

TURNING VISUAL NOISE INTO HARDWARE EFFICIENCY: SYSTEMS OF VIEWER

AND CONTENT AWARE POWER-QUALITY SCALABLE EMBEDDED MEMORIES

WITH ECC-ADAPTATION FOR BIG VIDEOS AND DEEP LEARNING

A Dissertation

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Ali Ahmad Haidous

In Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:

Electrical and Computer Engineering

July 2021

Fargo, North Dakota

North Dakota State University

Graduate School

Title

TURNING VISUAL NOISE INTO HARDWARE EFFICIENCY:

SYSTEMS OF VIEWER AND CONTENT AWARE POWER-QUALITY

SCALABLE EMBEDDED MEMORIES WITH ECC-ADAPTATION FOR

BIG VIDEOS AND DEEP LEARNING

 By

Ali Ahmad Haidous

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

Danling Wang

 Chair

Jacob Glower

Dharmakeerthi Nawarathna

Sumitha George

Simone Ludwig

 Approved:

 July 19, 2021 Benjamin D. Braaten

 Date Department Chair

iii

ABSTRACT

Mobile devices, such as smart phones, are being increasingly utilized for watching

videos. Video processing requires frequent memory access that consume a significant amount of

power due to large data size and intensive computational requirements. This limits battery life

and frustrates users. Memory designers are focused on hardware-level power-optimization

techniques without consideration of how hardware performance influences viewers' actual

experience. The human visual system is limited in its ability to detect subtle degradations in

image quality. For example, under conditions of high ambient illumination – such as outdoors in

direct sunlight – the veiling luminance (i.e., glare) on the screen of a mobile device can

effectively mask imperfections in the image. Under these circumstances, a video can be rendered

in lower than full quality without the viewer being able to detect any difference in quality. As a

result, the isolation between hardware design and viewer experience significantly increases

hardware implementation overhead and power consumption due to overly pessimistic design

margins, while integrating the two would have the opposite effect.

In this dissertation, viewer-awareness, content-awareness, and hardware adaptation are

integrated to achieve power optimization without degrading video quality, as perceived by users.

Specifically, this dissertation will (i) experimentally and mathematically connect viewer

experience, ambient illuminance, and memory performance; (ii) develop energy-quality adaptive

hardware that can adjust memory usage based on ambient luminance to reduce power usage

without impacting viewer experience; (iii) design various mobile video systems to fully evaluate

the effectiveness of the developed methodologies; and (iv) provide an overview of bleeding edge

related area research then push the boundary further using the novel techniques discussed to

achieve optimized quality, silicone area overhead, and power reduction in video memory.

iv

ACKNOWLEDGEMENTS

Bi-smi llāhi ar-raḥmāni ar-raḥīm, “In the name of Allah (God), the Most Gracious, the

Most Merciful.” Who has blessed me with opportunity and gave me the health and wherewithal

to complete this journey. As He has said in the Quran, “Whatever He wills occurs without

resistance, and whatever He does not will, never occurs.”

To first and foremost, Na Gong, I sincerely and with all gratitude thank you. Your

encouragement, patience, time, guidance, and knowledge helped me immensely in my research.

To Scott Smith, my utmost appreciation for your leadership and mentorship. Your leading

questions lead to many great results and answers that evolved my research capabilities. To my

lab partners and especially Hritom Das, William Oswald, and Yifu Gong, for their assistance in

supporting experiments and simulations. Thank you to my supervisory committee for their

assistance in presentations and feedback during my doctoral candidacy: Danling Wang, Jacob

Glower, Dharmakeerthi Nawarathna, Sumitha George, and Simone Ludwig.

I am grateful for the National Science Foundation for their grant that made this research

possible.

In reference to IEEE copyrighted material, which is used with permission in this

dissertation, the IEEE does not endorse any of North Dakota State University's products or

services. Internal or personal use of this material is permitted.

v

DEDICATION

Dedicated to my parents, Mama Huda and Baba Ahmad, who trekked against adversity,

sacrificed their wellbeing, and contradicted all odds in America for my siblings and I to pursue

our dreams. I will never be able to repay you, but I hope that I can at least make you proud.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS ... xvii

CHAPTER 1. INTRODUCTION ... 1

1.1. Motivation .. 1

1.2. Viewer-Aware Bit-Truncation ... 2

1.3. Self-Correcting Memory Throughout Voltage Scaling .. 2

1.4. Smart Dynamic Memory Management in Video Decoder Processes 3

CHAPTER 2. CONTENT-ADAPTIVE MEMORY FOR VIEWER-AWARE ENERGY-

QUALITY SCALABLE MOBILE VIDEO SYSTEMS .. 4

2.1. Introduction .. 4

2.2. Related Work .. 8

2.3. Influence of Video Content on Viewer’s Experience .. 9

2.3.1. Mobile Video Memory System ... 9

2.3.2. Influence of Video Content on Viewer’s Experience in the Presence of

Hardware Noise ... 14

2.3.2.1. Traditional PSNR Metric .. 14

2.3.2.2. Video Macroblock Variance Analysis .. 16

2.4. Modeling Process ... 19

2.4.1. Subjective Testing Procedure for Data Collection .. 19

2.4.2. Modeling Process .. 20

2.4.2.1. Decision Tree Model .. 20

vii

2.4.2.2. Logistic Regression Model ... 21

2.5. Quality Optimized Bit Truncation Design ... 23

2.5.1. Quality Optimized Bit Truncation ... 23

2.6. Content-Adaptation Video Memory Design .. 25

2.7. Experimental Results .. 27

2.7.1. Speed ... 27

2.7.2. Layout .. 28

2.7.3. Power Savings ... 29

2.7.4. Video Quality .. 30

CHAPTER 3. FLEXIBLE LOW COST POWER-EFFICIENT VIDEO MEMORY WITH

ECC-ADAPTATION .. 35

3.1. Introduction .. 35

3.2. State of the Art ... 38

3.2.1. Video Memory... 38

3.2.2. Review of Relevant Literature ... 39

3.2.2.1. Video-Specific Memory with Design-Time Fixed Quality: 40

3.2.2.2. Adaptive Memory with Dynamic Power-Quality Management: 40

3.3. Proposed Low-Cost ECC Storage Scheme .. 41

3.3.1. Traditional ECC... 41

3.3.2. Bit Significance Characteristics of Video Data and Proposed Storage Scheme

for Parity Bits .. 44

3.4. ECC Adaptation Based on Requirements and Failure Rate Based on Voltage.................. 46

3.4.1. Failure Characteristics of 6T SRAM ... 48

3.4.2. Errors Injected, Including in Parity Bits .. 49

3.4.3. ECC Under Various Failure Rates .. 51

3.4.4. Proposed Runtime ECC Adaptation Scheme .. 52

viii

3.5. Proposed Memory .. 53

3.5.1. Reusable ECC Encoder for ECC1511 and ECC74 ... 54

3.5.2. Reusable ECC Decoder for ECC1511 and ECC74 ... 55

3.5.3. Correction Unit .. 56

3.5.4. Output MUX .. 57

3.6. Results .. 57

3.6.1. Timing Diagram .. 57

3.6.2. Power Efficiency ... 60

3.6.3. Video Quality .. 61

3.7. Hardware Implementation for Verification .. 62

3.7.1. Variable Voltage SRAM Test Platform .. 63

3.7.2. SRAM Error Characterization at Given Voltages ... 63

3.7.3. Hardware SRAM Testing .. 65

3.7.4. Hardware SRAM Analysis .. 67

3.8. Comparison with Prior Work ... 71

3.8.1. Compared to State-of-the-Art Approximate Video Memories 71

3.8.2. Compared to State-of-the-Art Adaptive SRAM .. 71

3.8.3. Compared to State-of-the-Art SRAM with traditional ECC 72

3.8.4. Compared to State-of-the-Art Memory with Selective ECC 72

3.8.5. Comparison Summary ... 73

CHAPTER 4. CONTENT-ADAPTABLE ROI-AWARE VIDEO STORAGE FOR

POWER-QUALITY SCALABLE MOBILE STREAMING ... 74

4.1. Introduction .. 74

4.2. State of the Art ... 77

4.2.1. Approximate Video-Specific Memory .. 77

4.2.2. Viewer-Aware Video Memory .. 78

ix

4.3. Overview of the Proposed Technique .. 79

4.3.1. Motivational Example ... 79

4.3.1.1. Protected ROI ... 81

4.3.1.2. Power savings vs. Bits Truncated ... 81

4.3.2. Overview of the Proposed Content-Adaptable ROI-Aware Video Storage 81

4.3.2.1. ROI Awareness ... 82

4.3.2.2. Video Content Adaptation .. 84

4.3.2.3. Truncation Region Extractor .. 84

4.3.2.4. 3-Bit Truncation .. 85

4.4. Proposed Technique: System Level and Circuit Level Implementation 86

4.4.1. System-Level Implementation: Video Streaming Platform .. 86

4.4.2. Memory Bit Truncation Manager .. 89

4.4.3. H.264 Decoder and MBTM Integration .. 92

4.4.4. Circuit-Level Implementation of the Proposed Frame Buffer Memory 94

4.5. Experimental Methodologies ... 95

4.5.1. Video Selection ... 95

4.5.2. Video Frame Quality Metrics .. 96

4.5.3. System-Level and Circuit-Level Implementation ... 96

4.5.4. Video Quality Evaluation .. 97

4.5.5. Statistical Hypothesis Validation .. 97

4.6. Experimental Results .. 97

4.6.1. Hardware FPGA System MBTM Overhead.. 97

4.6.2. Circuit-Level Frame Buffer Timing Diagram ... 98

4.6.3. Circuit-Level Frame Buffer Power Saving Analysis... 99

4.6.4. Video Visual Quality Comparisons ... 104

x

4.6.5. Objective Video Quality and Bit Truncation Analysis .. 105

4.6.6. Video-Level Power Saving Analysis... 106

4.6.7. Statistical Analysis .. 109

CHAPTER 5. CONCLUSIONS AND FUTURE WORK .. 114

5.1. Chapter 2: Content-Adaptive Memory for Viewer-Aware Energy-Quality Scalable

Mobile Video Systems .. 114

5.2. Chapter 3: Flexible Low Cost Power-Efficient Video Memory with ECC-

Adaptation ... 114

5.3. Chapter 4: Content-Adaptable ROI-Aware Video Storage for Power-Quality

Scalable Mobile Streaming ... 115

CHAPTER 6. REFERENCES .. 117

6.1. Chapter 2 .. 117

6.2. Chapter 3 .. 122

6.3. Chapter 4 .. 125

APPENDIX A. MACROBLOCK VARIANCE TRUNCATION .. 131

APPENDIX B. ECC 74 AND ECC 1511 ANALYZER .. 136

APPENDIX C. SRAM TEST PLATFORM SUITE .. 147

C.1. Raspberry Pi Master Controller ... 147

C.1.1. arduino-slave.py .. 147

C.2. Arduino SRAM Slave Controller .. 149

C.2.1. arduino_sram_slave.ino .. 149

C.2.2. SRAM_Slave.h ... 151

C.2.3. SRAM_Slave.cpp ... 152

C.2.4. I2C.h ... 154

C.2.5. I2C.cpp .. 155

C.2.6. CY62147GE.h... 160

xi

C.2.7. GY62147GE.c... 160

C.2.8. CY62147GE_Defines.h .. 162

C.2.9. Global_Defines.h .. 164

C.3. Arduino Voltage Slave Controller ... 165

C.3.1. arduino_voltage_slave.ino .. 165

C.3.2. Voltage_Slave.h .. 165

C.3.3. Voltage_Slave.cpp .. 166

APPENDIX D. BIT TRUNCATION MANAGER .. 168

D.1. BitTruncationManager IP Core ... 168

D.2. BitTruncationManager Test Bench ... 170

xii

LIST OF TABLES

Table Page

1. Video Memories and Their Functionality ... 10

2. Results of videos with different LSBs truncated in H264 decoder different

memories ... 13

3. Output Quality of Different Videos with Bit Truncation .. 16

4. Results of ordinal logistic regression .. 23

5. Traditional ECC74 and ECC1511 .. 41

6. Impact of Traditional ECC on Video .. 43

7. Proposed ECC ... 45

8. Comparison with Prior Work .. 71

9. Comparison with [11] ... 73

10. Truncation Region GPIO Protocol.. 88

11. Visual Comparison of Selected Video Frames ... 103

12. Selected ROI Videos. Analysis Results .. 107

13. Results of NON-ROI Videos .. 108

https://ndusbpos-my.sharepoint.com/personal/danjel_nygard_ndus_edu/Documents/Desktop/Final_Dissertation_Ali_Haidous.docx#_Toc78901946
https://ndusbpos-my.sharepoint.com/personal/danjel_nygard_ndus_edu/Documents/Desktop/Final_Dissertation_Ali_Haidous.docx#_Toc78901947
https://ndusbpos-my.sharepoint.com/personal/danjel_nygard_ndus_edu/Documents/Desktop/Final_Dissertation_Ali_Haidous.docx#_Toc78901948
https://ndusbpos-my.sharepoint.com/personal/danjel_nygard_ndus_edu/Documents/Desktop/Final_Dissertation_Ali_Haidous.docx#_Toc78901949
https://ndusbpos-my.sharepoint.com/personal/danjel_nygard_ndus_edu/Documents/Desktop/Final_Dissertation_Ali_Haidous.docx#_Toc78901950
https://ndusbpos-my.sharepoint.com/personal/danjel_nygard_ndus_edu/Documents/Desktop/Final_Dissertation_Ali_Haidous.docx#_Toc78901951
https://ndusbpos-my.sharepoint.com/personal/danjel_nygard_ndus_edu/Documents/Desktop/Final_Dissertation_Ali_Haidous.docx#_Toc78901952
https://ndusbpos-my.sharepoint.com/personal/danjel_nygard_ndus_edu/Documents/Desktop/Final_Dissertation_Ali_Haidous.docx#_Toc78901953

xiii

LIST OF FIGURES

Figure Page

1. Proposed content-adaptive mobile video memory for viewer-aware mobile video

systems. ... 5

2. Mobile video memory architecture. Block diagram of the mobile video decoding

and display process. Different memories are shaded. MB: Macroblock. 10

3. Mobile video memory architecture. Xilinx Zynq 7020 FPGA based system

implementation. .. 12

4. Plain MBs visualization and video output comparison of two videos with varying

plain MB % (with 2 LSBs truncated). White: plain MBs. .. 18

5. Acceptable truncated bits based on subjective feedback. 1T: 1 LSB truncated; 2T:

2 LSBs truncated; 3T: 3 LSBs truncated. ... 19

6. Developed decision tree model for bit truncation. .. 20

7. Average PSNR values of 2,000 YouTube-8M videos using two different

truncation techniques. ... 26

8. Content-adaptive video memory. .. 26

9. Timing diagram. DATA7: MSB; DATA0: LSB .. 28

10. Physical layout design... 29

11. Power savings. .. 30

12. Psychological experiment set-up at North Dakota State University Center for

Visual and Cognitive Neuroscience. ... 31

13. Output quality of video (tag wF6lvdXXwc4): (a) with 3 LSBs truncated using

decision tree model and (b) with 2 LSBs truncated using the developed ordinal

logistic regression model. ... 32

14. Video quality testing results using the decision tree model. ... 34

15. Mobile video memory architecture for steaming. The reference frame memory

and frame buffer are accessed very frequently, and have a profound impact on the

system’s overall cost and power consumption.. 39

16. Video output quality with traditional ECC. (a) Original frame, (b) ECC74 parity

bits stored with PSNR = 27.75 dB, and (c) ECC1511 parity bits stored with PSNR

= 8.27 dB. .. 43

xiv

17. Encoded video frame (Akiyo) with (a) ECC74 where parity is stored in the LSBs

with PSNR = 41.2582 and (b) ECC1511 where parity bits were stored in LSBs

with PSNR = 39.8426 dB. .. 47

18. Relation between supply voltage (VDD) and SRAM bitcell failure rate in a 45nm

CMOS technology. ... 47

19. Error map and video quality with the proposed ECC74 under 0.1% faulty memory

bitcells: (a) and (b) Error map and original image with 0.1% memory failures

injected; (c) and (d): parity bits stored in the LSBs with the proposed ECC74, and

corresponding video quality; (e) and (f): Error map and encoded video quality

with the proposed ECC74, with the exact same number and position of errors

from (a) injected into the memory; (g) and (h): Error map and decoded video

quality with the proposed ECC74. .. 48

20. Error map and video quality with the proposed ECC1511 under 0.1% faulty

memory bitcells: (a) and (b) parity bits stored in the LSBs with the proposed

ECC1511, and corresponding video quality; (c) and (d): Error map and encoded

video quality with the proposed ECC1511; (e) and (f): Error map and decoded

video quality with the proposed ECC1511. .. 50

21. ECC adaptation based on failure rate and corresponding PSNR. 51

22. Proposed Adaptive ECC Memory. ... 53

23. ECC Encoder. ... 54

24. ECC Decoder. ... 55

25. Correction Unit. .. 56

26. Output MUX. .. 57

27. Timing diagram: purple marked bits are the combination that generated the

orange marked parity bits for each operation. .. 58

28. Power Comparison. ... 59

29. PSNR values of 1,000 videos at 0.1% and 0.9% failure rates. ... 61

30. Variable voltage SRAM test platform: (a) Arduino Mega, Arduino Due,

Raspberry Pi, Texas Instruments Level Shifters, and Cypress 65nm TSOP-44(II)

SRAM based system implementation. .. 62

31. Block diagram of the Master and Slave controller interaction to write, read, and

verify data on the SRAM, as well as control its supply voltage. 64

xv

32. (a) SRAM failure characterization map for the entire addressable memory region

per bit. Voltage ranges 1.30V down to 1.00V are shown, which demonstrate the

per bit error distributions from a 0% to 100% failure rate. The granularity of

voltage plotted is 0.01V. Voltages 2.20V down to 1.31V were not shown for

clarity, as they resulted in a 0% failure rate; (b) failure rate at each voltage

between 1.02V and 1.25V. Failure rates not shown on the graph above 1.25V

were nearly 0%, above 1.30V were 0%, and below 1.02V were 100%. 66

33. SRAM error distribution map at 1.06V, where failure rate is measured as

44.25244%, to show the uniformity of error distribution (black pixels denote

error): (a) exaggerated visualization of 16bit by 256K SRAM memory structure

(b) Sub-section of (a) to clearly show the error distribution across 128 words:

16bits by 128 (c) Re-organized and re-assembled from (a). ... 67

34. Failure rate and PSNR values at different supply voltages for three memory

modes (No ECC, ECC74, and ECC1511). ... 69

35. Zoomed in video frame using the proposed memory with different modes (No

ECC, ECC74, and ECC1511) at two different supply voltages. The circled regions

highlight visual degradation due to slightly increased number of errors. 70

36. Proposed content-adaptable ROI-aware low-power video memory. 75

37. Observer discernable flaws in the facial region due to a “banding effect” on the

face when comparing (a) and (b) caused the overall quality of the frame to

become unacceptable at 3 truncated bits (Video tag: wF6lvdXXwc4 from [14]). 80

38. Proposed Region-Of-Interest and macroblock texture framework. 82

39. Akiyo from [28], sample visualized, as generated internal to the proposed

method’s frame parsing process. Pink, preserved ROI. Seven possible truncation

combinations: 1. Green, Y vector truncation. 2. Blue, U vector truncation. 3.

Yellow, V vector truncation. 4. Dark blue, YU vectors truncation. 5. Dark

Yellow, UV vector truncation. 6. Dark green, YV vectors truncation. 7. Grey,

YUV vectors truncation. ... 83

40. H264 video stream demonstration platform hardware system. .. 87

41. Mobile video steaming system block diagram.. 88

42. (a) Encoded frame 175 from Johnny_1280x720_60 video [28]. (b) Visual of

areas being truncated. 45 regions total. (c) Output decoded frame. 2,282,496 bits

truncated. ... 90

43. Circuit-Level implementation of the proposed frame buffer memory. 91

44. Timing diagram of the frame buffer circuit. ... 99

xvi

45. Hardware FPGA system post- implementation project summary without BTM. (a)

On-Chip Power, Total Power: 2.203W. (b) Resource allocation. 101

46. Hardware FPGA system post-implementation project summary with BTM. (a)

On-Chip Power, Total Power: 2.271W. (b) Resource allocation. 102

47. Power savings (one word) of the frame buffer circuit. ... 104

48. Impact of the video content characteristics on the effectiveness of the proposed

technique, compared to old technique. ... 108

49. Histogram of quality Improvement distributions. Number of data points and P-

value shown, between the truncation method in [7] and the proposed method. All

distributions are 3-parameter Weibull distributions that fall within a 95%

Confidence Interval. .. 110

50. Histogram of power savings, measured in percentage improvement, between the

truncation method in [7] and the proposed method. All distributions are 3-

parameter Weibull distributions that fall within a 95% Confidence Interval. 111

51. Histogram of PSNR noise increase, between the truncation method in [7] and the

proposed method. All distributions are Normal Distributions that fall within a

95% Confidence Interval. ... 111

xvii

LIST OF ABBREVIATIONS

ANN ...Artificial Neural Network

BIST ...Built-In Self-Test

CMOS ..Complementary Metal-Oxide-Semiconductor

CNN ...Convolutional Neural Network

DPSR..Data Pattern Self-Recovery

IoT ..Internet of Things

LSB ..Least Significant Bit

MSB ...Most Significant Bit

MSE ...Mean Squared Error

MUX ..Multiplexer

NMOS ..N-Type Metal-Oxide-Semiconductor

PMOS ...P-Type Metal-Oxide-Semiconductor

POST ..Power-On Self-Test

PSNR..Peak Signal-To-Noise Ratio

WPSNR ..Weighted Peak Signal-To-Noise Ratio

RBL ..Readout Bit Line

RDF ..Random Dopant Fluctuation

ROI ...Region-of-Interest

SRAM ..Static Random Access Memory

SSIM ..Structural Similarity

Vdd ..Supply Voltage

1

CHAPTER 1. INTRODUCTION

Memory in mobile systems is an intrinsic power-consuming vector. Mobile systems

consume the most power during video streaming operations. Thus, reducing the memory usage

during video streaming operations without sacrificing content delivery becomes one of the most

effective and popular methods of power savings realized in mobile systems. This disquisition

presents with detailed descriptions several techniques –which are viewer-aware, implement

ECC-adaptation, or content aware, – that leverage intended quality degradation in video

clinically proven indiscernible by users – which ultimately enable power savings in video

memory. These techniques include viewer-aware bit-truncation, self-correcting memory

throughout voltage scaling, and smart dynamic memory management in video decoder processes

through Region-of-Interest identification via deep learning. This chapter shall introduce these

techniques and the motivation.

1.1. Motivation

Users demand increased battery life in their mobile systems. Silicon area reduction plays

a key role in reducing power consumption and increasing battery life in mobile systems: as

circuitry power demands are lower as a function of reduced silicon area. The current technology

trend shows that advancement in battery technology is magnitudes slower than advancement in

silicon area. This trend, however, may soon falter to a halt as silicon area nears physical

boundaries due to quantum effects. Therefore, researchers are motivated to find other vectors

where potential power savings realized. Methods and techniques, such as the ones discussed in

this disquisition, thus become popular and desirable.

2

1.2. Viewer-Aware Bit-Truncation

SRAM and DRAM power consumption is a function of how many bit cells are read or

written and refreshed respectively. Both SRAM and DRAM have leakage power. Methods are

proposed where if a cell is not utilized, it is turned off and no power is consumed. Memory has a

specific data width where each bit in the data width is stored in a memory cell. Binary data

significance increases as the bit index increases in the data width. The upper most indexed bit is

known as the “Most significant bit” and the lower most indexed bit is known as the “Least

significant bit”. Bit-truncation saves power by truncating, or turning off, some number of the

least significant bits/cells in the memory; however, the trade-off of truncating data bits is data

degradation. Viewer-aware bit-truncation truncates in such a way where the viewer does not

notice a difference between the non-truncated and bit-truncated data. This technique works only

on data that is not corrupted by bit-truncation, such as decoded video data.

1.3. Self-Correcting Memory Throughout Voltage Scaling

Memory voltage thresholds are determined by memory cell sizes and the lithography

process. Then, the specific memory is analyzed at different supply voltages in various

environmental conditions and temperatures to establish voltages that result in expected memory

behavior. Expected memory behavior is usually behavior where the memory data is written, read,

retained for a specified amount of time, and then validated. The results shall fall within an error

tolerance range acceptable for the use-case. Memory may encounter conditions outside of what

was specified, such as a lower supply voltage. As a result, memory may implement self-

correcting parity code, known as Error Correcting Code (ECC), where parity bits are used to

determine bit-flip errors. This process is leveraged for data that is not corruptible due to bit-flip

errors, such as decoded video data, where instead its quality degrades as a function of bit-flip

3

errors to reduce power, by intentionally reducing voltage which is also known as, voltage

scaling. This voltage scaling technique is utilized along with ECC to create novel and powerful

power saving advantages.

1.4. Smart Dynamic Memory Management in Video Decoder Processes

The purpose of hardware and software video decoders is to decompress a video bit stream

into frame data at the pixel granularity for display purposes. The uncompressed video is very

large in storage footprint; thus, for ease of transfer and to lower its storage footprint, the video is

compressed, or as known by the art, encoded. Hardware video decoders utilize many different

types of memories during the video decoding process. Some of these internal memories are

susceptible to errors that do not corrupt the video frame data, as they store decoded video data,

while others are not as they play an important role in the process of decoding. The former

memories are leveraged for power savings by systematically and artificially intelligently

preserving and truncating memory data regions which the video decoder deems as “Regions-of-

Interest” and “Truncation Regions” respectively, based on video content: such as facial features

or objects identified via deep learning techniques.

Another smart memory management technique in hardware video decoders is also

explored. Before the video bit stream is sent to the video decoder for decoding and display, it is

encoded by a video encoder to reduce its storage footprint by orders of magnitudes. During the

video encoding process, video data metadata may be collected. The metadata may contain

information such as the amount of complexity in each video frame for the decoder to leverage if

bit truncation logic for power savings were to be implemented into the video decoder. This

process is leveraged along with other smart techniques to dynamically manage memory in video

decoders for power savings.

4

CHAPTER 2. CONTENT-ADAPTIVE MEMORY FOR VIEWER-AWARE ENERGY-

QUALITY SCALABLE MOBILE VIDEO SYSTEMS1

Mobile devices are becoming ever more popular for streaming videos, which account for

the majority of all data traffic on the internet. Memory is a critical component in mobile video

processing systems, increasingly dominating power consumption. Today, memory designers are

still focusing on hardware-level power optimization techniques, which usually come with

significant implementation cost (e.g., silicon area overhead or performance penalty). In this

chapter, a video content-aware memory technique for power-quality trade-off from viewers’

perspectives is proposed. Based on the influence of video macroblock characteristics on viewer

experience, two simple and effective models - decision tree and logistic regression – are

developed in order to enable hardware adaptation. A novel viewer-aware bit-truncation technique

has also been implemented, which minimizes the impact on viewer experience, while introducing

energy-quality adaptation to the video storage.

2.1. Introduction

Video is everywhere today. According to the recent Cisco Visual Networking Index,

Mobile video traffic accounted for 60% of total mobile data in 2016 [1]. It is expected to increase

9-fold between 2016 and 2021 and grow to approximately 78% in 2021, with the continuous

evolution of mobile networks and the proliferation of mobile devices [1]. Consequently, video

steaming has become one of the most energy-intensive applications on mobile devices. In

1 The material in this chapter was authored by Jonathon Edstrom, Yifu Gong, Ali Ahmad Haidous, Brittney

Humphrey, Mark E. McCourt, Yiwen Xu, Jinhui Wang, and Na Gong. Ali Ahmad Haidous was in charge of the

design, development, and implementation of an FPGA based H264 decoder memory architecture bit truncation

embedded test system platform for analysis and feasibility validation of the novelties presented in the chapter.

Jonathon Edstrom was in charge of data analysis, video quality metrics, and simulation results. Yifu Gong provided

the presented SRAM hardware design with power simulation results based on the data analysis and software

simulations. Mark E. McCourt, Yiwen Xu, and Jinhui Wang were co-principal investigators. Na Gong was the

principal investigator.

5

particular, during the mobile video steaming process, the frequent memory access contributes to

over 92% of the motion compensation energy [2] and 50% of the video decoding consumption

[3], the high energy consumption restraints are only expected to increase with the emerging of

Ultra-High-Definition (UHD) (e.g., 4K and 8K) videos [4]. Accordingly, enhancing energy

efficiency of video memories is of paramount importance to enable efficient mobile video

systems, and is also one of the key design considerations to deliver 4K/8K UHD videos to

mobile devices.

The scope of

traditional video

memory design

Hardware

General-purpose memory

(bitcell, assist) and video-specific

memory

Mobile viewers

Viewer-aware
mobile video

hardware

Different surroundings Different videos

Our previous study

[6-8]

This work: content-

adaptive hardware

Figure 1. Proposed content-adaptive mobile video memory for viewer-aware mobile video

systems.

Designers have extensively exploited memory techniques for power reduction, but

traditional memory designs are typically developed based on an objective video output metric

such as the peak signal-to-noise ratio (PSNR), without dynamic energy-quality adaptation to

viewer’s true experience. Such hardware-viewer isolation is mainly due to the following design

challenges. First, the existing models to represent viewer’s experience, such as the recently

developed human visual system (HVS) model [5], are too conceptual and too complex, to be

useful in guiding hardware design. Second, hardware design, particularly memories, usually lack

run-time adaptation and therefore new hardware design techniques that enable viewer-aware

adaptation need to be explored. Last, but not least, it is challenging for mobile designers to

6

directly connect hardware design to viewer’s experience, which requires professional lab setup,

human subject involvement, and psychophysical analysis.

Recently explored was viewer-aware video memory design by investigating the impact of

illuminance levels in different viewing surroundings on the viewer’s experience [6-8], as

illustrated in Figure 1. Specifically, a bit truncation technique was used to introduce memory

failures in high noise-tolerance viewing contexts with high luminance levels by adaptively

disabling the least significant bits (LSB) of the video data stored in memories. Previous studies

[6-8] illustrate a new dimension of power savings for hardware design through the introduction

of viewer awareness, but the developed memory lacks adaptation across a wide variety of mobile

videos. To enable an optimized trade-off between energy efficiency and video quality, in this

chapter, novel energy-quality scalable video memory design technique is proposed that takes into

account video content to adjust the energy-quality trade-off according to viewer’s experience.

Specially, this chapter makes the following contributions.

• A Xilinx Zynq 7020 FPGA based H.264 decoder and display system was developed and

based on it, the contribution of different video memories to the output quality has been

analyzed. A frame buffer was demonstrated can tolerant significant memory failures, which

enables power saving opportunities for hardware design (Section 2.3.1 and Appendix).

• The impact of video content on viewer’s experience is studied from the psychological

perspective. The correlation characteristics between “banding distortion” to viewers caused

by hardware noise and the areas in frames that exhibit low variance among pixel luminance

values have the potential to enable content-adaptation opportunities for hardware design

were concluded (Section 2.3.2).

7

• Based on macroblock characteristics analysis and subjective video testing, two models

including one decision tree model and one logistic regression model have been developed to

enable effective connection of the video content to the hardware design process (Section

2.4).

• Developed a novel viewer-aware bit truncation technique which enables better visual

experience while maintaining similar power efficiency. Based on the developed models and

viewer-aware bit truncation technique, a content-adaptive video memory design with

dynamic energy-quality trade-off is implemented (Section 2.5).

• Finally, a comprehensive suite of simulations on the proposed content-adaptive video

memory is performed and the enriched results including performance, layout design, video

output quality of various mobile videos, and power efficiency, are discussed (details are

shown in Section 2.6).

To the best of the authors’ knowledge, the proposed memory has made the first attempt to

exploit viewer’s experience and video content to enable energy-quality adaptive hardware

design.

The organization of the chapter is as follows. A review of related video memories is

provided in Section 2.2. In Section 2.3, The contributions of video memories and the impact of

video content on viewer’s experience were studied. In Section 2.4, subjective testing procedures

and model development processes were presented. The hardware design, that implements the

functionality for power savings through viewer-aware bit truncation, is presented in Section 2.5.

The evaluation results are presented in Section 2.6. Finally, this chapter is concluded in Chapter

5.

8

2.2. Related Work

There is a rich body of literature for power reduction for embedded memories and voltage

scaling is particularly effective to reduce the memories’ power consumption due to the strong

dependency of dynamic and leakage power consumption on supply voltage. However, voltage-

scaled SRAMs are susceptible to failures and many techniques have been developed, which

mainly fall into the following three aspects: (i) assist schemes such as boosted wordline [9],

negative bitline [10], and dual-rail supply [11]; (ii) more-than-6T bitcells to achieve low voltage

operation, such as 8T [12], 9T [13], and 10T [14]; and (iii) error-correction techniques such as

error correction codes [15] and data remapping [16]. However, the improvements in embedded

memory power efficiency are often achieved with significant design complexity, silicon area

overhead, and performance penalty for voltage regulators and boosting circuits.

Several recent efforts have investigated application resilience of videos to approximations

with “good enough” output and additional power savings. Chang et al. [17] present a hybrid

6T+8T SRAM to achieve quality-power optimization. In [18], a heterogeneous sizing scheme is

presented to reduce the failure probability of conventional 6T bitcells. In [19], the correlation

between the most-significant-bits (MSBs) of video data was utilized to design a hybrid 8T+10T

memory for power savings.

At the same time, alternative metrics for the analyzing videos objectively, including

Structural Similarity (SSIM) and PSNR-B, have recently been shown to outperform the

traditional mean squared error (MSE) and PSNR [32, 33]. While SSIM and PSNR-B have more

meaning in terms of the viewer’s perception of a video, the complexity of their calculations

makes them less useful to hardware designers when optimizing energy-quality tradeoff.

9

Very recently, viewer-aware video memory design were investigated by studying the

impact of illuminance levels in viewing contexts on the viewer’s experience [6-8], where an

increased amount of ambient luminance allows for a larger amount of bits to be truncated

without noticeable degradation to the viewers. A viewing context-aware SRAM (VCAS) was

developed, which introduces memory failures in luminance contexts with high memory failure

tolerance. Two low-power techniques - voltage scaling and bit truncation - are explored to

implement. Those two techniques were concluded to achieve similar PSNR values, but the video

quality degradation caused by bit truncation is much less noticeable than that of the voltage

scaling technique for the viewers. The hardware design from the previous study has been

developed for general videos, although, the video characteristics were observed to significantly

influence the viewer’s experience [8]. In this chapter, the impact of video content characteristics

on viewer’s experience to enable video content-adaptive memory with dynamic energy-quality

tradeoff was studied.

It is worthy to emphasize that, the proposed content-adaptive video memory as well as

viewing luminance-aware video memories [6-8] are orthogonal to existing low-power hardware-

level memories and they can be applied simultaneously to optimize power efficiency.

2.3. Influence of Video Content on Viewer’s Experience

2.3.1. Mobile Video Memory System

Video streaming has become the most important energy-intensive application used in

mobile devices [8]. Figure 2 shows the block diagram of a H.264 video decoding and display

system [36]. After parsing compressed bitstream, the inter predictor uses the reconstructed

frames stored in the reference frame buffer and the transmitted motion vectors to construct new

frames. After the frames are decoded, the display controller sends them from the frame buffer to

10

the display panel periodically. During this process, multiple memories are needed for storing the

intermediate and final results of the frame data, as listed in Table 1.

Table 1. Video Memories and Their Functionality

Video Memories
Size in Bits

(Width x Depth)
Memory Functionality

Chroma Level Cb 32 x 8 Stores the blue-difference color space bottom line pixels for up macroblocks

Chroma Level Cr 32 x 8 Stores the red-difference color space bottom line pixels for up macroblocks

Luminosity Level 32 x 8 Stores the luminosity color space bottom line pixels for up macroblocks

Reconstructed

Neighboring
32 x 7

Stores neighboring pixels of a luma block after the current macroblock is coded and

reconstructed

Prediction Mode 16 x 7 Stores the current macroblock prediction mode for 4x4 blocks

Motion Vector X 64 x 7
Stores the horizontal motion vector prediction calculation of surrounding blocks’

motion data

Motion Vector Y 64 x 7
Stores the vertical motion vector prediction calculation of surrounding blocks’ motion
data

Reference Macroblock 8 x 8 Stores the reference I, SI, P, or SP macroblock used for inter prediction

Frame buffer 64 x 512
Stores the current and previous decoded frames for prediction and display,

respectively

Y Display 64 x 8 Stores the luma Y component of the display memory for HDMI output buffer

U Display 64 x 8 Stores the chrominance U component of the display memory for HDMI output buffer

V Display 64 x 8 Stores the chrominance V component of the display memory for HDMI output buffer

External
Bitstream

Input

Circular bitstream
buffer

Residual

Inter predictor

Intra predictor

Motion Vector X

F
ra

m
e
 b

u
ff

e
r

Luma
Level su

m

Intra Pred Engine

YUV
4:2:0→4:4:4
translation

YUV
Display
Memory

YUV→RGB
translation

YUV

RGB

Display
controller

LCD monitor

Exp-Golomb

Decoder

CAVLC

Decoder

Bitstream Parser

Bitstream parser Reconstruction data path

Inter Pred Engine

Bits

Chroma
Level Cr

Chroma
Level Cb

Motion Vector Y Reference MB

Reconstructed
Neighboring

Prediction
Mode

Memory Controller

Bit-truncation Manager

Bits

User
input

Figure 2. Mobile video memory architecture. Block diagram of the mobile video decoding and

display process. Different memories are shaded. MB: Macroblock.

To evaluate the contribution of different memories to the output video quality, a video

decoder and display system was developed, as shown in Figure 3. For the memories listed in

Table 2, the bit truncation technique [7] was applied to each memory during the video decoding

process by disabling least-significant bits (LSBs) [8, 21] and then the output video is captured for

quality evaluation. Specifically, LSB truncation starting with one bit with a maximum of five bits

11

have been applied to each video memory. The encoded bitstream, which resided on an on-board

SD card, is decoded using a Xilinx Zynq 7020 FPGA based H.264 decoder. An Arduino-based

memory controller is implemented select the memory for truncation as well as the number of

truncated LSB which are specified by the user input over a serial interface. A video capture card

is utilized to capture the video output over the HDMI output for evaluation. It has been shown

that, the frame buffer, the largest memory, can tolerant three truncated LSBs, which provides

power saving opportunities for a hardware design. The detailed results are discussed in Table 2

Table 2 lists the results with LSB truncation in different video memories using the video

system shown in Figure 3. The standard video sequence aspen_1080p.y4m [25], which has a

wide range of plain MB percentages across different frames, is used for evaluation. The average

plain MB percentage was 20.90%; the maximum and minimum were 50.89% at frame #367 and

3.03% at frame #113, respectively. The video was encoded with the following ffmpeg [37]

command:

ffmpeg -i aspen_1080p.y4m -profile:v baseline -pixel_format yuv420p -

level 3.1 -framerate 30 -preset 1 -cavlc 1 -pix_fmt yuv420p

aspen_1080p.264

12

Decoded
video

Loop thru

Video capture
card

SD
card

H.264
decoder

Memory
controller

Decoded
video

Encoded
video

Figure 3. Mobile video memory architecture. Xilinx Zynq 7020 FPGA based system

implementation.

13

Table 2. Results of videos with different LSBs truncated in H264 decoder different memories

Memories
Number of

LSBs Truncated

PSNR

(Max

MB %)

PSNR

(Min

MB %)

Max Plain MB % Frame Min Plain MB % Frame

Original video

frames without
any truncation

- - -

Chroma Level

Cb
5 LSBs truncated 43.0 dB 31.1 dB

Chroma Level Cr 5 LSBs truncated 36.3 dB 27.0 dB

Luminosity Level 5 LSBs truncated 18.0 dB 16.7 dB

Prediction Mode 1 LSB truncated 23.0 dB 19.5 dB

Motion Vector X 1 LSB truncated 29.2 dB 13.5 dB

Motion Vector Y 1 LSB truncated 29.1 dB 13.3 dB

Reference

Macroblock

(MB)

5 LSBs

truncated
42.8 dB 32.8 dB

Frame Buffer
3 LSBs

truncated
44 dB 25.5 dB

YUV Display
2 LSBs truncated

in each vector
11.8 dB 13.2 dB

14

2.3.2. Influence of Video Content on Viewer’s Experience in the Presence of Hardware

Noise

Traditionally, hardware designers have used PSNR for evaluating video quality, which

has been recently shown to be insufficient to demonstrate the viewer’s experience [20, 31].

PSNR does not encompass the necessary information to hardware designers about viewer’s

experience, due to the fact that key influencing factors for viewer’s experience, such as video

content and environment conditions, are not included in PSNR [31]. In this chapter, the goal was

to find a better method to analyze videos in a quantitative way that will also be useful to

hardware researchers. This process is began by using the PSNR metric to describe video quality.

To continue, new insight was added to the traditional PSNR metric with the introduction of

content-aware information. This new form of information allows us to gracefully scale the video

quality with enhanced energy efficiency of hardware.

2.3.2.1. Traditional PSNR Metric

The traditional PSNR metric is defined as [19]

 𝑃𝑆𝑁𝑅 = 10 log10 (
2552

𝑀𝑆𝐸
) (Equation 1)

where the MSE is the mean squared error between the original video (Org) and the degraded

video (Deg), expressed as

 𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝑂𝑟𝑔(𝑖, 𝑗) − 𝐷𝑒𝑔(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0 (Equation 2)

Although PSNR is simple for hardware designers to understand, it does not truly capture

the effect that errors have on the user’s perception of the video. To show the lack of complete

information the PSNR provides in terms of user perception, the bit truncation technique was

applied to two videos and calculate the PSNR values for 1 to 4 truncated LSBs of the luma data

(i.e. the luminance channel, or Y component in raw YUV videos). The bit truncation technique

15

was adopted to enable energy-quality adaption, which is due to the following two reasons: (i) bit

truncation causes blurring in videos, which is similar to the “banding distortion” in the codec-

algorithm field, and the video degradation is much less noticeable to viewers as compared to

other low-power techniques such as voltage scaling [8] and (ii) the power/energy savings with bit

truncation is much more significant than other low power techniques such as voltage scaling

[21].

Table 3 shows two videos which were downloaded from Google’s recently released

Youtube-8M Dataset [22], which is the largest multi-label video dataset. In this chapter, to

maintain a short and consistent size label for all included YouTube video samples, the video tag

was used to label each video, which is the last portion of the full URL address1. As observed in

Table 3, using the bit truncation technique, the PSNR value is reduced by approximately 7dB, on

average, for each additional truncated LSB. Both videos have very similar PSNR values with the

same number of LSBs truncated, but the visual quality is significantly different. As compared to

video #1 (video tag: EFv2FvnlLao), the “banding distortion” of video #2 (video tag:

FNlpA4FME-8) is much more noticeable to the viewers. Accordingly, the traditional video

quality metric PSNR cannot correlate well with the viewer’s experience and the video-content

properties, such as the texture/motion characteristics, significantly affect the viewer’s

experience. In this chapter, the video content information was introduced to study the viewer’s

experience. Specifically, the recently developed video macroblock (MB) characterization was

adapted by analyzing the pixel-luminance values’ variance [23], as described in the next

subsection.

16

Table 3. Output Quality of Different Videos with Bit Truncation

Video output quality with 3 LSBs truncated # LSBs truncated PSNR (dB)

Video #1 (video tag:
EFv2FvnlLao)

1 52.868

2 44.433

3 37.490

4 30.985

Video #2 (video tag:
FNlpA4FME-8)

1 52.741

2 44.461

3 37.693

4 31.154

2.3.2.2. Video Macroblock Variance Analysis

The MB variance analysis is typically conducted during the video pre-processing stage

when encoding videos [23, 24]. In the analysis, their defined calculation was adopted for

determining whether a given MB is considered either plain or textured, which avoids introducing

significant computational overhead. The calculation is based on the variance of pixel luminance

values of a given MB and is defined as [23]

𝑉𝑀𝐵 = ∑ ∑ (𝑃(𝑖, 𝑗) − 𝜌𝑀𝐵)
2 ≫ 815

𝑖=0
15
𝑖=0

𝑀𝐵 = {
𝑃𝑙𝑎𝑖𝑛 𝑖𝑓(𝑉𝑀𝐵 ≤ 𝑇ℎ𝐿𝑜𝑤)

𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑑 𝐸𝑙𝑠𝑒

 (Equation 3)

where 𝜌𝑀𝐵 and 𝑉𝑀𝐵 are the average luminance and variance of luminance values in a given MB,

respectively. The value used for 𝑇ℎ𝐿𝑜𝑤 was 1.25 as was determined in [24] through the use of

regression analysis. For these purposes, this 𝑇ℎ𝐿𝑜𝑤 value is an arbitrary number used to define

the plain macroblock percentages in the model design process (Section 2.4). This MB

characterization can be calculated during the encoding process and transmitted as metadata in the

video bit stream. Currently an embedded system implementation was used for calculating this

average plain MB calculation. To minimize computational overhead, a single, averaged plain

17

MB percentage was calculated that represents an entire sample. However, it is possible to

calculate a per frame MB percentage for videos that change scenes frequently for dynamic

adaptation. Two benchmark videos, Akiyo and News, were initially retrieved from [25]; these

videos contained static backgrounds with a low amount of motion from the reporter(s) in the

videos. Both videos displayed low plain macroblock percentages when analyzed. It was obtained

further 32 video samples with similar broadcasting characteristics from the Youtube-8M Dataset

[22] and calculate the percentages per frame for the minimum, maximum, median, and average

percentage of each sample video. Figure 4 displays two video samples with similar PSNR values

but varying plain MB percentages (with 2 LSBs truncated). The distribution of plain MBs and

the resulting banding distortion effect are visualized in Figure 4. An important observation is that

a noticeable relationship exists between the banding distortion and plain MBs; videos with

large amounts of plain MBs, especially where the plain MBs are dense, tend to have decreased

visual quality to the viewers. Accordingly, this relationship was utilized to develop a content-

adaptive model to predict the number of truncated LSBs for different videos. Specifically, to

minimize the computational overhead, the average plain MB percentage was used per video

frame and focus on low-motion videos with a stationary camera or containing a reporter in the

analysis.

18

Min. Plain MB %: 53.26%; Max. Plain MB %: 54.56%
Median Plain MB %:53.69%; Mean Plain MB %: 53.71%

Min. Plain MB %: 18.37%; Max. Plain MB %: 20.22%
Median Plain MB %: 19.35%; Mean Plain MB %: 19.34%

PSNR: 48.1 dB PSNR: 47.8 dB

Figure 4. Plain MBs visualization and video output comparison of two videos with varying plain

MB % (with 2 LSBs truncated). White: plain MBs.

19

The high percentage of plain

MB%, the lower bit truncation

can be tolerable

Indoor viewing context
 Subjective #1
 Subjective #2
 Non-Subjective

Figure 5. Acceptable truncated bits based on subjective feedback. 1T: 1 LSB truncated; 2T: 2

LSBs truncated; 3T: 3 LSBs truncated.

2.4. Modeling Process

To determine the acceptable number of LSBs to truncate for different videos, subjective

video testing was conducted and based on the collected data, two models were developed using

decision tree and logistic regression methods. For the initial study, described in this chapter, only

considered were the luma (Y) component when truncating LSBs.

2.4.1. Subjective Testing Procedure for Data Collection

Two sets of subjective video studies were conducted to collect viewers’ feedback. Within

each of the studies designed for subjective analysis of truncation techniques, participants were

asked to view multiple versions of the same video. The testing procedure follows guidelines

20

from the ITU [26] and uses the Degradation Category Rating (DCR) method [20], which is also

known as the Double Stimulus Impairment Scale (DSIS). The participants were asked to watch

both original video and truncated video and then score from 1 to 5 based on the quality in their

opinions (imperceptible-5, perceptible but not annoying-4, slightly annoying-3, annoying-2, very

annoying-1). An average score of 4.0 or higher was used as the target for acceptable video

quality [27]. The first (second) of two studies contained 10 (13) participants who were each

asked to view 7 (9) individual videos from the 34 sample videos.

Plain MB %

 21.5571%

True False

Truncate

1 Bit
Plain MB %

 1.96405%

True False

Truncate

2 Bits

Truncate

3 Bits

Figure 6. Developed decision tree model for bit truncation.

With these average scores for different amounts of LSBs truncated, the video samples

were split into different regions. Based on this, models were developed that connect the average

plain MB percentage to number of LSBs that can be truncated.

2.4.2. Modeling Process

2.4.2.1. Decision Tree Model

From the initial subjective studies, the goal was to model the correlations between the

calculated average plain MB percentage and the largest amount of LSBs that can be truncated for

a given PSNR that will maintain an acceptable video quality. Figure 5 displays the video samples

21

average plain macroblock percentage and how many bits can be truncated based on the minimum

acceptable impairment score of 4.0.

From these preliminary results, an inverse relationship was discovered between plain MB

percentage and acceptable number of LSBs to truncate. With the knowledge of this relationship

and the subjective data gathered from participants, a decision tree model was developed using

the Classification Learner tool in MATLAB, as shown in Figure 6. By traversing the tree from

the top to the bottom based on the plain MB percentages, the number of truncated LSBs can be

obtained for different videos. It is worthy to mention that the majority of videos from the

Youtube-8M dataset have plain MB percentages above 1.96405% (see Figure 6) and therefore

the number of videos with the decision for 3 LSBs truncation is much less than that of 1 LSB and

2 LSBs truncation.

2.4.2.2. Logistic Regression Model

In the model development process, another widely-applied statistical modeling method

was considered: logistic regression, in which:

 {
𝜋𝑖 = 𝜋3 exp(𝛽𝑖0 + 𝛽𝑖1𝑥) , 𝑖 = 1,2

𝜋3 =
1

1+exp(𝛽10+𝛽11𝑥)+exp(𝛽20+𝛽21𝑥)

 , (Equation 4)

where 𝜋𝑖 ≔ 𝑃{𝑌 = 𝑖|𝑥} indicates the probability that the number of truncated LSBs is 𝑖 for

given average plain MB percentage which equals 𝑥. Matlab was used to fit the �̂� coefficients and

get �̂�10 = −1.6636, �̂�11 = 12.7929, �̂�20 = 1.4408, �̂�21 = 1.0497. However, their

corresponding p-values are 0.243, 0.103, 0.111, 0.881, respectively. This implies that all four

coefficients are not significant in the regression under a 5% significance level. By observing the

data, one can clearly see that this is due to noise.

In addition, notice that, if a user chooses a video as satisfactory which is truncated by 𝑘

LSBs, then he/she will be satisfied by the same video truncated by 𝑘′ LSBs where 0 < 𝑘′ < 𝑘.

22

The difference between 𝑘 LSBs and 𝑘′ LSBs truncation is the energy efficiency that can be

enabled; the efficiency is higher for 𝑘 LSB truncations. To this end, further applied the ordinal

logistic regression, which yields

 ln (
𝜋1

𝜋2+𝜋3
) = 𝛽10 + 𝛽1𝑥 (Equation 5)

 ln (
𝜋1+𝜋2

𝜋3
) = 𝛽20 + 𝛽1𝑥 (Equation 6)

Moreover,

 𝜋1 + 𝜋2 + 𝜋3 = 1 (Equation 7)

Solving (5), (6) and (7), one can get

𝜋1 =
exp(𝛽10 + 𝛽1𝑥)

1 + exp(𝛽10 + 𝛽1𝑥)

𝜋2 =
1

1 + exp(𝛽10 + 𝛽1𝑥)
−

1

1 + exp(𝛽20 + 𝛽1𝑥)

 𝜋3 =
1

1+exp(𝛽20+𝛽1𝑥)
 . (Equation 8)

Matlab was used to fit the ordinal coefficients and get �̂� = [�̂�10, �̂�20, �̂�1] =

[−2.8322, 0.9856, 9.7783], with p-values 𝒑 = [0.0039, 0.1710, 0.0156], respectively. With

this ordinal logistic regression, only 𝛽20 is not significant under a 5% significance level and the

result is much better than the previous case using the standard logistic regression.

Table 4 lists the ordinal logistic regression results. One can see that there is no decision

for 3 LSBs truncation based on the ordinal logistic regression model. This is mainly because very

few videos with 3 truncated LSBs are considered acceptable by the participants; also, most of the

video testing results with 3 LSBs truncation are considered to be noisy data. When the plain MB

percentage (x) is 0.28504 (i.e., 28.504%), P{1 LSB truncated}=P{2 LSBs truncated}=0.4888.

Accordingly, if x>28.504%, 1 LSB is truncated; otherwise, 2 LSBs would be truncated. The

23

developed decision tree model and ordinal logistic regression model only involve very few

parameters and the computation time is negligible. The comparison of results between the

developed decision tree model and ordinal logistic regression model will be discussed in Section

2.6.

Table 4. Results of ordinal logistic regression

𝑥

P

{1 LSB

truncated}

P

{ 2 LSBs

truncated }

P

{ 3 LSBs

truncated }

Decision for

LSB

truncation

0.05 0.0876 0.7261 0.1863 2 LSBs

0.10 0.1354 0.7415 0.1231 2 LSBs

0.15 0.2034 0.7174 0.0793 2 LSBs

0.20 0.2939 0.6560 0.0502 2 LSBs

0.25 0.4043 0.5643 0.0314 2 LSBs

0.28504 0.4888 0.4888 0.0224 2 LSBs

0.30 0.5253 0.4552 0.0195 1 LSB

0.35 0.6434 0.3446 0.0120 1 LSB

0.40 0.7463 0.2463 0.0074 1 LSB

0.45 0.8275 0.1679 0.0046 1 LSB

0.50 0.8866 0.1105 0.0028 1 LSB

0.55 0.9273 0.0710 0.0017 1 LSB

0.6 0.9541 0.0448 0.0011 1 LSB

2.5. Quality Optimized Bit Truncation Design

In this chapter, a new viewer-aware bit-truncation technique was proposed which has less

visual quality degradation with the same number of LSBs truncated. Based on the developed bit-

truncation technique and models, an energy-quality scalable memory with content adaptation

was implemented.

2.5.1. Quality Optimized Bit Truncation

Bit truncation can adjust the video data’s bit-depth by disabling LSBs to enable power

savings and it has been applied widely in low-power hardware design [8, 21]. In this chapter,

viewer-awareness to the hardware-design process was introduced and a new hardware-

24

implementation scheme was developed for bit truncation with a minimized effect on the viewer’s

experience.

Suppose that the lowest 𝑡 LSBs of each luma (Y) byte was truncated. For a given video,

the true numerical value for these truncated bits was calculated. However, if all videos in general

were deliberated, the true (decimal) value of these truncated 𝑡 LSBs should be considered a

random variable. These truncated 𝑡 LSBs may express any decimal numbers among

0, 1, 2,⋯ , 2𝑡 − 1, because general prior knowledge that works for all videos does not exist. A

crucial question is as follows: what value should be set/given after the true value of these lowest

𝑡 bits are truncated? A natural and intuitive method is to make them all zeros. For example, if

the true value of a byte is 10101𝟏𝟏𝟎(𝐵) and three bits are truncated, then the byte’s value after

truncation is 10101𝟎𝟎𝟎(𝐵). Setting the truncated bits as zeros has been widely adopted by

designers [8, 21]. However, in the following proposition, this value is not the best for minimizing

the expected mean square error, 𝐸(𝑀𝑆𝐸).

Proposition 1. Suppose that the lowest t LSBs of a byte are truncated. Without losing

generality, it is assumed that the true value of these bits is evenly distributed. Then, the best

value for these t truncated bits, in terms of minimizing 𝐸(𝑀𝑆𝐸), is 10⋯0(B) (with t − 1 zeros).

Proof. Let random variable 𝑌 indicate the true numerical value which is expressed by the

truncated 𝑡 LSBs. Because 𝑌 is evenly distributed, the following probability mass function (pmf)

for 𝑌:

Y = 0 1 2 ⋯ 2t − 1

probability 1/2t 1/2t 1/2t ⋯ 1/2t

Let 𝑥 be the targeted (decimal) value that is set for these truncated LSBs. The goal was to

minimize E(MSE):

25

 𝑓(𝑥) =
1

2𝑡
[(𝑥 − 0)2 + (𝑥 − 1)2 +⋯+ (𝑥 − (2𝑡 − 1))2] (Equation 9)

Let

 0 = f ′(x) =
1

2t−1
[x + (x − 1) + ⋯+ (x − (2t − 1))] ⇒ x = 2t−1 −

1

2
 (Equation 10)

Because 𝑥 is an integer, take 𝑥 = 2𝑡−1 = 10⋯0(𝐵) (with 𝑡 − 1 zeros).

The significance of Proposition 1 is that it shows the dependence between the value set

for the truncated bits and the expected MSE and that it gives the best value, in general. Select

2,000 unique videos randomly, representing 100,000 individual frames, from YouTube-8M [22].

As illustrated in Figure 7, setting the truncated bits to be 10⋯0(𝐵) (with 𝑡 − 1 zeros) can

enable much higher PSNR values, thereby providing a better viewing experience for the same

videos in the same surroundings.

2.6. Content-Adaptation Video Memory Design

Figure 8 (a) shows the architecture of the proposed viewer-aware dynamic bit-truncation

memory with 512 words × 64 bits, which contains 32kb 6T SRAM bit-cells. To enable viewer-

aware bit truncation for LSBs, two different bit-line conditioning circuitries are applied to the

memory. The normal bit-line conditioning circuitries have a pre-charge unit, write driver, and

sense amplifier, and they are connected to the 4 most significant bits (MSBs) in a byte; the

remaining bit-lines contain extra circuitry to enable bit truncation, and they are applied for the 4

LSBs in a byte as shown in Figure 8 (b).

26

2000 Videos

P
S

N
R

 (
d

B
)

3 bits

truncated

Figure 7. Average PSNR values of 2,000 YouTube-8M videos using two different truncation

techniques.

. . .

senseout<0>

data<0>

φ2

BL<0> BL<0>

read_en

φ2

φ1

write_en
φ1

φ1
wl_en

write

clk

clk

read

Basic

2-to-4

Decoder

trunc_en

B<0>
B<1>

t1<3>

t1<2>

t1<1>

t1<0>

2-to-4

truncation

control

Decoder

trunc_en

B<0>
B<1>

En B<0> B<1> Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 1

1 1 0 0 1 1 1

1 1 1 1 1 1 1

Inputs Outputs

truncation control truth table

sense

wl_en

t1

t1

t2

t1

out<4>

data<4>

φ2

BL<0> BL<0>

t2<3>

t2<2>

t2<1>

t2<0>SRAM

Block 4
(256*32)

SRAM

Block 3
(256*32)

SRAM

Block 2
(256*32)

SRAM

Block 1
(256*32)

Sub_array 2

(32x32)D
ec

o
d

e
r

&
 D

ri
v

er

Sub_array 1

(32x32)

Sub_array 8

(32x32)

. . .

b
l[

3
1

:0
]

b
lb

[3
1

:0
]

32

D
ec

o
d

e
r

&
 D

ri
v

er

Bit-line conditioning

...

2
5
6
 w

o
rd

li
n

es

SRAM Block 4

Y Y Y Y31 23 15 724 16 8 0

Pixel 4 Pixel 3

MSB LSB

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Pixel 2 Pixel 1

(a) Memory structure (b) Bit-line conditioning circuitry (c) Bit truncation controller

Figure 8. Content-adaptive video memory.

27

The truncation controller is shown in Figure 8 (c). φ1and φ2 are signals generated from

peripheral circuitry based on the clock signal. φ1 controls read and write operations depending

on which period it is in; φ2 controls the pre-charging circuity of the memory. The sense signal

only turns on for a very short time at the end of the reading operation in order to reduce the

power consumption during the read operation. The truncation process is controlled by three

external signals. trunc_en controls whether the truncation function is on, and the other two

signals, B<0> and B<1>, determine how many bits to truncate. t1 and t2 are generated from

B<0> and B<1> through two decoders. The decoder for t1 is a normal 2-to-4 decoder. A special

2-to-4 truncation control decoder is applied for generating t2, and the truth table is also shown in

Figure 8 (c). When t1 and t2 are both 0s, the normal operations are applied; whenever t1 is 1, the

pre-charging, writing, and reading operations are suspended; on the basis of t1 being 1, if t2 is 1

then the output will be 0, otherwise the output will be 1; the data pattern 01 for t1 and t2 will

never appear.

The detailed evaluation results including performance, power efficiency, layout, and

video quality will be presented in Section 2.6.

2.7. Experimental Results

The proposed memory is implemented based on a 45 nm CMOS technology [28]. In

addition to hardware-level implementation and verification, psychological experiments are

conducted to test the video output quality from the viewers’ perspective.

2.7.1. Speed

Figure 9 shows the timing diagram for the proposed memory. To test the functionality of

the memory, the data: 0xe9, 0xce, 0x62, and 0x71, are written to the addresses: 0x55, 0xb9, 0xce,

and 0x15, respectively, and then read out from the same addresses. For example, during a 3 bit

28

truncation operation, the values read out are: 0xec, 0xcc, 0x64, and 0x74, which the last 3 LSBs

for these values are 𝟏𝟎𝟎(𝐵). The access delay of the reading operation is about 0.5 ns, which is

fast enough to deliver the typical mobile video sequences (11MHz for CIF/QCIF and 72MHz for

HD720 [29]).

DATA1

DATA2

DATA3

DATA4

DATA5

DATA6

DATA7

read_en

write_en

B<1>

B<0>

trunc_en

φ2

φ1

clk

DATA0

Addr

Data

55 b9 ce 15

Original video data

e9 ce 62 71

Write read

55 b9 ce 15

e9 ce 62 71

55 b9 ce 15

1 bit truncation

e9 ce 62 71

Write read

55 b9 ce 15

e9 cf 63 71

55 b9 ce 15

2 bits truncation

e9 ce 62 71

Write read

55 b9 ce 15

ea ce 62 72

55 b9 ce 15

3 bits truncation

e9 ce 62 71

Write read

55 b9 ce 15

ec cc 64 74

55 b9 ce 15

4 bits truncation

e9 ce 62 71

Write read

55 b9 ce 15

e8 c8 68 78

Read access time: ~ 0.5ns

0.0 25.0 50.0 75.0 100.0
Time(1e-9s)

Figure 9. Timing diagram. DATA7: MSB; DATA0: LSB

2.7.2. Layout

The layout design for 512 words × 64 bits SRAM with viewer-aware bit truncation is

shown in Figure 10. Only a few gates are added to the bit-line conditioning circuit to enable the

truncation function. Also, after careful design, the decoders for truncation controlling can be fit

into the free space of the original layout, without introducing additional overhead. The proposed

memory consumes only 0.32% more silicon area as compared to the traditional SRAM, which is

negligible.

29

Decoder & drivers

SRAM Sub Array

32x256

235.57 µm

1
1
1

.9
6

 µ
m

Bit-line conditioning &

truncation circuity

Figure 10. Physical layout design.

2.7.3. Power Savings

Input patterns that cover all data switching possibilities have been tested for the memory.

Normal operation, and 1 to 4 LSB truncations, are simulated based on these input patterns, and

the power consumption for each scenario is shown in Figure 11. As compared to normal

operation, the average power consumption of reading and writing operations for 1 to 4 LSB

truncations can enable 13.54%, 20.10%, 26.83%, and 33.31% power savings, respectively.

30

Figure 11. Power savings.

2.7.4. Video Quality

Finally, in order to verify the effectiveness of the technique on the viewer’s experience,

psychological experiments were conducted at the North Dakota State University Center for

Visual and Cognitive Neuroscience. The psychophysical experiment setup is shown in Figure 12.

The ambient illumination was provided using a rectangular array of 60 high-intensity LEDs

capable of emitting a maximum of 64,000 Lux (Larson Electronics, model LEDP5W-60-D-

1227-F5.15). An illumination meter (Extech model 401027) was used to accurately measure the

ambient illumination of the phone used for testing, a Samsung Galaxy Note 4. In the

experiments, the output of the high-intensity light source was adjusted using neutral-density

filters. The luminance level measured by the illumination meter was approximately 811 Lux,

which is a typical indoor light level.

6
.4

2
E

-0
3

5
.7

7
E

-0
3

5
.4

2
E

-0
3

5
.1

2
E

-0
3

5
.2

4
E

-0
3

4
.5

0
E

-0
3

5
.0

5
E

-0
3

3
.8

7
E

-0
3

4
.8

7
E

-0
3

3
.2

6
E

-0
3

13.54%

20.10%

26.83%

33.31%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

write read write read write read write read write read

normal 1 bit 2 bits 3 bits 4 bits

P
o

w
e
r

sa
v

in
g

P
o

w
e
r(

W
)

total power

31

Subject

Phone

Natural Density

Filters (2 dark)

Checkboard

Ambient illumination

LEDs (Larson

Electronics)

Phone Screen

Figure 12. Psychological experiment set-up at North Dakota State University Center for Visual

and Cognitive Neuroscience.

To assess the degree to which observers can accept the truncated videos as compared to

the reference videos using the developed models, a total of 20 videos were collected: 10 videos

that were classified as having a stationary camera and 10 videos containing a reporter. Each

video sample was evaluated at a single quality point, encoded using a constant rate factor of 0

(i.e. lossless compression), had a 640×360 resolution, was 10 seconds in length, and was

downloaded from [22]. Based on these videos, the average plain MB percentages were

calculated, and used the developed models to predict what the expected amount of acceptable

LSBs to truncate would be for different videos. Another two versions of each video from the

reference were created, one with the predicted amount of acceptable bits to truncate and another

with one bit beyond the predicted acceptable amount. Sequences of numbers to represent each

video were created and randomized the order they would be presented. During testing, each

participant would compare a total of 40 truncated videos to the original, non-truncated version

and give their opinion of whether they would consider the video acceptable for viewing on the

mobile device.

 The testing results for the developed decision tree model are shown in Figure 14. In the

analysis, the plain macroblock percentages, the number of bits truncated, and the video quality

32

metric (VQM) [34] calculation are included for comparison among samples. VQM is one widely

used objective video quality metric that has been shown to have a strong correlation to the

subjective viewer ratings. When calculating the VQM for each sample, the NTIA General Model

was used with Full Reference Calibration, which have been standardized by both the ITU and

ANSI [35]. The developed decision tree model works well for nearly all of videos. There was

only one video, with tag wF6lvdXXwc4, out of 20 videos that was considered to not be

acceptable by the vast majority of participants.

Figure 13. Output quality of video (tag wF6lvdXXwc4): (a) with 3 LSBs truncated using

decision tree model and (b) with 2 LSBs truncated using the developed ordinal logistic

regression model.

As shown in Figure 13 (a), this video displayed banding distortion, caused by bit

truncation, appearing on the reporter’s face; which is likely the viewer’s focus point. Due to this

particularly noticeable distortion, viewers were less likely to accept the displayed degradation.

All other samples were considered acceptable by the majority of the 15 total participants, with

the lowest acceptance rate being 73% for the video with tag 2AQ6rhVhwRc; another video with

banding appearing very close to the viewer’s focus point, the kitten playing with a string in the

video.

 (a) 3 LSBs truncated using decision tree model (b) 2 LSBs truncated using ordinal logistic

regression model

33

The results were compared further using the ordinal logistic regression to the decision

tree model. Those two models achieve the same prediction results for the majority of videos;

only 4 out of 20 videos are different. For those 4 videos, decision tree model predicts 3 LSBs

truncated, but the ordinal logistic regression model predicts 2 LSBs truncated. One of those 4

videos is the video with tag wF6lvdXXwc4; it was the only one that was considered to not be

acceptable using the decision tree model. With 2 LSBs truncated predicted by the ordinal logistic

regression model, the visual quality is significantly improved, as illustrated in Figure 13 (b). For

the other 3 videos (with tags Lp3H1XOcKCE, dgAu_Wsd7Fo, and lcVPxLFlq1c), the visual

output with 3 LSBs truncated are acceptable by the majority of participants. Particularly, for the

video with tag dgAu_Wsd7Fo, all of the participants said it was acceptable. From the above

analysis, concluded, that as compared to the decision tree model, the ordinal logistic regression

model is a more conservative model which can avoid the worst video quality degradation case,

but it may lose energy optimization opportunities for some videos. Another interesting

observation that was made during the video testing process is that if the viewer’s focus detected

is in different videos (e.g., mobile gaze tracker [30]), noticeable degradation in these sensitive

areas of videos can be further removed in the future.

34

Figure 14. Video quality testing results using the decision tree model.

80%

20%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

80%

20%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

87%

13%

Acceptable Not Acceptable

20%

80%

Acceptable Not Acceptable

73%

27%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

80%

20%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

87%

13%

Acceptable Not Acceptable

93%

7%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

93%

7%

Acceptable Not Acceptable

Tag: Fjclf1Wy__0

Plain MB %: 2.737681%

Bits Truncated: 2

VQM: 0.0572

Tag: iFbtfQCRIlg

Plain MB %: 17.78587%

Bits Truncated: 2

VQM: 0.0305

Tag: lWRLlYnRmL4

Plain MB %: 7.411957%

Bits Truncated: 2

VQM: 0.0679

Tag: -PknNC7jwdM

Plain MB %: 12.42138%

Bits Truncated: 2

VQM: 0.0699

Tag: VPfz7ENFUB0

Plain MB %: 36.70471%

Bits Truncated: 1

VQM: 0.0228

Tag: vQuFB98IX14

Plain MB %: 2.200000%

Bits Truncated: 2

VQM: 0.0758

Tag: WH6ctrzpxZ8

Plain MB %: 6.111957%

Bits Truncated: 2

VQM: 0.0513

Tag: BlAq7bYHlcc

Plain MB %: 5.440435%

Bits Truncated: 2

VQM: 0.0731

Tag: uPXMOO1EiN0

Plain MB %: 9.264783%

Bits Truncated: 2

VQM: 0.0802

Tag: wF6lvdXXwc4

Plain MB %: 0.660435%

Bits Truncated: 3

VQM: 0.2823

Tag: 2AQ6rhVhwRc

Plain MB %: 4.832246%

Bits Truncated: 2

VQM: 0.0938

Tag: 2X-2rEWlAUs

Plain MB %: 33.82790%

Bits Truncated: 1

VQM: 0.0118

Tag: 5bhFKVzLvyQ

Plain MB %: 4.765942%

Bits Truncated: 2

VQM: 0.0925

Tag: -gK97YpQj84

Plain MB %: 7.384420%

Bits Truncated: 2

VQM: 0.0376

Tag: ibP2eUkdIuE

Plain MB %: 7.384420%

Bits Truncated: 2

VQM: 0.0422

Tag: KW2uqQCSV3o

Plain MB %: 3.725435%

Bits Truncated: 2

VQM: 0.0364

Tag: Lp3H1XOcKCE

Plain MB %: 1.932971%

Bits Truncated: 3

VQM: 0.2759

Tag: qsRlZr3rklg

Plain MB %: 66.21812%

Bits Truncated: 1

VQM: 0.0056

Tag: dgAu_Wsd7Fo

Plain MB %: 1.131739%

Bits Truncated: 3

VQM: 0.1429

Tag: lcVPxLFlq1c

Plain MB %: 0.224348%

Bits Truncated: 3

VQM: 0.1289

35

CHAPTER 3. FLEXIBLE LOW COST POWER-EFFICIENT VIDEO MEMORY WITH

ECC-ADAPTATION2

In this chapter, a flexible power-efficient video memory is presented that can

dynamically adjust the strength of error-correction-code (ECC), thereby enabling power-quality

trade-off based on application requirements. Specifically, the bit significance characteristics of

video data was utilized to develop a low-cost parity storage scheme that supports both hamming

code-74 (ECC74) and hamming code-1511 (ECC1511). Based on this, a flexible memory with

three dynamic power-quality adaptation schemes is proposed (i.e., ECC74, ECC1511, and no

ECC) to meet different video application requirements. The simulation results in 45nm CMOS

technology show that the proposed memory can enable up to 35.37% power savings without a

noticeable degradation in video quality, as compared to the conventional design. An integrated

ECC encoder/decoder that handles both ECC74 and ECC1511 is designed, which reduces area

overhead. To evaluate the effectiveness of the proposed technique, a system-level video storage

embedded test platform is developed based on a commercial 65nm SRAM chip, which shows

that the proposed technique results in significant supply voltage reduction without noticeable

video quality degradation.

3.1. Introduction

With the development of mobile and Internet-of-Things (IoT) technologies, video

services today utilize increasingly more battery-powered portable devices, such as cameras,

2 The material in this chapter was authored by Hritom Das, Ali Ahmad Haidous, Scott C. Smith, and Na Gong. Ali

Ahmad Haidous was in charge of the design, development, and implementation of a variable voltage SRAM test and

characterization system platform, based on a three embedded microcontroller setup. He analyzed the feasibility of

the technique on real hardware and validated the results. He was also in charge of all simulations and results

completed using python. The source code is available in the appendix. Hritom Das was in charge of all circuit design

in Cadence, power analysis, and simulation of the proposed ECC memory. Na Gong and Scott Smith were principal

and co-principal investigators respectively.

36

smart phones, unmanned aerial vehicles (UAV), actuators, wearable devices, and various

sensors. In addition, the biggest consumer of mobile device data is video, which is projected to

continue to increase. According to market research, the amount of data stored on devices will be

4.5 times larger than data stored in data centers, at 5.9 ZB by 2021 [1]. These devices are

typically powered by batteries and have small form factors, and therefore have very stringent

limitations on energy consumption, computational capability, memory storage, footprint, and

cost. Furthermore, video applications consume a large amount of energy due to their large data

size and intensive computational requirements. As a typical example, during video-streaming

processes, when compressed video bitstreams are received over communication channels,

decoded, then displayed on mobile devices, this process consumes considerable power that limits

the mobile device’s battery life. In particular, major signal-processing units for videos – e.g.,

motion estimation – require a significant number of calculations and need frequent embedded

memory accesses. These embedded memories occupy over 65% of the core area of a video

decoder chip [2], and contribute to over 30% of the system’s power consumption [3]. Under the

resource constraints of IoT devices, video systems, particularly storage systems, are critical to

enable various video applications.

This chapter aims to optimize power efficiency of video data storage through adaptive

error-correction-code (ECC) schemes. A new adaptive ECC technique is developed, which can

effectively select three power-quality tradeoff levels for video applications: hamming code-74

(ECC74), hamming code-1511 (ECC1511), and no ECC. Specifically, this chapter makes the

following contributions:

• New parity storage for video memory: To minimize parity storage cost, a new parity

storage scheme for video memories is developed that utilizes the bit significance

37

characteristics of video data for both ECC74 and ECC1511. The method utilizes least

significant bits (LSBs) to store the parity bits instead of dedicated parity bit storage in

addition to data storage, and as a result, avoids additional storage overhead (Section 3.3).

• Adaptation scheme: A detailed analyses is ran on the impact of memory failures at low

voltages verses video output quality, and then developed an ECC adaptation scheme. Three

conditions are concluded: (i) no ECC shall be needed if the memory failure rate is less than

0.01%; (ii) ECC1511 is favored between failure rates of 0.05% and 0.6%; and (iii) ECC74

is favored at failure rates between 0.01% and 0.05%, and above 0.6% (Section 3.4).

• Memory circuit design: Based on the developed adaptation scheme, a flexible dynamic

energy-quality trade-off video memory circuit was designed and implemented. Moreover,

the area overhead was minimized by designing an integrated ECC encoder/decoder that

handles both ECC74 and ECC1511 (Section 3.5).

• Thorough evaluation: A comprehensive suite of circuit-level simulations was performed

on the proposed memory to compare performance, power efficiency, and video quality

(Section 3.6).

• Hardware platform: Finally, an embedded hardware test platform was developed for

video storage to evaluate the effectiveness of the proposed technique using a commercially

available SRAM chip (Section 3.7).

While the proposed flexible memory was developed and implemented for video storage,

it may also be applicable for other fault-tolerant scenarios. In addition, this chapter focuses on

SRAM, which is the most important type of primary embedded memory technology; however,

other memory technologies, such as DRAM, flash, or emerging memories, can also benefit from

the adaptive ECC scheme.

38

The organization of the chapter is as follows. A review of low-power video memory

designs is provided in Section 3.2; Section 3.3 presents the proposed ECC storage scheme;

Section 3.4 discusses the proposed ECC adaptation process; and Section 3.5 presents the

designed memory. The evaluation results were discussed in Section 3.6; Section 3.7 presents the

developed hardware testing platform and discusses its results; and finally, this chapter is

concluded in Chapter 5.

3.2. State of the Art

3.2.1. Video Memory

In the video-streaming process, the original video is compressed, reducing the number of

data bits, and then transmitted to mobile devices for decoding over a communication channel.

Video processing has become the most important, energy-intensive application used by mobile

devices. Figure 15 shows a typical H.264 video decoding and display process. After entropy

decoding, inverse quantization (IQ), and inverse transformation (IT), the motion compensator

utilizes the previous reconstructed frames, which are stored in the reference frame memory,

along with the transmitted motion vectors, to construct new frames. After the frames are

decoded, the mobile-display controller periodically sends them from the frame buffer to the

display panel. During this process, multiple memories are needed. In particular, the reference

frame memory and display memory, which store the decoded video frames, are accessed very

frequently; and they have a profound impact on the system’s overall cost and power consumption

[3, 4]. The proposed adaptive-ECC video memory can be used to implement the reference frame

memory and display memory to store the decoded video frames.

39

Encoded

video

bitstreams

from

streaming

servers

Head

decoder

CAVLC

decoder

Inter

prediction

decoder
Sum

Motion

vector

memory

Intra prediction

decoder

Intra modes

memory

Luma(Y)

Cb(U)

Cr(V)

Buffer
IQIT

decoder

Inter motion

vector decoder

Reference frame

memory

 Video
display

 Frame bufferController

Figure 15. Mobile video memory architecture for steaming. The reference frame memory and

frame buffer are accessed very frequently, and have a profound impact on the system’s overall

cost and power consumption.

3.2.2. Review of Relevant Literature

Existing as critical hardware-building blocks for today’s approximate computing

platforms, video memories show application resilience to approximations with a trade-off

between a “good enough” output and additional power savings. State-of-the-art, power-efficient

video-specific memory can be broadly classified into two categories: design-time fixed quality or

run-time adjustable quality.

40

3.2.2.1. Video-Specific Memory with Design-Time Fixed Quality:

During the past decade, low-voltage video memories were widely investigated in the

literature, and most existing solutions are designs with design-time fixed quality. For example,

Chang et al. [5] presented a hybrid 6T+8T SRAM to achieve quality-power optimization. In [6],

a heterogeneous sizing scheme was presented to reduce the failure probability of conventional

6T bitcells. In [7], the correlation between most significant bits (MSBs) was utilized to design a

hybrid 8T+10T memory for power savings. In [8], advanced data-mining techniques were used

to identify useful video data characteristics (e.g., data association) for hardware design. At the

same time, several recent works for analyzing the quality of videos, such as viewer experience,

have recently been shown to outperform the traditional mean squared error (MSE) and PSNR

[9]. Those video-specific memory designs enhanced power efficiency with a reduced

implementation cost when compared to general-purpose memories [10]; however, the quality of

those designs is fixed during design-time, so they lack run-time adaptation.

3.2.2.2. Adaptive Memory with Dynamic Power-Quality Management:

 There were several recent attempts to enable adaptive video memory with dynamic

power-quality management. For example, the video memory presented in [11] used the LSBs of

video data to store the MSBs’ error-correction-code (ECC). In [3], a video content-aware

memory technique for power-quality trade-off was developed from viewers’ perspectives, based

on the influence of video macroblock characteristics on viewer experience. Additionally, in [12],

a data-dependent reconfigurable conditional pre-charge (CP) SRAM was designed to utilize

statistical dependencies present in the binary values. Furthering these research efforts, this

chapter presents a new low-cost adaptive-ECC video memory with dynamic power-quality trade-

off. The proposed adaptive-ECC video memory is orthogonal to existing viewer-aware [3] or

41

data-dependent [12] or negative bitline [11] schemes and therefore can be simultaneously

utilized to further optimize power efficiency.

3.3. Proposed Low-Cost ECC Storage Scheme

3.3.1. Traditional ECC

ECC is a very popular technique to enhance the reliability of memory systems [13].

There are various types of ECCs that provide various levels of trade-offs between error

correction capability and implementation cost. This chapter utilized the cost-effective hamming

code-74 (ECC74) and hamming code-1511 (ECC1511) [11], detailed in Table 5, due to area

constraints of the main use-case, video memory. Traditional ECC74 provides protection for 4

message bits, by requiring 3 parity bits to identify a faulty bit location, where each parity bit is

generated using 3 message bits. Alternatively, ECC1511 protects 11 message bits with 4 parity

bits, where each parity bit is generated using 7 message bits. For ECC74 and ECC1511, only 1

faulty message bit can be detected and corrected. If there are multiple faulty message bits, these

two ECC algorithms cannot determine that, and may incorrectly “correct” a message bit.

Table 5. Traditional ECC74 and ECC1511

Traditional ECC74

23 7 6 5 22 3 21 20

N/A M6 M5 M4 P3 M2 P2 P1

Traditional ECC1511

23 7 6 5 22 3 21 20

P4 M6 M5 M4 P3 M2 P2 P1

24 15 14 13 12 11 10 9

N/A M14 M13 M12 M11 M10 M9 M8

To provide more context for the ECC74 and ECC1511 algorithms, using Table 5 as a

visual aid, M0-M14 are message bits and P1-P4 are parity bits. Parity bits are placed on the 2n

(n=0,1..) positions [13]. The calculation of parity bits and error correction bits are based on a

specific Hamming code sequence, as expressed below in (Equation 11:

42

 P1_74 = 3, 5, 7 = M2 M4 M6

 P2_74 = 3, 6, 7 = M2 M5 M6

 P3_74 = 5, 6, 7 = M4 M5 M6 (Equation 11)

The three parity bits for ECC74 were generated by performing XOR () operations

according to (Equation 11, and utilized even parity. To determine a faulty bit after memory

storage for ECC74, the calculation of error correction bits were expressed in Equation 12, where

𝑃𝑁 is the previously calculated parity stored then read back, and 𝑃𝑁_74 is the recalculated parity

from the read back message data bits:

 E1_74 = P1 P1_74

 E2_74 = P2 P2_74

 E3_74 = P3 P3_74 (Equation 12)

If the binary to decimal conversion of (𝐸3_74, 𝐸2_74, 𝐸1_74) is evaluated as zero, then there

is no error; otherwise, the bit-flip error position is determined by the evaluated decimal number.

For example, suppose E3_74 = ‘1’, E2_74 = ‘1’, and E1_74 = ‘0’, then the faulty bit position is 1102

which corresponds to the 6th bit, M5, having a bit-flip error; hence, M5 is toggled to correct the

error. A major disadvantage with traditional ECCs is their significant cost overhead, caused

mainly by additional bitcells required for storing parity bits, which results in significant area and

power overhead. For ECC74, protecting 4 message bits required 3 parity bits: a 75% silicon area

overhead. For ECC1511, protecting 11 message bits required 4 parity bits: a 36% silicon area

overhead. Therefore, this excessive overhead eliminated traditional ECCs for data integrity

solutions in embedded memory designs, as the use-case required optimized resource allocation.

Instead of additional parity bits for message protection, if a use-case was identified where the

parity bits can be embedded within the message bits, then the area overhead requirements of

ECCs would be eliminated. One such use-case is videos, where replaced legitimate message bits

with parity bits, and by doing so, the trade-off is video quality for low-power.

43

Table 6. Impact of Traditional ECC on Video

Traditional ECC74: Byte 1

Memory bits
MSB LSB

S7 S6 S5 S4 S3 S2 S1 S0

Data M7 M6 M5 M4 P3 M2 P2 P1

Traditional ECC1511: Byte 1

Memory bits
MSB LSB

S7 S6 S5 S4 S3 S2 S1 S0

Data P4 M6 M5 M4 P3 M2 P2 P1

Traditional ECC1511: Byte 2

Memory bits
MSB LSB

S15 S14 S13 S12 S11 S10 S9 S8

Data M15 M14 M13 M12 M11 M10 M9 M8

 (a) Original Frame (b) Encoded ECC74 (c) Encoded ECC1511

Figure 16. Video output quality with traditional ECC. (a) Original frame, (b) ECC74 parity bits

stored with PSNR = 27.75 dB, and (c) ECC1511 parity bits stored with PSNR = 8.27 dB.

For example, suppose the traditional ECC scheme in Table 5 was directly applied to the

memory system in Table 6. Video pixel data is typically organized in bytes. Here, the popular

mobile video format YUV 4:2:0 is considered. Every four pixels will have six bytes, including

four luma bytes and two chroma bytes. As shown in Table 6, S0 to S15 are the bit positions for

two bytesS0 (Least Significant Bit [LSB]) to S7 (Most Significant Bit [MSB]) were the bit

positions of the 1st byte and S8 (LSB) to S15 (MSB) are the bit positions of the 2nd byte of the

memory array, respectively. The three parity bits for ECC74 are stored in S3, S1, and S0. The

four parity bits for ECC1511 are stored in S7, S3, S1, and S0. Figure 16 (a), (b), and (c)

44

presented the original video frame, encoded video frame with traditional ECC74, and encoded

video frame with traditional ECC1511, respectively.

Peak Signal-to-Noise Ratio (PSNR) is a widely adopted video quality evaluation metric,

where a higher PSNR value translated to better video frame quality. Storing the parity bits using

the traditional ECC schemes resulted in significant video quality degradation, due in part to

video data carrying more quality weight in the MSBs. The PSNR of the encoded frames with

traditional ECC74 and ECC1511 are 27.75dB and 8.27dB, respectively. As one observes from

Figure 16 (c), ECC1511 encoding resulted in larger video quality loss as opposed to ECC74: due

to its 4th parity bit being stored in the MSB of the first byte. Consequently, to ensure the least

amount of video quality degradation, video data bit significance characteristics should be

considered, such that LSBs are favored for parity storage.

3.3.2. Bit Significance Characteristics of Video Data and Proposed Storage Scheme for

Parity Bits

As a typical fault-tolerant application, video data has bit significance characteristics

where MSBs have a greater contribution to output quality than LSBs. According to recent

literature, the video memory presented in [11] used the LSBs to store the MSBs’ parity bits,

thereby effectively reducing video quality degradation overhead; this is what was used as a basis

for comparison. As a caveat however, only ECC1511 is considered in [11]. In this chapter, a

flexible memory was proposed with three dynamic power-quality adaptation schemes to meet the

various requirements of video applications, i.e., ECC74, ECC1511, and no ECC. Also, an

integrated ECC encoder/decoder was designed that handled both ECC74 and ECC1511, which

further reduced area overhead.

45

The proposed storage scheme is applied for two-byte memory, as illustrated in Table 7.

Here, S represents the bit position in the memory array. If ECC1511 is selected, then there would

be four parity bits stored in the LSBs (i.e., P1, P2, P3, P4) and eleven protected MSB message

bits (i.e., M7 to M2, M15 to M11). Alternatively, if ECC74 is selected, then there would be three

parity bits stored in the LSBs (i.e., P1, P2, P3) and four protected MSB message bits (i.e., M6,

M7, M14, M15). (Equation 13 is used to calculate the parity bits for the proposed scheme. The

symbols in (Equation 13, M, P and (3,5,7,9,11,13,15), indicate the message bit, parity bit, and

ECC sequence respectively.

Table 7. Proposed ECC

Proposed ECC74: Byte 1

Memory bits S7 S6 S5 S4 S3 S2 S1 S0

ECC sequence 3 6 9 11 13 15 21 20

Data M7 M6 M5 M4 M3 M2 P2 P1

Proposed ECC74: Byte 2

Memory bits S15 S14 S13 S12 S11 S10 S9 S8

ECC sequence 5 7 10 12 14 16 8 22

Data M15 M14 M13 M12 M11 M10 M9 P3

Proposed ECC 1511: Byte 1

Memory bits S7 S6 S5 S4 S3 S2 S1 S0

ECC sequence 3 6 9 11 13 15 21 20

Data M7 M6 M5 M4 M3 M2 P2 P1

Proposed ECC 1511: Byte 2

Memory bits S15 S14 S13 S12 S11 S10 S9 S8

ECC sequence 5 7 10 12 14 16 23 22

Data M15 M14 M13 M12 M11 M10 P4 P3

 P1 = 3, 5, 7, 9, 11, 13, 15

= 𝐌𝟕 𝐌𝟏𝟓 𝐌𝟏𝟒 M5 M4 M3 M2

 P2 = 3, 6, 7, 10, 11, 14, 15

= 𝐌𝟕 𝐌𝟔 𝐌𝟏𝟒 M13 M4 M11 M2

 P3 = 5, 6, 7, 12, 13,14, 15

= 𝐌𝟏𝟓 𝐌𝟔 𝐌𝟏𝟒 M12 M3 M11 M2

 P4 = 9, 10, 11, 12, 13, 14, 15

= M5 M13 M4 M12 M3 M11 M2 (Equation 13)

46

Since ECC74 does not require the 4th parity bit, P4, as a result this function is disabled

when using ECC74. Furthermore, to reduce circuit area overhead, the encoders and decoders are

developed for ECC1511 then reused for ECC74 by only using the green colored bits in (Equation

13 to calculate P1-P3 when ECC 74 is selected. The encoder/decoder design is detailed in

Section 3.5.

Figure 17 (a) and (b) present the video output quality using the proposed ECC storage

scheme from Table 7. Figure 17 (a) shows the video quality PSNR metric for ECC74 as 41.26dB

with 2 parity bits stored in the 2 LSBs of the 1st byte and 1 parity bit stored in the LSB of the

2nd byte. Figure 17 (b) shows the video quality PSNR metric for ECC1511 as 39.84dB with 2

parity bits stored in the 2 LSBs of both the 1st and 2nd bytes. Since ECC1511 needed to sacrifice

one extra LSB to store its parity bits, this ECC scheme resulted in a lower PSNR value than

ECC74. Hence, the proposed ECC parity storage scheme from Table 7, as shown in Figure 17,

which supported both ECC74 and ECC1511, had much better potential to significantly improve

video quality compared to the traditional ECC scheme from Table 6, as shown in Figure 16.

Based on this parity storage scheme, an adaptive ECC mechanism is proposed to meet various

requirements of video applications, as discussed in the next section.

3.4. ECC Adaptation Based on Requirements and Failure Rate Based on Voltage

In this section, an adaptive ECC mechanism is presented, which supports three ECC

conditions, no ECC, ECC74, and ECC1511. First, SRAM failure characteristics are studied using

a 45 nm CMOS technology. Then, the impact of memory failures on video quality is analyzed,

including failures in parity bits. Finally, a memory failure based adaptive ECC mechanism is

developed.

47

(a) (b)

Figure 17. Encoded video frame (Akiyo) with (a) ECC74 where parity is stored in the LSBs with

PSNR = 41.2582 and (b) ECC1511 where parity bits were stored in LSBs with PSNR = 39.8426

dB.

10,000 Monte Carlo simulation

WW L

BL
BLB

Q
QB

RW L

VD D

GND

Access
Access

Pull-Down

Pull-Up

6T SRA M

170nm/50nm

300nm/50nm

600nm/50nm

Figure 18. Relation between supply voltage (VDD) and SRAM bitcell failure rate in a 45nm

CMOS technology.

48

3.4.1. Failure Characteristics of 6T SRAM

Figure 18 shows the failure rate of a 45 nm 6T SRAM bitcell at an increasing voltage

range between 500mV and the technology’s 1.0V nominal supply voltage, with 5mV increments.

The failure rate is measured with 10,000 Monte Carlo simulations at the worst process corner for

6T bitcells, fast NMOS and slow PMOS (FS). As expected, the failure rate increased rapidly as

the supply voltage is reduced. The failure rate is about 7.87% at 500mV; and when the supply

voltage is scaled-up to 685mV, the failure rate is about 0.48%. There are no errors in the memory

system when the supply voltage is 795mV or above. Next, the impact of memory failures on

video output quality was studied.

Figure 19. Error map and video quality with the proposed ECC74 under 0.1% faulty memory

bitcells: (a) and (b) Error map and original image with 0.1% memory failures injected; (c) and

(d): parity bits stored in the LSBs with the proposed ECC74, and corresponding video quality;

(e) and (f): Error map and encoded video quality with the proposed ECC74, with the exact same

number and position of errors from (a) injected into the memory; (g) and (h): Error map and

decoded video quality with the proposed ECC74.

(a) Original Image+ Error

(b) original image + error;

PSNR = 31.4524 dB

Error (Red Dot)

Column (Bit)

S0S2S4S6S8S10S12S14

R
o
w

 (
W

o
r
d

)

8kb

16kb

24kb

32kb

40kb

48kb

56kb

64kb

0

(c) ECC74 Encoded

(d) ECC74 Encoded;

PSNR = 41.2582 dB
Column (Bit)

Parity (Column: 0, 1, 8)

S0S2S4S6S8S10S12S14

R
o
w

 (
W

o
r
d

)

8kb

16kb

24kb

32kb

40kb

48kb

56kb

64kb

0

(e) ECC74 Encoded + Error
Column (Bit)

(f) ECC74 Encoded +Error;

PSNR = 31.0148 dB

S0S2S4S6S8S10S12S14

R
o
w

 (
W

o
r
d

)

8kb

16kb

24kb

32kb

40kb

48kb

56kb

64kb

0

(g) ECC74 Decoded

(h) ECC74 Decoded;

PSNR = 39.0247 dB
Column (Bit)

Error: Due to Faulty Parity

R
o
w

 (
W

o
rd

)

8kb

16kb

24kb

32kb

40kb

48kb

56kb

64kb

0

S0S2S4S6S8S10S12S14

49

3.4.2. Errors Injected, Including in Parity Bits

First, the impact of memory failures on video quality with failures injected in all bits was

analyzed, including parity bits, at a uniform random distribution of 0.1%, on the well-known

video sequence – Akiyo.

Figure 19 illustrates the error mapping and quality of a video that is stored in a 65536

word × 16bit SRAM array, with supply voltage at 665mV, using the proposed ECC74 scheme.

Figure 19 (a) and (b) demonstrates the error distribution of the SRAM memory with 0.1%

failures injected in the original image. In Figure 19 (a), the dots, two of which are circled in blue

as an example, represented the error positions in the SRAM memory array. As can be seen, the

memory failures are distributed uniformly in the MSBs and LSBs, and the PSNR is 31.4524dB,

as shown in Figure 19 (b). In Figure 19 (c), the parity bits of ECC74 are stored in the LSBs of

the SRAM array, based on the proposed parity storage scheme. Specifically, the two LSBs of the

1st byte and one LSB of the 2nd byte are utilized to store the parity bits. The video output quality

with ECC encoding is illustrated in Figure 19 (d), having a PSNR of 41.2582dB. After storing

the parity bits in the memory, the exact same number and position of errors from Figure 19 (a)

are injected into the memory in Figure 19 (e), resulting in a PSNR of 30.0148dB. Finally, after

decoding, ECC74 could correct one error in either of the 2 MSBs of every two sequential bytes

of the SRAM memory array, as shown in Figure 19 (g), this resulted in a 7.57dB PSNR

improvement compared to the original image without ECC74 (i.e., Figure 19 (b) vs. (h)). Note

that the error map in Figure 19 (g) shows some new errors, circled in purple, due to injected

memory failures in the parity bits, which result in an incorrect ECC correction.

50

Figure 20 illustrates the error map and the video output quality for ECC1511. It can be

seen from Figure 20 (a) that the additional LSB parity bit caused a slight image quality

degradation compared to ECC74 (i.e., Figure 20 (b) with a PSNR of 39.8426dB vs. Figure 19 (d)

with a PSNR of 41.2582dB). Figure 20 (c) and (d) used the same 0.1% error map used for the

previous ECC74 analysis, which resulted in the PSNR being slightly degraded to 30.8653dB, due

to the extra parity bit. Figure 20 (e) shows that the decoder circuit corrected most of the injected

errors in the 11 protected MSBs, which resulted in a PSNR of 39.2536dB in Figure 20 (f), which

is slightly higher than when using ECC74 (i.e., Figure 19 (h)). Hence, even though ECC1511

sacrificed one extra LSB for parity, its stronger error-correction ability improved video quality

by correcting more MSB errors.

Figure 20. Error map and video quality with the proposed ECC1511 under 0.1% faulty memory

bitcells: (a) and (b) parity bits stored in the LSBs with the proposed ECC1511, and

corresponding video quality; (c) and (d): Error map and encoded video quality with the proposed

ECC1511; (e) and (f): Error map and decoded video quality with the proposed ECC1511.

So far, the proposed ECC scheme was analyzed at a low 0.1% failure rate; in the next

sub-section, continued are the analysis of its performance at different failure rates.

(a) ECC1511 Encoded

(b) ECC1511 Encoded;

PSNR = 39.8426 dB
Column (Bit)

Parity(Column:0, 1, 8, 9)

S0S2S4S6S8S10S12S14

R
o

w
 (

W
o

r
d

)

8kb

16kb

24kb

32kb

40kb

48kb

56kb

64kb

0

(c) ECC1511 Encoded + Error

(d) ECC1511 Encoded + Error;

PSNR = 30.8653 dB

R
o

w
 (

W
o

r
d

)

8kb

16kb

24kb

32kb

40kb

48kb

56kb

64kb

0

Column (Bit)
S0S2S4S6S8S10S12S14

(e) ECC1511 Decoded

(f) ECC1511 Decoded;

PSNR = 39.2536 dB
Column (Bit)

Nearly all the Errors are repaired (column:2-7, 11-15)

S0S2S4S6S8S10S12S14

R
o
w

 (
W

o
r
d

)

8kb

16kb

24kb

32kb

40kb

48kb

56kb

64kb

0

51

Figure 21. ECC adaptation based on failure rate and corresponding PSNR.

3.4.3. ECC Under Various Failure Rates

To further analyze the performance of the proposed ECC schemes at various failure rates

with different videos, 100 videos are randomly selected from YouTube-8M [14] for evaluation.

The output quality of the same randomly selected frame from each video is tested for a range of

failure rates between 0.01% to 1%, as shown in Figure 21. It can be seen that both ECC schemes

significantly increase video quality compared to without ECC, except for when the failure rate is

less than or equal to 0.01%, since for very low failure rates, the message bits replaced by parity

bits caused more PSNR loss than PSNR gain due to faulty bit corrections. When the memory

failure rate is between 0.01% and 0.05%, ECC74 performs best: since the additional message bit

replaced by ECC1511’s 4th parity bit caused more PSNR loss than PSNR gain due to additional

52

faulty bit corrections. When the memory failure rate is greater than 0.05% and less than 0.6%,

ECC1511 performs best, since the PSNR gained by its increased faulty bit correction outweighs

the PSNR loss due to its extra parity bit. However, for failure rates over 0.6%, ECC74 is best due

to its reduced possibility of multi-bit errors compared to ECC1511. As expected, video quality

degrades as memory failure rate increases, even for the ECC schemes, since they can only

correct a single error bit for every 2-bytes of memory. As the failure rate increases, the likelihood

of multiple bit errors per 2-bytes also increases: which cannot be corrected with either ECC74 or

ECC1511. Hence, the proposed ECC scheme performs best when the error rate is within an

acceptable range, where the likelihood of multi-bit errors is small.

Next, a memory failure based ECC scheme is proposed to enable runtime adaptation.

3.4.4. Proposed Runtime ECC Adaptation Scheme

According to [15], video quality is deemed acceptable when PSNR is 30dB or higher.

Since ECC74 has a PSNR of 29.88755dB at ~1%, this is within the acceptable range. Hence, if

the memory works at its nominal supply voltage or the error rate is lower than 0.01%, no ECC is

needed. For failure rates between 0.01% and 0.05%, ECC74 should be selected. As the failure

rate continues to increase (between 0.05% and 0.6%), ECC1511 should be utilized due to its

stronger error correction ability. And, when the failure rate is above 0.6%, both ECC74 and

ECC1511 cannot correct multiple bit errors, but ECC74 should be selected since it has fewer

parity bits that can have errors that cause incorrect ECC correction, and therefore performs

better. The next section describes the hardware implementation of this proposed runtime ECC

adaptation scheme.

53

3.5. Proposed Memory

ECC

Encoder

M

4

In
p

u
t

d
a
ta

Output

MUX

Correction

Unit

ECC

Decoder

SRAM

Block 4
(1024*16)

SRAM

Block 3
(1024*16)

SRAM

Block 2
(1024*16)

SRAM

Block 1
(1024*16)

Decoder &

Driver

Decoder

&Driver

Sense Amplifier

1
0
2
4

 w
o

rd
li

n
es

SRAM Block 4

15 78 0

MSB LSB
M7 M6 M5 M4 M3 M2 P2 P1

Pixel 2 Pixel 1

MSB LSB
M15M14M13M12M11 M10 P4 P3

Pixel 1

Pixel 2

OUTPUT

O
u

tp
u

t
d

a
ta

[15:0]

[15:0]

P
[4

:1
]

S[1:0]

12

16

15 16

S1 S[1:0] M[15:0]
15

11

4 11

S1

Figure 22. Proposed Adaptive ECC Memory.

Figure 22 presents the architecture of the proposed adaptive ECC memory with its

bitcells organized in four 1024×16 bit sub-blocks. Based on the traditional memory structure,

ECC Encoder/Decoder, Correction Unit, and Output MUX are needed to enable ECC adaption.

For each read/write operation, a 4-to-1 multiplexer with two control signals (S1 and S0) are used

to select the correct operation as follows: (i) when S1 and S0 are “00”, ECC1511 is activated; (ii)

when S1 and S0 are “10”, ECC74 is selected; and (iii) when S1 and S0 are “11”, no ECC is

selected and a normal read/write operation is executed. An S1 and S0 of “01” is invalid and did

not occur in a properly operating system; however, if this does occur for some reason, a normal

read/write operation without ECC is executed. As shown in Figure 22, the input data [15:0],

excluding M10, is provided to the encoder to generate the parity bits or pass the original LSB

message data, depending on the control signals, S0 and S1. Then, the data is sent to the memory

for storing. During this process, the first two LSBs of both pixels/bytes may be replaced with

54

parity bits after encoding, depending on which of the 3 ECC schemes is selected (i.e., if ECC74

is selected, M0, M1, and M8 are replaced with P1, P2, and P3, respectively; if ECC1511 is

selected, in addition to the M0, M1, and M8 replacements, M9 is also replaced with P4; and if no

ECC is selected, then no message bits are replaced). When reading from the memory, the data is

sent to the decoder and correction unit circuitry to check for, and correct a faulty bit if needed,

respectively. If either ECC scheme is selected, then the Output MUX selects the final output

from the Correction Unit; otherwise, it selects the memory output as the final output. To

minimize implementation cost, the ECC encoder/decoder are designed to reuse circuitry for both

ECC1511 and ECC74, which is discussed next.

3.5.1. Reusable ECC Encoder for ECC1511 and ECC74

4:1

Mux

S
<

1
>

S
<

0
>

P<1>
P21
M0
P11
M0

4:1

Mux

S
<

1
>

S
<

0
>

P<2>
P22
M1
P12
M1

4:1

Mux

S
<

1
>

S
<

0
>

P<3>
P23
M8
P13
M8

XOR XOR XORM5
M13 M12 M4

XOR
M3

XOR
M11

XOR
M10

P<24>

XOR XOR XORM7
M15 M6 M5

XOR
M12

XOR
M3

XOR
M10

P<21>

P<11>

S<1>
Vdd2!

S<1>
o/p

gnd!

S<0>
Vdd1!

S<0>
o/p

gnd!

ECC

Encoder

P<1>
P<2>
P<3>
P<4>

o/p

2:1

Mux

(Activate

Specific

Block)

S
<

0
>

vdd!
gnd!

0
1

0
1
2
3

0
1
2
3

0
1
2
3

S<1>
S<0>

P<4>
P24
M9

0
1

2:1

Mux

S
<

1
>

S
<

0
>

M<2>
M<3>
M<4>
M<5>
M<6>
M<7>

M<11>
M<12>
M<13>
M<14>
M<15>

M<0>
M<1>

M<8>
M<9>

Figure 23. ECC Encoder.

Figure 23 shows the integrated ECC Encoder for ECC1511 and ECC74. There is a 15-bit

message input (M[15:0], excluding M10) and two control signals (S0 and S1) for ECC selection;

and the encoder generates four parity bits (P[4:1]) for calculation of error bit detection and

55

correction, only if ECC is selected. If ECC is selected (i.e., S0 = 0), then Vdd1! is enabled to

supply the ECC74 encoding circuitry (i.e., the first 2 XOR gates in the first 3 XOR chains); if

S[1:0] = “10”, then Vdd2! is also enabled to supply the additional circuitry needed for ECC1511

encoding (i.e., the 4th XOR chain and the rest of the XOR gates in the first 3 XOR chains);

otherwise (i.e., S[1:0] = “01” or “11”) both Vdd1! and Vdd2! are kept at ground so that the

encoder circuitry is inactive, therefore conserving power, since ECC is not being utilized. The 4

output MUXes then selected which parity bit or original message bit to store in the 2 LSBs of

both bytes of memory. As an example, if ECC74 is activated, then P11, P12, P13, and M9 would

be stored in P1, P2, P3, and P4, respectively.

3.5.2. Reusable ECC Decoder for ECC1511 and ECC74

ECC

Decoder

M<2>
M<3>
M<4>
M<5>
M<6>
M<7>

M<11>
M<12>
M<13>
M<14>

E<1>
E<2>
E<3>
E<4>

S<1>

P
<

1
>

P
<

2
>

P
<

3
>

P
<

4
>

XOR XOR XOR
M15 M6 M5

XOR
M12

XOR
M3

XOR
M10

E<21>

E<11>
XORM7

P1

XOR XOR XOR
M13 M12 M4

XOR
M3

XOR
M11

XOR
M10

E<24>

XORM5
P4

S
<

1
>

E<1>E21
E11

0
1

2:1

Mux

S
<

1
>

E<2>E22
E12

0
1

2:1

Mux

S
<

1
>

E<3>E23
E13

0
1

2:1

Mux

S
<

1
>

E<4>E24
gnd!

0
1

2:1

Mux

V
d

d
1

!

M<15>

V
d

d
2
!

Figure 24. ECC Decoder.

Figure 24 shows the integrated ECC Decoder design. Its input signals include data signals

(M2…M7) and (M11…M15), parity bits (P1…P4), and one control signal, S1. It generates seven

56

internal signals (E13, E12, E11 for ECC74 and E24, E23, E22, E21 for ECC1511), which are

then grouped into a 4-bit number, E[4:1], which represents the error bit position, if any, in the 2

memory bytes. For example, if E[4:1] = “0111”, then message bit 14 is faulty according to Table

7 (i.e., 7 corresponds to M14), and would be toggled in the subsequent Correction Unit. Similar

to the Encoder, Vdd1! is used to supply the XOR gates that generate E13, E12, E11 and the

output MUXes that generate E[4:1], and Vdd2! is used to supply the additional XOR gates

needed to generate E24, E23, E22, E21, in order to conserve power.

3.5.3. Correction Unit

Correction

Unit

E
<

1
>

E
<

2
>

E
<

3
>

E
<

4
>

D_out
16

E4

E3

E2

E1

[15:0]

V
d

d
1

!

D_out<2>
Out<2>

In

D_out<15>
Out<15>

In

out<2>
out<3>
out<4>
out<5>
out<6>
out<7>

out<11>
out<12>
out<13>
out<14>
out<15>

D_out<7>
Out<7>

In

D_out<11>
Out<11>

In

Figure 25. Correction Unit.

Figure 25 presents the error bit correction unit, which flips a message bit identified as

faulty by E[4:1]. An active high 4-to-16 decoder is used to select a specific faulty bit location by

asserting In, which is input to an XOR gate along with its corresponding message bit, such that

the message bit is flipped when In is asserted. For example, the top most In in Figure 25 is

57

asserted when E[4:1] = “1111”, which according to Table 7 corresponded to M2; hence, its

corresponding XOR gate input is Out(2), and that XOR gate’s output is D_out(2). Note that

message bits M10, P1, P2, P3, and P4 can never be corrected; hence, out[10:8] and out[1:0] are

passed directly to D_out[10:8] and D_out[1:0], respectively.

3.5.4. Output MUX

Output

MUX

out

D_out

OUTPUT

16

11

16

D_out<2>
out<2>

0

1

S0

OUTPUT<2>

D_out<7>
out<7>

0

1

S0

OUTPUT<7>

[15:11]

[7:2]

[15:0]

[15:0]

S
<

0
>

D_out<11>
out<11>

0

1

S0

OUTPUT<11>

D_out<15>
out<15>

0

1

S0

OUTPUT<15>

Figure 26. Output MUX.

Figure 26 shows the output MUX, which selects between the potentially ECC corrected

bits and the original SRAM bits for bit positions 15-11 and 7-2, depending on whether ECC is

selected or not. Bit positions 10-8 and 1-0 are always the original SRAM bits, as mentioned

above, so no MUX is required for these.

3.6. Results

3.6.1. Timing Diagram

Figure 27 presents the timing diagram for the proposed memory, showing three segments

of simulation waveforms, No ECC (i.e., normal memory operation), ECC74, and ECC1511.

58

Specifically, Figure 27 shows (a) the input data, (b) the data after encoding, (c) the error

correction bit information, and (d) the data after decoding.

Input data(a)

NO ECC

@ 795mV

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

After
encoding(b)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

After
decoding
and final
 output

Error
correction

bit

(c)

(d)

1 1 1 1 1 1 1

1 1 1 1 1 1 1

ECC74

@ 665mV

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

ECC1511

@ 685mV

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

If 5
th

 bit is
faulty

(e)

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

0

1
0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

0

1
0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

0

1

0

1

1
0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

0

1

0

1

0

1

0

0

Figure 27. Timing diagram: purple marked bits are the combination that generated the orange

marked parity bits for each operation.

59

At first, the input data is applied to the memory and after the ECC encoder, the generated

parity bits are sent to the memory block to be stored as the LSBs. As shown in Figure 27 (b), the

purple marked bits are the combination that generated parity bits (orange marked) for that

specific operation. To calculate parity for ECC1511 and ECC74, seven and three input bits are

needed, respectively. Finally, the memory checked the error correction bits E[4:1] in Figure 27

(c), and if all zeros, then no error is detected. Otherwise, the correction unit toggled the faulty bit.

Since Figure 27 (c) is always all zeros, there are no faulty bits, such that Figure 27 (b) and (d) are

the same.

7.28%
overhead

2.04%
savings

35.37%
savings

100% 93.35%

6.65%

0.07%

0.03%

66.32%

25.73%
3.37%

1.97%

2.57%

88.42%

0.11%
2.58%

2.95%

5.74%

SRAM Storage

Figure 28. Power Comparison.

Figure 27 (e) illustrates the case when one faulty bit is stored in place of the original

message bit, M5. Since neither No ECC nor ECC74 protects M5, their error correction E[4:1] is

60

all zeros, and their M5 output after ECC is the same as the inserted faulty M5 bit. However, for

ECC 1511, E[4:1] = 10012 = 910, which corresponds to M5 according to Table 7. Hence, the

faulty M5 is flipped which resulted in M5 after ECC being the same as the original M5.

3.6.2. Power Efficiency

For power analysis, the same 45nm CMOS process discussed in Section 3.4 was utilized.

For each testcase shown in Figure 28, the average power consumption is measured for writing

FF0016 to a random word in a 128 word × 16 bit memory bank, which is initialized to A5A516,

followed immediately by reading FF0016 from the same word, such that all read/write memory

operations are equally included (i.e., reading ‘0’ and ‘1’, and writing ‘0’ to ‘0’, ‘0’ to ‘1’, 1’ to

‘0’, and ‘1’ to ‘1’). The baseline design is the traditional SRAM without any of the additional

ECC circuitry, operating at 795mV, the lowest voltage that do not induce errors, which requires

an average power of 2.94E-4W. The first testcase is the proposed ECC memory operating at

795mV, where No ECC is selected, which shows that the added ECC circuitry only required an

additional 7.28% power when not being utilized. The next testcase is the proposed ECC memory

operating at 685mV, the lowest voltage where ECC1511 is invoked, which consumed 2.04% less

power than the baseline design. The final testcase is the proposed ECC memory operating at

665mV, the lowest voltage where the failure rate would still be less than 1%. In this case, ECC74

is invoked, which resulted in a 35.37% power reduction compared to the baseline design. The

tradeoff for this reduction in power is slightly decreased video quality (i.e., PSNR of 34.32dB for

the ECC1511 case and 32.28dB for the ECC74 case, both of which are well above the minimally

acceptable 30dB).

61

3.6.3. Video Quality

To evaluate the quality of videos with the proposed method, 1,000 videos with diverse

characteristics were selected randomly from YouTube-8M [14], with the simulation results

shown in Figure 29. If no ECC is applied with 0.1% error, PSNR ranged between 32dB to 33dB.

With ECC1511 enabled, PSNR improved by approximately 23.31%. If no ECC is utilized with

0.9% error, PSNR ranged between 22dB to 23dB, and improved by approximately 32.98% with

ECC1511 enabled. Furthermore, applying ECC74 to the 0.9% error case even further increases

PSNR improvement, as Section 3.4.3 determined that ECC74 is better than ECC1511 for higher

failure rates. Another observation that can be made from Figure 29 is that at 0.9% failure rate,

the PSNR values with ECC1511 are below the acceptable 30dB threshold for quality [15];

however, with ECC74, almost all videos maintain acceptable quality.

Avg. 32.98%

PSNR improved

with ECC1511

Avg. 36.36%

PSNR improved

with Proposed

ECC74

Avg. 23.31% PSNR

improved with

Proposed ECC1511

Figure 29. PSNR values of 1,000 videos at 0.1% and 0.9% failure rates.

62

3.7. Hardware Implementation for Verification

In Sections 3.3 & 3.4, the proposed memory design is presented, simulated, and

evaluated. In this section, the same video data is written to a commercial 65nm SRAM chip at

various voltages for testing on real hardware, to verify the simulation results.

Figure 30. Variable voltage SRAM test platform: (a) Arduino Mega, Arduino Due, Raspberry Pi,

Texas Instruments Level Shifters, and Cypress 65nm TSOP-44(II) SRAM based system

implementation.

63

3.7.1. Variable Voltage SRAM Test Platform

The variable voltage SRAM test platform in Figure 30 is implemented as a prototype

alternative to taping out a custom IC encompassing the proposed ECC solution. The platform

consisted of three microcontroller boards: one master and two slaves, and an SRAM Unit Under

Test (UUT). The master controller commanded the two slave controllers, which are used as 1) an

SRAM memory controller commanding the SRAM UUT and 2) a variable voltage controller

utilizing voltage level shifting ICs. The level shifting ICs are necessary so as to prevent parasitic

voltage interference from adversely affecting the results. Using the voltage shifters, all SRAM

inputs are voltage controlled at the desired test voltage level. The master controller commanded

both the variable voltage controller and the SRAM slave controller via an I2C serial

communication interface. The SRAM slave controller translated the master controller’s

commands into Read and Write operations for the SRAM, thus acting as an SRAM hardware

abstraction layer and interface.

The Block diagram in Figure 31 shows the interconnections of the various modules

within the system in Figure 30, as well as the various responsibilities of each module. The

operation began via user input from a Personal Computer through a Secure Shell terminal to

communicate with the master controller to specify which video frame to read/write from/to the

SRAM using what specific voltage level. The platform then executes the user input command;

and if write is selected, the system first applied one of the 3 ECC schemes (i.e., no ECC, ECC74,

or ECC1511), based on the selected voltage level, before writing the data to the SRAM.

3.7.2. SRAM Error Characterization at Given Voltages

The SRAM UUT used is the Cypress CY62146GN 65nm 2.20V CMOS static RAM

organized as 256K words by 16 bits [16]. When a bit fails on this SRAM, the failure is a “stuck-

64

at-one” standard high voltage. The SRAM is characterized to determine the failure rate at each

supply voltage, as shown in Figure 32. A test consists of first resetting the chip by writing 1s to

the entire addressable region of the SRAM. Then, test data is written as 0s to the entire

addressable region of SRAM. After which, the written test data is read back, verified, and

analyzed for failures. A test is conducted at the voltage range of 2.20V down to 0.97V, with

0.01V decrements, for a total of 124 tests. The SRAM is switched off before and after each test

and erased, so data hysteresis do not affect the results. At the SRAM specification’s

recommended voltage of 2.20V, the data read back resulted in a 0% failure rate; on the other

hand, starting with voltages less than 1.03V, the data read back resulted in a 100% failure rate.

Figure 32 (b) lists the specific failure rates for each voltage between 1.25V and 1.02V, which

shows that failure rate increases exponentially as voltage decreases.

Figure 31. Block diagram of the Master and Slave controller interaction to write, read, and verify

data on the SRAM, as well as control its supply voltage.

Also, as shown in Figure 32 (a), and better shown in Figure 33 for a specific voltage of

1.06V with a failure rate of 44.25244%, error distribution across the 16-bit data range is

observed to be fairly uniform. In Figure 33, all addressable sectors of the SRAM are written to

and read back, then stored in a 16bit x 256K array in software. Figure 33 (a) provides an

65

exaggerated visual model of the SRAM; because in reality the image would be far too long and

skinny to be accurately displayed in this chapter (i.e., 16 pixels by 262 ,144 pixels). Figure 33 (b)

shows a 128-word sub-section of Figure 33 (a) from address 0x00FFF to 0x0107F, so that the

errors in black, where each pixel denotes a bit, can be seen in more granularity. Figure 33 (c)

then reassembles the 16 x 256K SRAM from Figure 33 (a) into a more presentable 512 pixel x

512 pixel format, where each pixel corresponds to a single SRAM bit, to demonstrate the

uniformity of error distribution.

Note that since SRAM failures occur as “stuck-at-one”, failures follow the bit pattern in

the data. For example, if data 0xFF are to be written, there would be no failures detected,

whereas for data with more zero value bits, more failures would be detected. This is the reason

why the failure characterization test data written is all 0s, to detect all failures in the SRAM.

From correlating the failure rate data from Figure 32 (b) with the results from Section 3.4.4, the

range of voltages where the proposed ECC algorithms would be most beneficial are 1.12V down

to 1.09V.

3.7.3. Hardware SRAM Testing

Writing video frames to the SRAM requires the data to be divided into 16-bit chunks to

fit into the 16-bit SRAM data width. The frame pixels, however, are 24-bits in width: 8-bits each

for Red, Green, and Blue (RGB) vectors. Thus, the pixel data is organized into a sequential

flattened array of 16-bit elements to fit into the SRAM. When the frame data is read back from

the SRAM, the data is reconstructed into its original frame format. Note that this data

reorganization do not affect the proposed method, since the ECC algorithms protect the MSBs of

each 2 bytes (16-bits) of data.

66

Figure 32. (a) SRAM failure characterization map for the entire addressable memory region per

bit. Voltage ranges 1.30V down to 1.00V are shown, which demonstrate the per bit error

distributions from a 0% to 100% failure rate. The granularity of voltage plotted is 0.01V.

Voltages 2.20V down to 1.31V were not shown for clarity, as they resulted in a 0% failure rate;

(b) failure rate at each voltage between 1.02V and 1.25V. Failure rates not shown on the graph

above 1.25V were nearly 0%, above 1.30V were 0%, and below 1.02V were 100%.

(a)

(b)

67

 (a) (b) (c)

Figure 33. SRAM error distribution map at 1.06V, where failure rate is measured as 44.25244%,

to show the uniformity of error distribution (black pixels denote error): (a) exaggerated

visualization of 16bit by 256K SRAM memory structure (b) Sub-section of (a) to clearly show

the error distribution across 128 words: 16bits by 128 (c) Re-organized and re-assembled from

(a).

3.7.4. Hardware SRAM Analysis

Figure 34 details PSNR measurements using No ECC, ECC74, and ECC1511 at supply

voltages from 1.13V-1.08V, with 0.01V decrements, which corresponded to failure rates

between 0.00978% and 4.88718%, respectively. Samples of the written then read back frames

are presented for the reader’s observation in Figure 35. Figure 34 shows that for failure

percentages below 0.01%, which corresponds to a supply voltage of 1.13V and above, No ECC

performs best: as both ECC74 and ECC1511 algorithms decrease quality. For a failure rate of

0.01695%, which corresponds to a supply voltage of 1.12V, ECC74 is the best choice. For a

failure rate of 0.05676%, which corresponds to a supply voltage of 1.11V, ECC1511 is the best.

And finally, for failure rates 0.08066% and greater, which corresponds to supply voltages of

68

1.10V and lower, ECC74 is the best choice. The results from these tests correlated similarly to

the simulation results from Section 3.4, with the difference being the more limited range where

ECC1511 outperforms ECC74. This is because bit errors always manifest as a “stuck-at-1”

output for this Cypress SRAM, rather than being a random 0 or 1, such that only 0 bits result in

errors, which makes the perceived failure rate less than the actual failure rate.

Figure 35 displays a zoomed view of the decoded video data at 1.11V and 1.09V, each

with No ECC, ECC74, and ECC1511 applied, which can be compared to the original frame

without error, shown in shown in Figure 16 (a). Each frame is written at the scaled voltage,

including parity bits if ECC is enabled, and then read back at the same scaled voltage. For

ECC74 and ECC1511, error corrections are computed and reapplied to the frames in a post

processing software routine. As shown in Figure 35, the frames with the highest PSNR values

demonstrate the best video quality. Specifically, at a voltage of 1.11V, ECC1511 performs the

best; alternatively, at a voltage of 1.09V, ECC74 delivers the best quality. It can be observed

from Figure 35 that a 1-2 dB PSNR difference enabled by the different ECC schemes can have a

significant impact on visual quality. As circled in Figure 35 (b) and (f), there is a clear distortion

as compared to (c) and (e), respectively, due to the increased number of errors manifesting

themselves as scattered dots in the image. As a result, the proposed memory, with three different

power-quality tradeoff levels (i.e., no ECC, ECC74, and ECC1511), yields better image quality

compared to only utilizing a single ECC scheme.

69

Figure 34. Failure rate and PSNR values at different supply voltages for three memory modes

(No ECC, ECC74, and ECC1511).

70

Figure 35. Zoomed in video frame using the proposed memory with different modes (No ECC,

ECC74, and ECC1511) at two different supply voltages. The circled regions highlight visual

degradation due to slightly increased number of errors.

(a) No ECC at 1.11V (b) ECC74 at 1.11V (c) ECC1511 at 1.11V

PSNR: 34.10842 dB PSNR: 39.63238 dB PSNR: 39.86774 dB

(d) No ECC at 1.09V (e) ECC74 at 1.09V (f) ECC1511 at 1.09V

PSNR: 30.05357 dB PSNR: 38.73747 dB PSNR: 38.01495 dB

71

3.8. Comparison with Prior Work

Table 8 compares this work against state-of-the art video memory designs. As shown, the

proposed memory enables run-time quality adaptation without inducing bitcell area overhead,

and without requiring multiple supply voltages.

Table 8. Comparison with Prior Work

Priority

SRAM

[5]

Heter-

sizing

SRAM

[6]

Split-

data-

aware

SRAM

[7]

Conten

t-

adapti

ve

SRAM

[3]

Data-

depende

nt

SRAM

[12]

SRAM

with

tradition

al ECC

[17, 18]

SRAM

with

hamming

(15,11)

[11]

Proposed

SRAM

with

ECC

Adaptati

on

PSNR run-time

adaptation
No No No Yes Yes No Yes Yes

Bitcell area

overhead

(compared to basic

6T)

Yes

(6T and

8T)

Yes

(Larger

6T)

Yes (8T

and

10T)

No
Yes

(10T)
No No No

Encoder-side

modification
No No No Yes No No No No

Additional column

needed
No No No No No Yes No No

ECC Adaptation - - - - - No

Yes (No

ECC and

ECC1511)

Yes (No

ECC,

ECC1511,

ECC74)

3.8.1. Compared to State-of-the-Art Approximate Video Memories

The priority-based 6T/8T SRAM [5], heterogeneous sizing SRAM [6], and split-data-

aware SRAM [7] were developed to store MSBs in more robust more-than-6T SRAM bitcells

(such as 8T, 10T, or upsized 6T) and LSBs in error-prone but area-efficient basic 6T bitcells,

thereby leading to a tolerable output quality degradation with power reduction. However, the

video quality enabled by those designs is fixed during design-time, so they cannot adapt at run-

time to meet requirements of different video applications.

3.8.2. Compared to State-of-the-Art Adaptive SRAM

Recently, two video SRAM designs with run-time adaptation have been presented, data-

dependent memory [12] and content-aware memory [3]. The data-dependent SRAM consists of

72

10T bitcells and associated conditional pre-charge circuitry to adapt to the statistical

dependencies present in the binary values. The content-aware SRAM adapts the number of

truncated LSBs of video data based on the average plain macroblock percentage of an entire

video sample; therefore, a macroblock characterization process is needed in the video encoder

side [3]. In the proposed memory, the run-time quality adaptation is enabled without inducing

bitcell area overhead or encoder-side modification.

3.8.3. Compared to State-of-the-Art SRAM with traditional ECC

SRAM designs with different ECCs have been developed to implement low-power

memories [17, 18]. However, in SRAM with traditional ECCs, either memory capacity needs to

be increased or part of the memory’s effective capacity has to be sacrificed, in order to store

parity bits. As discussed in Section 3.3.1, a 75% and 36% silicon area overhead are introduced

by using traditional ECC74 and ECC1511, respectively. Similarly, by using orthogonal Latin

square codes discussed in [18], half of the memory capacity is used to store parity bits. In

addition to memory space overhead, additional logic for ECC encoding and decoding must be

added, which causes significant implementation penalty. The proposed memory design

intelligently uses LSBs to store the parity bits, and develops a reusable decoder and encoder to

support both ECC74 and ECC1511, thereby avoiding significant area overhead.

3.8.4. Compared to State-of-the-Art Memory with Selective ECC

The SRAM with selective Hamming (15,11) presented in [11] is another recent adaptive

memory design that switches between no ECC and ECC1511 based on the quality targets of the

applications. It also utilizes LSBs to store parity bits to save silicon area. Specifically, [11]

protects 2.75 MSBs per byte using 1 LSB per byte, while the proposed ECC74 protects 2 MSBs

per byte using 1.5 LSBs per byte, and the proposed ECC1511 protects 5.5 MSBs per byte using 2

73

LSBs per byte – neither require any memory storage area overhead. The video output quality of

two memory designs at different failure rates using 101 videos is further compared, including the

video Akiyo and 1000 randomly selected YouTube-8M videos. The average PSNR values are

listed in Table 9, showing that the proposed technique yields higher PSNR values in most cases,

compared to [11], with the same zero area storage overhead. Finally, it should be emphasized

that the developed negative bitline scheme in [11] could also be added to the proposed technique

to further increase power savings.

Table 9. Comparison with [11]

Failure Rate
Average PSNR Values of 101 Videos

Best Scheme
[11] Proposed

0% Infinite Infinite Both with No ECC

0.1% 46.236 dB 43.774 dB [11] with ECC 1511

0.3% 39.702 dB 39.951 dB Proposed with ECC 1511

0.5% 36.003 dB 37.065 dB Proposed with ECC1511

0.7% 33.357 dB 35.064 dB Proposed with ECC74

0.9% 31.428 dB 33.518 dB Proposed with ECC74

3.8.5. Comparison Summary

In the developed adaptive memory technique, a new parity storage scheme to support

three power-quality tradeoff levels is proposed, hamming code-74 (ECC74), hamming code-

1511 (ECC1511), and no ECC. It utilizes LSBs to store the parity bits, thereby avoiding

dedicated parity bit storage. Additionally, with ECC protection, it does not need to adopt upsized

more-than-6T bitcells to store MSBs. Accordingly, the proposed memory enables run-time

quality adaptation with significantly reduced overhead and better video quality, as compared to

existing techniques.

74

CHAPTER 4. CONTENT-ADAPTABLE ROI-AWARE VIDEO STORAGE FOR

POWER-QUALITY SCALABLE MOBILE STREAMING3

The demand for mobile video streams is constantly increasing. With this demand comes a

need for mobile devices to receive more videos at ever increasing quality. However, due to the

large size of video data and intensive computational requirements, video streaming requires

frequent memory access that consume a substantial amount of mobile device power; as a result,

the battery life of mobile devices is limited. In this chapter, a video content-adaptable Region-of-

Interest (ROI)-aware video storage technique is presented that promotes power savings. During

the video encoding process on the transmitting server, based on the macroblock variance and

ROI characterization, the “macroblocks of interest” are identified and embedded in the encoded

bitstream. In the decoding process, a new frame buffer with dynamic power-quality trade-off is

presented to adapt to the macroblock characteristics during run-time. Results from the system-

level and circuit-level simulations show that the proposed technique enables substantially more

truncated bits and significant power savings while delivering similar or better video quality as

compared to other state-of-the-art solutions.

4.1. Introduction

Mobile video streaming on YouTube, Vimeo, and Netflix has increased on average 70%

per year and will consume approximately 79% of the total internet traffic by 2022 [1]. At the

3 The material in this chapter was authored by Ali Ahmad Haidous, William Oswald, Hritom Das, and Na Gong. Ali

Ahmad Haidous was in charge of the theoretical development, design, implementation of the proposed techniques,

system level validation, feasibility, experimental methodologies, and experimental results. He invented the system-

level novelties and solutions, lead the research direction, created experiments, and developed the hardware system

test platform. He was also in charge of all simulations and results completed using python while assisting and

mentoring William Oswald on other python code simulations, statistical analysis, and video frame analysis. The

source code is available in the appendix. William Oswald was responsible for the statistical analysis, power analysis,

and video frame analysis. Hritom Das was in charge of all circuit design in Cadence, power analysis, and simulation

of the proposed frame buffer memory. Na Gong contributed to the theoretical development, memory design, video

quality metrics, and data analysis and interpretation.

75

same time, power-efficient video storage has proven to be a very challenging problem to solve.

This is due to the large data sizes associated and intensive computational requirements

demanding frequent data access. With the advancement of computing technologies, more video

streaming services deliver content to battery-powered mobile devices: such as smart phones and

Internet-of-Things (IoT). On one hand, these devices would benefit greatly from low-power

consumption as this would extend their battery life. On the other hand, the mobile video

streaming process – receive, decode, and display of a video bitstream – consumes considerable

power and limits the mobile devices’ battery life. For example, with a video decoding chip,

embedded memories contribute to over 50% of the decoding power consumption [2]. This use-

case is only expected to grow for the next-generation video formats, H.265/HEVC and

H.266/VVC, which has 2x-3x greater memory demands when compared to H.264 [3].

Different surroundings

Ref. [4-6]

Ref. [7]

General videos and Region-of-Interest

(ROI) Awareness

This work

Traditional video-

specific approximate

memory

Ref. [8-12]

Low-motion videos with a stationary

camera or containing a reporter

Different surroundings

viewer

experience

Figure 36. Proposed content-adaptable ROI-aware low-power video memory.

76

Today’s mobile hardware designers, including memory designers, are focusing on

hardware-level energy-efficient design techniques in order to accommodate the large amount of

video data. However, these design techniques usually come with significant implementation

overhead (e.g., silicon area, delay) to solve failure problems in memories. Viewer-aware video

memory design was recently explored by investigating the impact of illuminance levels in

different viewing surroundings on the viewer’s experience [4, 5, 6, 7], as illustrated in Figure 36.

The previous studies illustrate a new dimension of power savings for hardware design through

the introduction of viewer awareness, but the developed memories lack runtime adaptation

across a wide variety of mobile videos. To enable an optimized trade-off between power

efficiency and video quality, -, this chapter aims to develop a video content-adaptable Region-of-

Interest (ROI)-aware memory for general videos. Specifically, this chapter makes the following

contributions:

• An intelligent ROI-aware and content-adaptive framework is proposed to determine

video frame regions to preserve (output quality) or truncate bits for power savings. The

truncation is applied for all Luma and Chroma video data (i.e., Y, U, and/or V

components) (Section 4.3).

• The system-level implementation scheme of the proposed technique is developed and

discussed (Sections 4.4.1, 4.4.2, and 4.4.3).

• A low-power low-cost frame buffer with dynamic power-quality trade-off is developed to

adapt to the video content (i.e., macroblock characteristics) during run-time (Section

4.4.4).

• A comprehensive suite of simulations on the proposed technique is performed and the

enriched results are discussed, including the performance, circuit-level power efficiency,

77

video-level power efficiency, number of truncated bits, and output quality of various

mobile videos (Sections 4.6.1, 4.6.2, 4.6.3, and 4.6.4).

• An extensive statistical analysis demonstrates the effectiveness of the proposed technique

in achieving significant bit truncations and power savings as compared to the state-of-the

art, particularly for the videos with medium or high variance (Section 4.6.5).

To the best of the authors’ knowledge, this is the first work that seamlessly integrates

ROI knowledge, i.e., “macroblocks of interest”, into the hardware design process.

The organization of the chapter is as follows. A review of low-power video memory

designs is provided in Section 4.2, Section 4.3 presents the macroblock variance and ROI study,

and Section 4.4 discusses the proposed technique. The evaluation methodology and results were

discussed in Sections 4.5 and 4.6 respectively, and finally, this chapter is concluded in Chapter 5.

4.2. State of the Art

A vast amount of research has been conducted to improve the power efficiency of video

data storage. State-of-the-art, power-efficient video memories consist of either approximate

memory with application-level information [8, 9, 10, 11, 12] or viewer-aware memories with an

awareness of viewer’s experience [4, 5, 6, 7]. In this section, some of the existing work related to

the proposed technique are briefly reviewed.

4.2.1. Approximate Video-Specific Memory

Researchers have presented various low-power video memory design techniques. Chang

et al. [8] presented a hybrid 6T+8T SRAM to achieve quality-power optimization. Gong et al. [9]

developed a hybrid 8T+10T memory for power savings based on the correlation between most-

significant-bits (MSBs) of video data. In [10], a heterogeneous sizing scheme was presented to

reduce the failure probability of conventional 6T bitcells. The video memory presented in [11]

78

used the Least-Significant-Bits (LSBs) of video data to store the MSBs’ error-correction-code

(ECC). Kazimirsky et al. [12] developed a hybrid SRAM+DRAM memory to store MSBs in

robust SRAM bitcells and LSBs in error-prone DRAM bitcells, leading to a tolerable output

quality with power reduction. However, all of those video memory designs were developed

based on an objective video output metric such as the peak signal-to-noise ratio (PSNR): without

dynamic power-quality adaptation to viewer’s true experience

4.2.2. Viewer-Aware Video Memory

Viewer-aware low-power video memory techniques were investigated in [4, 5, 6]: where

an increased amount of ambient luminance allows for a larger number of bits to be truncated

without noticeable degradation to the viewers. Very recently, the impact of video content

characteristics on viewer’s experience were studied to enable video content-adaptive memory

with dynamic energy-quality tradeoff [7]. However, the technique determined the number of

truncated LSBs based on the averaged plain macroblock percentage of an entire video sample;

therefore, it was only effective to store low-motion videos with a stationary camera or containing

a reporter in a video cast use-case. Additionally, this technique may result in noticeable

distortion, e.g., a banding distortion caused by bit truncation, which negatively influenced the

viewer’s experience.

The common feature of these viewer-aware storage techniques is that the same number of

the truncated bits were applied on an entire video. In contrast, the technique proposed in this

chapter realizes content adaptation and ROI awareness within each video frame, thereby

maximizing the number of truncated bits while maintaining the video quality.

79

4.3. Overview of the Proposed Technique

This section presents the motivation of the proposed technique that introduces ROI

awareness as bit truncation is applied for power savings. Then, the high-level overview of the

proposed technique is shown.

4.3.1. Motivational Example

Researchers conducted studies on the human visual system’s (HVS) performance and

concluded that viewers usually pay more attention to one or a few areas of a video and the region

of concentration is called Region-Of-Interest (ROI) [13]. For example, in video conferencing

applications, viewers typically pay more attention to the face regions than other areas. In video

surveillance, the facial regions are what viewers concentrate most on in consecutive frames.

Accordingly, ROIs have higher contribution towards the overall visual quality than other areas.

Consequently, if truncation-caused banding distortion appears in ROIs, this will negatively

influence a viewer’s experience. Figure 37 shows one example. The output quality of the video

(Video tag: wF6lvdXXwc4 [14]) using the technique in [7] is shown in Figure 37 (a). Since the

banding distortion caused by bit truncation appears on the reporter’s face, viewers were less

likely to accept the displayed degradation due to this particularly noticeable distortion, as

emphasized in [7].

80

Figure 37. Observer discernable flaws in the facial region due to a “banding effect” on the face

when comparing (a) and (b) caused the overall quality of the frame to become unacceptable at 3

truncated bits (Video tag: wF6lvdXXwc4 from [14]).

(a) Output quality using [7] (at 3 truncated bits)

(b) Output quality of the proposed technique (at 3 truncated bits)

(c) [7] (left) vs. Proposed technique (right)

81

Therefore, the motivation for this work arises from the following two observations:

4.3.1.1. Protected ROI

In a video frame, the distortion in ROIs is more noticeable by viewers. Accordingly, if

ROIs can be extracted and protected from truncation, the video quality would be improved from

the viewer’s perspective (Figure 37(b)). A comparison of the report’s face using the technique in

[7] and the proposed technique with ROI awareness is shown in Figure 37 (c).

4.3.1.2. Power savings vs. Bits Truncated

There existed a positive correlation between power savings and the number of bits

truncated in a video decoder’s frame buffer memory [7]. To optimize the power efficiency, it

would be beneficial to increase the number of truncated bits in other regions which are not ROIs:

the truncation regions.

4.3.2. Overview of the Proposed Content-Adaptable ROI-Aware Video Storage

Figure 38 shows the proposed content-adaptable ROI-aware video storage technique.

During the traditional mobile video streaming process, first, from (1) in Figure 38, the mobile

device requests a video for display from the cloud. Then, the streaming servers process the

requested video by encoding and transmitting the encoded bitstream to the mobile device for

decoding and display, (2) in Figure 38. During this process, multiple memories are needed for

storing the intermediate and final results of the frame data. In particular, the reference

macroblock, frame memory, and display memory, which store the decoded video frames, are

accessed very frequently, and they have a profound impact on the system’s overall cost and

power consumption. The proposed technique extracts ROIs in the cloud server and transmits the

truncation region data together with the encoded bitstream to the mobile device, (3) in Figure 38,

to further reduce the mobile device’s power consumption from computational overhead. The

82

mobile device hardware video decoder receives the truncation region data and makes memory

bit-truncation decisions for greater power savings with less perceived quality loss than [7]. To

optimize the truncation decision logic of the mobile device hardware, which further improves

power consumption, either no truncation or 3-bit truncation is applied to the truncation regions.

Explicitly, the proposed technique is detailed as follows.

Server

Video

Directory

Video Encoder

ROI

Identifier

Truncation

Region

Extractor

Video

Decoder

Memory Bit

Truncation

Manager

Cloud

Mobile Device

(3) ROI Extraction

(2) Encoded Video

(1) Video Request

Display

Figure 38. Proposed Region-Of-Interest and macroblock texture framework.

4.3.2.1. ROI Awareness

ROI has been recently applied for different research areas for video system optimization,

such as wireless transmission [15], virtual reality (VR) [16], and video summarization [17]. The

proposed technique introduces ROI awareness into video storage. Specifically, to minimize the

complexity and computational overhead, faces as ROIs in are the focus of analysis which was

based on the basic machine learning facial detection OpenCV model [18]. Different algorithms,

such as user attention model [13], motion-based models [17], and machine learning models [19],

can be applied in future investigations to extract different ROIs, as discussed in Section 4.7.

83

Figure 39. Akiyo from [28], sample visualized, as generated internal to the proposed method’s

frame parsing process. Pink, preserved ROI. Seven possible truncation combinations: 1. Green,

Y vector truncation. 2. Blue, U vector truncation. 3. Yellow, V vector truncation. 4. Dark blue,

YU vectors truncation. 5. Dark Yellow, UV vector truncation. 6. Dark green, YV vectors

truncation. 7. Grey, YUV vectors truncation.

(a) Original Akiyo Frame (for reference)

(b) Visualized ROI Sample

84

4.3.2.2. Video Content Adaptation

After the ROIs to preserve are detected and captured by the framework ROI Identifier, it

then searches for regions of low variance measured by the percentage of plain macroblocks

(MBs). Specifically, a MB defines an area of 16x16 pixels within a frame. An attribute

associated with MBs is how “Textured or Plain” they are. A Plain MB is one in which the

variance of intensity within the MB is less than or equal to the threshold value. It has been

concluded in [7] that textured MBs are less susceptible to bit-truncation. The pre-established

method from [20] is adopted for determining the variance in a MB.

 𝑉𝑀𝐵 =∑ ∑ (𝑃(𝑖, 𝑗) − ρ 𝑀𝐵)
2 ≫ 8

15

𝑗=0

15

𝑖=0
 (Equation 14)

 MB = {
Plain, if(𝑉𝑀𝐵 ≤ Th𝑙𝑜𝑤)

Textured, Else
 (Equation 15)

Equation 14 and Equation 15, where ρ_MB is the average brightness within the MB,

V_MB is the texture variance within the MB, and traditionally, Th_low is defined as a value of

1.25 [21].

4.3.2.3. Truncation Region Extractor

After ROIs are identified on the server, a truncation region extractor encodes the

truncation region data using a proprietary protocol per frame and transmits in synchronization

with the encoded video transmission to the mobile device. The truncation region data is decoded

onboard the mobile device’s hardware video decoder in a novel Memory Bit Truncation

Manager (MBTM) hardware unit: which truncates a novel frame buffer memory through the use

of unique control YUV truncation signals. The video decoding and bit truncation processes occur

in lockstep.

85

4.3.2.4. 3-Bit Truncation

Truncation is performed in the YUV (Y’CbCr) color space [22], inferring that any

truncation is done to the YUV color values. The memory designed in [7] truncated 1, 2, or 3 bits

in the Least Significant Bits (LSBs) of the Y vector of all frames within an entire video as a

blanket truncation. The proposed technique will enable a different amount of truncated bits for

each region within each frame within an entire video. To minimize the implementation overhead,

only 3-bit truncation is adopted in the new frame buffer, which will be discussed in Section

4.4.4. Meanwhile, the proposed technique can identify bit-truncation for each Y, U, and V vector

of the frame separately for each truncation region in each frame, instead of only truncating the Y

vector as a blanket truncation across the entire video as the existing techniques [4, 5, 7].

Furthermore, the proposed technique is expected to enable additional bit truncations as compared

to existing techniques. Also, to minimize the video quality degradation caused by bit truncation,

the developed frame buffer truncates three LSBs to the optimal value “100” [7], instead of

truncating the values to “000”.

Figure 39 shows the Akiyo video sample using the proposed technique. The extracted

preserved ROI region is highlighted in pink. All truncation regions within a frame are identified,

including the following seven possible truncation combinations: (1) Green, Y vector truncation;

(2) Blue, U vector truncation; (3) Yellow, V vector truncation; (4) Dark blue, YU vectors

truncation; (5) Dark Yellow, UV vector truncation; (6) Dark green, YV vectors truncation; and

(7) Grey, YUV vectors truncation. Each of these combinations would be encoded in the

truncation region data for the MBTM to generate control signals for memory bit truncation in the

video decoding process.

86

To conclude, the proposed technique truncates the chroma sub samples within each frame

as well as the luminosity: Y, U, and V vectors. Previous research only targeted luminosity, Y, of

a video for truncation, while chroma samples were disregarded for the entire video. Also, the

technique preserves ROIs that impact viewer perception most, while enabling greater truncation

for each Y, U, and V vector for the truncation regions with textured MBs. Accordingly, the

proposed technique will realize a greater number of truncation while preserving visual quality.

The system-level and circuit-level implementations of the proposed technique will be discussed

in Section 4.4.

4.4. Proposed Technique: System Level and Circuit Level Implementation

This section presents the system-level and circuit-level implementation of the proposed

technique.

4.4.1. System-Level Implementation: Video Streaming Platform

Figure 40 shows the developed system-level video streaming platform. As shown, a

Raspberry Pi [23] microcontroller was used to serve as a video streaming server with which a

mobile device would communicate and retrieve video data. Also, a Z-Turn 7020 [24] board was

utilized and synthesized an H.264 video decoder into the on-board Xilinx Zynq 7020 Field

Programmable Gate Array (FPGA) which would operate as a mobile device. Finally, the

decoded video data was captured via a Magewell [25] HDMI Video Capture & Display Device.

The corresponding block diagram for Figure 40 is illustrated in Figure 41. The video

streaming process is kicked-off by a command from the mobile device to the server to retrieve an

encoded H.264 video stream over Secure Copy Protocol (SCP) [26]. The mobile device sends the

initial kick-off command to the server over a serial terminal on a PC interfaced with the mobile

device over USB.

87

Figure 40. H264 video stream demonstration platform hardware system.

88

The server then processes the video stream requested by the mobile device by both

transmitting an H.264 encoded format of the video stream over SCP to the mobile device and

parsing the frames for truncation region information.

Table 10. Truncation Region GPIO Protocol

(a) SERVER-TO-MOBILE DEVICE

Index 0 Index 1 Index 2 Index 3 Index 4 … Index N+1 Index

N+2

Index

N+3

Frame

Number

Number of

Regions

YUV1

Truncation

(X11,Y11) (X12,Y12) … YUVN

Truncation

(XN1,YN1) (XN2,YN2)

22 bits 16 bits 3 bits 22 bits 22 bits … 3 bits 22 bits 22 bits

(b) MOBILE DEVICE-TO-SERVER

Index 0 Index 1

Frame Number Request Send Frame Flag

22 bits 1 bit

Directory of
Encoded Videos

Server

Mobile Device

Frame-to-

Bitstream

Converter

YUV
4:2:0→4:4:4
translation

YUV
Display
Memory

YUV→RGB
translation

RGB

Video
Capture Card

Video Capture &

Display Device

S
C

P

Circular bitstream
buffer

Residual

Inter predictor

Intra predictor

Motion Vector X F
ra

m
e
 b

u
ff

e
r

Luma
Level

su
m

Intra Pred Engine

Exp-Golomb

Decoder

CAVLC

Decoder

Bitstream Parser

Bitstream parser Reconstruction data path

Inter Pred Engine

Chroma
Level Cr

Chroma
Level Cb

Motion Vector Y Reference MB

Reconstructed
Neighboring

Prediction
Mode

Memory Controller

Bit-truncation Manager

Bits

H264 Decoder

ROI Identifier

Operating

System

Truncation

Region

Extractor

G
P

IO

Display

Controller
HDMI
Output

LCD Monitor

H
D

M
I

USB3.0

Personal
Computer

HDMI

Figure 41. Mobile video steaming system block diagram.

89

After the video frame is parsed on the server, the truncation region information is

transmitted over GPIO per frame. In the developed system, the protocol is defined in Table 10.

Only the truncation region information of the frames that would be truncated is transmitted. The

preserved ROI information will not be transmitted as these regions are identified prior to the

transmission on the server and preserved. As listed in Table 10, the first index, index 0, denotes

the current frame number parsed. The second index, index 1, denotes the number of truncation

regions to truncate. Then the next indices denote the first three YUV truncation signal bits plus

two sets of XY coordinates denoting the left top and right bottom corners of rectangles grouping

the affected truncation region. These three indices repeat for each region called out by the

“Number of Regions”, index 1. The GPIO interface data width bit size of the developed system

is 22-bits per index. The 22-bit distribution is to account for a maximum of 211 x 211 pixel

addressing – a max resolution of 1,920 × 1,080 – totaling 22 bits. There is an additional 2

handshaking bits between the server and mobile device to denote data reception confirmation in-

order to transmit the next index.

This truncation region information will be transmitted to a MBTM for processing in the

mobile device side, as discussed in Section 4.4.2. The MBTM will generate control signals for

the frame buffer memory, thereby determining which sub-pixels – from Y, U, and/or V – shall be

truncated for each frame written to the frame buffer memory, which will be detailed in Section

4.4.4. Finally, the decoded and bit-truncated frame is output over HDMI from the mobile Device

and captured by the Video Capture & Display Device.

4.4.2. Memory Bit Truncation Manager

The MBTM implemented into the H.264 decoder parses the protocol data that is

transmitted by the server’s Truncation Region Extractor. The flow is broken down as follows.

90

(a)

(288, 256)

(355, 323)

Preserved ROI

No Truncation

Y Truncation

U Truncation

YV Truncation

V Truncation

YU Truncation

VU Truncation (419, 275)

(403, 256)

(65, 386)

(99, 448)
(224, 449)

(257, 511)

(544, 447)
(608, 515)

(577, 576)

(641, 637)

(b)

(c)

Figure 42. (a) Encoded frame 175 from Johnny_1280x720_60 video [28]. (b) Visual of areas

being truncated. 45 regions total. (c) Output decoded frame. 2,282,496 bits truncated.

First, from Figure 42 (a), the encoded frame is transmitted via SCP to the mobile device.

Figure 42 (b) illustrates the truncation regions determined to be bit-truncation capable on a sub-

91

frame vector level: Y vector, U vector, and V vector each encompassing all the sub-frames

summing to a frame. From Figure 42 (b), the gray areas denote the truncation regions determined

to be bit-truncation capable for all Y, U, and V vectors. The areas in boxes are regions where

only 1 or 2 vectors were determined to be bit-truncation capable. Two coordinates, top-left and

bottom-right, are highlighted in Figure 42 (b) for each of these regions to show how the

truncation region data was used to determine the regions to truncate using the protocol in Table

10. A total of 61 regions to truncate are shown in Figure 42 (b). Figure 42 (c) shows the resultant

frame after Figure 42 (a) is decoded using the identified truncation region information. As

shown, the preserved ROI around the face, pink region from (b), is not truncated to avoid visual

quality degradation. The frame is decoded normally, but when it is written into the frame buffer,

the transmitted truncation region information is used to control the T_Y, T_U, and T_V control

inputs to truncate the frame buffer memory as it is written. These control inputs are provided to

the proposed frame buffer in Figure 43, which will be discussed in detail in Section 4.4.4.

. . .

senseout<19>

data<19>

senseout<23>

data<23>

S
R

A
M

B
lo

c
k

(M

*
N

)

D
r
iv

e
r

S
e
n

se

A
m

p
li

fi
e
r

...

1
2

8
 w

o
r
d

li
n

e
s

Y U V23 15 716 8 0

Pixel 3

MSB LSB

V7 V6 V5 V4 V3 V2 V1 V0

Pixel 2 Pixel 1

phi2b phi2b

sense

wl_en

out<18>

data<18>

2:1

Mux
0

1

y!

vdd!

y_pre!

y!

sense

wl_en

out<17>

data<17>

2:1

Mux
0

1

y!

gnd!

y_pre!

y!

sense

wl_en

out<16>

data<16>

2:1

Mux
0

1

y!

gnd!

y_pre!

y!

T_U u!

T_U

phi2b u_pre!
T_V v!

T_V

phi2b v_pre!

T_Y y!

T_Y

phi2b y_pre!

Y
U

Vdata[23:0] 24
input

Out[23:0] 24
output

Figure 43. Circuit-Level implementation of the proposed frame buffer memory.

92

4.4.3. H.264 Decoder and MBTM Integration

A H.264 video decoder is implemented based on the Open Source Osenlogic OSD10

decoder IP [27]. This decoder was capable of decoding baseline profile level 3.1 encoded

bitstreams. The slice types supported were I-Slice, SI-Slice, P-Slice, and SP-Slice [28]. The

entropy coding profile supported was Context-Adaptive Variable-Length Coding (CAVLC). The

decoder took an H264 Network Abstraction Layer (NAL) bitstream and output YUV 4:2:0.

During the NAL bitstream parsing process, the bitstream is parsed into raw bytes of

syntax elements from the Raw Byte Sequence Payload (RBSP). Within the RBSP, therein lies

the slice layers. Ignoring the Sequence Parameter Set (SPS) and the Picture Parameter Set (PPS),

the Instantaneous Decoder Refresh Access Unit (IDR Slice(s)) and the slice layer includes all

slice headers and slice data for the frames that shall be truncated using the MBTM. H.264/AVC

defines a frame as an array of luma samples and two corresponding arrays of chroma samples:

denoted as YUV.

Specifically, the slice header includes the parameters first_mb_in_slice, which indicates

the position of the first macroblock in the slice data, and frame_num, which represents the order

in which a video decoder shall decode the encoded frames. This is not the same as the display

order or Picture Order Count (POC), which is the order in which the frames are displayed. The

frame_num parameter is used to determine which frames during the decoding process would be

susceptible to YUV bit-truncation by the MBTM and the first_mb_in_slice is used to determine

the starting coordinates of the macroblocks susceptible to bit-truncation. The slice data included

all the macroblocks of the slice.

After the MBTM determined that a frame would be truncated, through a conditional

match between the frame number parameter from Table 10 (a) and frame_num, a running count

93

of the current macroblock index was kept track of internally to the MBTM from the slice data

starting with the index of first_mb_in_slice. After the MBTM determined that a macroblock

would be truncated, through a conditional match of the running macroblock index and the

truncation region given by the two indices from Table 10 (a) that indicate the rectangular region

which YUV truncation would be applied, the MBTM passes through the YUV truncation signal,

from Table 10 (a), to the frame buffer which would result in the macroblock being truncated to

the desired amount. An internal signal denoting the number of macroblocks truncated in the

frame is then incremented. After all the macroblocks desired to be truncated in the frame are

truncated, denoted by the number of ROI parameter from Table 10 (a), then from Table 10 (b),

the Send Frame Flag is set then reset by the MBTM over GPIO to signal the next frame

information to truncate. From Table 10 (b), the Frame Number Request index is used to fetch

any frame index truncation information for macroblocks that required multiple frames for

prediction. This process is repeated until the end of the NAL bitstream.

The trade-off with utilizing the BTM is the additional GPIO parallel bitstream overhead

required to truncate the macroblocks in each frame. Each frame parsed had an absolute worst

case overhead of approximately 380,738 additional bits to transmit using the protocol from Table

10. This worst case is calculated assuming every macroblock with 16 × 16 pixels in a maximum

resolution of 1,920 × 1,080 would be truncated differently per frame in a video. On average,

however, the number of additional bits transmitted per frame is 1,200, because the maximum

resolution of each frame is 1920 × 1080 and the truncation regions are combined to encompass a

greater area in the video to save on bits transmitted: on average 50 truncation regions per frame.

With a 1920 × 1080 video at 30 frames per second progressive (1080p 30fps) or a 1280 × 720

videos at 60 frames per second progressive (720p 60fps), i.e. 5,000 kbps bit rate, the worst case

94

percentage overhead would be 7.62% with an average of 0.02% per frame. The protocol utilized

is one of the simplest methods to implement the proposed technique.

4.4.4. Circuit-Level Implementation of the Proposed Frame Buffer Memory

During the video decoding process, multiple memories are needed. In particular, the

frame buffer memory is accessed very frequently and it has a profound influence on the system’s

overall cost and power consumption [7]. In this chapter, a new frame buffer is designed, and the

circuit-level implementation is shown in Figure 8. Specifically, the logic in the truth table

highlighted in yellow was designed to be supported by the MBTM. Here, T_Y, T_U, and T_V

are utilized to truncate Y, U, and V byte from the word. Each word consists of a Y, U, and V

byte. During the Write Enable (WE) phase of the frame buffer memory access, if either control

line of T_Y, T_U, and / or T_V are asserted, the memory would truncate the 3-LSB of the

optimal asserted vector as “100” [7].

The proposed frame buffer has M words and each word consists of N bits. To evaluate

the functionality and measure average power consumption of this proposed circuitry, a 128-word

by 24-bits memory array is designed. Here, input and output pins are denoted as data[23:0] and

out[23:0] respectively. Bits 23-16 are named Y byte, bits 15-8 are named U byte, and bits 7-0 are

named V byte. The memory implemented had a driver and sense amplifier for writing and

reading data. These enabled bit truncation according to T_Y, T_U, and T_V control signal

activation. If T_Y, T_ U, and T_V are all de-asserted as logic ‘0’, then the frame buffer would

operate as a traditional memory device where the sense amplifier would operate with a supply

voltage (VDD) and pre-charge signal phi2b. When the T_Y signal is asserted as logic ‘1’, the

peripheral circuitry would generate two signals: y! which is the inverted value of T_Y and y_pre!

which is inverted value of the pre-charge enable signal. These two signals are used to control the

95

sense amplifier for the Y byte’s 3-LSBs, thereby enabling truncation. During this process, the

VDD for this sense amplifier remains grounded and the pre-charge signal would be reactivated.

As a result, the power consumption of this portion of circuitry will be reduced as compared to the

normal operation. During the read back operation, the 3-LSBs are generated as “100” though use

of three 2:1 multiplexers in-place of regular of data output. When the bit truncation is asserted,

these multiplexers would select “100” through control signals y!, u!, or v!. Otherwise, these

multiplexers would pass normal readout data values. In addition, the VDD of all the 3 LSBs of

each byte are also controlled by the corresponding control signals y!, u!, and v!. During the

truncation, VDD for LSBs can be powered off to save power consumption and multiplexers will

select “100” as the output data, thereby achieving low-power operation. The detailed timing

diagram and power efficiency of the proposed memory will be discussed in Section 4.6.

4.5. Experimental Methodologies

This section discusses the metrics, methods, and strategies used to evaluate the

effectiveness of the proposed technique. The testing and analysis setup used to generate the

experimental results is also discussed.

4.5.1. Video Selection

To verify the effectiveness of the proposed technique, 74 videos with diverse

characteristics were selected from the YouTube 8M dataset [14], YouTube UGC dataset [29],

and Xiph.org Video Test Media [30]. As shown in Table 12, those videos have different

resolutions (e.g. 288 × 352, 1280 × 720, and 1920 × 1080) and different MB variance

characteristics (low, medium, and high). Of those videos, 60 videos contain facial features to

enable ROI preservation using the proposed technique. All videos were converted to the YUV

4:2:0 chroma subsampling standard for ease of bit-truncation. A detailed statistical analysis

96

shows that the selected videos are representative of the full population of videos in general,

which will be discussed in Section 4.6.5.

4.5.2. Video Frame Quality Metrics

The traditional video quality metric PSNR is applied widely to evaluate video quality, but

it fails to incorporate the importance of ROI. This is because this metric weights all pixels of the

video equally, regardless of user awareness. For this reason, another video quality metric –

Weighted Peak Signal to Noise Ratio (WPSNR) – is used in this chapter to evaluate the quality

of videos with ROI [22], which is defined as [31]:

 WPSNR = 10𝑙𝑜𝑔10(255
2/ 𝐷𝑓𝑟𝑎𝑚𝑒) (Equation 16)

 𝐷𝑓𝑟𝑎𝑚𝑒 = 𝛂 ∗ MSE(f, f ′) + (1 − 𝛂) ∗ MSE(f, f ′) (Equation 17)

where MSE stands for the Mean Squared Error between the original frame and after truncation

while α (alpha) is defined as the weight that the ROI would have. The α value will be a constant

value of 0.9 following the previous research in [22]. In the analysis, PSNR was used for videos

without ROI and WPSNR is used for videos with ROI.

4.5.3. System-Level and Circuit-Level Implementation

The hardware system platform from Figure 40 implemented an H264 decoder

synthesized into a Xilinx Zynq XC7Z010 FPGA fabric. The H264 decoder IP Core was designed

using the Xilinx Vivado 2019.2 [32] software design suite. This same decoder is modified to

include a MBTM. The FPGA was commanded via an ARM Cortex-A9 Processor running on a

Linux Operating System through a custom baseband driver.

The circuit-level frame buffer is implemented using a 45nm CMOS technology[33]. The

supply voltage is 1.0V. The memory size is 128 words at 24 bits per word.

97

4.5.4. Video Quality Evaluation

All selected videos were analyzed using an in-house custom software tool. The tool

operated in the following three-step process: (i) Load one original video frame from memory; (ii)

Apply both the method in [7] and the proposed method to the original frame and generate the

truncated frame using each method; and (iii) Compare the frames generated against the original

frame and calculate the PSNR and WPSNR values. With data points collected on a per-frame

basis, the average PSNR and WPSNR of each video stream was calculated and compared.

4.5.5. Statistical Hypothesis Validation

From the proposed method, a hypothesis was conjectured: that the differences between

the method in [7] and the proposed method follow a Normal, or near-Normal distribution. This

should hold true for both PSNR and WPSNR. To support this hypothesis, a goodness of fit

regression test was preformed to determine if the data falls within the probability plot of a

Normal or Weibull distribution. The intention behind this analysis was to identify patterns in the

output videos that serve to estimate the differences in quality and noise for any given input

video. If the data follows this hypothesis, this would suggest that the sample set of videos is of

adequate size and as a result, no more videos would need to be tested.

4.6. Experimental Results

4.6.1. Hardware FPGA System MBTM Overhead

Figure 45 and Figure 46 show the post-implementation project summaries of the baseline

H264 decoder and the H264 decoder modified to include an MBTM. When comparing both

figures, one observes that the Lookup Table (LUT) overhead, which is the additional logic gates

required for the proposed design over the baseline, was 204 LUTs or a 0.38% increase in area.

The I/O, which was used for the server-to-mobile device interface, increased by 37, or 29.6%.

98

The power consumption of the modified decoder also increased by 0.068 watts: most of which

was attributed to the increased number of I/O. Finally, the Worst Negative Slack (WNS)

increased by 0.011ns, which was within acceptable tolerance for this system as any positive

value means that the critical path passes timing constraints. Overall, this additional overhead was

tolerable when compared against the benefits in power savings and quality improvements

achieved using the proposed technique.

4.6.2. Circuit-Level Frame Buffer Timing Diagram

The proposed frame buffer is shown in Figure 43 and the simulation timing diagram is

shown in Figure 44. In this waveform, phi2b, T_Y, y!, and y_pre! denote the pre-charge (for un-

truncated bits), bit truncation enable for Y byte, power supply for truncated bitcell’s (last 3 LSBs

of Y byte), and pre-charge deactivated signal for truncated bit cells, respectively. T_U and T_V

controlled the bit truncation for U and V bytes respectively. Write and read enable signals

initiated the write and read operations for the memory accordingly. Data [23:0] were the three

bytes of each word of the proposed memory buffer. Here, blue to red lines stand for “don’t care”

regions. The red lines denote where the rising clock edge was initiated for write and read

operations. Finally, the green lines denote that the write and read operations were enabled. All 8

truncation permutations and traditional read and write operations were presented in the timing

diagram as an exhaustive simulation of the frame buffer circuit.

It should be noted that, if the bit truncations were initiated, then 3 LSBs were truncated

from the selected byte/bytes based on the control signals T_Y, T_U, and T_V. During the read

operations, the 3-LSBs of the truncated bytes would output “100” bits through the utilization of

2:1 multiplexers instead of being read from memory to save power.

99

NoTrun.

Write Read Write Read

Trun. Y Trun. U

Write Read Write Read

Trun. V

CLK
phi2b

T_Y
y!

y_pre!
T_U
u!

u_pre!
T_V
v!

v_pre!
Write_en
Read_en

Data<23>
Data<22>
Data<21>
Data<20>
Data<19>
Data<18>
Data<17>
Data<16>
Data<15>
Data<14>
Data<13>
Data<12>
Data<11>
Data<10>
Data<9>
Data<8>
Data<7>
Data<6>
Data<5>
Data<4>
Data<3>
Data<2>
Data<1>
Data<0>

Write Read

Trun. Y & V

Write Read

Trun. Y & U

Write Read

Trun. U & V

Write Read

Trun. Y, U & V

1
0
0

0
0
0

1
0

0

0

0

0

1
0

0

0

0

0

1
0
0

0
0
0

1
0

0

0

0

0

1
0
0

0
0
0

1
0

0

0

0

0

1
0

0

0

0

0

1
0

0

0

0

0

1
0

0

0

0

0

1
0

0

0

0

0

1
0
0

0
0
0

Figure 44. Timing diagram of the frame buffer circuit.

4.6.3. Circuit-Level Frame Buffer Power Saving Analysis

Figure 47 presents the power consumption of the proposed frame buffer in all eight

possible conditions, including seven truncation cases and one baseline case without bit

truncation. Specifically, the eight cases include: (i) No truncation with control signals T_Y &

T_U & T_V =’0’, (ii) Y vector truncation with T_Y=’1’, (iii) U vector truncation with T_U=’1’,

(iv) V vector truncation with T_V=’1’, (v) Y and U vectors truncation with T_Y & T_U =’1’,

(vi) U and V vectors truncation with T_U & T_V=’1’, (vii) V and Y vectors truncation with T_V

& T_Y =’1’, and (viii) YUV vectors truncation with T_Y & T_U & T_V =’1’. As discussed in

Section 4.3.2, for the truncated vectors, the three LSB will be truncated to “100” to maximize

100

power savings. All 8 truncation cases presented in Figure 47 are tested in 6 ways: when written

(‘0’ to ‘0’, ‘0’ to ‘1’, ‘1’ to ‘0’, ‘1’ to ‘1’) and when read back (‘0’ & ‘1’). The power consumed

in each case was calculated, and then the average is presented.

At first, a random word was initialized with (A5A5A5)16, then the same memory word

was immediately read back with (F0F0F0)16, then all the ‘1’s and ‘0’s written and read received

the same priority in the power consumption calculations. The same word consumed 3.90E-4 W

power without any bit truncation. When the circuitry selected any T_Y, T_U or T_V control

option, where 3-LSBs were truncated from each one selected, 6.67% power was saved when

compared against no bit truncation. When T_Y & T_U, T_Y & T_V or T_U & T_V were

selected, where 3-LSBs were truncated from each selected byte, then 13.33% power was saved

when compared against no bit truncation. Finally, when T_Y, T_U, and T_V were selected for

truncation, where 3-LSBs were truncated from each selected byte, then 19.74% power was

saved. The supply voltage for this simulation was 1V, where the proposed frame buffer circuit

can operate to specification and had no faulty bit(s).

101

(a)

(b)

Figure 45. Hardware FPGA system post- implementation project summary without BTM. (a)

On-Chip Power, Total Power: 2.203W. (b) Resource allocation.

102

(a)

(b)

Figure 46. Hardware FPGA system post-implementation project summary with BTM. (a) On-

Chip Power, Total Power: 2.271W. (b) Resource allocation.

103

Table 11. Visual Comparison of Selected Video Frames

F
o
re

m
an

_
c
if

 f
ra

m
e
 0

Proposed Method: WPSNR = 54.03 dB Previous Method [7]: WPSNR = 37.00 dB

m
o
th

e
r_

d
a
u

g
h
te

r_
c
if

 f
ra

m
e
 2

9
9

Proposed Method: WPSNR = 53.77 dB Previous Method [7]: WPSNR = 48.03 dB

c
a
rp

h
o

n
e
_
q
c
if

 f
ra

m
e
 2

4
8

Proposed Method: WPSNR = 54.52 dB Previous Method [7]: WPSNR = 48.04 dB

104

4.6.4. Video Visual Quality Comparisons

Table 11 shows visual frame comparisons for three selected videos with ROI between the

proposed method and [7]. It can be seen that the proposed technique enables significant visual

quality improvement as compared to [7]. Specifically, for the Foreman_cif video, due to the

truncated LSBs in [7], the man’s cheeks, forehead, and hat shadows experience noticeable

banding distortion, negatively affecting video quality. Alternatively, the proposed ROI-aware

technique effectively reduces the banding distortion and improves the visual quality. Similarly,

with [7], the mother_daughter_cif demonstrates banding distortion around the cheeks and hair,

and the carphone_qcif video suffers from discoloration around the cheeks and chin. The

introduced ROI awareness of the proposed technique effectively avoids losing the quality of

videos. Another observation from Table 11 is that the proposed technique achieves a much

higher WPSNR value of all three videos. A more detailed analysis on WPSNR will be provided

in next sub-section.

6.67% savings

13.33% savings

19.74% savings

No

Trun.

Y Byte

Trun.

U Byte

Trun.

V Byte

Trun.

(Y & U)

Bytes

Trun.

(Y & V)

Bytes

Trun.

(U & V)

Bytes

Trun.

(Y, U & V)

Bytes

Trun.

Figure 47. Power savings (one word) of the frame buffer circuit.

105

4.6.5. Objective Video Quality and Bit Truncation Analysis

Table 12 compares WPSNR values and the number of truncated bits of 60 videos with

ROI using the proposed technique to the state-of-the art [7]. As shown, the proposed technique

can enable 26.46% additional truncated bits as compared to [7]. Meanwhile, with the ROI

awareness, the proposed technique can effectively enhance the quality of the majority of videos.

On average, the proposed technique can increase the WPSNR values by 20.17% videos, as

compared to [7].

The impact of the MB variance characteristics (low, medium, and high variance) on the

effectiveness of the proposed technique was analyzed. The results are shown in Figure 48. As

can be seen, the WPSNR improvement strongly depends on the MB variance of videos.

Specifically, videos with high variance achieve the most significant quality improvement using

the proposed technique, with 47.31% WPSNR increase on average. With the proposed technique,

all videos with medium variance also demonstrate quality improvement, with 13.74% WPSNR

increase on average. However, the proposed technique shows little video quality improvement

for videos with low variance and even results in minimal video quality degradation (with 1.75%

WPSNR loss on average. This suggests that the proposed technique is particularly effective for

videos with high and medium MB variance.

Finally, the results of 14 videos without ROI were analyzed. As shown in Table 12, the

proposed technique can enable a significant number of truncated bits, with a minimal PSNR

drop. On average, 44.61% additional truncated bits can be achieved, with 3dB PSNR loss.

106

4.6.6. Video-Level Power Saving Analysis

To compare the power effectiveness of the proposed ROI-aware technique to the

traditional memory design and the state-of-the art [7], the power consumption of the memory for

a video was modeled as:

 () ()
=

=
iN

j

k

i

i jP
N

VideoP
1

1

 ()3,2,1,0k (Equation 18)

where Ni is the total number of bytes for the video i, Pk(j) is the normalized power consumption

to store byte j with k truncated bits. For the proposed memory, k = 3; for the traditional memory,

k = 0; for the memory in [7], k = 0, 1, 2, or 3. For a fair comparison, the normalized power

consumption Pk(j) is based on the power consumption reported in [9]. The results are listed in

Table 12 and Table 13.

107

Table 12. Selected ROI Videos. Analysis Results

Videos with ROI
Truncated bits Normalized power consumption WPSNR (Alpha = 0.9)

Ref.[7] Proposed diff Ref. [7] Proposed diff Ref. [7] Proposed diff

akiyo_cif 30,412,800 32,922,081 8.25% 90.97% 93.55% -2.83% 57.53 55.14 -4.16%

claire_qcif 50,079,744 44,009,266 -12.12% 90.97% 94.76% -4.16% 57.61 57.10 -0.88%

dinner_1080p30 1,969,920,000 1,629,113,461 -17.30% 90.97% 95.07% -4.50% 57.32 58.21 1.56%

grandma_qcif 88,197,120 78,023,685 -11.53% 90.97% 94.73% -4.12% 57.57 57.21 -0.62%

intros_422_cif 36,495,360 43,295,433 18.63% 90.97% 92.93% -2.15% 57.45 55.15 -4.01%

Johnny_1280x720_60 553,881,600 456,595,131 -17.56% 90.97% 95.09% -4.52% 57.07 58.44 2.39%

KristenAndSara_1280x720_60 553,881,600 488,596,289 -11.79% 90.97% 94.74% -4.14% 56.99 57.37 0.65%

miss_am_qcif 15,206,400 10,966,364 -27.88% 90.97% 95.70% -5.20% 57.60 58.54 1.63%

news_cif 30,412,800 36,162,420 18.91% 90.97% 92.91% -2.13% 57.52 54.48 -5.27%

rush_hour_1080p25 1,036,800,000 1,134,324,798 9.41% 90.97% 93.48% -2.75% 57.49 55.78 -2.97%

sign_irene_cif 54,743,040 64,431,060 17.70% 90.97% 92.98% -2.21% 57.48 55.01 -4.29%

trevor_qcif 15,206,400 16,565,578 8.94% 90.97% 93.50% -2.78% 57.31 54.99 -4.05%

vidyo1_720p_60fps 553,881,600 597,801,678 7.93% 90.97% 93.57% -2.85% 57.54 56.05 -2.58%

west_wind_easy_1080p 1,181,952,000 1,086,498,282 -8.08% 90.97% 94.52% -3.90% 56.81 55.68 -1.99%

720p50_mobcal_ter 928,972,800 1,325,076,458 42.64% 86.60% 82.99% 4.17% 47.88 54.16 13.12%

720p50_shields_ter 928,972,800 1,245,591,004 34.08% 86.60% 84.01% 2.99% 47.69 54.48 14.25%

aspen_1080p 2,363,904,000 3,041,639,112 28.67% 86.60% 84.66% 2.24% 47.92 54.97 14.71%

blue_sky_1080p25 899,942,400 1,060,438,048 17.83% 86.60% 85.95% 0.75% 47.66 55.10 15.61%

bowing_cif 60,825,600 76,915,166 26.45% 86.60% 84.92% 1.94% 48.02 53.69 11.81%

bridge_close_cif 405,504,000 560,890,106 38.32% 86.60% 83.51% 3.57% 47.95 54.13 12.88%

carphone_qcif 77,451,264 88,390,034 14.12% 86.60% 86.39% 0.24% 48.04 54.52 13.48%

controlled_burn_1080p 2,363,904,000 2,937,098,762 24.25% 86.60% 85.18% 1.63% 47.96 55.18 15.06%

crew_4cif 121,651,200 172,691,140 41.96% 86.60% 83.07% 4.07% 47.54 53.54 12.61%

crowd_run_1080p50 2,073,600,000 3,005,452,078 44.94% 86.60% 82.72% 4.48% 47.42 53.55 12.93%

deadline_cif 278,581,248 334,134,316 19.94% 86.60% 85.70% 1.04% 48.02 54.48 13.45%

FourPeople_1280x720_60 1,107,763,200 1,318,759,148 19.05% 86.60% 85.80% 0.92% 47.96 55.12 14.94%

Lecture_1080P-412e 1,034,726,400 998,909,402 -3.46% 86.60% 88.49% -2.18% 48.07 57.01 16.91%

life_1080p30 3,421,440,000 4,187,455,252 22.39% 86.60% 85.41% 1.38% 48.04 54.99 14.46%

mother_daughter_cif 60,825,600 79,283,536 30.35% 86.60% 84.46% 2.47% 48.03 53.78 11.95%

pamphlet_cif 60,825,600 83,561,818 37.38% 86.60% 83.62% 3.44% 47.93 53.27 11.14%

paris_cif 215,930,880 302,557,572 40.12% 86.60% 83.29% 3.82% 47.88 53.81 12.40%

pedestrian_area_1080p25 1,555,200,000 1,749,179,384 12.47% 86.60% 86.59% 0.01% 48.05 55.59 15.70%

rush_field_cuts_1080p 2,363,904,000 3,080,806,912 30.33% 86.60% 84.46% 2.47% 47.86 54.09 13.01%

salesman_qcif 91,035,648 127,208,586 39.73% 86.60% 83.34% 3.77% 47.97 53.74 12.03%

station2_1080p25 1,298,073,600 1,803,902,208 38.97% 86.60% 83.43% 3.66% 47.79 53.71 12.39%

students_cif 204,171,264 283,317,790 38.76% 86.60% 83.45% 3.63% 47.92 53.64 11.93%

sunflower_1080p25 2,073,600,000 2,874,084,316 38.60% 86.60% 83.47% 3.61% 47.81 53.79 12.52%

suzie_qcif 30,412,800 31,039,198 2.06% 86.60% 87.83% -1.42% 48.07 55.79 16.07%

touchdown_pass_1080p 2,363,904,000 2,715,649,830 14.88% 86.60% 86.30% 0.35% 47.94 55.38 15.52%

tractor_1080p25 2,861,568,000 4,031,161,306 40.87% 86.60% 83.20% 3.92% 47.50 53.67 12.99%

vidyo3_720p_60fps 1,107,763,200 1,368,042,822 23.50% 86.60% 85.27% 1.53% 48.11 54.54 13.36%

vidyo4_720p_60fps 1,107,763,200 1,206,225,090 8.89% 86.60% 87.02% -0.48% 48.13 55.78 15.89%

720p50_parkrun_ter 1,393,459,200 2,074,332,336 48.86% 82.11% 73.37% 10.64% 36.71 53.47 45.63%

720p5994_stockholm_ter 1,669,939,200 2,434,415,832 45.78% 82.11% 73.93% 9.97% 35.49 53.38 50.41%

ducks_take_off_1080p50 3,110,400,000 4,661,102,586 49.86% 82.11% 73.20% 10.86% 36.36 53.30 46.61%

football_422_cif 109,486,080 161,366,445 47.39% 82.11% 73.64% 10.32% 36.54 53.96 47.67%

football_cif 79,073,280 114,873,738 45.28% 82.11% 74.02% 9.86% 36.58 53.79 47.03%

foreman_cif 91,238,400 123,714,882 35.60% 82.11% 75.75% 7.75% 37.01 54.04 46.01%

hall_monitor_cif 91,238,400 136,539,606 49.65% 82.11% 73.23% 10.82% 36.66 53.56 46.12%

harbour_4cif 182,476,800 268,811,991 47.31% 82.11% 73.65% 10.31% 36.34 53.91 48.34%

ice_4cif 145,981,440 183,650,610 25.80% 82.11% 77.50% 5.62% 35.22 52.91 50.21%

mobile_calendar_422_cif 109,486,080 163,476,849 49.31% 82.11% 73.29% 10.74% 36.37 53.06 45.88%

old_town_cross_420_720p50 1,382,400,000 2,060,977,467 49.09% 82.11% 73.33% 10.69% 36.44 53.60 47.07%

riverbed_1080p25 1,555,200,000 2,285,697,270 46.97% 82.11% 73.71% 10.23% 36.62 53.29 45.54%

silent_cif 91,238,400 130,669,137 43.22% 82.11% 74.38% 9.41% 36.70 53.46 45.64%

soccer_4cif 182,476,800 249,118,389 36.52% 82.11% 75.58% 7.96% 36.49 53.36 46.25%

tennis_sif 45,619,200 67,173,204 47.25% 82.11% 73.66% 10.29% 36.27 54.29 49.69%

tt_sif 34,062,336 50,343,861 47.80% 82.11% 73.56% 10.41% 36.16 54.24 49.98%

vtc1nw_422_ntsc 109,486,080 146,642,766 33.94% 82.11% 76.04% 7.39% 36.67 53.74 46.55%

washdc_422_ntsc 109,486,080 163,223,193 49.08% 82.11% 73.33% 10.69% 36.48 53.62 46.99%

AVE 26.46% 86.27% 83.79% 3.06% 20.17%

108

Table 13. Results of NON-ROI Videos

Videos without ROI
Truncated bits Normalized power consumption PSNR loss (dB)

Ref. [7] Proposed diff Ref. [7] Proposed diff Ref. [7] Proposed diff
bus_cif 30,412,800 43,042,560 41.53% 86.60% 82.47% 4.77% 48.15 40.82 7 dB

galleon_422_cif 72,990,720 102,643,456 40.63% 86.60% 83.23% 3.89% 48.20 40.72 7 dB

highway_cif 405,504,000 569,610,752 40.47% 86.60% 83.25% 3.87% 48.24 41.14 7 dB

tempete_cif 52,715,520 77,495,808 47.01% 86.60% 83.12% 4.01% 48.12 40.81 7 dB

bridge_far_cif 638,972,928 958,070,016 49.94% 82.11% 73.18% 10.88% 42.56 40.60 2 dB

city_4cif 182,476,800 271,175,040 48.61% 82.11% 73.42% 10.59% 42.48 40.84 2 dB

coastguard_cif 91,238,400 120,874,752 32.48% 82.11% 76.30% 7.08% 42.48 41.07 1 dB

container_cif 91,238,400 125,445,888 37.49% 82.11% 75.41% 8.17% 42.45 41.01 1 dB

flower_cif 76,032,000 107,439,360 41.31% 82.11% 74.72% 9.00% 42.50 40.93 2 dB

flower_garden_422_cif 109,486,080 162,798,336 48.69% 82.11% 73.40% 10.61% 42.57 40.62 2 dB

garden_sif 34,974,720 52,448,256 49.96% 82.11% 73.18% 10.88% 42.52 40.73 2 dB

husky_cif 76,032,000 111,882,240 47.15% 82.11% 73.68% 10.27% 42.48 40.91 2 dB

mobile_cif 91,238,400 136,164,864 49.24% 82.11% 73.31% 10.73% 42.57 40.70 2 dB

waterfall_cif 79,073,280 118,609,920 50.00% 82.11% 73.17% 10.89% 42.40 40.63 2 dB

AVE 44.61% 83.40% 76.56% 8.26%
 3dB

Low Variance Videos: Average = -1.75%

Medium Variance Videos: Average = 13.74%

High Variance Videos: Average = 47.31%

W
P

S
N

R
 I

m
p
ro

v
em

en
t

(%
)

Videos

Figure 48. Impact of the video content characteristics on the effectiveness of the proposed

technique, compared to old technique.

As observed, the proposed technique only consumes 83.79% and 76.56% total power on

average for videos with ROI and videos without ROI, respectively, as compared to the traditional

109

memory. Also, the proposed technique achieves 3.06% and 8.26% power savings for videos with

ROI and videos without ROI, respectively, as compared to [7]. It is worth mentioning that, the

analysis only considers the facial features as ROI of videos and integrating advanced ROI

identification algorithms will covert videos without ROI to videos with ROI, thereby further

increasing the effectiveness of the proposed technique to general videos.

4.6.7. Statistical Analysis

In-order to confirm that the selected video analysis results are a representation of the full

population of all videos, a statistical analysis of the results was carried out. The statistical

analysis was verified to determine that the results are relevant across all videos not analyzed.

Specifically, the Pearson’s Chi-square test [33], which is also known as the Chi-Squared

goodness-of-fit test, is used in the analysis. The goodness-of-fit test checks whether the sample

data is likely to be from a specific theoretical distribution, and therefore represents the data

expected in the actual population. The idea is, if the sample data does fit an expected

distribution, then it shows that the sample data represents the full population of the video data in

existence. The statistical results will either reject or accept the working statement called the null

hypothesis, H0, which is the opposite of the alternative hypothesis, H1. To reject or accept the

null hypothesis, several methods exist, one of which is the Probability value method i.e. P-Value

method. The P-Value is the evidence against the null hypothesis, i.e., the smaller the P-Value,

the stronger the evidence that the null hypothesis should be rejected. The P-Value method is

based on a critical value, which is determined based on the distribution. For example, if a

normally distributed population was dealt with – which is the case according to the statistical

results shown later, this critical value is a z-score. The z-score is a value that is then used to

lookup the P-Value in a Standard Normal z-table, which is used to then test the null hypothesis.

110

If a P-Value is greater than an alpha or α value of 0.10, then the statistical results are “not

significant” and thus, the null hypothesis is accepted. However, if the P-Value is less than or

equal to α values of 0.05 or 0.01, then the results are “significant” or “highly significant”

respectively, and thus, the null hypothesis is rejected in favor of the alternative hypothesis. The

rejection regions depend on the confidence level that the results are significant, e.g., if a

confidence level is 95%, then an α value of 5% or 0.05 is chosen: 100% - 95%.

WPSNR (dB)

D
en

si
ty

 (
%

)

Data Set Number of Samples P-Value
High Variance 28 0.4982
Medium Variance 32 0.8094
Low Variance 14 0.3078

Figure 49. Histogram of quality Improvement distributions. Number of data points and P-value

shown, between the truncation method in [7] and the proposed method. All distributions are 3-

parameter Weibull distributions that fall within a 95% Confidence Interval.

111

Power Improvement (%)

D
en

si
ty

 (
%

)

Data Set Number of Samples P-Value
High Variance 28 0.2450
Medium Variance 32 0.2296
Low Variance 14 0.3390

Figure 50. Histogram of power savings, measured in percentage improvement, between the

truncation method in [7] and the proposed method. All distributions are 3-parameter Weibull

distributions that fall within a 95% Confidence Interval.

PSNR (dB)

D
en

si
ty

 (
%

)

Data Set Number of Samples P-Value
High Variance 28 0.6849
Medium Variance 32 0.7879
Low Variance 14 0.5062

Figure 51. Histogram of PSNR noise increase, between the truncation method in [7] and the

proposed method. All distributions are Normal Distributions that fall within a 95% Confidence

Interval.

112

In the analysis, the null hypothesis for the Chi-Squared goodness-of-fit test, H0, is, “For

the given set of video data points, a specified distribution accurately represents the data”, and

therefore, the alternative hypothesis, H1, is, “For the given set of video data points, a specified

distribution does not accurately represent the data.” Hence, the goal of the statistical analysis is

to validate the null hypothesis and thus deduce that the specified distribution would fit the data.

To achieve this statistical result, P-values were calculated for each data set – low, medium, and

high variance – for WPSNR metrics, Power Savings, and video noise introduced. The Chi-

Squared goodness-of-fit test can only be used for data put into classes (or bins); therefore, the

data sets were placed into histograms: Figure 49 to Figure 51. The MathWave Technologies

EasyFit software was used [34], to find the Chi-Squared goodness-of-fit test, in order to

determine the type of distribution. In the video analysis results, the WPSNR metrics, power

savings, and video noise introduced for all 74 videos were calculated for both the truncation

method in [9] and the proposed method. As well, the data was split into three sets referred to as

low, medium, and high variance, which corresponded to 1-bit, 2-bit, and 3-bit truncation videos

using the truncation method in [7], respectively. These data are what is referred to as video data

points in the statistical analysis.

Figure 49 demonstrates how categorizing the data creates clear groupings when

comparing the truncation method in [7] to the proposed method. The figure shows three distinct

3-parameter Weibull distributions that describe the quality improvement between the proposed

and [7]. These Weibull distributions are within the 95% confidence interval required. Each

distribution reports a P-value greater than 0.1, implying that the null hypothesis is rejected and

accept this distribution as a possible representation of the data. Figure 50 shows the power

savings distribution for each video type as a 3-parameter Weibull distribution. Power savings is

113

reported as a percentage increase, using the total number of bits truncated in each video and the

power consumption shown in Figure 47. All of these distributions pass the 95% confidence

interval. Figure 51 shows the probability of noise increase in a random video stream. All

distributions shown fall into the category of normal distributions with a 95% confidence interval.

It was determined that because all videos are compared to themselves for improvement,

e.g. video after the proposed method is applied verses the original video, video resolution has no

statistical impact in the data set. Power Consumption will be presented by improvement

percentage, thus ignoring linear growth in watts saved in larger scale videos. Similarly, it is

statistically sound that a larger dataset is not needed to affirm the distributions. As all

distributions shown fall within the 95% confidence interval, there is only a 5% chance that the

data collected is far from the specified distribution.

In summary, videos categorized as high variance show the biggest improvements in

WPSNR quality, the most power saving by percentage, and introduce the least noise as measured

by PSNR. With medium variance videos also saving on power consumption, with a more

noticeable drop in quality and increase in noise. As such, videos classified as low variance often

have little to gain using this method, and sometimes even cause video quality degradation.

114

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1. Chapter 2: Content-Adaptive Memory for Viewer-Aware Energy-Quality Scalable

Mobile Video Systems

In Chapter 2, a video context-aware memory technique was presented for energy-quality

tradeoff using viewer’s perspectives. Based on the influence of how video content characteristics

impact the viewer’s experience, developed were two simple, but effective models to enable

hardware adaptation. Implemented was a new viewer-aware bit-truncation technique with

minimized impact on the viewer’s experience, while introducing energy-quality adaption to the

video storage. Future investigations would include incorporating the motions of videos in the

viewer’s experience study as well as combining the viewing luminance awareness to further

enable energy-quality adaption in different viewing surroundings.

During the hardware implementation process, a single percentage for the entire video was

used in order to minimize the overhead of the design. In order to better suit the applicability and

energy-quality scalability, future research could investigate the capability of calculating the

macroblock percentage for each frame. This per frame calculation could allow for real-time

adjustment of truncated bits at the cost of additional area overhead. Expanding the number of

participants and video samples in order to create a more comprehensive model could also be

used to improve the model results. Finally, further studying the relationship between the content

information and the psychophysical human visual system models could be used to better

understand what other metrics could be used to support the hardware design.

5.2. Chapter 3: Flexible Low Cost Power-Efficient Video Memory with ECC-Adaptation

In Chapter 3, presented is a flexible power-efficient video memory that dynamically

adjusted the strength of error-correction-code (ECC), thereby enabling power-quality trade-offs

115

to achieve considerable power savings (up to 35.37%) without a noticeable degradation in video

quality. To minimize the implementation overhead, the following two techniques have been

developed: (i) a new parity storage scheme that utilizes the bit significance characteristics of

video data for both ECC74 and ECC1511, and (ii) an integrated ECC encoder/decoder hardware

design to support both ECC74 and ECC1511 that automatically shuts down part or all of the

ECC circuitry when ECC74 or No ECC is selected, respectively. The proposed adaptive ECC

method is also validated in hardware using a commercial SRAM chip, demonstrating significant

supply voltage reduction without noticeable video quality degradation Table 9 compares this

work against state-of-the art video memory designs. As shown, the proposed memory enables

run-time quality adaptation without inducing bitcell area overhead and also did not require

multiple supply voltages.

Since parity bit errors caused by memory failures resulted in the ECC decoder incorrectly

flipping bits, which caused an increase in video quality degradation, future work will consider

hardening specific bits, such as parity bits, to provide better video quality, with the trade-off

being increased area overhead. Additionally, other multi-bit error correcting codes, besides

ECC74 and ECC1511 used in this work, could also be considered. Furthermore, a

mathematical/theoretical approach to determine specific cutoff values for switching between

ECC methods could be investigated and compared to the experimental approach employed in

this chapter.

5.3. Chapter 4: Content-Adaptable ROI-Aware Video Storage for Power-Quality Scalable

Mobile Streaming

In Chapter 4, a video content-adaptable Region-of-Interest (ROI)-aware video storage

technique is presented to optimize the power efficiency. The ROI of videos is identified and

116

protected to preserve the video quality, while other regions are truncated with 3-LSB truncation

for power savings. To support the proposed method, a low-power frame buffer was developed

that implemented 3-LSB truncation which enabled runtime quality and power adaptation. The

results show that the proposed technique only uses 83.79% and 76.56% of the power on average

for videos with ROI and without ROI respectively, as compared to the traditional memory and

the state-of-the art [7], respectively. Meanwhile, the proposed technique can increase the quality

(i.e. WPSNR values) by 20.17% on average for the videos with ROI and 26.46% additional

truncated bits as compared to [7]. For the videos without ROI, the proposed technique can realize

44.61% additional truncated bits and 8.26% power savings as compared to [7], with a minimal

quality loss (3 dB PSNR drop on average). This chapter focuses on the facial features as ROI of

videos; future investigations would include extensions of ROI identification to deal with general

videos. Additionally, psychological experiments will be conducted to access the visual

experience of viewers for hardware optimization.

117

CHAPTER 6. REFERENCES

6.1. Chapter 2

[1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–

2021 White Paper. Accessed on Dec. 1, 2017. [Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/mobile-white-chapter-c11-520862.html

[2] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel, “Energy-Efficient

Architecture for Advanced Video Memory,” in Proc. 2014 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), Nov. 2014, pp. 132-139.

[3] T. Liu, T. Lin, S. Wang, W. Lee, J. Yang, K. Hou, and C. Lee, “A 125 uW, fully scalable

MPEG-2 and H.264/AVC video decoder for mobile applications,” IEEE J. Solid-State

Circuits, vol. 42, no. 1, pp. 161–169, Jan. 2007.

[4] D. Zhou, S. Wang, H. Sun, J. Zhou, J. Zhu, Y. Zhao, J. Zhou, S. Zhang, S. Kimura, T.

Yoshimura, S. Goto, “A 4Gpixel/s 8/10b H.265/HEVC Video Decoder Chip for 8K Ultra

HD Applications,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2016, pp.

266-267.

[5] M. Zhao, X. Gong, J. Liang, W. Wang, X. Que, and S. Cheng, “QoE-Driven Cross-Layer

Optimization for Wireless Dynamic Adaptive Streaming of Scalable Videos Over

HTTP,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 25, no. 3, pp,

451-466, Mar. 2015.

[6] D. Chen, X. Wang, J. Wang, and N. Gong, “VCAS: Viewing context aware power-

efficient mobile video embedded memory,” in Proc. 2015 28th IEEE International

System-on-Chip Conference (SOCC), Sept. 2015, pp. 333-338.

118

[7] J. Edstrom, D. Chen, J. Wang, H. Gu, E. A. Vazquez, M. E. McCourt, and N. Gong,

“Luminance-Adaptive Smart Video Storage System,” in Proc. IEEE International

Symposium on Circuits and Systems (ISCAS), 2016, pp. 734-737.

[8] D. Chen, J. Edstrom, L. Yang, M. E. McCourt, J. Wang, and N. Gong, “Viewer-Aware

Intelligent Efficient Mobile Video Embedded Memory,” IEEE Trans. on Very Large

Scale Integration (VLSI) Systems, vol. 26, no. 4, Apr. 2018, pp. 684-696.

[9] O. Hirabayashi, A. Kawasumi, A. Suzuki, Y. Takeyama, K. Kushida, T. Sasaki, A.

Katayama, G. Fukano, Y. Fujimura, T. Nakazato, Y. Shizuki, N. Kushiyama, and T.

Yabe, “A Process-Variation-Tolerant Dual-Power-Supply SRAM With 0.179 Cell in 40

nm CMOS Using Level-Programmable Wordline Driver,” in Proc. IEEE Int. Solid-State

Circuits Conf. (ISSCC), Feb. 2009, pp. 458-459.

[10] P. Wang, H. J. Liao, H. Yamauchi, Y. H. Chen, Y. L. Lin, S. H. Lin, D. C. Liu, H. C.

Chang, and W. Hwang, “A 45 nm Dual-port SRAM with Write and Read Capability

Enhancement at Low Voltage,” in Proc. IEEE Int. SOC Conf., Sep. 2007, pp. 211-214.

[11] F. Tachibana, O. Hirabayashi, Y. Takeyama, M. Shizuno, A. Kawasumi, K. Kushida, A.

Suzuki, Y. Niki, S. Sasaki, T. Yabe, and Y. Unekawa, “A 27% Active and 85% Standby

Power Reduction in Dual-Power-Supply SRAM Using BL Power Calculator and

Digitally Controllable Retention Circuit,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp.

118-126, Jan. 2014.

[12] T.-H. Kim, J. Liu, and C. H. Kim, “A Voltage Scalable 0.26 V, 64 kb 8T SRAM with

Vmin Lowering Techniques and Deep Sleep Mode,” IEEE J. Solid-State Circuits, vol.

44, no. 6, pp. 1785-1795, 2009.

119

[13] M.-F. Chang, S.-W. Chang, P.-W. Chou, and W.-C. Wu, “A 130 mV SRAM with

Expanded Write and Read Margins for Subthreshold Applications,” IEEE J. Solid-State

Circuits, vol. 46, no. 2, pp. 520-529, Feb. 2011.

[14] H. Noguchi et al., “A 10T Non-precharge Two-port SRAM for 74% Power Reduction in

Video Processing,” in Proc. IEEE Computer Society Annual Symp. VLSI Circuits, Mar.

2007, pp. 107-112.

[15] M. K. Qureshi and Z. Chishti, “Operating Secded-based Caches at Ultralow Voltage with

Flair,” in Proc. 2013 43rd Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), 2013, pp.1–11.

[16] A. Ansari, S. Feng, S. Gupta, and S. A. Mahlke, “Archipelago: A Polymorphic Cache

Design for Enabling Robust Near-threshold Operation,” in Proc. IEEE Symp. on High

Performance Computer Architecture (HPCA), 2011, pp. 539–550.

[17] I. Chang, D. Mohapatra, and K. Roy, “A priority-based 6T/8T hybrid SRAM architecture

for aggressive voltage scaling in video applications,” IEEE Trans. on Circuits System for

Video Technology, vol. 21, no. 2, pp. 101-112, Feb. 2011.

[18] J. Kwon, I. Lee, and J. Park, "Heterogeneous SRAM Cell Sizing for Low Power H.264

Applications," IEEE Trans. on Circuits and Systems I, vol. 99, no. 2, pp. 1-10, Feb. 2012.

[19] N. Gong, S. Jiang, A. Challapalli, S. Fernandes, R. Sridhar, “Ultra-Low Voltage Split-

data-aware Embedded SRAM for Mobile Video Applications,” IEEE Trans. on Circuits

and Systems IIvol. 59, no. 12, pp. 883-887, Dec. 2012,

[20] L. Kerofsky, R. Vanam, and Y. Reznik, “Adapting Objective Video Quality Metrics to

Ambient lighting,” in Proc. Seventh International Workshop on Quality of Multimedia

Experience (QoMEX), 2015, pp. 1-6.

120

[21] F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto, “Approximate SRAMs With

Dynamic Energy-Quality Management,” IEEE Trans. on Very Large Scale Integration

(VLSI) Systems, vol. 24, no. 6, pp. 2128-2141, Jun. 2016.

[22] Youtube-8M Dataset. 2017. [Online]. Available:

https://research.google.com/youtube8m/

[23] M. Shafique, S. Rehman, F. Kribel, M. U. K. Khan, B. Zatt, A. Subramaniyan, B.

Vizzotoo, and J. Henkel, “Application-Guided Power-Efficient Fault Tolerance for H.264

Context Adaptive Variable Length Coding,” IEEE Trans. on Computers, vol. 66, no. 4,

pp. 560-574, April 2017.

[24] M. Shafique, B. Molkenthin, and J. Henkel, “An HVS-based Adaptive Computational

Complexity Reduction Scheme for H.264/AVC video encoder using Prognostic Early

Mode Exclusion,” in Proc. 2010 Design, Automation & Test in Europe Conference &

Exhibition (DATE 2010), 2010, pp. 1713-1718.

[25] Xiph.org Video Test Media [derf’s collection]. 2017. [Online]. Available:

https://media.xiph.org/video/derf/

[26] Methodology for the sujective assessment of the quality of television pictures. 2012.

[Online]. Available: https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.500-13-

201201-I!!PDF-E.pdf

[27] Recommendation ITU-R BT.500-13., [Online]. Available:

https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.500-13-201201-I!!PDF-E.pdf

[28] FreePDK45. [Online]. Available:

http://www.eda.ncsu.edu/wiki/FreePDK45:Contents.

121

[29] J. S. Wang, P. Y. Chang, T. S. Tang, J. W. Chen, and J. I. Guo, “Design of subthreshold

SRAMs for energy-efficient quality-scalable video applications,” IEEE Trans. Emerging

Sel. Topics Circuits Syst., vol. 1, no. 2, pp. 183-192, Jun. 2011.

[30] Y. Feng, G. Cheung, W.-t. Tan, P. L. Callet, Y. Ji, “Low-Cost Eye Gaze Prediction

System for Interactive Networked Video Streaming,” IEEE Trans. on Multimedia, vol.

15, no. 8, pp. 1865-1879.

[31] T. Zhao, Q. Liu, and C. W. Chen, “QoE in Video Transmission: A User Experience-

Driven Strategy,” IEEE Communications Surveys & Tutorials, vol. 19, no. 1, 2017.

[32] M. Ruggiero, A. Bartolini, and L. Benini, “DBS4video: Dynamic Luminance Backlight

Scaling based on Multi-Histogram Frame Characterization for Video Streaming

Application,” in Proc. ACM EMSOFT, pp. 109-118, Oct. 2008.

[33] C. Yim, A. C. Bovik, “Quality Assessment of Deblocked Images,” IEEE Trans. On

Image Processing, vol. 20, no. 1, Jan. 2011.

[34] M. H. Pinson and S. Wolf, “A New Standardized Method for Objectively Measuring

Video Quality,” IEEE Trans. On Broadcasting, vol. 50, no. 3, pp. 312–322, Sep. 2004.

[35] NTIA General Model (aka VQM) and Full Reference Calibration Standards. [Online].

Available: https://www.its.bldrdoc.gov/resources/video-quality-

research/standards/hidden-general-model.aspx

[36] Q. Bin, “Osen Logic OSD10 h.264 decoder,” [Online]. Available:

http://bbs.eetop.cn/viewthread.php?tid=628991. [Accessed 2018].

[37] FFmpeg. [Online]. Available: https://www.ffmpeg.org/. [Accessed 2018].

122

6.2. Chapter 3

[1] "Cisco Visual Networking Index: Forecast and Methodology, 2016-2021," Cisco

Systems, Inc., [Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/complete-white-paper-c11-481360.html.

[2] J. S. Wang, P. Y. Chang, T. S. Tang, J. W. Chen and J. I. Guo, "Design of subthreshold

SRAMs for energy-efficient quality-scalable video applications," IEEE Trans. Emerging

Sel. Topics Circuits and Systems, vol. 1, no. 2, pp. 183-192, 2011.

[3] J. Edstrom, Y. Gong, A. Haidous, B. Humphrey, M. McCourt, Y. Xu, J. Wang and N.

Gong, "Content-Adaptive Memory for Viewer-Aware Energy-Quality Scalable Mobile

Video Systems," IEEE Access, vol. 7, pp. 47479-47493, 2019.

[4] F. Sampaio, M. Shafique, B. Zatt, S. Bampi and J. Henkel, "Energy-Efficient

Architecture for Advanced Video Memory," in IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2014 .

[5] I. Chang, D. Mohapatra and K. Roy, "A Priority-Based 6T/8T Hybrid SRAM

Architecture for Aggressive Voltage Scaling in Video Applications," IEEE. Trans.

Circuits and Systems for Video Technology, pp. 101-112, 2011.

[6] J. Kwon, I. Lee and J. Park, "Heterogeneous SRAM Cell Sizing for Low Power H.264

Applications," IEEE Trans. on Circuits and Systems I,, vol. 99, no. 2, pp. 1-10, 2012.

[7] N. Gong, S. Jiang, A. Challapalli, S. Fernandes and R. Sridhar, "Ultra-Low Voltage Split-

data-aware Embedded SRAM for Mobile Video Applications," IEEE Trans. on Circuits

and Systems II, vol. 59, no. 12, pp. 883-887, 2012.

123

[8] J. Edstrom, D. Chen, Y. Gong, J. Wang and N. Gong, "Data-Pattern Enabled Self-

Recovery Low-Power Storage System for Big Video Data," IEEE Trans. on Big Data,

vol. 51, no. 1, pp. 95-105, 2019.

[9] D. Chen, J. Edstrom, Y. Gong, P. Gao, L. Yang, M. McCourt, J. Wang and N. Gong,

"Viewer-Aware Intelligent Efficient Mobile Video Embedded Memory," IEEE Trans. on

Very Large Scale Integration (VLSI) Systems, vol. 26, no. 4, pp. 684-696, 2018.

[10] Y. Xu, H. Das, Y. Gong and N. Gong, "On Mathematical Models of Optimal Video

Memory Design," IEEE Transactions on Circuits and Systems for Video Technology,

vol. 30, no. 1, pp. 256-266, 2020.

[11] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester and M. Alioto, "SRAM for Error-

Tolerant Applications With Dynamic Energy-Quality Management in 28nm CMOS,"

IEEE J. Of Solid-State Circuits, vol. 50, no. 5, pp. 1310-1323, 2015.

[12] C. Duan, A. J. Gotterba, M. E. Sinangil and A. P. Chandrakasan, "Energy-Efficient

Reconfigurable SRAM: Reducing Read Power Through Data Statistics," IEEE Journal Of

Solid-State Circutis, vol. 52, no. 10, pp. 2703-2711, 2017.

[13] R. W. Hamming, "Error detecting and error correcting codes," Bell Syst. Tech. J.,, vol.

vol. 29, no. no. 2, p. pp. 147–160, Apr. 1950..

[14] " YouTube-8M Dataset.," 2017. [Online]. Available: https://research.

google.com/youtube8m/ .

[15] F. Frustaci, D. Blaauw, D. Sylvester and M. Alioto, "Better-Than Voltage Scaling Energy

Reduction in Approximate SRAMs Via Bit Dropping and Bit Reuse," in 25th Int.

Workshop Power Timing Model., Optim., 2015.

124

[16] Cypress, "Cypress CY62146GN Datasheet," 19 12 2017. [Online]. Available:

https://www.cypress.com/file/223376/download. [Accessed 05 03 2020].

[17] S. M. Jahinuzzaman, J. S. Shah, D. J. Rennie and M. Sachdev, "Design and analysis of A

5.3-pJ 64-kb gated ground SRAM with multiword ECC," IEEE J. Solid-State Circuits, p.

2543–2553, 2009.

[18] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu and S.-L. Lu, "Improving cache

lifetime reliability at ultra-low voltages," in 42nd IEEE/ACM Int. Symp. Microarchit.,

2009.

125

6.3. Chapter 4

[1] [Online]. Available: https://www.adcolony.com/blog/2019/03/05/video-on-track-to-be-

nearly-80-of-mobile-data-traffic-by-2022/.

[2] T. Liu, S. Wang, W. Lee, J. Yang, K. Hou, Lee and C, "A 125 uW, fully scalable MPEG-

2 and H.264/AVC video decoder for mobile applications," IEEE J. Solid-State Circuits,

vol. 42, no. 1, p. 161–169, 2007.

[3] F. Sampaio, M. Shafique, B. Zatt, S. Bampi and J. Henkel, "Energy-Efficient

Architecture for Advanced Video Memory," in IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2014.

[4] D. Chen, X. Wang, J. Wang and N. Gong, "VCAS: Viewing context aware power-

efficient mobile video embedded memory," in 28th IEEE Internatonal System-on-Chip

Conference (SOCC), Beijing, 2015.

[5] D. Chen, J. Edstrom, L. Yang, M. E. McCourt, J. Wang and N. Gong, "Viewer-Aware

Intelligent Efficient Mobile Video Embedded Memory," IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 26, pp. 684-696, 2018.

[6] J. Edstrom, D. Chen, J. Wang, H. Gu, E. A. Vazquez, M. E. McCourt and N. Gong,

"Luminance-Adaptive Smart Video Storage System," in International Symposium on

Circuits and Systems (ISCAS), 2016.

[7] J. Edstrom, Y. Gong, A. Haidous, B. Humphrey, M. E. McCourt, Y. Xu, J. Wang and N.

Gong, "Content-Adaptive Memory for Viewer-Aware Energy-Quality Scalable Mobile

Video Systems," IEEE Access,, vol. 7, pp. 47479-47493, 2019.

126

[8] I. Chang, D. Mohapatra and K. Roy, "A Priority-Based 6T/8T Hybrid SRAM

Architecture for Aggressive Voltage Scaling in Video Applications," IEEE. Trans.

Circuits and Systems for Video Technology, pp. 101-112, 2011.

[9] N. Gong, S. Jiang, A. Challapalli, S. Fernandes and R. Sridhar, "Ultra-Low Voltage Split-

data-aware Embedded SRAM for Mobile Video Applications," IEEE Trans. on Circuits

and Systems II, vol. 59, no. 12, pp. 883-887, 2012.

[10] J. Kwon, I. Lee and J. Park, "Heterogeneous SRAM Cell Sizing for Low Power H.264

Applications," IEEE Trans. on Circuits and Systems I,, vol. 99, no. 2, pp. 1-10, 2012.

[11] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester and M. Alioto, "SRAM for Error-

Tolerant Applications With Dynamic Energy-Quality Management in 28nm CMOS,"

IEEE J. Of Solid-State Circuits, vol. 50, no. 5, pp. 1310-1323, 2015.

[12] A. Kazimirsky, A. Teman, N. Edri and A. Fish, "A 0.65-V, 500-MHz Integrated

Dynamic and Static RAM for Error Tolerant Applications," IEEE Trans. on Very Large

Scale Integration (VLSI) Systems, vol. 25, no. 9, pp. 2411-2418, 2017.

[13] M.-C. Chi, C.-H. Yeh and M.-J. Chen, "Robust Region-of-Interest Determination Based

on User Attention Model Through Visual Rhythm Analysis," IEEE Trans. on Circuits

and Systems on Vodeo Technology, vol. 19, no. 7, pp. 1025-1038, 2009.

[14] " YouTube-8M Dataset.," 2017. [Online]. Available: https://research.

google.com/youtube8m/ .

[15] I. Himawan, W. Song and D. Tjondronegoro, "Automatic Region-of-Interest Detection

and Prioritisation for Visually Optimised," in IEEE Workshop on Applications of

Computer Vision (WACV), 2013.

127

[16] Y. Huo, X. Wang, P. Zhang, J. Jiang and L. Hanzo, "Unequal Error Protection Aided

Region of Interest Aware Wireless Panoramic Video," IEEE Access, vol. 7, p. 2019,

80262-80276.

[17] Y.-F. Ma, X.-S. Hua, L. Lu and H.-J. Zhang, "A generic framework of user attention

model and its application in video summarization," IEEE Trans. Multimedia, vol. 7, no.

5, p. 907–919, 2005.

[18] I. Culjak, D. Abram, T. Pribanic, H. Dzapo and M. Cifrek, "A brief introduction to

OpenCV," in 35th International Convention MIPRO, Opatija, 2012.

[19] X.-W. Tang, X.-L. Huang, F. Hu and Q. Shi, "Human-Perception-Oriented Pseudo

Analog Video Transmissions With Deep Learning," IEEE Transactions on Vehicular

Technology, 2020.

[20] M. Shafique, "Application-guided power-efficient fault tolerance for H.264 context

adaptive variable length coding," IEEE Trans. Comput., vol. 66, no. 4, pp. 560-574,

2017.

[21] M. Shafique, B. Molkenthin and J. Henkel, "An HVS-based adaptive computational

complexity reduction scheme for H.264/AVC video encoder using prognostic early mode

exclusion," in Design, Automation & Test in Europe Conference & Exhibition, 2010.

[22] Y. Liang, H. Wang and K. El-Maleh, "Design and implementation of content-adaptive

background skipping for wireless video," IEEE International Symposium on Circuits and

Systems, pp. 4-7, 2006.

[23] R. P. Foundation, "Raspberry Pi Documentation," [Online]. Available:

https://www.raspberrypi.org/documentation/.

128

[24] Xilinx, "Z-turn Board (with Zynq-7020)," [Online]. Available:

https://www.xilinx.com/products/boards-and-kits/1-571ww1.html. [Accessed 01 11

2020].

[25] MAGEWELL, "USB Capture Utility V3," [Online]. Available:

http://www.magewell.com/usb-capture-utility-v3. [Accessed 01 11 2020].

[26] Ylonen, T. Rinne and Tatu, "scp(1) - Linux man page," 14 04 2013. [Online]. Available:

https://linux.die.net/man/1/scp. [Accessed 01 11 2020].

[27] Q. Bin, "Osen Logic OSD10 h.264 decoder," [Online]. Available:

http://bbs.eetop.cn/viewthread.php?tid=628991. [Accessed 2018].

[28] I. E. Richardson, The H.264 Advanced Video Compression Standard (Second Edition),

West Sussex, UK: John Wiley & Sons, Ltd, 2010.

[29] Y. Wang, S. Inguva and B. Adsumilli, "YouTube UGC Dataset for Video Compression

Research," in 2019 IEEE 21st International Workshop on Multimedia Signal Processing

(MMSP), Kuala Lumpur, Malaysia, 2019.

[30] "Xiph.org Video Test Media [derf's collection]," Xiph, [Online]. Available:

https://media.xiph.org/video/derf/. [Accessed 18 October 2020].

[31] J. Erfurt, C. R. Helmrich, S. Bosse, H. Schwarz, D. Marpe and T. Wiegand, "A Study of

the Perceptually Weighted Peak Signal-To-Noise Ratio (WPSNR) for Image

Compression," in 2019 IEEE International Conference on Image Processing (ICIP),

Taipei, Taiwan, 2019 .

[32] Xilinx, "Vivado Design Suite," 2019. [Online]. Available:

https://www.xilinx.com/products/design-tools/vivado.html.

129

[33] K. Pearson, "Chapter 56 - Karl Pearson, paper on the chi square goodness of fit test

(1900)," in Landmark Writings in Western Mathematics 1640-1940, ELSEVIER, 2005,

pp. 724-731.

[34] MathWave Technologies, EasyFit Software, 2015.

[35] F. Frustaci, D. Blaauw, D. Sylvester and M. Alioto, "Better-Than Voltage Scaling Energy

Reduction in Approximate SRAMs Via Bit Dropping and Bit Reuse," in 25th Int.

Workshop Power Timing Model., Optim., 2015.

[36] C. Duan, A. J. Gotterba, M. E. Sinangil and A. P. Chandrakasan, "Energy-Efficient

Reconfigurable SRAM: Reducing Read Power Through Data Statistics," IEEE Journal Of

Solid-State Circutis, vol. 52, no. 10, pp. 2703-2711, 2017.

[37] J. Edstrom, D. Chen, Y. Gong, J. Wang and N. Gong, "Data-Pattern Enabled Self-

Recovery Low-Power Storage System for Big Video Data," IEEE Trans. on Big Data,

vol. 51, no. 1, pp. 95-105, 2019.

[38] "Cisco Visual Networking Index: Forecast and Methodology, 2016-2021," Cisco

Systems, Inc., [Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/complete-white-paper-c11-481360.html.

[39] J. S. Wang, P. Y. Chang, T. S. Tang, J. W. Chen and J. I. Guo, "Design of subthreshold

SRAMs for energy-efficient quality-scalable video applications," IEEE Trans. Emerging

Sel. Topics Circuits and Systems, vol. 1, no. 2, pp. 183-192, 2011.

[40] Cypress, "Cypress CY62146GN Datasheet," 19 12 2017. [Online]. Available:

https://www.cypress.com/file/223376/download. [Accessed 05 03 2020].

130

[41] R. W. Hamming, "Error detecting and error correcting codes," Bell Syst. Tech. J.,, vol.

vol. 29, no. no. 2, p. pp. 147–160, Apr. 1950..

[42] Y. Xu, H. Das, Y. Gong and N. Gong, "On Mathematical Models of Optimal Video

Memory Design," IEEE Transactions on Circuits and Systems for Video Technology,

vol. 30, no. 1, pp. 256-266, 2020.

[43] M. E. Sinangil and A. P. Chandrakasan, "Application-Specific SRAM Design Using

Output Prediction to Reduce Bit-Line Switching Activity and Statistically Gated Sense

Amplifiers for Up to 1.9 Lower Energy/Access," IEEE Journal of Solid-State Circuits,

vol. 49, no. 1, pp. 107-117, 2014.

[44] Sampaio, F., M. Shafique, B. Zatt, S. Bampi and J. Henkel, "Energy-Efficient

Architecture for Advanced Video Memory," in IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2014.

[45] P. Pokorny, "Lossy Compression in the Chroma Subsampling Process," Tomas Bata

University in Zlín Nad Stráněmi, 4511, 760 05 Zlín Czech Republic, 2016.

[46] A. Inc, "Youtube," [Online]. Available: https://www.youtube.com/. [Accessed 01 11

2020].

[47] L. Liu, W. Ouyang and X. Wang, "Deep Learning for Generic Object Detection: A

Survey," Int J Comput Vis, vol. 128, pp. 261-318, 2019.

[48] M. Chen, S. Mao and Y. Liu, "Big Data: A Survey.," Mobile Netw Appl, vol. 19, p. 171–

209, 2014.

[49] Z. Wang, A. C. Bovik, H. R. Sheikh, Simoncelli and E. P., "Image quality assessment:

from error visibility to structural similarity," IEEE Trans. on Image Processing, vol. 13,

no. 4, pp. 600-612, 2004.

131

APPENDIX A. MACROBLOCK VARIANCE TRUNCATION

Description: This program takes as an input a RAW YUV 4:2:0 H264 decoded format

video and analyzes each frame for Macroblock variance percentage. The outputs are a .csv file of

the analysis results as well as selected frames bit-truncated using proprietary techniques used in

Ali Haidous's PhD dissertation. Written by: Ali Ahmad Haidous.

#!/usr/bin/python

import struct

import sys

import math

import pickle

import cv2

import numpy as np

from tqdm import tqdm

import os

from skimage.measure import compare_ssim

FIRST_PLAIN_MB = 21.5571

SECOND_PLAIN_MB = 1.96405

#helpful links

#https://docs.opencv.org/master/d8/d01/group__imgproc__color__conversions.html #all cv2 color

codes

class VideoCaptureYUV(object):

 def __init__(self, filename, size):

 self.height, self.width = size

 self.filename = filename

 self.filesize = os.stat(filename).st_size

 self.framecount = (2 * self.filesize) / (self.height * self.width * 3)

 self.frame_len = self.width * self.height * 3 / 2

 self.f = open(filename, 'rb')

 self.shape = (int(self.height*1.5), self.width)

 def file_statistics(self):

 return (self.filesize, self.framecount)

 def read_raw(self):

 try:

 raw = self.f.read(self.frame_len)

 yuv = np.frombuffer(raw, dtype=np.uint8)

 yuv = yuv.reshape(self.shape)

 except Exception as e:

 print str(e)

 return False, None

 return True, yuv

 def read(self):

 ret, yuv = self.read_raw()

 if not ret:

 return ret, yuv

 bgr = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR_I420)

 return ret, bgr

 def fetch_raw_frame(self, frame_num):

 f = open(self.filename, 'rb')

 raw = None

 for _ in range(frame_num):

 raw = f.read(self.frame_len)

 try:

132

 yuv = np.frombuffer(raw, dtype=np.uint8)

 yuv = yuv.reshape(self.shape)

 except Exception as e:

 print str(e)

 return None

 return yuv

 def display_raw_frame(self, raw_frame, name="frame"):

 frame = cv2.cvtColor(raw_frame, cv2.COLOR_YUV2BGR_I420)

 #cv2.imshow(name, frame)

 cv2.imwrite(name, frame)

 def play_video(self):

 while True:

 ret, frame = self.read(cv2.COLOR_YUV2BGR_I420)

 if ret:

 cv2.imshow("frame", frame)

 cv2.waitKey(30)

 else:

 break

def calc_macroblock_per(yuv_frame, low_variance_threshold=1.25):

 offset = int(len(yuv_frame)/3)

 rows = len(yuv_frame) - offset

 columns = len(yuv_frame[0])

 y = yuv_frame[0:rows, 0:columns]

 u = yuv_frame[rows:rows+(offset/2), 0:columns]

 v = yuv_frame[rows+(offset/2):rows+offset, 0:columns]

 def macbroblock_per(sub_frame):

 total_macroblocks = 0

 plain_macroblocks = 0

 macroblock_per = 0

 for row_position in range(0, len(sub_frame), 16):

 for column_position in range(0, len(sub_frame[0]), 16):

 macroblock = []

 total_macroblocks += 1

 for j in range(row_position, row_position+16):

 for i in range(column_position, column_position+16):

 try:

 macroblock.append(0.0001560911143834408 * pow(int(sub_frame[j][i]),

2.628389343175764))

 except IndexError:

 break

 try:

 avg_lum = sum(macroblock) / len(macroblock)

 variance = sum([pow(byte - avg_lum, 2) / len(macroblock) for byte in

macroblock])

 except ZeroDivisionError:

 pass

 else:

 if variance <= low_variance_threshold:

 plain_macroblocks += 1

 macroblock_per = ((plain_macroblocks * 100.0) / total_macroblocks)

 return macroblock_per

 return (macbroblock_per(y), macbroblock_per(u), macbroblock_per(v))

def bits_to_truncate(macroblock_per):

 if macroblock_per >= FIRST_PLAIN_MB:

 return 1

 elif macroblock_per >= SECOND_PLAIN_MB:

 return 2

 else:

 return 3

def truncate_frame(yuv_frame, y_bits, u_bits, v_bits):

133

 offset = int(len(yuv_frame)/3)

 rows = len(yuv_frame) - offset

 columns = len(yuv_frame[0])

 y = yuv_frame[0:rows, 0:columns]

 u = yuv_frame[rows:rows+(offset/2), 0:columns]

 v = yuv_frame[rows+(offset/2):rows+offset, 0:columns]

 yuv_frame_copy = np.copy(yuv_frame)

 for row in range(0, rows):

 for column in range(0, columns):

 yuv_frame_copy[row, column] = yuv_frame[row, column] & ((0xFF >> y_bits) << y_bits)

 for row in range(rows, rows+(offset/2)):

 for column in range(0, columns):

 yuv_frame_copy[row, column] = yuv_frame[row, column] & ((0xFF >> u_bits) << u_bits)

 for row in range(rows+(offset/2), rows+offset):

 for column in range(0, columns):

 yuv_frame_copy[row, column] = yuv_frame[row, column] & ((0xFF >> v_bits) << v_bits)

 return yuv_frame_copy

def psnr(img1, img2):

 mse = np.mean((img1 - img2) ** 2)

 if mse == 0:

 return 100

 PIXEL_MAX = 255.0

 return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))

def main():

 # Get arguments

 filename = sys.argv[1]

 xres = int(sys.argv[2])

 yres = int(sys.argv[3])

 # Do OS operations

 path = os.path.join(os.getcwd(), str(filename[:-4].rsplit('/', 1)[-1]))

 frames_path = os.path.join(os.getcwd(), str(filename[:-4].rsplit('/', 1)[-1])+"\\frames\\")

 try:

 os.makedirs(path)

 os.makedirs(frames_path)

 except OSError:

 print ("Creation of the directory %s failed" % frames_path)

 else:

 print ("Successfully created the directory %s " % frames_path)

 # Read in the file

 cap = VideoCaptureYUV(filename, (yres, xres))

 filesize, framecount = cap.file_statistics()

 print "Size of file in bytes: %d\nNumber of frames: %d\n" % (filesize, framecount)

 #cap.play_video()

 # Calculate macroblock percentage per frame

 macroblock_per_y = []

 macroblock_per_u = []

 macroblock_per_v = []

 for _ in tqdm(range(framecount), unit="Frame"):

 try:

 ret, frame = cap.read_raw()

 except Exception:

 break

 if ret:

 (y_per, u_per, v_per) = calc_macroblock_per(frame)

 print (y_per, u_per, v_per)

 macroblock_per_y.append(y_per)

 macroblock_per_u.append(u_per)

 macroblock_per_v.append(v_per)

 else:

 break

 # Calculate average macroblock percentages

134

 macroblock_per_y_avg = sum(macroblock_per_y) / len(macroblock_per_y)

 macroblock_per_u_avg = sum(macroblock_per_u) / len(macroblock_per_u)

 macroblock_per_v_avg = sum(macroblock_per_v) / len(macroblock_per_v)

 # Filter >= 99% macroblocks

 for x in range(len(macroblock_per_y)):

 if macroblock_per_y[x] >= 99:

 macroblock_per_y[x] = macroblock_per_y_avg

 for x in range(len(macroblock_per_u)):

 if macroblock_per_u[x] >= 99:

 macroblock_per_u[x] = macroblock_per_u_avg

 for x in range(len(macroblock_per_v)):

 if macroblock_per_v[x] >= 99:

 macroblock_per_v[x] = macroblock_per_v_avg

 # Calculate amount of bits truncated with old vs new method

 total_bits = framecount * xres * yres * 1.5 * 8

 old_method = framecount * bits_to_truncate(macroblock_per_y_avg) * xres * yres

 new_method = (sum([bits_to_truncate(per) for per in macroblock_per_y]) * xres * yres +

 sum([bits_to_truncate(per) for per in macroblock_per_u]) * xres * yres * 0.25 +

 sum([bits_to_truncate(per) for per in macroblock_per_v]) * xres * yres * 0.25)

 # Calculate average psnr and ssim for the whole video

 cap = VideoCaptureYUV(filename, (yres, xres))

 psnr_old = []

 ssim_old = []

 psnr_new = []

 ssim_new = []

 for index in tqdm(range(framecount), unit="Frame"):

 try:

 ret, frame = cap.read_raw()

 except Exception:

 break

 if ret:

 frame_truncate_old = truncate_frame(frame,

 bits_to_truncate(macroblock_per_y_avg),

 0,

 0)

 frame_truncate_new = truncate_frame(frame,

 bits_to_truncate(macroblock_per_y[index]),

 bits_to_truncate(macroblock_per_u[index]),

 bits_to_truncate(macroblock_per_v[index]))

 psnr_old.append(psnr(frame, frame_truncate_old))

 (ssim, _) = compare_ssim(frame, frame_truncate_old, full=True)

 ssim_old.append(ssim)

 psnr_new.append(psnr(frame, frame_truncate_new))

 (ssim, _) = compare_ssim(frame, frame_truncate_new, full=True)

 ssim_new.append(ssim)

 cap.display_raw_frame(frame, frames_path+str(filename[:-4].rsplit('/', 1)[-

1])+"_frame"+str(index)+".png")

 cap.display_raw_frame(frame_truncate_old, frames_path+str(filename[:-4].rsplit('/',

1)[-1])+"_truncate_old"+str(index)+".png")

 cap.display_raw_frame(frame_truncate_new, frames_path+str(filename[:-4].rsplit('/',

1)[-1])+"_truncate_new"+str(index)+".png")

 else:

 break

 # Calculate max and min macroblock frame index for y u and v

 max_frame_y_index = macroblock_per_y.index(max(macroblock_per_y))

 min_frame_y_index = macroblock_per_y.index(min(macroblock_per_y))

 max_frame_u_index = macroblock_per_u.index(max(macroblock_per_u))

 min_frame_u_index = macroblock_per_u.index(min(macroblock_per_u))

 max_frame_v_index = macroblock_per_v.index(max(macroblock_per_v))

 min_frame_v_index = macroblock_per_v.index(min(macroblock_per_v))

 #Calculate average PSNR and SSIM

 psnr_old_avg = sum(psnr_old) / len(psnr_old)

 ssim_old_avg = sum(ssim_old) / len(ssim_old)

 psnr_new_avg = sum(psnr_new) / len(psnr_new)

 ssim_new_avg = sum(ssim_new) / len(ssim_new)

135

 # Write data to CSV file

 with open(os.path.join(path,str(filename[:-4].rsplit('/', 1)[-1])+".csv"), "wb") as file:

 file.write("Total Bits:,"+

 "Old Total:,"+

 "New Total:,"+

 "MB % Y Avg:,"+

 "MB % U Avg:,"+

 "MB % V Avg:,"+

 "MB Y Max Idx:,"+

 "MB Y Min Idx:,"+

 "MB U Max Idx:,"+

 "MB U Min Idx:,"+

 "MB V Max Idx:,"+

 "MB V Min Idx:,"+

 "PSNR Old Avg:,"+

 "SSIM Old Avg:,"+

 "PSNR New Avg:,"+

 "SSIM New Avg:,"+"\n")

 file.write(str(total_bits)+","+

 str(old_method)+","+

 str(new_method)+","+

 str(macroblock_per_y_avg)+","+

 str(macroblock_per_u_avg)+","+

 str(macroblock_per_v_avg)+","+

 str(max_frame_y_index)+","+

 str(min_frame_y_index)+","+

 str(max_frame_u_index)+","+

 str(min_frame_u_index)+","+

 str(max_frame_v_index)+","+

 str(min_frame_v_index)+","+

 str(psnr_old_avg)+","+

 str(ssim_old_avg)+","+

 str(psnr_new_avg)+","+

 str(ssim_new_avg)+"\n\n\n")

 file.write("Frame,MB % Y,MB % U,MB % V,PSNR Old,SSIM Old,PSNR New,SSIM New\n")

 for index, mb_y, mb_u, mb_v, psnr_o, ssim_o, psnr_n, ssim_n in zip(range(framecount),

 macroblock_per_y,

 macroblock_per_u,

 macroblock_per_v,

 psnr_old,

 ssim_old,

 psnr_new,

 ssim_new):

file.write(str(index)+","+str(mb_y)+","+str(mb_u)+","+str(mb_v)+","+str(psnr_o)+","+str(ssim_o)+"

,"+str(psnr_n)+","+str(ssim_n)+"\n")

if __name__ == "__main__":

 main()

136

APPENDIX B. ECC 74 AND ECC 1511 ANALYZER

Description: This program takes as an input a RAW YUV 4:2:0 H264 decoded format

video and simulates ECC errors along a Normal Uniform Distribution for both 16-bit and 32-bit

ECC. The outputs are a .csv file of the analysis results as well as the original frames, error

frames, and the ECC corrected frames for both ECC74 and ECC1511. Written by: Ali Ahmad

Haidous.

#!C:/Python27/python.exe

import numpy as np

import os

import math

import csv

import random

import multiprocessing

import time

import shutil

import re

THREAD_COUNT = 8 # Specify the amount of threads on your system

YUV_FRAMES = ".\\yuv_frames" # Specify where all the YUV frames to process are located

X_RESOLUTION = 320 # Specify the X resolution of the YUV frames

Y_RESOLUTION = 240 # Specify the Y resolution of the YUV frames

Error injection percentages, ERROR_LOW and ERROR_HIGH numbers are divided by 10000

ERROR_LOW = 1

ERROR_HIGH = 100

ERROR_INCREMENT = 1

###

Quality measurements

###

def psnr(img1, img2):

 img1 = img1.astype(np.float64) / 255.

 img2 = img2.astype(np.float64) / 255.

 mse = np.mean((img1 - img2) ** 2)

 if mse == 0:

 return "Same Image"

 return 10 * math.log10(1. / mse)

###

###

Bit Operations

###

def getBit(byte, position):

 return ((byte >> position) & 0x01)

def toggleKthBit(n, k):

 return (n ^ (1 << (k)))

137

def injectError(bytes, err_per=0):

 bytes_out = bytes

 # pick a random position to inject an error

 position = int(round(np.random.uniform(low=0.0, high=float((len(bytes)*8)-1), size=None)))

 for _ in range(len(bytes)*8): # interate over all positions

 if position < (len(bytes)*8)-1:

 position += 1

 else:

 position -= (len(bytes)*8)

 # if the error threshold is met, inject an error at the appropriate bit position

 if np.random.uniform(low=0.0, high=1.0, size=None) <= err_per:

 bytes_out[int(position/8)] = toggleKthBit(bytes[int(position/8)],

 position-(int(position/8)*8))

 return bytes_out

def injectSameError(original_byte, error_byte, encoded_byte):

 output_byte = encoded_byte

 for x in range(8):

 if (((original_byte >> x) & 0x01) != ((error_byte >> x) & 0x01)):

 output_byte = toggleKthBit(output_byte, x)

 return output_byte

###

###

ECC Encoder

###

def getP1(bytes, algorithm):

 P1 = 0

 if algorithm == 74:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 P1 = ((getBit(byte1, 7) ^

 getBit(byte2, 15-8) ^

 getBit(byte2, 14-8)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 P1 = ((getBit(byte1, 7) ^

 getBit(byte1, 15-8) ^

 getBit(byte4, 31-24)) & 0x01)

 elif algorithm == 1511:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 P1 = ((getBit(byte1, 7) ^

 getBit(byte2, 15-8) ^

 getBit(byte2, 14-8) ^

 getBit(byte1, 5) ^

 getBit(byte1, 4) ^

 getBit(byte1, 3) ^

 getBit(byte1, 2)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 P1 = ((getBit(byte1, 7) ^

 getBit(byte2, 15-8) ^

 getBit(byte4, 31-24) ^

 getBit(byte1, 6) ^

 getBit(byte3, 22-16) ^

 getBit(byte1, 5) ^

 getBit(byte3, 21-16)) & 0x01)

 return P1

def getP2(bytes, algorithm):

 P2 = 0

 if algorithm == 74:

138

 if len(bytes) == 2:

 byte1, byte2 = bytes

 P2 = ((getBit(byte1, 7) ^

 getBit(byte1, 6) ^

 getBit(byte2, 14-8)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 P2 = ((getBit(byte1, 7) ^

 getBit(byte3, 23-16) ^

 getBit(byte4, 31-24)) & 0x01)

 elif algorithm == 1511:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 P2 = ((getBit(byte1, 7) ^

 getBit(byte1, 6) ^

 getBit(byte2, 14-8) ^

 getBit(byte2, 13-8) ^

 getBit(byte1, 4) ^

 getBit(byte2, 11-8) ^

 getBit(byte1, 2)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 P2 = ((getBit(byte1, 7) ^

 getBit(byte3, 23-16) ^

 getBit(byte4, 31-24) ^

 getBit(byte2, 14-8) ^

 getBit(byte3,22-16) ^

 getBit(byte2, 13-8) ^

 getBit(byte3, 21-16)) & 0x01)

 return P2

def getP3(bytes, algorithm):

 P3 = 0

 if algorithm == 74:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 P3 = ((getBit(byte2, 15-8) ^

 getBit(byte1, 6) ^

 getBit(byte2, 14-8)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 P3 = ((getBit(byte2, 15-8) ^

 getBit(byte3, 23-16) ^

 getBit(byte4, 31-24)) & 0x01)

 elif algorithm == 1511:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 P3 = ((getBit(byte2, 15-8) ^

 getBit(byte1, 6) ^

 getBit(byte2, 14-8) ^

 getBit(byte2, 12-8) ^

 getBit(byte1, 3) ^

 getBit(byte2, 11-8) ^

 getBit(byte1, 2)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 P3 = ((getBit(byte2, 15-8) ^

 getBit(byte3, 23-16) ^

 getBit(byte4, 31-24) ^

 getBit(byte4, 30-24) ^

 getBit(byte1, 5) ^

 getBit(byte2, 13-8) ^

 getBit(byte3, 21-16)) & 0x01)

 return P3

def getP4(bytes, algorithm):

 P4 = 0

 if algorithm == 1511:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 P4 = ((getBit(byte1, 5) ^

139

 getBit(byte2, 13-8) ^

 getBit(byte1, 4) ^

 getBit(byte2, 12-8) ^

 getBit(byte1, 3) ^

 getBit(byte2, 11-8) ^

 getBit(byte1, 2)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 P4 = ((getBit(byte1, 6) ^

 getBit(byte2, 14-8) ^

 getBit(byte3, 22-16) ^

 getBit(byte4, 30-24) ^

 getBit(byte1, 5) ^

 getBit(byte2, 13-8) ^

 getBit(byte3, 21-16)) & 0x01)

 return P4

def getByte1(bytes, algorithm):

 if algorithm == 74:

 if len(bytes) == 2:

 return (bytes[0] & 0xFC) | (getP2(bytes, algorithm) << 1) | getP1(bytes, algorithm)

 elif len(bytes) == 4:

 return (bytes[0] & 0xFE) | getP1(bytes, algorithm)

 elif algorithm == 1511:

 if len(bytes) == 2:

 return (bytes[0] & 0xFC) | (getP2(bytes, algorithm) << 1) | getP1(bytes, algorithm)

 elif len(bytes) == 4:

 return (bytes[0] & 0xFE) | getP1(bytes, algorithm)

 else:

 return bytes[0]

def getByte2(bytes, algorithm):

 if algorithm == 74:

 if len(bytes) == 2:

 return (bytes[1] & 0xFE) | getP3(bytes, algorithm)

 elif len(bytes) == 4:

 return (bytes[1] & 0xFE) | getP2(bytes, algorithm)

 elif algorithm == 1511:

 if len(bytes) == 2:

 return (bytes[1] & 0xFC) | (getP4(bytes, algorithm) << 1) | getP3(bytes, algorithm)

 elif len(bytes) == 4:

 return (bytes[1] & 0xFE) | getP2(bytes, algorithm)

 else:

 return bytes[1]

def getByte3(bytes, algorithm):

 if algorithm == 74:

 return (bytes[2] & 0xFE) | getP3(bytes, algorithm)

 elif algorithm == 1511:

 return (bytes[2] & 0xFE) | getP3(bytes, algorithm)

 else:

 return bytes[2]

def getByte4(bytes, algorithm):

 if algorithm == 74:

 return bytes[3]

 elif algorithm == 1511:

 return (bytes[3] & 0xFE) | getP4(bytes, algorithm)

 else:

 return bytes[3]

def ecc_encode(bytes, algorithm):

 encoded_array = bytes

 if len(bytes) == 2:

 encoded_array[0] = (getByte1(bytes, algorithm))

 encoded_array[1] = (getByte2(bytes, algorithm))

 elif len(bytes) == 4:

 encoded_array[0] = (getByte1(bytes, algorithm))

 encoded_array[1] = (getByte2(bytes, algorithm))

 encoded_array[2] = (getByte3(bytes, algorithm))

 encoded_array[3] = (getByte4(bytes, algorithm))

140

 return encoded_array

###

###

ECC Decoder

###

def getE1(bytes, algorithm):

 E1 = 0

 if algorithm == 74:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 E1 = ((getBit(byte1, 0) ^

 getBit(byte1, 7) ^

 getBit(byte2, 7) ^

 getBit(byte2, 6)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 E1 = ((getBit(byte1, 0) ^

 getBit(byte1, 7) ^

 getBit(byte2, 15-8) ^

 getBit(byte4, 31-24)) & 0x01)

 elif algorithm == 1511:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 E1 = ((getBit(byte1, 0) ^

 getBit(byte1, 7) ^

 getBit(byte2, 7) ^

 getBit(byte2, 6) ^

 getBit(byte1, 5) ^

 getBit(byte1, 4) ^

 getBit(byte1, 3) ^

 getBit(byte1, 2)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 E1 = ((getBit(byte1, 0) ^

 getBit(byte1, 7) ^

 getBit(byte2, 15-8) ^

 getBit(byte4, 31-24) ^

 getBit(byte1, 6) ^

 getBit(byte3, 22-16) ^

 getBit(byte1, 5) ^

 getBit(byte3, 21-16)) & 0x01)

 return E1

def getE2(bytes, algorithm):

 E2 = 0

 if algorithm == 74:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 E2 = ((getBit(byte1, 1) ^

 getBit(byte1, 7) ^

 getBit(byte1, 6) ^

 getBit(byte2, 6)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 E2 = ((getBit(byte2, 8-8) ^

 getBit(byte1, 7) ^

 getBit(byte3, 23-16) ^

 getBit(byte4, 31-24)) & 0x01)

 elif algorithm == 1511:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 E2 = ((getBit(byte1, 1) ^

 getBit(byte1, 7) ^

 getBit(byte1, 6) ^

141

 getBit(byte2, 6) ^

 getBit(byte2, 5) ^

 getBit(byte1, 4) ^

 getBit(byte2, 3) ^

 getBit(byte1, 2)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 E2 = ((getBit(byte2, 8-8) ^

 getBit(byte1, 7) ^

 getBit(byte3, 23-16) ^

 getBit(byte4, 31-24) ^

 getBit(byte2, 14-8) ^

 getBit(byte3, 22-16) ^

 getBit(byte2, 13-8) ^

 getBit(byte3, 21-16)) & 0x01)

 return E2

def getE3(bytes, algorithm):

 E3 = 0

 if algorithm == 74:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 E3 = ((getBit(byte2, 0) ^

 getBit(byte2, 7) ^

 getBit(byte1, 6) ^

 getBit(byte2, 6)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 E3 = ((getBit(byte3, 16-16) ^

 getBit(byte2, 15-8) ^

 getBit(byte3, 23-16) ^

 getBit(byte4, 31-24)) & 0x01)

 elif algorithm == 1511:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 E3 = ((getBit(byte2, 0) ^

 getBit(byte2, 7) ^

 getBit(byte1, 6) ^

 getBit(byte2, 6) ^

 getBit(byte2, 4) ^

 getBit(byte1, 3) ^

 getBit(byte2, 3) ^

 getBit(byte1, 2)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 E3 = ((getBit(byte3, 16-16) ^

 getBit(byte2, 15-8) ^

 getBit(byte3, 23-16) ^

 getBit(byte4, 31-24) ^

 getBit(byte4, 30-24) ^

 getBit(byte1, 5) ^

 getBit(byte2, 13-8) ^

 getBit(byte3, 21-16)) & 0x01)

 return E3

def getE4(bytes, algorithm):

 E4 = 0

 if algorithm == 1511:

 if len(bytes) == 2:

 byte1, byte2 = bytes

 E4 = ((getBit(byte2, 1) ^

 getBit(byte1, 5) ^

 getBit(byte2, 5) ^

 getBit(byte1, 4) ^

 getBit(byte2, 4) ^

 getBit(byte1, 3) ^

 getBit(byte2, 3) ^

 getBit(byte1, 2)) & 0x01)

 elif len(bytes) == 4:

 byte1, byte2, byte3, byte4 = bytes

 E4 = ((getBit(byte4, 24-24) ^

142

 getBit(byte1, 6) ^

 getBit(byte2, 14-8) ^

 getBit(byte3, 22-16) ^

 getBit(byte4, 30-24) ^

 getBit(byte1, 5) ^

 getBit(byte2, 13-8) ^

 getBit(byte3, 21-16)) & 0x01)

 return E4

def getBitPosition(bytes, algorithm):

 BitPosition = 0

 if algorithm == 74:

 if len(bytes) == 2:

 dic = {1:0, 2:1, 3:7, 4:8, 5:15, 6:6, 7:14}

 elif len(bytes) == 4:

 dic = {1:0, 2:8, 3:7, 4:16, 5:15, 6:23, 7:31}

 E = ((getE3(bytes, algorithm) << 2) +

 (getE2(bytes, algorithm) << 1) +

 (getE1(bytes, algorithm) << 0))

 elif algorithm == 1511:

 if len(bytes) == 2:

 dic = {1:0, 2:1, 3:7, 4:8, 5:15, 6:6, 7:14, 8:9, 9:5, 10:13, 11:4, 12:12, 13:3,

14:11, 15:2}

 elif len(bytes) == 4:

 dic = {1:0, 2:8, 3:7, 4:16, 5:15, 6:23, 7:31, 8:24, 9:6, 10:14, 11:22, 12:30, 13:5,

14:13, 15:21}

 E = ((getE4(bytes, algorithm) << 3) +

 (getE3(bytes, algorithm) << 2) +

 (getE2(bytes, algorithm) << 1) +

 (getE1(bytes, algorithm) << 0))

 try:

 BitPosition = dic[E]

 except KeyError:

 BitPosition = None

 return BitPosition

def ecc_decode(bytes, algorithm):

 decoded_array = bytes

 if len(bytes) == 2:

 bitPosition = getBitPosition(bytes, algorithm)

 byte1, byte2 = bytes

 if bitPosition is not None:

 if bitPosition < 8:

 decoded_array[0] = (toggleKthBit(byte1, bitPosition))

 decoded_array[1] = (byte2)

 elif bitPosition < 16:

 decoded_array[0] = (byte1)

 decoded_array[1] = (toggleKthBit(byte2, bitPosition-8))

 else:

 decoded_array[0] = (byte1)

 decoded_array[1] = (byte2)

 elif len(bytes) == 4:

 bitPosition = getBitPosition(bytes, algorithm)

 byte1, byte2, byte3, byte4 = bytes

 if bitPosition is not None:

 if bitPosition < 8:

 decoded_array[0] = (toggleKthBit(byte1, bitPosition))

 decoded_array[1] = (byte2)

 decoded_array[2] = (byte3)

 decoded_array[3] = (byte4)

 elif bitPosition < 16:

 decoded_array[0] = (byte1)

 decoded_array[1] = (toggleKthBit(byte2, bitPosition-8))

 decoded_array[2] = (byte3)

 decoded_array[3] = (byte4)

 elif bitPosition < 24:

 decoded_array[0] = (byte1)

 decoded_array[1] = (byte2)

 decoded_array[2] = (toggleKthBit(byte3, bitPosition-16))

 decoded_array[3] = (byte4)

 elif bitPosition < 32:

143

 decoded_array[0] = (byte1)

 decoded_array[1] = (byte2)

 decoded_array[2] = (byte3)

 decoded_array[3] = (toggleKthBit(byte4, bitPosition-24))

 else:

 decoded_array[0] = (byte1)

 decoded_array[1] = (byte2)

 decoded_array[2] = (byte3)

 decoded_array[3] = (byte4)

 return decoded_array

###

###

YUV Operations

###

def read_yuv_frame(filename, width=X_RESOLUTION, height=Y_RESOLUTION):

 shape = (int(height*1.5), width)

 yuv = np.fromfile(filename,dtype='uint8').reshape(shape)

 return yuv

def save_yuv_frame(yuv_frame, name=".\\frame", width=X_RESOLUTION, height=Y_RESOLUTION):

 shape = (int(height*1.5), width)

 yuv_frame.reshape(shape).tofile(name+".yuv")

def save_yuv_frame_to_csv(yuv_frame, bits, name=".\\frame", width=X_RESOLUTION,

height=Y_RESOLUTION):

 size = int(height*1.5) * width * 8

 rows = (size/bits)

 shape = (rows, bits)

 binary_arr = np.unpackbits(yuv_frame.flatten().astype(np.uint8))

 np.savetxt(name+".csv", binary_arr.reshape(shape), fmt="%d", delimiter=",")

def count_errors(yuv_original, yuv_error):

 xor = np.bitwise_xor(yuv_original.flatten(), yuv_error.flatten())

 num_errors = 0

 for x in xor:

 num_errors += bin(x).count("1")

 total_size = len(yuv_original.flatten())*8

 return (num_errors, total_size)

###

def execute(filename, output_fp, err_per, thread_num, return_dict):

 # Log the current thread number

 print("Spawned thread %d" % thread_num)

 # Read in the frame

 yuv = read_yuv_frame(filename)

 orginal_arr = yuv.flatten()

 # Save the original frame

 save_yuv_frame(orginal_arr, output_fp+"original")

 save_yuv_frame_to_csv(orginal_arr, 16, output_fp+"orginal_16bit")

 save_yuv_frame_to_csv(orginal_arr, 32, output_fp+"orginal_32bit")

 # Inject errors in the original array

 orginal_error_arr = np.array_split(orginal_arr, int(len(orginal_arr.flatten())/2)) # Split

array into 2 byte/component chunks

 orginal_error_arr = np.apply_along_axis(injectError, 1, orginal_error_arr, err_per=err_per)

 # Save the original error frame

 save_yuv_frame(orginal_error_arr, output_fp+"orginal_error")

 save_yuv_frame_to_csv(orginal_error_arr, 16, output_fp+"orginal_error_16bit")

 save_yuv_frame_to_csv(orginal_error_arr, 32, output_fp+"orginal_error_32bit")

144

 # calculate the amount of errors injected

 single_bit, total_size = count_errors(orginal_arr.flatten(), orginal_error_arr.flatten())

 print("%s Error %s %% - Number of errors: %s / %s %.03f%%" %

 (filename, err_per*100, single_bit, total_size, (float(single_bit)/(total_size))*100))

 output = []

 for algorithm in [74, 1511]:

 # Encode frame for both 16bit and 32bit

 encoded_16bit_arr = np.array_split(orginal_arr, int(len(orginal_arr.flatten())/2))

#16bit

 encoded_32bit_arr = np.array_split(orginal_arr, int(len(orginal_arr.flatten())/4))

#32bit

 encoded_16bit_arr = np.apply_along_axis(ecc_encode, 1, encoded_16bit_arr, algorithm)

 encoded_32bit_arr = np.apply_along_axis(ecc_encode, 1, encoded_32bit_arr, algorithm)

 # Save the 16bit and 32bit encoded frame

 save_yuv_frame(encoded_16bit_arr, output_fp+"encoded_16bit"+str(algorithm))

 save_yuv_frame(encoded_32bit_arr, output_fp+"encoded_32bit"+str(algorithm))

 save_yuv_frame_to_csv(encoded_16bit_arr, 16, output_fp+"encoded_16bit"+str(algorithm))

 save_yuv_frame_to_csv(encoded_32bit_arr, 32, output_fp+"encoded_32bit"+str(algorithm))

 # Inject the same errors across all frames that were previously generated

 encoded_error_16bit_arr = orginal_arr.flatten()

 encoded_error_32bit_arr = orginal_arr.flatten()

 for index, original_byte, error_byte, encoded_byte16, encoded_byte32 in

zip(range(len(orginal_arr.flatten())),

orginal_arr.flatten(),

orginal_error_arr.flatten(),

encoded_16bit_arr.flatten(),

encoded_32bit_arr.flatten()):

 encoded_error_16bit_arr[index] = (injectSameError(original_byte, error_byte,

encoded_byte16))

 encoded_error_32bit_arr[index] = (injectSameError(original_byte, error_byte,

encoded_byte32))

 # Save the 16bit and 32bit encoded error frame

 save_yuv_frame(encoded_error_16bit_arr, output_fp+"encoded_error_16bit"+str(algorithm))

 save_yuv_frame(encoded_error_32bit_arr, output_fp+"encoded_error_32bit"+str(algorithm))

 # Decode the encoded error frames

 decoded_16bit_arr = np.array_split(encoded_error_16bit_arr,

int(len(encoded_error_16bit_arr.flatten())/2)) #16bit

 decoded_32bit_arr = np.array_split(encoded_error_32bit_arr,

int(len(encoded_error_32bit_arr.flatten())/4)) #32bit

 decoded_16bit_arr = np.apply_along_axis(ecc_decode, 1, decoded_16bit_arr, algorithm)

 decoded_32bit_arr = np.apply_along_axis(ecc_decode, 1, decoded_32bit_arr, algorithm)

 # Save the 16bit and 32bit decoded frame

 save_yuv_frame(decoded_16bit_arr, output_fp+"decoded_16bit"+str(algorithm))

 save_yuv_frame(decoded_32bit_arr, output_fp+"decoded_32bit"+str(algorithm))

 save_yuv_frame_to_csv(decoded_16bit_arr, 16, output_fp+"decoded_16bit"+str(algorithm))

 save_yuv_frame_to_csv(decoded_32bit_arr, 32, output_fp+"decoded_32bit"+str(algorithm))

 # Calculate quality metrics

 psnr_orig_error = str(psnr(orginal_arr.flatten(), orginal_error_arr.flatten()))

 psnr_encoded_16bit = str(psnr(orginal_arr.flatten(), encoded_16bit_arr.flatten()))

 psnr_encoded_32bit = str(psnr(orginal_arr.flatten(), encoded_32bit_arr.flatten()))

 psnr_encoded_16_bit_32bit = str(psnr(encoded_16bit_arr.flatten(),

encoded_32bit_arr.flatten()))

 psnr_error_16bit = str(psnr(orginal_arr.flatten(), encoded_error_16bit_arr.flatten()))

 psnr_error_32bit = str(psnr(orginal_arr.flatten(), encoded_error_32bit_arr.flatten()))

 psnr_error_16bit_32bit = str(psnr(encoded_error_16bit_arr.flatten(),

encoded_error_32bit_arr.flatten()))

 psnr_final_16bit = str(psnr(orginal_arr.flatten(), decoded_16bit_arr.flatten()))

 psnr_final_32bit = str(psnr(orginal_arr.flatten(), decoded_32bit_arr.flatten()))

 psnr_final_16bit_32bit = str(psnr(decoded_16bit_arr.flatten(),

decoded_32bit_arr.flatten()))

145

 #print("PSNR original error "+str(algorithm)+": " + psnr_orig_error)

 #print("PSNR encoded 16bit "+str(algorithm)+": " + psnr_encoded_16bit)

 #print("PSNR encoded 32bit "+str(algorithm)+": " + psnr_encoded_32bit)

 #print("PSNR encoded 16bit vs. 32bit "+str(algorithm)+": " + psnr_encoded_16_bit_32bit)

 #print("PSNR error 16bit "+str(algorithm)+": " + psnr_error_16bit)

 #print("PSNR error 32bit "+str(algorithm)+": " + psnr_error_32bit)

 #print("PSNR error 16bit vs. 32bit "+str(algorithm)+": " + psnr_error_16bit_32bit)

 #print("PSNR final 16bit "+str(algorithm)+": " + psnr_final_16bit)

 #print("PSNR final 32bit "+str(algorithm)+": " + psnr_final_32bit)

 #print("PSNR final 16bit vs. 32bit "+str(algorithm)+": " + psnr_final_16bit_32bit)

 output.append([psnr_orig_error,

 psnr_encoded_16bit,

 psnr_encoded_32bit,

 psnr_encoded_16_bit_32bit,

 psnr_error_16bit,

 psnr_error_32bit,

 psnr_error_16bit_32bit,

 psnr_final_16bit,

 psnr_final_32bit,

 psnr_final_16bit_32bit])

 return_dict.update({output_fp:output})

def main():

 # start fresh everytime

 try:

 shutil.rmtree("./analysis//")

 except Exception:

 pass

 finally:

 os.mkdir("./analysis//")

 thread_num = 0

 manager = multiprocessing.Manager()

 return_dict = manager.dict()

 jobs = []

 # start a thread for each frame

 for dirpath, _, filenames in os.walk(YUV_FRAMES):

 for frame in filenames:

 for err_per in range(ERROR_LOW,ERROR_HIGH,ERROR_INCREMENT):

 try:

 os.mkdir("analysis//"+frame+str(err_per)+"//")

 except OSError:

 print ("Creation of the directory %s failed, deleting..." %

 "analysis//"+frame+str(err_per)+"//")

 finally:

 thread = multiprocessing.Process(

 target=execute,

 args=(os.path.abspath(os.path.join(dirpath, frame)),

 "analysis//"+frame+str(err_per)+"//",

 float(err_per/10000.0),

 thread_num,

 return_dict))

 jobs.append(thread)

 thread.start()

 thread_num = thread_num + 1

 time.sleep(0.01)

 if thread_num >= THREAD_COUNT:

 for thread in jobs:

 thread.join()

 jobs = []

 thread_num = 0

 # Wait for all threads to finish

 for thread in jobs:

146

 thread.join()

 # Write output.csv file to log results

 with open("analysis//output.csv", "wb") as file:

 wr = csv.writer(file, dialect='excel')

 wr.writerow(['file',

 'error_per',

 'psnr_orig_error_74',

 'psnr_encoded_16bit_74',

 'psnr_encoded_32bit_74',

 'psnr_encoded_16_bit_32bit_74',

 'psnr_error_16bit_74',

 'psnr_error_32bit_74',

 'psnr_error_16bit_32bit_74',

 'psnr_final_16bit_74',

 'psnr_final_32bit_74',

 'psnr_final_16bit_32bit_74',

 'psnr_orig_error_1511',

 'psnr_encoded_16bit_1511',

 'psnr_encoded_32bit_1511',

 'psnr_encoded_16_bit_32bit_1511',

 'psnr_error_16bit_1511',

 'psnr_error_32bit_1511',

 'psnr_error_16bit_32bit_1511',

 'psnr_final_16bit_1511',

 'psnr_final_32bit_1511',

 'psnr_final_16bit_32bit_1511'])

 for f in return_dict.keys():

 output = return_dict.get(f)

 for err_per in range(ERROR_LOW,ERROR_HIGH,ERROR_INCREMENT):

 desired_file = re.search(r'analysis//\w+(.yuv\d+)', f).group(1)

 if '.yuv'+str(err_per) == desired_file:

 wr.writerow([f,str(float(err_per/10000.0)*100)]+[j for i in output for j in

i])

if __name__ == '__main__':

 main()

147

APPENDIX C. SRAM TEST PLATFORM SUITE

Description: This consists of the Arduino, Raspberry Pi, and SRAM voltage slave code

used as an SRAM Test Platform. Written by Ali Ahmad Haidous.

C.1. Raspberry Pi Master Controller

C.1.1. arduino-slave.py

from smbus2 import SMBusWrapper, i2c_msg

import random

from enum import Enum

import struct

ARDUINO_ADDRESS = 0x04

TRANSACTION_LENGTH = 9

class I2CSlaveCommand(Enum):

 UNDEFINED_CMD = 0

 INVALID_CMD = 1

 WRITE_CMD = 2

 READ_CMD = 3

class I2CSlaveError(Enum):

 INVALID_ERROR = 0

 CRC_ERROR = 1

 LENGTH_ERROR = 2

 NO_RESPONSES_ERROR = 3

def writeBlock(block):

 block = []

 try:

 with SMBusWrapper(1) as bus:

 msg = i2c_msg.write(ARDUINO_ADDRESS, block)

 bus.i2c_rdwr(msg)

 except IOError:

 pass

 for m in msg:

 block.append(m)

 return block

def readBlock(numBytes):

 block = []

 try:

 with SMBusWrapper(1) as bus:

 msg = i2c_msg.read(ARDUINO_ADDRESS, numBytes)

 bus.i2c_rdwr(msg)

 except IOError:

 pass

 for m in msg:

 block.append(m)

 return block

def genCRC8(data, length):

 crc = 0xff;

 for i in range(length):

 crc ^= data[i];

 for j in range(8):

 if ((crc & 0x80) != 0):

 crc = ((crc << 1) ^ 0x31) & 0xff;

 else:

 crc <<= 1;

 return crc;

def createTransaction(command, address, data):

148

 transaction = []

 transaction.append(command)

 transaction.append((address) & 0xFF)

 transaction.append((address >> 8) & 0xFF)

 transaction.append((address >> 16) & 0xFF)

 transaction.append((address >> 24) & 0xFF)

 transaction.append((data) & 0xFF)

 transaction.append((data >> 8) & 0xFF)

 transaction.append(0x00)

 crc = genCRC8(transaction, TRANSACTION_LENGTH-1)

 transaction.append(crc)

 return transaction

def genRandomData():

 randomData = struct.unpack('>H', bytearray(random.getrandbits(8) for _ in xrange(2)))[0]

 return randomData

def writeSramBlock(startingAddress, length):

 sramBlock = []

 for i in range(length):

 randomData = genRandomData()

 transaction = createTransaction(I2CSlaveCommand.WRITE_CMD, startingAddress+i, randomData)

 writeBlock(transaction)

 rblock = readBlock(TRANSACTION_LENGTH)

 crc = genCRC8(rblock, TRANSACTION_LENGTH-1)

 if crc != rblock[TRANSACTION_LENGTH-1]:

 sramBlock.extend(writeSramBlock(startingAddress+i, 1))

 else:

 expectedRx = [I2CSlaveCommand.INVALID_CMD, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00,

I2CSlaveError.NO_RESPONSES_ERROR, crc]

 for i in range(TRANSACTION_LENGTH-1):

 if rblock[i] != expectedRx[i]:

 sramBlock.extend(writeSramBlock(startingAddress+i, 1))

 break

 sramBlock.append((startingAddress+i, randomData, 0))

 return sramBlock

def readSramBlock(startingAddress, length):

 sramBlock = []

 for i in range(length):

 transaction = createTransaction(I2CSlaveCommand.READ_CMD, startingAddress+i, 0x0000)

 writeBlock(transaction)

 rblock = readBlock(TRANSACTION_LENGTH)

 crc = genCRC8(rblock, TRANSACTION_LENGTH-1)

 if crc != rblock[TRANSACTION_LENGTH-1]:

 sramBlock.extend(readSramBlock(startingAddress+i, 1))

 rxaddress = rblock[4]

 rxaddress = (rxaddress << 8) | rblock[3]

 rxaddress = (rxaddress << 8) | rblock[2]

 rxaddress = (rxaddress << 8) | rblock[1]

 rxdata = rblock[6]

 rxdata = (rxdata << 8) | rblock[5]

 rxerror = rblock[7]

 sramBlock.append((rxaddress, rxdata, rxerror))

 return sramBlock

def main():

 wsramBlocks = writeSramBlock(0, 10)

 rsramBlocks = readSramBlock(0, 10)

 print wsramBlocks

 print rsramBlocks

 writeFile = open("sramdata.txt", "w+")

 writeFile.write("Address | Data | Error\r\n")

 for wsramBlock, rsramBlock in zip(wsramBlocks, rsramBlocks):

 waddress, wdata, werror = wsramBlock

 raddress, rdata, rerror = rsramBlock

 writeFile.write("w: " + hex(waddress) + " | " + hex(wdata) + " | " + hex(werror) + "

|\r\n")

149

 writeFile.write("r: " + hex(raddress) + " | " + hex(rdata) + " | " + hex(rerror) + "

|\r\n")

 writeFile.close()

if __name__ == "__main__":

 main()

C.2. Arduino SRAM Slave Controller

C.2.1. arduino_sram_slave.ino

#include "Global_Defines.h"

#include "CY62147GE.h"

#include "SRAM_Slave.h"

#include "I2C.h"

volatile union I2CBuffer_U buf;

uint16_t GetRandomOffset();

void VerifyWrite(uint32_t range);

void VerifyRead(uint32_t range);

void CommandVoltage(uint16_t voltage);

void setup() {

#ifdef SERIAL_DEBUG_ENABLED

 Serial.begin(115200);

#endif /*SERIAL_DEBUG_ENABLED*/

 I2c.Init(I2C_OUR_SLAVE_ADDRESS);

 SramSlave.Init();

#ifndef VALIDATE_SRAM

 CommandVoltage(250);

#else

#endif

 randomSeed(analogRead(0));

}

uint16_t GetRandomOffset()

{

 uint16_t random_offset = random(0x1000, 0xFFFF);

#ifdef SERIAL_DEBUG_ENABLED

 Serial.print("Random offset: ");

 Serial.println(random_offset, HEX);

#endif /*SERIAL_DEBUG_ENABLED*/

 return random_offset;

}

void loop() {

#ifdef VALIDATE_SRAM

 uint16_t voltage = 0;

 for (voltage = 150; voltage > 95; voltage--)

 {

 CY62147GE_Powerdown();

 delay(50);

 CommandVoltage(50);

 delay(500);

 CommandVoltage(voltage);

 delay(500);

#ifdef VERIFY_ZEROS

 VerifyWrite(MAX_SRAM_ADDRESS, 0);

#else

 uint16_t offset = GetRandomOffset();

 VerifyWrite(MAX_SRAM_ADDRESS, offset);

#endif

150

 delay(500);

#ifdef VERIFY_ZEROS

 VerifyRead(MAX_SRAM_ADDRESS, 0);

#else

 VerifyRead(MAX_SRAM_ADDRESS, offset);

#endif

 // Reset SRAM

 CommandVoltage(220);

 delay(500);

 uint32_t address = 0;

 for(address = 0; address < MAX_SRAM_ADDRESS; address++)

 {

 CY62147GE_Write(address, (uint16_t)0xFFFF);

 }

 }

#endif

 while(1);

}

void VerifyWrite(uint32_t range, uint16_t offset)

{

 uint32_t address = 0;

 for(address = 0; address < range; address++)

 {

#ifdef VERIFY_ZEROS

 CY62147GE_Write(address, (uint16_t)0);

#else

 CY62147GE_Write(address, (uint16_t)(address + offset));

#endif

 if (!(address % 1024))

 {

#ifdef SERIAL_DEBUG_ENABLED_VALIDATION

 Serial.print("Address: ");

 Serial.print(address, HEX);

 Serial.println(" written");

#endif /*SERIAL_DEBUG_ENABLED_VALIDATION*/

 }

 }

}

void VerifyRead(uint32_t range, uint16_t offset)

{

 uint32_t address = 0;

 uint16_t data = 0;

 uint8_t error = 0;

 for(address = 0; address < range; address++)

 {

 CY62147GE_Read(address, &data, &error);

 if (!(address % 1024))

 {

#ifdef SERIAL_DEBUG_ENABLED_VALIDATION

 Serial.print("Address: ");

 Serial.print(address, HEX);

 Serial.println(" read");

#endif /*SERIAL_DEBUG_ENABLED_VALIDATION*/

 }

#ifdef VERIFY_ZEROS

 if ((uint16_t)0 != data)

#else

 if ((uint16_t)(address + offset) != data)

#endif

 {

#ifdef SERIAL_DEBUG_ENABLED

 Serial.print("Address: ");

 Serial.print(address, HEX);

 Serial.print(" expected: ");

151

#ifdef VERIFY_ZEROS

 Serial.print((uint16_t)0, HEX);

#else

 Serial.print((uint16_t)(address + offset), HEX);

#endif

 Serial.print(" data: ");

 Serial.println(data, HEX);

#endif /*SERIAL_DEBUG_ENABLED*/

 }

 }

}

void CommandVoltage(uint16_t voltage)

{

 buf.Buffer.Length = I2C_HEADER_LENGTH+2;

 buf.Buffer.Command = DAC_OUTPUT_CMD;

 buf.Buffer.Data[0] = voltage & 0xFF;

 buf.Buffer.Data[1] = (voltage >> 8) & 0xFF;

 I2c.Transmit(I2C_VOLTAGE_SLAVE, &buf);

 delay(100);

 I2c.Transmit(I2C_VOLTAGE_SLAVE, &buf);

 float analog = ((float)voltage)/100.0;

#ifdef SERIAL_DEBUG_ENABLED

 Serial.print("Command Voltage: ");

 Serial.print(analog);

 Serial.println("V");

#endif /*SERIAL_DEBUG_ENABLED*/

}

C.2.2. SRAM_Slave.h

#ifndef SRAM_SLAVE_H

#define SRAM_SLAVE_H

#include "Global_Defines.h"

#include "I2C.h"

#define SRAM_MAX_ADDRESS (0x3FFFF)

#define SRAM_MIN_ADDRESS (0x00000)

class SRAM_Slave

{

private:

 static union I2CBuffer_U respBuffer;

 static uint16_t sramData;

 static uint8_t sramError;

#ifdef TEST_I2C

 static void testI2c(uint8_t *buffer);

#endif /*TEST_I2C*/

 static void writeSram(uint8_t *buffer);

 static void readSram(uint8_t *buffer);

 static I2C i2c;

public:

 SRAM_Slave();

 void Init();

#ifdef TEST_SRAM

 void Test_SRAM_Write(uint32_t lowRange, uint32_t highRange, uint16_t offset);

 void Test_SRAM_Read(uint32_t lowRange, uint32_t highRange, uint16_t offset);

#endif /*TEST_SRAM*/

};

extern SRAM_Slave SramSlave;

#endif /*SRAM_SLAVE_H*/

152

C.2.3. SRAM_Slave.cpp

#include "CY62147GE.h"

#include "I2C.h"

#include "SRAM_Slave.h"

#define VERIFY_RANGE (0xFFFu)

#define ADD_OFFSET (0U)

union I2CBuffer_U SRAM_Slave :: respBuffer;

uint16_t SRAM_Slave :: sramData;

uint8_t SRAM_Slave :: sramError;

SRAM_Slave :: SRAM_Slave()

{

}

void SRAM_Slave :: Init()

{

#ifdef TEST_SRAM

 CY62147GE_Init();

 I2c.AddCommandRouter(WRITE_SRAM_CMD, writeSram);

 I2c.AddCommandRouter(READ_SRAM_CMD, readSram);

#endif /*TEST_SRAM*/

#ifdef TEST_I2C

 I2c.AddCommandRouter(TEST_I2C_CMD, testI2c);

#endif /*TEST_I2C*/

#ifdef TEST_SRAM_DEBUG_ENABLED

 Serial.println("Init SRAM_Slave");

#endif /*TEST_SRAM_DEBUG_ENABLED*/

}

#ifdef TEST_I2C

void SRAM_Slave :: testI2c(uint8_t *buffer)

{

 uint8_t i;

 for (i = 0; i < BUFFER_LENGTH-I2C_HEADER_LENGTH; i++)

 {

 respBuffer.Buffer.Data[i] = buffer[i];

 }

 respBuffer.Buffer.Command = TEST_I2C_RESP;

 respBuffer.Buffer.Length = BUFFER_LENGTH;

 I2c.PostResponse(&respBuffer);

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

 Serial.print("testI2c: ");

 for (i = 0; i < BUFFER_LENGTH; i++)

 {

 Serial.print(respBuffer.Bytes[i], HEX);

 Serial.print(" ");

 }

 Serial.println();

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

}

#endif /*TEST_I2C*/

#ifdef TEST_SRAM

void SRAM_Slave :: writeSram(uint8_t *buffer)

{

 uint32_t address;

 uint16_t data;

 uint8_t i;

 address = buffer[3];

 address = (address << 8) | buffer[2];

153

 address = (address << 8) | buffer[1];

 address = (address << 8) | buffer[0];

 data = buffer[5];

 data = (data << 8) | buffer[4];

 CY62147GE_Write(address, data);

 respBuffer.Buffer.Data[0] = buffer[0];

 respBuffer.Buffer.Data[1] = buffer[1];

 respBuffer.Buffer.Data[2] = buffer[2];

 respBuffer.Buffer.Data[3] = buffer[3];

 respBuffer.Buffer.Data[4] = buffer[4];

 respBuffer.Buffer.Data[5] = buffer[5];

 respBuffer.Buffer.Command = WRITE_SRAM_RESP;

 respBuffer.Buffer.Length = I2C_HEADER_LENGTH + 6;

 I2c.PostResponse(&respBuffer);

#ifdef SERIAL_DEBUG_ENABLED

#ifdef TEST_SRAM_DEBUG_ENABLED

 Serial.print("writeSram: ");

 Serial.print(" address: ");

 Serial.print(address, HEX);

 Serial.print(" data: ");

 Serial.print(data, HEX);

 Serial.println();

#endif /*TEST_SRAM_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

}

void SRAM_Slave :: readSram(uint8_t *buffer)

{

 uint32_t address;

 uint8_t i;

 address = buffer[3];

 address = (address << 8) | buffer[2];

 address = (address << 8) | buffer[1];

 address = (address << 8) | buffer[0];

 CY62147GE_Read(address, &sramData, &sramError);

 respBuffer.Buffer.Data[0] = buffer[0];

 respBuffer.Buffer.Data[1] = buffer[1];

 respBuffer.Buffer.Data[2] = buffer[2];

 respBuffer.Buffer.Data[3] = buffer[3];

 respBuffer.Buffer.Data[4] = (uint8_t)(sramData & 0xFF);

 respBuffer.Buffer.Data[5] = (uint8_t)((sramData >> 8) & 0xFF);

 respBuffer.Buffer.Data[6] = sramError;

 respBuffer.Buffer.Command = READ_SRAM_RESP;

 respBuffer.Buffer.Length = I2C_HEADER_LENGTH + 7;

 I2c.PostResponse(&respBuffer);

#ifdef SERIAL_DEBUG_ENABLED

#ifdef TEST_SRAM_DEBUG_ENABLED

 Serial.print("readSram: ");

 Serial.print(" address: ");

 Serial.print(address, HEX);

 Serial.print(" data: ");

 Serial.print(sramData, HEX);

 Serial.print(" error: ");

 Serial.print(sramError, HEX);

 Serial.println();

#endif /*TEST_SRAM_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

}

#endif /*TEST_SRAM*/

SRAM_Slave SramSlave = SRAM_Slave();

154

C.2.4. I2C.h

#ifndef I2C_H

#define I2C_H

#include "Global_Defines.h"

#include <Wire.h>

#define I2C_HEADER_LENGTH (3u)

#define I2C_RESPONSE_QUEUE_LENGTH (10u)

enum I2CCommand_E

{

 INVALID_CMD,

 TEST_I2C_CMD,

 WRITE_SRAM_CMD,

 READ_SRAM_CMD,

 DAC_OUTPUT_CMD,

 MAX_COMMANDS

};

enum I2CResponse_E

{

 INVALID_RESP = MAX_COMMANDS+1,

 TEST_I2C_RESP,

 WRITE_SRAM_RESP,

 READ_SRAM_RESP,

 MAX_RESPONSES

};

enum I2CErrorCodes_E

{

 NO_ERROR,

 NO_RESPONSES_ERROR,

 LENGTH_ERROR,

 CRC_ERROR,

 COMMAND_ERROR,

 INVALID_ERROR

};

struct I2CBuffer_S {

 uint8_t Crc;

 uint8_t Length;

 uint8_t Command;

 uint8_t Data[BUFFER_LENGTH - I2C_HEADER_LENGTH];

};

union I2CBuffer_U {

 struct I2CBuffer_S Buffer;

 uint8_t Bytes[BUFFER_LENGTH];

};

struct I2CResponseQueue_S {

 union I2CBuffer_U Buffers[I2C_RESPONSE_QUEUE_LENGTH];

 uint8_t Head;

 uint8_t Tail;

 uint8_t Size;

 uint16_t Overrun;

};

using I2CCmdHandler = void(*)(uint8_t *);

struct I2CCommandRouter_S {

 uint8_t Command;

 I2CCmdHandler Handler;

};

class I2C

{

private:

155

 static union I2CBuffer_U rxCommand;

 static struct I2CResponseQueue_S txResponseQueue;

 static struct I2CCommandRouter_S commandRouter[];

 static uint8_t commands;

 static void receiveData(int byteCount);

 static void sendData();

 static void removeResponse(union I2CBuffer_U *resp);

 static void postError(uint8_t error, uint8_t errorReason);

 static void routeCommand(struct I2CBuffer_S *buf);

 static uint8_t genCRC8(uint8_t *data, uint8_t len);

public:

 I2C();

 void Init(uint8_t address);

 void AddCommandRouter(uint8_t cmd, I2CCmdHandler cmdHandler);

 void Transmit(uint8_t slaveAddress, union I2CBuffer_U *buf);

 bool Request(uint8_t slaveAddress, union I2CBuffer_U *buf);

 void PostResponse(union I2CBuffer_U *resp);

 void Scanner(uint8_t* devices, uint8_t* numDevices);

};

extern I2C I2c;

#endif /*I2C_H*/

C.2.5. I2C.cpp

#include "I2C.h"

#define I2C_STANDARD_MODE (100000u)

#define I2C_FAST_MODE (400000u)

#define I2C_FAST_PLUS_MODE (1000000u)

#define I2C_HIGH_SPEED_MODE (3400000u)

union I2CBuffer_U I2C :: rxCommand;

struct I2CResponseQueue_S I2C :: txResponseQueue;

struct I2CCommandRouter_S I2C :: commandRouter[MAX_COMMANDS];

uint8_t I2C :: commands;

///

/// Public

///

I2C :: I2C()

{

}

void I2C :: Init(uint8_t address)

{

 Wire.setClock(I2C_HIGH_SPEED_MODE);

 Wire.begin(address);

 Wire.onReceive(receiveData);

 Wire.onRequest(sendData);

 commands = 0;

 txResponseQueue.Head = 0;

 txResponseQueue.Tail = 0;

 txResponseQueue.Size = 0;

 txResponseQueue.Overrun = 0;

#ifdef I2C_DEBUG_ENABLED

 Serial.println("Init I2C");

#endif /*I2C_DEBUG_ENABLED*/

}

void I2C :: AddCommandRouter(uint8_t cmd, I2CCmdHandler cmdHandler)

{

156

 if (commands < MAX_COMMANDS)

 {

 commandRouter[commands].Command = cmd;

 commandRouter[commands].Handler = cmdHandler;

 commands++;

 }

}

void I2C :: Transmit(uint8_t slaveAddress, union I2CBuffer_U *buf)

{

 uint8_t i;

 buf->Buffer.Crc = genCRC8(&(buf->Bytes[1]), (buf->Buffer.Length) - 1);

 Wire.beginTransmission(slaveAddress);

 Wire.write((const uint8_t *)(buf->Bytes), buf->Buffer.Length);

 Wire.endTransmission();

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

 Serial.print("i2ctx: ");

 for (i = 0; i < buf->Buffer.Length; i++)

 {

 Serial.print(buf->Bytes[i], HEX);

 Serial.print(" ");

 }

 Serial.println();

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

}

bool I2C :: Request(uint8_t address, union I2CBuffer_U *buf)

{

 uint8_t i;

 bool retVal = true;

 uint8_t rxBytes = 0;

 uint8_t crc;

 Wire.requestFrom(address, (uint8_t)BUFFER_LENGTH);

 while (Wire.available())

 {

 buf->Bytes[rxBytes++] = Wire.read();

 }

 crc = genCRC8(&(buf->Bytes[1]), (buf->Buffer.Length) - 1);

 if ((crc != buf->Buffer.Crc) || (rxBytes != buf->Buffer.Length))

 {

 retVal = false;

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

 Serial.print("Bad CRC ");

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

 }

 else

 {

 retVal = true;

 }

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

 Serial.print("i2crx: ");

 for (i = 0; i < rxBytes; i++)

 {

 Serial.print(buf->Bytes[i], HEX);

 Serial.print(" ");

 }

 Serial.println();

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

 return retVal;

157

}

void I2C :: PostResponse(union I2CBuffer_U *resp)

{

 uint8_t i;

 if (txResponseQueue.Size >= I2C_RESPONSE_QUEUE_LENGTH)

 {

 txResponseQueue.Overrun++;

 }

 else

 {

 resp->Buffer.Crc = genCRC8(&(resp->Bytes[1]), (resp->Buffer.Length) - 1);

 for (i = 0; i < resp->Buffer.Length; i++)

 {

 txResponseQueue.Buffers[txResponseQueue.Head].Bytes[i] = resp->Bytes[i];

 }

 txResponseQueue.Head++;

 txResponseQueue.Size++;

 if (txResponseQueue.Head >= I2C_RESPONSE_QUEUE_LENGTH)

 {

 txResponseQueue.Head = 0;

 }

 }

}

void I2C :: Scanner(uint8_t* devices, uint8_t* numDevices)

{

 uint8_t error;

 uint8_t address;

 uint8_t i;

 *numDevices = 0;

 for (address = 1; address < 127; address++)

 {

 // The i2c_scanner uses the return value of

 // the Write.endTransmisstion to see if

 // a device did acknowledge to the address.

 Wire.beginTransmission(address);

 error = Wire.endTransmission();

 if (error == 0)

 {

 devices[(*numDevices)++] = address;

 }

 }

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

 Serial.print("I2C Scanner: ");

 Serial.print(*numDevices);

 Serial.print(" device(s) found at address(es) -> ");

 for (i = 0; i < *numDevices; i++)

 {

 Serial.print(devices[i], HEX);

 Serial.print(" ");

 }

 Serial.println();

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

}

///

/// Private

///

void I2C :: removeResponse(union I2CBuffer_U *resp)

{

 uint8_t i;

 if (txResponseQueue.Size == 0)

158

 {

 resp->Buffer.Length = 4;

 resp->Buffer.Command = INVALID_CMD;

 resp->Buffer.Data[0] = NO_RESPONSES_ERROR;

 resp->Buffer.Crc = genCRC8(&(resp->Bytes[1]), resp->Buffer.Length - 1);

 }

 else

 {

 for (i = 0; i < txResponseQueue.Buffers[txResponseQueue.Tail].Buffer.Length; i++)

 {

 resp->Bytes[i] = txResponseQueue.Buffers[txResponseQueue.Tail].Bytes[i];

 }

 txResponseQueue.Size--;

 txResponseQueue.Tail++;

 if (txResponseQueue.Tail >= I2C_RESPONSE_QUEUE_LENGTH)

 {

 txResponseQueue.Tail = 0;

 }

 }

}

void I2C :: receiveData(int byteCount)

{

 uint8_t i;

 uint8_t crc;

 for (i = 0; (i < BUFFER_LENGTH) && Wire.available(); i++)

 {

 rxCommand.Bytes[i] = Wire.read();

 }

 if ((byteCount > BUFFER_LENGTH) || (rxCommand.Buffer.Length > BUFFER_LENGTH))

 {

 postError(LENGTH_ERROR, byteCount);

 while (Wire.available())

 {

 (void)Wire.read();

 }

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

 Serial.print("Bad Length ");

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

 }

 crc = genCRC8(&rxCommand.Bytes[1], rxCommand.Buffer.Length - 1);

 if (crc != rxCommand.Buffer.Crc)

 {

 postError(CRC_ERROR, crc);

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

 Serial.print("Bad CRC ");

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

 }

 else if (rxCommand.Buffer.Command >= MAX_COMMANDS)

 {

 postError(COMMAND_ERROR, rxCommand.Buffer.Command);

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

 Serial.print("Bad Command ");

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

 }

 else

 {

 routeCommand(&(rxCommand.Buffer));

 }

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

159

 Serial.print("i2c>>> ");

 for (i = 0; i < BUFFER_LENGTH; i++)

 {

 Serial.print(rxCommand.Bytes[i], HEX);

 Serial.print(" ");

 }

 Serial.println();

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

}

void I2C :: sendData()

{

 uint8_t i;

 union I2CBuffer_U resp;

 removeResponse(&resp);

 Wire.write((const uint8_t *)&(resp.Bytes[0]), resp.Buffer.Length);

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

 Serial.print("i2c<<< ");

 for (i = 0; i < resp.Buffer.Length; i++)

 {

 Serial.print(resp.Bytes[i], HEX);

 Serial.print(" ");

 }

 Serial.println();

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

}

void I2C :: postError(uint8_t error, uint8_t errorReason)

{

 union I2CBuffer_U errorBuf;

 errorBuf.Buffer.Data[0] = error;

 errorBuf.Buffer.Data[1] = errorReason;

 errorBuf.Buffer.Command = INVALID_RESP;

 errorBuf.Buffer.Length = I2C_HEADER_LENGTH + 2;

 I2c.PostResponse(&errorBuf);

}

void I2C :: routeCommand(struct I2CBuffer_S *buf)

{

 uint8_t i;

 for (i = 0; i < MAX_COMMANDS; i++)

 {

 if (commandRouter[i].Command == buf->Command)

 {

 commandRouter[i].Handler(&(buf->Data[0]));

 }

 }

}

uint8_t I2C :: genCRC8(uint8_t *data, uint8_t len)

{

 uint8_t crc = 0xff;

 uint8_t i, j;

 for (i = 0; i < len; i++)

 {

 crc ^= data[i];

 for (j = 0; j < 8; j++)

 {

 if ((crc & 0x80) != 0) crc = (uint8_t)((crc << 1) ^ 0x31);

 else crc <<= 1;

 }

 }

 return crc;

}

160

I2C I2c = I2C();

C.2.6. CY62147GE.h

#ifndef CY62147GE_H

#define CY62147GE_H

#include "Global_Defines.h"

#ifdef TEST_SRAM

#ifdef __cplusplus

extern "C"

{

#endif

#define MAX_SRAM_ADDRESS (262144u)

extern void CY62147GE_Init(void);

extern void CY62147GE_Powerdown(void);

extern void CY62147GE_Write(uint32_t address, uint16_t data);

extern void CY62147GE_Read(uint32_t address, uint16_t *data, uint8_t *error);

#ifdef __cplusplus

} // extern "C"

#endif

#endif /*TEST_SRAM*/

#endif /*CY62147GE_H*/

C.2.7. GY62147GE.c

#include "CY62147GE_Defines.h"

#include "CY62147GE.h"

#ifdef __cplusplus

extern "C"

{

#endif

#ifdef TEST_SRAM

static void writePins(PinInfo_T *pins, uint8_t size, uint32_t state);

static void readPins(PinInfo_T *pins, uint8_t size, uint32_t *state);

static void changeChipMode(ChipMode_T mode);

static void changePinMode(PinInfo_T *pins, uint8_t size, uint8_t mode);

void CY62147GE_Init(void)

{

 changePinMode(&ChipControlPins[0], NUMBER_OF_CONTROL_PINS, OUTPUT);

 changeChipMode(DESELECT_POWERDOWN);

 changePinMode(&ChipAddressPins[0], NUMBER_OF_ADDRESS_PINS, OUTPUT);

 changePinMode(&ChipIOPins[0], NUMBER_OF_IO_PINS, INPUT);

 changePinMode(&ChipGndPins[0], NUMBER_OF_GND_PINS, OUTPUT);

 changePinMode(&ChipVoltagePins[0], NUMBER_OF_GND_PINS, OUTPUT);

 pinMode(TSOP_ERR, INPUT);

 writePins(&ChipGndPins[0], NUMBER_OF_GND_PINS, 0b00);

 writePins(&ChipVoltagePins[0], NUMBER_OF_VOLTAGE_PINS, 0b11);

 changeChipMode(OUTPUT_DISABLED);

}

void CY62147GE_Powerdown(void)

161

{

 changeChipMode(DESELECT_POWERDOWN);

}

void CY62147GE_Write(uint32_t address, uint16_t data)

{

 writePins(&ChipAddressPins[0], NUMBER_OF_ADDRESS_PINS, address);

 changePinMode(&ChipIOPins[0], NUMBER_OF_IO_PINS, OUTPUT);

 writePins(&ChipIOPins[0], NUMBER_OF_IO_PINS, data);

 changeChipMode(DATA_IN_IO0_IO15);

 delayMicroseconds(1); // write the SRAM

 changeChipMode(OUTPUT_DISABLED);

}

void CY62147GE_Read(uint32_t address, uint16_t *data, uint8_t *error)

{

 writePins(&ChipAddressPins[0], NUMBER_OF_ADDRESS_PINS, address);

 changePinMode(&ChipIOPins[0], NUMBER_OF_IO_PINS, INPUT);

 changeChipMode(DATA_OUT_IO0_IO15);

 delayMicroseconds(1); // read the SRAM

 readPins(&ChipIOPins[0], NUMBER_OF_IO_PINS, data);

 *error = digitalRead(TSOP_ERR);

 changeChipMode(OUTPUT_DISABLED);

}

static void changeChipMode(ChipMode_T mode)

{

 switch (mode)

 {

 case DESELECT_POWERDOWN:

 digitalWrite(TSOP_BLE, 1);

 digitalWrite(TSOP_BHE, 1);

 digitalWrite(TSOP_OE, 1);

 digitalWrite(TSOP_WE, 1);

 digitalWrite(TSOP_CE, 1);

 break;

 case DATA_OUT_IO0_IO15:

 digitalWrite(TSOP_WE, 1);

 digitalWrite(TSOP_CE, 0);

 digitalWrite(TSOP_BLE, 0);

 digitalWrite(TSOP_BHE, 0);

 digitalWrite(TSOP_OE, 0);

 break;

 case OUTPUT_DISABLED:

 digitalWrite(TSOP_BLE, 0);

 digitalWrite(TSOP_BHE, 0);

 digitalWrite(TSOP_OE, 1);

 digitalWrite(TSOP_WE, 1);

 digitalWrite(TSOP_CE, 0);

 break;

 case DATA_IN_IO0_IO15:

 digitalWrite(TSOP_OE, 1);

 digitalWrite(TSOP_BLE, 0);

 digitalWrite(TSOP_BHE, 0);

 digitalWrite(TSOP_CE, 0);

 digitalWrite(TSOP_WE, 0);

 break;

 default:

 break;

 }

}

static void writePins(PinInfo_T *pins, uint8_t size, uint32_t state)

{

 uint8_t index;

 for (index = 0; index < size; index++)

 {

 digitalWrite(pins[index].Pin, ((state >> index) & 0x01));

 }

162

}

static void readPins(PinInfo_T *pins, uint8_t size, uint32_t *state)

{

 uint8_t index;

 uint32_t tempState = 0;

 for (index = 0; index < size; index++)

 {

 tempState += ((digitalRead(pins[index].Pin) & 0x01) << index);

 }

 *state = tempState;

}

static void changePinMode(PinInfo_T *pins, uint8_t size, uint8_t mode)

{

 uint8_t index;

 for (index = 0; index < size; index++)

 {

 pinMode(pins[index].Pin, mode);

 }

}

#endif /*TEST_SRAM*/

#ifdef __cplusplus

} // extern "C"

#endif

C.2.8. CY62147GE_Defines.h

#ifndef CY62147GE_DEFINES_H

#define CY62147GE_DEFINES_H

#include "Global_Defines.h"

#ifdef TEST_SRAM

#include <stdint.h>

#ifdef __cplusplus

extern "C"

{

#endif

#define NUMBER_OF_PINS (44u)

#define NUMBER_OF_ADDRESS_PINS (18u)

#define NUMBER_OF_IO_PINS (16u)

#define NUMBER_OF_CONTROL_PINS (5u)

#define NUMBER_OF_GND_PINS (2u)

#define NUMBER_OF_VOLTAGE_PINS (2u)

typedef enum ChipPinout_E

{

 /* Left side */

 TSOP_A4 = 53u,

 TSOP_A3 = 51u,

 TSOP_A2 = 49u,

 TSOP_A1 = 47u,

 TSOP_A0 = 45u,

 TSOP_CE = 43u, /* active low */

 TSOP_IO0 = 41u,

 TSOP_IO1 = 39u,

 TSOP_IO2 = 37u,

 TSOP_IO3 = 35u,

 TSOP_VCO = 33u, /* VOLTAGE */

 TSOP_VSS1 = 31u, /* GND */

 TSOP_IO4 = 29u,

163

 TSOP_IO5 = 27u,

 TSOP_IO6 = 25u,

 TSOP_IO7 = 23u,

 TSOP_WE = 2u, /* active low */

 TSOP_A17 = 3u,

 TSOP_A16 = 4u,

 TSOP_A15 = 5u,

 TSOP_A14 = 6u,

 TSOP_A13 = 7u,

 /* Right side */

 TSOP_A5 = 52u,

 TSOP_A6 = 50u,

 TSOP_A7 = 48u,

 TSOP_OE = 46u, /* active low */

 TSOP_BHE = 44u,

 TSOP_BLE = 42u, /* active low */

 TSOP_IO15 = 40u,

 TSOP_IO14 = 38u,

 TSOP_IO13 = 36u,

 TSOP_IO12 = 34u,

 TSOP_VSS2 = 32u, /* GND */

 TSOP_VCC = 30u, /* VOLTAGE */

 TSOP_IO11 = 28u,

 TSOP_IO10 = 26u,

 TSOP_IO9 = 24u,

 TSOP_IO8 = 22u,

 TSOP_ERR = 8u,

 TSOP_A8 = 9u,

 TSOP_A9 = 10u,

 TSOP_A10 = 11u,

 TSOP_A11 = 12u,

 TSOP_A12 = 13u,

}ChipPinout_T;

typedef enum ChipMode_E

{

 DESELECT_POWERDOWN,

 DATA_OUT_IO0_IO15,

 DATA_OUT_IO0_IO17,

 DATA_OUT_IO8_IO15,

 OUTPUT_DISABLED,

 DATA_IN_IO0_IO15,

 DATA_IN_IO0_IO17,

 DATA_IN_IO8_IO15,

} ChipMode_T;

typedef struct PinInfo_S

{

 const uint8_t Pin;

} PinInfo_T;

PinInfo_T ChipAddressPins[NUMBER_OF_ADDRESS_PINS] =

{

 { TSOP_A0 },

 { TSOP_A1 },

 { TSOP_A2 },

 { TSOP_A3 },

 { TSOP_A4 },

 { TSOP_A5 },

 { TSOP_A6 },

 { TSOP_A7 },

 { TSOP_A8 },

 { TSOP_A9 },

 { TSOP_A10 },

 { TSOP_A11 },

 { TSOP_A12 },

 { TSOP_A13 },

 { TSOP_A14 },

 { TSOP_A15 },

 { TSOP_A16 },

164

 { TSOP_A17 },

};

PinInfo_T ChipIOPins[NUMBER_OF_IO_PINS] =

{

 { TSOP_IO0 },

 { TSOP_IO1 },

 { TSOP_IO2 },

 { TSOP_IO3 },

 { TSOP_IO4 },

 { TSOP_IO5 },

 { TSOP_IO6 },

 { TSOP_IO7 },

 { TSOP_IO8 },

 { TSOP_IO9 },

 { TSOP_IO10 },

 { TSOP_IO11 },

 { TSOP_IO12 },

 { TSOP_IO13 },

 { TSOP_IO14 },

 { TSOP_IO15 },

};

PinInfo_T ChipControlPins[NUMBER_OF_CONTROL_PINS] =

{

 { TSOP_BLE },

 { TSOP_BHE },

 { TSOP_OE },

 { TSOP_WE },

 { TSOP_CE },

};

PinInfo_T ChipGndPins[NUMBER_OF_GND_PINS] =

{

 { TSOP_VSS1 },

 { TSOP_VSS2 },

};

PinInfo_T ChipVoltagePins[NUMBER_OF_VOLTAGE_PINS] =

{

 { TSOP_VCO },

 { TSOP_VCC },

};

#endif /*TEST_SRAM*/

#ifdef __cplusplus

} // extern "C"

#endif

#endif /*CY62147GE_DEFINES_H*/

C.2.9. Global_Defines.h

#ifndef GLOBAL_DEFINES_H

#define GLOBAL_DEFINES_H

#include <Arduino.h>

enum I2C_SLAVES

{

 I2C_TEST_SLAVE = (0x03u),

 I2C_SRAM_SLAVE = (0x04u),

 I2C_VOLTAGE_SLAVE = (0x05u),

};

#define I2C_OUR_SLAVE_ADDRESS I2C_SRAM_SLAVE

#define I2C_THEIR_SLAVE_ADDRESS I2C_VOLTAGE_SLAVE

165

#define SERIAL_DEBUG_ENABLED

//#define I2C_DEBUG_ENABLED

//#define TEST_SRAM_DEBUG_ENABLED

//#define TEST_SRAM_READ_DEBUG_ENABLED

#define TEST_SRAM

#define TEST_I2C

#define VALIDATE_SRAM

#define VERIFY_ZEROS

#endif /*GLOBAL_DEFINES_H*/

C.3. Arduino Voltage Slave Controller

C.3.1. arduino_voltage_slave.ino

#include "Voltage_Slave.h"

#include "I2C.h"

void setup() {

 Serial.begin(115200);

 VoltageSlave.Init();

 I2c.Init(I2C_OUR_SLAVE_ADDRESS);

 Serial.println("Ready");

#ifdef TEST_I2C

 delay(1000);

 union I2CBuffer_U buf;

 uint8_t devices[10];

 uint8_t numDevices;

 I2c.Scanner(&devices[0], &numDevices);

#endif

}

void loop() {

#ifdef HEARTBEAT

 delay(1000);

 Serial.print("My i2c address is ");

 Serial.print(I2C_OUR_SLAVE_ADDRESS);

 Serial.print(" - Heartbeat -> ");

 Serial.println(heartbeatcounter, DEC);

 heartbeatcounter++;

#endif

}

C.3.2. Voltage_Slave.h

#ifndef VOLTAGE_SLAVE

#define VOLTAGE_SLAVE

#include "Global_Defines.h"

#include "I2C.h"

class Voltage_Slave

{

private:

 static union I2CBuffer_U respBuffer;

 static void writeVoltage(uint8_t * buf);

#ifdef TEST_I2C

 static void testI2c(uint8_t *buf);

#endif /*TEST_I2C*/

public:

 Voltage_Slave();

166

 void Init();

 void WriteVoltage(float analog);

};

extern Voltage_Slave VoltageSlave;

#endif /*VOLTAGE_SLAVE*/

C.3.3. Voltage_Slave.cpp

#include "Voltage_Slave.h"

union I2CBuffer_U Voltage_Slave :: respBuffer;

Voltage_Slave :: Voltage_Slave()

{

}

void Voltage_Slave :: Init()

{

 analogWriteResolution(12);

 I2c.AddCommandRouter(DAC_OUTPUT_CMD, writeVoltage);

#ifdef TEST_I2C

 I2c.AddCommandRouter(TEST_I2C_CMD, testI2c);

#endif /*TEST_I2C*/

 Serial.println("Init Voltage_Slave");

}

void Voltage_Slave :: WriteVoltage(float analog)

{

 // Arduino Due does not have an analog output voltage from 0 V to Vref,

 // but from 1/6 to 5/6 of the reference voltage, that is, 0.55 V

 // and 2.75V with Vref = 3.3 V.

 int digital = 0;

 if ((analog >= 0.55) && (analog <= 2.75)) {

 digital = ((analog-0.55)/2.20)*4095;

 } else if (analog < 0.55) {

 digital = 0;

 }

 else {

 digital = 4095;

 }

 analogWrite(DAC0, digital);

}

void Voltage_Slave :: writeVoltage(uint8_t * buf)

{

 uint16_t digital = (buf[0] + (buf[1] << 8)) & 0xFFFF;

 float analog = ((float)digital)/100.0;

 VoltageSlave.WriteVoltage(analog);

#ifdef SERIAL_DEBUG_ENABLED

 Serial.print("writeVoltage: ");

 Serial.print(analog);

 Serial.print("V");

 Serial.println();

#endif /*SERIAL_DEBUG_ENABLED*/

}

#ifdef TEST_I2C

void Voltage_Slave :: testI2c(uint8_t *buf)

{

 uint8_t i;

 for (i = 0; i < BUFFER_LENGTH-I2C_HEADER_LENGTH; i++)

 {

 respBuffer.Buffer.Data[i] = buf[i];

 }

167

 respBuffer.Buffer.Command = TEST_I2C_RESP;

 respBuffer.Buffer.Length = BUFFER_LENGTH;

 I2c.PostResponse(&respBuffer);

#ifdef SERIAL_DEBUG_ENABLED

#ifdef I2C_DEBUG_ENABLED

 Serial.print("testI2c: ");

 for (i = 0; i < BUFFER_LENGTH; i++)

 {

 Serial.print(respBuffer.Bytes[i], HEX);

 Serial.print(" ");

 }

 Serial.println();

#endif /*I2C_DEBUG_ENABLED*/

#endif /*SERIAL_DEBUG_ENABLED*/

}

#endif /*TEST_I2C*/

Voltage_Slave VoltageSlave = Voltage_Slave();

168

APPENDIX D. BIT TRUNCATION MANAGER

Description: This IP core is provided to take in a server protocol with frame number,

YUV truncation, x1, y1, x2, y2 and a local H264 CAVLC decoder frame_num to bit truncate the

exact pixel address of a 24-bit data width 22-bit address width frame buffer to support up-to

1920x1080 progressive (1080p) resolution. The pixels are truncated one at a time using the

system clock to realize the least hardware cost possible. Written by: Ali Ahmad Haidous.

D.1. BitTruncationManager IP Core

//---

// Design : BitTruncationManager

// Author(s) : Ali Haidous

// Email : ali.haidous@gmail.com

//

// Description: This IP core is provided to take in a server protocol with frame number,

// YUV truncation, x1, y1, x2, y2 and a local H264 CAVLC decoder frame_num

// to bit truncate the exact pixel address of a 24-bit data width 22-bit

// address width frame buffer to support up-to 1920x1080 progressive (1080p)

// resolution. The pixels are truncated one at a time using the system clock

// to realize the least hardware cost possible.

//

//

//

//

//

// Copyright (C) 2021 Ali Ahmad Haidous

// All rights reserved

//---

--

// Truncate YUV

`define no_truncation 3'b000

`define v_truncation 3'b001

`define u_truncation 3'b010

`define uv_truncation 3'b011

`define y_truncation 3'b100

`define yv_truncation 3'b101

`define yu_truncation 3'b110

`define yuv_truncation 3'b111

// this is the mobile device's BitTruncationManager implemented into the H264 decoder

module BitTruncationManager

(

 clock, // system clock to support pixel truncation

 decoder_frame_number, // from h264 decoder - frame number currently decoded from the

decoder

 frame_number, // from server - frame number from server protocol

 yuv_truncation, // from server - yuv truncation, reference enum above

 x1, // from server - x coordinate region top left

 y1, // from server - y coordinate region top left

 x2, // from server - x coordinate region bottom right

 y2, // from server - y coordinate region bottom right

 frame_number_request, // to server - frame number requested

 send_frame_flag, // to server - flag to send frame

 truncate_y, // to frame buffer - 1920 x 1080 max resolution, 2,073,600 y pixel

addresses

169

 truncate_u, // to frame buffer - 1920 x 1080 max resolution, 2,073,600 u pixel

addresses

 truncate_v // to frame buffer - 1920 x 1080 max resolution, 2,073,600 v pixel

addresses

);

 // System clock to truncate the frame buffer one pixel at a time

 input clock;

 // H264 CAVLC Decoder to Bit Truncation Manager

 input[21:0] decoder_frame_number;

 // Server to Mobile Device to Bit Truncation Manager

 input[21:0] frame_number;

 input[2:0] yuv_truncation;

 input[21:0] x1;

 input[21:0] y1;

 input[21:0] x2;

 input[21:0] y2;

 // Bit Truncation Manager to Mobile Device to Server

 output reg[21:0] frame_number_request;

 output reg send_frame_flag;

 // Bit Truncation Manager to Frame Buffer to Display

 output reg[21:0] truncate_y;

 output reg[21:0] truncate_u;

 output reg[21:0] truncate_v;

 integer x;

 integer y;

 integer current_x2;

 integer current_y2;

 // initialize locals

 initial begin

 x <= 2047;

 y <= 2047;

 current_x2 <= 0;

 current_y2 <= 0;

 end

 // request the frame number currently being decoded by the decoder from the server

 always @(decoder_frame_number or frame_number) begin

 if (decoder_frame_number != frame_number) begin

 frame_number_request <= decoder_frame_number;

 send_frame_flag <= 1'b1;

 end else if (decoder_frame_number == frame_number) begin

 send_frame_flag <= 1'b0;

 end

 end

 // iterate over all the pixels to be truncated in the given region

 always @(posedge clock) begin

 if (x2 != current_x2 &&

 y2 != current_y2) begin

 x <= x1;

 y <= y1;

 current_x2 <= x2;

 current_y2 <= y2;

 end else begin

 if (x <= current_x2) begin

 x <= x + 1;

 end else if (y <= current_y2) begin

 x <= x1;

 y <= y + 1;

 end

 end

170

 // truncate the pixels in the given region

 if (x <= current_x2 ||

 y <= current_y2) begin

 case (yuv_truncation)

 `no_truncation : begin

 truncate_y <= 22'b0;

 truncate_u <= 22'b0;

 truncate_v <= 22'b0;

 end

 `v_truncation : begin

 truncate_y <= 22'b0;

 truncate_u <= 22'b0;

 truncate_v <= x * y;

 end

 `u_truncation : begin

 truncate_y <= 22'b0;

 truncate_u <= x * y;

 truncate_v <= 22'b0;

 end

 `uv_truncation : begin

 truncate_y <= 22'b0;

 truncate_u <= x * y;

 truncate_v <= x * y;

 end

 `y_truncation : begin

 truncate_y <= x * y;

 truncate_u <= 22'b0;

 truncate_v <= 22'b0;

 end

 `yu_truncation : begin

 truncate_y <= x * y;

 truncate_u <= x * y;

 truncate_v <= 22'b0;

 end

 `yv_truncation : begin

 truncate_y <= x * y;

 truncate_u <= 22'b0;

 truncate_v <= x * y;

 end

 `yuv_truncation : begin

 truncate_y <= x * y;

 truncate_u <= x * y;

 truncate_v <= x * y;

 end

 default : begin

 truncate_y <= 22'b0;

 truncate_u <= 22'b0;

 truncate_v <= 22'b0;

 end

 endcase

 end

 end

endmodule // BitTruncationManager

D.2. BitTruncationManager Test Bench

//---

// Design : BitTruncationManager_tb

// Author(s) : Ali Haidous

// Email : ali.haidous@gmail.com

//

// Description: Test bench for the BitTruncationManager IP core.

//

//

//

171

//

//

//

//

//

// Copyright (C) 2021 Ali Ahmad Haidous

// All rights reserved

//---

--

`timescale 1 ns/10 ps // time-unit = 1 ns, precision = 10 ps

module BitTruncationManager_tb;

 // System clock to truncate the frame buffer one pixel at a time

 reg clock;

 // H264 CAVLC Decoder to Bit Truncation Manager

 reg[21:0] decoder_frame_number;

 // Server to Mobile Device to Bit Truncation Manager

 reg[21:0] frame_number;

 reg[2:0] yuv_truncation;

 reg[21:0] x1;

 reg[21:0] y1;

 reg[21:0] x2;

 reg[21:0] y2;

 // Bit Truncation Manager to Mobile Device to Server

 wire[21:0] frame_number_request;

 wire send_frame_flag;

 // Bit Truncation Manager to Frame Buffer to Display

 wire[21:0] truncate_y;

 wire[21:0] truncate_u;

 wire[21:0] truncate_v;

 // duration for each bit = 20 * timescale = 20 * 1 ns = 20ns

 localparam period = 20;

 BitTruncationManager DUT(.clock(clock),

 .decoder_frame_number(decoder_frame_number),

 .frame_number(frame_number),

 .yuv_truncation(yuv_truncation),

 .x1(x1),

 .y1(y1),

 .x2(x2),

 .y2(y2),

 .frame_number_request(frame_number_request),

 .send_frame_flag(send_frame_flag),

 .truncate_y(truncate_y),

 .truncate_u(truncate_u),

 .truncate_v(truncate_v));

 initial begin

 forever begin

 clock = 0;

 #period; // wait for period

 clock = 1;

 #period; // wait for period

 end

 end

 initial begin

 // test frame request

 #period; // wait for period

 decoder_frame_number = 55;

 frame_number = 35;

172

 #period; // wait for period

 frame_number = 55;

 #period; // wait for period

 #period; // wait for period

 decoder_frame_number = 56;

 frame_number = 55;

 #period; // wait for period

 frame_number = 56;

 #period; // wait for period

 #period; // wait for period

 decoder_frame_number = 57;

 frame_number = 56;

 #period; // wait for period

 frame_number = 57;

 #period; // wait for period

 #period; // wait for period

 decoder_frame_number = 58;

 frame_number = 57;

 #period; // wait for period

 frame_number = 58;

 #period; // wait for period

 // test yuv truncation

 yuv_truncation = 7;

 x1 = 1;

 y1 = 1;

 x2 = 8;

 y2 = 7;

 #840;

 x1 = 19;

 y1 = 25;

 x2 = 90;

 y2 = 80;

 #78100;

 yuv_truncation = 6;

 x1 = 14;

 y1 = 19;

 x2 = 83;

 y2 = 74;

 #75900;

 yuv_truncation = 5;

 x1 = 111;

 y1 = 113;

 x2 = 587;

 y2 = 473;

 #3427200;

 yuv_truncation = 4;

 x1 = 111;

 y1 = 211;

 x2 = 381;

 y2 = 471;

 #1404000;

 yuv_truncation = 3;

 x1 = 31;

 y1 = 41;

 x2 = 58;

 y2 = 67;

 #14040;

 yuv_truncation = 2;

 x1 = 991;

 y1 = 991;

173

 x2 = 998;

 y2 = 997;

 #840;

 yuv_truncation = 1;

 x1 = 881;

 y1 = 881;

 x2 = 888;

 y2 = 887;

 #840;

 yuv_truncation = 0;

 x1 = 211;

 y1 = 211;

 x2 = 268;

 y2 = 277;

 #75240;

 yuv_truncation = 3;

 x1 = 471;

 y1 = 471;

 x2 = 498;

 y2 = 497;

 #14040;

 yuv_truncation = 6;

 x1 = 751;

 y1 = 751;

 x2 = 788;

 y2 = 787;

 #26640;

 yuv_truncation = 5;

 x1 = 981;

 y1 = 981;

 x2 = 998;

 y2 = 997;

 #5440;

 yuv_truncation = 2;

 x1 = 145;

 y1 = 146;

 x2 = 848;

 y2 = 745;

 #8421940;

 yuv_truncation = 4;

 x1 = 212;

 y1 = 213;

 x2 = 338;

 y2 = 337;

 #312480;

 yuv_truncation = 0;

 x1 = 241;

 y1 = 241;

 x2 = 268;

 y2 = 287;

 #24840;

 yuv_truncation = 7;

 x1 = 271;

 y1 = 271;

 x2 = 298;

 y2 = 377;

 #57240;

 #100; // Let the simulation finish

 end

endmodule // BitTruncationManager_tb

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1. INTRODUCTION
	1.1. Motivation
	1.2. Viewer-Aware Bit-Truncation
	1.3. Self-Correcting Memory Throughout Voltage Scaling
	1.4. Smart Dynamic Memory Management in Video Decoder Processes

	CHAPTER 2. CONTENT-ADAPTIVE MEMORY FOR VIEWER-AWARE ENERGY-QUALITY SCALABLE MOBILE VIDEO SYSTEMS
	2.1. Introduction
	2.2. Related Work
	2.3. Influence of Video Content on Viewer’s Experience
	2.3.1. Mobile Video Memory System
	2.3.2. Influence of Video Content on Viewer’s Experience in the Presence of Hardware Noise
	2.3.2.1. Traditional PSNR Metric
	2.3.2.2. Video Macroblock Variance Analysis

	2.4. Modeling Process
	2.4.1. Subjective Testing Procedure for Data Collection
	2.4.2. Modeling Process
	2.4.2.1. Decision Tree Model
	2.4.2.2. Logistic Regression Model

	2.5. Quality Optimized Bit Truncation Design
	2.5.1. Quality Optimized Bit Truncation

	2.6. Content-Adaptation Video Memory Design
	2.7. Experimental Results
	2.7.1. Speed
	2.7.2. Layout
	2.7.3. Power Savings
	2.7.4. Video Quality

	CHAPTER 3. FLEXIBLE LOW COST POWER-EFFICIENT VIDEO MEMORY WITH ECC-ADAPTATION
	3.1. Introduction
	3.2. State of the Art
	3.2.1. Video Memory
	3.2.2. Review of Relevant Literature
	3.2.2.1. Video-Specific Memory with Design-Time Fixed Quality:
	3.2.2.2. Adaptive Memory with Dynamic Power-Quality Management:

	3.3. Proposed Low-Cost ECC Storage Scheme
	3.3.1. Traditional ECC
	3.3.2. Bit Significance Characteristics of Video Data and Proposed Storage Scheme for Parity Bits

	3.4. ECC Adaptation Based on Requirements and Failure Rate Based on Voltage
	3.4.1. Failure Characteristics of 6T SRAM
	3.4.2. Errors Injected, Including in Parity Bits
	3.4.3. ECC Under Various Failure Rates
	3.4.4. Proposed Runtime ECC Adaptation Scheme

	3.5. Proposed Memory
	3.5.1. Reusable ECC Encoder for ECC1511 and ECC74
	3.5.2. Reusable ECC Decoder for ECC1511 and ECC74
	3.5.3. Correction Unit
	3.5.4. Output MUX

	3.6. Results
	3.6.1. Timing Diagram
	3.6.2. Power Efficiency
	3.6.3. Video Quality

	3.7. Hardware Implementation for Verification
	3.7.1. Variable Voltage SRAM Test Platform
	3.7.2. SRAM Error Characterization at Given Voltages
	3.7.3. Hardware SRAM Testing
	3.7.4. Hardware SRAM Analysis

	3.8. Comparison with Prior Work
	3.8.1. Compared to State-of-the-Art Approximate Video Memories
	3.8.2. Compared to State-of-the-Art Adaptive SRAM
	3.8.3. Compared to State-of-the-Art SRAM with traditional ECC
	3.8.4. Compared to State-of-the-Art Memory with Selective ECC
	3.8.5. Comparison Summary

	CHAPTER 4. CONTENT-ADAPTABLE ROI-AWARE VIDEO STORAGE FOR POWER-QUALITY SCALABLE MOBILE STREAMING
	4.1. Introduction
	4.2. State of the Art
	4.2.1. Approximate Video-Specific Memory
	4.2.2. Viewer-Aware Video Memory

	4.3. Overview of the Proposed Technique
	4.3.1. Motivational Example
	4.3.1.1. Protected ROI
	4.3.1.2. Power savings vs. Bits Truncated

	4.3.2. Overview of the Proposed Content-Adaptable ROI-Aware Video Storage
	4.3.2.1. ROI Awareness
	4.3.2.2. Video Content Adaptation
	4.3.2.3. Truncation Region Extractor
	4.3.2.4. 3-Bit Truncation

	4.4. Proposed Technique: System Level and Circuit Level Implementation
	4.4.1. System-Level Implementation: Video Streaming Platform
	4.4.2. Memory Bit Truncation Manager
	4.4.3. H.264 Decoder and MBTM Integration
	4.4.4. Circuit-Level Implementation of the Proposed Frame Buffer Memory

	4.5. Experimental Methodologies
	4.5.1. Video Selection
	4.5.2. Video Frame Quality Metrics
	4.5.3. System-Level and Circuit-Level Implementation
	4.5.4. Video Quality Evaluation
	4.5.5. Statistical Hypothesis Validation

	4.6. Experimental Results
	4.6.1. Hardware FPGA System MBTM Overhead
	4.6.2. Circuit-Level Frame Buffer Timing Diagram
	4.6.3. Circuit-Level Frame Buffer Power Saving Analysis
	4.6.4. Video Visual Quality Comparisons
	4.6.5. Objective Video Quality and Bit Truncation Analysis
	4.6.6. Video-Level Power Saving Analysis
	4.6.7. Statistical Analysis

	CHAPTER 5. CONCLUSIONS AND FUTURE WORK
	5.1. Chapter 2: Content-Adaptive Memory for Viewer-Aware Energy-Quality Scalable Mobile Video Systems
	5.2. Chapter 3: Flexible Low Cost Power-Efficient Video Memory with ECC-Adaptation
	5.3. Chapter 4: Content-Adaptable ROI-Aware Video Storage for Power-Quality Scalable Mobile Streaming

	CHAPTER 6. REFERENCES
	6.1. Chapter 2
	6.2. Chapter 3
	6.3. Chapter 4

	APPENDIX A. MACROBLOCK VARIANCE TRUNCATION
	APPENDIX B. ECC 74 AND ECC 1511 ANALYZER
	APPENDIX C. SRAM TEST PLATFORM SUITE
	C.1. Raspberry Pi Master Controller
	C.1.1. arduino-slave.py

	C.2. Arduino SRAM Slave Controller
	C.2.1. arduino_sram_slave.ino
	C.2.2. SRAM_Slave.h
	C.2.3. SRAM_Slave.cpp
	C.2.4. I2C.h
	C.2.5. I2C.cpp
	C.2.6. CY62147GE.h
	C.2.7. GY62147GE.c
	C.2.8. CY62147GE_Defines.h
	C.2.9. Global_Defines.h

	C.3. Arduino Voltage Slave Controller
	C.3.1. arduino_voltage_slave.ino
	C.3.2. Voltage_Slave.h
	C.3.3. Voltage_Slave.cpp

	APPENDIX D. BIT TRUNCATION MANAGER
	D.1. BitTruncationManager IP Core
	D.2. BitTruncationManager Test Bench

