantial margin (10%-33%). At 
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time-step 70, it notably underperformed the base-HHE algorithm under experimental condition 

A10. It marginally outperformed for experimental conditions A16, B1, and C19, and outperformed 

under the other experimental conditions by 10%-47%.  

The strategic-P algorithm had the highest print potential for most experimental conditions 

and time-steps. In fact, it was the highest performing for all experimental conditions at time-steps 

50 and 70 (excluding C7, C8, and C9, as noted previously). At time-step 30, it marginally 

underperformed the base-DHO algorithm under experimental condition A10. It marginally 

outperformed under experimental condition A3 and notably outperformed under the other 

experimental conditions by 18%-45%.  

At time-step 50, the strategic-P algorithm was the highest for all experimental conditions. 

It marginally outperformed for experimental conditions A3, B7, and D9. However, it outperformed 

under the other experimental conditions by 21%-44%. At time-step 70, it outperformed for all 

experimental conditions. It marginally outperformed for experimental conditions A16, A17, and 

D9, and outperformed under the other experimental conditions by 12%-44%.  

Based on this data, the hypothesis that the strategic decision-making algorithm would 

outperform the other algorithms in this experiment, in terms of its input optimization metric, for 

most experimental conditions is supported. However, under experimental conditions A10, A12, 

A14, and A16 the strategic algorithm underperformed, in terms of its input metric, in many cases. 

Experimental conditions B1, B4, B7, and B9 showed a similar effect. These experimental 

conditions primarily affected its performance at time-steps 50 and 70.  

Experimental conditions D11 and D12 did not show a significant impact on the 

performance; therefore, this portion of the hypothesis is not supported by the data. Furthermore, 

experimental condition D9 was close in certain cases, primarily for assembly and print potentials. 
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Experimental condition D1 did not cause a reduction in the performance of the strategic algorithm 

significantly.  

5.6.3.1. Strategic-A Improvements 

The Strategic-A algorithm underperformed under experimental condition B1 at time-steps 

50 and 70 (depicted in Figure 5.3). This experimental condition lowers the Print_Efficiency 

parameter, which makes the conversion of raw materials to printable components less efficient. 

Thus, the problem presented to the algorithm had two components. First, it needed to increase the 

number of print-capable robots in order to offset this less efficient conversion. Second, it needed 

an increase in collection potential early in the simulation in order to provide the materials for the 

larger number of print-capable robots required. 

 
Figure 5.3. The STR-A algorithm using cycle-DHE for phase 1 on experimental condition B1. 
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Figure 5.4. The STR-A algorithm using R-R-N for phase 1 on experimental condition B1. 

 

A solution was found which involved using a custom build list that consisted of two 

replicator robots followed by a normal robot (R-R-N). Based on the output of trial simulation runs, 

this produced acceptable performance due to the replicator robots being primarily tasked with 

assembling new robots during phase one, and then being tasked with printing components during 

phase two (depicted in Figure 5.4). The assembler type robots are prioritized over the replicator 

type robots by the algorithm for assembling new robots, since they don’t have the capability to 

print components. With this change in phase one build list, the strategic-A algorithm outperformed 

in terms of assembly potential for experimental condition B1 at time-steps 50 and 70 (as shown in 

Table 5.25). 

Table 5.25. Improvement of the strategic-A algorithm phase 1 on experimental condition B1. 

Strategic-A 

Condition: B1 

Assembly Potential Assembly Potential 

Std Dev 

Previous 

Best 

Previous 

Best Score 

Time-Step 50 28.67 2.04 DHE 25.73 

Time-Step 70 42.22 3.18 DHE 38.72 
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5.6.3.2. Strategic-P Improvements 

Based on its superior performance during the experimental runs (in terms of its 

optimization metric), the strategic-P algorithm was not further modified. The results produced 

indicate a high level of performance and robustness across many different experimental conditions 

using its initial phase one build list. 

5.6.3.3. Strategic-C Improvements 

There were several changes made to the time-step 30 phase one build list for the strategic-

C algorithm, due to its relatively low initial performance. First, phase one was changed to use the 

HHE configuration (from the cycle-DHE configuration) for all cases at time-step 30. Based on the 

results of running all experimental conditions with this change to the algorithm’s early stage, it 

had marginal to significant improvements on many experimental conditions. However, with these 

changes it now performed worse under experimental conditions A2, A3, A11, A21, A23, and A24, 

when using the HHE configuration as the phase 1, as compared to when using the cycle-DHE 

configuration for phase 1. The algorithm was switched back to use cycle-DHE for these 

experimental conditions.  

Even with the change to the operations of the algorithm by using the HHE configuration 

during phase 1, it still underperformed under experimental conditions A25, A26, A27, and A28, 

in terms of collection potential. Interestingly, the strategic-A algorithm outperformed the strategic-

C algorithm under experimental conditions A25, A26, A28, and D2, in terms of collection 

potential. This was unexpected as the strategic-A algorithm was designed for maximizing 

assembly potential. Experimental conditions A25, A26 and A28 have reduced costs of printable 

components of the base and/or assemble capability. Thus, in these cases, where a system could 

build a high number of robots with the initial available resources, an increase in assembly capable 
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robots allows more robots to be built and not be bottlenecked by lack of resources. The phase one 

operations approach of these experimental conditions was changed to only produce assembler type 

robots, which resulted in the strategic-C algorithm outperforming for experimental conditions A25, 

A28, and D2 at time-step 30 by a wide margin (listed in Table 5.26). 

 Table 5.26. Improvements to the phase 1 of the strategic-C algorithm at time-step 30. 

Time-Step: 

30 

Phase 1 Collection Potential Collection Potential 

Std Dev 

Previous 

Highest 

Previous 

Score 

A25 Assembler 97.07 8.52 Strategic-A 51.45 

A26 DHE 55.60 3.06 Strategic-A 47.25 

A27 DHE 54.56 6.17 Variable-A 46.31 

A28 Assembler 85.80 6.43 Strategic-A 50.65 

D2 Assembler 88.09 5.19 Strategic-A 49.90 

D5 DHE 55.51 3.41 Variable-C 48.25 

 

While prioritizing assembly potential during the early period of the simulation benefited 

the strategic-C algorithm under experimental condition A26, it was not sufficient. Experimental 

condition A26, where the printable component cost of the assembly capable robots is decreased, 

still required a certain amount of print capable robots in order to augment the printable component 

supply. In this regard, using the cycle-DHE or HHE configurations would produce too many print 

capable robots, and using only assembler robots (which benefited performance for experimental 

conditions A25 and A28) resulted in running out of printable components too early. Thus, the DHE 

configuration was tried for phase 1, as this configuration resulted in a higher assembly potential in 

the experimental runs. This sufficiently increased its assembly potential for the algorithm to exhibit 

sufficient performance under experimental condition A26 at time-step 30.  

Under experimental condition A27, where the printable component cost of the print 

capability is decreased, the configuration used was also changed to DHE (which improved it 

enough to cause it to outperform other algorithms). This change was also applied for use under 



 

126 

experimental condition D5 (increased initial raw printing materials) and it produced improved 

results. Experimental condition D5 was identified as possibly benefiting from this change as well, 

due to the variable-C algorithm having equivalent performance to the variable-A algorithm under 

this condition. This led to the realization that increased assembly potential was beneficial for this 

experimental condition. 

Table 5.27. The STR-C algorithm on experimental condition A10. 

Algorithm Phase 1 

Switch 

Phase 

Step 

Collection 

Potential 

Collection 

Potential 

Std Dev  
Time-Step: 30 

Base-HHE - - 15.55 0.89 

STR-C Cycle-DHE 15 15.23 1.16 

STR-C (A-A-P) 15 21.58 1.21 
 

Time-Step: 50 

Base-DHE - - 54.78 3.45 

STR-C Cycle-DHE 30 45.72 5.78 

STR-C (A-A-P) 30 82.02 8.03 
 

Time-Step: 70 

Base-HHE - - 161.32 9.53 

STR-C Cycle-DHE 30 85.27 11.10 

STR-C (A-A-P) 30 149.41 16.27 

STR-C (A-A-P) 40 179.75 16.75 

 

Finally, the strategic-C algorithm was underperforming for experimental condition A10 at 

time-steps 50 and 70. Many changes to its phase 1 operating configuration were attempted to 

improve this. Experimental condition A10 involves increasing the BaseCost_Time parameter, and 

more assemble-capable robots were needed to be built in phase 1 in order to compensate for the 

slower build rate. Thus, a customized build list of two assembler robots and one printer robot (A-

A-P) was used. This resulted in an increase in assembly-capable robots; therefore, more robots 

could be built in parallel (depicted in Figure 5.5). This increased the performance of the algorithm 

and achieved the highest level of collection potential for experimental condition A10 at time-step 
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50. However, even with this change, the strategic-C algorithm still underperformed the base-HHE 

algorithm at time-step 70 (as shown in Table 5.27).  

 

Figure 5.5. The STR-C algorithm using A-A-P for phase 1 on experimental condition A10. 

 

 

Figure 5.6. The STR-C algorithm using A-A-P for phase 1, with the phase switch at step 40. 

 

Due to the increase of the BaseCost_Time parameter in experimental condition A10, the 

strategic-C algorithm required even more assemble-capable robots to assemble in parallel in order 

to reach a higher collection potential at time-step 70. It was hypothesized that the switch phase 

time-step may need to be adjusted upwards for experimental conditions A10, A12, A14, A16, D11, 
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and D12. Thus, the time-step where phase one switches to phase two was changed to 40 (up from 

30) for experimental condition A10 (as depicted in Figure 5.6). This adjustment increased the 

performance of the strategic-C algorithm and achieved the highest level of collection potential for 

experimental condition A10 at time-step 70 (as shown in Table 5.27).  

5.7. Summary 

This chapter has considered decision-making algorithm performance under multiple 

experimental conditions that might be present in various real-world operating environments. The 

type of decision-making algorithm used for a self-replicating robot system has a significant impact 

on system performance. In this chapter, three decision-making algorithms were proposed and 

tested. These algorithms were the cycle, variable, and strategic decision-making algorithms. 

The cycle decision-making algorithm demonstrated improved print potential in the later 

time-steps for the DHE and HHE configurations in comparison to the base algorithm. However, it 

also had decreased assembly potential under most experimental conditions and at most time-steps 

(due to differences in build priorities). 

The results from the base and cycle decision-making algorithms were used to construct the 

variable algorithm. This algorithm takes an input metric of assembly, print, or collection potential 

and attempts to maximize for this input by selecting the highest scoring system configuration and 

decision-making combination from the base and cycle algorithms. However, it did not perform 

well in terms of collection potential and had problems under experimental conditions where the 

maximum number of robots was reached early in the simulation.  

Based on the variable algorithm’s lack of sufficient improvements over the base and cycle 

decision-making algorithms, the strategic decision-making algorithm was devised. The variable 

algorithm can be characterized as a greedy algorithm, where the best performing option was 
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selected without regard to looking ahead at subsequent steps. In contrast, the strategic algorithm 

has a time-step goal in addition to an inputted optimization metric. Thus, its approach is to build a 

core number of robots in an initial phase, and then focus entirely on maximizing the input metric 

in a subsequent phase. It performed far better than the other algorithms, in terms of its inputted 

optimization metric, for almost all experimental conditions and time-steps. Adapting the initial 

phase 1 build list was shown to be effective in improving its performance under experimental 

conditions where the strategic algorithm did not initially outperform the other algorithms. The 

time-step at which to switch from phase 1 to phase 2 was also changed, in one instance, based on 

the number of time-steps required for building robot-types. Overall, the results presented show the 

strategic algorithms to be a strong option for maximizing a particular capability metric. Although, 

it often maximizes the input metric at the cost of other metrics. Given this, it is not suitable for use 

cases that require a more even distribution of metrics. 
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6. CYBERSECURITY6 

Self-replicating robot systems may pose security concerns based on their capabilities and 

the boundaries of their operations. A potential solution is to strictly set parameters within their 

software that limit certain behaviors or capabilities. However, this prospective solution wouldn’t 

be effective if the robot system, or a portion of the robot system, was infected through a 

cybersecurity vulnerability. The potential for the compromise of the safeguards impairs the 

integrity of this approach. As there is no absolute solution to this problem, the goal becomes to 

minimize the likelihood of its occurrence. This issue could potentially be mitigated through the 

use of an anomaly detection system. 

An intrusion detection system identifies unusual activity that deviates from the expected 

activity and indicates the potential compromise of the monitored systems.  Detecting deviations 

from expected behavior using anomaly detection, as opposed to using signature-based detection, 

allows new variants of malicious activity to be caught by the intrusion detection system [109][110]. 

However, this approach has associated disadvantages as well. For instance, these detection 

methods are likely to raise false alarms, such that unusual but legitimate use may be flagged as 

anomalous [111][112]. To maximize effectiveness, the challenge is to develop an accurate and 

complete model of legitimate behavior. 

In this chapter, the cyber security considerations for self-replicating robot systems are 

discussed. An experiment is conducted to evaluate the efficacy of a potential anomaly detection 

 

 

 

6 This chapter is derived from: A. Jones and J. Straub, “Cybersecurity Considerations for Self-Perpetuating Robot 

Systems,” (submitted to) J. Comput. Sci. Technol., 2020. 
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system for self-replicating robot systems. The results of this experiment are used to derive a 

potential anomaly detection system for a self-replicating robot system.  

6.1. Robot Cybersecurity 

In this section, background information and prior work pertaining to robot cybersecurity is 

reviewed. Safeguarding autonomous robots from cybersecurity threats is particularly important, as 

compromised robots can directly and catastrophically impact their surroundings [112]. For 

example, Bonaci and Chizeck [113] discussed security concerns for remotely operated robots that 

are used for rescue and recovery in natural disasters and man-made catastrophes, including 

battlefield environments.  

Robotic communication channels are one of the most important security aspects of the 

system to be secured, due to information that is critical to the mission being sent through these 

wireless communication channels [114]. To provide security for this, Schumann, Moosbrugger, 

and Rozier [115] proposed the R2U2 approach, which was designed to continuously monitor 

inputs from the ground control station, sensor readings, actuator outputs, and flight software status. 

By monitoring these inputs and performing statistical reasoning, attack patterns and post-attack 

discrepancies in the robotic behavior could be detected [115]. 

Robotic systems that operate autonomously and self-organize may be susceptible to special 

forms of attacks. Higgins, Tomlinson, and Martin [116] discussed how systems using swarm 

intelligence could be tampered with by an intruder.  For example, a rogue robotic agent could be 

introduced into the robot system and cause unexpected behavior. A proposed mitigation strategy 

for this is to develop new forms of authentication for robot systems such as the use of visual sensing 

and physical data exchange [116]. Preventing robots from becoming infected through 

cybersecurity vulnerabilities, is the focus of the experiment in this chapter. 
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6.2. Methodology 

In this section, the methodology used in this chapter’s experiment is discussed. The 

experiment was conducted to analyze the impact that the system configuration of the self-

replicating system would have on cybersecurity related vulnerabilities. The experiment is a 

modification of the simulation system presented the previous chapters. In the experiment, a certain 

robot may be infected at a specified time-step.  

The particular characteristic being studied is how the system configuration of the self-

replicating robot system affects its survival. Survival depends on how many robots are infected 

and what types they are. For example, in Figure 6.1, if the sole replicator robot is infected (after 

building the non-replicators) then the system becomes a non-replicating robot system, as the 

infected robot would need to be deactivated (or would otherwise be unavailable for system 

operations). Examples where replicating robots are infected are evaluated to determine the impact 

on the overall system. 

Replicator
Non-

Replicator

Non-
Replicator

Non-
Replicator

Replicator
Non-

Replicator

Non-
Replicator

Non-
Replicator

 

Figure 6.1. Diagram of a centralized self-replicating robot system, before and after infection. 
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While the impact of different types of malware on system operations will vary 

significantly, some assumptions were made for experiments presented in this chapter. An infected 

robot that assembles a new robot will cause the newly constructed robot to also be infected. An 

infected robot tasked with gathering resources will take resources out of the environment but won’t 

add them to the robot system’s stockpile (i.e., it destroys or hides them). Similarly, an infected 

robot that is tasked with printing components will use printing materials but will not add the printed 

components to the robot system’s stockpile (i.e., it wastes them by producing unusable 

components). 

6.2.1. Experimental Conditions 

For this experiment, there are three experimental conditions. These are as follows: 

• Random (T1): The robot that will be infected is randomly chosen from all currently 

operational robots in the system. This is meant to simulate a case where an attacker 

searches for a robot that has a cyber security vulnerability that could be exploited. 

• Targeted (T2): The robot that will be infected is randomly chosen from all assembly-

capable robots that are currently operational in the robot system. This is meant to 

simulate a case where an attacker specifically targets robots that have the assembly 

capability.  

• Physically Separated (T3): The robot that will be infected is randomly chosen from 

all robots in the robot system that are currently collecting resources. This is meant to 

simulate a case where an attacker targets a robot that is currently away from the main 

part of the robot system. This simulates a case where proximity or physical access 

would be needed (i.e., if the attacker would need to physically access the hardware to 

compromise it). 
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For these experiments, the Num_Steps parameter of the simulation is set to 70. All other 

parameters are set at their default values (listed in Chapter 4). A new parameter step_infected is 

used and is varied. This parameter determines which time-step a robot gets infected at. 

Experiments are first run with a value of 10, this is then changed to 20 and then finally changed to 

40. This parameter is varied only for experimental conditions T1 and T2. It is not varied in the T3 

condition because the T3 condition has a circumstance that the other two experimental conditions 

do not: a robot is not guaranteed to be collecting resources at the specified time-step. Thus, for 

experimental condition T3, the step_infected parameter is the first possible time-step where a robot 

could get infected (i.e., when robots are assigned the collect task). 

6.2.2. Hypotheses 

The hypotheses of the experiment are presented in this subsection. Specifically, it is 

predicted that the effect of a robot becoming infected will be reduced proportionately to how late 

the infection occurs in the simulation run. For the different replication approaches, the hypotheses 

are as follows: 

• Centralized: The centralized configurations of CHE and CHO are expected to be 

significantly affected by experimental condition T2, and only marginally affected by 

experimental conditions T1 and T3. This is predicted because the centralized 

configurations are restricted to the initial amount of assembly capable robots. 

Therefore, these configurations are more likely to have a normal robot infected by a 

random target attack (experimental condition T1) or by an attack targeted at a remote 

robot that is collecting resources (experimental condition T3). In contrast, under 

experimental condition T2, the sole assemble capable robot would be targeted and 

therefore any subsequently assembled robots would be infected. The number of robots 
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infected, and the amount of raw printing materials lost due to infected robots is 

estimated to be high in experimental condition T2, but minimal for experimental 

conditions T1 and T3. Furthermore, the number of fabricated components lost is 

expected to be higher for the CHO configuration under experimental condition T2, as 

the CHE configuration has the print and assemble tasks separated amongst more than 

one robot type (and the printer robot wouldn’t be targeted in this case). 

• Decentralized: The decentralized configurations of DHE and DHO are expected to be 

impacted by experimental conditions T1, T2, and T3 more than the HHE and HHO 

configurations. This is predicted because the DHE and DHO configurations do not 

produce normal robots which could potentially be infected (instead of an assembly 

capable robot). However, the DHE configuration is predicted to be less affected by 

experimental conditions T1 and T3, in comparison to the DHO configuration. This is 

predicted because the DHE configuration has separate print capable robots. This 

reduces the chance of an assembly capable robot being infected by potentially fifty 

percent (or the current assemble ratio value) for experimental condition T1 and 

produces a similar reduction for experimental condition T3 (although this would 

depend on how the collect task is delegated). Due to this, the DHE configuration is 

predicted to have a lower percentage of infected robots, on average, for experimental 

conditions T1 and T3. In contrast, the DHO configuration is expected to perform 

consistently across the experimental conditions. 

• Hierarchical: The hierarchical configurations of HHE and HHO are predicted to be 

affected by experimental condition T2 more significantly than experimental conditions 

T1 and T3. This is predicted because the hierarchical configurations produce normal 
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robots, which could potentially be infected (instead of an assembly capable robot). This 

is especially expected for experimental condition T3, due to the normal robots being a 

higher proportion of robots collecting resources from the environment. The HHE 

configuration is predicted to be less affected than the HHO configuration, on average, 

for experimental conditions T1 and T3, due to the split of the assembly and print 

capabilities amongst more than one robot type. The HHE configuration tended to 

produce robots the fastest, in the results presented in previous chapters. Because of this, 

the HHE configuration may have a higher number of infected robots than other system 

configurations, but it may have a lower percentage of the total number of robots 

becoming infected. 

6.3. Results 

In this section, the results of the experiment are presented. The reported metrics and 

attributes are as follows: 

• Num Robots: the number of robots currently in the robot system. 

• Total Collected: the total amount of raw printing materials collected via the collect 

task type. 

• Total Printed: the total amount of printable components fabricated from raw printing 

materials via the print task type. 

• Num Infected: the number of infected robots in the robot system. 

• Num Infected Std Dev: the standard deviation of the number of infected robots (from 

the 100 runs). 

• Total Failed Collect: the total amount of raw printing materials that were left or 

destroyed due to the collecting robot being infected. 
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• Total Failed Print: the total amount of printable components that were not fabricated 

due to the printing robot being infected. 

The control experimental condition (A0) results are presented in Table 6.1. The results for 

experimental conditions T1 and T2 are presented in Tables 6.2-6.4. One table is included for each 

of the step_infected inputs (10, 20, and 40). The results for experimental condition T3 are presented 

in Table 6.5. 

Table 6.1. Control condition results with base decision-making at time-step 70. 

(Control Group) CHE CHO DHE DHO HHE HHO 

Num Robots 29.2 28.2 137.4 83.8 165.5 142.4 

Total Collected 500 500 500 499.3 500 500 

Total Printed 68.9 0.0 550 548.1 550 549.9 

 

Table 6.2. Results for condition where a robot gets infected at time-step 10. 

Step_infected=10 ID CHE CHO DHE DHO HHE HHO 

Num Robots T1 28.8 28.4 111.6 31.8 132.2 82.5 

T2 29.3 28.0 88.3 31.4 102.2 56.7 

Num Infected T1 4.58 6.54 14.64 15.38 17.53 18.90 

T2 26.15 25.89 25.22 15.40 30.63 27.66 

Num Infected 

Std Dev 

T1 9.13 10.88 14.55 2.84 18.25 13.62 

T2 2.22 3.30 11.42 2.61 13.11 4.95 

Total Failed Collect T1 79.1 110.5 87.7 236.4 89.8 191.7 

T2 364.9 358.7 156.6 239.8 155.3 259.9 

Total Failed Print T1 13.8 0.0 71.4 151.7 73.3 87.5 

T2 0.0 0.0 99.5 151.3 117.4 132.6 

Total Collected T1 419.2 388.1 412.3 255.5 410.1 303.3 

T2 135.1 136.4 339.0 255.1 344.7 240.0 

Total Printed T1 54.7 0.5 390.9 151.7 386.9 265.8 

T2 68.4 0.6 289.1 151.4 277.3 157.1 
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Table 6.3. Results for condition where a robot gets infected at time-step 20. 

Step_infected=20 ID CHE CHO DHE DHO HHE HHO 

Num Robots T1 29.6 28.1 130.7 67.8 159.1 123.7 

T2 29.5 28.2 125.7 67.5 149.3 109.5 

Num Infected T1 2.71 3.84 10.79 8.56 8.15 13.47 

T2 23.11 22.73 17.37 8.11 20.40 21.25 

Num Infected 

Std Dev 

T1 6.36 7.68 9.25 2.35 11.41 10.92 

T2 1.80 1.75 7.94 2.48 10.57 4.61 

Total Failed Collect T1 41.1 57.9 42.6 63.6 24.1 52.2 

T2 220.4 214.5 70.2 60.6 60.3 73.9 

Total Failed Print T1 3.0 0.0 35.0 61.5 32.9 61.5 

T2 0.0 0.1 34.7 58.3 47.2 100.4 

Total Collected T1 458.9 442.1 457.3 435.0 475.9 447.8 

T2 279.6 285.4 429.7 437.6 439.7 426.0 

Total Printed T1 65.9 0.2 472.3 422.2 493.0 436.3 

T2 68.9 0.0 445.1 427.4 442.5 375.6 

 

Table 6.4. Results for condition where a robot gets infected at time-step 40. 

Step_infected=40 ID CHE CHO DHE DHO HHE HHO 

Num Robots T1 28.9 28.0 138.8 82.2 164.3 143.4 

T2 28.8 28.7 138.4 80.4 166.0 142.4 

Num Infected T1 2.03 2.19 1.89 2.62 1.71 3.39 

T2 15.26 15.56 2.64 2.55 3.10 5.66 

Num Infected 

Std Dev 

T1 4.08 4.31 1.23 1.88 1.20 3.13 

T2 1.65 0.67 1.25 1.91 1.03 2.92 

Total Failed Collect T1 12.4 13.6 3.5 13.0 1.8 7.3 

T2 36.0 29.9 5.3 14.2 1.2 4.8 

Total Failed Print T1 2.1 0.3 3.5 16.0 2.6 11.2 

T2 0.0 0.0 0.3 14.0 0.9 19.9 

Total Collected T1 487.5 482.7 496.5 486.8 498.2 492.6 

T2 463.9 470.0 494.7 483.5 498.7 495.2 

Total Printed T1 66.5 0.3 543.0 520.4 545.6 531.4 

T2 68.9 0.0 544.4 517.9 547.9 525.2 
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Table 6.5. Results for experimental condition T3. 

T3 CHE CHO DHE DHO HHE HHO 

Step_infected 10 10 20.55 29.08 11 10 

Num Robots 29.1 28.5 139.4 79.9 165.7 142.9 

Num Infected 0.59 0.70 0.92 2.55 0.59 0.55 

Num Infected Std Dev 0.49 0.46 0.27 1.07 0.49 0.50 

Total Failed Collect 31.4 35.6 6.7 12.3 24.4 30.2 

Total Failed Print 0.0 0.0 19.9 18.9 0.0 0.0 

Total Collected 465.6 464.3 493.3 486.8 475.6 469.8 

Total Printed 68.9 0.0 523.4 516.6 525.6 519.8 

 

6.4. Analysis 

In this section, the results are analyzed and compared with the predictions hypothesized. 

Then, more general conclusions from the data are discussed. Figures 6.2-6.4 present graphs of the 

percentage of robots infected at the end of the simulation for each system configuration. Figures 

6.5-6.7 present graphs of the percent reduction in the number of robots compared to the control 

experimental condition. 

 

Figure 6.2. Percentage of robots infected when step_infected=10. 
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Figure 6.3. Percentage of robots infected when step_infected=20. 

 

 

Figure 6.4. Percentage of robots infected when step_infected=40. 
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Figure 6.5. Percent decrease in number of robots when step_infected=10. 

 

 

Figure 6.6. Percent decrease in number of robots when step_infected=20. 

 

CHE CHO DHE DHO HHE HHO

T1 1.4% -0.8% 18.8% 62.0% 20.1% 42.1%

T2 -0.5% 0.6% 35.7% 62.5% 38.3% 60.2%

T3 0.4% -1.0% -1.5% 4.7% -0.1% -0.4%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

CHE CHO DHE DHO HHE HHO

T1 -1.5% 0.5% 4.9% 19.1% 3.9% 13.1%

T2 -0.9% 0.0% 8.5% 19.5% 9.8% 23.1%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%



 

142 

 

Figure 6.7. Percent decrease in number of robots when step_infected=40. 
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of having sufficient initial resources such that production was not impeded by significant resource 

loss. 

6.4.2. Evaluation of the Decentralized Approach Hypothesis 

The prediction that the decentralized configurations of DHE and DHO would be more 

greatly impacted by all of the experimental conditions than the hierarchical configurations of HHE 

and HHO, is unsupported by the results. The HHE and HHO configurations performed equivalent 

or better than the DHE configuration in terms of both the percentage of robots infected and the 

percentage decrease in the number of robots, as compared to the control condition (as shown in 

Figures 6.2-6.7). The prediction that the DHE configuration would be less impacted by 

experimental conditions T1 and T3, as compared to the DHO configuration, is supported by the 

results. 

Contrary to prediction, the DHO configuration did not perform consistently under 

experimental condition T3 (but it did perform consistently for conditions T1 and T2). Based on 

the data presented in Table 6.5, this is due to the robots in the DHO configuration not collecting 

resources until time-step 29. In situations where the initial resources were decreased, this appears 

to have caused it to perform more consistently during experimental conditions T1 and T2. 

6.4.3. Evaluation of the Hierarchical Approach Hypothesis 

The prediction that the hierarchical configurations of HHE and HHO would be more 

affected by experimental condition T2, as compared to experimental conditions T1 and T3, is 

supported by the results. The HHE and HHO configurations had a small percentage of robots 

infected under experimental condition T3 (as shown in Figures 6.2-6.4). This supports the 

hypothesis. Furthermore, the prediction that the HHE configuration would be less affected under 

experimental conditions T1 and T3 than the HHO configuration, has limited support. This is due 
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to experimental condition T3 having an insignificant impact on both configurations, which made 

the difference between the two negligible. However, the HHO configuration had a higher 

percentage of robots infected for experimental condition T1 than the HHE configuration did (as 

shown in Figures 6.2-6.4), and a higher percent reduction in robot numbers as compared to the 

control group (as shown in Figures 6.5-6.7).  

Finally, the prediction that the HHE configuration would have an increased number of 

infected robots as compared to the other system configurations is not strongly supported by the 

results (presented in Tables 6.2-6.5). While it marginally outperformed the other tested 

configurations when the step_infected parameter was set to 10, this superior performance was not 

observed when this parameter was set to 20 or 40. 

6.4.4. Discussion 

Overall, the heterogeneous configurations of DHE and HHE had a lower percentage of 

infected robots and a lower percent reduction in number of robots, as compared to the 

homogeneous configurations of DHO and HHO. The DHE and HHE configurations also had a 

lower percentage of robots infected, as compared to the centralized configurations of CHE and 

CHO. However, the heterogeneous configurations had a higher percent decrease in number of 

robots than the centralized configurations of CHE and CHO for experimental conditions T1 and 

T2. This is because the CHE and CHO configurations produce less robots than the DHE and HHE 

configurations (and had sufficient resources to not be impeded by the resource loss that occurred). 

In this regard, the DHE and HHE configurations were more robust overall. Thus, under the 

experimental rules regarding how a rogue or infected robot may behave, that were used the 

hierarchical configurations of DHE and HHE were shown to be strong options for mitigating the 

potential negative effects. 
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6.5. Anomaly Detection System 

In this section, the potential efficacy of an anomaly detection system is discussed. The 

modified form of the experiment (i.e., with the anomaly detection system) would involve 

monitoring usage and measurements of certain resources and attributes of the robot system and 

flagging something as suspicious if it deviates from the expected.  

6.5.1. Deviation in Resource Acquisition 

Monitoring for deviations in resource acquisition could be used across the entire robot 

system. Significant deviations from the expected values (i.e., the control group) may indicate that 

robots have been infected. This attribute won’t necessarily be able to identify which robot is 

infected, but it could alert the system to a possible problem. Individual robot resource acquisition 

tasks could also be monitored. For many applications, this may be preferable as which robot is 

infected could be more discernable. 

Under the current simulation design, infected robots that are tasked with collecting raw 

materials or fabricating materials into printable components fail to acquire the resource in every 

case. If individual robots can be monitored, this particular behavior of the infected robots could be 

very simply detected (this could also be used to detect if a robot malfunctions).  

In the case that only the overall resource collection of the system is known at each time-

step, then predicting the resource acquisition of the system and comparing it to the observed 

resource acquisition of the system may allow an anomaly detection system to detect deviations. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑜𝑙𝑙𝑒𝑐𝑡(𝑡) =  𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑅𝑜𝑏𝑜𝑡𝑠𝐶𝑜𝑙𝑙𝑒𝑐𝑡(𝑡) ∗ 𝐶𝑜𝑙𝑙𝑒𝑐𝑡_𝐴𝑚𝑜𝑢𝑛𝑡 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑃𝑟𝑖𝑛𝑡(𝑡) = 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑅𝑜𝑏𝑜𝑡𝑠𝑃𝑟𝑖𝑛𝑡(𝑡) ∗ 𝑃𝑟𝑖𝑛𝑡_𝐴𝑚𝑜𝑢𝑛𝑡 ∗ 𝑃𝑟𝑖𝑛𝑡_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 
(Eq. 5) 

In terms of the utilized simulation system, the amount of collected raw printing materials 

can be predicted at each time-step using Eq 5. In the equation, the AssignedRobotsTaskType(t) 

variable refers to the number of robots assigned to perform a certain task type at time-step t. The 
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error is then the observed amount of a resource acquired in the time-step minus the predicted 

amount. Figure 6.8 depicts the predicted and observed resources collected per time-step for the 

HHE configuration under experimental condition T2 and step_infected set to 10. This discrepancy 

is notable and could serve as a notification of a problem.  

 
Figure 6.8. Resource acquisition for the HHE configuration on experimental condition T2. 
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the question of whether that built robot is also infected is a concern. This notion is used 

in the current simulation, and future work may involve giving infected robots 

deviations or other capabilities. Thus, if a robot were to exhibit capabilities that it 

shouldn’t have, (i.e., those that a robot type would not have), then it would be 

suspicious. 

• Memory usage: A significant enough increase in memory usage for a robot may 

indicate that malicious code is running, and the robot is thus using more memory than 

what would typically be expected. 

• Power consumption (for computing devices): An increase in power consumption for 

computing devices may be indicative of changes to code or additional processes 

running. 

• Processor usage: Similar to memory and power usage, a significant change in 

processor usage may indicate that an unintended change in behavior has occurred. 

• Tampering with safeguard measures: Safeguard measures that are in place to prevent 

certain unsafe or malicious activities would themselves need to be verified. Detection 

of a robot with any safeguards removed would be a sign of potential tampering.  

6.6. Summary 

In this chapter, cybersecurity considerations for self-replicating robot systems were 

discussed. An experiment was conducted to formulate a potential anomaly detection system for 

the application of self-replicating robots. The results of the experiment were presented and 

discussed.  

System deviation from the expected behavior based on the simulation results from this 

chapter may provide a means of detecting if the system has been compromised. However, this 
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would necessitate that the dynamic of what malicious acts or capabilities are carried out by the 

rogue robot(s) align with those outlined in the chapter. Further work and data are needed to further 

develop the proposed anomaly detection system. 
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7. SUMMARY AND CONCLUSION 

In this chapter, a summary of the results presented in previous chapters is provided. Then, 

the overarching conclusions of this work are presented. 

7.1. Simulation 

In Chapter 3, the simulation system used for the experiments in subsequent chapters was 

detailed. There are four task types and four robot types in this simulation. The collect task type 

involves a robot gathering raw printing materials from the environment and adding the gathered 

materials to the robot system’s inventory. The print task type involves a robot taking raw printing 

materials and crafting them into printable components. The assemble task type involves a robot 

taking nonprintable components and printable components from the robot system’s resource pool 

and assembling them into a new robot. The idle task type is assigned to any robot not performing 

any other action during a time-step. 

In the simulation, there are four types of robots: normal, printer, assembler, and replicator. 

In each time-step, each robot is either idle, gathering resources, printing components, or 

assembling a new robot. However, certain robot types are restricted in what types of tasks that they 

can perform. Robot capabilities are listed in Table 7.1. All robot types are capable of being idle. 

Not all types of robots must be included in any given simulation run. 

Table 7.1. Robot types in the simulation. 

Robot Type Collect 

Resources 

Print 

Components 

Assemble 

Robots 

Normal    

Assembler    

Printer    

Replicator    

 

There are six replication system configurations used in the simulation system. These 

system configurations vary in what types of robots they are able to build. These are derived from 
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two sets of higher-level classifications being combined. The first, the replication approach, has 

three classifications. With the centralized approach, robots that have a replication-related 

capability are not buildable by the robot system. In the decentralized approach, all robots have one 

or more replication-related capabilities. Using the hierarchical approach, some robot types have 

replication-related capabilities, and some robot types do not. 

A selection from this first set is then combined with a selection from a second set of 

production approaches. The results of combining the higher-level approaches are listed in Table 

7.2. The second set, the production approach, has two classification values. In the homogeneous 

production approach, the robot system has a single robot type for all the replication-related 

capabilities. With the heterogeneous production approach, the robot system has multiple robot 

types that have replication-related capabilities. 

Table 7.2. Robot system configurations.  

System Configuration Robot Type 

ID Name Normal Printers Assemblers Replicators 

CHO Centralized Homogeneous  - - ○ 

DHO Decentralized Homogeneous - - -  

HHO Hierarchical Homogeneous  - -  

CHE Centralized Heterogeneous  ○ ○ - 

DHE Decentralized Heterogeneous -   - 

HHE Hierarchical Heterogeneous    - 

*Buildable robot types are denoted with the filled in circle, and robots that are present (but not 

buildable) are denoted with a hollow circle. 

There are parameters in the simulation that set certain resource values, cost values, and 

environmental values which all influence the simulation. These parameters are varied in a series 

of experimental conditions. 

7.2. System Configuration Experiment 

An experiment was conducted using the simulation system to study the differences in 

performance caused by the system configurations of CHE, CHO, DHE, DHO, HHE, and HHO. 
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The centralized configurations, CHE and CHO, were shown to marginally outperform in high-risk 

cases, in terms of collection potential, as compared to other configurations. The heterogeneous 

configurations of DHE and HHE (not configuration CHE) were shown to reach a maximum 

number of robots (based on the available resources) more quickly than their homogeneous 

configuration counterparts. However, the homogeneous configurations, DHO and HHO, 

outperformed them in terms of assembly potential and print potential in later time-steps (for many 

experimental conditions). Finally, the decentralized configurations (DHE and DHO) outperformed 

their hierarchical counterparts in terms of assembly potential and print potential for most 

experimental conditions; however, they had a lower collection potential. Whether a system was a 

homogeneous or heterogeneous configuration was shown to be a more significant factor overall. 

These findings were used to establish the decision-making criteria for the decision-making 

algorithms. 

7.3. Decision-Making Experiment 

Three decision-making algorithms were also proposed and tested. These algorithms 

include the cycle, variable, and strategic decision-making algorithms. These were compared with 

the base algorithm and assessed based on their comparative performance. This experiment utilized 

the same 70 experimental conditions as the previous experiment. 

In comparison to the base algorithm, the cycle decision-making algorithm had improved 

print potential for the DHE and HHE configurations in the later time-steps. However, the cycle-

decision-making algorithm also had decreased assembly potential in most experimental conditions 

and time-steps. 

The results from the base and cycle decision-making algorithms were used to construct the 

variable algorithm. This algorithm took an input of assembly, print, or collection potential and 
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attempted to maximize it by selecting the highest scoring system configuration and decision-

making combination from the base and cycle algorithms. However, it did not perform well in terms 

of collection potential and had problems in experimental conditions where the maximum number 

of robots was reached early.  

Based on the variable algorithm’s lack of sufficient improvements over the base and cycle 

decision-making algorithms, the strategic decision-making algorithm was devised. The variable 

algorithm can be characterized as a greedy algorithm, were the best performing option was selected 

without regard to looking ahead at subsequent steps. In contrast, the strategic algorithm has a time-

step goal, in addition to the optimize-for input metric. Thus, its approach is to build a core number 

of robots in an initial phase, and then focus entirely on maximizing the input metric in the 

subsequent phase. This algorithm performed far better than the other algorithms in terms of the 

input metric for almost all experimental conditions and time-steps. Thus, the results show it to be 

a strong option for maximizing a particular capability metric. It often maximizes the input metric 

at the cost of other metrics. Thus, it is not suitable for use cases that require a more even distribution 

of metrics. 

7.4. Cybersecurity 

The cybersecurity considerations for self-replicating robot systems were also discussed. 

An experiment was conducted in order to formulate an intrusion detection system for self-

replicating robot systems. The experiment analyzed the impact that the system configuration of 

the self-replicating system has on its cybersecurity vulnerabilities. The experiment was conducted 

by modifying the simulation from the previous experiments. In this experiment, a certain robot 

was infected at a specified time-step and the results were analyzed. 
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Overall, the heterogeneous configurations of DHE and HHE had a lower percentage of 

infected robots and a lower percent reduction in the number of robots, as compared to the 

homogeneous configurations of DHO and HHO. The DHE and HHE configurations also had a 

lower percentage of robots infected, as compared to the centralized configurations of CHE and 

CHO. However, the heterogeneous configurations had a higher percent decrease in the number of 

robots than the centralized configurations of CHE and CHO for experimental conditions T1 and 

T2. This was because the CHE and CHO configurations produced less robots than the DHE and 

HHE configurations (and had sufficient resources to not be impeded by resource loss). In this 

regard, the DHE and HHE configurations were more robust overall. Thus, under these particular 

experimental rules, regarding how a rogue or infected robot may behave, the hierarchical 

configurations of DHE and HHE were shown to be strong options for mitigating the potential 

negative effects. 

System deviation from the expected behavior, based on the simulation results from this 

experiment, may provide a means of detecting if the system has been compromised. A simplistic 

anomaly detection system was proposed to detect deviations of resource acquisition values. 

However, this anomaly detection system only considered a subset of possible malicious acts. 

Further work and data are needed to further develop a robust intrusion detection system suitable 

for real-world use. 

7.5. Conclusions 

Self-replicating robots can be beneficial for use in areas that are difficult for humans to 

access or prohibitive to bring materials and supplies to. Beyond these specific areas of need, this 

type of robot system could theoretically be used for a wide variety of applications. An application 
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domain that may especially benefit from self-replicating robots is aerospace. Launching materials 

into space can be prohibitively expensive, which may warrant utilizing in-situ materials.  

The proposed simulation approach could be used with parameters that fit with known 

mission constraints in order to guide the decision of how the self-replicating robot system should 

be configured. Furthermore, the data from the simulation experiments may be useful for 

determining which types of buildable robots may be needed for a particular mission or objective. 

The data from the various experimental conditions in the experiments could potentially be used as 

a heuristic to optimize this choice based on the ratio of printable component costs to in-situ 

resource collection rate and the rate at which the in-situ resources are converted into printable 

components.  

The initial resources provided to the system also impact the rate at which it expands. This 

could be adjusted based on the data in order to potentially fulfill objective related requirements. 

Furthermore, the risks associated with the various tasks can affect the viability and effectiveness 

of different approaches. If these are known or estimable, the simulation could be run with those 

parameters in order to plan a potentially effective system configuration to mitigate these risks. 

The type of decision-making algorithm used for the system may also depend on system 

mission objectives. For instance, if maximizing the number of robots with a particular capability 

is required, then the strategic decision-making algorithm (or similar) may be useful for this task. 

This might be the case if the end goal was to print a larger structure and a number of 3D print-

capable robots are needed. Similarly, if a larger structure required many assembly-capable robots 

then the end goal would align with that type of optimization. In contrast, if having a number of 

robots that are more diverse in their capabilities is preferred, then the more simplistic decision-

making algorithms that use repeated build orders may be sufficient.  
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Finally, the threat of a rogue or infected robot in the robot system can be a concern. The 

effects of this may largely depend on the capabilities of the rogue or infected robot(s). The data 

presented in Chapter 6 may provide insight into which system configuration would potentially 

mitigate risks. If the expected malicious actions differ from those presented, then the simulation 

model itself could be used and adapted accordingly in order to better model the circumstances and 

identify deviations. 

This dissertation has presented work on the command decision making for self-replicating 

robot systems, building on prior work (discussed in Section 2) regarding their mechanical and 

electronic designs.  The use of self-replicating robot systems may benefit missions where safety 

or other considerations prohibit or reduce the desirability of using humans to complete mission 

goals. Particularly at long distances and in hard to access environments, the robots must have 

decision making capabilities.  Autonomy is key to maximizing the efficiency of self-replicating 

robot systems and, in some cases, is key to being able to successfully complete a mission at all. 

The work presented herein is designed to benefit the implementation of such a robot system by 

modeling the multi-agent dynamic, heuristics for decision-making and providing an evaluation of 

effective command strategies for known or expected conditions. 
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APPENDIX A. SYSTEM CONFIGURATION RESULT TABLES 

A.1. Base Algorithm: Time-Step 30 

In this subsection, the assembly, print, and collection potentials are provided for time-step 

30. Table A.1 lists the data for assembly potential. Table A.2 lists the data for print potential. Table 

A.3 lists the data for the collection potential.  

Table A.1. Assembly potential and standard deviation for time-step 30. 

Base Algorithm ID Assembly Potential Assembly Potential Std Dev 

Time-Step: 30 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

(Default) A0 0.99 1.00 22.67 15.70 18.35 13.56 0.10 0.00 1.46 0.69 2.15 1.03 

BaseCost_Pr + 1 A1 1.00 0.99 18.57 15.52 17.99 11.65 0.00 0.10 1.33 0.94 1.21 0.90 

BaseCost_Pr + 3 A2 0.99 0.99 16.58 13.47 15.39 8.92 0.10 0.10 1.07 1.18 1.56 0.39 

BaseCost_Pr + 5 A3 1.00 0.99 13.23 11.70 10.59 9.80 0.00 0.10 1.24 0.67 1.30 0.72 

PrintCost_Pr + 1 A4 1.00 1.00 20.23 15.38 18.33 12.77 0.00 0.00 1.29 1.42 1.08 0.71 

PrintCost_Pr + 3 A5 1.00 1.00 19.67 13.57 18.02 10.86 0.00 0.00 1.41 0.86 1.25 0.53 

PrintCost_Pr + 5 A6 0.99 1.00 21.24 11.75 16.87 8.89 0.10 0.00 1.68 0.56 1.49 0.42 

AssembleCost_Pr + 1 A7 1.00 1.00 19.73 15.40 18.36 12.84 0.00 0.00 1.10 1.22 1.03 0.47 

AssembleCost_Pr + 3 A8 0.98 0.99 16.71 13.59 16.96 10.76 0.14 0.10 1.30 0.85 1.25 0.71 

AssembleCost_Pr + 5 A9 1.00 1.00 14.97 11.73 12.94 8.79 0.00 0.00 1.73 0.60 1.05 0.57 

BaseCost_Time + 2 A10 1.00 1.00 7.81 7.85 6.89 6.78 0.00 0.00 0.54 0.54 0.35 0.66 

BaseCost_Time - 1 A11 0.99 1.00 34.22 23.76 30.20 17.70 0.10 0.00 2.60 1.56 2.14 0.72 

PrintCost_Time + 2 A12 1.00 1.00 20.05 7.88 16.59 7.82 0.00 0.00 1.26 0.48 0.83 0.67 

PrintCost_Time - 1 A13 0.99 0.98 26.03 23.77 24.14 16.56 0.10 0.14 1.70 1.44 2.86 0.94 

AssembleCost_Time + 2 A14 1.00 1.00 11.71 7.81 8.89 7.67 0.00 0.00 0.94 0.56 0.42 1.01 

AssembleCost_Time - 1 A15 0.99 1.00 31.79 23.74 27.35 16.59 0.10 0.00 2.05 1.28 1.40 0.88 

Print & Assemble Time + 2 A16 1.00 1.00 7.79 3.87 7.89 3.95 0.00 0.00 0.59 0.53 0.45 0.30 

BaseCost_NonPr + 1 A17 1.00 1.00 22.64 15.34 18.70 13.51 0.00 0.00 1.40 1.47 0.73 1.18 

PrintCost_NonPr + 1 A18 0.99 1.00 22.79 15.04 18.74 13.64 0.10 0.00 1.14 2.30 0.68 0.85 

AssembleCost_NonPr + 1 A19 1.00 0.99 22.71 15.41 18.47 13.68 0.00 0.10 1.30 1.18 1.04 1.01 

[All]CostPrintable + 1 A20 1.00 1.00 17.77 13.66 15.80 9.87 0.00 0.00 1.57 0.79 1.17 0.49 

[All]CostPrintable + 2 A21 1.00 1.00 15.29 10.70 12.69 7.81 0.00 0.00 1.39 0.67 1.10 0.44 

Print & Assemble Pr + 2 A22 1.00 1.00 18.12 12.48 16.70 9.80 0.00 0.00 1.35 0.90 1.32 0.53 

Base & Print Pr + 2 A23 1.00 1.00 19.02 12.56 15.83 8.87 0.00 0.00 1.66 0.99 1.21 0.49 

Base & Assemble Pr + 2 A24 1.00 0.99 16.07 12.56 12.85 8.96 0.00 0.10 1.37 1.05 1.21 0.20 

[All]CostPrintable - 1 A25 1.00 1.00 26.00 15.40 18.49 13.45 0.00 0.00 1.95 1.15 1.08 1.27 

AssembleCost_Pr - 1 A26 1.00 1.00 25.59 15.59 18.47 13.60 0.00 0.00 1.98 0.91 1.11 0.94 

PrintCost_Pr - 1 A27 0.99 1.00 24.78 15.41 18.69 13.59 0.10 0.00 1.88 1.89 0.73 0.87 

BaseCost_Pr - 1 A28 0.99 0.99 25.84 15.44 18.66 13.46 0.10 0.10 1.61 1.34 0.71 1.19 

Print_Efficiency = 0.25 B1 0.99 1.00 16.42 15.29 14.51 13.71 0.10 0.00 1.14 1.81 1.15 0.87 

Print_Efficiency = 0.5 B2 1.00 0.99 17.73 15.58 17.90 13.58 0.00 0.10 1.32 0.83 1.35 1.06 

Print_Efficiency = 1.5 B3 1.00 1.00 25.79 15.55 18.48 13.69 0.00 0.00 1.64 1.28 1.15 0.96 

Collect_Amount = 0.25 B4 1.00 0.98 21.37 15.64 17.88 13.54 0.00 0.14 1.46 0.86 1.30 0.91 

(continues) 
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Table A.1. Assembly potential and standard deviation for time-step 30 (continued). 

Base Algorithm ID Assembly Potential Assembly Potential Std Dev 

Time-Step: 30 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

Collect_Amount = 0.5 B5 1.00 1.00 21.71 15.44 18.51 13.66 0.00 0.00 1.53 1.84 0.83 0.92 

Collect_Amount = 1.5 B6 1.00 1.00 23.44 15.49 18.48 13.67 0.00 0.00 1.60 1.21 0.92 0.94 

Print_Amount = 0.25 B7 1.00 1.00 18.28 15.60 14.80 13.54 0.00 0.00 1.44 0.95 1.06 1.15 

Print_Amount = 0.5 B8 1.00 1.00 19.55 15.71 17.83 13.67 0.00 0.00 1.40 0.73 2.09 0.91 

Print_Amount = 1.5 B9 0.98 0.99 24.10 15.39 18.53 13.42 0.14 0.10 1.36 1.28 1.11 1.44 

Collect & Print Amount = 0.5 B10 1.00 0.99 19.62 15.44 17.98 13.42 0.00 0.10 1.24 1.26 1.52 1.84 

QualityThreshold + 0.1 C1 1.00 1.00 22.11 15.05 17.78 13.16 0.00 0.00 1.71 1.62 1.62 1.39 

QualityThreshold + 0.2 C2 1.00 1.00 21.45 13.97 17.21 12.25 0.00 0.00 2.27 1.91 2.56 1.88 

QualityThreshold + 0.3 C3 1.00 1.00 17.58 11.57 13.46 10.57 0.00 0.00 4.23 2.89 3.14 2.10 

QualityThreshold + 0.4 C4 1.00 1.00 12.01 8.12 9.83 7.03 0.00 0.00 4.32 2.93 3.00 2.68 

RiskAmount_Print = 1% C5 1.00 1.00 22.65 15.51 18.30 13.54 0.00 0.00 1.57 0.88 1.18 1.22 

RiskAmount_Assemble = 1% C6 0.98 0.96 20.17 12.25 14.35 11.42 0.14 0.20 2.60 3.49 2.90 2.45 

RiskAmount Pr & As = 10% C7 0.73 0.75 3.83 2.38 2.88 2.31 0.45 0.44 2.53 1.64 1.78 1.58 

RiskAmount Pr & As = 15% C8 0.67 0.59 2.01 1.28 1.80 1.32 0.47 0.49 1.76 1.31 1.53 1.27 

RiskAmount_Assemble = 
15% 

C9 0.70 0.62 1.89 1.20 1.96 1.27 0.46 0.49 1.66 1.13 1.51 1.00 

Quality_incr_Chance = 

0.01% 

C10 1.00 1.00 22.30 15.33 18.39 13.58 0.00 0.00 2.05 1.45 1.42 0.82 

Quality_decr_Chance = 25% C11 1.00 1.00 23.14 15.66 18.64 13.93 0.00 0.00 0.98 1.04 0.94 0.38 

Quality_decr_Chance = 75% C12 1.00 0.99 21.91 15.15 18.05 13.31 0.00 0.10 1.86 1.31 1.40 1.01 

Quality_decr_Upper = 0.5 C13 1.00 1.00 19.81 12.75 16.60 12.14 0.00 0.00 2.55 2.69 2.12 1.65 

Qual_incr Chance & Upper * 
2 

C14 1.00 1.00 22.35 15.60 18.46 13.67 0.00 0.00 2.67 0.83 1.12 0.68 

RiskQuality_Modifier = 10.0 C15 1.00 1.00 22.45 15.43 18.02 13.58 0.00 0.00 1.70 1.21 1.79 1.03 

RiskQuality_Modifier = 25.0 C16 1.00 1.00 21.30 14.86 17.90 13.49 0.00 0.00 1.76 2.18 1.57 1.30 

RiskFactory_Modifier = 0.5 C17 0.99 0.99 22.81 15.61 18.22 13.61 0.10 0.10 1.20 0.82 1.74 0.93 

RiskFactory_Modifier = 1.0 C18 0.96 0.95 22.33 15.35 18.10 13.51 0.20 0.22 2.06 1.27 2.20 1.26 

Quality Thres & Chance C19 1.00 1.00 7.41 5.17 6.11 5.12 0.00 0.00 3.26 2.46 2.34 2.10 

Initial_Printable / 2.0 D1 1.00 1.00 18.67 12.70 17.21 7.93 0.00 0.00 1.19 0.72 1.08 0.43 

Initial_Printable * 2.0 D2 1.00 0.99 25.91 15.38 18.41 13.48 0.00 0.10 1.90 1.36 1.22 1.07 

Initial_Materials = 0 D3 1.00 0.99 19.90 14.72 18.41 13.69 0.00 0.10 1.79 1.87 1.36 0.83 

Initial_Materials / 2.0 D4 1.00 1.00 20.82 15.20 18.38 13.55 0.00 0.00 1.22 1.28 1.15 1.00 

Initial_Materials * 2.0 D5 1.00 1.00 25.80 15.52 18.53 13.70 0.00 0.00 2.84 1.19 0.88 0.72 

Env_Materials / 2.0 D6 0.99 1.00 22.72 15.37 18.44 13.70 0.10 0.00 1.23 1.29 1.09 0.93 

Env_Materials * 2.0 D7 1.00 1.00 22.70 15.69 18.49 13.54 0.00 0.00 1.32 0.79 1.13 1.21 

Env_Materials * 100 D8 1.00 1.00 22.73 15.40 18.44 13.38 0.00 0.00 1.24 1.29 1.16 1.21 

Initial_NonPr / 2.0 D9 1.00 1.00 22.56 15.57 18.59 13.76 0.00 0.00 1.57 0.82 1.03 0.67 

Initial_NonPr * 2.0 D10 1.00 1.00 22.57 15.22 18.37 13.71 0.00 0.00 1.30 1.99 1.20 0.73 

Initial NonPr & Env * 2.0 D11 1.00 1.00 22.43 15.37 18.31 13.53 0.00 0.00 1.74 1.47 1.40 1.18 

Initial NonPr & Env * 2.0, 

Raw=0 

D12 1.00 1.00 19.44 15.06 18.56 13.56 0.00 0.00 2.51 1.27 1.12 1.00 
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Table A.2. Print potential and standard deviation for time-step 30. 

Base Algorithm ID Print Potential Print Potential Std Dev 

Time-Step: 30 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

(Default) A0 1.00 1.00 18.36 15.66 13.57 13.67 0.00 0.00 1.52 0.65 1.44 0.71 

BaseCost_Pr + 1 A1 0.99 1.00 14.11 15.58 12.69 11.73 0.10 0.00 0.99 0.75 0.72 0.63 

BaseCost_Pr + 3 A2 1.00 1.00 9.55 13.45 6.86 8.88 0.00 0.00 0.80 1.08 0.47 0.36 

BaseCost_Pr + 5 A3 1.00 1.00 5.89 11.59 4.94 9.78 0.00 0.00 0.35 0.70 0.37 0.63 

PrintCost_Pr + 1 A4 1.00 1.00 16.43 15.43 13.59 12.79 0.00 0.00 1.30 1.17 0.68 0.59 

PrintCost_Pr + 3 A5 0.99 1.00 12.96 13.55 12.64 10.88 0.10 0.00 1.13 0.80 0.85 0.38 

PrintCost_Pr + 5 A6 1.00 1.00 10.46 11.73 10.61 8.94 0.00 0.00 0.72 0.51 0.80 0.24 

AssembleCost_Pr + 1 A7 1.00 1.00 16.45 15.37 13.60 12.86 0.00 0.00 1.20 1.08 0.82 0.35 

AssembleCost_Pr + 3 A8 1.00 1.00 14.14 13.55 10.86 10.82 0.00 0.00 1.28 0.77 0.57 0.50 

AssembleCost_Pr + 5 A9 1.00 1.00 11.33 11.63 11.80 8.91 0.00 0.00 1.25 0.63 0.45 0.35 

BaseCost_Time + 2 A10 0.98 1.00 4.76 7.92 4.91 6.87 0.14 0.00 0.49 0.37 0.32 0.42 

BaseCost_Time - 1 A11 1.00 1.00 27.98 23.82 23.87 17.68 0.00 0.00 2.37 1.40 1.65 0.57 

PrintCost_Time + 2 A12 1.00 1.00 11.18 7.95 9.63 7.88 0.00 0.00 0.96 0.33 0.68 0.48 

PrintCost_Time - 1 A13 1.00 1.00 20.01 23.75 17.74 16.58 0.00 0.00 1.62 1.32 1.97 0.82 

AssembleCost_Time + 2 A14 1.00 1.00 7.50 7.94 7.69 7.81 0.00 0.00 0.73 0.34 0.58 0.80 

AssembleCost_Time - 1 A15 1.00 1.00 22.25 23.79 20.21 16.66 0.00 0.00 1.62 1.27 1.03 0.71 

Print & Assemble Time + 2 A16 1.00 1.00 4.80 3.95 4.85 3.98 0.00 0.00 0.43 0.33 0.44 0.14 

BaseCost_NonPr + 1 A17 1.00 1.00 18.59 15.46 13.69 13.62 0.00 0.00 1.35 1.11 0.66 0.95 

PrintCost_NonPr + 1 A18 0.99 1.00 18.50 15.15 13.62 13.77 0.10 0.00 1.34 2.00 0.56 0.60 

AssembleCost_NonPr + 1 A19 1.00 1.00 18.11 15.50 13.67 13.77 0.00 0.00 1.45 0.92 0.77 0.71 

[All]CostPrintable + 1 A20 1.00 1.00 11.28 13.62 9.86 9.87 0.00 0.00 0.94 0.68 0.47 0.37 

[All]CostPrintable + 2 A21 1.00 1.00 6.82 10.73 6.86 7.85 0.00 0.00 0.46 0.53 0.40 0.36 

Print & Assemble Pr + 2 A22 1.00 1.00 11.30 12.45 9.74 9.90 0.00 0.00 0.96 0.86 0.65 0.33 

Base & Print Pr + 2 A23 1.00 1.00 8.60 12.58 7.75 8.82 0.00 0.00 0.71 0.81 0.63 0.44 

Base & Assemble Pr + 2 A24 1.00 1.00 8.88 12.50 9.88 8.93 0.00 0.00 0.69 0.93 0.41 0.26 

[All]CostPrintable - 1 A25 0.99 1.00 21.66 15.64 13.61 13.65 0.10 0.00 2.14 0.92 0.85 0.91 

AssembleCost_Pr - 1 A26 0.98 1.00 20.98 15.65 13.59 13.70 0.14 0.00 1.42 0.78 0.82 0.73 

PrintCost_Pr - 1 A27 1.00 1.00 20.72 15.54 13.63 13.74 0.00 0.00 1.99 1.67 0.61 0.54 

BaseCost_Pr - 1 A28 1.00 1.00 21.40 15.54 13.68 13.69 0.00 0.00 1.96 1.11 0.58 0.83 

Print_Efficiency = 0.25 B1 1.00 1.00 12.35 15.34 10.77 13.77 0.00 0.00 0.80 1.62 0.47 0.65 

Print_Efficiency = 0.5 B2 1.00 1.00 15.10 15.60 12.59 13.67 0.00 0.00 1.01 0.75 0.79 0.84 

Print_Efficiency = 1.5 B3 1.00 1.00 21.41 15.62 13.53 13.74 0.00 0.00 1.92 0.98 0.77 0.76 

Collect_Amount = 0.25 B4 1.00 1.00 16.22 15.68 12.80 13.68 0.00 0.00 1.23 0.68 1.22 0.68 

Collect_Amount = 0.5 B5 1.00 1.00 17.36 15.45 13.09 13.72 0.00 0.00 1.40 1.71 0.91 0.74 

Collect_Amount = 1.5 B6 0.99 1.00 18.65 15.59 13.64 13.74 0.10 0.00 1.25 1.01 0.75 0.81 

Print_Amount = 0.25 B7 1.00 1.00 12.61 15.60 10.84 13.64 0.00 0.00 0.80 0.80 0.47 0.92 

Print_Amount = 0.5 B8 0.98 1.00 17.25 15.74 12.65 13.75 0.14 0.00 1.31 0.61 1.30 0.73 

Print_Amount = 1.5 B9 1.00 1.00 19.55 15.48 13.16 13.43 0.00 0.00 1.99 0.99 0.94 1.17 

Collect & Print Amount = 0.5 B10 1.00 1.00 16.85 15.37 12.57 13.45 0.00 0.00 1.36 1.13 0.99 1.60 

QualityThreshold + 0.1 C1 1.00 1.00 17.74 15.09 13.05 13.24 0.00 0.00 1.66 1.46 1.25 1.19 

QualityThreshold + 0.2 C2 1.00 1.00 16.29 14.04 12.05 12.34 0.00 0.00 2.49 1.80 1.92 1.77 

QualityThreshold + 0.3 C3 1.00 1.00 13.18 11.58 9.90 10.70 0.00 0.00 3.20 2.84 2.17 2.04 

QualityThreshold + 0.4 C4 0.99 1.00 9.11 8.18 6.99 7.07 0.10 0.00 3.08 2.95 1.96 2.64 

RiskAmount_Print = 1% C5 0.98 1.00 17.39 14.91 12.30 13.26 0.14 0.00 1.74 1.01 1.44 1.21 

RiskAmount_Assemble = 1% C6 0.99 1.00 17.19 13.47 11.28 12.46 0.10 0.00 1.89 2.81 2.01 1.75 

(continues) 
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Table A.2. Print potential and standard deviation for time-step 30 (continued). 

Base Algorithm ID Print Potential Print Potential Std Dev 

Time-Step: 30 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

RiskAmount Pr & As = 10% C7 0.79 0.96 2.43 4.26 1.80 3.75 0.41 0.20 1.58 2.11 1.12 1.99 

RiskAmount Pr & As = 15% C8 0.71 0.97 1.48 2.36 1.13 2.31 0.46 0.17 0.98 1.53 0.90 1.50 

RiskAmount_Assemble = 
15% 

C9 0.99 1.00 3.47 4.98 3.44 4.96 0.10 0.00 1.87 2.28 1.66 1.88 

Quality_incr_Chance = 

0.01% 

C10 0.99 1.00 18.11 15.39 13.48 13.72 0.10 0.00 1.74 1.21 1.05 0.59 

Quality_decr_Chance = 25% C11 1.00 1.00 19.10 15.72 13.75 13.93 0.00 0.00 0.98 0.73 0.66 0.29 

Quality_decr_Chance = 75% C12 1.00 1.00 17.46 15.20 13.31 13.44 0.00 0.00 1.94 1.16 0.95 0.80 

Quality_decr_Upper = 0.5 C13 1.00 1.00 15.55 12.91 11.89 12.20 0.00 0.00 2.21 2.47 1.63 1.60 

Qual_incr Chance & Upper * 
2 

C14 0.99 1.00 18.34 15.70 13.50 13.64 0.10 0.00 2.30 0.58 0.92 0.56 

RiskQuality_Modifier = 10.0 C15 0.99 1.00 18.16 15.49 13.16 13.67 0.10 0.00 1.42 1.03 1.32 0.73 

RiskQuality_Modifier = 25.0 C16 1.00 1.00 16.52 14.94 12.98 13.60 0.00 0.00 1.91 1.89 1.17 0.92 

RiskFactory_Modifier = 0.5 C17 0.99 1.00 18.47 15.68 13.26 13.67 0.10 0.00 1.32 0.60 1.32 0.78 

RiskFactory_Modifier = 1.0 C18 0.97 0.99 18.17 15.50 13.31 13.61 0.17 0.10 1.86 1.04 1.52 1.03 

Quality Thres & Chance C19 1.00 1.00 5.13 5.21 3.93 5.19 0.00 0.00 2.26 2.49 1.60 2.11 

Initial_Printable / 2.0 D1 1.00 1.00 13.03 12.64 11.51 7.99 0.00 0.00 1.10 0.66 1.26 0.41 

Initial_Printable * 2.0 D2 1.00 1.00 21.79 15.58 13.38 13.71 0.00 0.00 1.95 1.12 1.12 0.71 

Initial_Materials = 0 D3 0.99 1.00 14.05 14.85 13.12 13.76 0.10 0.00 1.14 1.65 1.09 0.53 

Initial_Materials / 2.0 D4 1.00 1.00 16.53 15.27 13.52 13.63 0.00 0.00 1.22 1.02 0.87 0.79 

Initial_Materials * 2.0 D5 1.00 1.00 21.11 15.60 13.63 13.78 0.00 0.00 2.24 0.97 0.75 0.54 

Env_Materials / 2.0 D6 1.00 1.00 18.78 15.46 13.56 13.76 0.00 0.00 1.25 1.07 0.74 0.74 

Env_Materials * 2.0 D7 1.00 1.00 18.54 15.74 13.53 13.68 0.00 0.00 1.43 0.58 0.89 0.89 

Env_Materials * 100 D8 1.00 1.00 18.59 15.49 13.45 13.53 0.00 0.00 1.36 0.95 0.86 0.96 

Initial_NonPr / 2.0 D9 1.00 1.00 18.42 15.60 13.71 13.81 0.00 0.00 1.40 0.72 0.70 0.53 

Initial_NonPr * 2.0 D10 1.00 1.00 18.47 15.23 13.59 13.77 0.00 0.00 1.26 1.77 0.74 0.49 

Initial NonPr & Env * 2.0 D11 1.00 1.00 18.27 15.44 13.46 13.64 0.00 0.00 1.61 1.25 1.03 0.92 

Initial NonPr & Env * 2.0, 

Raw=0 

D12 1.00 1.00 14.04 15.12 13.16 13.67 0.00 0.00 1.71 1.10 1.12 0.75 
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Table A.3. Collection potential and standard deviation for time-step 30. 

Base Algorithm ID Collection Potential Collection Potential Std Dev 

Time-Step: 30 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

(Default) A0 13.8 12.8 41.3 15.8 44.2 23.2 1.54 1.24 2.33 0.52 4.96 1.59 

BaseCost_Pr + 1 A1 13.8 12.8 32.9 15.6 39.3 22.2 1.26 1.70 1.59 0.71 2.01 1.88 

BaseCost_Pr + 3 A2 13.9 12.6 26.3 13.5 26.8 18.5 1.66 1.36 1.18 1.03 1.62 1.31 

BaseCost_Pr + 5 A3 13.8 12.8 19.3 11.7 19.9 13.3 1.46 1.43 1.16 0.54 1.33 0.84 

PrintCost_Pr + 1 A4 13.7 12.8 37.0 15.5 43.6 23.2 1.22 1.21 1.48 1.11 1.97 1.57 

PrintCost_Pr + 3 A5 13.8 12.7 32.9 13.6 40.7 22.6 1.32 1.30 1.66 0.72 1.77 1.63 

PrintCost_Pr + 5 A6 13.4 12.7 32.0 11.8 39.3 26.3 1.74 1.30 1.84 0.49 2.74 1.60 

AssembleCost_Pr + 1 A7 13.7 12.5 36.5 15.5 44.0 23.4 1.37 1.37 1.68 1.05 2.59 1.32 

AssembleCost_Pr + 3 A8 13.9 12.8 31.2 13.7 38.4 22.1 1.38 1.16 1.60 0.67 1.98 2.05 

AssembleCost_Pr + 5 A9 13.9 12.8 26.6 11.8 34.0 25.8 1.22 1.12 1.23 0.52 1.92 1.85 

BaseCost_Time + 2 A10 8.1 7.0 12.7 7.9 15.6 10.4 0.95 0.92 0.69 0.37 0.89 0.90 

BaseCost_Time - 1 A11 25.9 25.4 62.7 23.9 77.8 36.5 2.85 1.72 4.44 1.39 5.39 2.50 

PrintCost_Time + 2 A12 13.8 12.8 31.5 8.0 35.3 13.2 1.39 1.38 1.76 0.33 1.77 1.14 

PrintCost_Time - 1 A13 13.8 12.6 46.3 23.9 54.7 29.5 1.23 1.44 2.58 1.24 6.12 1.59 

AssembleCost_Time + 2 A14 13.8 12.6 19.3 7.9 21.2 13.1 1.20 1.28 1.26 0.34 1.15 1.58 

AssembleCost_Time - 1 A15 13.6 12.8 54.5 23.9 66.2 29.5 1.42 1.41 2.98 1.14 3.37 1.84 

Print & Assemble Time + 2 A16 13.7 12.6 12.7 4.0 17.3 6.6 1.18 1.31 0.63 0.33 1.06 0.62 

BaseCost_NonPr + 1 A17 14.0 12.9 41.6 15.5 44.7 23.0 1.23 1.36 2.04 1.11 1.88 1.90 

PrintCost_NonPr + 1 A18 13.6 13.0 41.6 15.2 44.8 23.3 1.75 1.18 1.83 2.00 1.69 1.59 

AssembleCost_NonPr + 1 A19 13.7 12.6 41.2 15.6 44.2 23.4 1.42 1.81 2.11 0.87 2.71 1.59 

[All]CostPrintable + 1 A20 13.7 12.5 29.4 13.7 35.7 21.3 1.28 1.37 1.82 0.60 2.15 1.48 

[All]CostPrintable + 2 A21 13.8 12.8 22.3 10.8 24.8 19.6 1.37 1.32 1.45 0.49 1.27 1.36 

Print & Assemble Pr + 2 A22 13.8 12.8 29.7 12.6 40.0 26.2 1.25 1.39 1.76 0.71 3.38 1.77 

Base & Print Pr + 2 A23 13.9 12.8 27.9 12.7 30.2 21.3 1.24 1.51 1.79 0.78 1.81 1.31 

Base & Assemble Pr + 2 A24 13.9 12.7 25.2 12.6 27.0 21.5 1.42 1.46 1.15 0.85 1.33 1.44 

[All]CostPrintable - 1 A25 13.9 12.7 48.1 15.7 44.3 25.4 1.21 1.10 3.71 0.90 2.72 2.84 

AssembleCost_Pr - 1 A26 13.8 12.8 47.0 15.7 44.5 22.9 1.19 1.37 2.73 0.78 2.57 1.75 

PrintCost_Pr - 1 A27 13.7 12.8 45.9 15.6 44.5 23.4 1.59 1.21 3.35 1.67 2.22 1.27 

BaseCost_Pr - 1 A28 13.6 12.7 47.6 15.6 44.5 26.5 1.48 1.29 3.04 1.08 1.94 2.53 

Print_Efficiency = 0.25 B1 13.7 12.7 29.0 15.4 35.8 21.5 1.33 1.31 1.26 1.61 2.16 1.42 

Print_Efficiency = 0.5 B2 13.8 12.8 33.1 15.7 40.3 23.4 1.25 1.61 1.48 0.69 2.02 1.63 

Print_Efficiency = 1.5 B3 13.9 12.7 47.6 15.7 44.2 25.0 1.38 1.31 2.94 0.97 2.64 2.04 

Collect_Amount = 0.25 B4 13.8 12.8 37.8 15.7 42.5 23.1 1.25 1.41 1.93 0.67 3.04 1.67 

Collect_Amount = 0.5 B5 13.8 12.6 39.4 15.5 43.8 23.3 1.43 1.35 2.23 1.70 2.18 1.53 

Collect_Amount = 1.5 B6 13.6 13.0 42.5 15.7 44.4 23.3 1.36 1.18 2.32 0.93 2.10 1.52 

Print_Amount = 0.25 B7 13.7 13.0 31.2 15.7 36.3 21.6 1.30 1.25 1.53 0.78 1.45 1.39 

Print_Amount = 0.5 B8 14.0 12.7 37.2 15.8 40.0 23.6 1.25 1.22 1.86 0.54 4.12 1.34 

Print_Amount = 1.5 B9 13.6 12.9 43.9 15.5 43.9 24.5 1.58 1.25 2.77 0.99 2.43 2.65 

Collect & Print Amount = 0.5 B10 13.8 12.6 36.9 15.6 39.9 22.9 1.20 1.82 1.99 1.05 2.69 2.98 

QualityThreshold + 0.1 C1 13.5 12.8 40.1 15.2 42.2 22.5 1.38 1.35 2.55 1.46 3.58 2.09 

QualityThreshold + 0.2 C2 13.7 12.9 38.0 14.1 39.4 20.6 1.27 1.17 4.02 1.80 5.74 3.13 

QualityThreshold + 0.3 C3 12.8 11.9 31.0 11.7 31.0 17.7 1.44 1.41 6.81 2.87 6.96 3.55 

QualityThreshold + 0.4 C4 10.7 9.3 21.2 8.2 21.8 11.1 1.84 1.88 6.98 2.94 6.47 4.76 

RiskAmount_Print = 1% C5 13.8 12.8 41.4 15.6 44.0 22.9 1.30 1.34 2.17 0.63 2.47 1.90 

RiskAmount_Assemble = 1% C6 13.6 12.5 39.2 13.5 37.3 21.4 1.70 1.73 3.52 2.84 6.64 3.36 

(continues) 
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Table A.3. Collection potential and standard deviation for time-step 30 (continued). 

Base Algorithm ID Collection Potential Collection Potential Std Dev 

Time-Step: 30 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

RiskAmount Pr & As = 10% C7 12.2 11.1 14.2 6.8 13.9 8.7 3.61 3.52 6.00 2.40 5.89 4.01 

RiskAmount Pr & As = 15% C8 11.3 10.5 10.9 5.0 10.7 7.0 4.21 3.78 4.48 2.46 5.05 3.18 

RiskAmount_Assemble = 15% C9 11.9 10.4 10.7 5.0 11.5 7.0 3.62 3.85 4.81 2.27 4.62 3.08 

Quality_incr_Chance = 0.01% C10 13.9 12.7 40.8 15.5 43.9 23.1 1.31 1.38 3.25 1.22 3.30 1.37 

Quality_decr_Chance = 25% C11 13.9 13.0 42.6 15.8 45.2 23.6 1.31 1.21 1.26 0.70 2.16 1.11 

Quality_decr_Chance = 75% C12 13.4 12.3 39.7 15.3 42.9 22.3 1.36 1.55 3.20 1.15 3.12 1.80 

Quality_decr_Upper = 0.5 C13 13.2 12.6 35.7 13.0 38.1 20.1 1.45 1.37 4.00 2.50 4.79 3.25 

Qual_incr Chance & Upper * 2 C14 13.7 12.8 41.2 15.7 44.4 23.1 1.38 1.14 4.48 0.54 2.69 1.53 

RiskQuality_Modifier = 10.0 C15 13.2 12.3 41.1 15.6 42.6 22.8 1.49 1.31 2.45 1.00 3.94 1.62 

RiskQuality_Modifier = 25.0 C16 12.4 11.0 38.4 15.2 41.4 21.6 1.34 1.66 2.85 1.87 3.75 2.22 

RiskFactory_Modifier = 0.5 C17 13.8 12.7 41.7 15.7 43.4 23.2 1.58 1.52 1.91 0.57 3.86 1.54 

RiskFactory_Modifier = 1.0 C18 13.4 12.3 40.9 15.5 43.4 22.9 1.85 2.11 3.42 1.00 5.10 2.00 

Quality Thres & Chance C19 8.7 7.2 12.6 5.2 12.0 7.2 1.90 2.11 5.01 2.49 4.82 3.36 

Initial_Printable / 2.0 D1 13.7 12.9 31.9 12.8 38.2 24.9 1.22 1.30 1.81 0.58 2.21 1.75 

Initial_Printable * 2.0 D2 13.8 12.9 48.0 15.6 44.0 25.8 1.26 1.14 3.34 1.12 2.70 2.09 

Initial_Materials = 0 D3 13.7 12.6 34.2 14.9 43.0 23.4 1.39 1.68 2.20 1.65 3.07 1.43 

Initial_Materials / 2.0 D4 13.7 12.9 37.7 15.3 44.2 23.1 1.66 1.41 1.76 1.00 2.80 1.68 

Initial_Materials * 2.0 D5 13.5 12.8 47.3 15.7 44.3 23.4 1.38 1.36 4.49 0.97 1.87 1.41 

Env_Materials / 2.0 D6 13.5 12.6 41.9 15.5 44.2 23.3 1.57 1.40 1.81 1.01 2.55 1.74 

Env_Materials * 2.0 D7 13.9 12.5 41.5 15.8 44.3 23.1 1.41 1.47 2.05 0.56 2.65 2.06 

Env_Materials * 100 D8 13.7 12.8 41.6 15.6 44.0 23.1 1.32 1.26 2.03 0.91 2.59 1.85 

Initial_NonPr / 2.0 D9 13.6 12.6 41.4 15.7 44.7 23.3 1.43 1.34 2.23 0.67 2.16 1.39 

Initial_NonPr * 2.0 D10 13.7 12.7 41.4 15.4 44.1 23.3 1.37 1.36 2.06 1.76 2.54 1.31 

Initial NonPr & Env * 2.0 D11 13.7 13.0 41.1 15.5 44.1 23.0 1.45 1.32 2.62 1.23 3.16 2.03 

Initial NonPr & Env * 2.0, 

Raw=0 

D12 13.7 12.6 33.7 15.2 43.4 23.1 1.45 1.31 3.75 1.08 2.64 1.66 
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A.2. Base Algorithm: Time-Step 50 

In this subsection, the assembly, print, and collection potentials are provided for time-step 

50. Table A.4 lists the data for assembly potential. Table A.5 lists the data for print potential. Table 

A.6 lists the data for the collection potential. 

Table A.4. Assembly potential and standard deviation for time-step 50. 

Base Algorithm ID Assembly Potential Assembly Potential Std Dev 

Time-Step: 50 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

(Default) A0 1.00 1.00 69.88 38.93 63.27 32.19 0.00 0.00 6.60 3.35 3.30 1.43 

BaseCost_Pr + 1 A1 1.00 0.99 52.12 33.11 45.17 25.55 0.00 0.10 7.46 2.91 3.72 1.01 

BaseCost_Pr + 3 A2 1.00 0.99 31.98 24.54 28.89 17.52 0.00 0.10 2.88 2.36 4.14 1.10 

BaseCost_Pr + 5 A3 1.00 1.00 22.38 19.83 15.54 16.92 0.00 0.00 2.51 2.13 2.02 2.09 

PrintCost_Pr + 1 A4 1.00 1.00 63.96 32.79 58.35 28.63 0.00 0.00 5.30 2.74 4.67 2.36 

PrintCost_Pr + 3 A5 1.00 1.00 52.84 25.08 47.18 11.81 0.00 0.00 5.77 2.50 3.47 1.34 

PrintCost_Pr + 5 A6 0.99 0.99 53.66 19.64 51.73 8.76 0.10 0.10 7.09 2.20 4.23 0.49 

AssembleCost_Pr + 1 A7 1.00 0.99 57.25 33.15 57.76 28.25 0.00 0.10 5.71 2.99 4.10 2.45 

AssembleCost_Pr + 3 A8 1.00 0.98 41.04 24.50 38.25 11.60 0.00 0.14 3.24 2.02 2.74 1.04 

AssembleCost_Pr + 5 A9 0.99 1.00 30.11 19.04 29.67 8.71 0.10 0.00 2.54 2.81 1.86 0.62 

BaseCost_Time + 2 A10 1.00 1.00 30.64 24.56 23.13 18.06 0.00 0.00 2.17 1.68 1.29 1.52 

BaseCost_Time - 1 A11 0.98 1.00 73.89 51.20 62.35 50.58 0.14 0.00 4.69 4.81 2.79 3.62 

PrintCost_Time + 2 A12 1.00 1.00 57.64 24.69 53.63 21.34 0.00 0.00 4.08 2.03 3.44 1.30 

PrintCost_Time - 1 A13 0.99 1.00 75.01 50.23 65.24 43.76 0.10 0.00 3.45 4.87 2.54 2.78 

AssembleCost_Time + 2 A14 0.99 1.00 38.83 24.68 36.14 21.25 0.10 0.00 3.62 1.73 2.87 1.37 

AssembleCost_Time - 1 A15 1.00 0.99 75.31 51.37 63.69 43.70 0.00 0.10 3.96 4.41 2.75 4.95 

Print & Assemble Time + 2 A16 0.98 1.00 30.34 15.19 27.66 14.33 0.14 0.00 1.96 1.13 1.77 1.41 

BaseCost_NonPr + 1 A17 1.00 1.00 48.41 38.74 39.87 31.88 0.00 0.00 3.53 3.21 2.65 1.85 

PrintCost_NonPr + 1 A18 1.00 1.00 59.91 39.61 53.63 31.92 0.00 0.00 3.82 2.97 2.85 1.90 

AssembleCost_NonPr + 1 A19 1.00 0.99 57.15 39.61 52.32 32.05 0.00 0.10 3.61 2.96 2.43 1.65 

[All]CostPrintable + 1 A20 0.98 1.00 41.39 24.56 33.05 15.89 0.14 0.00 4.06 2.49 2.24 2.25 

[All]CostPrintable + 2 A21 0.99 1.00 27.14 17.54 22.52 7.67 0.10 0.00 2.73 1.76 3.26 0.95 

Print & Assemble Pr + 2 A22 1.00 1.00 40.77 22.25 34.37 9.81 0.00 0.00 4.32 2.01 1.93 0.44 

Base & Print Pr + 2 A23 1.00 0.98 39.88 21.85 30.51 8.98 0.00 0.14 4.11 2.19 4.65 0.86 

Base & Assemble Pr + 2 A24 1.00 1.00 30.57 22.40 27.98 9.01 0.00 0.00 3.07 2.07 2.39 0.96 

[All]CostPrintable - 1 A25 1.00 0.99 69.99 77.90 62.35 52.25 0.00 0.10 4.65 5.31 2.71 3.42 

AssembleCost_Pr - 1 A26 1.00 0.99 74.59 48.18 63.70 38.62 0.00 0.10 4.50 3.51 3.00 3.06 

PrintCost_Pr - 1 A27 0.99 0.99 71.38 47.69 62.89 38.53 0.10 0.10 4.70 3.74 2.74 2.84 

BaseCost_Pr - 1 A28 1.00 1.00 71.61 47.08 62.36 37.12 0.00 0.00 4.49 4.14 2.72 3.34 

Print_Efficiency = 0.25 B1 0.99 1.00 25.73 20.60 18.29 14.60 0.10 0.00 2.62 1.90 2.24 0.74 

Print_Efficiency = 0.5 B2 1.00 0.99 37.07 26.67 33.97 24.08 0.00 0.10 4.00 2.43 2.47 1.29 

Print_Efficiency = 1.5 B3 1.00 0.99 72.48 49.80 62.20 38.21 0.00 0.10 4.05 4.40 2.70 2.56 

Collect_Amount = 0.25 B4 0.98 1.00 35.77 27.58 33.34 27.21 0.14 0.00 3.22 2.59 2.54 2.40 

Collect_Amount = 0.5 B5 0.99 1.00 50.36 32.61 49.53 31.55 0.10 0.00 5.04 3.08 4.02 2.35 

Collect_Amount = 1.5 B6 0.98 0.99 75.80 42.60 64.88 31.64 0.14 0.10 3.99 3.63 2.70 2.16 

Print_Amount = 0.25 B7 1.00 0.99 27.81 27.26 18.66 14.64 0.00 0.10 2.99 1.77 2.42 0.70 

(continues) 
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Table A.4. Assembly potential and standard deviation for time-step 50 (continued). 

Base Algorithm ID Assembly Potential Assembly Potential Std Dev 

Time-Step: 50 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

Print_Amount = 0.5 B8 0.99 0.99 44.10 32.49 33.95 23.36 0.10 0.10 4.15 2.22 2.74 2.55 

Print_Amount = 1.5 B9 0.99 1.00 74.41 42.04 63.64 37.51 0.10 0.00 3.88 3.92 3.11 3.29 

Collect & Print Amount = 0.5 B10 1.00 1.00 40.04 29.34 32.11 23.57 0.00 0.00 3.70 2.09 2.45 2.35 

QualityThreshold + 0.1 C1 0.99 1.00 66.29 37.49 60.85 31.02 0.10 0.00 8.02 4.04 4.79 2.63 

QualityThreshold + 0.2 C2 1.00 0.99 57.88 35.85 52.51 28.83 0.00 0.10 9.53 4.71 7.02 3.86 

QualityThreshold + 0.3 C3 0.99 1.00 45.29 28.36 43.34 23.58 0.10 0.00 9.05 5.56 8.24 4.45 

QualityThreshold + 0.4 C4 0.99 0.99 30.19 20.60 26.32 15.85 0.10 0.10 6.65 4.89 6.62 5.12 

RiskAmount_Print = 1% C5 1.00 0.99 68.48 38.90 58.65 30.95 0.00 0.10 6.43 3.55 5.73 1.92 

RiskAmount_Assemble = 1% C6 0.97 0.97 54.06 32.56 52.65 26.35 0.17 0.17 11.1 5.78 6.69 4.00 

RiskAmount Pr & As = 10% C7 0.64 0.63 5.49 4.50 3.58 2.57 0.48 0.49 4.70 4.17 2.85 2.14 

RiskAmount Pr & As = 15% C8 0.48 0.45 1.77 1.72 1.84 1.40 0.50 0.50 2.15 2.07 1.94 1.41 

RiskAmount_Assemble = 

15% 

C9 0.43 0.49 1.71 1.85 1.43 1.24 0.50 0.50 1.66 2.02 1.58 1.34 

Quality_incr_Chance = 
0.01% 

C10 1.00 1.00 69.83 38.48 62.74 31.86 0.00 0.00 5.56 3.51 3.72 2.01 

Quality_decr_Chance = 25% C11 1.00 1.00 74.03 40.62 65.22 32.14 0.00 0.00 4.52 2.60 3.12 1.65 

Quality_decr_Chance = 75% C12 0.99 1.00 62.91 36.91 59.84 30.66 0.10 0.00 8.96 4.05 4.07 4.08 

Quality_decr_Upper = 0.5 C13 1.00 1.00 52.25 31.95 49.02 27.53 0.00 0.00 8.87 5.51 8.18 3.66 

Qual_incr Chance & Upper * 

2 

C14 1.00 0.99 70.33 39.33 63.65 32.05 0.00 0.10 7.00 2.94 3.08 3.47 

RiskQuality_Modifier = 10.0 C15 1.00 1.00 65.42 37.58 61.49 31.66 0.00 0.00 7.06 3.44 4.58 2.11 

RiskQuality_Modifier = 25.0 C16 0.99 1.00 54.54 33.84 55.41 30.69 0.10 0.00 8.49 4.28 6.26 2.74 

RiskFactory_Modifier = 0.5 C17 0.96 0.98 68.63 39.05 61.81 31.74 0.20 0.14 7.09 3.14 7.39 2.36 

RiskFactory_Modifier = 1.0 C18 0.93 0.93 68.16 38.36 62.37 31.34 0.26 0.26 7.33 4.95 7.13 3.82 

Quality Thres & Chance C19 1.00 1.00 15.80 12.27 14.51 9.34 0.00 0.00 4.78 4.13 4.94 3.53 

Initial_Printable / 2.0 D1 0.99 0.99 57.29 28.05 51.90 8.22 0.10 0.10 5.16 2.43 4.00 1.74 

Initial_Printable * 2.0 D2 1.00 1.00 73.05 56.46 63.48 44.35 0.00 0.00 3.69 4.74 2.45 2.23 

Initial_Materials = 0 D3 0.99 0.99 61.08 32.42 59.32 31.91 0.10 0.10 6.81 3.36 5.09 1.71 

Initial_Materials / 2.0 D4 0.99 1.00 65.55 36.50 63.05 32.02 0.10 0.00 8.87 3.26 3.70 1.48 

Initial_Materials * 2.0 D5 1.00 0.99 73.27 43.03 63.11 31.78 0.00 0.10 6.26 5.65 2.92 3.52 

Env_Materials / 2.0 D6 1.00 0.99 52.84 39.20 44.59 31.97 0.00 0.10 2.67 3.15 1.94 1.64 

Env_Materials * 2.0 D7 0.99 1.00 67.21 39.73 60.22 31.70 0.10 0.00 6.36 3.11 3.37 3.68 

Env_Materials * 100 D8 0.99 1.00 68.45 38.91 60.15 31.77 0.10 0.00 6.19 3.00 3.47 1.97 

Initial_NonPr / 2.0 D9 1.00 1.00 34.72 39.17 32.11 31.96 0.00 0.00 3.19 3.10 2.26 1.95 

Initial_NonPr * 2.0 D10 0.99 1.00 70.76 39.13 66.70 31.76 0.10 0.00 6.31 5.09 3.35 2.02 

Initial NonPr & Env * 2.0 D11 1.00 1.00 68.11 39.04 64.63 32.03 0.00 0.00 6.51 3.16 4.73 1.43 

Initial NonPr & Env * 2.0, 

Raw=0 

D12 1.00 1.00 61.34 33.20 57.47 31.98 0.00 0.00 6.11 3.29 4.98 1.59 
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Table A.5. Print potential and standard deviation for time-step 50. 

Base Algorithm ID Print Potential Print Potential Std Dev 

Time-Step: 50 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

(Default) A0 0.98 1.00 58.22 38.81 53.07 32.19 0.14 0.00 6.01 3.14 2.93 1.40 

BaseCost_Pr + 1 A1 1.00 1.00 41.00 33.12 36.35 25.54 0.00 0.00 5.46 2.59 2.97 1.00 

BaseCost_Pr + 3 A2 1.00 1.00 20.66 24.50 6.80 17.36 0.00 0.00 4.53 2.22 0.57 1.27 

BaseCost_Pr + 5 A3 0.99 1.00 5.60 19.70 4.79 16.77 0.10 0.00 0.67 1.93 0.43 2.04 

PrintCost_Pr + 1 A4 0.99 1.00 49.52 32.74 48.30 28.70 0.10 0.00 4.12 2.58 4.62 2.22 

PrintCost_Pr + 3 A5 1.00 1.00 36.22 24.88 35.05 11.92 0.00 0.00 3.19 2.55 4.78 1.34 

PrintCost_Pr + 5 A6 1.00 1.00 17.49 19.49 10.56 8.81 0.00 0.00 6.01 2.25 2.16 0.39 

AssembleCost_Pr + 1 A7 0.99 1.00 49.53 32.98 51.31 28.16 0.10 0.00 4.77 2.90 4.48 2.32 

AssembleCost_Pr + 3 A8 1.00 1.00 40.86 24.50 33.49 11.69 0.00 0.00 3.89 2.02 4.82 1.14 

AssembleCost_Pr + 5 A9 1.00 1.00 26.67 19.04 27.31 8.76 0.00 0.00 4.61 2.74 6.41 0.47 

BaseCost_Time + 2 A10 1.00 1.00 23.54 24.79 16.91 18.37 0.00 0.00 2.12 1.36 1.22 1.23 

BaseCost_Time - 1 A11 1.00 1.00 64.28 51.08 54.10 50.43 0.00 0.00 3.19 4.62 1.73 3.67 

PrintCost_Time + 2 A12 1.00 1.00 39.69 24.82 37.87 21.36 0.00 0.00 2.49 1.82 2.15 0.99 

PrintCost_Time - 1 A13 1.00 1.00 62.06 50.32 53.47 43.54 0.00 0.00 3.33 4.59 2.25 2.79 

AssembleCost_Time + 2 A14 0.99 1.00 30.94 24.74 32.69 21.27 0.10 0.00 3.27 1.56 3.07 1.21 

AssembleCost_Time - 1 A15 1.00 1.00 63.42 51.36 54.14 43.62 0.00 0.00 2.37 4.42 1.75 4.82 

Print & Assemble Time + 2 A16 1.00 1.00 23.34 15.38 22.04 14.47 0.00 0.00 1.88 0.91 2.07 1.09 

BaseCost_NonPr + 1 A17 1.00 1.00 40.93 38.92 33.48 31.84 0.00 0.00 2.57 3.04 1.62 1.69 

PrintCost_NonPr + 1 A18 0.99 1.00 50.00 39.55 45.09 31.96 0.10 0.00 2.94 2.78 1.88 1.83 

AssembleCost_NonPr + 1 A19 0.99 1.00 48.55 39.55 43.48 32.03 0.10 0.00 2.81 2.89 1.91 1.73 

[All]CostPrintable + 1 A20 1.00 1.00 30.66 24.50 19.94 15.85 0.00 0.00 2.81 2.36 5.99 2.28 

[All]CostPrintable + 2 A21 1.00 1.00 6.72 17.45 6.64 7.59 0.00 0.00 0.55 1.67 0.63 0.85 

Print & Assemble Pr + 2 A22 1.00 1.00 30.00 22.25 10.37 9.82 0.00 0.00 3.56 1.86 3.90 0.41 

Base & Print Pr + 2 A23 1.00 1.00 9.87 21.81 7.33 8.99 0.00 0.00 3.00 2.05 1.06 0.78 

Base & Assemble Pr + 2 A24 1.00 1.00 15.07 22.37 10.47 9.02 0.00 0.00 3.65 1.92 2.63 0.92 

[All]CostPrintable - 1 A25 1.00 1.00 64.58 78.38 55.49 52.67 0.00 0.00 4.14 5.01 2.60 3.11 

AssembleCost_Pr - 1 A26 1.00 1.00 61.57 48.13 54.40 38.68 0.00 0.00 3.44 3.32 2.04 3.00 

PrintCost_Pr - 1 A27 1.00 1.00 64.09 47.85 55.89 38.49 0.00 0.00 3.38 3.59 2.48 2.76 

BaseCost_Pr - 1 A28 1.00 1.00 63.57 47.02 55.88 37.28 0.00 0.00 3.45 3.83 1.93 3.21 

Print_Efficiency = 0.25 B1 1.00 1.00 11.82 20.39 10.47 14.43 0.00 0.00 1.10 1.79 0.67 0.76 

Print_Efficiency = 0.5 B2 1.00 1.00 31.04 26.57 17.50 23.95 0.00 0.00 2.70 2.37 4.57 1.37 

Print_Efficiency = 1.5 B3 1.00 1.00 63.38 49.98 55.54 38.48 0.00 0.00 3.65 4.22 2.10 2.24 

Collect_Amount = 0.25 B4 1.00 1.00 25.67 27.66 26.15 27.19 0.00 0.00 2.99 2.42 2.50 2.31 

Collect_Amount = 0.5 B5 1.00 1.00 37.97 32.72 38.59 31.68 0.00 0.00 3.78 2.91 2.86 2.09 

Collect_Amount = 1.5 B6 1.00 1.00 63.85 42.69 54.01 31.72 0.00 0.00 3.70 3.28 2.19 2.02 

Print_Amount = 0.25 B7 1.00 1.00 12.27 27.01 10.49 14.46 0.00 0.00 0.92 1.68 0.72 0.77 

Print_Amount = 0.5 B8 0.99 1.00 38.76 32.30 17.38 23.31 0.10 0.00 4.29 2.11 4.41 2.53 

Print_Amount = 1.5 B9 1.00 1.00 62.40 42.32 52.90 37.69 0.00 0.00 4.03 3.61 2.97 3.21 

Collect & Print Amount = 0.5 B10 0.97 1.00 33.17 29.27 17.92 23.51 0.17 0.00 2.41 2.10 4.13 2.05 

QualityThreshold + 0.1 C1 0.99 1.00 55.16 37.54 50.64 30.94 0.10 0.00 7.04 3.95 4.40 2.60 

QualityThreshold + 0.2 C2 0.98 1.00 47.75 36.05 43.01 28.81 0.14 0.00 8.78 4.63 7.65 3.74 

QualityThreshold + 0.3 C3 1.00 1.00 35.39 28.34 33.83 23.57 0.00 0.00 7.21 5.46 8.10 4.40 

QualityThreshold + 0.4 C4 1.00 1.00 22.41 20.67 19.86 15.99 0.00 0.00 6.26 4.94 5.40 5.09 

RiskAmount_Print = 1% C5 0.95 1.00 50.03 36.46 41.12 27.90 0.22 0.00 5.80 3.47 6.92 2.52 

RiskAmount_Assemble = 1% C6 1.00 1.00 49.10 35.31 49.28 29.57 0.00 0.00 9.06 5.04 5.58 2.77 

(continues) 
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Table A.5. Print potential and standard deviation for time-step 50 (continued). 

Base Algorithm ID Print Potential Print Potential Std Dev 

Time-Step: 50 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

RiskAmount Pr & As = 10% C7 0.52 0.90 1.81 4.14 1.42 3.94 0.50 0.30 1.52 2.80 1.25 2.57 

RiskAmount Pr & As = 15% C8 0.50 0.79 0.93 2.30 0.88 2.40 0.50 0.41 0.90 1.82 0.84 1.69 

RiskAmount_Assemble = 
15% 

C9 0.99 1.00 6.12 8.95 4.91 7.68 0.10 0.00 3.90 4.95 3.09 3.81 

Quality_incr_Chance = 

0.01% 

C10 1.00 1.00 58.36 38.63 53.36 31.82 0.00 0.00 4.51 3.30 2.83 1.88 

Quality_decr_Chance = 25% C11 1.00 1.00 61.76 40.69 54.32 32.24 0.00 0.00 4.04 2.42 2.70 1.53 

Quality_decr_Chance = 75% C12 1.00 1.00 52.32 37.01 50.96 30.56 0.00 0.00 7.78 3.93 3.58 3.90 

Quality_decr_Upper = 0.5 C13 0.99 1.00 42.44 31.96 40.41 27.59 0.10 0.00 7.88 5.38 7.77 3.63 

Qual_incr Chance & Upper * 
2 

C14 1.00 1.00 59.22 39.28 53.16 31.96 0.00 0.00 5.25 2.67 2.55 3.36 

RiskQuality_Modifier = 10.0 C15 1.00 1.00 55.38 37.55 52.01 31.65 0.00 0.00 5.67 3.30 3.54 1.71 

RiskQuality_Modifier = 25.0 C16 0.99 1.00 46.53 33.92 48.34 30.92 0.10 0.00 7.83 4.06 5.43 2.43 

RiskFactory_Modifier = 0.5 C17 1.00 1.00 57.73 39.01 52.53 31.79 0.00 0.00 5.92 3.05 6.16 2.35 

RiskFactory_Modifier = 1.0 C18 0.98 1.00 57.08 38.50 52.65 31.34 0.14 0.00 5.94 4.76 6.03 3.63 

Quality Thres & Chance C19 1.00 1.00 11.33 12.34 9.40 9.38 0.00 0.00 3.77 4.05 4.18 3.60 

Initial_Printable / 2.0 D1 1.00 1.00 44.55 28.04 42.35 8.24 0.00 0.00 4.23 2.16 4.24 1.92 

Initial_Printable * 2.0 D2 1.00 1.00 64.13 56.55 55.55 44.55 0.00 0.00 3.15 4.42 2.21 2.18 

Initial_Materials = 0 D3 0.99 1.00 48.43 32.46 48.97 31.91 0.10 0.00 5.82 3.30 4.88 1.49 

Initial_Materials / 2.0 D4 1.00 1.00 54.61 36.58 52.18 31.96 0.00 0.00 7.45 3.08 3.54 1.51 

Initial_Materials * 2.0 D5 0.98 1.00 61.94 42.94 53.60 31.78 0.14 0.00 5.07 5.51 2.22 3.38 

Env_Materials / 2.0 D6 1.00 1.00 42.11 39.17 35.76 31.86 0.00 0.00 2.23 3.00 1.32 1.54 

Env_Materials * 2.0 D7 1.00 1.00 57.11 39.68 53.02 31.73 0.00 0.00 5.75 3.03 2.87 3.51 

Env_Materials * 100 D8 1.00 1.00 58.09 38.94 53.02 31.73 0.00 0.00 6.22 2.81 2.89 1.81 

Initial_NonPr / 2.0 D9 1.00 1.00 30.67 39.04 26.56 31.95 0.00 0.00 2.06 2.94 1.54 1.53 

Initial_NonPr * 2.0 D10 0.99 1.00 58.95 39.00 56.57 31.75 0.10 0.00 5.21 4.93 3.97 1.97 

Initial NonPr & Env * 2.0 D11 1.00 1.00 57.54 39.17 56.53 32.01 0.00 0.00 5.19 2.98 5.22 1.39 

Initial NonPr & Env * 2.0, 

Raw=0 

D12 1.00 1.00 49.27 33.36 48.08 32.04 0.00 0.00 5.03 3.14 4.70 1.55 
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Table A.6. Collection potential and standard deviation for time-step 50. 

Base Algorithm ID Collection Potential Collection Potential Std Dev 

Time-Step: 50 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

(Default) A0 20.3 18.8 129.5 39.3 164.5 66.5 2.07 1.98 11.6 3.15 7.92 3.83 

BaseCost_Pr + 1 A1 19.9 19.0 94.5 33.4 114.9 53.7 2.00 1.83 12.3 2.66 8.97 4.17 

BaseCost_Pr + 3 A2 19.7 15.9 53.3 24.7 40.9 32.9 1.83 2.44 5.97 2.27 2.84 2.34 

BaseCost_Pr + 5 A3 17.2 12.2 28.4 19.9 26.9 27.2 1.90 1.73 2.57 1.99 2.52 1.84 

PrintCost_Pr + 1 A4 20.1 19.2 114.7 33.1 157.0 62.0 2.19 2.18 8.30 2.54 11.6 4.49 

PrintCost_Pr + 3 A5 19.7 19.3 90.1 25.2 122.6 72.4 2.14 2.16 8.39 2.44 9.11 5.59 

PrintCost_Pr + 5 A6 19.9 19.2 71.9 19.7 97.1 63.1 2.11 2.58 5.00 2.14 5.12 4.35 

AssembleCost_Pr + 1 A7 20.0 18.9 108.1 33.3 155.7 61.1 2.00 2.46 9.52 2.83 10.1 5.04 

AssembleCost_Pr + 3 A8 20.0 18.5 83.0 24.8 103.3 71.9 2.24 2.94 6.40 1.92 10.2 5.24 

AssembleCost_Pr + 5 A9 20.0 18.8 57.5 19.2 80.8 62.4 2.29 2.07 5.44 2.70 7.47 4.60 

BaseCost_Time + 2 A10 11.3 10.0 54.8 25.0 53.7 30.3 1.41 1.50 3.67 1.42 3.45 2.27 

BaseCost_Time - 1 A11 43.5 43.1 139.5 51.6 166.5 109 3.78 2.64 6.60 4.43 6.44 7.95 

PrintCost_Time + 2 A12 20.4 19.0 98.5 25.0 136.0 38.4 2.11 2.16 5.79 1.78 8.60 2.74 

PrintCost_Time - 1 A13 19.9 18.9 138.6 50.8 163.9 90.8 2.16 2.06 5.03 4.55 5.63 6.68 

AssembleCost_Time + 2 A14 19.8 19.2 70.8 24.9 96.8 38.9 2.41 1.96 6.15 1.51 8.60 2.41 

AssembleCost_Time - 1 A15 20.3 18.8 140.4 51.8 167.7 89.4 1.80 2.44 4.87 4.21 4.81 11.00 

Print & Assemble Time + 2 A16 19.4 18.8 54.3 15.4 70.1 27.6 2.27 2.06 3.19 0.82 5.00 2.54 

BaseCost_NonPr + 1 A17 20.0 19.1 90.6 39.2 100.3 65.5 1.87 2.14 4.69 3.06 4.99 4.00 

PrintCost_NonPr + 1 A18 20.3 19.3 111.1 39.9 138.6 65.8 1.78 2.08 5.74 2.78 5.72 3.78 

AssembleCost_NonPr + 1 A19 20.0 18.9 107.0 39.9 133.4 66.5 2.33 2.57 5.15 2.71 4.84 4.81 

[All]CostPrintable + 1 A20 19.9 18.6 73.0 24.8 75.8 42.8 2.28 2.15 6.20 2.35 6.57 3.49 

[All]CostPrintable + 2 A21 19.7 18.8 34.3 17.6 38.9 38.5 2.65 1.94 2.74 1.70 2.81 5.01 

Print & Assemble Pr + 2 A22 20.3 18.8 71.8 22.4 88.8 67.1 2.25 2.09 7.01 1.87 7.65 4.92 

Base & Print Pr + 2 A23 20.4 18.8 50.3 22.0 50.3 43.7 2.18 2.34 3.66 2.03 6.90 3.44 

Base & Assemble Pr + 2 A24 19.5 19.2 46.2 22.6 49.1 43.7 2.21 2.15 5.15 1.86 3.92 3.86 

[All]CostPrintable - 1 A25 20.1 19.2 136.1 78.8 162.9 112 1.90 2.52 7.25 4.90 7.82 7.28 

AssembleCost_Pr - 1 A26 19.7 18.9 137.6 48.6 164.0 72.8 1.91 1.82 6.57 3.29 6.49 5.02 

PrintCost_Pr - 1 A27 19.7 19.1 137.1 48.2 164.0 72.3 2.61 2.80 6.52 3.57 6.28 4.70 

BaseCost_Pr - 1 A28 19.9 18.7 136.7 47.5 163.3 87.9 1.76 2.03 6.45 3.83 6.25 6.40 

Print_Efficiency = 0.25 B1 19.7 19.1 38.2 20.7 49.5 45.0 2.49 2.27 2.88 1.80 3.53 3.19 

Print_Efficiency = 0.5 B2 20.1 19.0 69.0 26.9 71.9 44.7 2.08 2.66 6.08 2.28 4.27 3.00 

Print_Efficiency = 1.5 B3 19.9 18.9 137.5 50.3 163.0 81.3 1.97 2.58 6.21 4.10 6.47 5.39 

Collect_Amount = 0.25 B4 19.8 19.1 61.8 27.8 80.9 47.8 2.48 2.08 5.17 2.42 7.80 4.87 

Collect_Amount = 0.5 B5 19.7 19.2 89.2 32.9 127.1 64.9 2.51 1.93 7.71 2.88 10.7 5.97 

Collect_Amount = 1.5 B6 21.2 20.2 141.4 43.1 168.8 67.8 3.31 2.41 6.45 3.24 5.53 4.69 

Print_Amount = 0.25 B7 20.1 18.9 40.6 27.4 49.3 45.5 2.12 2.29 3.27 1.58 3.60 3.30 

Print_Amount = 0.5 B8 19.7 19.1 84.1 32.8 70.7 44.2 2.07 2.10 7.65 2.04 4.81 3.41 

Print_Amount = 1.5 B9 19.7 18.7 138.1 42.5 164.2 80.3 2.52 1.67 6.81 3.62 7.11 6.59 

Collect & Print Amount = 0.5 B10 19.9 19.0 74.4 29.6 67.6 44.7 1.98 2.03 5.03 2.00 4.53 3.10 

QualityThreshold + 0.1 C1 19.9 19.2 122.9 37.8 158.0 63.2 2.53 2.24 14.0 3.88 11.0 5.84 

QualityThreshold + 0.2 C2 19.7 18.9 106.9 36.3 136.9 58.4 2.05 2.62 17.5 4.60 18.3 8.36 

QualityThreshold + 0.3 C3 18.0 17.4 81.6 28.6 109.4 45.4 2.70 2.33 15.5 5.47 22.9 9.42 

QualityThreshold + 0.4 C4 15.0 14.8 53.2 20.8 64.2 30.7 2.58 2.32 12.1 4.93 16.3 9.35 

RiskAmount_Print = 1% C5 20.3 18.9 127.4 39.3 154.2 63.6 2.23 2.50 11.0 3.23 14.8 4.93 

RiskAmount_Assemble = 1% C6 19.6 18.5 110.3 35.7 153.3 61.7 2.95 2.94 19.6 5.07 14.3 6.26 

(continues) 
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Table A.6. Collection potential and standard deviation for time-step 50 (continued). 

Base Algorithm ID Collection Potential Collection Potential Std Dev 

Time-Step: 50 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

RiskAmount Pr & As = 10% C7 16.0 14.9 22.6 11.5 23.1 15.4 6.71 6.76 9.99 5.86 10.4 8.41 

RiskAmount Pr & As = 15% C8 14.7 12.5 13.9 7.8 15.1 10.5 6.71 6.93 7.19 4.14 8.47 5.99 

RiskAmount_Assemble = 
15% 

C9 13.4 13.6 16.5 9.1 15.2 10.7 6.63 6.58 8.95 4.96 9.79 5.74 

Quality_incr_Chance = 0.01% C10 20.1 18.9 129.8 39.0 163.7 65.1 1.91 1.93 9.12 3.34 7.72 4.62 

Quality_decr_Chance = 25% C11 20.5 19.8 137.2 40.9 170.0 68.8 2.19 1.88 7.57 2.42 6.50 3.36 

Quality_decr_Chance = 75% C12 19.2 18.8 116.8 37.4 154.7 60.5 2.16 1.75 16.0 3.89 10.3 8.66 

Quality_decr_Upper = 0.5 C13 19.1 18.0 96.0 32.3 126.8 53.1 2.28 2.17 16.0 5.33 21.2 7.68 

Qual_incr Chance & Upper * 

2 

C14 20.4 18.7 130.9 39.7 165.8 66.5 2.06 2.67 11.2 2.77 5.85 7.65 

RiskQuality_Modifier = 10.0 C15 19.4 18.2 122.3 37.9 159.5 63.2 1.85 2.16 11.8 3.32 11.0 4.83 

RiskQuality_Modifier = 25.0 C16 16.9 16.2 103.3 34.5 144.7 56.7 2.42 2.12 15.6 3.97 16.8 5.24 

RiskFactory_Modifier = 0.5 C17 19.5 18.7 128.1 39.4 161.9 65.1 3.29 2.38 12.1 2.92 18.1 5.21 

RiskFactory_Modifier = 1.0 C18 18.8 18.4 126.9 38.8 163.3 64.5 4.18 2.65 12.4 4.73 17.8 7.91 

Quality Thres & Chance C19 12.1 11.4 27.4 12.4 30.8 18.6 2.04 2.48 7.83 4.09 11.1 6.48 

Initial_Printable / 2.0 D1 20.0 18.5 103.0 28.3 138.3 56.4 2.53 2.48 8.79 2.21 11.5 5.25 

Initial_Printable * 2.0 D2 19.8 18.5 138.6 57.0 164.6 91.6 2.02 2.05 5.70 4.41 6.09 6.55 

Initial_Materials = 0 D3 20.0 18.8 110.8 32.8 156.8 66.3 1.95 2.39 11.9 3.26 12.1 4.41 

Initial_Materials / 2.0 D4 20.2 19.4 121.5 36.9 163.9 67.0 2.69 2.16 15.7 3.03 8.69 3.75 

Initial_Materials * 2.0 D5 20.4 18.7 136.7 43.3 164.6 65.7 2.12 2.53 10.8 5.46 5.76 7.62 

Env_Materials / 2.0 D6 22.5 21.2 95.8 39.5 112.5 69.1 1.76 2.59 3.9 2.91 3.88 4.26 

Env_Materials * 2.0 D7 20.1 18.8 125.8 40.0 157.4 65.4 2.22 1.97 11.3 2.95 7.25 7.62 

Env_Materials * 100 D8 20.0 19.0 127.9 39.3 156.9 64.9 2.59 1.82 11.3 2.84 6.90 4.82 

Initial_NonPr / 2.0 D9 20.0 18.9 66.5 39.4 79.2 64.1 2.01 2.14 3.97 2.92 4.15 3.93 

Initial_NonPr * 2.0 D10 20.0 18.9 131.1 39.4 177.9 64.9 2.41 2.09 10.5 4.89 8.59 4.95 

Initial NonPr & Env * 2.0 D11 20.0 18.2 127.1 39.5 177.0 66.0 1.83 2.11 10.7 3.01 13.6 4.08 

Initial NonPr & Env * 2.0, 
Raw=0 

D12 20.3 18.9 111.9 33.5 154.6 65.8 1.99 2.20 10.3 3.14 14.3 4.16 
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A.3. Base Algorithm: Time-Step 70 

In this subsection, the assembly, print, and collection potentials are provided for time-step 

70. Furthermore, the number of robots destroyed, and number of capabilities lost are provided for 

time-step 70 as well. Table A.7 lists the data for assembly potential. Table A.8 lists the data for 

print potential. Table A.9 lists the data for collection potential. Table A.10 lists the data for the 

number of robots destroyed. Table A.11 lists the data for the number of capabilities lost. 

Table A.7. Assembly potential and standard deviation for time-step 70. 

Base Algorithm ID Assembly Potential Assembly Potential Std Dev 

Time-Step: 70 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

(Default) A0 1.00 1.00 73.82 82.95 63.79 70.91 0.00 0.00 4.67 8.64 3.10 3.04 

BaseCost_Pr + 1 A1 0.99 0.98 66.70 64.27 55.13 58.06 0.10 0.14 3.55 7.36 2.70 3.86 

BaseCost_Pr + 3 A2 1.00 0.99 49.80 43.40 43.91 36.96 0.00 0.10 3.26 5.04 9.75 2.59 

BaseCost_Pr + 5 A3 1.00 1.00 32.91 31.08 22.60 32.25 0.00 0.00 4.26 4.02 3.21 4.02 

PrintCost_Pr + 1 A4 1.00 0.98 74.39 64.88 63.08 64.86 0.00 0.14 8.61 7.62 2.84 5.54 

PrintCost_Pr + 3 A5 0.99 0.98 68.39 43.22 57.32 12.28 0.10 0.14 4.33 4.91 2.89 3.47 

PrintCost_Pr + 5 A6 1.00 0.99 81.63 31.83 87.07 8.60 0.00 0.10 15.0 4.22 15.5 0.71 

AssembleCost_Pr + 1 A7 0.99 0.99 70.58 65.45 61.10 64.63 0.10 0.10 3.45 6.64 2.63 5.95 

AssembleCost_Pr + 3 A8 0.98 1.00 53.52 44.33 50.21 12.08 0.14 0.00 3.49 4.43 2.62 3.52 

AssembleCost_Pr + 5 A9 1.00 0.99 44.90 31.69 42.78 8.68 0.00 0.10 3.28 3.53 2.32 0.66 

BaseCost_Time + 2 A10 1.00 1.00 75.65 49.08 63.69 36.37 0.00 0.00 5.59 4.70 4.53 2.84 

BaseCost_Time - 1 A11 1.00 0.99 74.13 89.25 62.92 72.00 0.00 0.10 3.74 4.16 2.85 3.11 

PrintCost_Time + 2 A12 0.99 0.99 75.44 49.41 64.01 45.90 0.10 0.10 4.00 4.82 3.14 6.58 

PrintCost_Time - 1 A13 1.00 0.99 75.47 89.33 64.79 71.55 0.00 0.10 4.34 4.86 2.95 2.19 

AssembleCost_Time + 2 A14 0.99 1.00 76.41 48.64 65.01 46.38 0.10 0.00 4.29 4.62 2.71 3.84 

AssembleCost_Time - 1 A15 0.99 1.00 74.88 89.28 63.67 71.43 0.10 0.00 4.11 4.19 2.32 2.09 

Print & Assemble Time + 2 A16 0.99 0.99 74.85 34.03 64.43 28.18 0.10 0.10 5.03 2.86 2.76 1.65 

BaseCost_NonPr + 1 A17 0.99 0.98 48.81 64.86 40.24 47.98 0.10 0.14 3.99 3.64 2.47 1.84 

PrintCost_NonPr + 1 A18 0.99 0.99 60.56 64.52 53.98 57.35 0.10 0.10 3.48 4.05 2.66 2.06 

AssembleCost_NonPr + 1 A19 1.00 1.00 57.41 63.98 52.23 57.56 0.00 0.00 3.56 4.67 2.22 2.07 

[All]CostPrintable + 1 A20 1.00 1.00 56.03 42.81 50.57 33.93 0.00 0.00 3.35 5.36 2.59 7.07 

[All]CostPrintable + 2 A21 1.00 0.99 42.95 26.45 34.87 7.67 0.00 0.10 3.79 3.70 5.92 0.57 

Print & Assemble Pr + 2 A22 0.98 0.99 55.86 36.57 53.66 9.61 0.14 0.10 3.01 4.53 2.46 0.60 

Base & Print Pr + 2 A23 1.00 1.00 65.44 36.98 51.09 9.85 0.00 0.00 6.54 4.48 2.62 4.10 

Base & Assemble Pr + 2 A24 1.00 1.00 49.31 37.12 46.99 9.36 0.00 0.00 3.09 4.40 3.42 2.44 

[All]CostPrintable - 1 A25 1.00 1.00 70.50 85.76 62.77 72.01 0.00 0.00 4.06 5.26 2.47 2.59 

AssembleCost_Pr - 1 A26 1.00 1.00 75.03 87.30 63.57 73.69 0.00 0.00 4.28 5.22 3.00 3.46 

PrintCost_Pr - 1 A27 0.98 1.00 71.78 88.86 62.42 73.67 0.14 0.00 3.97 4.94 2.67 3.01 

BaseCost_Pr - 1 A28 0.99 1.00 72.72 87.92 62.69 66.50 0.10 0.00 3.53 5.29 2.51 3.14 

Print_Efficiency = 0.25 B1 0.99 1.00 38.72 25.27 24.18 14.46 0.10 0.00 4.26 3.75 3.35 0.87 

Print_Efficiency = 0.5 B2 1.00 0.99 46.72 41.82 47.03 43.17 0.00 0.10 3.29 4.21 5.04 2.54 

(continues) 
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Table A.7. Assembly potential and standard deviation for time-step 70 (continued). 

Base Algorithm ID Assembly Potential Assembly Potential Std Dev 

Time-Step: 70 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

Print_Efficiency = 1.5 B3 0.98 1.00 72.79 87.60 62.45 71.00 0.14 0.00 3.96 5.25 2.94 2.38 

Collect_Amount = 0.25 B4 0.99 0.99 59.86 36.52 56.97 42.05 0.10 0.10 6.92 4.70 4.77 4.11 

Collect_Amount = 0.5 B5 0.99 1.00 72.88 55.79 62.25 68.92 0.10 0.00 5.08 6.42 3.60 7.67 

Collect_Amount = 1.5 B6 0.99 0.98 75.30 90.94 65.09 70.50 0.10 0.14 4.18 4.40 2.63 3.51 

Print_Amount = 0.25 B7 0.99 0.98 41.21 40.88 23.49 14.48 0.10 0.14 5.46 4.97 3.72 0.75 

Print_Amount = 0.5 B8 1.00 1.00 72.73 58.39 61.07 43.95 0.00 0.00 4.45 5.65 5.67 3.27 

Print_Amount = 1.5 B9 0.99 1.00 75.08 88.56 63.62 70.61 0.10 0.00 3.69 5.60 2.78 3.15 

Collect & Print Amount = 0.5 B10 1.00 1.00 68.91 45.00 55.97 43.76 0.00 0.00 5.81 4.60 6.10 3.23 

QualityThreshold + 0.1 C1 1.00 0.99 72.96 80.18 62.67 69.15 0.00 0.10 4.43 10.2 3.55 3.91 

QualityThreshold + 0.2 C2 1.00 0.98 67.73 69.46 59.13 63.62 0.00 0.14 5.81 13.6 4.28 8.14 

QualityThreshold + 0.3 C3 1.00 1.00 60.99 51.65 51.86 49.26 0.00 0.00 5.33 11.4 5.41 9.86 

QualityThreshold + 0.4 C4 0.98 0.99 50.44 34.03 44.57 29.60 0.14 0.10 7.85 9.12 4.28 10.00 

RiskAmount_Print = 1% C5 1.00 0.99 74.97 81.29 64.50 70.31 0.00 0.10 3.46 9.20 3.19 4.19 

RiskAmount_Assemble = 1% C6 0.98 0.93 65.19 64.16 54.20 58.08 0.14 0.26 5.03 13.9 4.78 8.35 

RiskAmount Pr & As = 10% C7 0.49 0.51 7.40 4.54 3.08 2.30 0.50 0.50 6.66 4.60 3.07 2.22 

RiskAmount Pr & As = 15% C8 0.38 0.35 2.26 2.08 1.64 1.01 0.49 0.48 3.31 2.99 1.89 1.32 

RiskAmount_Assemble = 

15% 

C9 0.39 0.37 1.05 0.70 0.97 0.94 0.49 0.49 1.56 1.20 1.65 1.22 

Quality_incr_Chance= 0.01% C10 0.99 0.99 74.71 81.51 63.01 70.41 0.10 0.10 4.03 9.28 3.13 2.30 

Quality_decr_Chance = 25% C11 0.98 0.98 77.54 88.71 65.77 71.61 0.14 0.14 2.85 6.93 1.78 1.73 

Quality_decr_Chance = 75% C12 1.00 0.99 69.37 74.61 61.01 67.97 0.00 0.10 5.47 11.7 3.84 4.89 

Quality_decr_Upper = 0.5 C13 0.99 1.00 63.25 60.55 56.13 57.86 0.10 0.00 6.82 13.4 5.33 10.3 

Qual_incr Chance & Upper * 
2 

C14 0.98 1.00 75.38 83.46 64.06 70.86 0.14 0.00 3.43 9.60 2.57 2.72 

RiskQuality_Modifier = 10.0 C15 0.99 1.00 71.14 77.33 63.06 69.93 0.10 0.00 4.76 9.67 2.98 3.27 

RiskQuality_Modifier = 25.0 C16 0.98 0.99 65.03 57.82 58.60 68.22 0.14 0.10 6.24 12.0 4.63 4.06 

RiskFactory_Modifier = 0.5 C17 0.97 0.98 74.70 83.20 63.73 70.42 0.17 0.14 4.04 8.91 2.82 3.05 

RiskFactory_Modifier = 1.0 C18 0.95 0.90 74.34 83.47 64.15 70.88 0.22 0.30 3.87 8.84 2.69 2.62 

Quality Thres & Chance C19 0.99 1.00 29.51 19.64 25.09 15.49 0.10 0.00 9.07 6.98 7.65 8.34 

Initial_Printable / 2.0 D1 1.00 1.00 75.87 59.38 64.37 10.81 0.00 0.00 8.36 6.70 2.90 9.85 

Initial_Printable * 2.0 D2 0.98 0.99 71.93 88.86 62.85 71.30 0.14 0.10 4.53 4.38 2.50 2.18 

Initial_Materials = 0 D3 0.98 1.00 76.38 70.16 64.35 70.62 0.14 0.00 3.91 9.16 2.83 2.54 

Initial_Materials / 2.0 D4 0.99 1.00 74.91 77.87 63.54 70.91 0.10 0.00 3.80 7.92 2.92 3.28 

Initial_Materials * 2.0 D5 1.00 1.00 73.79 87.73 64.41 70.50 0.00 0.00 4.18 6.19 2.41 2.82 

Env_Materials / 2.0 D6 1.00 0.99 52.30 59.44 44.80 48.24 0.00 0.10 3.13 6.78 2.07 1.42 

Env_Materials * 2.0 D7 1.00 0.99 65.55 79.21 59.37 69.86 0.00 0.10 5.87 8.60 3.16 3.64 

Env_Materials * 100 D8 1.00 1.00 52.71 80.65 43.30 70.69 0.00 0.00 6.21 7.94 4.23 2.69 

Initial_NonPr / 2.0 D9 1.00 0.99 35.24 40.38 32.25 36.19 0.00 0.10 3.23 4.07 2.19 1.66 

Initial_NonPr * 2.0 D10 1.00 1.00 80.10 83.57 67.99 75.79 0.00 0.00 4.19 8.64 3.04 3.04 

Initial NonPr & Env * 2.0 D11 1.00 1.00 136.2 79.71 113.6 80.60 0.00 0.00 6.62 11.8 12.6 5.10 

Initial NonPr & Env * 2.0, 

Raw=0 

D12 1.00 0.99 132.3 70.20 111.3 80.58 0.00 0.10 5.91 7.91 4.27 5.09 
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Table A.8. Print potential and standard deviation for time-step 70. 

Base Algorithm ID Print Potential Print Potential Std Dev 

Time-Step: 70 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

(Default) A0 1.00 1.00 62.10 82.99 53.81 70.67 0.00 0.00 3.64 8.47 2.08 2.89 

BaseCost_Pr + 1 A1 1.00 1.00 52.91 64.30 44.05 57.84 0.00 0.00 2.41 7.17 1.48 3.77 

BaseCost_Pr + 3 A2 1.00 1.00 30.35 43.23 6.44 36.54 0.00 0.00 9.13 4.87 0.70 2.78 

BaseCost_Pr + 5 A3 0.99 1.00 5.56 30.97 4.74 31.88 0.10 0.00 0.69 3.93 0.48 4.00 

PrintCost_Pr + 1 A4 0.99 1.00 58.28 64.81 52.29 64.59 0.10 0.00 6.56 7.28 2.21 5.50 

PrintCost_Pr + 3 A5 0.99 1.00 46.18 43.09 42.55 12.21 0.10 0.00 2.32 4.82 1.42 3.66 

PrintCost_Pr + 5 A6 0.99 1.00 27.88 31.49 10.42 8.62 0.10 0.00 11.2 3.99 3.81 0.55 

AssembleCost_Pr + 1 A7 1.00 1.00 61.38 65.50 53.65 64.50 0.00 0.00 2.88 6.44 2.41 5.89 

AssembleCost_Pr + 3 A8 1.00 1.00 53.50 44.26 45.33 12.15 0.00 0.00 3.49 4.15 4.07 3.81 

AssembleCost_Pr + 5 A9 1.00 1.00 44.07 31.48 38.49 8.69 0.00 0.00 3.39 3.52 9.09 0.61 

BaseCost_Time + 2 A10 1.00 1.00 60.06 49.12 53.25 36.61 0.00 0.00 4.33 4.38 3.75 2.64 

BaseCost_Time - 1 A11 1.00 1.00 64.56 89.06 53.84 71.35 0.00 0.00 2.84 4.01 1.93 3.24 

PrintCost_Time + 2 A12 0.99 1.00 61.15 49.55 52.18 46.23 0.10 0.00 2.76 4.62 2.40 6.40 

PrintCost_Time - 1 A13 0.99 1.00 61.87 88.98 53.33 71.30 0.10 0.00 3.46 4.87 2.67 2.04 

AssembleCost_Time + 2 A14 0.99 1.00 59.10 48.79 53.98 46.72 0.10 0.00 3.43 4.28 2.62 3.60 

AssembleCost_Time - 1 A15 0.97 1.00 63.26 89.30 54.15 71.31 0.17 0.00 3.05 4.00 2.03 2.00 

Print & Assemble Time + 2 A16 0.99 1.00 60.01 34.04 55.00 28.33 0.10 0.00 3.54 2.81 2.34 1.36 

BaseCost_NonPr + 1 A17 1.00 1.00 41.33 64.59 33.68 47.77 0.00 0.00 2.25 3.47 1.41 1.52 

PrintCost_NonPr + 1 A18 0.98 1.00 50.47 64.28 45.54 57.08 0.14 0.00 2.71 3.95 1.68 1.99 

AssembleCost_NonPr + 1 A19 1.00 1.00 48.54 63.92 43.72 57.09 0.00 0.00 2.53 4.49 2.06 2.17 

[All]CostPrintable + 1 A20 0.98 1.00 42.53 42.64 31.39 33.55 0.14 0.00 1.75 5.06 8.66 7.10 

[All]CostPrintable + 2 A21 0.99 1.00 6.57 26.26 6.43 7.57 0.10 0.00 0.59 3.57 0.74 0.59 

Print & Assemble Pr + 2 A22 0.98 1.00 42.45 36.55 11.49 9.62 0.14 0.00 2.17 4.40 7.84 0.75 

Base & Print Pr + 2 A23 1.00 1.00 11.10 36.81 7.48 9.80 0.00 0.00 7.43 4.32 0.67 4.01 

Base & Assemble Pr + 2 A24 0.98 1.00 26.92 36.89 11.11 9.22 0.14 0.00 9.79 4.36 6.07 2.32 

[All]CostPrintable - 1 A25 0.99 1.00 65.45 85.88 55.97 71.96 0.10 0.00 3.34 4.85 1.93 2.61 

AssembleCost_Pr - 1 A26 1.00 1.00 62.13 87.18 54.69 73.51 0.00 0.00 3.40 5.14 2.30 3.48 

PrintCost_Pr - 1 A27 0.99 1.00 63.75 88.59 55.97 73.49 0.10 0.00 4.11 4.84 2.37 2.96 

BaseCost_Pr - 1 A28 1.00 1.00 63.51 87.65 55.77 66.49 0.00 0.00 3.45 5.21 2.09 3.18 

Print_Efficiency = 0.25 B1 0.98 1.00 11.48 24.91 10.23 14.38 0.14 0.00 1.18 3.59 0.85 0.74 

Print_Efficiency = 0.5 B2 1.00 1.00 37.23 41.55 24.31 42.75 0.00 0.00 2.00 4.14 8.54 2.67 

Print_Efficiency = 1.5 B3 1.00 1.00 63.59 87.46 55.53 70.86 0.00 0.00 3.67 4.82 2.10 2.37 

Collect_Amount = 0.25 B4 0.99 1.00 42.11 36.65 44.21 42.20 0.10 0.00 6.10 4.53 3.89 3.76 

Collect_Amount = 0.5 B5 0.98 1.00 57.16 55.65 49.88 68.98 0.14 0.00 3.83 6.21 2.35 7.58 

Collect_Amount = 1.5 B6 0.99 1.00 63.92 90.73 54.23 70.42 0.10 0.00 3.38 4.33 1.96 3.07 

Print_Amount = 0.25 B7 0.99 1.00 11.83 40.04 10.06 14.13 0.10 0.00 1.43 4.84 0.96 0.95 

Print_Amount = 0.5 B8 0.99 1.00 63.94 57.85 33.05 43.45 0.10 0.00 3.56 5.35 13.2 3.39 

Print_Amount = 1.5 B9 1.00 1.00 62.82 88.72 53.13 70.87 0.00 0.00 3.56 5.61 2.19 3.06 

Collect & Print Amount = 0.5 B10 0.99 1.00 59.81 44.67 32.86 43.58 0.10 0.00 3.61 4.60 13.0 3.21 

QualityThreshold + 0.1 C1 0.99 1.00 60.75 80.18 52.18 68.92 0.10 0.00 3.69 10.1 2.73 3.83 

QualityThreshold + 0.2 C2 1.00 1.00 55.24 69.43 48.35 63.48 0.00 0.00 5.06 13.3 3.85 8.07 

QualityThreshold + 0.3 C3 0.97 1.00 48.96 51.72 42.20 49.38 0.17 0.00 4.88 11.3 6.97 9.71 

QualityThreshold + 0.4 C4 1.00 1.00 39.59 34.00 35.26 29.65 0.00 0.00 6.53 9.17 4.69 9.97 

RiskAmount_Print = 1% C5 0.93 1.00 55.53 73.98 45.09 62.55 0.26 0.00 4.48 10.0 3.48 5.22 

RiskAmount_Assemble = 1% C6 0.99 1.00 59.30 70.22 51.31 65.23 0.10 0.00 3.93 12.8 2.46 7.61 

(continues) 
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Table A.8. Print potential and standard deviation for time-step 70 (continued). 

Base Algorithm ID Print Potential Print Potential Std Dev 

Time-Step: 70 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

RiskAmount Pr & As = 10% C7 0.49 0.83 0.92 2.95 0.77 2.59 0.50 0.38 0.99 2.58 0.89 2.19 

RiskAmount Pr & As = 15% C8 0.36 0.73 0.36 1.37 0.45 1.42 0.48 0.45 0.50 1.44 0.70 1.39 

RiskAmount_Assemble = 
15% 

C9 1.00 1.00 6.60 9.14 5.66 8.65 0.00 0.00 4.11 6.63 3.81 5.92 

Quality_incr_Chance = 

0.01% 

C10 1.00 1.00 62.43 81.45 53.54 70.38 0.00 0.00 3.13 9.18 1.96 2.24 

Quality_decr_Chance = 25% C11 0.97 1.00 64.80 88.80 54.73 71.69 0.17 0.00 2.21 6.85 1.34 1.35 

Quality_decr_Chance = 75% C12 0.99 1.00 58.40 74.43 50.94 67.81 0.10 0.00 4.86 11.5 3.57 4.88 

Quality_decr_Upper = 0.5 C13 0.99 1.00 52.63 60.63 45.77 57.99 0.10 0.00 5.49 13.1 5.86 10.0 

Qual_incr Chance & Upper * 
2 

C14 0.99 1.00 63.34 83.49 53.84 70.84 0.10 0.00 3.12 9.35 2.00 2.36 

RiskQuality_Modifier = 10.0 C15 0.99 1.00 60.25 77.37 53.42 69.83 0.10 0.00 4.04 9.42 2.13 3.08 

RiskQuality_Modifier = 25.0 C16 1.00 1.00 56.36 58.15 50.87 68.15 0.00 0.00 5.31 11.6 3.15 3.71 

RiskFactory_Modifier = 0.5 C17 0.97 1.00 62.34 83.07 53.20 70.46 0.17 0.00 3.26 8.90 1.83 2.76 

RiskFactory_Modifier = 1.0 C18 0.94 0.99 62.48 83.47 53.50 70.97 0.24 0.10 2.90 8.64 2.29 2.29 

Quality Thres & Chance C19 1.00 1.00 20.55 19.60 17.87 15.58 0.00 0.00 8.18 6.89 8.65 8.29 

Initial_Printable / 2.0 D1 0.99 1.00 61.19 59.33 52.70 10.82 0.10 0.00 6.82 6.72 1.71 9.86 

Initial_Printable * 2.0 D2 0.99 1.00 63.81 88.78 54.94 71.11 0.10 0.00 3.53 4.15 2.61 2.21 

Initial_Materials = 0 D3 1.00 1.00 61.34 70.10 52.42 70.50 0.00 0.00 3.02 8.91 2.09 2.32 

Initial_Materials / 2.0 D4 1.00 1.00 62.96 78.02 53.38 70.74 0.00 0.00 3.68 7.80 2.23 3.35 

Initial_Materials * 2.0 D5 1.00 1.00 63.03 87.63 54.15 70.26 0.00 0.00 3.16 5.85 1.77 2.47 

Env_Materials / 2.0 D6 1.00 1.00 42.24 59.77 36.04 48.43 0.00 0.00 1.79 6.63 1.30 1.18 

Env_Materials * 2.0 D7 1.00 1.00 60.73 79.24 52.92 69.42 0.00 0.00 3.47 8.23 2.44 3.60 

Env_Materials * 100 D8 0.99 1.00 59.80 80.74 51.50 69.99 0.10 0.00 3.60 7.83 2.26 2.56 

Initial_NonPr / 2.0 D9 1.00 1.00 31.02 40.10 26.46 35.96 0.00 0.00 2.11 3.94 1.47 1.53 

Initial_NonPr * 2.0 D10 0.98 1.00 68.28 83.61 58.46 75.69 0.14 0.00 3.29 8.49 2.19 2.95 

Initial NonPr & Env * 2.0 D11 1.00 1.00 121.4 79.74 102.6 80.22 0.00 0.00 5.81 11.4 11.0 4.88 

Initial NonPr & Env * 2.0, 

Raw=0 

D12 0.97 0.99 116.9 70.08 98.49 80.26 0.17 0.10 4.72 7.58 3.65 4.95 
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Table A.9. Collection potential and standard deviation for time-step 70. 

Base Algorithm ID Collection Potential Collection Potential Std Dev 

Time-Step: 70 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

(Default) A0 29.2 28.2 137.4 83.9 165.5 142.5 2.85 2.19 6.86 8.50 6.04 6.29 

BaseCost_Pr + 1 A1 29.3 26.9 120.9 64.9 136.8 118.4 2.77 3.38 4.89 7.09 4.86 6.75 

BaseCost_Pr + 3 A2 28.2 17.9 81.2 43.7 60.9 70.7 2.75 3.19 9.35 4.90 3.65 5.65 

BaseCost_Pr + 5 A3 18.8 12.8 39.0 31.4 37.6 47.0 2.53 2.41 4.35 3.92 3.71 5.95 

PrintCost_Pr + 1 A4 29.5 28.2 134.1 65.6 166.3 142.6 2.56 3.10 14.4 7.17 6.71 7.49 

PrintCost_Pr + 3 A5 29.4 28.4 115.7 43.6 145.4 129.9 2.43 3.90 4.89 4.77 5.65 7.02 

PrintCost_Pr + 5 A6 29.5 28.1 110.9 32.0 159.2 105.1 2.84 3.33 7.52 4.07 24.7 6.57 

AssembleCost_Pr + 1 A7 29.2 28.1 133.4 66.2 161.6 143.0 3.32 3.33 4.40 6.36 5.98 6.62 

AssembleCost_Pr + 3 A8 29.2 28.3 108.3 44.6 135.0 130.9 3.94 2.31 5.08 4.29 6.98 7.76 

AssembleCost_Pr + 5 A9 28.7 28.2 89.9 31.9 115.3 105.3 2.86 3.60 3.64 3.38 7.68 7.86 

BaseCost_Time + 2 A10 13.4 12.6 137.5 49.7 161.3 74.6 1.71 1.79 8.61 4.36 9.53 5.91 

BaseCost_Time - 1 A11 64.0 50.0 140.0 89.9 166.8 140.2 2.63 3.05 5.38 3.87 7.33 7.86 

PrintCost_Time + 2 A12 29.3 28.5 138.1 50.1 165.2 95.6 3.48 3.21 5.43 4.52 5.85 12.4 

PrintCost_Time - 1 A13 29.2 28.2 138.9 89.9 163.0 143.6 2.80 3.41 6.25 4.68 5.69 6.57 

AssembleCost_Time + 2 A14 29.5 28.0 137.4 49.3 163.1 97.9 3.24 2.73 6.21 4.38 5.31 6.16 

AssembleCost_Time - 1 A15 29.0 28.2 139.6 90.1 167.4 143.9 3.76 2.70 5.53 3.96 5.79 6.72 

Print & Assemble Time + 2 A16 29.2 28.0 136.7 34.4 162.5 65.9 3.28 2.62 7.47 2.65 6.65 7.01 

BaseCost_NonPr + 1 A17 29.0 28.7 91.3 65.4 102.3 90.7 3.14 2.74 4.54 3.33 4.28 4.57 

PrintCost_NonPr + 1 A18 29.0 28.1 112.5 65.1 139.7 114.0 3.69 2.81 4.86 3.88 5.94 5.53 

AssembleCost_NonPr + 1 A19 29.8 28.1 107.3 64.7 134.4 113.5 2.53 2.66 4.36 4.40 6.25 5.06 

[All]CostPrintable + 1 A20 29.3 27.3 99.7 43.3 116.8 90.7 2.36 2.76 4.03 4.93 6.52 5.46 

[All]CostPrintable + 2 A21 28.9 22.6 50.0 26.6 58.7 64.4 2.84 2.66 3.81 3.64 3.41 4.93 

Print & Assemble Pr + 2 A22 29.3 28.5 99.5 36.9 140.4 113.1 3.28 2.48 3.97 4.43 15.1 7.31 

Base & Print Pr + 2 A23 29.5 22.6 77.4 37.3 80.2 71.0 2.24 2.79 7.27 4.36 6.41 9.17 

Base & Assemble Pr + 2 A24 28.8 22.0 77.2 37.4 77.1 72.1 2.81 2.68 10.3 4.27 6.95 5.01 

[All]CostPrintable - 1 A25 28.4 28.4 137.8 86.7 163.9 138.1 2.74 2.53 5.70 4.88 6.17 5.29 

AssembleCost_Pr - 1 A26 29.4 28.2 138.5 88.2 164.1 137.7 2.44 2.50 5.70 4.89 6.21 5.99 

PrintCost_Pr - 1 A27 28.9 28.5 137.3 89.6 163.1 138.9 3.69 2.55 6.68 4.65 6.66 6.17 

BaseCost_Pr - 1 A28 29.1 28.2 137.6 88.7 164.2 151.2 2.73 2.80 5.84 5.04 6.94 6.49 

Print_Efficiency = 0.25 B1 29.5 28.3 51.2 25.4 68.9 72.9 3.13 2.39 4.86 3.66 3.45 5.00 

Print_Efficiency = 0.5 B2 29.2 28.8 85.0 42.1 101.3 90.0 2.54 2.45 3.71 4.13 5.44 4.68 

Print_Efficiency = 1.5 B3 29.3 28.2 137.8 88.4 163.0 143.2 3.03 2.73 6.30 4.87 7.18 5.08 

Collect_Amount = 0.25 B4 25.1 24.1 102.9 36.9 139.6 82.6 2.35 2.43 12.0 4.52 10.7 12.6 

Collect_Amount = 0.5 B5 24.8 24.2 131.6 56.2 157.4 132.7 2.90 2.80 7.45 6.27 7.59 15.5 

Collect_Amount = 1.5 B6 31.7 30.3 140.7 91.7 169.5 146.1 3.08 3.35 6.13 4.05 4.8 5.93 

Print_Amount = 0.25 B7 29.6 28.2 54.0 41.1 69.0 72.2 2.56 3.45 6.47 4.81 3.64 4.78 

Print_Amount = 0.5 B8 29.3 27.7 138.8 59.0 138.1 96.2 2.62 2.87 5.78 5.34 22.8 7.52 

Print_Amount = 1.5 B9 29.2 28.4 139.2 89.3 163.9 142.3 3.32 2.34 5.79 5.41 6.32 7.12 

Collect & Print Amount = 0.5 B10 24.3 24.2 130.7 45.3 128.7 88.5 2.56 2.47 7.85 4.45 22.3 6.76 

QualityThreshold + 0.1 C1 29.0 28.6 135.1 81.0 161.4 138.1 2.63 2.37 6.82 10.1 8.29 7.44 

QualityThreshold + 0.2 C2 29.4 27.5 124.3 70.1 151.2 126.0 2.55 4.58 9.29 13.4 10.5 14.9 

QualityThreshold + 0.3 C3 26.2 25.6 111.0 52.2 131.1 101.9 3.11 2.76 8.24 11.4 15.4 17.9 

QualityThreshold + 0.4 C4 20.4 19.1 90.8 34.3 111.8 64.0 4.01 3.09 13.1 9.22 9.01 18.4 

RiskAmount_Print = 1% C5 29.5 28.2 139.0 82.1 166.8 142.3 2.52 3.52 5.18 9.07 6.02 7.10 

RiskAmount_Assemble = 1% C6 29.0 26.8 132.2 71.0 159.2 134.2 3.68 5.84 6.31 12.8 6.89 15.3 

(continues) 
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Table A.9. Collection potential and standard deviation for time-step 70 (continued). 

Base Algorithm ID Collection Potential Collection Potential Std Dev 

Time-Step: 70 CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

RiskAmount Pr & As = 10% C7 20.2 19.6 27.7 12.4 27.1 21.9 11.0 11.1 12.9 7.09 15.7 13.7 

RiskAmount Pr & As = 15% C8 18.3 15.0 14.5 7.8 16.3 12.3 10.8 11.3 9.28 4.59 9.60 8.39 

RiskAmount_Assemble = 
15% 

C9 17.9 16.5 17.2 9.3 16.9 12.3 11.0 10.8 10.5 6.68 12.5 9.09 

Quality_incr_Chance = 0.01% C10 29.0 28.6 138.7 82.3 165.0 141.5 3.77 2.66 5.70 9.15 6.26 7.24 

Quality_decr_Chance = 25% C11 30.1 28.4 143.5 89.4 170.7 148.1 2.82 3.87 3.15 6.71 3.89 3.68 

Quality_decr_Chance = 75% C12 28.7 27.2 129.5 75.3 156.0 133.8 2.65 3.48 8.48 11.5 8.99 9.89 

Quality_decr_Upper = 0.5 C13 28.4 27.1 117.5 61.4 142.8 115.4 2.72 2.89 10.9 13.2 12.2 17.2 

Qual_incr Chance & Upper * 

2 

C14 28.7 28.0 139.9 84.3 166.8 143.6 2.89 2.77 5.16 9.26 5.61 6.56 

RiskQuality_Modifier = 10.0 C15 27.9 27.5 133.3 78.4 162.7 138.1 3.48 2.69 7.50 9.28 8.05 7.39 

RiskQuality_Modifier = 25.0 C16 25.2 23.3 123.8 59.3 151.2 125.7 4.38 4.01 10.3 11.6 11.5 9.99 

RiskFactory_Modifier = 0.5 C17 28.7 27.5 138.8 84.0 165.4 142.1 3.09 3.75 5.62 8.74 5.58 6.56 

RiskFactory_Modifier = 1.0 C18 28.0 26.5 138.4 84.2 165.7 143.7 5.05 7.48 4.78 8.59 6.16 5.66 

Quality Thres & Chance C19 15.7 14.5 50.8 19.8 58.5 33.2 3.43 3.51 16.5 6.97 21.0 12.4 

Initial_Printable / 2.0 D1 28.9 23.1 138.6 59.9 166.2 96.4 2.64 2.50 14.7 6.53 6.03 6.89 

Initial_Printable * 2.0 D2 29.0 28.3 137.2 89.5 164.0 140.8 3.59 3.13 6.38 4.01 6.24 6.65 

Initial_Materials = 0 D3 29.2 28.2 139.0 70.8 166.7 143.0 4.08 2.63 5.22 8.98 5.90 5.43 

Initial_Materials / 2.0 D4 29.0 28.5 139.4 78.6 165.0 143.3 3.48 2.48 6.08 7.73 6.22 6.31 

Initial_Materials * 2.0 D5 29.0 28.6 138.3 88.6 166.4 141.7 2.79 2.27 6.22 5.90 5.63 6.80 

Env_Materials / 2.0 D6 32.7 31.4 95.3 60.1 113.0 97.0 2.13 2.45 3.37 6.62 3.61 3.95 

Env_Materials * 2.0 D7 24.6 24.1 128.6 80.1 156.2 133.1 2.11 2.41 7.81 8.27 6.24 8.55 

Env_Materials * 100 D8 24.7 24.2 115.4 81.4 127.8 126.7 2.66 2.07 8.09 7.82 7.42 6.90 

Initial_NonPr / 2.0 D9 29.4 28.3 67.2 40.7 79.6 67.2 2.13 2.44 3.91 3.91 4.00 4.88 

Initial_NonPr * 2.0 D10 29.6 28.0 149.9 84.2 179.3 156.5 2.61 2.91 6.24 8.51 7.74 6.34 

Initial NonPr & Env * 2.0 D11 24.3 23.5 260.4 80.7 310.4 174.9 2.63 2.44 10.8 11.6 33.5 13.5 

Initial NonPr & Env * 2.0, 
Raw=0 

D12 24.7 23.8 252.0 70.8 301.8 174.6 2.67 3.19 8.66 7.73 10.4 15.3 

 



 

187 

Table A.10. Number of robots destroyed due to build quality and task hazards. 

(70) Destroyed (Build Quality) Destroyed (Hazard) 

CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

C1 0.0 0.0 7.1 4.1 8.8 7.7 7.0 6.4 8.9 8.0 9.0 9.3 

C2 0.0 0.0 18.0 8.1 19.5 17.1 6.6 6.9 8.8 7.9 8.3 8.7 

C3 3.5 3.6 32.7 14.2 38.2 28.6 6.3 5.9 7.5 5.8 7.5 7.2 

C4 9.6 10.3 47.9 18.0 58.6 34.6 5.7 5.5 6.0 3.0 5.8 5.7 

C5 0.0 0.0 3.0 1.6 2.9 2.3 6.5 6.5 9.1 9.5 9.2 9.7 

C6 0.0 0.0 2.7 1.2 2.6 2.4 6.7 6.7 8.8 8.8 8.9 8.8 

C7 0.0 0.0 0.0 0.0 0.0 0.0 5.6 5.5 6.6 4.0 6.2 6.2 

C8 0.0 0.0 0.0 0.0 0.0 0.0 5.5 5.0 5.0 2.9 5.4 4.5 

C9 0.0 0.0 0.0 0.0 0.0 0.0 5.4 5.5 4.5 1.7 4.9 2.7 

C10 0.0 0.0 3.2 1.9 3.9 4.1 6.7 6.3 9.2 9.3 10.2 10.1 

C11 0.0 0.0 0.3 0.1 0.6 0.5 5.6 6.2 7.6 7.4 7.7 7.1 

C12 0.0 0.0 10.0 4.4 11.3 9.5 7.3 7.6 11.5 10.4 11.5 11.4 

C13 0.0 0.0 22.5 10.2 24.7 22.2 7.4 7.9 10.9 8.6 10.8 10.7 

C14 0.0 0.0 2.6 1.2 2.7 2.6 7.1 7.0 8.9 9.1 9.3 9.0 

C15 0.0 0.0 3.3 1.1 3.2 3.3 8.0 7.5 14.1 12.2 12.9 13.9 

C16 0.0 0.0 1.8 0.9 2.8 2.8 10.5 11.4 24.5 20.3 24.2 24.9 

C17 0.0 0.0 3.2 1.3 3.6 3.1 7.0 7.1 9.0 9.4 9.9 10.0 

C18 0.0 0.0 3.1 1.1 3.3 2.5 7.0 6.0 9.6 9.3 10.0 9.4 

C19 15.3 15.2 57.1 20.2 68.2 39.2 5.0 5.3 4.1 1.6 5.5 4.3 

Table A.11. Total number of robots and total number of capabilities lost. 

(70) Number of Robots Total Capabilities Lost 

CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

C1 36.0 35.0 151.1 93.1 179.2 155.0 0.0 0.0 1.7 1.7 1.6 1.8 

C2 36.0 34.4 151.1 86.1 179.0 151.8 0.0 0.0 1.6 1.4 1.6 1.7 

C3 36.0 35.0 151.3 72.2 176.8 137.7 0.0 0.0 1.2 1.3 1.3 1.3 

C4 35.7 35.0 144.7 55.3 176.3 104.3 0.0 0.0 1.0 0.7 1.1 0.8 

C5 36.0 34.8 151.1 93.2 178.8 154.3 0.1 0.0 10.0 10.3 9.9 9.7 

C6 35.7 33.5 143.8 81.0 170.7 145.4 0.0 0.1 9.1 7.9 9.5 8.8 

C7 25.8 25.2 34.4 16.4 33.4 28.1 1.0 0.7 25.4 24.5 20.9 21.6 

C8 23.8 19.9 19.5 10.6 21.7 16.7 1.3 0.9 16.7 17.6 16.4 16.9 

C9 23.2 22.0 21.7 10.9 21.8 15.0 0.6 0.6 14.0 10.4 11.9 8.8 

C10 35.7 34.9 151.1 93.5 179.0 155.7 0.0 0.0 1.8 1.8 1.8 1.8 

C11 35.8 34.6 151.4 96.9 179.0 155.7 0.1 0.0 1.3 1.4 1.3 1.6 

C12 36.0 34.8 151.0 90.1 178.8 154.7 0.0 0.0 2.1 1.8 2.2 2.0 

C13 35.8 35.0 150.9 80.2 178.3 148.2 0.0 0.0 2.2 1.8 1.9 2.0 

C14 35.8 35.0 151.3 94.5 178.8 155.2 0.0 0.0 1.4 1.7 1.7 2.0 

C15 35.9 35.0 150.7 91.6 178.8 155.2 0.0 0.0 2.5 2.2 2.0 2.4 

C16 35.6 34.7 150.1 80.4 178.2 153.4 0.0 0.0 3.9 3.3 4.1 4.9 

C17 35.7 34.5 151.0 94.7 178.9 155.1 0.1 0.0 2.0 1.9 2.0 1.8 

C18 35.0 32.6 151.1 94.6 179.0 155.5 0.1 0.1 1.8 1.7 1.6 1.8 

C19 35.9 35.0 111.9 41.6 132.2 76.7 0.0 0.0 0.8 0.3 0.9 0.5 
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A.4. Base Algorithm: Averaged Across Time-Steps 

In this subsection, select secondary metrics are listed for certain experimental condition 

categories. Furthermore, the data in this subsection consists of ratios and percentages, which is 

averaged across the time-step values of 30, 50, and 70. Table A.12 lists the average print and 

assemble ratios for experimental condition classification ‘A’. Table A.13 lists the average robot 

quality for experimental condition classification ‘C’. 

Table A.12. Average of the print ratios and assemble ratios across all time-steps. 

Average Print Ratio Assemble Ratio 

CHE CHO DHE DHO HHE HHO CHE CHO DHE DHO HHE HHO 

A0 0.05 0.06 0.45 0.99 0.32 0.53 0.05 0.06 0.54 0.99 0.39 0.53 

A1 0.05 0.06 0.43 0.99 0.32 0.50 0.05 0.06 0.56 0.99 0.42 0.50 

A2 0.06 0.07 0.36 0.99 0.18 0.50 0.05 0.07 0.63 0.99 0.67 0.51 

A3 0.06 0.08 0.22 0.99 0.19 0.67 0.06 0.08 0.77 0.99 0.57 0.67 

A4 0.06 0.06 0.43 0.99 0.31 0.50 0.05 0.06 0.56 0.99 0.39 0.50 

A5 0.06 0.06 0.40 0.99 0.30 0.25 0.05 0.06 0.59 0.99 0.40 0.25 

A6 0.06 0.06 0.27 0.99 0.15 0.19 0.05 0.06 0.72 1.00 0.50 0.19 

A7 0.05 0.06 0.45 0.99 0.32 0.50 0.05 0.06 0.54 0.99 0.39 0.50 

A8 0.05 0.06 0.48 0.99 0.31 0.25 0.05 0.06 0.50 0.99 0.40 0.25 

A9 0.05 0.06 0.44 0.99 0.34 0.19 0.05 0.06 0.55 0.99 0.39 0.19 

A10 0.10 0.11 0.42 0.99 0.31 0.60 0.10 0.11 0.57 0.99 0.43 0.59 

A11 0.03 0.03 0.46 0.99 0.32 0.49 0.03 0.03 0.53 0.99 0.38 0.49 

A12 0.05 0.06 0.40 0.99 0.29 0.56 0.05 0.06 0.59 0.99 0.42 0.55 

A13 0.05 0.06 0.44 0.99 0.33 0.51 0.05 0.06 0.55 0.99 0.41 0.51 

A14 0.05 0.06 0.42 0.99 0.34 0.55 0.05 0.06 0.56 0.99 0.40 0.54 

A15 0.06 0.06 0.43 0.99 0.31 0.51 0.05 0.06 0.55 0.99 0.39 0.51 

A16 0.06 0.06 0.42 1.00 0.31 0.53 0.05 0.06 0.57 0.98 0.42 0.52 

A17 0.05 0.06 0.45 0.99 0.32 0.54 0.05 0.06 0.54 0.99 0.40 0.54 

A18 0.06 0.06 0.45 0.99 0.32 0.53 0.05 0.06 0.54 0.99 0.39 0.53 

A19 0.05 0.06 0.45 0.99 0.32 0.53 0.05 0.06 0.54 0.99 0.40 0.53 

A20 0.05 0.06 0.41 0.99 0.26 0.39 0.05 0.06 0.58 0.99 0.45 0.39 

A21 0.06 0.06 0.22 0.99 0.19 0.25 0.05 0.06 0.77 0.99 0.56 0.24 

A22 0.05 0.06 0.41 0.99 0.15 0.21 0.05 0.06 0.58 0.99 0.40 0.20 

A23 0.05 0.06 0.22 0.99 0.17 0.26 0.05 0.06 0.77 0.99 0.58 0.26 

A24 0.05 0.06 0.33 0.99 0.25 0.26 0.05 0.06 0.66 0.99 0.55 0.26 

A25 0.05 0.06 0.47 1.00 0.33 0.51 0.05 0.06 0.52 0.99 0.39 0.50 

A26 0.05 0.06 0.45 0.99 0.32 0.55 0.05 0.06 0.54 0.99 0.39 0.55 

A27 0.06 0.06 0.46 0.99 0.33 0.55 0.05 0.06 0.53 0.99 0.39 0.54 

A28 0.06 0.06 0.46 0.99 0.33 0.46 0.05 0.06 0.53 0.99 0.39 0.45 
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Table A.13. Average robot quality across all time-steps. 

Average Average Robot Quality 

CHE CHO DHE DHO HHE HHO 

C1 0.944 0.942 0.852 0.866 0.852 0.855 

C2 0.944 0.942 0.864 0.878 0.862 0.863 

C3 0.943 0.941 0.891 0.897 0.890 0.892 

C4 0.945 0.942 0.925 0.926 0.926 0.924 

C5 0.943 0.942 0.851 0.865 0.849 0.852 

C6 0.944 0.943 0.853 0.872 0.857 0.859 

C7 0.948 0.944 0.923 0.927 0.920 0.919 

C8 0.950 0.945 0.936 0.943 0.937 0.929 

C9 0.950 0.946 0.938 0.945 0.939 0.929 

C10 0.941 0.940 0.837 0.855 0.836 0.835 

C11 0.971 0.971 0.920 0.932 0.921 0.926 

C12 0.916 0.912 0.775 0.798 0.771 0.775 

C13 0.892 0.885 0.744 0.757 0.745 0.742 

C14 0.946 0.944 0.861 0.874 0.858 0.860 

C15 0.944 0.942 0.851 0.867 0.849 0.850 

C16 0.944 0.939 0.859 0.871 0.858 0.858 

C17 0.945 0.940 0.846 0.861 0.845 0.849 

C18 0.944 0.941 0.843 0.866 0.844 0.853 

C19 0.914 0.910 0.889 0.892 0.889 0.887 
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APPENDIX B. DECISION-MAKING RESULT TABLES 

B.1. Results – Cycle 

Table B.1 lists the results for time-step 70. Table B.2 lists the results for time-step 50. Table 

B.3 lists the results for time-step 30. 

Table B.1. Cycle decision-making algorithm results for time-step 70. 

Cycle Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 70 DHE HHE HHO DHE HHE HHO DHE HHE HHO 

(Default) A0 137.5 167.5 149.2 68.1 57.6 54.8 67.9 57.0 54.7 

BaseCost_Pr + 1 A1 119.7 139.2 98.6 58.4 45.9 27.9 60.2 45.9 27.6 

BaseCost_Pr + 3 A2 82.4 94.2 57.9 39.6 29.9 19.3 41.9 30.5 19.1 

BaseCost_Pr + 5 A3 63.3 68.2 35.1 29.0 19.3 5.9 33.5 20.6 5.8 

PrintCost_Pr + 1 A4 133.5 166.7 133.7 66.8 56.3 44.5 65.2 55.3 44.3 

PrintCost_Pr + 3 A5 111.4 146.4 112.9 58.8 48.8 9.5 51.3 44.1 9.5 

PrintCost_Pr + 5 A6 97.9 134.6 97.7 55.4 45.4 7.7 41.4 35.6 7.7 

AssembleCost_Pr + 1 A7 132.0 164.0 134.3 63.2 55.1 45.3 67.5 55.9 45.0 

AssembleCost_Pr + 3 A8 110.5 141.8 114.4 48.7 44.1 9.6 60.3 50.1 9.7 

AssembleCost_Pr + 5 A9 98.3 129.5 97.7 39.2 36.6 7.7 57.9 46.2 7.9 

BaseCost_Time + 2 A10 128.9 101.0 64.2 64.9 35.2 20.4 62.2 34.3 20.7 

BaseCost_Time - 1 A11 138.6 171.4 155.0 68.3 56.3 66.8 69.1 56.0 66.4 

PrintCost_Time + 2 A12 133.5 158.8 96.1 65.8 55.0 31.2 65.9 54.4 31.3 

PrintCost_Time - 1 A13 137.8 163.4 155.5 68.1 56.2 63.6 68.4 55.2 63.7 

AssembleCost_Time + 2 A14 136.4 164.0 94.8 68.7 56.5 30.8 66.2 56.7 30.9 

AssembleCost_Time - 1 A15 135.7 167.8 154.9 66.7 55.8 64.3 67.7 56.3 64.0 

Print & Assemble Time + 2 A16 128.0 154.5 63.8 65.1 52.3 20.6 61.2 51.8 20.8 

BaseCost_NonPr + 1 A17 89.9 101.8 100.1 43.9 35.7 39.2 44.8 35.9 38.7 

PrintCost_NonPr + 1 A18 107.9 137.9 130.0 53.4 47.7 51.4 53.0 47.9 51.1 

AssembleCost_NonPr + 1 A19 108.5 137.3 130.1 53.3 47.6 51.4 53.8 47.8 51.0 

[All]CostPrintable + 1 A20 98.8 123.9 84.8 48.2 39.8 8.8 49.6 38.7 8.7 

[All]CostPrintable + 2 A21 73.5 95.0 57.8 34.4 28.9 6.8 38.2 26.0 6.7 

Print & Assemble Pr + 2 A22 99.1 136.7 105.8 47.7 42.0 8.7 50.2 41.8 8.7 

Base & Print Pr + 2 A23 84.7 103.3 64.1 43.1 33.3 7.7 40.5 31.1 7.5 

Base & Assemble Pr + 2 A24 85.1 101.9 65.0 38.3 30.5 7.8 45.7 34.9 7.6 

[All]CostPrintable - 1 A25 135.7 164.5 148.8 67.2 57.2 65.3 66.6 57.3 65.3 

AssembleCost_Pr - 1 A26 135.6 164.1 149.3 68.7 56.9 66.1 65.4 57.0 66.2 

PrintCost_Pr - 1 A27 137.3 165.5 150.0 66.6 57.1 66.0 69.1 57.3 65.6 

BaseCost_Pr - 1 A28 134.7 164.5 173.0 66.9 57.1 54.7 66.2 57.0 54.7 

Print_Efficiency = 0.25 B1 51.1 68.8 65.2 23.5 18.4 12.4 26.7 19.8 11.9 

Print_Efficiency = 0.5 B2 83.7 106.1 91.4 39.9 33.8 24.5 42.7 33.3 24.0 

Print_Efficiency = 1.5 B3 136.9 165.6 155.2 68.0 57.5 63.7 67.4 57.3 63.7 

Collect_Amount = 0.25 B4 96.4 145.8 113.7 48.6 47.7 44.6 46.7 45.7 44.4 

Collect_Amount = 0.5 B5 130.2 160.3 139.9 64.9 53.6 54.5 64.0 52.9 54.3 

Collect_Amount = 1.5 B6 140.0 168.5 152.3 69.5 57.5 54.8 69.0 56.8 55.0 

Print_Amount = 0.25 B7 82.7 84.0 67.7 37.2 22.1 12.6 43.5 22.7 12.2 

(continues) 
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Table B.1. Cycle decision-making algorithm results for time-step 70 (continued). 

Cycle Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 70 DHE HHE HHO DHE HHE HHO DHE HHE HHO 

Print_Amount = 0.5 B8 137.9 172.2 93.2 64.5 54.3 24.8 71.3 52.8 24.4 

Print_Amount = 1.5 B9 135.6 165.0 155.4 68.5 57.5 63.9 65.8 56.1 64.2 

Collect & Print Amount = 0.5 B10 128.4 162.2 84.4 60.2 50.6 25.8 66.2 51.1 25.6 

QualityThreshold + 0.1 C1 131.4 159.5 137.2 64.6 54.7 49.3 65.3 54.7 49.4 

QualityThreshold + 0.2 C2 123.7 149.2 122.6 60.8 51.0 44.2 61.4 51.0 44.4 

QualityThreshold + 0.3 C3 109.2 132.6 95.7 54.9 45.8 32.4 53.1 44.6 32.6 

QualityThreshold + 0.4 C4 90.2 106.0 60.6 45.0 35.6 18.2 44.3 35.8 18.2 

RiskAmount_Print = 1% C5 137.3 167.1 137.7 67.9 56.6 48.6 61.0 47.9 40.8 

RiskAmount_Assemble = 1% C6 130.2 154.4 136.3 58.4 45.1 42.9 63.8 53.1 49.4 

RiskAmount Pr & As = 10% C7 21.9 23.1 18.6 2.7 1.5 1.4 1.7 1.4 2.1 

RiskAmount Pr & As = 15% C8 10.9 15.8 10.9 0.6 0.7 0.6 0.7 0.8 1.0 

RiskAmount_Assemble = 15% C9 13.5 13.7 14.1 0.7 0.5 0.6 7.4 6.4 7.3 

Quality_incr_Chance = 0.01% C10 134.9 164.5 146.9 66.7 56.8 53.9 66.7 56.1 53.7 

Quality_decr_Chance = 25% C11 143.2 173.0 156.1 71.4 59.4 56.7 70.6 58.9 56.8 

Quality_decr_Chance = 75% C12 126.3 152.8 139.6 62.6 53.3 51.4 62.1 52.4 51.2 

Quality_decr_Upper = 0.5 C13 115.7 139.3 106.8 57.3 48.0 38.9 56.8 47.2 38.8 

Qual_incr Chance & Upper * 2 C14 137.8 166.6 149.8 68.6 57.4 55.4 67.7 56.9 55.2 

RiskQuality_Modifier = 10.0 C15 133.1 162.1 143.6 65.1 56.3 53.5 66.0 55.8 53.2 

RiskQuality_Modifier = 25.0 C16 120.8 148.6 131.7 58.9 52.6 50.8 59.4 52.1 50.6 

RiskFactory_Modifier = 0.5 C17 136.8 164.7 148.5 68.2 56.6 54.3 67.2 56.5 54.3 

RiskFactory_Modifier = 1.0 C18 137.3 161.1 145.3 68.1 55.3 53.2 67.6 55.0 53.5 

Quality Thres & Chance C19 41.6 47.9 32.7 20.6 16.4 8.1 20.4 15.9 8.2 

Initial_Printable / 2.0 D1 138.7 167.9 90.9 68.3 55.9 15.3 69.0 55.9 15.4 

Initial_Printable * 2.0 D2 137.2 166.3 149.9 68.1 57.7 66.3 67.6 57.5 66.2 

Initial_Materials = 0 D3 137.5 169.5 149.1 67.8 57.4 54.4 68.3 57.0 54.5 

Initial_Materials / 2.0 D4 137.9 167.5 146.2 68.4 57.6 53.9 68.1 56.4 53.6 

Initial_Materials * 2.0 D5 136.9 165.1 151.6 67.5 56.9 55.2 68.0 56.7 54.9 

Env_Materials / 2.0 D6 93.4 113.5 109.9 46.6 39.3 41.9 45.8 38.9 41.7 

Env_Materials * 2.0 D7 127.7 159.0 138.6 59.6 53.7 53.6 66.2 56.8 53.5 

Env_Materials * 100 D8 114.3 131.5 128.5 48.2 39.7 54.7 63.1 55.0 54.3 

Initial_NonPr / 2.0 D9 65.5 80.2 78.7 30.6 27.5 31.1 33.8 29.1 30.7 

Initial_NonPr * 2.0 D10 148.1 180.2 151.3 73.5 61.8 54.3 73.0 61.2 54.2 

Initial NonPr & Env * 2.0 D11 256.1 312.6 143.3 126.3 106.4 54.6 127.0 106.3 54.5 

Initial NonPr & Env * 2.0, Raw=0 D12 244.2 299.6 145.2 120.2 100.9 54.4 121.4 100.8 54.5 
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Table B.2. Cycle decision-making algorithm results for time-step 50. 

Cycle Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 50 DHE HHE HHO DHE HHE HHO DHE HHE HHO 

(Default) A0 115.4 156.4 63.1 56.9 52.6 23.7 57.0 52.4 23.7 

BaseCost_Pr + 1 A1 87.9 114.8 53.6 42.5 36.8 14.1 44.2 36.8 14.0 

BaseCost_Pr + 3 A2 55.8 60.8 32.5 27.2 19.1 10.9 27.8 20.0 10.8 

BaseCost_Pr + 5 A3 39.1 37.7 24.4 18.1 10.1 6.0 20.5 12.1 6.0 

PrintCost_Pr + 1 A4 102.9 146.7 56.8 52.1 47.3 21.8 49.7 47.2 21.7 

PrintCost_Pr + 3 A5 81.4 119.2 65.9 43.3 38.6 9.8 37.1 35.0 9.8 

PrintCost_Pr + 5 A6 68.6 101.5 58.6 39.1 32.1 7.8 28.6 27.5 7.8 

AssembleCost_Pr + 1 A7 101.6 145.6 57.2 48.5 46.7 20.4 51.9 47.5 20.3 

AssembleCost_Pr + 3 A8 80.1 122.4 65.6 34.9 36.5 9.7 44.3 41.0 9.8 

AssembleCost_Pr + 5 A9 68.2 107.3 58.3 26.7 29.3 7.7 40.6 36.9 7.8 

BaseCost_Time + 2 A10 53.6 36.6 33.7 27.8 13.1 13.5 25.3 12.7 13.7 

BaseCost_Time - 1 A11 139.0 171.7 103.1 68.1 56.9 40.1 69.7 55.6 39.8 

PrintCost_Time + 2 A12 79.8 102.1 44.8 42.0 35.9 16.3 36.7 31.3 16.4 

PrintCost_Time - 1 A13 138.3 161.6 82.7 67.8 55.1 32.0 69.4 54.7 32.0 

AssembleCost_Time + 2 A14 65.3 69.2 44.5 31.4 22.1 16.3 33.0 24.2 16.3 

AssembleCost_Time - 1 A15 137.2 164.4 81.2 67.8 55.3 32.1 68.0 55.6 32.1 

Print & Assemble Time + 2 A16 52.6 50.5 31.0 27.4 17.1 12.7 24.6 16.7 12.7 

BaseCost_NonPr + 1 A17 89.7 100.9 63.3 43.3 35.0 23.6 45.2 35.6 23.7 

PrintCost_NonPr + 1 A18 107.7 135.2 64.1 53.0 46.8 23.5 53.6 46.6 23.6 

AssembleCost_NonPr + 1 A19 107.0 135.5 64.4 52.2 46.8 24.2 53.3 46.7 24.3 

[All]CostPrintable + 1 A20 70.0 92.9 50.7 34.1 28.9 8.8 35.0 28.3 8.8 

[All]CostPrintable + 2 A21 45.4 57.4 35.7 21.2 17.9 6.8 23.4 15.6 6.7 

Print & Assemble Pr + 2 A22 68.8 109.1 61.5 33.1 33.1 8.8 34.6 32.7 8.8 

Base & Print Pr + 2 A23 55.7 67.6 39.7 28.0 21.4 7.7 26.8 20.9 7.8 

Base & Assemble Pr + 2 A24 56.8 69.5 39.0 25.3 20.7 7.8 30.8 23.7 7.7 

[All]CostPrintable - 1 A25 135.3 157.4 105.9 66.8 53.7 41.0 66.9 53.8 41.4 

AssembleCost_Pr - 1 A26 133.8 158.0 67.7 68.2 54.0 28.3 64.0 53.8 28.5 

PrintCost_Pr - 1 A27 133.5 155.6 66.9 64.8 53.2 28.6 67.3 52.6 28.6 

BaseCost_Pr - 1 A28 136.4 156.0 94.7 68.1 53.4 25.4 66.9 53.1 25.5 

Print_Efficiency = 0.25 B1 40.6 53.9 43.0 18.7 14.3 12.6 21.3 16.9 12.6 

Print_Efficiency = 0.5 B2 63.9 83.9 50.8 30.2 26.6 16.5 32.7 26.4 16.3 

Print_Efficiency = 1.5 B3 135.8 158.8 76.2 67.8 54.5 27.0 66.3 53.8 27.3 

Collect_Amount = 0.25 B4 58.4 78.7 61.7 29.8 26.0 23.6 28.2 24.1 23.6 

Collect_Amount = 0.5 B5 82.5 116.4 62.8 40.9 37.9 23.5 40.6 37.2 23.7 

Collect_Amount = 1.5 B6 138.4 160.2 65.9 68.9 53.5 24.0 68.2 53.0 24.1 

Print_Amount = 0.25 B7 49.2 53.3 43.1 22.1 14.1 12.7 26.4 17.0 12.5 

Print_Amount = 0.5 B8 86.3 84.8 51.5 40.0 27.0 15.9 44.8 26.8 15.8 

Print_Amount = 1.5 B9 132.9 150.0 76.2 67.1 51.4 27.2 64.6 49.5 27.5 

Collect & Print Amount = 0.5 B10 69.1 83.0 51.1 32.4 26.4 16.0 35.9 27.2 15.9 

QualityThreshold + 0.1 C1 109.9 136.3 60.9 54.2 45.9 22.6 54.4 45.5 22.8 

QualityThreshold + 0.2 C2 95.9 112.8 55.1 47.8 37.7 20.9 46.9 37.2 21.0 

QualityThreshold + 0.3 C3 71.1 86.8 43.8 35.5 29.3 16.1 34.7 28.6 16.2 

QualityThreshold + 0.4 C4 46.4 55.5 31.9 23.5 19.1 10.9 22.4 18.1 10.9 

RiskAmount_Print = 1% C5 119.0 145.1 61.3 58.9 47.6 23.3 52.3 40.6 20.9 

RiskAmount_Assemble = 1% C6 98.8 117.8 57.9 43.6 33.2 19.9 48.5 39.0 22.7 

(continues) 
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Table B.2. Cycle decision-making algorithm results for time-step 50 (continued). 

Cycle Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 50 DHE HHE HHO DHE HHE HHO DHE HHE HHO 

RiskAmount Pr & As = 10% C7 17.9 18.0 17.0 2.3 1.8 2.1 2.4 1.6 3.3 

RiskAmount Pr & As = 15% C8 10.9 11.4 10.5 1.1 0.8 0.9 1.2 0.9 1.7 

RiskAmount_Assemble = 15% C9 13.7 12.8 11.9 1.2 0.6 1.0 7.4 5.7 6.1 

Quality_incr_Chance = 0.01% C10 115.3 151.3 63.4 56.8 50.7 23.9 56.9 50.6 23.9 

Quality_decr_Chance = 25% C11 124.6 166.0 68.2 61.6 55.9 24.0 61.7 55.9 24.1 

Quality_decr_Chance = 75% C12 104.0 138.2 58.8 51.4 46.7 22.3 51.1 46.5 22.3 

Quality_decr_Upper = 0.5 C13 85.7 110.5 50.1 42.1 37.0 19.7 42.3 36.7 19.7 

Qual_incr Chance & Upper * 2 C14 120.8 156.6 64.7 60.0 52.6 23.8 59.5 52.3 23.8 

RiskQuality_Modifier = 10.0 C15 110.6 148.1 59.6 54.7 50.2 23.6 54.2 49.6 23.6 

RiskQuality_Modifier = 25.0 C16 91.0 128.2 53.1 44.5 44.1 23.1 44.8 43.4 23.1 

RiskFactory_Modifier = 0.5 C17 119.9 156.5 63.1 59.5 52.5 23.8 59.1 52.2 23.9 

RiskFactory_Modifier = 1.0 C18 114.6 154.8 63.6 56.7 51.9 23.7 56.5 51.6 23.8 

Quality Thres & Chance C19 26.4 24.2 19.6 13.7 8.5 7.3 12.4 8.3 7.3 

Initial_Printable / 2.0 D1 97.0 141.0 52.6 47.6 45.5 9.5 48.2 45.0 9.4 

Initial_Printable * 2.0 D2 134.6 155.1 86.5 66.7 52.8 36.5 66.4 52.5 36.5 

Initial_Materials = 0 D3 103.8 149.6 64.5 51.2 49.2 24.0 51.1 48.9 24.0 

Initial_Materials / 2.0 D4 111.8 152.9 64.6 55.5 51.4 24.1 55.0 50.2 24.1 

Initial_Materials * 2.0 D5 125.0 153.4 64.5 61.3 52.0 24.2 62.1 51.8 24.2 

Env_Materials / 2.0 D6 94.4 114.1 68.2 47.2 39.6 23.4 46.2 38.9 23.4 

Env_Materials * 2.0 D7 117.7 152.3 63.1 58.3 51.7 24.0 58.0 51.4 24.0 

Env_Materials * 100 D8 117.4 151.1 62.1 58.1 51.0 23.6 58.1 51.5 23.7 

Initial_NonPr / 2.0 D9 66.1 80.5 64.1 31.1 27.6 23.8 33.9 29.4 24.0 

Initial_NonPr * 2.0 D10 115.0 154.5 63.9 57.0 50.8 24.1 56.5 50.6 24.2 

Initial NonPr & Env * 2.0 D11 118.0 155.0 63.4 59.0 51.3 23.9 57.5 50.6 24.0 

Initial NonPr & Env * 2.0, Raw=0 D12 103.1 150.5 62.9 50.9 49.4 24.0 50.8 48.8 23.9 
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Table B.3. Cycle decision-making algorithm results for time-step 30. 

Cycle Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 30 DHE HHE HHO DHE HHE HHO DHE HHE HHO 

(Default) A0 38.6 32.0 25.5 20.2 10.8 11.6 18.2 10.5 11.7 

BaseCost_Pr + 1 A1 33.7 31.3 22.7 17.1 10.7 10.7 16.3 10.4 10.8 

BaseCost_Pr + 3 A2 25.4 28.1 19.2 12.9 9.2 7.9 12.3 9.5 7.9 

BaseCost_Pr + 5 A3 20.2 21.8 15.3 10.0 6.5 6.0 10.1 7.4 5.9 

PrintCost_Pr + 1 A4 37.3 31.5 24.8 19.1 10.6 11.8 17.9 10.5 11.8 

PrintCost_Pr + 3 A5 30.5 31.2 24.4 15.3 10.5 9.8 14.9 10.3 9.9 

PrintCost_Pr + 5 A6 28.3 31.9 25.4 15.8 10.5 7.9 12.2 10.4 8.0 

AssembleCost_Pr + 1 A7 37.6 31.5 24.8 19.0 10.7 11.7 18.3 10.5 11.7 

AssembleCost_Pr + 3 A8 31.3 31.9 24.5 15.2 10.8 9.8 15.9 10.6 9.8 

AssembleCost_Pr + 5 A9 27.8 32.2 25.2 12.2 10.5 7.8 15.4 10.5 7.9 

BaseCost_Time + 2 A10 11.5 13.2 10.1 5.8 4.8 4.8 5.5 4.8 4.9 

BaseCost_Time - 1 A11 59.0 79.7 37.1 29.8 26.5 14.7 28.8 24.9 14.8 

PrintCost_Time + 2 A12 24.1 24.9 13.7 13.1 9.1 6.8 10.8 7.6 6.9 

PrintCost_Time - 1 A13 45.6 41.2 30.2 22.7 13.2 12.7 22.5 14.1 12.8 

AssembleCost_Time + 2 A14 16.4 19.0 13.6 7.8 5.9 6.7 8.4 6.9 6.9 

AssembleCost_Time - 1 A15 48.9 51.6 29.7 25.3 18.2 12.7 23.1 16.1 12.7 

Print & Assemble Time + 2 A16 11.6 15.8 9.3 5.8 5.8 3.9 5.6 5.8 4.0 

BaseCost_NonPr + 1 A17 37.5 31.6 25.1 19.4 10.7 11.6 17.9 10.5 11.7 

PrintCost_NonPr + 1 A18 38.5 31.4 25.5 19.9 10.6 11.7 18.3 10.4 11.7 

AssembleCost_NonPr + 1 A19 37.8 30.8 25.6 19.5 10.5 11.6 18.0 10.3 11.7 

[All]CostPrintable + 1 A20 28.2 32.4 22.7 14.2 10.6 8.8 13.8 10.5 8.8 

[All]CostPrintable + 2 A21 22.9 28.5 20.1 11.5 9.2 6.9 11.2 9.4 6.9 

Print & Assemble Pr + 2 A22 28.3 31.0 25.2 14.1 10.5 8.8 13.9 10.3 8.8 

Base & Print Pr + 2 A23 25.0 30.2 19.9 12.9 11.2 7.8 11.8 9.6 7.9 

Base & Assemble Pr + 2 A24 25.3 29.9 20.0 12.0 11.0 7.9 13.2 9.6 7.9 

[All]CostPrintable - 1 A25 38.9 31.6 23.8 20.3 10.6 11.7 18.3 10.5 11.9 

AssembleCost_Pr - 1 A26 38.5 31.8 24.8 20.0 10.7 11.7 18.2 10.6 11.8 

PrintCost_Pr - 1 A27 38.2 31.2 24.3 19.8 10.5 11.4 18.1 10.3 11.6 

BaseCost_Pr - 1 A28 37.9 31.0 23.7 19.7 10.5 11.6 17.9 10.3 11.7 

Print_Efficiency = 0.25 B1 29.3 32.0 23.8 15.1 10.5 11.5 14.0 10.4 11.7 

Print_Efficiency = 0.5 B2 33.5 31.5 24.6 17.2 10.6 11.6 16.1 10.5 11.7 

Print_Efficiency = 1.5 B3 38.4 31.5 23.6 19.9 10.7 11.6 18.2 10.5 11.7 

Collect_Amount = 0.25 B4 38.0 30.9 25.5 19.9 10.6 11.6 17.9 9.9 11.7 

Collect_Amount = 0.5 B5 37.4 31.1 25.4 19.5 10.6 11.6 17.6 10.2 11.7 

Collect_Amount = 1.5 B6 38.6 31.1 25.5 19.9 10.5 11.6 18.4 10.4 11.7 

Print_Amount = 0.25 B7 31.3 31.7 23.9 14.9 10.3 11.6 16.1 10.5 11.7 

Print_Amount = 0.5 B8 37.0 31.7 24.6 18.0 10.8 11.7 18.7 10.5 11.8 

Print_Amount = 1.5 B9 37.9 31.2 23.7 19.8 10.6 11.6 17.8 10.2 11.7 

Collect & Print Amount = 0.5 B10 37.1 31.1 24.5 18.3 10.5 11.6 18.5 10.4 11.7 

QualityThreshold + 0.1 C1 36.2 30.4 24.6 18.9 10.3 11.4 17.1 10.2 11.5 

QualityThreshold + 0.2 C2 33.8 28.3 22.2 17.5 9.7 10.4 15.9 9.2 10.5 

QualityThreshold + 0.3 C3 24.0 23.8 17.8 12.2 8.4 8.4 11.5 8.0 8.4 

QualityThreshold + 0.4 C4 18.8 16.2 12.1 9.7 5.8 5.9 9.0 5.7 5.9 

RiskAmount_Print = 1% C5 38.2 31.5 25.2 19.7 10.6 11.6 17.3 9.5 11.5 

RiskAmount_Assemble = 1% C6 32.6 27.0 22.6 15.3 8.2 9.7 15.7 9.3 10.5 

(continues) 
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Table B.3. Cycle decision-making algorithm results for time-step 30 (continued). 

Cycle Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 30 DHE HHE HHO DHE HHE HHO DHE HHE HHO 

RiskAmount Pr & As = 10% C7 11.2 12.7 9.6 2.6 1.8 1.9 2.3 1.8 3.1 

RiskAmount Pr & As = 15% C8 8.5 9.2 8.0 1.4 1.2 1.3 1.2 1.1 2.5 

RiskAmount_Assemble = 15% C9 8.8 9.6 7.6 1.3 1.1 1.2 4.3 4.0 3.9 

Quality_incr_Chance = 0.01% C10 37.9 31.4 25.3 19.7 10.7 11.5 17.9 10.4 11.7 

Quality_decr_Chance = 25% C11 38.8 32.4 26.0 20.1 10.8 11.8 18.5 10.7 11.8 

Quality_decr_Chance = 75% C12 36.3 29.9 24.5 19.0 10.3 11.3 17.1 9.8 11.4 

Quality_decr_Upper = 0.5 C13 30.7 27.0 20.5 15.9 9.4 9.8 14.5 9.0 9.9 

Qual_incr Chance & Upper * 2 C14 38.0 32.0 25.6 19.6 10.8 11.7 18.1 10.6 11.8 

RiskQuality_Modifier = 10.0 C15 37.7 30.9 25.1 19.8 10.6 11.6 17.6 10.3 11.7 

RiskQuality_Modifier = 25.0 C16 35.3 29.0 22.7 18.6 10.3 11.0 16.2 9.9 11.3 

RiskFactory_Modifier = 0.5 C17 38.4 31.3 25.3 19.9 10.6 11.5 18.2 10.5 11.6 

RiskFactory_Modifier = 1.0 C18 38.2 31.2 25.5 19.8 10.6 11.5 18.1 10.4 11.7 

Quality Thres & Chance C19 10.3 10.2 8.7 5.1 3.7 4.8 5.2 3.7 4.8 

Initial_Printable / 2.0 D1 30.0 31.5 21.8 15.1 10.7 7.9 14.6 10.5 7.9 

Initial_Printable * 2.0 D2 38.3 31.8 24.0 20.1 10.8 11.9 17.9 10.5 12.0 

Initial_Materials = 0 D3 34.0 31.1 25.4 17.5 10.7 11.4 16.3 10.1 11.6 

Initial_Materials / 2.0 D4 38.1 31.2 25.7 19.7 10.7 11.6 18.2 10.3 11.7 

Initial_Materials * 2.0 D5 38.8 31.3 25.6 20.0 10.6 11.6 18.5 10.4 11.8 

Env_Materials / 2.0 D6 38.3 31.4 25.7 19.9 10.6 11.6 18.0 10.4 11.8 

Env_Materials * 2.0 D7 38.7 32.0 25.4 20.2 10.8 11.7 18.4 10.5 11.7 

Env_Materials * 100 D8 38.0 31.7 25.8 19.6 10.7 11.8 18.0 10.6 11.8 

Initial_NonPr / 2.0 D9 38.5 31.6 25.4 19.9 10.6 11.6 18.3 10.3 11.7 

Initial_NonPr * 2.0 D10 37.9 31.3 25.5 19.7 10.5 11.6 17.9 10.4 11.7 

Initial NonPr & Env * 2.0 D11 37.7 31.7 25.3 19.5 10.6 11.5 17.8 10.5 11.6 

Initial NonPr & Env * 2.0, Raw=0 D12 34.0 31.4 25.9 17.5 10.7 11.7 16.2 10.2 11.8 
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B.2. Results – Variable 

Table B.4 lists the results for time-step 40. Table B.5 lists the results for time-step 50. Table 

B.6 lists the results for time-step 70. 

Table B.4. Variable decision-making algorithm results for time-step 40. 

Variable Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 40 VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P 

(Default) A0 71.9 95.0 72.4 39.3 36.4 38.5 31.9 29.8 33.1 

BaseCost_Pr + 1 A1 57.9 68.1 54.3 33.2 26.1 27.4 24.0 22.2 26.2 

BaseCost_Pr + 3 A2 36.8 41.5 24.3 23.8 14.4 20.4 12.5 13.6 19.9 

BaseCost_Pr + 5 A3 24.4 27.0 19.2 18.3 9.3 16.3 5.8 10.4 15.8 

PrintCost_Pr + 1 A4 65.2 85.1 60.5 37.5 33.6 30.9 27.2 26.2 29.0 

PrintCost_Pr + 3 A5 55.3 70.5 49.9 32.6 28.1 26.4 22.0 21.7 22.9 

PrintCost_Pr + 5 A6 59.3 64.3 23.7 36.6 28.0 22.2 11.5 12.8 14.9 

AssembleCost_Pr + 1 A7 71.3 83.5 67.8 33.1 32.3 29.0 26.7 27.1 27.5 

AssembleCost_Pr + 3 A8 54.8 62.2 49.7 25.0 24.0 22.7 20.5 19.3 26.3 

AssembleCost_Pr + 5 A9 38.0 55.9 44.3 22.5 20.0 18.8 15.1 17.1 24.9 

BaseCost_Time + 2 A10 31.2 27.2 16.1 17.2 14.4 14.8 13.6 8.6 15.1 

BaseCost_Time - 1 A11 118.0 160.6 112.5 62.7 52.0 55.6 54.1 50.6 55.7 

PrintCost_Time + 2 A12 57.9 73.8 57.1 35.2 31.8 33.4 22.1 20.9 23.1 

PrintCost_Time - 1 A13 86.1 107.4 47.3 46.5 42.8 36.1 38.9 35.5 37.2 

AssembleCost_Time + 2 A14 42.4 47.3 36.2 23.2 19.2 18.2 18.9 15.9 17.6 

AssembleCost_Time - 1 A15 101.7 128.2 88.5 57.0 49.7 45.3 43.8 39.7 42.2 

Print & Assemble Time + 2 A16 30.6 36.3 25.3 17.0 15.5 10.5 13.2 10.5 9.5 

BaseCost_NonPr + 1 A17 72.4 93.0 66.8 39.6 35.7 33.7 32.0 29.4 32.4 

PrintCost_NonPr + 1 A18 72.5 94.8 72.8 39.8 36.5 38.4 32.0 29.7 33.7 

AssembleCost_NonPr + 1 A19 72.2 95.6 71.5 39.6 35.0 37.7 31.8 29.7 33.1 

[All]CostPrintable + 1 A20 46.7 53.9 44.4 27.1 21.8 22.0 19.1 13.4 22.0 

[All]CostPrintable + 2 A21 28.9 39.8 32.1 21.8 13.0 15.7 6.8 11.6 16.0 

Print & Assemble Pr + 2 A22 47.3 64.1 44.5 27.2 22.7 22.1 19.6 11.9 21.9 

Base & Print Pr + 2 A23 39.4 41.6 23.2 30.0 19.8 20.2 9.1 9.8 17.3 

Base & Assemble Pr + 2 A24 34.6 45.8 38.6 23.6 14.7 18.0 10.6 15.6 20.0 

[All]CostPrintable - 1 A25 97.9 128.0 98.5 66.0 54.7 66.2 59.2 46.8 59.5 

AssembleCost_Pr - 1 A26 83.2 94.5 81.9 45.3 42.9 43.8 36.9 34.6 37.2 

PrintCost_Pr - 1 A27 81.0 90.3 80.6 42.8 39.7 42.6 37.4 34.7 37.3 

BaseCost_Pr - 1 A28 93.5 112.6 93.5 50.2 48.1 49.0 42.2 40.9 43.6 

Print_Efficiency = 0.25 B1 34.3 42.7 21.6 21.6 14.8 19.2 12.0 11.2 18.9 

Print_Efficiency = 0.5 B2 48.2 55.8 45.9 26.1 23.6 23.0 21.6 15.0 22.3 

Print_Efficiency = 1.5 B3 92.7 108.2 91.7 49.9 46.9 47.9 41.8 39.5 42.9 

Collect_Amount = 0.25 B4 47.0 62.6 45.4 27.9 24.7 23.7 18.6 17.8 21.4 

Collect_Amount = 0.5 B5 65.8 76.5 55.4 30.3 31.4 28.2 24.2 22.5 26.7 

Collect_Amount = 1.5 B6 80.7 94.7 74.1 44.1 36.4 37.3 35.8 29.7 36.3 

Print_Amount = 0.25 B7 36.0 42.3 34.8 23.1 14.7 17.5 12.5 11.2 19.7 

Print_Amount = 0.5 B8 56.7 51.0 54.0 29.7 24.5 25.5 26.3 17.1 27.6 

Print_Amount = 1.5 B9 77.4 104.5 77.5 42.1 40.4 42.3 34.7 32.1 34.5 

(continues) 
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Table B.4. Variable decision-making algorithm results for time-step 40 (continued). 

Variable Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 40 VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P 

Collect & Print Amount = 0.5 B10 52.5 55.4 49.6 28.0 23.6 24.1 23.9 14.8 24.9 

QualityThreshold + 0.1 C1 69.6 89.3 68.6 38.4 35.1 37.9 30.5 27.9 30.1 

QualityThreshold + 0.2 C2 63.1 80.5 60.4 34.8 32.1 33.5 27.8 25.0 26.2 

QualityThreshold + 0.3 C3 48.4 59.6 50.5 27.5 24.9 28.3 20.4 18.4 21.7 

QualityThreshold + 0.4 C4 34.2 40.6 34.9 19.8 17.5 18.9 14.2 12.8 15.7 

RiskAmount_Print = 1% C5 71.4 85.9 72.1 38.8 34.4 38.2 28.5 22.9 29.5 

RiskAmount_Assemble = 1% C6 64.5 82.0 63.6 32.1 28.9 32.1 28.5 25.7 27.8 

RiskAmount Pr & As = 10% C7 18.5 18.6 16.4 3.6 3.9 4.1 2.1 1.9 2.8 

RiskAmount Pr & As = 15% C8 11.6 15.5 12.3 2.1 1.0 2.2 1.8 0.6 1.8 

RiskAmount_Assemble = 15% C9 14.2 16.1 13.1 1.8 1.0 1.6 5.4 3.8 4.9 

Quality_incr_Chance = 0.01% C10 72.6 92.8 71.4 39.7 35.8 39.1 32.1 29.2 31.5 

Quality_decr_Chance = 25% C11 75.3 98.1 75.6 41.3 37.6 40.1 33.3 30.6 34.9 

Quality_decr_Chance = 75% C12 67.8 87.9 66.6 37.2 34.5 35.1 29.7 27.9 30.7 

Quality_decr_Upper = 0.5 C13 58.0 71.1 64.2 32.5 29.1 30.9 24.9 22.3 23.1 

Qual_incr Chance & Upper * 2 C14 72.9 95.2 72.8 40.3 36.8 40.0 32.0 29.6 32.0 

RiskQuality_Modifier = 10.0 C15 69.0 90.3 69.2 37.5 35.3 36.5 30.7 28.9 31.8 

RiskQuality_Modifier = 25.0 C16 71.0 83.5 70.2 32.6 33.0 32.3 25.9 27.5 25.8 

RiskFactory_Modifier = 0.5 C17 71.6 95.5 72.3 39.3 36.5 39.7 31.5 29.9 31.8 

RiskFactory_Modifier = 1.0 C18 72.3 94.1 72.2 39.6 36.0 39.6 31.9 29.7 31.8 

Quality Thres & Chance C19 19.7 20.7 17.7 11.5 10.0 11.4 8.0 6.7 8.6 

Initial_Printable / 2.0 D1 58.5 75.4 55.0 34.1 27.4 27.9 23.9 22.7 26.5 

Initial_Printable * 2.0 D2 95.0 104.8 95.0 50.5 47.9 49.5 43.5 40.8 44.6 

Initial_Materials = 0 D3 63.9 82.6 59.0 36.4 33.1 29.6 26.8 24.9 28.8 

Initial_Materials / 2.0 D4 68.5 90.3 63.7 37.9 35.4 32.2 30.0 28.0 30.8 

Initial_Materials * 2.0 D5 79.1 91.2 79.2 43.4 40.0 41.5 34.7 33.9 36.7 

Env_Materials / 2.0 D6 72.4 97.4 72.6 39.8 35.9 38.7 32.0 29.7 33.4 

Env_Materials * 2.0 D7 72.6 91.9 72.0 39.9 35.6 37.9 31.9 29.1 33.2 

Env_Materials * 100 D8 72.8 93.8 70.8 39.8 36.1 38.6 32.3 29.4 31.3 

Initial_NonPr / 2.0 D9 58.4 80.8 59.1 37.3 31.1 37.8 33.1 26.9 33.5 

Initial_NonPr * 2.0 D10 71.5 94.3 73.1 39.3 36.2 40.3 31.5 29.4 32.1 

Initial NonPr & Env * 2.0 D11 72.0 94.2 66.0 39.5 36.2 33.3 31.7 29.6 32.1 

Initial NonPr & Env * 2.0, Raw=0 D12 63.5 84.9 58.4 36.2 31.5 29.5 26.7 26.0 28.3 
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Table B.5. Variable decision-making algorithm results for time-step 50. 

Variable Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 50 VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P 

(Default) A0 129.5 166.3 131.4 69.7 63.8 67.0 58.6 53.5 63.0 

BaseCost_Pr + 1 A1 94.6 121.3 89.0 52.3 42.1 44.1 41.3 38.2 43.7 

BaseCost_Pr + 3 A2 53.7 60.9 36.1 32.4 19.8 25.9 20.6 20.0 25.6 

BaseCost_Pr + 5 A3 28.5 36.4 26.7 22.5 14.4 20.2 5.7 15.9 19.0 

PrintCost_Pr + 1 A4 112.2 155.0 103.2 62.5 57.6 52.1 48.3 47.7 50.0 

PrintCost_Pr + 3 A5 91.3 123.0 81.1 54.1 47.6 43.1 36.2 35.5 37.2 

PrintCost_Pr + 5 A6 86.9 95.0 38.4 50.6 38.6 33.3 13.0 18.3 18.3 

AssembleCost_Pr + 1 A7 138.3 155.3 133.0 55.1 57.7 50.5 48.0 51.4 48.1 

AssembleCost_Pr + 3 A8 90.0 111.4 80.2 42.0 36.2 35.7 39.3 35.4 43.6 

AssembleCost_Pr + 5 A9 57.6 94.6 67.2 30.2 28.4 27.5 26.6 30.3 38.9 

BaseCost_Time + 2 A10 54.8 54.2 27.2 30.6 29.6 25.9 23.5 20.5 26.0 

BaseCost_Time - 1 A11 139.8 171.0 138.8 74.0 57.1 68.1 64.4 55.5 69.4 

PrintCost_Time + 2 A12 96.9 133.4 96.7 56.6 52.9 53.3 38.9 37.5 42.2 

PrintCost_Time - 1 A13 139.1 164.0 86.9 75.7 65.0 54.3 62.1 53.5 57.9 

AssembleCost_Time + 2 A14 72.3 99.1 67.0 39.7 36.5 32.7 31.8 33.5 33.5 

AssembleCost_Time - 1 A15 139.0 167.7 134.8 74.8 64.0 66.6 63.0 53.9 66.9 

Print & Assemble Time + 2 A16 53.9 70.3 42.5 30.1 27.6 19.5 23.2 22.1 18.0 

BaseCost_NonPr + 1 A17 90.6 102.3 89.3 48.5 40.2 43.5 41.0 33.5 44.6 

PrintCost_NonPr + 1 A18 112.0 139.0 111.3 60.5 54.0 56.9 50.4 45.7 53.0 

AssembleCost_NonPr + 1 A19 107.5 138.1 108.8 57.6 50.1 55.1 48.8 44.6 52.4 

[All]CostPrintable + 1 A20 71.3 81.7 69.8 40.4 29.0 33.8 29.7 21.5 35.1 

[All]CostPrintable + 2 A21 35.0 57.8 46.7 28.0 17.7 22.4 6.7 15.6 23.7 

Print & Assemble Pr + 2 A22 72.8 95.3 69.2 41.4 30.0 33.6 30.5 18.6 34.7 

Base & Print Pr + 2 A23 50.1 57.3 34.3 39.5 23.6 26.2 10.0 13.7 21.7 

Base & Assemble Pr + 2 A24 46.1 68.0 57.5 30.4 20.9 26.3 15.0 23.0 30.5 

[All]CostPrintable - 1 A25 111.5 150.2 111.7 79.8 65.3 80.5 75.1 58.9 75.7 

AssembleCost_Pr - 1 A26 137.3 155.2 138.1 73.9 65.7 71.9 61.7 55.7 64.7 

PrintCost_Pr - 1 A27 137.1 155.6 139.3 71.5 65.0 72.2 64.0 58.2 65.5 

BaseCost_Pr - 1 A28 136.9 155.1 137.9 72.1 64.4 70.0 63.2 56.5 66.5 

Print_Efficiency = 0.25 B1 39.0 51.7 26.2 26.4 15.2 21.1 12.0 12.5 20.7 

Print_Efficiency = 0.5 B2 68.0 78.2 65.9 36.7 29.7 32.0 30.4 20.4 33.0 

Print_Efficiency = 1.5 B3 138.2 153.8 136.5 72.6 64.5 68.9 64.2 56.9 66.1 

Collect_Amount = 0.25 B4 61.6 86.0 58.1 35.7 31.3 29.7 25.3 25.0 28.0 

Collect_Amount = 0.5 B5 108.5 127.8 84.4 46.1 49.9 42.3 36.2 39.0 41.4 

Collect_Amount = 1.5 B6 140.5 168.5 136.1 75.1 64.3 67.5 63.9 53.8 67.4 

Print_Amount = 0.25 B7 40.2 51.5 41.2 27.4 15.1 23.9 12.2 12.6 26.9 

Print_Amount = 0.5 B8 85.0 69.8 85.1 44.4 33.4 39.8 39.2 27.8 43.7 

Print_Amount = 1.5 B9 137.0 166.1 136.9 74.0 64.2 73.8 61.7 53.5 62.0 

Collect & Print Amount = 0.5 B10 73.4 73.9 69.6 39.7 27.7 33.4 32.5 20.7 35.3 

QualityThreshold + 0.1 C1 122.6 159.3 120.9 66.2 61.4 65.3 55.1 51.3 54.3 

QualityThreshold + 0.2 C2 105.3 142.1 107.6 57.4 54.9 58.5 46.7 44.8 48.0 

QualityThreshold + 0.3 C3 81.5 104.4 83.8 45.3 41.0 45.8 35.4 32.2 37.0 

QualityThreshold + 0.4 C4 54.9 64.6 53.5 30.5 26.9 28.3 23.9 20.0 24.7 

RiskAmount_Print = 1% C5 128.4 153.9 129.2 68.8 58.2 66.0 51.7 40.6 54.5 

RiskAmount_Assemble = 1% C6 114.2 148.2 112.7 56.2 50.2 55.1 51.2 47.4 50.5 

(continues) 
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Table B.5. Variable decision-making algorithm results for time-step 50 (continued). 

Variable Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 50 VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P 

RiskAmount Pr & As = 10% C7 22.6 22.0 18.2 5.0 4.7 3.8 1.8 1.8 2.6 

RiskAmount Pr & As = 15% C8 11.9 15.9 12.0 1.6 0.6 1.3 1.4 0.5 1.5 

RiskAmount_Assemble = 15% C9 13.6 19.5 15.2 1.0 0.7 1.1 5.5 3.8 6.1 

Quality_incr_Chance = 0.01% C10 128.0 162.9 127.1 69.2 62.6 68.4 57.3 53.0 57.1 

Quality_decr_Chance = 25% C11 137.8 170.6 137.5 74.3 65.0 70.4 62.4 54.4 65.9 

Quality_decr_Chance = 75% C12 114.8 155.5 116.0 61.6 60.5 59.3 51.8 50.5 55.1 

Quality_decr_Upper = 0.5 C13 95.5 125.8 117.9 51.6 49.0 49.8 42.4 39.3 40.3 

Qual_incr Chance & Upper * 2 C14 130.0 167.4 132.3 69.9 64.0 71.3 58.7 53.7 59.8 

RiskQuality_Modifier = 10.0 C15 123.1 161.2 122.2 65.8 62.0 61.4 55.6 52.7 59.0 

RiskQuality_Modifier = 25.0 C16 129.9 143.2 132.1 52.5 55.1 53.8 45.8 47.9 46.3 

RiskFactory_Modifier = 0.5 C17 128.9 165.6 129.3 69.6 63.3 69.5 57.9 53.3 58.4 

RiskFactory_Modifier = 1.0 C18 128.1 164.0 128.7 68.5 63.2 68.8 58.1 53.1 58.3 

Quality Thres & Chance C19 28.6 33.5 22.0 16.6 15.2 15.8 11.5 11.0 13.0 

Initial_Printable / 2.0 D1 103.5 145.7 96.8 57.7 48.3 47.9 44.5 43.4 47.6 

Initial_Printable * 2.0 D2 137.3 152.6 136.5 72.0 66.1 69.0 63.9 57.9 65.7 

Initial_Materials = 0 D3 111.7 158.0 106.9 61.2 60.0 53.1 49.0 49.3 52.6 

Initial_Materials / 2.0 D4 121.4 162.4 114.0 65.0 62.4 56.7 55.0 51.9 55.9 

Initial_Materials * 2.0 D5 137.4 155.8 136.3 73.2 64.5 69.1 62.7 55.9 65.8 

Env_Materials / 2.0 D6 95.3 114.3 95.3 52.7 42.3 49.6 41.8 36.6 44.8 

Env_Materials * 2.0 D7 127.9 156.7 127.1 68.6 60.0 64.4 57.7 53.3 61.3 

Env_Materials * 100 D8 128.6 157.6 127.0 68.8 60.4 67.6 58.3 53.0 58.0 

Initial_NonPr / 2.0 D9 58.1 80.7 57.8 36.9 31.3 36.9 35.0 26.7 35.0 

Initial_NonPr * 2.0 D10 131.2 175.1 127.6 70.3 65.8 68.6 59.5 56.4 57.5 

Initial NonPr & Env * 2.0 D11 128.3 176.9 116.8 68.6 64.4 58.0 57.9 56.5 57.4 

Initial NonPr & Env * 2.0, Raw=0 D12 112.9 160.5 105.2 62.2 54.1 52.4 49.5 50.3 51.6 
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Table B.6. Variable decision-making algorithm results for time-step 70. 

Variable Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 70 VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P 

(Default) A0 138.0 165.6 136.7 74.1 64.0 69.4 62.5 54.0 65.9 

BaseCost_Pr + 1 A1 117.4 139.9 113.6 67.6 50.0 61.2 54.4 46.0 61.9 

BaseCost_Pr + 3 A2 83.8 94.3 62.0 50.1 30.9 50.1 32.7 30.6 51.6 

BaseCost_Pr + 5 A3 39.0 65.3 51.7 33.0 28.0 31.8 5.5 31.2 31.9 

PrintCost_Pr + 1 A4 136.3 167.6 134.0 75.8 63.4 66.9 59.1 52.0 63.8 

PrintCost_Pr + 3 A5 116.2 145.6 111.0 68.9 57.1 59.3 46.0 42.3 50.3 

PrintCost_Pr + 5 A6 147.0 145.2 81.8 82.9 58.2 58.2 15.4 30.3 35.9 

AssembleCost_Pr + 1 A7 154.3 161.6 153.0 62.8 60.7 60.4 55.4 54.0 57.4 

AssembleCost_Pr + 3 A8 116.0 140.2 110.8 54.7 46.0 49.7 52.7 47.3 59.9 

AssembleCost_Pr + 5 A9 89.3 128.3 97.9 44.5 38.7 40.0 43.7 42.6 56.8 

BaseCost_Time + 2 A10 136.0 152.3 73.3 74.6 67.8 53.0 59.4 52.1 53.5 

BaseCost_Time - 1 A11 138.7 167.9 138.1 73.5 56.5 68.1 64.0 54.5 68.5 

PrintCost_Time + 2 A12 138.8 166.4 138.6 75.9 64.4 71.1 61.4 52.7 65.8 

PrintCost_Time - 1 A13 138.5 165.0 117.2 75.0 65.5 78.4 62.1 54.0 80.3 

AssembleCost_Time + 2 A14 137.6 163.5 136.7 76.7 63.8 70.0 59.3 54.1 65.4 

AssembleCost_Time - 1 A15 140.2 167.0 135.6 75.3 63.2 66.8 63.4 54.0 67.6 

Print & Assemble Time + 2 A16 136.3 162.8 130.6 74.7 64.2 66.4 59.5 55.2 58.8 

BaseCost_NonPr + 1 A17 91.0 101.4 90.2 49.0 40.2 43.3 41.0 33.3 45.8 

PrintCost_NonPr + 1 A18 112.3 139.9 110.7 60.6 54.1 56.3 50.5 45.7 53.1 

AssembleCost_NonPr + 1 A19 107.2 138.0 107.6 57.7 49.9 54.2 48.3 44.8 52.3 

[All]CostPrintable + 1 A20 99.4 125.3 98.8 55.8 43.7 48.1 42.4 34.2 49.4 

[All]CostPrintable + 2 A21 48.6 93.9 72.2 41.5 29.2 35.1 6.4 24.9 36.3 

Print & Assemble Pr + 2 A22 99.2 150.8 97.8 55.9 45.7 47.7 42.2 33.2 48.9 

Base & Print Pr + 2 A23 78.8 103.3 74.9 65.8 38.6 46.1 12.1 26.3 41.7 

Base & Assemble Pr + 2 A24 78.4 100.5 85.1 48.7 30.8 38.1 28.7 34.7 45.9 

[All]CostPrintable - 1 A25 112.9 150.8 112.2 80.5 65.3 80.1 76.2 58.7 75.7 

AssembleCost_Pr - 1 A26 138.3 155.3 138.1 74.9 65.8 71.7 61.9 56.0 64.9 

PrintCost_Pr - 1 A27 137.7 155.3 136.6 71.5 64.1 71.0 64.8 58.3 64.0 

BaseCost_Pr - 1 A28 136.6 153.5 138.3 72.5 64.0 70.4 62.6 56.2 66.6 

Print_Efficiency = 0.25 B1 52.1 79.1 32.0 39.6 15.6 26.2 11.8 12.5 26.6 

Print_Efficiency = 0.5 B2 86.9 107.6 85.7 45.5 38.7 40.4 36.6 29.2 41.9 

Print_Efficiency = 1.5 B3 136.1 154.9 136.7 71.7 65.4 68.8 62.8 56.9 66.3 

Collect_Amount = 0.25 B4 98.5 147.9 113.0 57.3 51.3 43.4 40.1 45.2 42.3 

Collect_Amount = 0.5 B5 146.4 157.8 130.6 65.3 62.0 63.4 53.1 50.3 63.5 

Collect_Amount = 1.5 B6 140.9 168.6 139.5 75.4 64.9 69.1 64.0 54.2 68.9 

Print_Amount = 0.25 B7 54.4 76.2 80.6 41.6 19.9 44.8 12.0 15.6 49.9 

Print_Amount = 0.5 B8 140.3 163.1 138.4 73.7 63.9 65.1 64.5 55.8 71.1 

Print_Amount = 1.5 B9 137.5 164.8 138.6 74.1 64.1 74.7 62.3 53.2 62.8 

Collect & Print Amount = 0.5 B10 132.1 153.5 127.9 70.3 50.6 60.6 59.7 43.4 65.5 

QualityThreshold + 0.1 C1 134.0 162.0 133.8 72.7 62.7 72.1 60.5 51.7 60.4 

QualityThreshold + 0.2 C2 127.8 148.6 124.6 69.8 58.3 68.9 56.7 47.8 57.3 

QualityThreshold + 0.3 C3 113.8 135.0 106.1 62.5 53.7 64.4 50.1 42.9 53.2 

QualityThreshold + 0.4 C4 93.1 114.0 94.8 51.9 45.4 48.3 40.2 36.7 45.6 

RiskAmount_Print = 1% C5 139.1 166.0 138.3 74.9 64.1 70.5 56.7 45.4 60.2 

RiskAmount_Assemble = 1% C6 129.2 159.0 128.7 64.4 54.9 63.6 59.0 50.8 59.4 

(continues) 
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Table B.6. Variable decision-making algorithm results for time-step 70 (continued). 

Variable Algorithm ID Collection Potential Assembly Potential Print Potential 

Time-Step: 70 VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P VAR-A VAR-C VAR-P 

RiskAmount Pr & As = 10% C7 23.4 27.7 25.5 5.7 4.0 3.5 1.7 1.1 2.0 

RiskAmount Pr & As = 15% C8 13.1 20.1 11.6 2.1 0.5 2.2 0.5 0.3 0.9 

RiskAmount_Assemble = 15% C9 17.0 16.6 14.8 0.9 0.5 1.1 7.7 4.4 8.1 

Quality_incr_Chance = 0.01% C10 137.4 164.5 138.6 74.0 63.5 74.8 61.8 53.2 62.5 

Quality_decr_Chance = 25% C11 144.4 171.6 143.7 78.4 65.9 73.5 64.8 54.4 69.2 

Quality_decr_Chance = 75% C12 129.4 157.9 130.2 70.6 61.1 66.4 58.4 51.8 63.4 

Quality_decr_Upper = 0.5 C13 119.8 142.2 136.1 65.2 56.3 57.9 53.0 46.0 47.8 

Qual_incr Chance & Upper * 2 C14 139.5 167.0 139.6 75.0 64.2 75.1 63.0 53.8 63.2 

RiskQuality_Modifier = 10.0 C15 134.4 160.9 133.4 72.3 61.8 67.8 60.7 52.8 64.2 

RiskQuality_Modifier = 25.0 C16 141.2 149.4 141.9 58.8 58.5 58.5 50.7 51.0 51.4 

RiskFactory_Modifier = 0.5 C17 138.3 165.3 138.6 74.5 63.7 74.9 62.6 53.4 62.7 

RiskFactory_Modifier = 1.0 C18 138.4 166.5 138.8 74.9 64.1 74.7 62.4 53.3 62.7 

Quality Thres & Chance C19 48.4 55.8 40.7 28.3 25.0 26.0 19.5 16.1 23.7 

Initial_Printable / 2.0 D1 139.7 172.8 138.8 76.6 59.6 69.3 61.7 54.2 68.1 

Initial_Printable * 2.0 D2 137.1 151.4 138.1 72.2 65.7 70.1 63.4 57.3 66.6 

Initial_Materials = 0 D3 138.7 166.9 134.2 75.7 64.3 70.0 61.5 52.6 69.8 

Initial_Materials / 2.0 D4 138.4 166.0 134.3 74.9 64.2 68.1 62.8 53.2 67.2 

Initial_Materials * 2.0 D5 139.2 156.5 138.0 74.4 64.9 70.0 63.2 56.5 66.6 

Env_Materials / 2.0 D6 94.4 114.6 95.4 51.9 42.8 49.9 41.6 36.4 44.7 

Env_Materials * 2.0 D7 129.1 156.6 129.1 66.3 59.3 61.9 60.8 52.9 65.2 

Env_Materials * 100 D8 115.0 129.0 116.2 52.5 44.7 53.2 59.4 51.6 60.2 

Initial_NonPr / 2.0 D9 57.5 79.8 58.8 36.7 30.7 37.6 34.9 26.5 35.2 

Initial_NonPr * 2.0 D10 150.1 178.3 149.0 80.6 67.8 80.4 69.2 58.4 68.2 

Initial NonPr & Env * 2.0 D11 260.8 314.4 258.1 136.5 114.7 128.0 121.2 103.9 127.3 

Initial NonPr & Env * 2.0, Raw=0 D12 250.1 305.6 244.2 132.1 106.9 120.7 115.4 100.0 120.6 
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B.3. Results – Strategic 

Table B.7. lists the results for Strategic-A. Table B.8. lists the results for Strategic-C. Table 

B.9 lists the results for Strategic-P. 

Table B.7. Strategic-A decision-making algorithm results. 

Strategic-A ID Assembly Potential Collection Potential Print Potential 

30 50 70 30 50 70 30 50 70 

(Default) A0 33.7 91.1 117.0 39.5 113.6 139.9 5.5 21.5 21.4 

BaseCost_Pr + 1 A1 27.0 64.7 102.7 32.9 83.4 121.9 5.8 17.5 18.1 

BaseCost_Pr + 3 A2 18.9 40.2 70.6 25.0 54.6 85.3 5.7 14.0 14.3 

BaseCost_Pr + 5 A3 13.5 26.9 48.9 19.3 38.3 61.1 5.3 11.1 11.6 

PrintCost_Pr + 1 A4 34.8 85.4 119.6 40.6 105.8 140.5 5.6 19.4 19.4 

PrintCost_Pr + 3 A5 31.9 71.7 121.7 37.6 88.8 139.4 5.6 16.0 16.4 

PrintCost_Pr + 5 A6 28.7 68.8 123.5 34.6 83.2 138.0 5.8 13.7 13.6 

AssembleCost_Pr + 1 A7 27.6 68.9 103.4 33.5 89.0 123.6 5.7 19.4 19.2 

AssembleCost_Pr + 3 A8 19.6 50.3 74.3 25.3 69.7 93.1 5.5 18.7 17.8 

AssembleCost_Pr + 5 A9 16.0 37.2 56.6 21.7 56.0 75.2 5.6 18.0 17.8 

BaseCost_Time + 2 A10 8.0 42.9 95.5 11.8 51.0 112.7 3.8 7.5 15.5 

BaseCost_Time - 1 A11 41.6 107.8 108.5 50.0 140.8 142.0 8.2 31.8 32.4 

PrintCost_Time + 2 A12 32.0 65.0 117.7 36.7 81.6 135.1 4.6 16.0 16.1 

PrintCost_Time - 1 A13 36.0 106.8 116.6 41.9 132.1 141.4 5.6 23.9 23.7 

AssembleCost_Time + 2 A14 11.2 45.5 90.6 14.9 56.0 101.2 3.6 9.7 9.4 

AssembleCost_Time - 1 A15 38.3 110.2 112.5 46.1 139.3 141.9 7.3 27.4 28.0 

Print & Assemble Time + 2 A16 8.0 41.4 75.1 11.9 48.7 83.2 3.9 6.9 7.6 

BaseCost_NonPr + 1 A17 35.3 67.2 67.5 40.8 89.7 89.7 5.5 21.2 21.5 

PrintCost_NonPr + 1 A18 35.3 90.6 99.6 40.9 112.9 121.7 5.5 21.3 20.7 

AssembleCost_NonPr + 1 A19 35.1 73.5 75.8 41.0 95.8 98.7 5.6 21.5 22.1 

[All]CostPrintable + 1 A20 21.8 49.4 82.0 27.7 66.4 98.5 5.6 16.2 15.1 

[All]CostPrintable + 2 A21 15.8 33.0 59.8 21.8 46.1 73.0 5.6 12.7 12.7 

Print & Assemble Pr + 2 A22 21.9 49.0 84.5 27.6 65.6 101.0 5.5 15.7 15.5 

Base & Print Pr + 2 A23 21.3 42.6 79.9 27.0 56.4 94.0 5.6 13.3 13.2 

Base & Assemble Pr + 2 A24 16.9 36.5 61.7 22.7 52.5 76.5 5.7 15.3 13.9 

[All]CostPrintable - 1 A25 45.6 109.7 109.3 51.5 137.2 135.8 5.4 26.2 25.1 

AssembleCost_Pr - 1 A26 41.7 108.6 112.0 47.3 133.6 137.3 5.2 23.5 24.0 

PrintCost_Pr - 1 A27 36.5 97.4 115.2 42.4 123.1 141.4 5.7 24.5 24.6 

BaseCost_Pr - 1 A28 45.0 112.4 111.5 50.7 140.1 137.8 5.4 26.6 24.4 

Print_Efficiency = 0.25 B1 22.6 24.3 37.1 28.1 39.1 52.2 5.4 14.1 14.4 

Print_Efficiency = 0.5 B2 26.3 45.1 68.5 32.1 63.2 86.2 5.6 17.4 16.9 

Print_Efficiency = 1.5 B3 44.0 108.9 111.1 49.9 135.3 138.0 5.7 24.9 25.3 

Collect_Amount = 0.25 B4 32.7 41.4 82.2 38.3 57.0 96.6 5.3 15.1 13.7 

Collect_Amount = 0.5 B5 33.5 66.5 113.0 39.4 86.0 132.8 5.6 18.6 18.8 

Collect_Amount = 1.5 B6 35.7 102.7 119.5 41.7 126.7 143.2 5.5 22.7 22.3 

Print_Amount = 0.25 B7 23.6 29.5 47.6 29.6 47.0 65.0 5.9 16.9 15.9 

Print_Amount = 0.5 B8 28.2 51.9 98.9 34.1 72.3 119.5 5.5 19.3 18.9 

Print_Amount = 1.5 B9 37.2 112.3 117.6 43.0 135.9 140.5 5.5 22.4 22.0 

(continues) 
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Table B.7. Strategic-A decision-making algorithm results (continued). 

Strategic-A ID Assembly Potential Collection Potential Print Potential 

30 50 70 30 50 70 30 50 70 

Collect & Print Amount = 0.5 B10 29.2 48.2 88.6 35.2 67.3 108.3 5.8 18.4 18.3 

QualityThreshold + 0.1 C1 33.5 84.8 115.3 39.2 106.3 137.1 5.5 20.6 20.5 

QualityThreshold + 0.2 C2 31.2 74.6 114.0 36.4 93.2 132.4 4.9 18.0 17.0 

QualityThreshold + 0.3 C3 26.3 62.3 103.2 30.7 78.8 120.7 4.4 16.0 16.4 

QualityThreshold + 0.4 C4 15.6 38.4 72.5 19.1 50.6 84.6 3.2 11.7 11.7 

RiskAmount_Print = 1% C5 35.0 83.4 118.7 40.8 105.4 141.3 4.8 15.9 14.8 

RiskAmount_Assemble = 1% C6 28.6 75.9 103.8 35.3 102.1 128.7 5.0 20.2 18.2 

RiskAmount Pr & As = 10% C7 6.8 6.5 6.9 14.6 20.3 20.0 1.4 1.7 1.2 

RiskAmount Pr & As = 15% C8 2.0 1.5 2.0 9.0 11.5 12.6 1.0 1.1 0.9 

RiskAmount_Assemble = 15% C9 3.0 2.4 1.3 10.6 13.8 13.9 3.0 5.2 4.4 

Quality_incr_Chance = 0.01% C10 33.7 90.8 116.6 39.4 113.3 139.0 5.3 21.4 21.3 

Quality_decr_Chance = 25% C11 35.9 95.4 119.2 41.6 118.9 142.5 5.5 22.6 21.9 

Quality_decr_Chance = 75% C12 33.3 86.9 111.4 38.9 109.0 133.0 5.2 21.2 19.0 

Quality_decr_Upper = 0.5 C13 28.8 70.8 107.3 33.8 90.2 125.0 5.0 18.4 16.3 

Qual_incr Chance & Upper * 2 C14 35.5 90.1 117.7 41.1 112.6 140.9 5.5 21.5 22.2 

RiskQuality_Modifier = 10.0 C15 34.4 84.0 113.2 40.3 106.4 134.9 5.4 21.1 20.0 

RiskQuality_Modifier = 25.0 C16 32.1 66.2 105.3 37.3 84.7 125.3 4.7 17.1 18.2 

RiskFactory_Modifier = 0.5 C17 35.4 89.8 117.2 41.0 113.0 140.3 5.4 21.9 21.7 

RiskFactory_Modifier = 1.0 C18 34.4 90.0 117.7 40.2 112.9 140.1 5.4 21.9 21.0 

Quality Thres & Chance C19 8.0 17.8 30.4 10.6 23.4 36.7 2.6 5.1 6.0 

Initial_Printable / 2.0 D1 23.1 76.6 123.6 29.0 95.5 141.5 5.8 18.1 16.5 

Initial_Printable * 2.0 D2 44.1 111.4 113.0 49.9 140.2 140.2 5.4 27.6 26.1 

Initial_Materials = 0 D3 27.1 82.3 121.7 32.5 102.2 142.1 5.2 18.7 19.3 

Initial_Materials / 2.0 D4 31.8 85.7 118.1 37.4 106.9 139.8 5.4 20.3 20.3 

Initial_Materials * 2.0 D5 39.3 96.2 113.1 45.2 122.0 138.7 5.8 24.4 24.3 

Env_Materials / 2.0 D6 35.2 72.4 72.6 41.1 95.3 95.8 5.5 22.1 22.4 

Env_Materials * 2.0 D7 35.1 85.8 108.0 40.9 108.3 130.2 5.6 21.0 20.4 

Env_Materials * 100 D8 35.4 88.8 88.2 41.2 111.5 111.0 5.6 21.8 21.4 

Initial_NonPr / 2.0 D9 34.7 42.7 44.0 40.4 65.5 67.0 5.6 21.5 22.1 

Initial_NonPr * 2.0 D10 35.1 91.1 129.9 41.0 114.1 152.2 5.4 21.5 21.2 

Initial NonPr & Env * 2.0 D11 33.9 87.8 187.8 39.7 110.2 211.3 5.6 21.4 20.7 

Initial NonPr & Env * 2.0, Raw=0 D12 26.8 82.8 154.9 31.9 102.9 173.5 4.9 19.6 16.9 
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Table B.8. Strategic-C decision-making algorithm results. 

Strategic-C ID Assembly Potential Collection Potential Print Potential 

30 50 70 30 50 70 30 50 70 

(Default) A0 6.0 22.5 21.8 44.0 216.7 234.6 6.0 22.3 21.3 

BaseCost_Pr + 1 A1 5.6 17.1 16.8 42.1 132.6 181.3 5.5 17.7 17.4 

BaseCost_Pr + 3 A2 5.5 12.3 12.0 33.8 72.0 110.6 5.9 13.9 13.4 

BaseCost_Pr + 5 A3 5.2 9.5 9.5 24.4 46.9 78.0 5.8 11.3 11.4 

PrintCost_Pr + 1 A4 6.0 19.9 20.0 45.0 198.5 241.8 5.9 19.8 20.6 

PrintCost_Pr + 3 A5 5.9 18.1 16.9 44.1 174.8 245.2 5.9 17.0 16.7 

PrintCost_Pr + 5 A6 5.8 17.0 16.9 44.0 145.1 243.2 5.8 13.5 13.1 

AssembleCost_Pr + 1 A7 5.9 19.7 19.6 44.0 192.6 244.4 5.9 19.3 20.4 

AssembleCost_Pr + 3 A8 5.9 16.2 16.2 43.8 166.6 248.3 5.9 17.7 17.0 

AssembleCost_Pr + 5 A9 6.0 13.5 13.5 44.4 145.2 246.2 5.9 18.1 18.3 

BaseCost_Time + 2 A10 4.0 8.4 18.6 15.0 44.5 138.5 4.0 7.8 15.6 

BaseCost_Time - 1 A11 8.4 31.7 31.9 97.1 220.3 220.3 8.5 33.6 33.0 

PrintCost_Time + 2 A12 4.9 16.6 17.1 36.3 150.9 235.9 5.0 16.2 16.3 

PrintCost_Time - 1 A13 6.0 24.6 24.5 47.9 233.4 237.2 5.7 24.6 24.2 

AssembleCost_Time + 2 A14 3.7 12.0 11.8 27.2 111.9 217.2 3.9 10.3 9.7 

AssembleCost_Time - 1 A15 8.9 26.7 27.2 64.9 224.1 224.3 7.4 27.8 27.5 

Print & Assemble Time + 2 A16 4.0 8.6 8.1 25.6 84.8 163.2 4.0 8.1 7.9 

BaseCost_NonPr + 1 A17 5.8 22.2 20.9 43.2 115.0 115.4 5.8 21.6 20.8 

PrintCost_NonPr + 1 A18 5.9 22.6 22.1 43.4 210.8 215.7 5.6 21.9 22.4 

AssembleCost_NonPr + 1 A19 5.9 22.7 22.6 44.8 206.6 214.4 5.9 21.6 22.3 

[All]CostPrintable + 1 A20 6.0 15.4 15.0 44.7 122.8 174.4 5.9 16.3 15.8 

[All]CostPrintable + 2 A21 5.7 10.2 11.2 37.2 77.5 127.6 6.0 13.0 12.4 

Print & Assemble Pr + 2 A22 6.0 16.4 15.7 44.4 160.1 246.5 5.9 15.8 15.6 

Base & Print Pr + 2 A23 5.5 13.0 12.8 37.7 81.4 133.6 5.8 13.2 13.5 

Base & Assemble Pr + 2 A24 5.9 12.5 11.8 40.0 88.1 133.2 5.8 14.8 15.0 

[All]CostPrintable - 1 A25 6.0 28.2 29.0 44.2 216.3 222.7 5.7 25.5 25.7 

AssembleCost_Pr - 1 A26 6.0 25.6 26.4 45.1 227.0 232.0 5.9 25.0 24.5 

PrintCost_Pr - 1 A27 5.7 25.2 25.5 42.4 223.3 231.7 5.7 24.4 24.9 

BaseCost_Pr - 1 A28 5.6 29.2 28.6 43.0 221.9 221.0 5.7 26.8 26.2 

Print_Efficiency = 0.25 B1 5.8 12.0 11.9 42.5 59.0 80.3 5.7 14.9 14.8 

Print_Efficiency = 0.5 B2 5.8 16.3 16.2 44.1 107.4 143.6 5.9 17.0 17.1 

Print_Efficiency = 1.5 B3 6.0 28.9 27.7 43.3 224.4 226.4 5.6 25.8 25.9 

Collect_Amount = 0.25 B4 5.9 17.2 16.2 43.6 114.4 221.5 5.8 16.2 15.8 

Collect_Amount = 0.5 B5 5.9 19.4 20.0 44.0 168.3 237.5 5.8 19.1 18.8 

Collect_Amount = 1.5 B6 5.8 23.5 23.9 44.8 231.5 238.3 6.0 22.5 22.7 

Print_Amount = 0.25 B7 6.0 14.0 13.3 44.0 66.8 106.2 6.0 16.4 15.8 

Print_Amount = 0.5 B8 6.0 18.2 16.9 44.9 124.5 225.7 5.8 19.9 19.5 

Print_Amount = 1.5 B9 5.9 24.0 24.0 43.4 222.2 234.0 5.8 22.8 22.1 

Collect & Print Amount = 0.5 B10 5.9 16.7 15.9 43.5 111.5 200.8 5.8 18.7 18.3 

QualityThreshold + 0.1 C1 5.7 22.1 21.9 42.0 205.8 231.2 5.7 21.2 21.7 

QualityThreshold + 0.2 C2 5.6 19.5 20.0 39.8 168.2 216.6 5.6 18.6 17.9 

QualityThreshold + 0.3 C3 5.0 17.6 15.5 32.1 141.9 184.8 4.7 17.2 14.9 

QualityThreshold + 0.4 C4 3.8 8.8 11.9 21.4 59.9 141.0 3.2 9.0 11.5 

RiskAmount_Print = 1% C5 6.0 22.5 21.1 44.3 199.4 229.2 4.9 16.2 13.8 

RiskAmount_Assemble = 1% C6 4.9 14.8 13.1 39.8 166.6 225.0 5.7 19.4 19.2 

(continues) 
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Table B.8. Strategic-C decision-making algorithm results (continued). 

Strategic-C ID Assembly Potential Collection Potential Print Potential 

30 50 70 30 50 70 30 50 70 

RiskAmount Pr & As = 10% C7 0.9 0.5 0.6 12.2 15.5 25.7 1.0 1.3 1.2 

RiskAmount Pr & As = 15% C8 0.9 0.5 0.4 12.5 14.3 16.2 1.0 1.1 1.2 

RiskAmount_Assemble = 15% C9 0.8 0.9 0.4 12.2 17.4 17.9 3.1 5.6 5.7 

Quality_incr_Chance = 0.01% C10 6.0 23.2 21.4 44.6 219.3 238.8 5.9 21.8 21.7 

Quality_decr_Chance = 25% C11 5.8 23.3 23.1 44.4 223.1 245.9 5.9 21.9 22.8 

Quality_decr_Chance = 75% C12 5.8 21.4 21.5 42.0 194.6 227.4 5.5 21.4 20.9 

Quality_decr_Upper = 0.5 C13 5.7 18.9 17.1 37.9 155.4 201.9 5.2 18.0 15.9 

Qual_incr Chance & Upper * 2 C14 5.7 22.0 22.5 41.5 218.1 240.5 5.8 22.2 21.6 

RiskQuality_Modifier = 10.0 C15 5.8 21.5 21.1 40.4 205.1 233.8 5.5 20.9 20.1 

RiskQuality_Modifier = 25.0 C16 5.7 19.1 17.7 38.3 175.3 214.5 5.8 18.4 17.3 

RiskFactory_Modifier = 0.5 C17 5.7 22.9 22.2 42.8 215.0 240.6 5.7 22.1 21.5 

RiskFactory_Modifier = 1.0 C18 5.8 22.4 22.4 42.7 212.3 239.9 5.9 21.4 22.8 

Quality Thres & Chance C19 2.8 7.7 6.8 13.5 37.9 62.2 2.8 6.3 6.7 

Initial_Printable / 2.0 D1 5.9 18.2 17.7 44.2 176.7 248.6 5.8 17.7 18.1 

Initial_Printable * 2.0 D2 5.5 29.0 27.4 42.0 226.8 228.0 5.7 26.0 26.1 

Initial_Materials = 0 D3 5.9 19.5 19.2 43.7 193.7 248.5 5.7 19.6 17.9 

Initial_Materials / 2.0 D4 5.9 21.6 20.9 43.7 206.4 241.2 5.8 20.8 20.2 

Initial_Materials * 2.0 D5 5.7 25.8 25.2 42.2 230.2 234.8 6.0 25.6 24.7 

Env_Materials / 2.0 D6 6.0 23.5 22.2 44.6 147.2 148.6 5.8 23.1 22.1 

Env_Materials * 2.0 D7 6.0 22.4 22.4 43.5 206.8 230.7 5.9 21.9 21.3 

Env_Materials * 100 D8 5.8 21.8 17.6 43.6 194.8 167.6 5.7 21.4 22.0 

Initial_NonPr / 2.0 D9 5.9 21.8 21.2 43.8 93.1 92.6 5.8 21.2 21.8 

Initial_NonPr * 2.0 D10 5.8 22.4 22.9 44.2 213.6 265.4 5.9 22.2 22.4 

Initial NonPr & Env * 2.0 D11 6.0 22.7 22.1 44.9 210.1 411.0 5.7 22.1 20.6 

Initial NonPr & Env * 2.0, Raw=0 D12 5.9 18.9 18.2 44.0 178.7 355.4 5.6 18.8 18.4 
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Table B.9. Strategic-P decision-making algorithm results. 

Strategic-P ID Assembly Potential Collection Potential Print Potential 

30 50 70 30 50 70 30 50 70 

(Default) A0 7.8 24.6 24.4 34.0 126.1 139.7 25.9 100.5 114.0 

BaseCost_Pr + 1 A1 7.7 19.5 20.1 34.3 89.1 121.0 26.1 68.6 99.7 

BaseCost_Pr + 3 A2 7.2 16.2 16.2 26.2 57.8 86.2 18.9 40.9 69.0 

BaseCost_Pr + 5 A3 6.7 12.6 11.3 20.5 37.1 65.4 13.8 24.1 53.5 

PrintCost_Pr + 1 A4 7.7 23.1 22.2 34.1 105.1 124.4 26.3 80.9 100.8 

PrintCost_Pr + 3 A5 7.5 18.8 19.6 28.2 74.5 96.0 20.6 54.8 75.4 

PrintCost_Pr + 5 A6 7.1 21.8 21.2 24.3 63.5 80.1 17.1 41.1 58.3 

AssembleCost_Pr + 1 A7 7.7 22.1 22.2 34.9 114.4 140.2 26.9 90.7 117.0 

AssembleCost_Pr + 3 A8 8.0 17.5 16.9 35.1 93.9 137.9 27.1 75.6 119.8 

AssembleCost_Pr + 5 A9 7.7 15.3 14.9 34.2 76.0 127.6 26.3 59.7 111.1 

BaseCost_Time + 2 A10 4.8 11.2 23.7 12.3 49.7 122.5 7.4 37.9 96.9 

BaseCost_Time - 1 A11 11.4 35.3 34.5 61.7 141.2 140.2 50.0 105.2 104.3 

PrintCost_Time + 2 A12 5.6 23.0 22.1 19.5 85.6 139.9 13.5 61.7 116.2 

PrintCost_Time - 1 A13 8.0 29.3 28.8 42.7 143.2 142.7 34.2 112.6 112.8 

AssembleCost_Time + 2 A14 4.9 17.1 17.1 20.2 80.5 138.6 15.3 62.3 120.6 

AssembleCost_Time - 1 A15 11.8 33.6 33.4 50.3 142.0 142.4 38.1 107.6 108.1 

Print & Assemble Time + 2 A16 4.8 11.4 10.3 12.6 50.6 72.6 7.7 38.3 61.3 

BaseCost_NonPr + 1 A17 7.8 23.0 23.3 34.5 90.1 90.8 26.5 66.2 66.6 

PrintCost_NonPr + 1 A18 7.7 23.4 22.5 33.7 99.2 97.6 25.7 74.0 73.8 

AssembleCost_NonPr + 1 A19 7.7 25.1 24.6 34.2 125.8 126.7 26.1 99.3 100.0 

[All]CostPrintable + 1 A20 7.8 17.4 17.3 29.3 71.5 100.4 21.3 53.1 81.8 

[All]CostPrintable + 2 A21 7.0 15.2 13.6 23.1 45.7 74.4 15.9 30.0 60.1 

Print & Assemble Pr + 2 A22 7.4 18.0 17.8 28.5 74.3 100.6 20.9 55.4 82.0 

Base & Print Pr + 2 A23 7.3 19.5 17.3 25.2 56.1 79.1 17.9 36.0 61.2 

Base & Assemble Pr + 2 A24 7.5 15.3 15.9 28.2 60.6 94.4 20.6 44.6 77.8 

[All]CostPrintable - 1 A25 8.0 36.9 35.9 35.3 138.6 136.6 27.1 100.2 99.4 

AssembleCost_Pr - 1 A26 7.8 27.3 27.1 34.3 135.8 138.7 26.3 107.1 110.3 

PrintCost_Pr - 1 A27 8.0 27.3 27.2 35.5 137.8 139.5 27.4 109.3 111.1 

BaseCost_Pr - 1 A28 7.7 30.7 31.2 34.4 136.3 138.2 26.3 104.3 105.7 

Print_Efficiency = 0.25 B1 7.3 14.6 14.0 28.8 41.8 52.7 21.4 26.9 37.8 

Print_Efficiency = 0.5 B2 7.6 17.0 17.0 33.0 67.7 85.9 25.0 50.0 68.3 

Print_Efficiency = 1.5 B3 8.0 29.4 30.0 34.9 137.8 137.6 26.8 107.2 106.4 

Collect_Amount = 0.25 B4 7.8 19.3 16.2 34.1 59.7 102.2 26.1 39.9 85.3 

Collect_Amount = 0.5 B5 7.9 21.4 20.6 34.2 91.2 131.0 26.2 69.1 109.3 

Collect_Amount = 1.5 B6 7.9 26.0 26.8 34.9 137.7 142.3 26.8 110.2 114.4 

Print_Amount = 0.25 B7 7.2 15.9 14.9 31.6 46.2 95.2 23.8 29.5 78.8 

Print_Amount = 0.5 B8 7.7 19.2 19.7 34.6 91.3 142.0 26.7 70.7 120.7 

Print_Amount = 1.5 B9 7.6 25.9 26.8 33.9 137.5 141.1 25.9 110.2 113.1 

Collect & Print Amount = 0.5 B10 8.0 18.3 16.9 35.9 74.0 129.6 27.6 54.7 110.5 

QualityThreshold + 0.1 C1 7.5 23.3 24.5 32.5 117.5 138.1 24.7 93.0 112.6 

QualityThreshold + 0.2 C2 7.1 22.2 22.1 29.9 105.5 129.1 22.5 82.1 106.1 

QualityThreshold + 0.3 C3 6.4 19.0 20.3 25.6 82.5 117.5 19.1 62.6 96.2 

QualityThreshold + 0.4 C4 4.8 12.8 14.1 18.3 49.7 92.1 13.3 36.5 77.1 

RiskAmount_Print = 1% C5 7.7 24.6 24.5 34.4 124.3 139.9 25.3 92.0 108.0 

RiskAmount_Assemble = 1% C6 5.9 17.2 15.6 30.0 107.0 132.5 22.5 83.2 108.4 

(continues) 
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Table B.9. Strategic-P decision-making algorithm results (continued). 

Strategic-P ID Assembly Potential Collection Potential Print Potential 

30 50 70 30 50 70 30 50 70 

RiskAmount Pr & As = 10% C7 1.0 2.0 1.3 11.9 18.8 21.2 3.6 4.5 5.5 

RiskAmount Pr & As = 15% C8 0.9 0.6 0.5 10.0 12.2 12.5 3.0 2.2 2.5 

RiskAmount_Assemble = 15% C9 0.6 0.6 0.3 9.8 14.7 12.7 5.5 7.8 7.8 

Quality_incr_Chance = 0.01% C10 7.5 23.9 24.6 34.0 124.3 138.8 26.2 98.7 112.8 

Quality_decr_Chance = 25% C11 7.7 25.5 25.6 34.8 131.2 144.2 26.9 104.6 117.5 

Quality_decr_Chance = 75% C12 7.7 23.7 23.2 33.7 116.3 132.9 25.7 90.9 108.1 

Quality_decr_Upper = 0.5 C13 7.3 20.2 20.3 30.0 98.6 123.5 22.6 76.5 101.1 

Qual_incr Chance & Upper * 2 C14 7.9 24.6 24.0 34.6 125.7 138.7 26.6 99.6 112.8 

RiskQuality_Modifier = 10.0 C15 7.9 23.1 22.8 33.9 117.9 136.6 25.8 93.5 111.7 

RiskQuality_Modifier = 25.0 C16 7.5 19.0 19.9 31.8 92.1 125.9 23.9 71.1 103.9 

RiskFactory_Modifier = 0.5 C17 7.9 24.6 24.4 34.6 126.5 140.0 26.4 100.6 114.3 

RiskFactory_Modifier = 1.0 C18 7.9 24.7 24.6 34.0 127.4 139.5 25.9 100.7 113.4 

Quality Thres & Chance C19 3.8 9.2 7.0 11.8 30.4 39.4 8.0 20.9 31.9 

Initial_Printable / 2.0 D1 7.6 21.0 20.4 31.2 99.9 142.5 23.5 78.4 120.8 

Initial_Printable * 2.0 D2 7.8 35.2 34.1 34.4 140.5 138.6 26.4 104.1 102.9 

Initial_Materials = 0 D3 7.6 22.6 22.2 34.0 109.3 134.8 26.1 85.4 111.1 

Initial_Materials / 2.0 D4 7.3 23.7 24.2 32.8 118.2 141.8 25.1 92.4 116.4 

Initial_Materials * 2.0 D5 7.9 26.7 26.8 35.6 136.6 141.1 27.6 108.1 113.3 

Env_Materials / 2.0 D6 7.9 24.7 25.3 34.8 94.9 95.8 26.8 69.3 70.0 

Env_Materials * 2.0 D7 7.8 24.3 22.0 34.7 124.4 128.7 26.5 98.4 105.1 

Env_Materials * 100 D8 7.9 25.1 19.5 34.9 125.9 119.5 26.8 99.6 97.5 

Initial_NonPr / 2.0 D9 7.9 22.9 22.4 34.6 68.8 66.9 26.5 45.0 43.7 

Initial_NonPr * 2.0 D10 7.7 24.3 23.6 33.7 123.7 151.4 25.6 98.0 125.5 

Initial NonPr & Env * 2.0 D11 7.9 25.4 22.9 35.0 125.5 225.6 27.0 98.5 199.1 

Initial NonPr & Env * 2.0, Raw=0 D12 7.9 23.2 22.6 34.5 110.7 214.8 26.4 86.5 190.4 

 


