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ABSTRACT 

Changing commodity prices create opportunities for traders to profit or experience 

substantial losses if risk is not managed. Extensive research has been presented regarding 

optimal hedging strategies using futures markets to mitigate price risk of holding a physical 

commodity, but the literature has not introduced a method for optimizing basis or rail coverage 

ratios. This study introduces coverage ratios to manage basis and transportation risk. Coverage 

ratios are optimized for a portfolio of basis and rail positions consistent with expected utility 

theory using Monte Carlo simulation at various risk aversion levels. The results indicated that as 

risk aversion increased, optimal coverage levels increased while profit and standard deviations of 

profits decreased. Sensitivity analysis is used to demonstrate the effects of changing intermarket 

correlations, standard deviations of individual markets, and time to liquidation. This study 

provides insight into managing basis and rail portfolios and presents implications for traders and 

risk managers.  
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CHAPTER 1. INTRODUCTION 

1.1. Introduction 

Finding the balance between risk and reward is a task that no company can escape. While 

it is well understood that, in general, more risk leads to higher rewards, decisions of how to 

effectively bear and manage different levels of risk are more difficult. Additionally, the structure 

of companies and the goals of shareholders, board members, and management can add another 

element to the equation as bearing risk adds a higher level of variability to returns.  

 Commodity trading businesses face a variety of risks due to risks in prices, logistics, 

grain quality, and other factors. Additionally, the financial risk associated with each of these 

increases as the size of the firm’s positions increase. As a result, there is a need to manage risk in 

a way that allows desired returns to be achieved without subjecting the firm to unacceptable 

levels of risk.  

 Futures price risk has been discussed in great detail within academic literature (see 

Wilson 1982; Blank, Carter, and Schmiesing 1991; Harris, Shen, and Stoja 2010; Anderson and 

Danthine 1981; Chen, Lee, and Shrestha 2003; Howard and D’Antonio 1984; Cecchetti, Cumby, 

and Figlewski 1988). These publications cover topics such as hedging, hedging with options, 

cross hedging, portfolio management, optimal hedging ratios, and other topics related to 

managing futures risk. While discussion of futures markets is prevalent in the literature, less 

research has been conducted regarding basis risk and optimizing basis portfolios. Furthermore, 

basis coverage ratios have yet to be shown in the literature and defined for individual markets or 

a portfolio of markets.  
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1.2. Introduction to Commodity Markets 

 Elevators conducting trading business often operate within multiple markets. At a 

minimum, many are involved in the futures market and the basis market. Some elevators may not 

want exposure to the futures price or basis risk and may take action to eliminate them using 

hedging or forward contracting. This section introduces futures and basis markets as well as 

some of their key components and risk.  

1.2.1. Futures Markets 

The futures market is an organized market in which buyers and sellers exchange futures 

contracts. A futures contract is formally defined by the Chicago Mercantile Exchange (CME) as 

a financial instrument that allows a market participant to transfer or acquire the risk of price 

changes in an asset over time (“Definition of a Futures Contract - CME Group” 2021). Futures 

contracts exist for a variety of commodities including metals, currencies, lumber, animals, and 

grains, and in the United States, these contracts are primarily traded on the Chicago Board of 

Trade (CBOT). While there are many similarities between the market mechanisms and 

applications of the theories discussed throughout, this study focuses primarily on grains, 

specifically CBOT soybeans.  

Futures contracts are highly standardized. Exchange rules specify the type, quantity, 

quality, times of trading, contract expiration, and delivery mechanisms for each contract (Kolb 

and Overdahl 2006). This allows for an efficient means of transferring contracts as the only term 

left to decide upon is the price of the contract. Throughout this study, the term “futures price” is 

defined as the current price of the futures market for a given contract or a price that has been set 

because of owning or selling a futures contract.  
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Futures markets are global markets for a generic contract specification regarding delivery 

time, location, quality, and other terms. Market prices are affected primarily by macro-level 

fundamental factors including changes in global supply and demand, weather (which affects the 

supply of grain), government subsidies, substitutes, and currency exchange rates (“Fundamentals 

and Agricultural Futures - CME Group” 2021). These large changes are uncontrollable by any 

market participant, and it is assumed that market participants have access to nearly identical 

market information.  

1.2.2. Basis Markets 

Another type of market that farmers and trading companies participate in is the basis 

market. The basis market is a localized market with its own set of fundamentals, but the basis 

market is connected to the futures market. Basis is defined as the difference between the cash 

and futures price. Cash price is the amount that an elevator pays or receives when grain is priced 

(Lorton and White). For example, if CBOT March 2021 Soybean futures were trading at 

$9.00/bushel and the cash price for March delivery in St. Cloud, MN was $8.50, the basis at St. 

Cloud would be -0.50, or “50 under” the March contract. Meanwhile, in Minneapolis, MN a 

barge terminal location may be bidding $8.75, so the basis in Minneapolis would be -$0.25 under 

the March contract. The reason the basis values differ may be a result of the opportunities each 

elevator has to sell the commodity, the additional cost of pulling the grain from farmers in the 

rural part of MN to the terminal in the large city because of transportation costs, and the 

competition that each elevator faces in its respective location. Changes that occur spatially and 

across time create opportunities for merchandisers. They can purchase grain at low basis levels, 

hold the grain, and sell it once the basis has appreciated or they can make advance sales of the 

grain and purchase the grain at a later time with hopes of a decreased basis level.  
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When a firm or farmer owns grain, they hold the risk of price movement in both markets. 

Because the dollars at risk increase as the size of the position increases, risk management 

become increasingly important as the firm holds larger positions. Each market has mechanisms 

for transferring risk from one party to another. 

1.3. Rail Markets 

An important element of grain merchandising involves grain shipping. The previous 

section suggested that the basis market works to pull grain from areas of surplus to areas of 

deficit. Merchants or traders recognize that in order to take advantage of the differences between 

origin and destination markets, they must also have a solid understanding of transportation and 

logistics mechanisms as well as the associated risks. A key risk that merchants face in rail risk is 

car placement and the prices of the transportation at various times.  

Risks associated with rail car pricing, notably the secondary car market, are important as 

shipping costs can cause significant swings in the overall elevator margins. If grain is purchased 

at the origin and is priced at the destination for delivery at a later date, but the rail price is 

unknown, the net profit from the trade remains unknown and at risk. 

The risk associated with rail pricing can be mitigated using different rail purchasing 

strategies. Rail cars may be purchased on either the primary market or the secondary market. The 

primary market allows for users of railcars to reserve cars far in advance for a random number of 

trips per month for a few months or a year. If a user of the railcars does not need all of the trips, 

the rights to use the extra trips can be sold through brokers and auctions on the secondary 

market. Additionally, if a merchant has not purchased freight in advance or needs to purchase 

additional freight, they may purchase trips on the secondary market. Using the primary and 

secondary markets, merchants can create a purchasing plan which can mitigate risk.  
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1.4. Hedging and Hedge Ratios 

The futures market was briefly introduced in a previous section. Within the futures 

market, there are two types of traders – speculators and hedgers. A speculator is a trader who 

desires to acquire risk with the hopes of making a profit from the change in the asset value (Kolb 

and Overdahl 2006). A speculative trader may have a market bias, or thoughts on the direction of 

a market, and may trade accordingly without owning any of the physical commodity. In contrast, 

a hedger enters the marketplace in an effort to reduce or transfer the risk to other market 

participants (Kolb and Overdahl 2006). This type of trader either has the commodity and wants 

to reduce the risk of price changes that may occur while holding the commodity or plans to 

acquire the physical commodity at a later date and wants to reduce the fluctuations that could 

occur before acquiring the commodity.  

While hedgers trade in a manner that allows them to reduce risk by taking opposite 

positions in the futures market as they hold or plan to hold in the physical market, hedging the 

entire position and eliminating all futures price risk may not be the profit-maximizing strategy. 

The proportion of the cash position that is hedged is defined as a hedge ratio. This is represented 

as the quantity of bushels sold in futures divided by the total cash position. Researchers have 

conducted research showing that an optimal hedge ratio may be found given the firm’s tolerance 

for risk and the correlation between cash and futures prices (see Kahl 1983; Blank, Carter, and 

Schmiesing 1991). A variety of methods have been used to determine optimal ratios such as 

minimum-variance, mean-variance, mean-semivariance, mean-Value-at-Risk, among others.  

1.5. Basis Trading and Coverage Ratios 

Because of the volatility and uncertainty associated with futures trading, many elevators 

and traders only trade basis on their physical bushels to make consistent profits (Lorton and 



 

6 

White 2010). Pure basis traders hedge 100% of their grain ownership or forward sales in the 

futures market and rely on basis trades to enhance margins. A basis trader’s goal is to buy grain 

at a low basis and sell at a high basis. The trader may choose to create a long basis position by 

acquiring grain at the origin to hold with hopes of selling to a destination once basis levels are 

higher. Merchants may also take short basis positions by making forward sales to a destination 

for a deferred delivery window with the intent of buying at the origin just prior to making 

delivery to the destination.  

A basis trader may desire to have various levels of basis or transportation price risk; this 

analysis uses coverage ratios to describe the amount of a purchase or sale of grain that is at risk 

to changing price levels. Coverage ratios can be defined as the portion of grain sold to the 

destination relative to the grain owned at the origin; the quantity of grain bought relative to the 

quantity of grain needed to be purchased; or for rail, the quantity of rail purchased relative to the 

amount of rail needed.  

1.6. Problem Statement 

If an elevator is completely and properly hedged, futures risk is eliminated leaving basis 

and rail price movements as the main sources of margin risk for shipper elevators. Each of these 

markets can exhibit varying levels of volatility and randomness which in turn creates 

randomness in the elevator’s profits. While the randomness due to basis and rail price 

movements could be eliminated by using forward contracting and purchasing rail in advance, this 

type of strategy would eliminate many possible merchandising opportunities and significantly 

decrease profits. Conversely, if merchants are allowed to take very large positions without regard 

for the risk of the position, the company may not be able to withstand the losses.  
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While hedge ratios have been formally defined for managing the futures price risk, the 

literature lacks a discussion on mitigating basis or rail risk. This research proposes a definition 

for a coverage ratio and further shows that coverage ratios for basis and rail can be optimized to 

optimize the utility of the trader or firm. 

1.7. Objectives and Procedures 

The purpose of this thesis is to develop a methodology for balancing risk related to 

holding cash grain and rail positions in a portfolio relative to the firm’s risk tolerance levels. 

Specific objectives are subdivided as follows: 

1. Define coverage ratios for long and short basis positions as well as rail positions.  

This allows for models to be developed which determine profit and standard deviation 

of profit by taking or not taking coverage in the market.  

2. Determine optimal coverage ratios for a base case scenario that illustrate the 

practicality and usefulness of an optimal coverage ratio.  

3. Conduct sensitives to show the impacts on coverage ratios, profit, and standard 

deviation of profit when variables such as standard deviations of basis, standard 

deviation of rail, time to liquidation, or restrictions on allowable coverage are 

changed.  

To meet the objectives, theoretical models are developed to show the expected payoff 

functions from a variety of merchandising scenarios. Next, the variance of the payoff function is 

derived which can then be substituted into an expected utility function. An analytical solution is 

found by maximizing the expected utility. The empirical analysis follows and uses Monte Carlo 

simulations in conjunction with RiskOptimizer™ within the Palisade DecisionTools Suite™ to 

estimate the optimal coverage ratios for each model. The models are evaluated using historical 
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BestFit™ distributions to illustrate a “naïve” strategy and time series forecasted distribution to 

illustrate a merchant that captures an “anticipatory” trade which is based on expected changes in 

basis and shipping costs.  

This thesis contributes to the literature by discussing basis and rail risk management and 

offering a new procedure for managing these sources of risk. Previous literature has focused 

primarily on optimizing hedging ratios. This research differs in that the focus is completely on 

the physical grain and freight positions. Within the thesis, coverage ratios are defined and 

optimized for basis and rail risk. Additionally, the importance of the correlations between origin 

and destination basis as well as the correlations between the basis and rail markets are discussed 

and shown empirically using sensitivity analysis.  

1.8. Organization 

This thesis is organized into six chapters. This chapter gave an overview of futures, basis, 

and rail markets as well as an introduction to hedging and hedge ratios. Chapter 2 discusses the 

background and related literature which explains the details of basis and rail trading as well as 

types of portfolio hedging models. A variety of portfolio hedging models are discussed, but 

minimum-variance, mean-variance, and mean-Value-at-Risk are the focal point. Next, Chapter 3 

discusses the theoretical framework, introduces the models and variables, and presents an 

analytical solution for the optimal coverage ratios in the single market and multi-market case. 

The empirical models and data are shown in Chapter 4. Chapter 4 also highlights the 

distributions used in the simulation models, as well as the simulation procedures and settings. All 

of the models are evaluated under a mean-variance and mean-semivariance framework at varying 

levels of risk aversion. Additionally, each model uses both historical BestFit™ and time series 

forecasted distributions for its random variables. Chapter 5 includes the results from each of the 
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simulations as well as a variety of sensitivities. The sensitivities show how changing standard 

deviations, correlations, and timing of the positions can change the results. Lastly, Chapter 6 

presents the conclusions and implications of the study as well as suggestions for further research.  
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CHAPTER 2. BACKGROUND AND RELATED LITERATURE 

2.1. Introduction 

Understanding risk exposure and risk management tools is essential in the competitive 

grain trading industry. Taking too little risk may leave a firm falling behind the competition 

while taking too much risk may result in larger losses than a firm can withstand. In grain trading, 

there are two primary elements of price risk: risk from futures prices and basis levels. There are a 

variety of ways to add or reduce risk in basis trading and several ways to model the risks.  

This chapter describes relevant background information and summarizes literature 

relating to portfolio hedging theory. The first section introduces basis and rail trading and 

highlights the risks and opportunities associated with each of these types of trading. Next, 

arbitrage is discussed to give the reader an understanding of the unique opportunities that are 

available through logistical and merchandising management. Then, an overview of general risk 

in commodity trading follows which describes the main sources of risk for a shipper elevator. 

Lastly, the evolution, developments, and applications of portfolio hedging models are presented 

along with their application to this study.  

2.1.1. Basis Trading 

The forces of supply and demand can be observed both globally and locally in grain 

markets. The overall supply and demand for a given commodity typically affects the futures 

market price where the localized supply and demand affects the basis. Basis is defined as the 

difference between the cash price and futures price (Lorton and White 2010). By hedging, the 

futures portion of the risk is eliminated, and elevators become “basis traders” (Lorton and White 

2010). Throughout this study, the terms “basis traders”, “traders”, and “merchants” are used 

similarly.  
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As the name implies, a basis trader looks to trade grain intending to make money from 

the changes in the basis. This can be accomplished by taking a “long” basis position by buying at 

low basis levels and selling at high basis levels or conversely by taking a “short” basis position 

by selling at high levels in advance and purchasing the grain later when the market values 

decrease. As basis increases, or becomes more positive, the basis is said to be strengthening. As 

basis decreases, or becomes more negative, the basis is said to be weakening. Traders can exploit 

these basis movements and increase elevator margins by taking positions in the basis market. 

Both of these strategies involve risk that the market moves against the trader’s position.  

An alternative strategy is a “back-to-back” transaction that involves purchasing grain at a 

set basis, adding in a handling margin, and immediately contracting the sale of the grain (Lorton 

and White 2010). This strategy reduces the risk of unfavorable market movement but eliminates 

the opportunity to make money from the changing basis.  

While the riskless alternative may initially seem desirable, the effects of basis trading can 

be easily demonstrated with an example. Suppose an elevator has 2,000,000 bushels of grain that 

need to be bought and sold throughout a year. Assume this elevator remains completely hedged 

in the futures market, thus eliminating futures price risk. A riskless basis approach with a back-

to-back sale at a $0.10 handling margin would generate $200,000 in revenue where even 

capturing an additional $0.15 from the market movement plus the $0.10 handling margin would 

generate revenues of $500,000. Additionally, basis trading may allow elevators to handle larger 

grain volumes by taking advantage of isolated buying or selling opportunities without the need to 

buy and sell simultaneously. With larger elevators and increased basis volatility, the importance 

of basis trading further magnifies.   
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Several factors influence basis movements. Cost of shipping to a destination market, local 

elevator margins, cost of storage, cost of carry, quality variations in different geographies, and 

localized supply and demand all can affect the basis market (Lorton and White 2010). Some of 

these factors are predictable, while others can change rapidly. If an elevator has a train or barge 

that must be filled, the merchant may temporarily increase the basis to incentivize quick 

movement of grain to the elevator to avoid paying demurrage, or a late fee, to the rail or barge 

company. Additionally, Baldwin (1986) says crop quality and conditions, transportation 

availability, storage availability, storage cost, and seasonality are factors that can affect the basis 

market. If the crop quality in an area is low, merchants may lower the basis to encourage farmers 

to store the grain until they have higher quality grain to blend it with. Transportation availability 

is an important factor for basis because if freight is expensive or unavailable, the elevator must 

lower basis levels to maintain their desired margins. Because basis is used as a way to control the 

flow of grain, basis tends to be seasonal and is related to the cost and availability of storage. 

When storage is relatively cheap and plentiful, the basis can be stronger than if storage is 

expensive and/or unavailable. This helps explain why during harvest, when there is a surplus of 

local supply and a shortage of storage, basis tends to be weaker than before harvest where 

storage is plentiful and supply is diminished.  

The variations in the basis market caused by fundamental market factors provide 

opportunities for trading and profit creation. In fact, most merchandisers act as basis traders 

because of the opportunities to create higher returns with less risk than alternative grain trading 

methods (Lorton and White 2010). This means that the common gross margin an elevator 

captures is the difference between the buying and selling basis levels.  
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Knowing that basis is dynamic and that there are riskless and risk-bearing trading 

methods, the need for a method to determine a coverage ratio that gives the elevator the right 

amount of risk to maximize their opportunities becomes clear. The research conducted within 

seeks to create a theoretical framework and empirically derive an optimal coverage ratio for an 

elevator with a specific portfolio of basis origins and destinations as well as transportation. This 

allows merchants to better position themselves for maximum trading profits within given risk 

tolerances. 

2.1.2. Rail Trading 

While a large portion of the risk that an elevator faces is related to the basis market, 

transportation plays a critical role in merchandising activities and can be a source of risk for the 

firm. Because there are dynamic markets for commodities and consumer goods which require 

transportation, the prices of transportation can vary based on the shipping demand. Like the basis 

trading transactions, and thanks to the relatively recent development of car allocation methods, 

merchants can bear or mitigate the risk associated with rail freight prices.   

Prior to 1987, there was no method for reserving railcars in advance (Wilson, Priewe, and 

Dahl 1998). This created uncertainty for merchandisers because of the rapid changes in prices 

and availability of cars (Gelston and Greene 1994). In 1988, the Certificate of Transportation 

(COT) program began which allowed the guaranteed the use of a quantity of shipments (Wilson 

and Dahl 2011). Later, long-term shipping contracts were developed that specified the number of 

pickups over a given time period. These rights to a shipment were tradeable and had a system of 

penalties to incentivize the efficient usage of the cars. This system of tradable freight is often 

known as the secondary market.  
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More recently, a number of studies analyzed the relationships between basis and 

secondary rail market values. Bullock and Wilson (2019) quantified how shipping costs and the 

secondary market impacts the soybean export basis. Lakkakula and Wilson (2021) analyzed the 

interrelationship between origin and destination basis and secondary car values. Wilson and 

Lakkakula specifically analyzed how the secondary market impacts basis values. This builds on 

an earlier study by Wilson and Dahl (2011) who had earlier illustrated the impacts of rail car 

values on basis values. Taken together, these results illustrate that the basis and secondary rail 

values are correlated, among fundamental factors, and that changes in rail car values impact both 

origin and destination basis.  

2.1.2.1. Rail Freight Pricing in the Primary and Secondary Markets 

Rail freight is subject to a variety of supply and demand factors that influence the prices 

and availability of freight. Additionally, the cost and availability of other transportation options 

may affect the cost of rail freight. Rail freight is traded in a “primary” and “secondary” market. 

Merchandisers may purchase freight on the primary market by bidding for a certain allocation of 

cars or trips with a rail company, paying for service at the posted tariff rate plus any fuel 

surcharges (“Rail Service Challenges in the Upper Midwest" 2015). The winner of the auction 

receives a certain number of guaranteed trips with those cars within a given time period. A 

situation may arise where the elevator cannot utilize all the trips they have purchased or need 

additional trips. The secondary car market provides the solution to this problem.  

 The secondary car market is comprised of buyers and sellers that work together through a 

third-party brokerage service (Landman 2017). The bids and asking prices are typically gathered 

anonymously and are quoted in dollars above or below the tariff prices. In contrast to the primary 

market, secondary market allocations are typically for one trip only and have guaranteed 
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shipment windows. Typically, the tariff rates remain relatively stable compared to the rates of the 

secondary car market. The different pricing mechanisms of the primary and secondary markets 

allow for efficient allocations of cars and give merchants tools to manage, acquire, and mitigate 

freight risk.  

2.1.2.2. Risk in Rail Trading 

Rail trading has two primary sources of risk: car placement risk and price risk (Wilson, 

Bullock, and Lakkakula 2020). Car placement risk exists in the primary market because there is 

uncertainty around the exact timing and quantity of rail cars that are placed. This depends on the 

velocity, which is volatile, and is a key attribute of the primary market for rail cars. Car 

placement risk is not a problem in the secondary market because the seller is obligated to place 

the cars within the specified period. This thesis seeks to manage risks associated with rail car 

pricing rather than rail car velocity or placement risk.  

The risk of rail freight pricing begins at the moment an elevator enters a position in which 

rail freight will be required. When an elevator is long grain, they become short freight because 

they will need to sell and ship the grain at a future time (Wilson, Priewe, and Dahl 1998). Thus, 

once the freight or grain position is established, the firm is exposed to the risk of changing rail 

rates. Elevators typically utilize forward rail marketing and purchase in the primary market in 

advance or rely on secondary market purchases of freight. The primary market and tariff rates 

experience few changes where the secondary market can have periods of large price fluctuations 

(Landman 2017). Exposure to price risk in the rail market can result in dramatic changes in the 

elevator's revenues.  
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2.1.2.3. Effects of Rail Rates on Cash and Grain Trading Activities 

Across the available literature, there is a general agreement among researchers that rail 

performance, reliability, and pricing affect merchandising activities and cash grain prices. 

Studies such as Olson (2014), Usset (2014), and Ortiz (2016) show significant connections 

between cost and availability of transportation and cash grain prices.  

Usset (2014) examines how freight delays and disruptions can impact farm revenues. He 

studied the effects of rail transportation disruptions on basis levels in corn, soybeans, and hard 

red spring (HRS) wheat in various districts in the state of Minnesota and estimated the effects of 

those basis changes on-farm revenues. The analysis was completed by identifying key market 

fundamental factors such as stocks-to-use ratios and Minnesota ending stocks numbers for each 

commodity and finding analogue years that mirrored those fundamental patterns. The earlier 

years with similar patterns served as a control against the 2013/14 crop year, the year of interest. 

Usset found that in the presence of freight disruptions, basis levels decreased 50-80 cents, 50-70 

cents, and 30-50 cents per bushel for soybeans, corn, and wheat, respectively.  

Around the same time, Olson (2014) studied the relationship between rail freight rates 

and farm revenue by using analogue years. He used the 2009/10 marketing year as a base year 

because of the similar market fundamentals to the 2013/14 marketing year and estimated the 

differences between the various commodity prices. While the report does not include an impact 

of rail disruptions on a per bushel basis, Olson does conclude that there were approximately 66.6 

million dollars in lost farm revenue in North Dakota from grain that was sold between January 

and April 2014. This further strengthens the argument that transportation markets have 

significant and economically relevant effects on basis markets.  
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While Usset and Olson focused on generalized farm revenues across geographical areas 

due to generalized freight disruptions, other research conducted by the Agricultural Marketing 

Service (AMS) in 2015 and Ortiz (2016) study the impacts of transportation on basis. Both 

studies suggested that increased rail cost decreased basis. The AMS concluded that increased rail 

prices may have lowered corn, soybeans, and wheat local prices by 11 to 18 cents per bushel. 

Ortiz (2016) agrees that the link between grain basis and rail transportation is “utterly 

uncontroversial”, and showed that for each additional dollar per barrel of oil, the basis in wheat 

decreases 1 to 8 cents per bushel on average. The study by Ortiz is different than the others, but 

it helps show that changing demand and prices for rail cars because of other commodity shipping 

demand impacts the basis of commodities in localized areas. Overall, the literature shows a 

consensus that basis and rail freight rates are related.  

2.1.3. Arbitrage 

 Understanding the concepts of basis and rail trading opens yet another opportunity for 

merchandisers: arbitrage. While the previous trading strategies involved either back-to-back 

trades or becoming short or long the basis, arbitrage is a trading strategy that can result in large 

profits for traders without risk or investment (Kolb and Overdahl 2006). Kolb and Overdahl 

(2006) describe academic arbitrage as trades that occur simultaneously, thus eliminating any 

investment, and without risk. 

A variety of scenarios exist which may create arbitrage opportunities. One case where 

arbitrage may exist is in the delivery market as CBOT contracts reach expiration. During the 

delivery period, the seller (who holds a short futures position) notifies the clearing firm of their 

intention to deliver. The clearing firm then notifies the oldest long of the seller’s intention to 

make delivery. Deliveries are made to registered warehouses that are approved by the CBOT for 
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a fee. During the delivery period, basis is expected to equal the delivery charge. If basis is greater 

than the delivery charge, an arbitrage opportunity exists to buy futures, take delivery, and sell 

cash grain. As a result, futures prices increase and basis decreases until the basis is equal to the 

delivery charge. Alternatively, if basis is less than the delivery charge, a merchant could 

purchase cash grain, sell futures, and make delivery.  

Kolb and Overdahl state that in a “well-functioning market”, arbitrage opportunities do 

not exist. Knowing this, what warrants the discussion of arbitrage? Arbitrage is discussed and 

remains important because markets can experience imperfections, and these imperfections can 

present opportunities for merchandisers. The law of one price would suggest that identical goods 

should have identical prices; the presence of arbitrage opportunities with transaction cost is a 

reason that this law holds (Lamont and Thaler 2003). A common form of arbitrage is spatial 

arbitrage. In this form of arbitrage, grain is bought and sold at the same time for a profit of the 

difference less the transportation, handling, and transaction costs (Kub 2014). Skadberg et al. 

(2015) found that spatial arbitrage opportunities existed for certain North Dakota grain elevators 

trading soybeans and that the payoffs from arbitrage opportunities varied based on the elevator 

locations.  

2.2. Risk in Commodity Trading 

 Before beginning the discussion of optimal coverage ratios and grain trading strategies, a 

formal definition of risk and the scope of the research is necessary. Risk involves a probability of 

an event occurring where uncertainty occurs because of a lack of information about the 

probability of outcomes related to a particular event (Vose 2008). This means that to effectively 

manage risk, the possible outcomes must be measurable and have a probability distribution. 

Without this information, the future is left with uncertainty which is harder to manage and model 
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with a high level of precision. Understanding this distinction allows for a further discussion on 

the risks faced by merchandisers.  

 Arguably, some of the largest risks faced by a shipper elevator are risks related to basis 

values, inventory risk, and shipping costs which were discussed earlier. Basis risk results from 

the changes in the basis values in the origin and destination markets. One way of measuring this 

risk is to use the historical standard deviation of observed basis values over a particular time 

frame. A high standard deviation shows that there is a higher level of risk than an area or period 

with a low standard deviation. While individual elevators are responsible for setting their own 

basis values and agreeing to basis levels at a destination, changing market conditions and 

competition from other elevators make this a random variable.  

Another source of risk for elevators is inventory risk. While there are a variety of contract 

solutions that elevators offer which can help regulate the flow of the grain to the elevator, many 

bushels are still delivered at the “spot” price. The spot price is the cash price at an elevator at any 

given time for which a farmer can sell their grain. Farmers typically may deliver at any point and 

transfer ownership to the elevator. As prices increase, economic theory suggests that the quantity 

supplied by the farmers would increase. The cash price is comprised of the futures plus the basis. 

The elevator has no control over the futures price but can adjust basis values to influence grain 

flows.  

 While price has a large impact on the grain inventory levels, other factors can affect it as 

well such as weather or seasonal influences which determine farmers want to haul grain. For 

example, during the spring, farmers may haul grain if the ground is too wet to plant but may stop 

hauling as soon as planting resumes. This can create risk for the elevator if they are unable to 

procure enough grain to meet their shipping obligations and could result in lost opportunity if 
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they are unable to take delivery of farmer grain due to limited storage space. Because these 

inventory levels are uncontrollable, farmer deliveries can be considered a random variable.  

Table 2.1: Risk in Commodity Trading Summary 

Risk 

Name 

Description Risk Management/Mitigation 

Basis 

Values 

Creates risk for margin when basis 

values decreasing when holding long 

cash grain position 

Purchase/sell grain in advance at 

known levels 

Shipping 

Costs 

Creates risk for margin when freight 

values increase when needing to 

purchase freight 

Purchase freight in advance at 

known levels 

Inventory Elevators may purchase grain from 

farmers in advance using contracts or 

may purchase grain that farmers deliver 

without contracts 

Require smaller delivery periods in 

forward contracts and incentivize 

forward contracting 

Quality 

Risk 

The quality of grain in storage may 

decay over time because of mold, 

moisture, insects, or other factors 

Ensure elevator operations team 

tracks grain temperatures and 

quality to load out, aerate, or 

fumigate problematic bins 

 

The sections within this chapter thus far have highlighted some of the key risks that 

merchandisers face due to changing basis levels, rail freight prices and availability, as well as 

inventory risks associated with farmer spot deliveries as summarized in Table 2.1. Given the 

clear risks associated with pure basis and rail trading, the need for risk management tools is 

clear. The remainder of this chapter focuses on previous work that has been done regarding 

portfolio hedging models to understand the potential applications to basis and rail trading risk. 

2.3. Portfolio Hedging Models 

The research in this thesis builds on previous work in the area of portfolio selection and 

optimization which lays the foundation for determining optimal coverage ratios. Portfolio theory 

relates risk and reward among a variety of investment alternatives. While the concepts of risk 
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and reward could be dated to biblical times, the theory was only relatively recently formalized 

for investments in academic literature by Markowitz (1952) who introduced the concept of 

portfolio theory as a way to explain the desire for investors to achieve the largest possible return 

for each respective level of risk, which is represented by the variance of returns. This led to the 

representation of these two factors for various investments and is called the “expected returns – 

expected variance of returns” (E-V) rule. 

 

Figure 2.1: E-V Combinations 

 Figure 2.1 is based on Markowitz (1952) and shows a geometric illustration of this rule 

with an efficient frontier for combinations of expected return versus expected variance and 

demonstrates the alternatives for a decision-maker. An investor wanting to experience large 

returns would likely experience a high level of variance where an investor wanting less risk may 

have to sacrifice the higher levels of returns to achieve the investment objective. This showcases 
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the tradeoffs the decision-maker encounters. Identifying optimal coverage ratios also involves 

portfolio optimization; the various approaches that follow guide the development of the 

framework used to create the objective function.  

 The following sections outline the evolution of portfolio hedging models starting with the 

minimum variance models. Mean-variance models follow along with value-at-risk (VaR) and 

conditional-value-at-risk (CVaR) frameworks. Lastly, we mention some other modeling 

strategies that have been used but have not been as widely adopted by academics or practitioners. 

Throughout the following sections, the pros and cons of each of the models are discussed as well 

as their applications or contributions to the existing literature.  

2.3.1. Minimum-Variance Model 

 The minimum variance model is a type of model designed to reduce the variance, or risk, 

associated with price movement. Generally, investors or decision-makers have objectives other 

than to minimize or eliminate risk because investors seek to make a profit, and only a select 

number of opportunities exist where arbitrage, or riskless profit, is available as discussed in 

previous sections. This type of model fails to reflect the desired speculative returns of the trader 

or investor.  

 Johnson (1960) describes traditional hedging as a tool for risk reduction by taking 

opposite positions in correlated markets, and he suggests that traders tend to mix hedging activity 

with their speculative trading activity. This could take the form of waiting to place hedges on 

grain inventory because of a bullish bias or selling futures, even at times in excess of the 

inventory held, because of bearish market bias. As a result, Johnson (1960) calls for a more 

formalized hedging definition as follows: In the case of a certain quantity of physical units held 

in a market, a hedge is a position in another market such that the price risk encountered by 
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holding the physical units across time is minimized. This definition of hedging is useful as the 

primary goal of a hedge is to minimize the price risk of the underlying physical asset. Anderson 

and Danthine (1981) state that traditional hedges which involve equal and opposite positions in 

the physical market and the futures market are generally suboptimal if it “cannot be identified as 

a risk-minimizing position or as an optimal speculative deviation from the minimum-risk 

position”.   

 Johnson (1960) created a minimum variance model that explained theoretically how 

hedgers take positions in order to reduce the variance resulting from changing prices in a given 

commodity. Under this framework, the pure hedger would sell futures at the time of taking 

ownership of a physical commodity, even with a bullish bias, because it eliminates the price risk 

associated with holding the physical commodity.  

 Ederington (1979) used a similar approach by empirically deriving optimal hedge ratios 

for Government National Mortgage Association (GNMA) 8% Pass-Through Certificates, 

Treasury-Bills, wheat, and corn with their respective futures contracts under the minimum 

variance approach. In both Ederington's (1979) and Johnson's (1960) research, they find the 

optimal hedge ratio to be covariance between the spot and futures market divided by the variance 

of the futures market.  

 When futures markets follow martingale processes, resulting in zero expected returns, the 

optimal hedge ratio must only minimize the portfolio variance (Harris, Shen, and Stoja 2010).  In 

contrast, where futures have non-martingale patterns, the hedged portfolio is comprised of a 

minimizing risk position and a speculative position (Anderson and Danthine 1981). Even in 

martingale processes, an investor may have access to information unrelated to previous price 
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data such as better weather predictions or knowledge of market fundamentals which may result 

in expected profits resulting from a speculative position.  

 When reviewing the results, one must evaluate hedge effectiveness which can be 

measured by the square of the correlation between the two markets of interest (Kimura 2016). A 

perfectly effective hedge is one in which the price movements in the two markets across times 

are perfectly correlated (i.e. have a correlation equal to one). Thus, any loss/gain in one market 

would be perfectly offset by the gain/loss in the other market when taking offsetting positions 

(Johnson 1960). Knowing this, traders desire to hedge in highly correlated markets. As the 

correlation between the markets increase, the effectiveness of the hedges also increase. In 

Ederington's (1979) empirical analysis, the results showed that Treasury Bills were less effective 

than GNMA futures for short-term hedging. The results also compare the effectiveness of 

hedging wheat and corn.  

 The minimum variance hedging model works when returns are elliptically distributed or 

investors have quadradic utility, but when these conditions are not met, alternative approaches 

are needed as the variance is no longer an appropriate measure of risk (Harris, Shen, and Stoja 

2010). Additionally, as the joint distribution of cash and futures changes, the optimal hedge ratio 

will be calculated incorrectly if left unaccounted for (Cecchetti, Cumby, and Figlewski 1988). 

Other approaches that have since followed include a variety of Value-at-Risk models (VaR) such 

as minimum-VaR, and minimum-CVaR, as well as others that are discussed later in this chapter.  

2.3.2. Expected Utility and Mean-Variance Hedging 

Expected utility theory can be used to optimize a decision-maker’s expected utility in 

situations involving risk and reward. The Von Neumann – Morgenstern (VNM) axioms are an 

important part of the assumptions required for expected utility theory analysis. The axioms relate 
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to the ordering, transitivity, continuity, and independence of the risky alternatives (Von 

Neumann and Morgenstern 1947). First, it is assumed that the decision maker has a preference 

between two options, A or B, or is indifferent between them. Next, transitivity of the options 

means that if the decision-maker prefers A to B and prefers B to C, then A is also preferred to C. 

Additionally, if A is preferred to B, and B is preferred to C, then there is a probability that exists 

where the decision maker is indifferent between B and an outcome yielding a combination of A 

and C with the probabilities of the outcome of A and C summing to 1. Lastly, if A is preferred to 

B, and C is a risky alternative, the outcomes of A and C are preferred to the outcomes of B and C 

when the probability of A is equal to the probability of C. When the axioms at satisfied, a utility 

function exists that relates a single utility index value to risky alternatives which can translate 

ranking preferences to utility ranking. E-V is consistent with VNM axioms if returns are either 

normally (elliptically) distributed or if the investor has a quadradic utility function.  

The minimum variance model can be expanded to discuss the E-V hedging model. This 

model is more desirable and is more realistic as it recognizes investors’ desire to maximize 

returns while limiting their variance, or risk, in contrast to the minimum variance hedging 

models which aimed to achieve maximum risk avoidance. Blank, Carter, and Schmiesing (1991) 

illustrated that an optimal hedge ratio can be found which incorporates both the desire for risk 

avoidance and returns from speculation. The mean-variance hedging model includes a risk-

minimizing hedge ratio similar to the minimum variance models and was expanded to include a 

speculative element. These components are commonly referred to as the hedging demand for 

futures and the speculative demand, respectively. The mean-variance hedging method for finding 

optimal hedge ratios differs from the minimum variance hedging models in nearly all situations 
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except for complete risk-averse individuals or expected futures price change is zero as in a pure 

martingale process (Chen, Lee, and Shrestha 2003).  

 The mean-variance approach is used in a number of studies relating to optimal hedging 

strategies (Anderson and Danthine 1981; Blank, Carter, and Schmiesing 1991; Cecchetti, 

Cumby, and Figlewski 1988; Howard and D’Antonio 1984; Chin-Wen, Kuo, and Cheng-Few 

1994). Each of these studies incorporate the expected returns as well as the expected variance, or 

risk, into their models. These models maximize utility under the E-V framework. The following 

gives a brief overview of their findings and contributions to this area of the literature.  

 Anderson and Danthine (1981) recognize the application of simple portfolio theory for a 

hedger using both cash and futures markets due to the lack of a perfect correlation between the 

two markets. Additionally, the research presented is one of the first which incorporates mean and 

variance of returns into the study. The study also derives the utility that results from the ability to 

trade futures for speculation or hedging. The authors also incorporate the concept of risk 

aversion which is used in subsequent literature.  

 Howard and D’Antonio (1984) study how risk-free assets can be added to a portfolio to 

reduce the variance of the total portfolio under the E-V framework. However, as risk-free assets 

are added, the expected returns from the portfolio decrease. Because adding risk-free assets are 

both ways to reduce the overall variance of the portfolio, the decision lies in which instrument is 

more beneficial for enhancing the portfolio’s risk-return characteristics (Howard and D’Antonio 

1984). An important contribution offered by the article was the introduction of λ as the risk-to-

excess-return relative of futures versus spot position. As a result, λ can be used to show 

numerically show the attractiveness of investing in cash versus futures. Howard and D’Antonio 

(1984) also show the importance of the relationship between λ and ρ for holding futures. The 
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variable, ρ, or rho, represents the correlation between cash and futures.  Previously, the R2 value 

was used to measure hedging effectiveness, but the authors show that ρ and λ can be used 

together more effectively than the previous methods. They found that when λ=ρ, there was no 

benefit from holding any futures position, but when λ>ρ, the trader would opt to be long futures. 

While the goal of their work was to find a risk-return measure of hedging effectiveness, the 

process also created a new method for solving optimal hedge ratios between cash and futures 

markets.  

 The work by Cecchetti, Cumby, and Figlewski (1988) is consistent with the literature 

noting the importance of including expected returns in models rather than assuming that hedgers 

are pure risk minimizers, but they also add that their review of previous optimal hedging models 

failed to include an allowance for time variations in cash and future price change distributions. 

Their study uses 20-year Treasury Notes hedged with T-Bond futures to show how the problem 

of changing distributions can be solved. Their findings indicated that using an autoregressive 

conditional heteroskedasticity (ARCH) specification of joint distributions they were able to 

obtain a series of optimal hedge ratios for an investor with a logarithmic utility curve. The 

importance of this application is solidified by their empirical results showing the optimal hedge 

ratio varied between 52% to 91% hedged over the period of interest.  

Blank, Carter, and Schmiesing (1991) present an application of portfolio hedging models 

graphically and mathematically as well as a discussion of limitations and practical application of 

the existing theory. The authors note that in a perfect hedging scenario, cash and futures are 

perfectly correlated, implying that the basis remains unchanged; thus, the variance of the 

completely hedged portfolio is zero. They also echo the arguments made earlier regarding 

minimum variance modeling: it should be assumed that traders maximize utility rather than 
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minimize risk. The hedge ratio derived maximizes the utility of returns function written as a 

function of the expected returns, expected variance, and the risk aversion parameter, phi. The 

resulting optimal hedge ratio includes the risk-minimizing hedge ratio as well as the trader’s 

speculative bias. Kahl (1983) shows that when the trader does not have a market bias, the mean-

variance hedge ratio is equal to the minimum-variance hedge ratio.  

Although the mean-variance strategies are an improvement over the minimum-variance 

strategies, they must either have quadradic utility functions or jointly normal returns to be 

consistent with utility maximization (Chen, Lee, and Shrestha 2003). Some researchers have 

worked to find alternatives to the restrictions of the mean-variance modeling. These and other 

hedging models are discussed in a later section.  

2.3.3. Mean Value-at-Risk Framework 

 Value-at-Risk (VaR) has become an increasingly popular measure of risk and has been 

used to gauge the risk levels of investment strategies by financial institutions, insurance 

companies, and trading firms, to name a few. VaR is defined as the amount of losses that will not 

be exceeded within a certain confidence interval over a specified period of time (Vose 2008). To 

clarify, VaR is not a stress-testing or “worst-case scenario” tool, but rather a tool that can be 

deployed to give an estimation of expected losses within a statistical confidence interval. The 

usefulness of VaR is best shown with an example. An investment with a $50 million weekly 

VaR at 95% confidence would indicate that losses will not exceed $50 million 95% of the time. 

Alternatively, it could be said that one out of twenty weeks, a loss will occur that will be greater 

than or equal to $50 million. The use of VaR provides a consistent and relatively simple 

interpretation of risk within companies, and as a result, may be especially useful for mid and 
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upper-level management teams to quickly understand the risk that various levels of the company 

are exposed to.   

 An early application of the VaR methodology at JPMorgan arguably helped grow the 

popularity of VaR as a measure of risk. They developed RiskMetrics™ as a tool to measure and 

manage risk internally, and a version based on the models used by JPMorgan was made available 

to allow market participants and financial institutions to estimate their risk exposure using VaR.  

The software was capable of evaluating the risks of portfolios to help investors understand the 

origins of their risk and the total risk within the portfolio. Additionally, firm-level risk measures 

were available because of the software’s capabilities. For additional details on the methodologies 

and capabilities of the RiskMetrics™ platform see Longerstaey (1996). The creation of the 

software made implementing VaR metrics within a company easier than ever before, leading to 

its popularity in industry and research fields.   

 While the RiskMetrics™ software increased accessibility and use of VaR metrics, it was 

limited to parametric methods that were less computationally intense than simulation models 

(Mausser and Rosen 1999). Mausser and Rosen (1999) add to the understanding of VaR by 

demonstrating simulation-based methods for calculating VaR. Although these methods are less 

relevant today because of the significant advancements in computing technology, their work 

helped build the framework for future studies of simulated VaR calculations. Additionally, 

Mausser and Rosen (1999) decompose portfolio VaR to better understand the assets which 

contribute significant levels of risk to the portfolio.  

 One of the first academic studies available on this topic is a comparison between the 

mean-variance method with VaR modeling for portfolio selection by Alexander and Baptista 

(2002) who offer insight into how mean-variance and VaR models differ, the economic 
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implications of these differences, the relation between mean-VaR and utility maximization, as 

well as an application of E-VaR under the condition of nonnormality. Their study shows that as 

the confidence level of the VaR model is increased to 100%, the mean-VaR efficient set 

converges to the mean-variance efficient set.  

 Chang (2011) also applies the value-at-risk approach to identify optimal hedging 

strategies. The findings indicated that dynamic hedging was better than static hedging strategies. 

Additionally, minimum variance and mean-variance strategies did not perform as well as the 

VaR hedging strategy. The article further elongates the trend of authors rejecting variance as a 

measure of risk and favoring VaR instead. Finally, the empirical results showed that the hedge 

ratio and hedge performance were affected by the coefficient of risk aversion and confidence 

level.  

 Finally, Awudu, Wilson, and Dahl (2016) analyze optimal hedging strategies for an 

ethanol processor using simulation with and without copula dependence. Three different 

strategies for hedging were used that included traditional hedging, linear dependence, and copula 

dependence. Calculations were performed for margins, utility, risk, and hedge ratios for each 

strategy. The study was unique to other literature in that the model was more complex in the 

specification of the variables, and it included both direct hedging for the corn and ethanol 

positions as well as cross-hedging for the products such as corn oil and dried distillers’ grains 

(DDGS).  The results showed an optimal hedging strategy using the VaR framework.  

2.3.4. Conditional-Value-at-Risk 

 While VaR has a number of merits, the tool is not without shortfalls. VaR has been 

criticized for its use of portfolio management and selection because of its lack of subadditivity 

and convexity (Artzner et al. 1999). This means that in some scenarios the VaR of two portfolios 
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may be greater than the VaR of the sum of returns from the two individual portfolio’s. Also, VaR 

can be difficult to optimize as a result of showing multiple local extrema for discrete 

distributions (Gao and Liu 2009). Lastly, as mentioned earlier, VaR does not measure tail losses 

which may be important in certain scenarios. Conditional-value-at-risk, (CVaR) is used in certain 

applications to combat some of these issues. CVaR, also known as Mean Excess Loss, Tail VaR, 

or Mean Shortfall, can be applied to a variety of modeling scenarios and can be especially useful 

for portfolio optimization (Rockafellar and Uryasev 2000).  

 The approach used by Rockafellar and Uryasev (2000) focuses on portfolio optimization 

such that the risk of large losses is minimized under the minimum CVaR framework. In the 

analysis, VaR and CVaR are measured in terms of percentages, and the minimized CVaR 

approach is compared to the minimum variance approach. The empirical study applied to 

hedging was based on work done by Mausser and Rosen (1999). Rockafellar and Uryasev (2000) 

used similar procedures and found that the results of minimizing CVaR were similar to the 

results found by Mausser and Rosen (1999) which minimized VaR in one-instrument hedges. 

The authors show that CVaR can be used more readily in multiple-instrument hedging strategies. 

This application of CVaR could be useful in situations where no futures contract exists for the 

underlying commodity creating a need for cross hedging. 

 CVaR minimization was also applied to hedging equity-linked insurance contracts by 

Melnikov and Smirnov (2012). Partial hedging strategies were utilized as the benefit paid to the 

insured was related to the performance of the financial market but was unable to be perfectly 

hedged. Using CVaR, Melnikov and Smirnov (2012) were able to find the optimal partial 

hedging strategies and also estimate the financial exposure of contracts of a given age.  
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While Rockafellar and Uryasev (2000) and Melnikov and Smirnov (2012) minimized the 

CVaR, Nguyen, Nguyen, and Adegbite (2018), Gao and Liu (2009), and Giamouridis and 

Vrontos (2007) utilize mean-CVaR for portfolio optimization. By applying the mean-CVaR 

model, Gao and Liu (2009) change the problem of portfolio optimization into a linear problem. 

Additionally, historical simulations are used rather than an assumption of a normal distribution. 

Gao and Liu (2009) conclude that mean-CVaR models are “undoubtedly more advantageous” for 

investing in a variety of assets due to the intuitive model design and calculation superiority. Gao 

and Liu (2009) and Giamouridis and Vrontos (2007) compare results from mean-variance 

models and mean-CVaR models. Gao and Liu (2009) used the mean-variance model as a base 

case for the comparison between static and dynamic portfolio allocations where Giamouridis and 

Vrontos (2007) compare the overall performance between the two models. Giamouridis and 

Vrontos (2007) conclude that mean-CVaR outperformed mean-variance in the majority of 

investment universes with various settings. While CVaR was optimal in many applications, 

Giamouridis and Vrontos (2007) also found that mean-CVaR requires sophisticated inputs to 

account for time-variant returns distributions and loses superiority for practical applications as 

transaction costs increase; therefore, they suggest that investors should not rely solely on CVaR 

if simple inputs or high transaction costs are used. 

2.3.5. Other Hedging Frameworks 

 Aside from the most commonly used hedging frameworks such as minimum variance, 

mean-variance, mean-VaR, and mean-CVaR, a variety of other techniques have been used to 

mitigate some of the issues that have been found with the techniques. One issue that commonly 

affects mean-variance strategies is the requirement of a quadradic utility function or jointly 

normal returns for the optimal hedge ratio to maintain consistency with expected utility 
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maximization. Chen, Lee, and Shrestha (2003) present a thorough review of the variety of 

hedging and portfolio optimization techniques that may be used in situations of non-normal 

returns and non-quadradic utility. A summary of their conclusions is presented in this section.  

 To eliminate or relax some of the assumptions surrounding the issues of distributions or 

utility functions, frameworks such as the mean extended-Gini (MEG) coefficient, semivariance 

models, and lower partial moments have been developed. The MEG coefficient minimization 

procedure was used by Cheung, Kwan, and Yip (1990) and Shalit (1995) in the context of 

hedging. The mean-Gini approach was used primarily for studies relating to income inequality, 

but Cheung, Kwan, and Yip (1990) suggested it be used as a new framework for evaluating 

futures and options strategies. One of the benefits of this framework is that the assumption of 

normal returns is no longer needed and did not require quadradic utility functions. Shalit (1995) 

sought to compare the mean-variance approach with the MEG approach. The results indicated 

that when prices followed a normal distribution, the MEG and minimum-variance ratios 

converge.  

 Approaches focusing on the variance of the portfolio were beneficial in some cases, 

focusing purely on the total variance results in ignoring the preferences for upside versus 

downside risk. Losses are never desirable where upside potential is beneficial. The semivariance 

approach allows for this and is applied by Chen, Lee, and Shrestha (2001), Turvey and Nayak 

(2003), Hogan and Warren (1974), and Jong, Roon, and Veld (1997) in a variety of hedging and 

portfolio situations. Hogan and Warren (1974) introduce the benefits of using semivariance in 

place of variance and lay a theoretical framework for further development of semivariance in the 

capital market modeling. Chen, Lee, and Shrestha (2001) use the semivariance approach to 

determine the optimal hedge ratio and compares the effectiveness of the hedge against other 
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commonly used hedging models. Most recently, Turvey and Nayak (2003) evaluated the 

semivariance-minimizing hedge ratio in Kansas City wheat and Texas steers. The study 

compares the minimum semivariance hedge ratio to the minimum variance ratios and finds that 

the two can be different. Additionally, the empirical results found that the semivariance model 

suggested lower optimal hedge ratios than the minimum variance ratios.  

 While many of the most common models used in evaluating and optimizing hedged 

portfolios have been discussed, other researchers have deployed an array of various methods. 

Chen, Lee, and Shrestha (2003) published a detailed complication of many of the methods used 

by researchers. Chen, Lee, and Shrestha (2003) show that some of these methods are based on 

simple ordinary least squares (OLS) regression analysis such as Ederington (1979) and Benet 

(1992) while others like Cecchetti, Cumby, and Figlewski (1988) and Baillie and Myers (1991) 

are based on the conditional heteroscedastic framework. Chen, Lee, and Shrestha (2003) explain 

that still others use the random coefficient method (Grammatikos and Saunders 1983), the 

cointegration method (Chou, Denis, and Lee 1996; Ghosh 1993), or the cointegration-

heteroscedastic method (Kroner and Sultan 1993). The many frameworks used by researchers 

over time have led to an improved understanding of portfolio optimization. The theoretical and 

empirical discussions that follow rely heavily upon the previous work and seek to apply these 

principles in a new way.  

2.4. Background on Optimal Coverage Ratios  

 The concept of optimizing hedging strategies has been of great interest in the academic 

community over the last 80 years, as demonstrated by the review of literature presented in the 

previous sections. While the research has progressed over the years in terms of objective 

functions, computing methods, and practicality of application to industry, nearly all of the 
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research focused on hedging physical grain positions by taking positions in one or more future 

markets.  

This leaves a significant gap in the literature relating to the risk that is faced by basis and 

rail traders. By defining a coverage ratio and a profit function for various merchandising 

scenarios, the utility of the trader can be maximized under various frameworks. Additionally, 

coverage ratios can serve as a new tool for risk management.  

2.5. Summary 

 This chapter provides the necessary background for approaching the research goal of 

finding an optimal coverage ratio for a pure basis trader by introducing the concepts of basis, 

basis trading, mechanics of rail markets, and arbitrage. Furthermore, the chapter highlights the 

risks associated with commodity trading and follows with a presentation of the evolution of 

portfolio hedging models over time.  

Throughout the review of the literature, there seems to be a vast amount of research that 

has been conducted related to portfolio theory. Additionally, portfolio hedging models have 

primarily focused on identifying optimal hedging ratios for firms holding physical grain 

positions and hedging in a futures market. In contrast, limited research has been conducted on 

basis trading and rail trading, and no research develops models to determine optimal coverage in 

these instruments. This study adds value to the existing literature by exploring how elevators or 

traders can apply portfolio models of hedging to their basis positions and optimize their coverage 

ratios to maximize profit subject to their risk tolerances.  
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CHAPTER 3. DETERMINATION OF OPTIMAL COVERAGE RATIOS 

3.1. Introduction 

A number of portfolio optimization models were reviewed in Chapter 2. These models 

included minimum-variance, expected utility maximization under mean-variance and mean-

semivariance, and mean-VaR. Each of these frameworks has been used in hedge ratio 

optimization for traders with cash and futures positions. These models have generally involved a 

trader holding a position in a correlated futures market to mitigate price risk from owning the 

physical grain. When ownership of the physical grain was transferred, the futures positions were 

also liquidated. The primary idea was that gains or losses accrued by holding a physical 

commodity would be offset by the losses or gains accrued by holding opposite futures positions.  

This chapter shifts from hedging in futures to taking coverage in a basis or freight market 

which can be used to manage risk when merchandising grain and managing logistics. The payoff 

functions for each of the models used in the empirical analysis are introduced. Additionally, the 

utility-maximizing objective functions are discussed for both mean-variance and mean-

semivariance approaches. Lastly, the process for analytically solving the optimal coverage ratios 

is shown.  

3.2. Conceptual Framework 

This chapter relies on the concepts introduced in Chapter 2 which included basis and rail 

markets along with factors that affect each of these markets. Basis markets are strongly 

influenced by local supply and demand factors such as local processing and usage demand, 

demand in destination markets, local crop conditions, and local elevator margins (Lorton and 

White 2010). Changes in basis create trading opportunities that can be realized by making 

strategic purchases and sales of the commodity.  
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Three types of basis trading scenarios were introduced in Chapter 2: a back-to-back, a 

long-the-basis, and a short-the-basis. A back-to-back trade consists of purchasing grain and 

selling 100% of it to a destination nearly immediately after (or concurrently with) the purchase to 

secure a margin. Generally, this type of trade leaves small, guaranteed margins for the elevator. 

A merchant may take a long basis position if the basis market in a destination market is expected 

to strengthen. This position is created by purchasing grain at the origin market. The elevator 

owns the grain for a period of time and successfully liquidates the position by selling grain to the 

destination once the market has increased. Conversely, to take a short basis position, the elevator 

may make forward sales of grain at the destination for delivery at a later date and purchase the 

grain prior to delivering it to the destination. The differences in times are denoted throughout this 

thesis as Time 1 and Time 2. The exact timeframe can be specified using specific entry or exit 

dates in the empirical models or can be assumed as a six-month period, depending on the 

distributions used.  

Rail freight is traded similarly. Rail cars (or shuttle trains which commonly consist of 110 

cars) may be bought in advance or at the time they are needed depending on market expectations 

and risk tolerances. Whether a shipper enters a short-the-basis or long-the-basis position, it 

becomes short freight because the grain needs to be shipped at a later time. Purchasing freight in 

advance at known prices rather than purchasing as needed with risky prices is advantageous 

because it allows the origin buying basis to be adjusted for the transportation cost to secure the 

margin from the sale of the grain. If rail freight is at risk, the overall margin is also at risk. Thus, 

including rail freight in the portfolio decision model is necessary.  

While a merchant may desire to take long or short basis positions or have all or no freight 

coverage, management may want to limit the financial risk exposure of the elevator. 
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Additionally, management likely does not want to lose market share or handle less grain to limit 

their risk. Instead, coverage may be taken in the basis or rail markets to allow for handling large 

quantities while managing the financial risk. Coverage can be reported as a value, such as a 

quantity of bushels, or as a percentage or ratio. This study determines optimal coverage ratios for 

various portfolios of basis and rail positions.  

Two coverage ratios are developed to allow for long and short basis positions. Equation 

(3.1) is used in long-the-basis cases.   

 
 ℎ𝐷 =

𝑎𝑚𝑜𝑢𝑛𝑡 𝑠𝑜𝑙𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑇1 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑤𝑛𝑒𝑑 𝑜𝑟 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛 𝑎𝑡 𝑇1
 (3.1) 

Equation (3.1) shows the coverage taken at the destination for a long basis position where: 

 ℎ𝐷 = Coverage taken at destination market 

𝑇1 =  Time Period 1 

For a long-the-basis scenario, Time Period 1 represents the time at which the grain is purchased 

at the origin. At that time, a long position is established, and the elevator becomes exposed to 

basis risk. In that same period, a quantity of grain may be sold to the destination, or covered, at a 

known price to limit risk exposure. For this study, it assumed that the remainder of the grain 

must be sold by Time Period 2. Variable  ℎ𝐷 is reported in a percentage throughout the study. 

 Equation (3.2) is used in short-the-basis cases. 

 
 ℎ𝑂 =

𝑎𝑚𝑜𝑢𝑛𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛 𝑎𝑡 𝑇1
𝑎𝑚𝑜𝑢𝑛𝑡 𝑝𝑟𝑒𝑠𝑜𝑙𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑇1 𝑓𝑜𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑎𝑡 𝑇2

 (3.2) 

Equation (3.2) shows the coverage taken at the origin for a short-the-basis scenario where:  

  ℎ𝑂 = Coverage taken at origin market 

𝑇1 =  Time Period 1   

𝑇2 =  Time Period 2 
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For a short-the-basis scenario, Time Period 1 is the time at which a sale is made to a destination 

market for delivery at Time Period 2. When the sale is made, the elevator becomes short-the-

basis and is at risk that basis moves upward before they purchase grain at Time 2, the period in 

which delivery to the destination must be made. To manage the risk, some of the grain may be 

purchased at the origin during Time Period 1. Variable  ℎ𝑂 is reported in a percentage throughout 

the study. 

 This section showed that basis can be traded by holding long or short basis positions. The 

risk of these positions can be mitigated by taking coverage at the destination for long positions 

and taking coverage at the origin for short positions. The coverage ratios presented in this section 

are used with the following payoff functions.  

3.3. Payoff Function Specifications  

Payoff functions are used to demonstrate a shipper that purchases grain from farmers or 

other elevators and makes sales to a destination market. Two sets of models are presented to 

show long and short basis positions. The first models in each set show a single location with no 

rail risk; the second shows a single location with basis and transportation risk, and finally, a 

special case of long-the basis is shown which involves multiple destination locations and 

transportation risk. The variables used in the equations are presented in Table 3.1. Any variable 

which exhibits randomness is denoted by an asterisk. Table 3.1 does not distinguish between 

random and non-random variables.  
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Table 3.1: Variables and Descriptions 

Variable 

Symbol 

Variable Units Variable Description 

𝜋 Profit Cents per 

Bushel 

The profit functions vary across the models, but it is 

always a function of earned income from the sale of 

grain at a destination location minus the cost of the grain 

at the origin less freight costs. 

ℎ𝐴 or ℎ𝐵 Grain Coverage Ratio 

(At Destination A or 

Destination B) 

Percentage Coverage ratio in the long-the-basis case is defined as 

the quantity sold to the destination at Time 1 divided by 

the quantity owned at the origin needing to be sold by 

Time 2. 

 ℎ𝑂 Grain Coverage Ratio 

(At Origin) 

Percentage Coverage ratio in the short-the-basis cases is defined as 

the quantity of grain purchased at the origin at Time 1 

divided by the quantity of grain sold to the destination 

requiring delivery by Time 2. 

𝑔 Freight Coverage 

Ratio 

Percentage The freight coverage ratio is the quantity of rail 

purchased at Time 1 for use during Time 2 divided by 

the quantity of rail 

𝐵𝐷  Destination Basis Cents per 

Bushel 

The destination basis is shown for various time periods 

in the long-the-basis models. 

 𝐵𝑂 Origin Basis Cents per 

Bushel 

Origin basis is shown for various time periods in the 

short-the-basis models. 

𝑇 Rail Tariff Rate Dollars per 

Car 

Rail tariff rates are assumed to be constant in this study 

as they are relatively stable over time, especially when 

compared to daily car value and basis values. 

𝐹 Daily Car Value 

(DCV) 

Dollars per 

Car 

Daily car values are determined by auctions 

 

3.4. Long-the-Basis Models 

In the long-the-basis models, we assume the elevator has grain in inventory or incoming 

farmer deliveries that have been bought at a set basis. The elevator has the option to contract the 

sale of the grain to the destination at the time of the purchase, Time 1, thus securing a known 

margin or they may wait until a later forced liquidation date, Time 2, due to inventory 

constraints, cash flow constraints, or other constraints with unknown random prices. While the 

profit-maximizing solution in the models would be to sell at whichever time period has higher 

expected prices, a risk-averse and forward-looking trader expects that the future basis and rail 

prices are random and should contract the sale of a portion of the grain at Time 1 and the 
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remainder of the grain at Time 2. The models that follow build a framework for optimizing the 

coverage ratios.  

3.4.1. Model 1.1: Single Origin, Single Destination 

Model 1.1 is the first model in the long-the-basis series. In this model, it is assumed that 

the elevator has a fixed amount of grain purchased at a given price at Time 1 that must be sold by 

Time 2. The merchant can either sell all or a portion of the grain at the destination now or can 

make the sale later. The freight is assumed to be paid by the buyer. 

 𝜋 = ℎ𝐴𝐵𝐷𝐴1 + (1 − ℎ𝐴)𝐵𝐷𝐴2
∗ −  𝐵𝑂1 − 𝑇 − 𝐹 (3.3) 

In this model, profit is the sum of the percentage of sales made immediately as a back-to-

back sale at Time 1 and the later sale of the remaining inventory at a random price, denoted with 

an asterisk. While it is assumed that freight is paid by the buyer, the destination basis data used 

in Chapter 4 is reported for grain that is delivered to the destination. To account for this, the tariff 

rate and daily car values for Time 1 are used to represent the buyer’s cost in acquiring freight and 

are subtracted from the margin that is left for the seller. This could alternatively be shown as:  

 𝜋 = ℎ𝐴(𝐵𝐷𝐴1 − 𝑇 − 𝐹) + (1 − ℎ𝐴)(𝐵𝐷𝐴2
∗ − 𝑇 − 𝐹) −  𝐵𝑂1    (3.4) 

where the tariff and freight are first subtracted from the basis destination price. This is shown to 

clarify that the tariff and freight must be subtracted from a buyer’s offer if the buyer is paying the 

freight, but the results would be the same as in Equation (3.3). Subtracting transportation cost is 

necessary so that the results of Model 1.1 could easily be compared to the later models where 

freight is paid by the seller.  
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3.4.2. Model 2.1: Single Origin, Single Destination with Freight Risk 

Model 2.1 is similar to Model 1.1 in the fact that it shows a single destination and a single 

origin, but now the selling elevator pays the freight, adding freight risk to the equation. 

Mathematically, Model 2.1 is shown as:  

 𝜋 = [ℎ𝐴(𝐵𝐷𝐴1) + (1 − ℎ𝐴)(𝐵𝐷𝐴2
∗ )] − [𝑔𝐹1 + (1 − 𝑔)𝐹2

∗] − 𝐵𝑂1 −  𝑇   (3.5) 

The first section (in the first set of brackets) of the model shows the revenue generated 

from immediate, back-to-back sales and from sales made at a later date with random prices, as in 

Model 1.1 The next section subtracts costs associated with variable shipping costs as a result of 

changing DCV rates. The cost for shipping is the percentage of freight bought at a known price 

at Time 1 plus the percentage of freight booked at an unknown random price at Time 2. Lastly, 

the given basis origin cost and tariff rate are subtracted to give profit.  

3.4.3. Model 3.1: Single Origin, Multiple Destination with Freight Risk 

Model 3.1 continues with a fixed origin price and transportation price risk but is further 

expanded from Model 2.1 to include multiple destinations and freight risk. The mathematical 

representation differs. Tariff rates differ across destinations while DCV does not. Thus, variable 

𝐹, may be at risk and is not location specific where tariff rate 𝑇 is known and is specific to each 

location. As a result, the tariff rate must be subtracted from the destination basis to determine the 

optimal selling location.  

 

𝜋 = {

ℎ𝐴(𝐵𝐷𝐴1 − 𝑇𝐴) + ℎ𝐵(𝐵𝐷𝐵1 − 𝑇𝐵) +
(1 − ℎ𝐴 − ℎ𝐵)𝑀𝐴𝑋[(𝐵𝐷𝐴2

∗ − 𝑇𝐴), (𝐵𝐷𝐵2
∗ − 𝑇𝐵)] 

− [𝑔𝐹1 + (1 − 𝑔)𝐹2
∗] −𝐵𝑂1

} (3.6) 

 The equation shows that profit is the sum of revenues generated from coverage taken at 

Destination A, coverage taken at Destination B, and the maximum of the revenue earned from 

selling to Destination A or B during Time 2 with random prices less the cost of rail freight 
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bought for a known price at Time 1 and at a random cost at Time 2 less the given origin basis. 

The logic behind this model is that the merchandiser covers a portion of the inventory at Time 1 

at one or both of the destinations depending on the prices, tariff rates, and variance of each 

market and will sell the remaining inventory to market with the highest delivered price at 

Time 2.  

3.5. Short-the-Basis Models 

An alternative case can be presented in which the merchant has made forward sales to a 

destination but has not yet purchased grain at the origin. This scenario may occur when the 

merchant is expecting basis to decrease. The merchant is likely to sell all of their remaining 

inventory but may want to further expand on the merchandising opportunity. This may be 

accomplished by entering a short basis position in which grain is sold at the destination for 

delivery at a later time before all the grain is purchased at the origin. The risk-averse merchant 

must then decide what portion of the short sale may be left open with the hope of lower origin 

basis levels before the grain must be delivered to the seller. The models that follow provide the 

means for this type of analysis.  

3.5.1. Model 1.1.1: Single Origin, Single Destination 

As in the long-the-basis case, it is most intuitive to first introduce a case in which there is 

no freight risk. The merchant fixes the sales price at the destination for Time 2, the later delivery 

period, and has to decide what portion of the sale will be covered immediately versus the amount 

that will be left open with the expectation of decreasing prices.  

 𝜋 = 𝐵𝐷2 − ℎ𝑂(𝐵𝑂1) − (1 − ℎ𝑂)(𝐵𝑂2
∗ ) − 𝑇 − 𝐹 (3.7) 

Profit is defined as the fixed basis received from the sale of grain during Time 2 minus 

the percent of grain purchased at the origin for a fixed price at Time 1 minus the percent of grain 
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purchased for an unknown random basis at Time 2. Similar to Model 1.1, transportation costs are 

also subtracted to make the profit values comparable to the later models. Unlike the long-the-

basis case where the randomness of the destination affects revenues, in the short-the-basis 

models, revenues are exogenous and held constant while randomness is introduced with regards 

to the cost of acquiring grain.  

3.5.2. Model 2.1.1: Single Origin, Single Destination with Freight Risk 

A case with one destination with a fixed price and one origin with risk was shown 

without rail risk in Model 1.1.1; the model below is now expanded to include rail risk as was 

done in Model 2.1.  

 𝜋 = 𝐵𝐷2 −  ℎ𝑂(𝐵𝑂1) − (1 −  ℎ𝑂)(𝐵𝑂2
∗ ) − [𝑔𝐹1 + (1 − 𝑔)𝐹2

∗] −  𝑇    (3.8) 

The profit function is mostly unchanged except for the inclusion of rail risk. Profit is 

represented as the margin made from the sale and purchase(s) of grain, minus the total cost of 

freight which includes the freight bought at Time 1 for a known price, the freight bought for an 

unknown price at Time 2, as well as the fixed tariff rate.  

Each of the models has characteristics that allow for various scenarios to be analyzed and 

further understood. Long-the-basis models were presented first, starting with the margin at risk 

due to changing destination prices and expanding into a portfolio including rail and finally 

multiple destinations. The short-the-basis models allow for one origin and one destination and 

can include rail as well.  

3.6. Analytical Derivation of Optimal Coverage Ratios 

 The models presented in the previous sections show the payoffs for various trading 

scenarios. For long basis positions, profits increase if the basis appreciates over time and if the 

trader has grain left to sell at Time 2. In the short basis models, profits increase if the basis 
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declines between Time 1 and Time 2 and if the trader still has grain to purchase at Time 2. In any 

of the models involving rail, the total profit decreases if rail prices increase between Time 1 and 

Time 2 if the trader did not book freight at Time 1. With the profit functions defined, two 

analytical models can be developed to derive optimal coverage ratios for grain and rail. 

3.6.1. Analytical Methods 

The methods for analytically deriving the optimal coverage ratios follow Kahl (1983) and 

Blank, Carter, and Schmiesing (1991). Each of the studies defines a profit or payoff function, a 

variance of profit function, and a utility function which includes the profit, variance of profit, and 

a risk aversion parameter. The expected utility function is maximized by differentiating with 

respect to each variable being optimized. The setup of the analytical models in Blank, Carter, and 

Schmiesing (1991) differ from those used in Kahl (1983) in that Blank, Carter, and Schmiesing 

(1991) defines a variable ℎ for the “proportion of inventory which is hedged or the hedging 

ratio” where Kahl (1983) has separate variables for the quantity of cash and future positions. A 

summary of the approach used by Blank, Carter, and Schmiesing (1991) is given below. They 

begin by defining the change in the value of grain held in inventory as: 

 𝑉̃ = (𝑝2̃ − 𝑝1) + ℎ(𝑓1 − 𝑓2̃)  (3.9) 

where the random variables are denoted with tilde and variables are defined as: 

𝑉̃ =  Change in per unit value of inventory 

ℎ =  Hedging ratio or portion of inventory being hedged 

𝑝1 =  Known cash price at Time 1 

𝑝2̃ =  Random and unknown cash price at Time 2 

𝑓1 = Known futures price at Time 2 

𝑓2̃ =  Random and unknown futures price at Time 2 
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The payoff function assumes that inventory is fixed leaving the changes in cash prices to 

affect the entire inventory value. However, a portion of the grain may be hedged by taking an 

opposite position in the futures market which may be liquidated when the cash position is 

liquidated.  

Next, the expected utility function is defined which used to determine the optimal ℎ as  

 𝑈(𝑅) = 𝐸(𝑅) + Φ𝑣𝑎𝑟(𝑅)  (3.10) 

where the utility of the hedger is represented by 𝑈(𝑅). The utility is a function of the expected 

returns, 𝐸(𝑅), plus an adjustment for risk tolerance, Φ, and the variance of the returns, 𝑣𝑎𝑟(𝑅). 

In this case, the risk aversion parameter is negative, so as risk aversion increases or the variance 

of returns increases, the total utility decreases.  

The variance of returns of the portfolio, 𝑣𝑎𝑟(𝑅) is derived from the random variables and 

their covariances. The variance is represented as  

 𝑣𝑎𝑟(𝑉) = 𝜎𝑝2
2 + ℎ2𝜎𝑓2

2 − 2ℎ𝜎𝑝2𝑓2 (3.11) 

where 𝜎𝑝2
2  is the variance of the cash price at Time 2, 𝜎𝑓2

2  is the variance of the futures price at 

Time 2, and 𝜎𝑝2𝑓2 represents the covariance between cash and futures at Time 2.  

 The payoff function in Equation (3.9) and the variance function in Equation (3.11) can be 

substituted into Equation (3.10) to give the following expected utility function:  

 𝑈(𝑉) = 𝐸(𝑝2)̃ − 𝑝1 + ℎ(𝑓1 − 𝐸(𝑓2̃)) + Φ[𝜎𝑝2
2 + ℎ2𝜎𝑓2

2 − 2ℎ𝜎𝑝2𝑓2]  (3.12) 

After making the substitution, Blank, Carter, and Schmiesing (1991) maximize the utility 

function with respect to ℎ which yields: 

 𝜕𝑈(𝑉)

𝜕ℎ
= 𝑓1 − 𝐸(𝑓2̃) + Φ2𝜎𝑓2

2 −Φ2𝜎𝑝2𝑓2 (3.13) 
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The optimal hedge ratio, ℎ∗, is found by solving for ℎ 

 
ℎ∗ =

𝜎𝑝2𝑓2
𝜎𝑓2
2 −

𝑓1 − 𝐸(𝑓2̃)

Φ2𝜎𝑓2
2  (3.14) 

 The optimal hedge as defined by Blank, Carter, and Schmiesing (1991) has two 

components. The first part of the equation is equal to a minimum variance model and can be 

interpreted as the risk-minimizing hedge, or the hedging demand for futures. The second part of 

the equation makes up the speculative demand which changes based on the trader bias and the 

risk aversion level.  

The process used by Blank, Carter, and Schmiesing (1991) was applied to determine 

optimal coverage ratios in grain and rail portfolios. Sections 3.6.2 and 3.6.3 show analytical 

solutions for Model 1.1 and Model 2.1, respectively. A general mean-variance case is presented 

first with a general mean-variance utility maximization. At the end of each derivation, the 

optimal coverage ratio is derived for a CARA utility function which is used throughout the 

empirical analysis.  

3.6.2. Model 1.1 Analytical Solution 

 Using the same process as Blank, Carter, and Schmiesing (1991), the optimal coverage 

ratio can be determined for Model 1.1. In this case, there is only one variable being optimized, 

ℎ𝐴, which represents the portion of grain sold to the destination versus what is owned at the 

origin. The payoff function and variance of the payoff function are shown along with the 

substitution into the utility function. Lastly, the maximization of the expected utility is completed 

which allows an optimal ℎ𝐴 to be determined. 

 The profit function for Model 1.1 is defined as: 

 𝜋 = ℎ𝐴𝐵𝐷𝐴1 + (1 − ℎ𝐴)𝐵𝐷𝐴2
∗ −  𝐵𝑂1 − 𝑇 − 𝐹 (3.15) 
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The random variables are denoted with an asterisk. Table 3.1 describes the variables. The 

function can be transformed to show the expected profit, 𝐸(𝜋).  

 𝐸(𝜋) = ℎ𝐴𝐵𝐷𝐴1 + (1 − ℎ𝐴)𝐸(𝐵𝐷𝐴2
∗ ) −  𝐵𝑂1 − 𝑇 − 𝐹 (3.16) 

The variance of the profit function is defined as: 

 𝑉𝑎𝑟(𝜋) = (1 − ℎ𝐴)
2𝜎 𝐵𝐷2

2  (3.17) 

where 𝜎 𝐵𝐷1
2  is the variance of the random variable, 𝐵𝐷𝐴2

∗ , and (1 − ℎ𝐴) represents the quantity of 

grain that must be sold during Time 2.  

  Next, a generalized case of expected utility is presented. The generalized utility function 

follows Kahl (1983) in that the risk aversion parameter is positive. Because of the positive risk 

aversion, the variance and risk aversion are subtracted from the expected profit, rather than 

added. This notation is used as it offers a more intuitive application to CARA utility which is 

used in the empirical analysis. 

 𝐸(𝑈(𝜋)) = 𝐸(𝜋) − λ𝑣𝑎𝑟(𝜋)  (3.18) 

The expected profit is 𝐸(𝜋), the variance of profit is 𝑣𝑎𝑟(𝜋), and the risk aversion is captured by 

λ. The risk aversion coefficient is positive so that for low levels of risk aversion, utility is less 

dependent on the variance of profits than at high risk aversion levels. Substituting Equation 

(3.16) and (3.17) into Equation (3.18) gives 

 𝐸(𝑈(𝜋)) = [ℎ𝐴𝐵𝐷𝐴1 + (1 − ℎ𝐴)𝐸(𝐵𝐷𝐴2
∗ ) −  𝐵𝑂1 − 𝑇 − 𝐹] − 𝜆(1 − ℎ𝐴)

2𝜎 𝐵𝐷2
2  (3.19) 

To determine the optimal ℎ𝐴, the utility function is differentiated with respect to ℎ𝐴.  

 𝜕𝐸(𝑈(𝜋))

𝜕ℎ𝐴
= 𝐵𝐷𝐴1 − 𝐸(𝐵𝐷𝐴2

∗ ) + 2𝜆(1 − ℎ𝐴)𝜎 𝐵𝐷2
2  (3.20) 

Setting Equation (3.20) equal to zero and solving for the optimal ℎ𝐴, ℎ𝐴
∗ , yields  

 
ℎ𝐴
∗ =

𝐵𝐷𝐴1 − 𝐸(𝐵𝐷𝐴2
∗ )

2𝜆𝜎 𝐵𝐷𝐴2
2 + 1 (3.21) 
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By using the second-order sufficient conditions for a maximum, it can be shown that ℎ𝐴
∗  is a local 

maximum of the utility function.  

The CARA utility function used in the empirical analysis is defined as  

 𝐸(𝑈(𝜋)) = 𝐸(𝜋) − 0.5Φ𝑣𝑎𝑟(𝜋)  (3.22) 

In the generalized case, 𝜆 represents any weighting on the variance from risk aversion. Setting 

0.5Φ is equal to 𝜆 produces the generalized utility function presented in (3.18). Substituting 

0.5Φ for 𝜆 transforms the generalized coverage ratio to the optimal coverage under CARA 

utility.  

 
ℎ𝐴
∗ =

𝐵𝐷𝐴1 − 𝐸(𝐵𝐷𝐴2
∗ )

Φ𝜎 𝐵𝐷𝐴2
2 + 1 (3.23) 

 The optimal coverage ratio is the difference between the known destination basis at Time 

1 and the expected destination basis at Time 2 divided by the variance and the risk aversion 

parameter, plus one. Depending on the inputs for each of the variables, ℎ𝐴
∗  can exhibit a relatively 

large range of coverage ratio possibilities which are not always feasible. Thus, bounds are 

required such that 0 ≤ ℎ𝐴
∗ ≤ 1. If the calculated ℎ𝐴

∗  exceeds those bounds, the optimal solution 

should be considered either zero or one.  

 The optimal coverage ratio is made up of the numerator, the trader’s bias in the basis 

market, and the denominator which is the impact of risk and risk aversion. When the trader 

expects a basis increase from Time 1 to Time 2, the numerator is negative. For larger levels of 

expected basis increases, the more negative the numerator becomes which leads to lower optimal 

coverage ratios. When the trader expects no basis movement, the numerator becomes zero, 

resulting in an optimal coverage ratio of 100%. If the trader is expecting basis to decrease, the 

numerator is positive, creating an optimal coverage ratio greater than one. If a trader is expecting 

basis decrease, the decision is best described using the short-the-basis models. Risk aversion and 
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variance are accounted for in the denominator. As risk aversion increases and the variance of the 

destination basis increases, the denominator becomes larger which creates larger optimal 

coverage ratios.  

3.6.3. Model 2.1 Analytical Solution  

 The previous section showed an analytical derivation of a single variable optimization. 

This section uses a similar process to derive the optimal ℎ𝐴 and 𝑔, the optimal coverage ratio for 

grain and rail.  

The profit function for Model 2.1 is defined as: 

 𝜋 = [ℎ𝐴(𝐵𝐷1) + (1 − ℎ𝐴)(𝐵𝐷2
∗ )] − [𝑔𝐹1 + (1 − 𝑔)𝐹2

∗] − 𝐵𝑂1 −  𝑇 (3.24) 

The random variables are denoted with an asterisk. Table 3.1 describes the variables. Expected 

profit, 𝐸(𝜋) is shown with the following transformation.  

 𝐸(𝜋) = [ℎ𝐴(𝐵𝐷1) + (1 − ℎ𝐴)𝐸(𝐵𝐷2
∗ )] − [𝑔𝐹1 + (1 − 𝑔)𝐸(𝐹2

∗)] − 𝐵𝑂1 −  𝑇 (3.25) 

The variance of the profit function is defined as:  

 𝑉𝑎𝑟(𝜋) = (1 − ℎ𝐴)
2𝜎 𝐵𝐷2

2 + (1 − 𝑔)2𝜎 𝐹2
2 + 2(1 − ℎ𝐴)(1 − 𝑔)𝜎 𝐵𝐷2, 𝐹2 (3.26) 

where 

𝜎 𝐵𝐷2
2  =  the variance of the random variable, 𝐵𝐷2

∗  

 𝜎 𝐹2
2  =  the variance of the random variable, 𝐹2

∗ 

𝜎 𝐵𝐷2, 𝐹2=  the covariance between random variables 𝐵𝐷2
∗  and 𝐹2

∗ 

The generalized utility function is defined as  

 𝐸(𝑈(𝜋)) = 𝐸(𝜋) − λ𝑣𝑎𝑟(𝜋)  (3.27) 

Substituting Equations (3.25) and (3.26) into Equation (3.27) yields: 

 
𝐸(𝑈(𝜋)) = {

[ℎ𝐴(𝐵𝐷1) + (1 − ℎ𝐴)𝐸(𝐵𝐷2
∗ ) − 𝑔𝐹1 − (1 − 𝑔)𝐸(𝐹2

∗) − 𝐵𝑂1 −  𝑇]

−λ[(1 − ℎ𝐴)
2𝜎 𝐵𝐷2

2 + (1 − 𝑔)2𝜎 𝐹2
2 + 2(1 − ℎ𝐴)(1 − 𝑔)𝜎 𝐵𝐷2, 𝐹2]

} (3.28) 
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To determine the optimal ℎ𝐴 and 𝑔, the utility function must be differentiated with 

respect to ℎ and 𝑔.  

 𝜕𝐸(𝑈(𝜋))

𝜕ℎ𝐴
= 𝐵𝐷1 − 𝐸(𝐵𝐷2

∗ ) + 2𝜆(1 − ℎ𝐴)𝜎 𝐵𝐷2
2 + 2λ(1 − 𝑔)𝜎 𝐵𝐷2, 𝐹2 (3.29) 

 𝜕𝐸(𝑈(𝜋))

𝜕𝑔
= −𝐹1 − 𝐸(𝐹2

∗) + 2λ(1 − g)𝜎 𝐹2
2 + 2λ(1 − ℎ𝐴)𝜎 𝐵𝐷2, 𝐹2 (3.30) 

This yields a system of linear equations that can be solved using elimination or other methods.  

The resulting optimal coverage ratio for grain is  

 

ℎ𝐴
∗ =

{
  
 

  
 
𝐸(𝐵𝐷2

∗ ) − (𝐵𝐷1𝜎 𝐹2
2 )

2𝜆
−
𝐹1 + 𝐸(𝐹2

∗)𝜎 𝐵𝐷2, 𝐹2

2𝜆
+

𝜎 𝐹2
2 (𝜎 𝐵𝐷2, 𝐹2 − 𝜎 𝐵𝐷2

2 ) + 𝜎 𝐵𝐷2, 𝐹2(𝜎 𝐵𝐷2, 𝐹2 − 𝜎 𝐹2
2 )

𝜎 𝐵𝐷2, 𝐹2
2 − 𝜎 𝐵𝐷2

2 𝜎 𝐹2
2

}
  
 

  
 

 (3.31) 

The resulting optimal coverage ratio for rail is 

 

𝑔∗ =

{
  
 

  
 
𝐸(𝐵𝐷2

∗ ) − (𝐵𝐷1𝜎 𝐵𝐷2, 𝐹2)
2𝜆

−
𝐹1 + 𝐸(𝐹2

∗)𝜎 𝐵𝐷2
2

2𝜆
+

𝜎 𝐵𝐷2
2 (𝜎 𝐹2

2 − 𝜎 𝐵𝐷2, 𝐹2) + 𝜎 𝐵𝐷2, 𝐹2(𝜎 𝐵𝐷2
2 − 𝜎 𝐵𝐷2, 𝐹2)

𝜎 𝐹2
2 𝜎 𝐵𝐷2

2 − 𝜎 𝐵𝐷2, 𝐹2
2

}
  
 

  
 

 (3.32) 

By using the second-order sufficient conditions for a maximum, it can be shown that ℎ𝐴
∗  is a local 

maximum of the utility function.  

The CARA utility function used in the empirical analysis is defined as  

 𝐸(𝑈(𝜋)) = 𝐸(𝜋) − 0.5Φ𝑣𝑎𝑟(𝜋)  (3.33) 

In the generalized case, 𝜆 represents any weighting on the variance from risk aversion. Setting 

0.5Φ is equal to 𝜆 produces the generalized utility function presented in (3.18). Substituting 

0.5Φ for 𝜆 transforms the generalized coverage ratio to the optimal coverage under CARA 

utility.  
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The resulting optimal coverage ratio for grain is  

 

ℎ𝐴
∗ =

{
  
 

  
 
𝐸(𝐵𝐷2

∗ ) − (𝐵𝐷1𝜎 𝐹2
2 )

Φ −
𝐹1 + 𝐸(𝐹2

∗)𝜎 𝐵𝐷2, 𝐹2

Φ +

𝜎 𝐹2
2 (𝜎 𝐵𝐷2, 𝐹2 − 𝜎 𝐵𝐷2

2 ) + 𝜎 𝐵𝐷2, 𝐹2(𝜎 𝐵𝐷2, 𝐹2 − 𝜎 𝐹2
2 )

𝜎 𝐵𝐷2, 𝐹2
2 − 𝜎 𝐵𝐷2

2 𝜎 𝐹2
2

}
  
 

  
 

 (3.34) 

The resulting optimal coverage ratio for rail is 

 

𝑔∗ =

{
  
 

  
 
𝐸(𝐵𝐷2

∗ ) − (𝐵𝐷1𝜎 𝐵𝐷2, 𝐹2)
Φ −

𝐹1 + 𝐸(𝐹2
∗)𝜎 𝐵𝐷2

2

Φ +

𝜎 𝐵𝐷2
2 (𝜎 𝐹2

2 − 𝜎 𝐵𝐷2, 𝐹2) + 𝜎 𝐵𝐷2, 𝐹2(𝜎 𝐵𝐷2
2 − 𝜎 𝐵𝐷2, 𝐹2)

𝜎 𝐹2
2 𝜎 𝐵𝐷2

2 − 𝜎 𝐵𝐷2, 𝐹2
2

}
  
 

  
 

 (3.35) 

These analytical solutions show that whether finding an optimal coverage ratio for grain 

or rail, similar inputs are required. This is because there is a relationship between grain and rail 

prices that requires the covariance term. A trader may expect basis or DCV to increase, decrease, 

or remain the same. The optimal coverage ratios vary based on the amount of expected market 

movement, the risk aversion level of the trader, and the correlation between the markets. If the 

trader is expecting an increase in basis, the optimal coverage ratio is expected to be lower than 

100% and approach 0% as risk aversion decreases and the amount of upside in basis increases. If 

basis is expected to decrease, the optimal coverage ratio for a long position is expected to be 

100%. If the basis is expected to remain the same, the optimal coverage ratio likely is between 

0% and 100%, depending on the risk aversion level and the standard deviations of the markets. 

Regardless of the bias, as risk aversion increases, the optimal coverage ratio approaches 100%.  

Both of the optimal coverage ratios include the trader market bias for both destination 

basis and daily car values as well as a risk minimizing portion. For example, for ℎ𝐴
∗ , the first row 

shows the trader’s bias for the basis market by subtracting the expected Time 2 basis from the 
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known Time 1 basis, weighted for risk aversion. Next, the trader’s bias for the rail market is 

introduced, also weighted for risk aversion. Lastly, the risk-minimizing solution is shown which 

involves the interaction between the variance of basis and daily covariances along with their 

covariances.  

These equations may be interpreted similarly to Equation (3.14) which shows the hedging 

and speculative demand. In this case, there are no futures to be optimized, but positions are taken 

in related instruments, in this case, 𝐵𝐷2
∗  and 𝐹2

∗. In Equations (3.34) and (3.35), the first term 

captures the bias. In this sense, the bias is similar to the speculative demand for the instrument. If 

there is bias in the basis or freight market, it impacts the speculative demand for forward 

coverage. The bottom two rows of Equations (3.34) and (3.35) capture the demand for risk 

mitigation. Similar to hedging demand, this is derived using the standard deviations of each 

market and the intermarket correlations.  

3.7. Summary 

This chapter transitions from the accepted understanding of hedging ratios by defining 

coverage ratios for grain and rail. The optimal coverage ratio for long basis position describes 

what portion of grain is sold to the destination at Time 1 relative to the ownership of grain at 

Time 1. The coverage ratio for the short basis position describes what portion of grain is bought 

at the origin at Time 1 relative to the amount that would need to be delivered to the destination at 

Time 2. The rail coverage ratio describes the portion of rail purchased at Time 1 relative to the 

quantity of rail capacity required at Time 2.  

The payoff functions were introduced for two sets of models for long and short basis 

positions along with a summary of the variables that are used throughout the analysis. The long-

the-basis models have a defined buying price with an option to sell grain to the destination at 
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Time 1 or Time 2 which leaves revenue at risk of changing destination prices. In contrast, the 

short-the-basis models have a defined selling price at the destination and may purchase the grain 

at Time 1 or Time 2 which leaves the cost at risk of changing origin prices. A rail position is 

added to each set of models in which the elevator is short rail and must buy rail at Time 1 or at 

Time 2. Managing risk due to basis or rail is significant for overall margin management.  

Lastly, a summary of how Blank, Carter, and Schmiesing (1991) derive an optimal hedge 

ratio is presented. Following their process, an analytical solution is derived for Model 1.1 and 

Model 2.1. The analytical solution for Model 1.1 shows that as the basis is expected to increase 

between Time 1 and Time 2, the optimal coverage ratio decreases. Additionally, the bias of the 

trader impacts the coverage ratios. If basis is expected to increase dramatically, the optimal 

coverage ratio should be lower than if the basis is only expected to increase slightly. 

Furthermore, the optimal coverage ratio increases as risk aversion and the variance of the 

destination basis increases.  
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CHAPTER 4. EMPIRICAL PROCEDURES 

4.1. Introduction 

Throughout this thesis, the logic and relevance for optimizing basis coverage ratios have 

been developed. Literature relating to this topic is focused primarily on hedge ratios that involve 

a trader holding a physical commodity position, taking an opposite position in a related futures 

market, and liquidating both positions at a later time in order to maximize a given objective 

function. Unlike futures hedging problems, basis coverage problems involve deciding what 

portion of a purchase or sale of grain should be made immediately versus at a deferred date 

under various levels of risk tolerance. The previous chapter presented a theoretical framework 

for optimizing coverage ratios using mean-variance. Using previous literature as a guide and the 

theory shown in the last chapter, we now transition to the empirical models.  

This chapter presents two sets of models which are designed to evaluate common 

merchandising scenarios. While the models in each series are similar, they differ in that the long-

the-basis series assumes the merchant has already purchased grain at the origin and now must 

decide how much to sell to the destination while the short-the-basis series assumes the merchant 

has sold grain to the destination and must decide how much coverage should be taken at the 

origin. Generally, it is assumed that when a merchandiser is expecting basis levels to increase 

they would hold a long basis position, and if they are expecting a decrease in the basis, they hold 

a short basis position. The first models in each series focus only on the grain portion and are later 

expanded to include freight and multiple locations.  

The models are evaluated under the mean-variance and semivariance frameworks using 

historical BestFit™ distributions and time series forecasted distributions. The objective functions 
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are discussed in detail followed by the data and historical BestFit™ and time series forecasted 

distributions. Lastly, the simulation procedures are presented.  

4.2. Model Assumptions and Specifications  

 Chapter 3 introduced and defined the coverage ratios that are used throughout the 

empirical analysis. Separate definitions of coverage ratios are required for long and short basis 

positions. In a long-the-basis case, coverage is taken at the destination and is defined as the 

amount of grain sold to the destination at Time 1 divided by the amount of grain owned at the 

origin. In the short-the-basis case, coverage is taken at the origin and is defined as the amount of 

grain purchased at the origin at Time 1 divided by the amount of grain presold to the destination 

for delivery by Time 2. The coverage is taken in the rail market by making forward purchases. 

The rail coverage ratio is defined as the quantity of rail purchased at Time 1 divided by the 

amount of rail capacity required at Time 2.  

The models used in the empirical analysis were discussed in Chapter 3. The models are 

specified to illustrate the applications for coverage ratios. Two series of models are presented: 

one for long basis positions and another for short basis positions. Within the series, the models 

increase in complexity from single market cases to multi-market optimizations.   

The goal of the models that follow is to determine optimal coverage ratios for base case 

scenarios and to demonstrate how various levels of risk aversion, standard deviations of prices, 

and the relationships among the individual parts of the portfolio can have substantial effects on 

optimal coverage ratios. To demonstrate these concepts, some assumptions are required.  

4.2.1. Model Assumptions 

First, it assumed that the elevator acts as a pure basis trader. This means that the elevator 

is not exposed to futures market price risk. To allow for a pure basis trading portfolio, it is 
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assumed that the elevator is a naïve hedger, holding an equal and opposite position in the futures 

market as in the cash market to eliminate futures market price risk. Additionally, it is further 

assumed that the hedges are placed in the month that the merchandiser plans to liquidate the cash 

position so that there is not exposure to futures market spread risk.  

In reality, an elevator likely holds many types of grains with varying inventories, farmer 

deliveries, and forward selling opportunities. To find optimal coverage ratios and demonstrate 

various relationships that exist within the portfolio selection problem, the elevator’s position is 

simplified to a quantity of grain sold relative to a given inventory or quantity of grain purchased 

relative to a given quantity of forward sales. If the problem was to be expanded, correlation 

parameters between the additional commodity’s markets would be required.  

Assumptions are also made regarding the timing of sales and deliveries of grain. Within 

this study, purchases or sales may be made in one period with the delivery occurring during 

another. This is a relatively bold assumption as basis is always tied to a specific delivery period. 

The assumption of taking coverage at Time 1 for delivery at Time 2 in the grain market allows 

the timing on the purchases of freight to differ from the sales of grain. Additionally, the futures 

and basis market may at times offer incentives to store, known as contango or a carry in the 

market. In this study, it is assumed that there is no cost for the elevator to carry grain into later 

delivery periods and that the market is not incentivizing storage. 

Furthermore, it assumed that the distributions do not change. When a distribution is 

derived for Time 1, it is expected that the distribution may be carried forward to a later time 

period, Time 2. Time 2 may occur anywhere between a day in advance to multiple years in 

advance.  



 

58 

Tariff rates tend to be relatively stable, so tariff is assumed to be constant throughout the 

study. Freight risk is captured by changes in the daily car value (DCV) which can have high 

volatility across a large range of prices and is correlated to basis as shown below.  

4.2.2. Long-the-Basis Models 

The long-the-basis models assume that an elevator in Jamestown, ND has ownership of 

soybeans either in storage or through forward contracts at Time 1 and the grain must be sold to 

an exporter in the PNW by Time 2. The goal of models in this series is to determine the optimal 

quantity of grain to sell at Time 1. The models increase in complexity with the first assuming no 

rail risk, the second including rail risk, and the third including an alternative destination market. 

In the long-the-basis cases, margin risk results from changing basis levels at the destination 

market as well as changes in rail freight when applicable. Random variables are denoted by an 

asterisk.  

4.2.2.1. Single Origin, Single Destination: (Model 1.1) 

Model 1.1 assumes a merchant has ownership of a quantity of grain in Jamestown, ND 

and must decide how much of the grain should be covered now or at a forced liquidation date, 

Time 2. It is assumed that the freight is paid by the buyer.  

 𝜋 = ℎ𝐴𝐵𝐷𝐴1 + (1 − ℎ𝐴)𝐵𝐷𝐴2
∗ −  𝐵𝑂1 − 𝑇 − 𝐹 (4.1) 

Profit is defined as the portion of revenues generated from sales at the PNW during Time 

1 at known prices and the portion of revenues generated from random prices at Time 2 minus the 

cost of acquiring grain at Jamestown minus the tariff and DCV. Because the destination prices 

are reported as grain delivered to the PNW, tariff and DVC are subtracted to represent the 

buyer’s cost in acquiring freight which is passed on to the seller of the grain. This is discussed in 

detail in Chapter 3.  
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4.2.2.2. Single Origin, Single Destination with Freight Risk: (Model 2.1) 

Model 2.1 expands upon Model 1.1 by adding rail risk into the equation.  

 𝜋 = [ℎ𝐴(𝐵𝐷𝐴1) + (1 − ℎ𝐴)(𝐵𝐷𝐴2
∗ )] − [𝑔𝐹1 + (1 − 𝑔)𝐹2

∗] − 𝐵𝑂1 −  𝑇   (4.2) 

The first part of the equation represents the revenues earned from the sale of soybeans to 

the PNW while the second part subtracts the cost of rail cars booked at Time 1 at known prices 

and the cost of cars booked at Time 2 at random prices. The cost of acquiring the soybeans in 

Jamestown and the tariff rate which are assumed constant are also subtracted. 

4.2.2.3. Single Origin, Multiple Destination with Freight Risk: (Model 3.1) 

The last long-the-basis model illustrates a merchant who may sell to multiple destinations 

at Time 1 and Time 2. Variable ℎ𝐴 represents the portion of grain covered at the PNW at Time 1 

while variable ℎ𝐵 represents the portion of grain covered at St. Louis at Time 1.  

 

𝜋 = {

ℎ𝐴(𝐵𝐷𝐴1 − 𝑇𝐴) + ℎ𝐵(𝐵𝐷𝐵1 − 𝑇𝐵) +
(1 − ℎ𝐴 − ℎ𝐵)𝑀𝐴𝑋[(𝐵𝐷𝐴2

∗ − 𝑇𝐴), (𝐵𝐷𝐵2
∗ − 𝑇𝐵)] 

− [𝑔𝐹1 + (1 − 𝑔)𝐹2
∗] −𝐵𝑂1

} (4.3) 

Rail tariffs differ across locations, so it is subtracted from the destination basis. Revenue 

is a function of sales made to the PNW and St. Louis at Time 1 at known prices plus the sales 

made at Time 2 at random prices plus the sale of the remaining grain at Time 2 to the destination 

with the highest delivered price. The cost of acquiring rain and rail is subtracted similarly to 

Model 2.1. 

4.2.3. Short-the-Basis Models 

In the short-the-basis models, it is assumed that at Time 1 an elevator in Jamestown, ND 

makes forward sales of soybeans to a destination in the PNW for delivery by Time 2. The 

elevator may purchase the soybeans during Time 1 to secure a margin or wait until Time 2 with 

hopes of lower basis levels. The goal of these models is to determine the optimal coverage levels 
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that should be taken at the origin. In this case, the margin risk is due to changing costs of 

acquiring the grain at the origin as well as changing rail prices when applicable. The first model 

only includes origin basis risk, and the second includes rail risk. Random variables are signified 

with an asterisk.  

4.2.3.1. Single Origin, Single Destination: (Model 1.1.1) 

Model 1.1.1 is similar to Model 1.1 in that freight is assumed to be paid by the buyer 

which eliminates the risk of price changes in the freight market.  

 𝜋 = 𝐵𝐷𝐴2 − ℎ𝑂(𝐵𝑂1) − (1 − ℎ𝑂)(𝐵𝑂2
∗ ) − 𝑇 − 𝐹 (4.4) 

Profit is defined as the revenue from a sale of grain at Time 1 to the PNW delivered by 

Time 2 minus the cost of acquiring a portion of the grain in Jamestown at a known price minus 

the cost of acquiring the remaining grain in Jamestown at Time 2 less tariff and DCV.   

4.2.3.2. Single Origin, Single Destination with Freight Risk: (Model 2.1.1) 

Model 2.1.1 introduces rail risk similarly to Model 2.1 The revenues and costs related to 

the grain transaction remain unchanged.  

 𝜋 = 𝐵𝐷𝐴2 −  ℎ𝑂(𝐵𝑂1) − (1 − ℎ𝑂)(𝐵𝑂2
∗ ) − [𝑔𝐹1 + (1 − 𝑔)𝐹2

∗] −  𝑇    (4.5) 

The profit function now is defined as the revenues earned from the sale of grain at the 

PNW at known basis levels minus the cost of purchasing grain in Jamestown at known levels at 

Time 1 and at unknown levels at Time 2. The costs of freight are subtracted which is made up of 

the cost of freight at Time 1 and the unknown cost of freight at Time 2.  

4.3. Objective Function Specifications  

To determine optimal coverage ratios, an objective function must be defined which 

corresponds to the decision maker’s utility function. The optimal coverage ratios were 

determined analytically in Chapter 3 using a generalized utility function with the mean-variance 
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framework. This section presents two objective functions that are used to find empirical solutions 

based on mean-variance and mean-semivariance.  

4.3.1. Mean-Variance 

The application of mean-variance modeling for hedge ratios was demonstrated by Blank, 

Carter, and Schmiesing (1991) and Kahl (1983), among others. The E-V framework offers 

advantages in risk modeling over the minimum-variance framework as it allows for returns to be 

maximized while minimizing the variance of the returns – a more realistic approach than simply 

minimizing variance. Assuming a constant absolute risk aversion (CARA) utility function, the 

expected utility for the decision-maker can be shown as:  

  𝐸[𝑈(𝜋)] = 𝐶𝐸[𝑈(𝜋)] = 𝐸(𝜋) − 0.5Φ𝑣𝑎𝑟(𝜋)    (4.6) 

where 𝐸(𝜋) is the expected return, Φ is the CARA risk aversion coefficient, and 𝑣𝑎𝑟(𝜋) is the 

variance of returns.  

The mean-variance framework assumes that the decision-maker views upside and 

downside risk equally. This framework is common in the literature, likely because of the ease of 

interpretation, but it does not necessarily reflect the thinking of most traders or managers.   

4.3.2. Mean-Semivariance 

Under mean-variance, the coverage ratio would be the same for the right or left-skewed 

distributions given the same mean and variance of the distribution. When depicted graphically as 

shown in Figure 4.1 however, it is apparent that a right-skewed distribution for a profit would be 

preferable to the risk associated with a left-skew (“Left Skewed vs. Right Skewed Distributions” 

2021).  
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Figure 4.1: Left vs Right Skewed Distributions  

While the mean-semivariance framework seems to be less prevalent in the literature, 

some advantages exist when evaluated using skewed distributions of data. The mean-

semivariance method only tries to avoid downside deviations from profit, rather than the mean-

variance which tries to minimize the variance of the profit. The CARA utility function is still 

assumed and semivariance of returns is substituted for the variance of returns such that: 

  𝐸[𝑈(𝜋)] = 𝐶𝐸[𝑈(𝜋)] = 𝐸(𝜋) − 0.5Φsemi𝑣𝑎𝑟(𝜋)    (4.7) 

where 𝐸(𝜋) is the expected return, Φ is the CARA risk aversion coefficient, and 𝑠𝑒𝑚𝑖𝑣𝑎𝑟(𝜋) is 

the semivariance of returns.  

4.4. Data 

The data used in this study serves to illustrate the effectiveness and interpretation of the 

models. While specific locations and commodities were chosen, the purpose of the data is to 

serve as an example of conditions that a merchant may face, not necessarily to be representative 

of a general time period or location.  
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4.4.1. Data Sources 

This study used weekly data collected for April 2018 through February of 2021 and was 

analyzed over various time periods. Base case scenarios evaluated using historical BestFit™ and 

time series distribution used data from July 24, 2020 to January 29, 2021 which allowed recent 

price history to be shown without structural breaks in the data. Data was collected primarily from 

TradeWest, with supplemental data from Thomson Reuters Eikon. Even with supplemental data, 

small gaps remained which were filled using linear interpolation.   

The sources of data collected are shown in Table 4.1 below. 

Table 4.1: Data Sources 

Data Source Data Description 

Basis Data TradeWest Brokerage, 2021. Weekly data was reported in 

$/bu and converted to c/bu. 

Supplemental Basis Data Thomson Reuters, 2021. Weekly data was reported in 

$/bu and converted to c/bu. 

PNW Rail Tariff Data Burlington Northern Santa Fe, 

2021a. 

Current tariff rates were 

reported in $/car and were 

converted to c/bu. 

St. Louis Tariff Data Burlington Northern Santa Fe, 

2021b. 

Current tariff rates were 

reported in $/car and were 

converted to c/bu. 

Daily Car Value TradeWest Brokerage, 2021. Daily car values were 

reported in $/car and 

converted to c/bu. 

 

4.4.2. Data Behavior 

A summary of the collected data follows which includes graphical representations of the 

data as well as descriptions of the data behavior.   
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Figure 4.2: Basis Values Over Time 

Basis is reported for locations in the Pacific Northwest, St. Louis, and a shipper elevator 

in Jamestown, ND. The x-axis shows the date, and the y-axis shows the basis values which are 

reported in cents per bushel. The data exhibits a degree of seasonality indicated by temporary 

decreases in the basis levels around the months of September, October, and November. The 

PNW basis shows this the most clearly, but seasonality can be observed in each of the data sets. 

The seasonal patterns create merchandising opportunities, but risk still exists. For example, the 

Jamestown basis exhibited basis decreases during the harvest seasons in 2018 and 2019, but in 

the Fall of 2020, the basis increased while it decreased at the PNW. While the various basis 

markets tend to be positively correlated, the correlation is not stable (as shown in a following 

table) and has significant impacts on the results. 
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Figure 4.3: 20-Week Moving Standard Deviation of Basis 

While Figure 4.2 showed the seasonality of the basis values, Figure 4.3 shows the 

standard deviation of basis is also seasonal. The time period of 20 weeks was chosen as it is a 

similar amount of time for the grain positions to be held throughout the estimation procedures. 

The date listed on the x-axis corresponds to the final week of the observed time period. This 

means that in the weeks leading up to November, standard deviation tends to increase. While the 

standard deviations tend to be positively correlated, they do differ at times. For example, in 

October of 2020, the standard deviation of the St. Louis basis was increasing while the standard 

deviation of the PNW basis was increasing. The implications of changes in standard deviations 

within a market are demonstrated using sensitivity analysis in Chapter 5.  
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Figure 4.4: Daily Car Values Over Time 

Figure 4.4 shows the changes in daily car values over time in dollars per car on the left 

axis and in cents per bushel on the right axis. The chart demonstrates the significance of freight 

to the elevator’s profit margins, especially compared to the changes in basis values. The daily car 

values have a larger range and standard deviation, which impacts the risk that is associated with 

holding an open rail position.  
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Figure 4.5: 20-Week Moving Standard Deviation of Daily Car Values 

Figure 4.5 shows how the standard deviation of DCV changes throughout time. The 

standard deviation of the rail freight tends to be more stable than the standard deviations of the 

basis levels. Understanding changes in the standard deviations is important to the estimation 

procedures as the standard deviation may change based on the data selection process.  

In addition to changes in prices and standard deviations that occur in the individual 

market, the relationships between the markets change over time. Figure 4.6 combines the basis 

and daily car values to illustrate the relationship between the raw data. Figure 4.7 below shows 

that in various 20-week periods, the correlations between the different variables change 

significantly. Thus, the selection of data can alter the correlations observed between the markets, 

and affect optimal coverage ratios. The effects of these changes are discussed in detail in Chapter 

5 using sensitivity analysis.  
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Figure 4.6: Basis and Daily Car Values Over Time 

 

Figure 4.7: 20-Week Moving Correlations  
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The next set of tables shows the correlations that are used throughout the study for both 

long-the-basis and short-the-basis models.  

Table 4.2: Historical BestFit™ Correlations Used in Long-the-Basis Models 

Correlation PNW Basis St. Louis Basis Daily Car Value 

PNW Basis 1.000   

St. Louis Basis -0.617 1.000  

Daily Car Value 0.372 0.020 1.000 

 

Table 4.2 shows the correlations between the variables used in the analysis. It is 

important to note that depending on the time period chosen, the correlations between the 

variables can differ drastically as shown by Figure 4.7. The correlation between each of the 

markets is not surprising except for the correlation between the PNW and St. Louis basis 

markets. Figure 4.7 shows that this correlation is not necessarily typical, but it is the most 

recently observed correlation.  

Table 4.3 shows the correlations between the Jamestown basis and the daily car values 

for the data used in the short-the-basis models.  

Table 4.3: Historical BestFit™ Correlations Used in Short-the-Basis Models 

Correlation Jamestown Basis Daily Car Value 

Jamestown Basis 1.000  

Daily Car Value -.055 1.000 

 

4.4.3. Distributions 

The five models presented are evaluated under both the mean-variance and mean-

semivariance frameworks. The analysis is conducted using historical BestFit™ distributions as 

well as time series forecasted distributions. This section discusses the usage of these distributions 

and the benefits and downfalls of each method.  
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4.4.3.1. Overview of Historical BestFit™ (Naïve) Distributions 

The models are first evaluated using historical BestFit™ distributions. These 

distributions should be interpreted as “naïve distributions” as it assumes the trader expects the 

distribution of prices and correlations between markets to remain the same across time. The 

primary advantage of fitting price history, a time series variable, to non-time series distributions 

is that it allows for the standard deviations of the variables to be easily modified. For example, a 

variable that has a normal distribution with a given mean and standard deviation could be easily 

adjusted to show the effects of an increase or decrease of standard deviation on the optimal 

coverage ratio. Another benefit of using a historical BestFit™ distribution is the ability to 

compare results against the time series forecasted distributions.  

4.4.3.2. Overview of Time Series (Anticipatory) Distributions 

One of the disadvantages of historical distributions is the reliance on prices that are one 

day old or one year old which creates an additional problem of trying to determine the proper 

period to use in the model. Time series forecasting solves this issue by placing more weight on 

the events that happened most recently as this type of distribution creates projections for future 

prices. With this type of strategy, the trader is assumed to anticipate the timeframe for 

liquidation. Additionally, the standard deviation of the forecast gets larger as the forecasting time 

period gets larger. Figure 4.8 demonstrates this below.  
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Figure 4.8: Increasing Standard Deviation of Forecast Over Time 

The increasing standard deviation is shown by the shaded cone. The confidence level of 

the forecast is depicted by the lighter and darker shades. 

4.4.3.3. Historical BestFit™ (Naïve) Distributions and Fit Parameters 

The BestFit™ function of the @Risk™ software package is used to fit distributions to 

sets of data based on Bayesian information criterion (BIC). For purposes of consistency, the data 

used in the historical BestFit™ distributions is the same as what is used in the time series 

distributions shown in the next section. The following figures show the fitted distributions and 

correlations.   
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Figure 4.9: Historical BestFit™ Distribution of PNW Basis 

 

Figure 4.10: Historical BestFit™ Distribution of St. Louis Basis 
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Figure 4.11: Historical BestFit™ Distribution of Daily Car Values 

 

Figure 4.12: Historical BestFit™ Distribution of Jamestown Basis 
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Table 4.4: @Risk™ Historical BestFit™ Distribution Functions 

Variable Distribution Function BIC Score 

PNW Basis Normal RiskNormal(122.161,15.235) 237.64546 

St. Louis Basis ExtValueMin RiskExtValueMin(27.6496,8.7965) 215.997400 

Daily Car Value ExtValue RiskExtValue(336.69,299.32) 416.5110 

Jamestown Basis Normal RiskNormal(-67.4888,4.9436) 174.618301 

 

Table 4.4 shows the distributions and the functions that have been assigned to each 

variable along with the BIC score.  

4.4.3.4. Time series (Anticipatory) Distributions and Fit Parameters 

An alternative, and arguably more applicable, method of approaching the coverage ratio 

problem is utilizing time series forecasting methods to identify a range of possible basis values 

for deferred time periods. @Risk™’s time series BestFit™ function allows time series data to be 

fitted to three different categories of distributions including autoregressive moving average 

(ARMA), geometric Brownian motion (GBM), and autoregressive conditional heteroscedasticity 

(ARCH) (“Time Series Functions” 2021). Furthermore, BestFit™ can detect and correct for 

trends, seasonality, or stationary before creating the distribution.  

The distributions that were used for the time series analysis are presented below.  
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Figure 4.13: Time Series BestFit™ Distribution of PNW Basis 

 

Figure 4.14: Time Series BestFit™ Distribution of St. Louis Basis 

 

 



 

76 

 

Figure 4.15: Time Series BestFit™ Distribution of Daily Car Values 

 

Figure 4.16: Time Series BestFit™ Distribution of Jamestown Basis 
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Table 4.5: @Risk™ Time Series BestFit™ Distribution Functions 

Variable Distribution Function BIC Score 

PNW Basis BMMR RiskBMMR(118.38,12.164,0.28427,87) 222.6258411 

St. Louis 

Basis 

MA(2) RiskMA2(23.212,6.6919,0.85101,0.77836,-

0.51789,3.9864) 

201.3605192 

Daily Car 

Value 

ARCH(1) RiskARCH1(391.32,86332,0.57735,150) 409.1281833 

Jamestown 

Basis 

AR(1) RiskAR1(-72.728,2.3328,0.9359,-75) 143.6165121 

 

Table 4.5 shows the time series distributions and the functions that have been assigned to 

each variable along with the BIC score. 

4.5. Simulation Procedures  

 The empirical model was evaluated using the Palisade DecisionTools Suite™. Monte 

Carlo simulations are used within RiskOptimizer™ and @Risk™ to estimate the optimal 

coverage ratios by changing the coverage ratios in each model to maximize the expected utility. 

@Risk™ offers a variety of settings for simulating results. Sampling methods, random value 

generation, and the number of iterations can affect the overall results. The @Risk settings used 

throughout the study are shown in Table 4.6.  

Table 4.6: @Risk™ Simulation Settings 

@Risk™ Specification @Risk™ Setting 

Sampling Type Latin Hypercube 

Generator Mersenne Twister 

Initial Seed Value Fixed, 1 

 

 For each of the Monte Carlo simulations, 250 iterations were performed using Latin 

Hypercube sampling. The models converged quickly during the estimation procedures which 

allowed for a relatively small number of iterations. In base case estimations, the coverage ratios 
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were allowed to vary between 0% and 100% with step sizes of 0.5%. The effects of varying 

these constraints are shown in Chapter 5.  

4.6. Summary  

This chapter described the models and variables that were used to find optimal coverage 

ratios for grain and rail positions in a portfolio under a mean-variance or mean-semivariance 

framework. The assumptions for the analysis followed which included the need for the elevator 

to hold a naive futures hedge to be considered a pure basis trader. Additionally, historical and 

time series BestFit™ estimation procedures were presented along with the data and distributions. 

Important characteristics of the data were highlighted such as varying correlations between 

variables and changing standard deviations. The nature of the unstable relationships among 

variables prompts the need for sensitivities to be conducted in later chapters. Finally, the settings 

used for the @Risk™ simulation procedures were presented.  
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CHAPTER 5. RESULTS 

5.1. Introduction 

Volatility and randomness of commodity prices in the markets have resulted in 

discussions on risk management, particularly in the realm of futures markets and futures hedging 

such as Blank, Carter, and Schmiesing (1991) on optimal hedge ratios. Limited research has been 

published relating to the changing basis, volatilities, and correlations between basis and 

transportation markets. Because elevators tend to be fully hedged, their primary sources of 

margin risk come from changes in basis or transportation cost. This study focuses on optimizing 

the coverage ratios for a portfolio of soybean basis and rail freight under the mean-variance and 

mean-semivariance frameworks. 

Chapter 3 formally defined coverage ratios for basis and rail portfolios and introduced the 

models used in the empirical analysis. Theoretical frameworks for optimizing hedge ratios were 

presented with an analytical derivation of the optimal coverage ratio for a simple portfolio with 

only grain and more complex portfolio including grain and rail.  

The data presented in Chapter 4 shows the volatility in the basis and rail markets as well 

as the impact that rail prices can have on the overall margin. All of the models were presented 

for both a long-the-basis and a short-the-basis scenario. Historical BestFit™ and time series 

forecasted distributions were developed for each random variable. The historical BestFit™ 

models assume a naïve merchant that relies solely on historical data where the time series 

distributions represent a merchant that is anticipating future basis and rail market behavior. 

Monte Carlo simulations were conducted using @Risk to evaluate the various models. 

This chapter shows the simulation results beginning with the historical BestFit™ 

distributions in a long-the-basis scenario. The historical distributions are evaluated under the 
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mean-variance and mean-semivariance framework. Next, sensitivity analyses are conducted 

which show the effects of changing parameters within the model. A similar presentation of 

results follows for the short-the-base case using historical distributions. The next section presents 

the time series forecasted models which allow for the specification of a liquidation and entry date 

for the basis and rail positions. Further sensitivities are conducted to illustrate the effects of 

varying liquidation dates and entry dates. Lastly, the short-the-basis results are presented with 

similar sensitivities.  

Throughout this chapter, the model numbers shown correspond to those described in 

Chapter 4. Models that use historical BestFit™ distributions begin with an “H” followed by the 

model number where the models using time series forecasts begin with “TS”. Throughout the 

analysis, expected profit is defined as E(π), and the standard deviation of profit is denoted by σ. 

Each of these values are reported in cents per bushel (c/bu). For the long-the-basis models, the 

optimal coverage ratios are defined as ℎ𝐴, ℎ𝐵, or 𝑔. Variable ℎ𝐴 represents the coverage taken at 

Destination A, in this case, the PNW; ℎ𝐵 is the coverage taken at Destination B, St. Louis; and 𝑔 

is the coverage taken in rail. For the short-the-basis models, the optimal coverage ratios are 

defined as  ℎ𝑂 and 𝑔 where variable ℎ𝑂 is the coverage taken at the origin, Jamestown, ND, and 

𝑔 is still the coverage taken in rail.  Each of these ratios are listed as a percentage. 

5.2. Historical BestFit™ Results 

This section presents the results that used historical BestFit™ distributions of the random 

variables. Using historical BestFit™ distributions provides results that can be compared to the 

time series forecasted distributions. Additionally, the standard deviations of variables are easily 

modified with this set of distributions which allows for sensitivity analyses to be conducted. 
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When using historical BestFit™ distributions, a specific liquidation date is not defined so it is 

assumed that liquidation occurs some time after the position entry date.  

5.2.1. Long-the-Basis Base Case Under E-V and E-SV 

The model specifications for the long-the-basis base case model are presented in Table 

5.1. The table shows the input name, value, and units.  

Table 5.1: Long-the-Basis Base Case H Model Specifications 

Specification Input Value Units 

Time 1 12/24/2020 Month/Day/Year 

Time 1 Daily Car Value 650 $/car 

Time 1 Basis: Jamestown, ND -70 c/bu 

Time 1 Basis: PNW  114.5 c/bu 

Time 1 Basis: St. Louis, MO 38.25 c/bu 

Model Number Varies  

Risk Aversion Level Varies  

 

Table 5.2 presents different results of the three models under the mean-variance and 

mean-semivariance frameworks. Each model is evaluated at varying levels of phi, Φ, the 

coefficient of risk aversion. The cells highlighted in yellow are used as the base case throughout 

the remainder of Sections 5.2.1 and 5.2.2. 
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Table 5.2: Base Case Long-the-Basis Historical BestFit™ 

   E-V Models E-SV Models 

Phi Model Name Description E(π) σ ℎ𝐴 𝑔 ℎ𝐵 E(π) σ ℎ𝐴 𝑔 ℎ𝐵 

0.05 

H 1.1 
Long Basis 

No Freight Risk 
21.72 9.89 36%   24.42 15.33 0%   

H 2.1 
Long Basis 

Short Freight 
26.67 12.71 12% 0%  27.59 14.20 0% 0%  

H 3.1 
Long Basis Multiple Destinations 

Short Freight 
28.38 13.05 0% 0% 0% 28.38 13.05 0% 0% 0% 

0.10 

H 1.1 
Long Basis 

No Freight Risk 
19.29 4.98 68%   21.65 9.74 37%   

H 2.1 
Long Basis 

Short Freight 
23.13 7.95 50% 22%  27.09 13.38 7% 0%  

H 3.1 
Long Basis Multiple Destinations 

Short Freight 
24.96 8.96 36% 12% 0% 28.38 13.05 0% 0% 0% 

0.15 

H 1.1 
Long Basis 

No Freight Risk 
18.45 3.30 79%   20.05 6.52 58%   

H 2.1 
Long Basis 

Short Freight 
21.00 5.27 67% 48%  25.25 10.69 29% 5%  

H 3.1 
Long Basis Multiple Destinations 

Short Freight 
22.29 6.03 57% 41% 0% 27.54 11.94 10% 0% 0% 
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The results in Table 5.2 show how profit and standard deviation decrease as phi and 

coverage ratios increase as well as the differences in optimal coverage ratios between the 

different models and different frameworks. First, the effects of coverage ratio, profit, and 

standard deviation are shown in the trials of H 1.1 in which the elevator is holding inventory but 

has no rail risk. At the low phi, 0.05, the optimal coverage ratio was 36% under the E-V 

framework with a profit of 21.72 c/bu and a standard deviation of 9.89 c/bu. At a higher level of 

phi, 0.15, the optimal coverage ratio was 79% with a profit of 18.45 c/bu and a lower standard 

deviation of 3.30 c/bu. This means more risk-averse traders would sell more of their inventory to 

the destination during Time 1, leaving less subject to changing basis. Overall, as traders become 

more risk-averse, i.e. higher levels of phi, greater profits are exchanged for lower standard 

deviations of profit.  

When evaluating the same model under the E-SV framework, the coverage ratios 

increase from 0% to 37% to 58% with profits decreasing from 24.42 c/bu to 20.05 c/bu. The 

standard deviation decreases from 15.33 c/bu to 6.52 c/bu. The differences in coverage ratios and 

the resulting profits and standard deviations are important because mean-semivariance is meant 

to only mitigate downside risk where mean-variance reduces all variance.   

The same patterns exist in the results for Model H 2.1. In Model H 2.1, the elevator has a 

long grain position and a short freight position. The portion of freight booked at Time 1 is 

represented by variable 𝑔. As rail is added to the portfolio, profit increases from Model H 1.1 at 

all levels of risk aversion. At low levels of phi, optimal rail coverage is 0% with grain coverage 

at 12% and an expected profit of 26.67 c/bu, and at high levels of phi, optimal rail and grain 

coverage increase to 48% and 67% respectively, with profits decreasing to 21 c/bu.  
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In Model H 3.1, the elevator is long grain; they may sell to two possible destinations, and 

they need to purchase freight. The coverage ratio for ℎ𝐵 is always 0% due to the delivered price 

received at St. Louis was always lower than the available delivered price to the PNW during 

Time 1. While taking coverage at St. Louis may not be optimal at Time 1, the elevator may still 

sell to St. Louis in the spot market at Time 2 which may explain the higher expected profits 

observed as the second destination was added. 

The distributions of profit are shown in Figure 5.1 and Figure 5.2 to illustrate how 

changing risk aversion changes the mean and standard deviation of profits for both the mean-

variance and mean-semivariance frameworks.  

 

Figure 5.1: Profit Distributions from Model H 2.1 at Various Levels of Phi Under E-V    

Figure 5.1 shows the profit distributions from Model H 2.1 under the E-V framework 

with various levels of phi. Sim 1, Sim 2, and Sim 3 correspond to levels of phi of 0.05, 0.10, and 
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0.15, respectively. This depiction shows that as risk aversion increases, mean profit and variation 

of returns decrease.  

 

Figure 5.2: Profit Distributions from Model H 2.1 at Various Levels of Phi Under E-SV 

Figure 5.2 shows the profit distributions from Model H 2.1 under the E-SV framework 

with various levels of phi. As in Figure 5.1, Sim 1, Sim 2, and Sim 3 correspond to levels of phi 

of 0.05, 0.10, and 0.15, respectively. Because mean-semivariance distinguishes between upside 

risk and downside risk, the levels of coverage taken under the E-SV framework are lower 

resulting in higher expected profit and larger standard deviations.  

The relationship between profit and variance of profit was represented graphically by 

Markowitz (1952). Figure 5.3 below shows a variety of coverage ratios ranging between -150% 

and 150% evaluated on Model H 1.1 at a risk aversion level of 0.10, the base level phi.  The E-V 

curve shows as the profit increases, the variance of the profit increases. As ℎ𝐴 approaches 100%, 

basis risk approaches zero. At this level of coverage, the expected profit is 16.8 c/bu and the 

variance of profit is zero. This results in lower profits and lower variation in profits. In this case, 
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as ℎ𝐴 approaches zero and negative values, there is less grain sold at the destination than what is 

owned at the origin creating risk. To achieve a negative coverage ratio, grain would need to be 

owned at both the origin and the destination at Time 1. In this case, as the coverage ratios are 

reduced from 100% and become negative, expected profits and the variance of profits increases. 

Mathematically, the optimal coverage is found by finding the point where the decision maker’s 

utility curve is tangent to the E-V curve. Representing these results graphically clarifies that the 

approach is consistent with utility maximization theory.  

 

Figure 5.3: E-V Curve from Model 1.1 
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Figure 5.4 depicts which random variables contribute to the variance of the profit at 

varying levels of risk aversion when evaluated on Model H 2.1. Similar to Figure 5.1 and Figure 

5.2, Sim 1, Sim 2, and Sim 3 correspond to levels of phi of 0.05, 0.10, and 0.15, respectively. 

This chart shows that in Simulation 1, 61.3% of the variance was due to the variance in the basis, 

but as the risk aversion increased, the variance of profit was due to the changes in the rail market.  

 

Figure 5.4: Contribution to Variance of Profit in Model H 2.1 With Varying Phi Under E-V 

5.2.2. Long-the-Basis Sensitivities 

A variety of factors have a significant impact on coverage ratios including the 

correlations between the destination basis and the daily car values or the standard deviations of 

basis and daily car values. The following tables show sensitivity analyses that were conducted to 

show the effects of these parameters on the coverage ratios. Each of the sensitivities are 

conducted on Model H 2.1 under the E-V framework with the parameters shown in Table 5.3 

unless otherwise noted. The base case from Table 5.2 is highlighted in yellow in each table for 

easy comparison.  
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Table 5.3: Long-the-Basis Model Specifications for Sensitivities 

Specification Input Value Units 

Time 1 12/24/2020 Month/Day/Year 

Time 1 Daily Car Value 650 $/car 

Time 1 Basis: Jamestown, ND -70 c/bu 

Time 1 Basis: PNW  114.5 c/bu 

Time 1 Basis: St. Louis, MO 38.25 c/bu 

Model Number H 2.1  

Risk Aversion Level 0.10  

 

Table 5.4: Sensitivity of Correlation Between PNW Basis and DCV 

Correlation Description E(π) σ ℎ𝐴 𝑔 

0.0 Lower Correlations 20.49 6.06 67% 63% 

0.372 Base Case 23.13 7.95 50% 22% 

0.9 Higher Correlation 26.26 6.45 19% 0% 

 

Table 5.4 shows the effects of a change in correlation between the rail cost and the 

destination prices. The results suggest that when no correlation exists between the two markets, 

optimal coverage levels are higher for both destination basis and rail. When the markets are 

closely correlated, the optimal coverage ratios are lower for both destination basis and rail as 

coverage in one market also helps to cover the risk that is occurring in the other market.  

Table 5.5 and Table 5.6 show the effects of a change in standard deviations of the PNW 

Basis and the DCV, respectively, under the parameters shown in Table 5.3. 
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Table 5.5: Sensitivity of Standard Deviation of PNW Basis 

Standard 

Deviation 
Description E(π) σ ℎ𝐴 𝑔 

-10% Lower Standard Deviation 24.03 8.49 39% 19% 

 Base Case 23.13 7.95 50% 22% 

+10% Higher Standard Deviation 22.44 7.49 58% 24% 

 

As the standard deviation of the destination basis is increased, the optimal coverage ratio 

also increases. The base case correlation of 0.372 is still used in this sensitivity so as the standard 

deviation of destination basis increases, the coverage ratio required for the rail also increases. 

While optimal rail coverage increases, the increase is not as large as the increase in the coverage 

needed in the PNW.   

Table 5.6: Sensitivity of Standard Deviation of DCV  

Standard 

Deviation 
Description E(π) σ ℎ𝐴 𝑔 

-10% Lower Standard Deviation 24.48 8.61 47% 0% 

 Base Case 23.13 7.95 50% 22% 

+10% Higher Standard Deviation 22.41 7.49 51% 36% 

 

 As the standard deviation of rail prices is increased, the coverage taken in both rail and 

grain increases, but the increase is primarily in the rail market. The optimal coverage in grain 

increases without the standard deviation of PNW increasing because of the correlation between 

the basis market and rail market. The increased coverage results in lower profit and lower 

standard deviations of profit.  
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Table 5.7: Sensitivity of Restrictions on DCV Coverage under Base Phi (0.10) 

 11/13/2020 12/24/2020 1/27/2021 

Scenario 
High Grain Basis, 

Low Priced Rail 

Low Grain Basis, 

High Priced Rail 

Low Grain Basis, 

Low Priced Rail 

Jamestown T1 Basis -60 -70 -75 

PNW T1 Basis 125 114.5 87 

DCV T1 Price -100 650 150 

 E(π) σ ℎ𝐴 𝑔 E(π) σ ℎ𝐴 𝑔 E(π) σ ℎ𝐴 𝑔 

Freight Coverage 

Forced to 0% 
20.15 8.10 90% 0% 24.19 9.33 45% 0% 32.59 14.20 0% 0% 

Base Case:  

Freight Coverage 

Varies 0% to 100% 

34.11 0.00 100% 100% 23.13 7.95 50% 22% 40.64 15.30 0% 100% 

Freight Coverage 

Allowed up to 200% 
47.76 8.62 100% 200% 23.13 7.95 50% 22% 43.59 16.83 0% 137% 
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Table 5.7 shows the effects of varying the restrictions placed on the freight coverage 

ratios under base phi with different scenarios at various times. The time periods were selected to 

illustrate the impacts that Time 1 prices may have on the optimal coverage ratios. The values 

listed correspond to the noted date which represents Time 1 in this case.  

The first row shows the date that was selected to show a certain situation. The second 

row describes the prices of grain and rail relative to the mean of the distribution, the expected 

prices for Time 2. The third through fifth rows show the input prices used at Time 1. The bottom 

portion of the table shows the freight coverage parameters, the corresponding profit and standard 

deviation shown in cents per bushel, and the optimal coverage ratios.  

The table shows the base case presented in Table 5.2 in yellow highlighting. In this case, 

the current rail price is higher than the expected rail price at Time 2. With a low level of risk 

aversion, the optimal strategy would be to purchase none of the freight in advance. However, 

when the risk aversion coefficient is 0.10 as in the base case, the optimal coverage ratios are 50% 

for beans and 22% for rail. Using the same base case restrictions on 11/13/2020 where the grain 

basis is high and rail prices are low, the optimal rail and grain coverage ratios are 100%. In 

contrast, on 1/27/2021 when basis and rail prices were low, the optimal grain coverage ratio was 

0% while the rail coverage was 100%.  

A situation may be shown where freight coverage cannot be taken, but the firm is still 

exposed to freight risk. When freight is forced to zero on a position entered on 12/24/2020, the 

coverage taken in soybean basis is reduced to 45% from 50% when freight was allowed to be 

covered under the base case restrictions.  

Alternatively, a case is presented where freight is allowed to be covered up to 200%. This 

would allow the trader to overbook their freight when the price is low and sell it in the secondary 
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spot market when the price is higher. Under the base case inputs, allowing freight coverage to be 

between 0% and 200% makes no impact on the optimal coverage ratio because the rail is high 

priced relative to expected rail prices. In a situation with low-priced rail relative to the expected, 

the optimal rail coverage may exceed 100% such as in column one or three where optimal freight 

coverage is 200% or 137%, respectively. The differences between the position sizes are in part 

because of the difference in the starting DCV prices. On 11/13/2020, the DCV was -$100/car 

where on 1/27/2021 the DCV was $150/car. This demonstrates the importance of freight as a 

tradable asset within a portfolio.  

5.2.3. Short-the-Basis Base Case Under E-V and E-SV 

The prior section focused on a long-the-basis case where grain is bought at a given price 

and is either sold immediately or held with the expectation of increasing prices. This section uses 

the same methods to evaluate a case where the trader enters a short cash position by selling cash 

and seeking coverage by buying basis at the origin and freight. A short cash position is typically 

entered when basis is high and expected to get lower. The merchant makes a sale of grain for 

delivery at later date and may purchase the grain when the sale is made or just before delivery is 

required to the destination.  

Table 5.8 shows the specifications used to evaluate Models H 1.1.1 and H 2.1.1. Table 

5.9 presents the results of the estimations. The interpretation of the results is fairly 

straightforward; for a given level of risk aversion, denoted by phi, and a given model, an optimal 

coverage ratio exists for the mean-variance and mean-semivariance frameworks. For example, 

under E-V, Model H 2.1.1 with a risk aversion level of 0.20 has a profit of 23.42 cent/bu with a 

standard deviation of 4.72 cents/bu when 45% of the grain is purchased at the origin and 53% of 

the rail is purchased during Time 1.  
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Table 5.8: Short-the-Basis Base Case H Model Specifications 

Specification Input Value Units 

Time 1 12/24/2020 Month/Day/Year 

Time 1 Daily Car Value 650 $/car 

Time 1 Basis: Jamestown, ND -70 c/bu 

Time 2 Basis: PNW  114.5 c/bu 

Model Number Varies  

Risk Aversion Level Varies  
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Table 5.9: Alternate Case Short-the-Basis Historical BestFit™ 

 E-V Models E-SV Models 

Phi Model Name Description E(π) σ ℎ𝑂 𝑔 E(π) σ ℎ𝑂 𝑔 

0.05 

H 1.1.1 
Short Basis 

No Freight Risk  
21.45 4.96 0%  21.44 4.93 0%  

H 2.1.1 
Short Basis 

Short Freight  
28.00 9.59 0% 0% 28.00 9.59 0% 0% 

0.10 

H 1.1.1 
Short Basis 

No Freight Risk  
21.45 4.96 0%  21.44 4.93 0%  

H 2.1.1 
Short Basis 

Short Freight  
27.61 9.16 0% 6% 28.00 9.59 0% 0% 

0.15 

H 1.1.1 
Short Basis 

No Freight Risk  
20.64 3.35 33%  21.44 4.93 0%  

H 2.1.1 
Short Basis 

Short Freight  
24.93 6.32 26% 37% 28.00 9.59 0% 0% 

0.20 

H 1.1.1 
Short Basis 

No Freight Risk  
20.23 2.53 49%  21.44 4.93 0%  

H 2.1.1 
Short Basis 

Short Freight  
23.42 4.72 45% 53% 26.24 7.79 0% 27% 

0.30 

H 1.1.1 
Short Basis 

No Freight Risk  
19.81 1.69 66%  20.65 3.35 32%  

H 2.1.1 
Short Basis 

Short Freight  
21.94 3.16 63% 69% 23.94 5.34 29% 51% 

 



 

95 

While there are many similarities between the setup of the long-the-base and short-the-

basis models, some key differences exist. Higher levels of risk aversion are needed to begin 

taking coverage in Table 5.9 as compared to Table 5.2 which showed that the trader should begin 

taking coverage even at low levels of risk aversion. This difference can be explained by the 

distributions used within the models and the specific scenario in question. The standard deviation 

of the PNW basis distribution is 15.2 cents/bu while the standard deviation of the Jamestown 

basis distribution is only 4.9 cents/bu. With a lower standard deviation, there is less risk that 

needs to be mitigated, thus a greater level of risk aversion is required before taking coverage to 

become optimal.  

Another difference between Table 5.2 and Table 5.9 is the order in which coverage is 

taken in Models H 2.1 and H 2.1.1 under the mean-semivariance framework. In the long-the-

basis case, shown in Table 5.2, coverage is first taken in the PNW basis market, and as risk 

aversion increases, it becomes optimal to begin taking coverage in the rail market. Conversely, in 

the case shown in Table 5.9, coverage is first taken in the rail market and is later taken in the 

basis market as risk aversion increases. These differences are a result of the standard deviation 

and the skews of the distributions.  

The sensitivities conducted on the long-the-basis models could also be evaluated on this 

alternate case, but those tests would yield similar results and would provide little additional 

value. In essence, as standard deviations of distributions increase, the coverage needed at a given 

level of risk aversion also increases, and as two markets become more correlated, the amount of 

coverage needed in either market diminishes.   

This section showed results for models evaluated using historical BestFit™ distributions 

for both long-the-basis and short-the-basis merchandising scenarios as well as a variety of 
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sensitivities demonstrating how changes in distributions, correlations, and initial values change 

the optimal solutions. The remainder of this chapter evaluates the same sets of models using 

time-series forecasts.  

5.3. Time Series Forecasted Results 

This section uses time series forecasted distributions to show anticipated strategies. Using 

time series allows for specific position exit dates to be specified. Under this approach, a price 

and standard deviation of that period’s price are projected for each time period. The standard 

deviation of the projection increases or remains constant as time increases. As a result, it is 

expected that as the time to liquidation increases, the optimal coverage levels at Time 1 should 

also increase. This section presents the results similarly to the previous section beginning with 

the base case, long-the-basis, scenario followed by sensitivities. Next, an alternative case of a 

short-the-basis case is shown along with relevant sensitivities.  

5.3.1. Long-the-Basis Base Case Under E-V and E-SV 

Table 5.10 shows the base case specifications for a long-the-basis scenario evaluated with 

time series distributions. The results are presented in Table 5.11.  

Table 5.10: Long-the-Basis Base Case TS Model Specifications 

Specification Input Value Units 

Time 1 12/24/2020 Month/Day/Year 

Time 2 (Liquidation Date) 6/2/2021 Month/Day/Year 

Time 1 Daily Car Value 650 $/car 

Time 1 Basis: Jamestown, ND -70 c/bu 

Time 1 Basis: PNW  114.5 c/bu 

Time 1 Basis: St. Louis, MO 38.25 c/bu 

Model Number Varies  

Risk Aversion Level Varies  
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Table 5.11: Base Case Long-the-Basis Time Series Forecasted 

   E-V Models E-SV Models 

Phi 
Model 

Name 
Description E(π) σ ℎ𝐴 𝑔 ℎ𝐵 E(π) σ ℎ𝐴 𝑔 ℎ𝐵 

0.05 

TS 1.1 
Long Basis 

No Freight Risk  
17.86 4.58 72%   18.86 8.99 44%   

TS 2.1 
Long Basis 

Short Freight  
23.60 11.45 61% 0%  24.77 14.10 32% 0%  

TS 3.1 
Long Basis Multiple Destinations 

Short Freight  
25.12 11.84 39% 0% 0.0% 27.06 15.84 0% 0% 0% 

0.10 

TS 1.1 
Long Basis 

No Freight Risk  
17.33 2.25 86%   17.84 4.50 72%   

TS 2.1 
Long Basis 

Short Freight  
20.31 5.90 81% 48%  23.54 11.34 63% 0%  

TS 3.1 
Long Basis Multiple Destinations 

Short Freight  
21.83 7.11 67% 36% 0.0% 25.27 12.10 36% 0% 0% 

0.15 

TS 1.1 
Long Basis 

No Freight Risk  
17.16 1.53 91%   17.49 2.97 82%   

TS 2.1 
Long Basis 

Short Freight  
19.17 3.96 87% 65%  22.76 10.11 74% 7%  

TS 3.1 
Long Basis Multiple Destinations 

Short Freight  
20.12 4.69 78% 58% 0.0% 23.34 9.77 53% 14% 0% 
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Table 5.11 shows the different trials of each model evaluated at various levels of phi, the 

risk aversion coefficient. The yellow cells represent a base case that is maintained throughout 

Sections 5.3.1 and 5.3.2 using consistent inputs. When sensitivities are conducted, the base case 

is shown next to the results of the models with changed inputs.  

The results show that for Model TS 2.1, profit is 23.6 c/bu, 20.31 c/bu, and 19.17 c/bu for 

risk aversion levels of 0.05, 0.10, and 0.15, respectively. The standard deviations of these profits 

are 11.45 c/bu, 5.90 c/bu, and 3.96 c/bu. The optimal coverage ratios range from 61% to 87% for 

grain and 0% to 65% for rail. This means that for the most risk-averse trader shown, 87% of the 

grain should be sold at the time the grain is purchased and 65% of the required rail cars should 

be purchased in December. A trader with low levels of risk aversion should purchase all of the 

freight in June as it was projected to be lower than the price in December.  

The results exhibit similar patterns as those shown in Table 5.2 when evaluated using 

historical BestFit™ distributions. Profit and standard deviation of profit increase as the models 

include more tradable assets. This is a logical conclusion because as more markets are added, the 

trader has more opportunities to profit and is exposed to additional risk. Additionally, profit and 

standard deviation of profit decrease as risk aversion increase. Increasing risk aversion leads to a 

decrease in the standard deviation of profit. The E-V curve shown in Chapter 2 shows that as the 

standard deviation of profit decreases, profit also tends to decrease.  

Although the naïve results using historical distributions and the anticipatory results using 

time series distributions exhibit some similarities, there are also some key differences in the 

results. The optimal coverage ratios shown in Table 5.11 with time series distributions are 

greater than those shown in Table 5.2 with historical distributions. Additionally, the profit levels 

and standard deviations of profit were lower when evaluated with time series distributions. 
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The distributions of the profit are shown in Figure 5.5 and Figure 5.6 which show how 

changing the risk aversion levels affect the profit levels and the standard deviations of profit 

under both mean-variance and mean-semivariance frameworks. Figure 5.7 follows which shows 

how each random variable contributes to the variance of the profits. 

 

Figure 5.5: Profit Distributions from Model TS 2.1 at Various Levels of Phi Under E-V    

Figure 5.5 shows the profit distributions from Model TS 2.1 under the E-V framework 

when evaluated at various levels of phi. Sim 1, Sim 2, and Sim 3 correspond to levels of phi of 

0.05, 0.10, and 0.15, respectively. The results are consistent with those presented in Figure 5.1 

which showed that as risk aversion increased, profits and standard deviations of profits also 

decreased.  
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Figure 5.6: Profit Distributions from Model TS 2.1 at Various Levels of Phi Under E-SV    

Figure 5.6 shows the profit distributions from Model TS 2.1 under the E-SV framework 

at various levels of phi. Similarly to Figure 5.5, Sim 1, Sim 2, and Sim 3 correspond to levels of 

phi of 0.05, 0.10, and 0.15, respectively. When mean-semivariance is used, a distinction is made 

between upside and downside risk. As a result, the optimal coverage ratios are lower which 

equates to larger profits and higher standard deviations in this scenario.  
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Figure 5.7: Contribution to Variance of Profit in Model TS 2.1 With Varying Phi Under E-V 

The tornado graph shown in Figure 5.7 shows the contribution to the variance of the 

profit function at each level of risk aversion when evaluated on Model TS 2.1. Sim 1 has the 

least risk aversion with a phi level of 0.05 while Sim 3 has a risk aversion level of 0.15. The 

chart shows that when phi is 0.05, 37.5% of the variance in profit was from the PNW basis and 

62.5% of the variance was from the changes in DCV.  

5.3.2. Long-the-Basis Sensitivities  

Several variables can impact optimal coverage ratios such as correlations between 

markets, time of entry for a position, or the standard deviation of a certain price. Some of these 

relationships between the variable and the resulting coverage ratios were shown in previous 

sections, but other relationships such as the timeframe for liquidation were not able to be shown 

because time series forecasting is required. The following tables show a variety of sensitivities 

that were conducted on Model TS 2.1 under the E-V framework using the specifications listed in 

Table 5.12 unless otherwise noted.  
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Table 5.12: Specifications for Long-the-Basis TS Model Sensitivities 

Specification Input Value Units 

Time 1 12/24/2020 Month/Day/Year 

Time 2 (Liquidation Date) 6/2/2021 Month/Day/Year 

Time 1 Daily Car Value 650 $/car 

Time 1 Basis: Jamestown, ND -70 c/bu 

Time 1 Basis: PNW  114.5 c/bu 

Time 1 Basis: St. Louis, MO 38.25 c/bu 

Model Number TS 2.1  

Risk Aversion Level 0.10  

 

Table 5.13 shows the effects of changing the correlations between the PNW basis market 

and the daily car values.  

Table 5.13: Sensitivity of Correlation Between PNW Basis and DCV Using Time Series 

Correlation Description E(π) σ ℎ𝐴 𝑔 

0.0 Lower Correlation 21.14 6.57 86% 37% 

0.372 Base Case  20.31 5.90 81% 48% 

0.9 Higher Correlation 22.10 7.25 65% 26% 

 

This sensitivity was motivated by the various correlations that were observed depending 

on the sampled time period (see Figure 4.7). The correlation between the PNW basis and DCV 

was 0.372 during the sample period but the correlation has been observed to vary between 0.0 to 

0.9 over the previous two years in similar lengths of time. The results suggest that as the 

correlation increases, the optimal coverage ratios for both markets decrease. This is consistent 

with the results when the models were evaluated using historical BestFit™ distributions.  

The next sensitivity shows the effects on the timeframe for liquidation; the results of this 

test are presented in Table 5.14. The hypothesis for this sensitivity was that as the timeframe for 
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liquidation increased, the standard deviation of the forecasts would also increase causing the 

coverage ratios to increase since the model only allows for sales to be made at Time 1 or Time 2. 

This time series forecast does not exhibit a large increase in the standard deviation over time, 

which can be noted in Figure 4.13. Additionally, the projected PNW basis increased throughout 

time so even with an increased variance in the projection, the higher prices outweighed the 

increased risks. The projected rail prices were nearly constant over time with an increasing 

standard deviation. The results show that when evaluated under a 0.10 level of risk aversion, 

coverage was in grain was 95%, 81%, and 78% for grain in April, June, and August liquidation, 

respectively. While the optimal coverage in grain decreased, the rail coverage increased over 

time from 29% in April, 48% in June, to 49% in August. The results suggest that as the basis is 

held constant and the standard deviation of the projected basis increases, the optimal coverage 

ratio also increases.  

Next, the impact of changing Time 1 parameters was evaluated. Table 5.15 shows how 

different market scenarios may affect the optimal coverage ratios. The liquidation date is held at 

June 2, 2021. While the market scenarios have a date listed for when the prices occurred, the 

standard deviations of projected prices are not affected as it was in the previous sensitivity. The 

results show that in scenarios when the grain is priced higher than expected and rail is lower than 

expected, the coverage ratio is 100% at all levels of risk aversion. When grain is priced low but 

rail is priced high, the coverage ratios for grain vary between 61% and 87% and for rail between 

0% and 65% as risk aversion increases. In the last column, when grain and rail are priced lower 

than the expected price later, the optimal rail coverage ratio is 100% at all levels of risk aversion 

and as risk aversion increases, it becomes optimal to start taking coverage in the grain market. 
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These results show that the relationship between the current basis and the expected basis has a 

significant impact on the optimal coverage ratios. 
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Table 5.14: Sensitivity of Time to Liquidation Using Time Series 

 4/7/2021 6/2/2021 8/4/2021 

E(PNW Basis) 116.552 118.92 118.365 

E(DCV Price) 393.07 393.14 391.08 

Phi E(π) σ ℎ𝐴 𝑔 E(π) σ ℎ𝐴 𝑔 E(π) σ ℎ𝐴 𝑔 

0.05 23.41 9.60 92% 0% 23.60 11.45 61% 0% 23.69 11.57 56% 0% 

0.10 21.53 6.86 95% 29% 20.31 5.90 81% 48% 20.35 5.95 78% 49% 

0.15 19.98 4.61 96% 52% 19.17 3.96 87% 65% 19.18 3.98 85% 66% 

 

Table 5.15: Sensitivity of Time 1 Specification Using Time Series 

 11/13/2020 12/24/2020 1/27/2021 

Scenario 
High Grain Basis,  

Low Priced Rail 

Low Grain Basis,  

High Priced Rail 

Low Grain Basis,  

Low Priced Rail 

Jamestown T1 Basis -60 -70 -75 

PNW T1 Basis 125 114.5 87 

DCV T1 Price -100 650 150 

Phi E(π) σ ℎ𝐴 𝑔 E(π) σ ℎ𝐴 𝑔 E(π) σ ℎ𝐴 𝑔 

0.05 34.11 0.00 100% 100% 23.60 11.45 61% 0% 37.02 15.86 0% 100% 

0.10 34.11 0.00 100% 100% 20.31 5.90 81% 48% 37.02 15.86 0% 100% 

0.15 34.11 0.00 100% 100% 19.17 3.96 87% 65% 31.82 13.24 17% 100% 
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Table 5.16: Sensitivity of Restrictions on DCV under Base Phi (0.10) Using Time Series 

 11/13/2020 12/24/2020 1/27/2021 

Scenario 
High Grain Basis,  

Low Priced Rail 

Low Grain Basis,  

High Priced Rail 

Low Grain Basis,  

Low Priced Rail 

Jamestown T1 Basis -60 -70 -75 

PNW T1 Basis 125 114.5 87 

DCV T1 Price -100 650 150 

 E(π) σ ℎ𝐴 𝑔 E(π) σ ℎ𝐴 𝑔 E(π) σ ℎ𝐴 𝑔 

Freight Coverage 

Forced to 0% 
22.54 10.33 100% 0% 22.96 10.57 77% 0% 31.05 17.96 0% 0% 

Base Case:  

Freight Coverage 

Varies 0% to 100% 

34.11 0.00 100% 100% 20.31 5.90 81% 48% 37.02 15.86 0% 100% 

Freight Coverage 

Allowed up to 200% 
45.67 10.33 100% 200% 20.31 5.90 81% 48% 39.34 16.79 0% 139% 
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Finally, Table 5.16 presents the results from restricting rail car coverage when evaluated 

with time series distributions. The results in the first and third result columns were very similar 

between the historical and time series distributions while the middle column results varied 

slightly. The overall conclusions were consistent between the historical and time series 

distributions. The optimal solution is to sell all grain and purchase as much rail is allowed when 

rail rates are low and grain prices are high, relative to expected prices. When grain and rail are 

priced low, grain coverage is minimal under the base level of risk aversion, and rail coverage is 

high but not as high as when the grain is high and rail is low. When grain is low and rail is high 

relative to expectations, as in the middle column, the solution would be 0% for all of the 

scenarios in the absence of risk aversion.  

 The various sensitivities showed how changing variables such as correlations between 

markets, time to liquidation, and the price at the time of entry compared to expected prices may 

affect the overall coverage ratios, profit level, and standard deviation of profit in a long-the-basis 

case.   

5.3.3. Short-the-Basis Base Case Under E-V and E-SV 

This section builds from the short-the-basis results presented in Section 5.2.3. In the 

short-the-basis case, the merchant expects basis levels to fall so a sale is made at a destination 

before all of the grain is purchased at the destination. The freight can be purchased at the time 

the sale is made or at the time it is needed to ship the grain to the destination. The short-the-basis 

models are only evaluated for one origin and one destination.  

The specifications are shown in Table 5.17, and the results are presented in Table 5.18.  
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Table 5.17: Short-the-Basis Base Case TS Model Specifications 

Specification Input Value Units 

Time 1 12/24/2020 Month/Day/Year 

Time 2 (Liquidation Date) 6/2/2021 Month/Day/Year 

Time 1 Daily Car Value 650 $/car 

Time 1 Basis: Jamestown, ND -70 c/bu 

Time 2 Basis: PNW  114.5 c/bu 

Model Number Varies  

Risk Aversion Level Varies  
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Table 5.18: Alternate Case Short-the-Basis Using Time Series 

 E-V Models E-SV Models 

Phi Model Name Description E(π) σ ℎ𝑂 𝑔 E(π) σ ℎ𝑂 𝑔 

0.05 

TS 1.1 
Short Basis 

No Freight Risk  
18.54 5.82 0%  18.55 5.63 0%  

TS 2.1 
Short Basis 

Short Freight  
25.93 12.44 0% 0% 25.94 12.00 0% 0% 

0.10 

TS 1.1 
Short Basis 

No Freight Risk  
17.70 2.97 49%  18.55 5.63 0%  

TS 2.1 
Short Basis 

Short Freight  
22.39 7.48 22% 48% 25.94 12.00 0% 0% 

0.15 

TS 1.1 
Short Basis 

No Freight Risk  
17.40 1.98 66%  18.07 4.08 28%  

TS 2.1 
Short Basis 

Short Freight  
20.53 4.98 48% 66% 24.36 9.84 0% 27% 
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Table 5.18 shows the base case results for a short-the-basis scenario with Models 1.1.1 

and 2.1.1 when using time series forecasted distributions. For each level of risk aversion, the 

profit and standard deviation of profit are reported. As risk aversion increases, the trader is 

willing to accept lower levels of profit in exchange for lower levels of risk. The base case that is 

used for sensitivities is Model TS 2.1.1 evaluated using the E-V framework at a risk aversion 

level of 0.10. The profit from that scenario is 22.39 c/bu with a standard deviation of 7.48 c/bu 

when the coverage ratios are 22% grain coverage at the origin and 48% of freight purchased at 

Time 1.  

5.3.4. Short-the-Basis Sensitivities 

The purpose of this section is to compare and contrast the impacts that certain variables 

have on coverage ratios in a short-the-basis scenario versus the long-the-basis scenario. While 

each of the sensitivities shown previously could be evaluated on a short-the-basis case, the 

results would be mostly redundant. Two sensitivities are shown that illustrate the effects of 

varying the timeframe for liquidation and Time 1 specification. The models were evaluated using 

the parameters shown in Table 5.17 unless otherwise noted.  

The effects of the timeframe for liquidation on coverage ratios are shown in Table 5.19. 

In this scenario, the projected buying basis at the origin is increasing slightly as time for 

liquidation increases. The standard deviation of the projected distribution for the origin basis 

increases more throughout time than the standard deviation for the rail distribution. This can be 

noted in Figure 4.15 and Figure 4.16 in Chapter 4. In this case, as the time to liquidation is 

increased the optimal coverage for grain at the origin increases while rail decreases. The 

decreases in rail coverage are not as significant as the increases in grain coverage at the origin. 

The results show that when the price is held nearly constant, the coverage required increases with 
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an increasing standard deviation. This conclusion is consistent with the long-the-basis version of 

this sensitivity. 

Lastly, the results for the sensitivity of the Time 1 specifications in the short-the-basis 

case are shown in Table 5.20. While the dates that are used are the same as in Table 5.15, the 

results shown in Table 5.20 differ because the trader expects basis levels to be lower by the time 

the grain must be purchased at the origin. In the first column, grain is priced higher than 

expected and rail is priced lower than the expected price in June. As a result, in the short-the-

basis case, the optimal coverage ratio at the origin is 0% for all tested levels of risk aversion 

where it was 100% at each tested risk aversion level in the long-the-basis case. In the last 

column, it is best to have a large amount of coverage at the origin when the prices are low 

relative to the expected where in the long-the-basis case, it was best to have a low amount of 

coverage. This example shows that the optimal solution varies significantly depending on 

whether the trader is in a long or short basis position.  
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Table 5.19: Sensitivity of Time to Liquidation Short-the-Basis Using Time Series 

 4/7/2021 6/2/2021 8/4/2021 

E(Origin Basis) -73.899 -73.418 -73.108 

E(DCV Price) 385.43 385.51 383.52 

Phi E(π) σ ℎ𝑂 𝑔 E(π) σ ℎ𝑂 𝑔 E(π) σ ℎ𝑂 𝑔 

0.05 24.72 10.61 0% 22% 25.93 12.44 0% 0% 25.60 11.86 0% 0% 

0.10 22.57 6.95 0% 64% 22.39 7.478 22% 48% 22.32 7.43 33% 40% 

0.15 21.48 5.58 11% 77% 20.527 4.979 48% 66% 20.50 4.96 55% 60% 

 

Table 5.20: Sensitivity of Time 1 Specification Short-the-Basis Using Time Series 

 10/22/2020 12/24/2020 1/27/2021 

Prices Relative to 

Forecasted Prices 

Higher Origin Basis,  

Lower Priced Rail 

Lower Origin Basis,  

Higher Priced Rail 

Lower Origin Basis,  

Lower Priced Rail 

Jamestown T1 Basis -65 -70 -75 

PNW T1 Basis 145 114.5 87 

DCV T1 Price 400 650 150 

Phi E(π) σ ℎ𝑂 𝑔 E(π) σ ℎ𝑂 𝑔 E(π) σ ℎ𝑂 𝑔 

0.05 56.09 6.25 0% 96% 25.93 12.44 0% 0% 5.51 0.00 100% 100% 

0.10 56.07 6.22 0% 99% 22.39 7.478 22% 48% 5.51 0.00 100% 100% 

0.15 56.07 6.22 0% 100% 20.527 4.979 48% 66% 5.51 0.00 100% 100% 
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5.4. Summary 

This chapter showed the results from five models evaluated under mean-variance and 

mean-semivariance frameworks using historical BestFit™ distributions and time series 

forecasted distributions. Several sensitivities were conducted using each type of distribution to 

show the impacts that certain variables can have on the optimal coverage ratio.  

The findings of the study are summarized below: 

- Utility maximization theory applies to this research topic. Figure 5.3: E-V Curve from 

Model 1.1 shows that as coverage is reduced, profit and variance of profit increases.  

- As risk aversion increases, standard deviations of profit and profits decrease. This is 

observed under both historical BestFit™ and time series forecasted distributions as 

shown in Table 5.2 and Table 5.10. Table 5.2 shows that the optimal coverage for 

grain and rail in Model H 2.1 increases from 12% in grain and 0% in rail to 67% in 

grain and 48% in rail as risk aversion increased from 0.05 to 0.15 when evaluated 

under mean-variance. Similarly, when evaluated with time series on Model TS 2.1, 

optimal coverage for grain and rail increased from 61% grain coverage and 0% rail 

coverage to 87% grain coverage and 65% rail coverage when risk aversion was 

increased from 0.05 to 0.15.  

- E-V models limit upside and downside risk, while E-SV models limit downside 

profit-risk which results in lower optimal coverage ratios. Table 5.2 and Table 5.10 

illustrate this as the optimal coverage levels are lower for every model and at each 

level of risk aversion when evaluated under E-SV instead of E-V. For example, Table 

5.2 shows that when Model H 2.1 is evaluated at a risk aversion level of 0.10 and 

under both E-V and E-SV, expected profit in E-SV is 27.09 c/bu with a standard 

deviation of 13.05 c/bu while the expected profit in E-V is 23.13 c/bu with a standard 

deviation of 7.95 c/bu. Across the results, higher profits and higher standard 

deviations of profits are observed in E-SV models, but it is expected that those 

deviations will be mostly upside risk due to skews in the distributions of random 

variables.  

- Correlations between markets vary significantly over time, and these correlations can 

strongly influence the optimal coverage ratios. Table 5.4 shows the correlation 

between the PNW basis and daily car values. The base case has a correlation of 0.372 

with optimal coverage ratios of 50% and 22% for grain and rail. When correlation is 

increased to 0.9, optimal coverage ratios are reduced to 19% and 0% for grain and 

rail.  

- As the standard deviations of a market increases, optimal coverage ratios increase. 

The impacts standard deviations have on coverage ratios are illustrated in Table 5.5 
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and Table 5.6. When the standard deviation of the PNW basis increased 10% the 

optimal coverage ratio increased 8 percentage points for grain and 2 points for rail.   

- When using time series distributions that have an increasing standard deviation 

throughout time, more coverage is needed as the time until liquidation increases. 

Table 5.19 shows that as a position liquidation date moves from April to June to 

August, the coverage levels increase. At an April liquidation, optimal coverage under 

base phi is 0% and 64% for grain and rail where when deferred to August, optimal 

coverage increases to 33% and 40% for grain and rail.  

The results show how a variety of factors contribute to the margin risk of a shipper 

elevator. The implications of these results are significant for academics as well as industry 

professionals. The findings contribute significantly to the academic literature which has limited 

research involving basis and freight coverage ratios. Additionally, the results demonstrate the 

impacts intermarket correlations and individual standard deviations can have on the elevator’s 

risk. In the industry, this approach could be further developed to be used in risk management 

groups to find optimal positions for the firm, elevators, or individual traders.  
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CHAPTER 6. CONCLUSIONS 

6.1. Introduction 

Commodity trading involves risks due to changes in futures prices, basis, and 

transportation costs. Risk is often quantified using the standard deviation or variance of the 

related price distributions. Using an E-V curve, Markowitz (1952) illustrated that with greater 

expected returns, there is also a larger variance of the returns. This balance between risk and 

reward leaves merchants, managers, and board members to decide whether they would prefer 

higher returns with more risk or lower returns with more certainty. They must also consider the 

ownership structure and the desires of the shareholders regarding risk appetite. Taking the 

appropriate levels of risk is essential to stay competitive while also staying in business.  

Along with establishing risk limits, decision-makers must also determine which types of 

risks are acceptable for the company. For example, some trading companies may trade futures, 

basis, and rail while others may only trade basis and rail, and others may only trade futures. 

Lorton and White (2010) suggest that trading basis can provide more consistent profits than 

actively trading futures. Changes in the futures market are often due to macroeconomic supply 

and demand factors. These may include droughts affecting major production areas, changes in 

export or usage expectations, or changes in currency markets.  

To mitigate the risk from changes in the futures market price, elevators can hedge their 

physical grain ownership conventionally by taking an opposite position in the futures market as 

their cash position. The elevator may eliminate their futures risk with a hedge ratio of one where 

a hedge ratio is defined as the 
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝐵𝑢𝑠ℎ𝑒𝑙𝑠 𝐻𝑒𝑑𝑔𝑒𝑑 𝑖𝑛 𝐹𝑢𝑡𝑢𝑟𝑒𝑠

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝐵𝑢𝑠ℎ𝑒𝑙𝑠 𝑂𝑤𝑛𝑒𝑑
. By hedging all of the physical 

bushels, the elevator’s risk is related to changes in basis and transportation prices.  
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Basis is defined as the difference between the cash price at the location and the futures 

price. The basis is tied to a delivery period, location, and futures contract. For example, soybeans 

delivered in December to an elevator in Jamestown may be purchased with January futures at 

$13.00/bu and the basis at $1.00 under the January futures. The net purchase price is then 

$12.00/bu. Every location has a unique basis market due to localized supply and demand factors 

but is also related to other origins and destination markets. Additionally, the basis is expected to 

be the highest in the period before harvest when local stocks are depleted while during harvest 

basis typically declines as local stocks are plentiful. In a way, basis is a tool that controls the 

flow of grain across geographies and time. Furthermore, the temporal variability of shipping 

costs impact the inter-market basis relationships over time.  

A merchant that consistently hedges all of the elevator’s physical grain is often referred 

to as a basis trader. In many situations, traders are purely basis traders in the sense that they 

make purchases in reference to the basis and make sales in reference to a basis.  Hence, a 

complete transaction may be consummated purely in reference to the buying and selling basis.  

As a basis trader, merchants can make strategic purchases and sales to take advantage of 

basis changes. If the basis is expected to increase, the merchant may enter a long basis position 

by purchasing grain at the origin and sell the grain to a destination after the basis has appreciated. 

Conversely, if the basis is expected to decrease, an advance sale may be made to a destination 

market for deferred delivery, and the grain may be purchased at the origin just prior to making 

the delivery. An alternative is a back-to-back sale in which grain is purchased at the origin and 

sold to the destination at the same time (i.e., within the same day). This secures a guaranteed 

basis margin for the merchant but does not allow for the opportunity to make money from 

changing basis.  
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Because basis trading often requires the elevator to ship grain from its location to a 

destination market, freight prices become a source of risk to the elevator’s margin. When grain is 

acquired at the origin or sold at the destination for a certain delivery window, the elevator 

becomes short freight. This means that the elevator margins benefit from decreasing freight 

prices and suffer from increasing prices. The rights to use rail cars can be purchased in the 

primary market. This reserves the use of the rail rights over a set amount of time at a given price. 

An alternative for purchasing rail car usage is the secondary market. This market uses auctions to 

determine the rail car value for one trip at a given time. Merchandisers can use this for 

purchasing additional cars or selling excess cars. The primary market pricing is relatively stable 

where the daily car value can exhibit large variations in prices. Thus, if the merchant is highly 

risk-averse, purchasing freight in advance may be an optimal option for them.  

6.2. Problem Statement  

Many merchants working at/for shippers or elevators, are pure basis traders. This may be 

a result of centralized futures trading at a corporate office or because of a policy to hedge all 

futures risk. With futures risk eliminated, the attention is shifted to risks resulting from basis 

movements and shipping prices. While low-risk trading approaches such as back-to-back trades 

with pre-purchased freight can allow merchants to secure known margins, these approaches can 

limit merchandising opportunities and fail to recognize shareholders' desires to earn profits. 

Taking positions in the basis or freight market can yield higher returns but also increases the 

firm’s risk exposure. This introduces the problem of finding a trading strategy with a balance of 

risk-bearing and risk-free trades.  

Coverage ratios are introduced as a step to solving this problem. A coverage ratio can be 

defined as the portion of grain sold to the destination relative to the grain owned at the origin; the 
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quantity of grain bought relative to the quantity of grain needed to be purchased; or for rail, the 

quantity of rail purchased relative to the amount of rail needed. For an elevator holding grain at a 

time, Time 1, which must be sold later, Time 2, this can be represented as the 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑠𝑜𝑙𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑇1 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑤𝑛𝑒𝑑 𝑜𝑟 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛 𝑎𝑡 𝑇1
 where 𝑇1 represents Time 1. In this example, the coverage 

ratio indicates the portion of the portfolio exposed to basis risk. If all of the grain which is owned 

at Time 1 is also sold at Time 1, as in a back-to-back trade, the coverage ratio is 1.0. If the 

elevator owns grain at the origin and the coverage ratio is 0.0, the elevator profit margins 

decrease as if the basis decreases. Each of the coverage ratios used throughout the analysis are 

presented in Chapter 3.  

An optimal coverage can be found which incorporates the expected returns, the variance 

of the asset, and the risk aversion level of the firm. Additionally, a coverage ratio can be 

optimized for just one location holding grain or in a case with a grain position, a freight position, 

and multiple destination possibilities. Determining the optimal coverage ratios could be useful 

for merchants, risk managers, and future academic research topics.  

6.3. Theoretical Conclusions 

Chapter 3 derived each of the coverage ratios used throughout the thesis as well as the 

payoff functions used to represent a variety of common merchandising scenarios. Two sets of 

payoff functions are defined: one for long-basis positions where an elevator has physical 

ownership at the origin and one for short-basis positions where the elevator has made forward 

sales to the destination for delivery at a later time. In the long-the-basis models, profit is a 

function of the grain sold at a known price at Time 1, the remaining grain sold at a random price 

at Time 2, and the costs of freight and acquiring grain at the origin. In models that included 

freight risk, freight could be purchased at a known price at Time 1 or at a random price at Time 
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2. The short-the-basis models defined profit as the revenues from the sale of grain to a 

destination at Time 1 for delivery at Time 2 minus the cost of acquiring grain at a known price at 

Time 1 and the cost of acquiring the remaining grain at Time 2 as well as transportation costs. In 

the long-the-basis models, randomness in profit is due to randomness in the destination basis 

where in the short-the-basis models, randomness in profit is due to randomness in the origin 

basis.  

An analytical solution is presented which is adapted from Blank, Carter, and Schmiesing 

(1991). Their model used the mean-variance framework to optimize hedging ratios given levels 

of risk aversion as well as a market bias. This type of derivation uses calculus to maximize the 

utility function rather than using simulations and stochastic optimization. The Blank, Carter, and 

Schmiesing (1991) model was the foundation for optimizing coverage ratios in this thesis.  

Two models were used to illustrate the process for analytically deriving the optimal 

coverage ratios. Model 1.1 represented a basis trader with a long basis position and no freight 

risk. Model 2.1 represented a basis trader with a long basis position and a short freight position. 

Using the respective payoff functions, the expected profit is defined as well as the variance of the 

expected profit. Next, the expected profit and variance of profit are substituted into the utility 

function. Taking partial derivatives yields the utility-maximizing coverage ratios for grain in 

Model 1.1 and grain and rail in Model 2.1.  

The analytical solutions indicate that as risk aversion and the variance of returns increase, 

the optimal coverage ratio also increases. Additionally, as the expected gains from holding grain 

from Time 1 to Time 2 increase, the optimal coverage ratio will decrease, all else equal. The 

single variable case is used to illustrate the analytical process and is advantageous because of the 

ease of interpretations. 
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In the multiple variable case, the optimal coverage ratio for both grain and rail is 

dependent on the variance of both grain and rail as well as the correlation between the two 

markets. For example, the variance of freight and the relationship between the current freight 

price and the expected freight price influences the optimal grain coverage ratio, ℎ. A similar 

pattern is observed when optimizing the rail coverage ratio.  

6.4. Empirical Model and Results 

Chapter 5 presented the results of the empirical analysis which optimized the coverage 

ratios using stochastic optimization with Monte Carlos simulations within RiskOptimizer™. 

Two types of distributions were used to evaluate the models. Historical BestFit™ distributions 

were used to represent a “naïve” merchandising strategy in which the merchant believed that the 

historical basis behavior was indicative of the average and standard deviation of future basis 

behavior. Timeseries distributions represented an “anticipatory” strategy in which the merchant 

would anticipate the basis and standard deviation for a specified number of periods forward. 

Each of the models and distributions were evaluated under mean-variance and mean-

semivariance frameworks as well. This allowed for comparison between the two frameworks.  

6.4.1. Empirical Results: Historical BestFit™ Models 

The long-the-basis base case (Model H 2.1 evaluated under the mean-variance framework 

at phi of 0.10) has an optimal coverage ratio of 50% in grain and 22% in rail which results in a 

23.1 c/bu profit with a 7.9 c/bu standard deviation of profit. When evaluating the same model 

under a lower level of risk aversion, 0.05 the optimal coverage ratios are 12% and 0% for grain 

and rail, respectively. This strategy yields a profit of 26.7 c/bu and a standard deviation of profit 

of 12.7 c/bu. At a higher level of risk aversion of 0.15, the optimal coverage is 67% for grain and 

48% for rail.  
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When comparing Models H 1.1, H 2.1, and H 3.1, the results show that as more tradable 

assets are added to the portfolio, the profits are greater. Model H 1.1 only includes a grain 

position, Model H 2.1 includes a grain and freight position, and Model H 3.1 includes a freight 

position with two possible destination markets. At base phi under mean-variance, profit is 19.3 

c/bu, 23.1 c/bu, and 25 c/bu for each respective model. Additionally, as more tradable assets are 

added, the optimal coverage ratios for each category of coverage decrease. As the coverage ratios 

decrease, the standard deviations of profits increase. 

The relationship between risk and return is demonstrated by the E-V curve shown in 

Figure 6.1 which is formed when Model 1.1 is evaluated at varying coverage ratios. The figure 

shows that expected profits increase with the expected variance of profits. As the coverage at 

Destination A, ℎ𝐴, approaches 100%, the basis risk approaches 0. The figure shows that at the 

lowest level of risk, the resulting profit is also lowest.  
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Figure 6.1: E-V Curve from Model 1.1 

When the models were evaluated under the mean-semivariance framework, at all levels 

of risk aversion, the optimal coverage ratios were lower due to the skews of the data distributions 

and the distinction between upside and downside risk. Only taking coverage to avoid downside 

risk increases profit. Under mean-variance, Model H 2.1 had a profit of 23.1 c/bu with a standard 

deviation of 8.0 where the profit was 27.1 c/bu and 13.4 c/bu under mean-semivariance. When 

comparing all of the base case results, the models evaluated under mean-semivariance 

consistently had lower coverage, higher standard deviations, and higher profits.  
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Sensitivities were conducted which illustrated impacts of changing correlations and 

standard deviations. The base case has a correlation of .372 between the PNW basis and the 

DCV price. When the two variables varied independently, the expected profit was reduced by 3 

c/bu from the base case with coverage in grain increasing 17% and rail increasing 41% from the 

base case. At higher correlations, profits are higher with lower coverage ratios in both grain and 

rail. The sensitives relating to standard deviation of basis and rail showed that as the standard 

deviation of the market increases, the coverage taken in both markets increases.  

The short-the-basis models exhibited similar patterns as those shown in the long-the-basis 

models. In this case, partially due to a lower standard deviation in the origin basis, higher levels 

of risk aversion were required for any coverage to be optimal. When evaluating Model 2.1.1 with 

a risk aversion of 0.10, only 6% coverage was taken in rail. For the optimal coverage ratio to be 

over 50% for either model, a risk aversion level of 0.30 was required. A difference between the 

short basis model and the long basis model is the order in which coverage is taken. In the long-

the-basis models, coverage is first taken in the PNW and then in the rail market where in the 

short-the-basis models, coverage is taken in the rail market first.  

6.4.2. Empirical Results: Time Series Models 

The long-the-basis base case (Model TS 2.1 evaluated under the mean-variance 

framework at phi of 0.10) has an optimal coverage ratio of 81% in grain and 48% in rail. The 

corresponding profit is 20.3 c/bu with a standard deviation of 5.9 c/bu. At a lower risk aversion 

level of 0.05, the optimal coverage ratio in grain is reduced to 61% and 0% in rail with a profit of 

23.6 c/bu. When evaluated at a higher level of risk aversion, 0.15, the optimal coverage ratios 

increase to 87% in grain and 65% in rail. The profit decreases to 19.2 c/bu with a standard 

deviation of 4.0 c/bu. Similar to the historical BestFit™ distributions, as risk aversion increases, 
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the optimal coverage levels increase. This reduces the standard deviations of profits but also 

reduces the expected profit. The time series models differed from the historical BestFit™ models 

in that the optimal coverage ratios were higher in the time series models which resulted in lower 

profits and standard deviations of profit. The results are sensitive to the distributions, so it is not 

surprising that using different distributions caused the results to differ.  

Comparing Models TS 1.1, TS 2.1, and TS 3.1 shows that as the merchandiser has more 

trading opportunities available, the higher the expected profit. At each level of risk aversion and 

under both the mean-variance and mean-semivariance frameworks, the expected profit increases 

as additional merchandising opportunities are incorporated into the model.  

The results show that when mean-semivariance is used instead of mean-variance, the 

optimal coverage ratios are consistently lower with higher profits at each level of risk aversion 

and for each model specification. Although this leads to higher standard deviations in profit, the 

deviations are positive deviations which are more desirable for a company than negative 

deviations from expected profit. This conclusion is consistent with the results that used historical 

BestFit™ distributions.  

Sensitivities were performed to evaluate the impact of varying correlations, time to 

liquidation, Time 1 specification, and restrictions on DCV coverage on the optimal coverage 

ratios and profit levels. Similar to the sensitivity relating to correlations between the PNW basis 

and DCV which used historical BestFit™ distributions, the time series results showed that the 

optimal coverage levels were higher when the market had a low correlation and lower when the 

markets were closely correlated. When evaluating the impact of the timeframe for liquidation, 

the results contradicted the original hypothesis that the coverage would increase over time. 

Because the PNW basis was increasing throughout time more than the standard deviation, the 
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results showed that it was optimal to take lower levels of coverage as the timeframe for 

liquidation was increased. Impacts of changing the Time 1 specification were also evaluated. A 

variety of market scenarios were tested which showed that when grain was priced relatively high 

at Time 1 compared to the expectation of Time 2 and rail was priced relatively low at Time 1 

compared to the expected Time 2 price, the optimal coverage levels were 100% in both markets. 

When grain was low and rail was high, coverage ratios ranged from 61-87% in grain and 0-65% 

in rail. Lastly, a scenario was presented in which freight coverage was restricted to 0% or 

allowed up to 200%. Under base inputs, allowing freight to be increased to 200% did not affect 

the optimal coverage ratios. However, when evaluated under the 11/13/2020 conditions with 

high basis and low rail prices, the optimal freight coverage was 200% with grain coverage at 

100%.   

For the short-the-basis base case, coverage was optimal at lower levels of risk aversion 

than the historical BestFit™ distributions. Similar to the long-the-basis case, the results show 

that as risk aversion increases, the coverage levels increase. In the base case scenario (Model TS 

2.1 evaluated under base phi of 0.10 and mean-variance framework), the profit is 22.4 c/bu and 

the standard deviation is 7.5 c/bu with 22% coverage in grain at the origin and 48% coverage in 

rail. The optimal coverage levels are still lower and with higher corresponding profits when 

evaluated under the mean-semivariance framework than the mean-variance framework.  

Two sensitivities are conducted with time series in the short-the-basis series which 

evaluate again the time to liquidation and the Time 1 specification. The time to liquidation is 

interesting because the results differ from those observed in the long-the-basis time series 

sensitivity. In this case, the optimal coverage at the origin increases as the time to liquidation 

increases while the optimal coverage in rail decreases as the time to liquidation increases. This 



 

126 

pattern can be explained by the projected movement in prices and the standard deviations of the 

prices. The origin basis distribution exhibits an increase in standard deviation and expected basis 

levels throughout time where rail exhibits a relatively stable standard deviation over time. The 

increased risk and expectations of increasing prices throughout time cause the optimal coverage 

ratios to increase. Lastly, the sensitivity relating to the Time 1 specification shows that when 

there are high origin basis levels at Time 1 relative to the expected origin basis at Time 2, the 

optimal coverage ratio is 0% in grain. In contrast, when the origin basis is low relative to the 

expected along with lower than expected rail, the optimal coverage ratios for rail and grain are 

100%.  

6.5. Implications of Results 

The results of the empirical models have important implications for industry practitioners 

as well as researchers.  First, the results show that the selection of the objective function is 

significant in determining optimal coverage ratios and has significant impacts on profit levels. 

Mean-variance models limit upside and downside risk, while mean-semivariance models limit 

downside profit-risk which causes them to generally find lower optimal coverage ratios. This 

yields higher profits and higher standard deviations of profits, but it is expected that those 

deviations will be mostly upside risk due to skews in the distributions of random variables. 

Next, by evaluating the profit and corresponding variance of Model H 1.1 at various 

coverage ratios, an E-V curve was created which illustrates the applicability of E-V modeling 

and utility maximization to basis and rail trading portfolios. Additionally, the analytical 

derivations of optimal coverage ratios in Chapter 3 reinforce that adjusting the coverage ratios 

can lead to a point of maximum utility.  
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The theoretical and empirical results show that the relationship between the basis at Time 

1 and the expected basis at Time 2 is critical to determining the optimal coverage ratio. If a large 

basis change is expected, the optimal coverage levels are lower than when a small basis change 

is expected. Additionally, the relationship between the basis, destination, and rail markets is 

important as taking coverage in one may reduce the risk of the other market.   

 Intermarket correlations vary significantly across time, and these correlations have 

significant impacts on the optimal strategy. In practice, many market participants and analysts 

assume that the correlations between basis and destination markets is equal to 1.0. Regardless of 

the distribution used to evaluate the effects of intermarket correlations, significant changes in 

coverage ratios were noted with changing correlations. As the correlations increased, the optimal 

coverage ratios decreased.  

 The sensitivities also show that when intermarket correlations exist, the coverage taken in 

one market helps to reduce the risk. This is demonstrated in the sensitivities relating to market 

correlations and the standard deviations of individual markets. First, when the correlations are 

reduced from the base case, the coverage level is higher for both rail and freight, but there is a 

greater increase in coverage in rail than in grain. Next, when the standard deviation of the PNW 

basis is adjusted with the DCV correlated at the base level of 0.372, a 10% change in the 

standard deviation results in about a 10-percentage point change in the optimal grain coverage 

ratio and 2-3 percentage point change in the rail coverage ratios. A similar theme is shown when 

adjustments are made to the standard deviation of rail car prices and the standard deviation of the 

PNW basis remains unchanged. This shows that when intermarket correlations exist, optimal 

coverage strategies in one market are affected by changing conditions of another market. 
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 Overall, the analysis shows that an important element of a basis trading strategy is the 

portion of grain and rail coverage that is taken in a market once a market bias has been 

determined. Risk preferences of the decision-makers have a significant impact on the optimal 

strategies. 

6.6. Limitations 

This analysis is limited by many of the simplifying assumptions as well as the usage of 

data. First, many elevators handle multiple commodities and transport the grain using a 

combination of rail, truck, or barge. While these features could have been added, additional data, 

correlation matrixes, model specifications, and coverage ratios would be required. The value that 

would be gained by these additional features would be minimal relative to the additional 

complexity they would have added to the interpretations.   

An additional limitation is the assumption regarding prices at Time 1 and Time 2, 

especially with the basis data. Basis is always related to a specific delivery period. Thus, 

equating the basis at Time 1 to the basis available for a forward contract during delivery at Time 

2 is a bold assumption. While the method is not necessarily representative of reality, data 

showing forward basis quotes are not available in the form that would have been required for this 

analysis. Similarly, daily car value prices at Time 1 are not necessarily representative of the price 

of rail freight at Time 2. Additionally, purchasing rail cars far in advance does not usually 

happen using the secondary rail market.  

Furthermore, the study is limited by assuming that there is only carry in the futures 

market and that cost of carry is equal to zero. Because basis may be used to control flows of 

grain across space and time, there may be times where the basis market pays holders of grain to 

store. In this type of scenario, the Time 2 basis may be higher than the Time 1 price. When the 
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cost of carrying the grain to Time 2 is subtracted from the Time 2 basis, there may be little or no 

difference between selling at Time 1 or Time 2 which would affect the optimal coverage ratios. 

The study is also limited in the stability of the distributions. This study used historical 

BestFit™ and time series forecasted distributions to optimize coverage ratios using simulations. 

However, these distributions are clearly not stable and as illustrated, have important impacts on 

the optimal coverage ratios. A limited length of history was able to be used to structural breaks in 

the data. Furthermore, for the historical BestFit™ distributions, in order to demonstrate the 

applications of a coverage ratio, the position entry dates needed to have a lower Time 1 basis at 

the destination than the average of the historical distribution for long-the-basis models.  

Furthermore, the applicability of the utility functions and risk aversion levels to firms and 

decision-makers is another limitation. While a CARA utility function was assumed along with a 

variety of risk aversion levels, determining an individual’s or firm’s utility function and risk 

aversion level outside of theory is difficult.   

6.7. Contribution to Literature  

 The conclusions from this research add to a plethora of literature relating to risk 

management and portfolio optimization. First, this work defines coverage ratios for grain and 

freight which can be optimized by maximizing the expected utility objective function. While 

there has been much research on basis and on optimal hedge ratios (i.e., hedging in futures), 

there have been few studies relating to risk management in basis and rail markets, and no study 

has sought to define and optimize coverage for these types of trading strategies.  

 Next, the data collected for this study revealed that the origin and destination are not 

always perfectly correlated as it seems to be assumed throughout the literature. Rather, this study 

showed that the correlations may vary significantly, and at times can be negatively correlated. 
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Additionally, the importance of the correlation between the secondary rail car market and the 

destination basis market was illustrated. The results showed that changing the correlations 

between the markets impacts the optimal coverage ratios.  

 The standard deviation of each market also has significant impacts on the coverage ratio 

and coverage ratios of correlated assets. For example, if for a long-basis position the standard 

deviation of the destination basis market is increased, the optimal coverage ratio for grain will 

increase along with the optimal coverage ratio for rail. Additionally, the data showed that the 

standard deviation of the origin basis is not necessarily the same as the standard deviation of the 

destination basis, and the standard deviations change throughout time.  

6.8. Suggestions for Further Research 

 This research could be further developed by adding additional time periods to liquidate. 

The models assumed that a merchant could make sales or purchases at only Time 1 or Time 2 

when in reality, there are far more than two times in which the merchant could make a purchase 

or sale. For example, if a merchant is long cash grain in December, Time 1, and must liquidate 

by June, Time 2, sales to the destination could happen at any point between Time 1 and Time 2. 

Expanding this could be useful for short-basis positions especially. Management may approve a 

short basis position at the origin six months prior to delivering to a destination but may want to 

see increasing coverage as the delivery period nears so that they are sure they have adequate 

stocks to fill their contract.  

 Additionally, the models could be expanded to include a portfolio of multiple origins, 

destinations, and modes of transportation. This type of analysis would be more representative of 

industry practice as it is common for a merchant to manage multiple elevator positions while 
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typically having access to some combination of rail, barge, truck, or ship. These models could be 

used to represent a regional or company-wide basis coverage optimization.  

 These methods could also be applied to determine optimal coverage ratios for processors 

such as flour millers or soybean crushers. Instead of purchasing at an origin and selling to a 

destination market, these types of traders purchase a commodity from one market, transform it, 

and sell it in a separate but related market. In the case of a flour mill, the firm may decide to be 

short flour and need to purchase their wheat later or may choose to hold a long wheat position 

and sell the flour at a later time.  

 Further analysis regarding the stability of distributions and distribution selection is 

needed. The distributions are significant to the results, but structural breaks in data can limit the 

amount of data that is used. Additionally, a further analysis related to the correlations between 

the distributions could also prove valuable.  

 Lastly, this research could be enhanced by optimizing the hedge ratio with the coverage 

ratios for grain and transportation risk. While many elevators operate as pure basis traders, a 

better strategy may be to determine optimal strategies for hedging and coverage. Because of the 

correlations between futures, basis, and transportation, analyzing hedge ratios and coverage 

ratios together is likely a better strategy than analyzing them separately.  

6.9. Summary 

Risk management in commodity trading is important for long-term business success. 

While it is important to manage risk, many times risk management is not synonymous with risk 

elimination. To produce attractive returns, some amount of risk tolerance is necessary, but risk 

aversion varies across different people. This thesis focused on the risk associated with pure basis 

and rail trading portfolios. The concepts of the futures, basis, and rail markets were introduced 
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along with the key market drivers. Understanding that futures hedge ratios can be optimized, 

coverage ratios were defined for long basis, short basis, and short freight positions. Using mean-

variance an analytical solution for an optimal coverage ratio was derived.  

The empirical models used daily car value prices and basis data for Jamestown, St. Louis, 

and the PNW and to illustrate a variety of merchandising scenarios. Distributions were fit to the 

data to create historical and timeseries distributions. The historical distributions represent a naïve 

strategy in which the merchant assumes future basis market activity to be similar to previous 

market activity where timeseries distributions represent an anticipatory strategy where the 

merchant anticipates future basis levels and standard deviations. Each of the models were 

evaluated under mean-variance and mean-semivariance frameworks and using both types of 

distributions at various risk aversion levels.  

The results of this analysis showed the viability of optimizing coverage ratios for a grain 

and rail portfolio to improve risk management. The importance of the standard deviations of the 

markets, intermarket-correlations, and risk aversion levels of the decision-makers are 

demonstrated using sensitivity analysis.   
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