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ABSTRACT 

Wheat, a major global economic crop and food source, is currently threatened by climate 

change and the cascading effects, including increased disease pressure. Additionally, wheat 

yields have not increased significantly for decades, which may impact future food supply. 

Compared to other crop species, relatively few genes related to wheat yield have been mapped 

and cloned, with the vast majority in bread, or hexaploid, wheat. In this dissertation, I used three 

tetraploid wheat populations, Ben × PI 41025 (BP025), Divide × PI 272527 (DP527), and Rusty 

× PI 193883 (RP883) which were derived from crossing durum cultivars with cultivated emmer 

accessions. These three populations were evaluated under field conditions in three seasons for 11 

traits related to yield. Additionally, the DP527 population was evaluated under greenhouse 

conditions for these same 11 traits. The known genes ELF3, Ppd-B1, Vrn-A1, Q, Vrn-B1, 

WAPO-A1, FT-1, GNI-A1, GRF4 and Vrn2 were associated with numerous yield traits. For 

multiple QTL, the cultivated emmer parent contributed the increased effects. Findings from this 

study and the identified markers may be useful for breeders who are interested in introgressing 

the beneficial genes I identified into their germplasm. Here, I also report on the progress and 

markers developed for fine mapping of a kernels per spike gene that was first mapped in the 

BP025 population. The work I have done provides a foundation for the cloning of this kernels 

per spike gene. Lastly, in this dissertation, I screened a global winter wheat panel for genetic 

regions associated with susceptibility to the necrotrophic pathogen Parastagonospora nodorum, 

the causal agent of septoria nodorum blotch. I identified the previously cloned genes Tsn1 and 

Snn3-B1 to be associated with disease caused by the isolates Sn2000 and Sn4, respectively. I also 

report the first time a panel has been screened for sensitivity to the necrotrophic effectors 

SnTox267 and SnTox5, along with the prevalence of SnToxA, SnTox1, and SnTox3 sensitivity 
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in this panel. In conclusion, results obtained from these studies provides knowledge of 

genes/markers which are available to breeders that may provide useful in breeding programs and 

the overall goal of increasing wheat yield. 
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CHAPTER 1. GENERAL INTRODUCTION 

The global human population is experiencing a rate of rapid growth and is expected to 

top nine billion people by 2050. Any increase in population results in an increased food demand. 

Wheat (Triticum aestivum and T. durum) is a major world food crop and supplies approximately 

20% of the daily calories in the average human diet. In 2019, global wheat production was 766 

million tonnes on 215 million hectares (http://www.fao.org/faostat/en/#data/QCL). To meet the 

expended demand in 2050 for wheat, the wheat research community has set goals of increasing 

wheat yield by approximately 60% of what it is currently at, breeding for increased disease 

resistance, breeding for adaptability to abiotic stresses and the changing climate, and growing 

wheat on less arable land (International Wheat Yield Partnership 2020).  

One avenue of increased interest to the breeding community is mapping and cloning of 

wheat yield related traits. Much of the previous research in this area has been in bread, or 

common, wheat (T. aestivum L., 2n = 6x = 42, AABBDD). However, another important but 

smaller class of wheat is durum wheat (T. turgidum ssp. durum L., 2n = 4x = 28, AABB), which 

is grown for making pasta and other semolina products. Less research has been done to identify 

yield component traits in durum compared to bread wheat (Arriagada et al. 2020; Cao et al. 

2020; Colasuonno et al. 2021), and compared to other major crops, relatively few yield 

component genes have been cloned in wheat (Cao et al. 2020). Identifying genomic regions and 

the underlying genes associated with yield will allow breeders to more fine-tune yield, along 

with giving the community a better understanding of the complex relationships between the 

different pathways that contribute to overall wheat yield.  

Yield is comprised of three main subcomponents: the number of spikers per unit area, the 

number of kernels per spike and grain weight/size (Gegas et al. 2010; Brinton and Uauy 2018, 
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Cao et al. 2020). In this dissertation, I mapped 11 yield component traits (days to heading, plant 

height, spikelets per spike, kernels per spike, grain weight per spike, thousand kernel weight, 

kernel area, kernel width, kernel length, kernel circularity, and kernel length:width ratio) in three 

durum × cultivated emmer (T. turgidum ssp. dicoccum (Schrank) Schübl (2n = 4x = 28, AABB)) 

recombinant inbred populations under field conditions and one population under greenhouse 

conditions. Additionally, I began the fine-mapping and cloning process of a kernels per spike 

gene identified in tetraploid wheat.  

Pathogens are a biotic stress of wheat and can result in yield loses and reduced quality 

(Singh et al. 2016). One such pathogen is Parastagonospora nodorum, the causal agent of 

septoria norodum blotch (SNB). P. nodorum is a necrotrophic pathogen that causes chlorotic and 

necrotic lesions of wheat leaves and glumes and cause up to 50% yield loss (Eyal et al. 1987). 

Wheat and P. nodorum interact in an inverse gene-for-gene manner (Friesen and Faris 2021) and 

to date, a total of nine interactions have been characterized in this pathosystem. These 

interactions are: Tsn1-SnToxA, Snn1-SnTox1, Snn2-SnTox267, Snn3-B1-SnTox3, Snn3-D1-

SnTox3, Snn4-SnTox4, Snn5-SnTox5, Snn6-SnTox267, and Snn7-SnTox267 (see Chapter 3). 

Within this pathosystem, the host genes Tsn1, Snn1, and Snn3-D1 have been cloned (Faris et al. 

2010; Shi et al. 2016; Zhang et al. 2021) and the pathogen genes SnToxA, SnTox1, SnTox267, 

SnTox3, and SnTox5 have been cloned (Friesen et al. 2006; Liu et al. 2009; Liu et al. 2012, 

Kariyawasam et al. 2021, Richards et al. 2021). Additionally, QTL associated with disease have 

been mapped to almost every chromosome. Many of the initial studies focused on using bi-

parental populations, with more using association panels within the last decade (see Chapter 3). 

Most of the previous association mapping panels have been comprised of small regional lines or 

spring habit wheat. The purpose of my chapter mapping disease response to SNB was to fill this 
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material gap by using a global winter wheat panel to evaluate the prevalence of SnToxA, 

SnTox1, SnTox267, SnTox3, and SnTox5 sensitivity in a global panel, along with trying to 

identify if any new genomics regions are associated with SNB disease in this panel.  
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CHAPTER 2. LITERATURE REVIEW 

2.1. Introduction 

Wheat (Triticum ssp.) is one of the major global food crops, supplying approximately 

20% of calories and protein in the average human’s diet. Currently, the world population is 

expanding at a rapid rate, with upwards of 9 billion people predicted by 2050. To meet the 

expected increase in food demand, wheat yields will need to increase by 50% of current 

production rates to meet this demand on the same, or less, amount of cultivable acreage used 

today (IWYP 2017). Additional challenges the agricultural industry faces are increased global 

temperatures and the effects of climate change, which can negatively impact crop yield and 

quality. Some factors that reduce yield are abiotic stresses, such as drought, flooding, extreme 

heat, and soil degradation, along with biotic stresses, including pathogens and insect pests 

(IWYP; Singh and Upadhyaya 2015). Along with climate change and land availability 

challenges, plant breeders and the agriculture community are working towards more sustainable 

systems along with working to preserve biodiversity (Colasuonno et al. 2021; Lyzenga et al. 

2021).  

The two main types of wheat grown worldwide are common, or bread, wheat (Triticum 

aestivum L.) and durum wheat (T. turgidum ssp. durum L.). Current global wheat production is 

approximately 763 million tons per year (Gupta et al. 2019). Bread wheat constitutes 

approximately 95% of the worldwide wheat production. Products made from bread wheat 

include bread, pastries, cookies and noodles. Durum wheat occupies most of the rest of the 

worldwide wheat production and is used to make pasta and other semolina products.  

Bread wheat can be broken into multiple market classes, which are classified based on: 

winter or spring type, soft or hard kernels, and white or red kernels. Winter wheat requires a 
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vernalization period and is often grown in regions that experience periods of suitably low 

temperatures to meet this requirement without becoming cold enough to kill the plants. Within 

the US, bread wheat is grown from coast to coast, with the major production center in the Great 

Plains. Hard red winter wheat is the most abundantly grown market class, followed by hard red 

spring, soft red winter, and white wheat (https://www.ers.usda.gov/data-products/wheat 

data.aspx). Within the Great Plains, hard red winter wheat is grown in the southern portion and 

hard red spring wheat is primarily grown in the Dakotas, Minnesota and Montana. 

Durum wheat is grown on 14 million hectares worldwide, producing ~38 million tons per 

year (Colasuonno et al. 2021). Most durum is planted in the Mediterranean basin, followed by 

North America. Within North America, durum is produced in Canada and a handful of regions in 

the United States, which includes North Dakota, South Dakota, Montana, Arizona, California, 

and Minnesota. North Dakota is the largest producer of durum within the US, growing roughly 

60% of the total hectares (https://www.ag.ndsu.edu/plantsciences/research/durum/production). 

Approximately two-thirds of US durum is used within the country, with the rest being exported 

and the largest buyers from Italy and Algeria (https://www.ndwheat.com/buyers/NorthDakota 

WheatClasses/Durum/). Durum has a more limited growing range compared to bread wheat due 

to the need to be grown in a climate with cool summer nights and long warm days (http://www. 

ndwheat.com/buyers/?ID=295). Climate change and changing farmer preferences may push 

durum production out of North Dakota and the US within the coming decades. Understanding 

overall wheat yield and yield components in durum and deploying these traits may be essential 

for keeping production of this crop in this region and competitive on the worldwide market. 
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2.2. Wheat Domestication and Genome Reference Sequences 

The Triticum genus contains three main domestication genes: Q, Tg, and Br. Without 

naturally occurring mutations in these genes, humans would not have been able to transition 

from a hunting and gathering lifestyle to the agrarian lifestyle we live in today. These three 

domestication genes allowed farmers to harvest and thresh more grain more easily, resulting in 

increased yields. Wheat domestication occurred approximately 10,000 years ago in the Fertile 

Crescent (Dubcovsky and Dvorak 2007; Faris 2014).  

Wild wheat plants need a mechanism to disperse their seeds, which they do through 

having a brittle rachis, where abscission zones form along the base of the spike or spikelets 

making these parts prone to breakage. Mutations in the underlying gene, Br, and its homoeologs, 

led to the retention of the spikelets and the spike and allowed early farmers to harvest heads 

while still on the plant. Wild wheat has tough glumes that envelope wheat seeds to help protect 

them during dispersal but make extraction of the seed during threshing difficult. Wheat plants 

that have the wildtype Tg allele are non-free threshing partially due to this trait. Mutation of Tg 

led to plants with softer glumes, allowing for easier kernel extraction (Dubcovsky and Dvorak 

2007; Faris 2014). Lastly, the domestication gene q, which encodes an AP2-like transcription 

factor, affects many domestication traits in wheat. The presence of the Q allele confers the free-

threshing phenotype and affects many plant development components such as rachis fragility, 

glume toughness, spike architecture, flowering time and plant height, along with a square spike 

phenotype (Zhang et al. 2011a; Faris 2014, Zhang et al. 2020). For many years, Q had been the 

only wheat domestication gene that was cloned (Faris et al. 2003; Simons et al. 2006). Avni et al. 

(2017) cloned the brittle rachis gene TtBtr1 using comparisons between the durum and wild 

emmer genome sequences. The mutation in both TtBTR1 genes has a monophyletic origin, with 
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haplotype analysis indicating that the domestication of emmer, or loss of the brittle rachis trait, 

most likely occurred in the southern region of the Fertile Crescent (Nave et al. 2019). 

Wheat evolution began approximately 3 million years ago (MYA) when a seven-

chromosome ancestor gave rise to the two diploid progenitors of modern wheat: Triticum and 

Aegilops taxa (Faris 2014). The A genome donor, T. urartu Tumanian ex Gandylian (2n = 2x = 

14, AA), evolved from the Triticum progenitor approximately 2.6 MYA. The Aegilops 

progenitor gave rise to Ae. tauschii Coss. (2n = 2x = 14, DD), the donor of the D genome 

lineage, and Ae. speltoides Tausch (2n = 2x = 14, SS), the progenitor of the B genome lineage. 

These groups all had the wild type alleles of Br, Tg, and q and were not free threshing 

(Dubcovsky and Dvorak 2007; Faris 2014).  

The modern polyploid wheat lineage arose through the hybridization of a close relative of 

Ae. speltoides and T. urartu approximately 0.5 MYA (Huang et al. 2002; Chalupska et al. 2008). 

Controversy has surrounded the hypothesis that Ae. speltoides was the donor of the B-genome, 

with the current thought that it was indeed involved in the origin of the B genome, but may not 

have been the sole donor (Zhang et al. 2018). The resulting species from this hybridization was 

wild emmer wheat, T. turgidum ssp. dicoccoides (Körn.) Thell (2n = 4x = 28, AABB). Wild 

emmer has a brittle rachis, very thick glumes, and hulled seed. Wild emmer still grows today as a 

wild plant in the Fertile Crescent (Faris 2014). 

Mutations in the Br gene in wild emmer led to the domesticated emmer species T. 

turgidum ssp. dicoccum (Schrank) Schübl (2n = 4x = 28, AABB). This event occurred 

approximately 10,000 BP in the Karacadag region of the northern Levant. Domesticated, or 

commonly called cultivated, emmer was widely grown in the Middle East during the Prepottery 

Neolithic B period and was the major cereal crop during this time. Distribution of cultivated 
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emmer spread throughout the Mediterranean basin and Northern Europe. It also spread south to 

Egypt and west into central Asia and India where it was widely grown until 3,000 BP 

(Dubcovsky and Dvorak 2007; Faris 2014). Today, cultivated emmer is grown in parts of the 

Middle East and south Asia as a niche crop used to make traditional foods. It has also been used 

in recent years in breeding programs as a source of disease resistance genes (Zaharieva et al. 

2010). 

The acquisition of the Q allele and mutations in Tg resulted in the free-threshing 

tetraploid species grown today, durum wheat, T. turgidum ssp. durum (Desf.) MacKey (2n = 4x 

= 28, AABB). Although the first evidence of durum was found at Can Hassan III (modern day 

Turkey) and originated approximately 7,000 years ago, durum was not widely grown until 2,300 

BP since it was most likely intermixed with cultivated emmer (Faris 2014). T. durum is sexually 

compatible with both T. dicoccoides and T. dicoccum, providing researchers with ways to dissect 

differences in domestication, yield, disease, and additional traits between these species (Anvi et 

al. 2017).  

The first hexaploid wheat was the result of a hybridization between an AB genome 

tetraploid with Ae. tauschii to form a hexaploid species similar to T. aestivum ssp. spelta (2n= 6x 

= 42, AABBDD). This early hexaploid wheat, had Tg, br, and Q. The acquisition of tg led to the 

fully free-threshing hexaploid wheat, T. aestivum, grown today (Faris 2014). Common wheat is 

grown throughout the world, and it spread further than durum wheat due to the presence of the D 

genome, which allows for increased genome plasticity and adaptability to broader environmental 

conditions and end uses (Dubcovsky and Dvorak 2007).  

Knowledge of wheat evolution and the domestication lineage is important for unraveling 

the wheat genome and discovering economically important traits from wild and ancestral 
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species. Rapid advances in sequencing technologies within the last decade have allowed 

researchers to sequence the genomes of many species. The completion of a fully sequenced, high 

quality reference genome for wheat has been hindered by the high percentage of repetitive 

elements found throughout the wheat genome. This has not only affected the completion of a 

hexaploid wheat reference, but reference sequences for all three ploidy levels and tetraploid 

wheat (Marcussen et al. 2014). In addition to the presence of a high percent of repetitive 

elements, the tetraploid wheat genome is approximately 13.8 Gb/1C and the hexaploid genome is 

17.3 Gb/1C (Bennett and Leitch 1995), making assembling this vast amount of data difficult.  

The diploid wheat ancestors T. urartu, the A genome donor, and Ae. tauschii, the D 

genome donor, have been sequenced and are useful resources for understanding wheat evolution 

(Ling et al. 2013; Luo et al. 2013; Jia et al. 2013; Zhao et al. 2017). The wild emmer accession 

Zavitan (T. turgidum ssp. dicoccoides) was sequenced by Avni et al. (2017) and is being used to 

study the genetic differences between modern wheat and the common ancestor of both durum 

and bread wheat to unravel the genetic mechanisms of domestication.  

The first durum genome to be sequenced was the Italian durum cultivar ‘Svevo’ 

(Maccaferri et al. 2019). The final assembly was 10.45 gigabases and is considered fully 

assembled and reference quality. Maccaferri et al. (2019) showed the importance and utilization 

of having a reference available through cloning the gene TdHMA3-B1, which encodes a metal 

transporter and is involved in high cadmium accumulation in grain. Additionally, the cultivars 

‘Cappelli’ and ‘Strongfield’ have been sequenced (https://wheat-urgi.versailles.inra.fr/Seq-

Repository/Assemblies) and are available for BLAST analysis.  

In 2018, the first high quality reference sequence of the hexaploid wheat line Chinese 

Spring was released (IWGSC 2018). The annotated reference contains 21 chromosomes, 107,891 
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predicted high-confidence genes, and is 14.5 gigabases in length. Ramírez-González et al. (2018) 

used the reference to look at the transcriptional landscape and compare differences between the 

three subgenomes. It has also been useful in phylogenetic and diversity studies (Balfourier et al. 

2019), along with cloning of wheat genes.  

The next step in wheat genome sequencing is the development of pan-genomes. 

Walkowiak et al. (2020) released ten hexaploid genomes assembled as chromosome 

pseudomolecules and five as scaffold assemblies. These sequences, along with new ones as they 

become available, will provide a more complete picture of the gene repertoire of the wheat 

genome and will be an invaluable resource to the community for gene cloning, characterization, 

and breeding. 

2.3. Yield and Yield Component Traits in Wheat  

The most important trait that breeders strive to improve is yield. This is a difficult task 

because yield is a complex trait made up of many components. To add to the complexity of 

yield, each individual component is controlled by multiple genes scattered throughout the 

genome with each contributing to the final phenotype for that component. Grain yield is also 

strongly influenced by G × E interactions. 

Grain yield is comprised of two main components, grain number and grain size/weight, 

and can be defined as the product of multiplying grain number per unit area of land by the grain 

size or thousand kernel weight (TKW) (Li and Yang 2017; Griffiths et al. 2015). Grain number is 

influenced by factors such as number of reproductive tillers, inflorescence architecture, spike 

initiation, elongation, branching, and spikelet formation. Grain weight and size is influenced by 

grain cell number, grain cell size, and sink capacity (Blanco et al. 2012; reviewed by Nadolska-

Orczyk et al. 2017; Brinton et al. 2017). Often, a negative correlation is observed between 
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number of seeds and seed size, which is not only restricted to wheat but plant species in general 

(Sandras 2007). Breeders have bred for varieties that have minimized this trade off while 

favoring increased grain number; however, to greatly increase wheat yields, QTL that positively 

influence size without reducing grain number or vice versa could potentially lead to higher and 

more stable yields (Sehgal et al. 2017; Griffiths et al. 2015). 

Increased seed size was an important trait selected for during crop domestication (Li and 

Li 2015). Modern wheat grains are wider and shorter than those of ancestral cultivars (Gegas et 

al. 2010). Increased grain size is still a trait that is positively selected for; however, grain shape is 

not a common trait that breeders select for because grain shape is not directly correlated with 

grain size (Gegas et al. 2010; Li and Yang 2017). Grain shape parameters such as length, width, 

and area are correlated with TKW, with increases in these and overall grain size leading to 

increased TKW (Simmonds et al. 2016). TKW, along with kernels per spike (KPS) are part of 

the larger yield component of grain yield per spike (GYS). Increases in either TKW or KPS 

usually lead to an increase in grain weight per spike (GWS) but are usually negatively correlated 

with one another (Mangini et al. 2018).  

Mangini et al. (2018) proposed that the “negative relationship between grain number and 

grain weight is that the increase of grain number per unit area or per spike produced by a 

genotype results in a lower availability of photo-assimilates synthesized during grain filling for 

each grain, which leads to decrease in individual weight due to competition effects.” Correlations 

between yield traits may be due to a variety of factors, such as genetic linkage, pleiotropy, 

environmental factors, and yield component compensations.  

Additional yield determinants include the number of spikelets on an inflorescence and the 

number of fertile florets per spike. Very little is known about how these traits are genetically 



 

14 

controlled (Dixon et al. 2018). Optimizing floral fertility and improving wheat seed set may be 

another way to increase wheat yields. Mutants for the trait supernumerary spikelet have been 

developed and could be potentially used in future breeding efforts to enhance sink capacity and 

increase the number of grains per spike (Nadolska-Orczyk et al. 2017). 

Genes that impact yield in cereal species can be classified into five functional groups: 

transcription factors, which play a role in spike development and impact grain number; 

metabolism, or signaling of growth regulators such as cytokinins, gibberellins, and 

brassinosteroids, which control plant architecture; cell division and proliferation genes, which 

impact grain size; floral regulators, which impact seed number; and carbohydrate metabolism 

genes, which impact architecture and yield (Li and Li 2015; Li and Yang 2017; Nadolska-

Orczyk et al. 2017). Understanding how genes in these groups contribute to yield and how they 

interact with one another will be vital to achieving higher cereal yields using breeding and 

genetic approaches.  

To breed for lines with superior yield traits, and to understand how these genes interact 

with one another, yield genes need to be first identified, mapped, and characterized. QTL for 

yield components such as spikelets per spike (SPS), KPS, GWS, TKW, and grain dimension 

components have been identified on every chromosome in tetraploid and hexaploid wheat 

(Kumar et al. 2016; Zhou et al. 2017; Mangini et al. 2018; Griffiths et al. 2015; Sehgal et al. 

2017; Zhang et al. 2014a; Sukumaran et al. 2018a,b). The majority of wheat yield QTL studies 

have been done in hexaploid wheat, with the identification of yield QTL in tetraploid wheat 

lagging in comparison.  

Studies on QTL analyses for yield components in durum has been done using RIL 

populations (Maccaferri et al. 2008; Blanco et al. 2012; Patil et al. 2013; Graziani et al. 2014; 
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Russo et al. 2014; Faris et al. 2014; Avni et al. 2018; Sharma et al. 2019; Jones et al. 2019; 

Giancaspro et al. 2019; Fariukha et al. 2020; Mo et al. 2021; Mangini et al. 2021), MAGIC 

populations (Milner et al. 2016), and association mapping panels (Maccaferri et al. 2011; 

Mengistu et al. 2016; Kidane et al. 2017; Sukumaran et al. 2018b; Mangini et al. 2018, Sun et al. 

2020). To identify yield QTL that are present under specific conditions, multiple studies have 

been conducted under different moisture and climate regiments (Maccaferri et al. 2008; 

Maccaferri et al. 2011; Graziani et al. 2014; Sukumaran et al. 2018b).  

Yield component QTL have been identified on all fourteen chromosomes in durum wheat 

in the mentioned studies. An important agronomic trait in durum is grain protein content. The 

study by Blanco et al. (2012) found that there is often a negative correlation between grain 

protein content and grain yield, which may hinder deploying genes underlying yield due to 

concomitant reductions in protein content. Several QTL were found that increased grain protein 

content while not affecting yield, which may be beneficial to breeders. The relationship between 

grain yield and grain protein QTL needs to be studied further to identify the best genotypes for 

increasing yield while providing growers with relatively high grain protein cultivars. 

Mangini et al. (2018) studied the grain yield components GWS, KPS, and TKW in a 

tetraploid wheat population to dissect the genetic relationship among these traits. From their 

findings, they were able to split the QTL into four main classes. The first class consisted of QTL 

for KPS, which also led to a significant increase in GWS and had no effect on TKW. QTL in this 

category are most likely linked to spikelet fertility and may have a significant impact on 

increasing yield because an increase in KPS does not lead to a correlated decrease in grain 

weight. The second class was a QTL for KPS with a corresponding QTL observed for a decrease 

in TKW. Overall yield in this class does not change. The third class was QTL for TKW with a 
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significant increase in GWS and no change in KPS. The last class was QTL for TKW that had no 

effect on GWS. Knowledge on how different QTL interact with one another contributes to the 

overall knowledge of these complex traits and can give insight into which QTL may be deployed 

together to increase overall yield. 

To my knowledge, only three studies have been performed mapping various yield 

components in a population derived from crossing durum wheat × cultivated emmer, which were 

published by Faris et al. (2014), Russo et al. (2014), Sharma et al. (2019). The Faris et al. (2014) 

findings will be discussed in the following section of this review. Russo et al. (2014) developed 

one of the first linkage maps based off such a population and used the maps to identify QTL for 

seed morphology traits under field conditions. Seed size and shape are important components of 

grain yield and are positively correlated with TKW. Cultivated emmer has thinner and longer 

seeds than durum since domestication led to selecting for plants with shorter seeds which are 

wider and overall larger, making populations developed from crossing these two species ideal for 

grain size studies. Russo et al. (2014) identified QTL for TKW on 3B and 4B, and QTL for 

kernel size and shape on 1B, 2B, 3A, 3B, 4B, and 7A. Additional work has been done with this 

population measuring root and shoot traits in seedlings (Iannucci et al. 2017). However, the 

population used was developed from crossing an Italian cultivar (Simeto) with a Mediterranean 

cultivated emmer variety (Molise Colli) and is not as transferable to North America.  

To map genes/QTL governing yield components in North American durum lines, 

populations that contain a local durum variety as the durum parent are needed. Two such 

populations have been studied in the greenhouse by Faris et al. (2014) and Sharma et al. (2019). 

Both studies focused on threshability and other domestication traits; however, both measured 

SPS, with Faris et al. (2014) measuring grain weight and seed number. Neither study evaluated 
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seed size. Faris et al. (2014) used a RIL population derived from crossing the ND variety ‘Ben’ 

by the cultivated emmer accession PI 41025, which was collected in Russia. They identified 

QTL for grain weight components on 1A, 2B, 3B, 5B, and 7A; QTL for KPS on 2B, 5B, and 7A; 

and QTL for SPS on 1B, 3B, 7A, 7B. There was a positive correlation between SPS and KPS, 

SPS and GWS, KPS and GWS, KPS and TKW, and TKW and GWS. Interestingly, although 

there was a positive correlation between SPS and GWS, there was a negative correlation between 

SPS and TKW. Sharma et al. (2019) used a RIL population derived from crossing the ND 

germplasm line ‘Rusty’ by the cultivated emmer accession PI 193883, which was collected in 

Ethiopia. The only yield component trait they measured was SPS, which they identified QTL on 

1B and 5A. Additional studies with these types of populations are needed that include additional 

yield component traits (grain number, size, and weight), along with more evaluations under field 

conditions.  

Although many QTL have been identified for yield components in wheat, relatively few 

have been characterized and cloned compared to other traits, especially disease resistance. The 

lag is partially due to yield component genes having more minor effects on the overall phenotype 

compared to other traits. It has been suggested, with most groups taking this route, that a 

reductionist approach is taken when cloning and characterizing yield (Brinton and Uauy 2018). 

This can mainly be done through partitioning yield into its different components, such as spikelet 

architecture, kernel number, grain weight, and grain size. Within each of these groups, there are 

also various components that make up each. Additionally, a larger number replicates is required, 

compared to more qualitative traits, when phenotyping due to the small differences and 

environmental influences. To successfully deploy yield component traits, a deeper understanding 
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is required on how they influence grain yield individually (Li and Yang 2017; Brinton and Uauy 

2018). Many of the genes cloned to date are involved with regulating grain size and weight.  

Genes that influence grain size, both positively and negatively, are TaGS5-3A (Ma et al. 

2016), TaGW2 (Su et al. 2011; Wang et al. 2018), TaGS-D1 (Zhang et al. 2014b), and TaCYP78-

A3 (Ma et al. 2015), and impact grain size differences through regulating cell division, the 

ubiquitin pathway, increasing cell length, and reducing cell number in the seed coat, respectively 

(Ma et al. 2016; Simmonds et al. 2016; Zhang et al. 2014b; Ma et al. 2015). Additional genes 

that have been found to be associated with grain size are: TaGL3-5A, which encodes a protein 

phosphatase with a Kelch-like repeat domain (Yang et al. 2019); TaGW8-B1, which encodes a 

squamosa promoter binding protein (Yan et al. 2019); TaGS1a, which encodes a glutamine 

synthetase (Guo et al. 2013), and TaGRF4, which encodes a growth-regulating factor 3 (Avni et 

al. 2018). 

To date, sixteen genes that influence TKW have been cloned in wheat. These are: TaSus1 

and TaSus2, which encode for sucrose synthase genes (Hou et al. 2014, Jiang et al. 2011); 

TaTGW-7A, which encodes for an indole-3-glycerol-phosphate synthase (Hu et al. 2016); 

TaCwi-A1 and TaCWI-5D, which encodes cell wall invertases (Ma et al. 2012; Jiang et al. 2015); 

TaTGW6-A1, which encodes an indole-3-aceticacid-glucose hydrolase (Hanif et al. 2016); 

TaFlo2-A1, which encodes for a floury endosperm2 (Sajjad et al. 2017); TaAGP-S1, which 

encodes for a ADP-glucose pyrophosphorylase (Hou et al. 2017); TaTPP-6AL1, which encodes 

for a protein that is part of the T6P metabolic pathway (Zhang et al. 2017a); TaSnRK2.3 and 

TaSnRK2.10, which encode for sucrose non-fermenting 1-related protein kinases (Miao et al. 

2017; Zhang et al. 2017b); 6-SFT-A2, which encodes a sucrose-fructan 6-fructosyltransferase 

(Yue et al. 2015); Tabas1-B1, which encodes a 2-cys peroxiredoxin (Zhu et al. 2016); and 
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TaSPL16, TaSPL20, TaSPL21, which encode squamosa promoter binding protein like- proteins 

(Cao et al. 2019; Zhang et al. 2017c).  

Three genes associated with grain number have been cloned. Two of these, TaCKX2 and 

TaCKX6-D1, encode cytokinin oxidase/dehydrogenases (Zhang et al. 2012). The other gene is 

TaSAP1-A1, which encodes a stress association protein (Chang et al. 2013). Two other genes 

have been cloned that are related to grain yield; however, they are related to stressed 

environments and nitrogen availability. These genes are TaTAR2.1-3A and TaNAC2-5A, which 

encode a tryptophan amino transferase-related protein and a NAC transcription factor, 

respectively (Shao et al. 2017; He et al. 2015).  

To date, only three genes that regulate spike development, other than Q, have been 

cloned. Boden et al. (2015) cloned Ppd-1, a member of the pseudo-response regulator genes and 

plays a role in regulating the formation of paired spikelets. Dixon et al. (2018) cloned and 

characterized TB1, a gene which increases number of paired spikelets and is a positive regulator 

of FT-1. The third gene is TaAPO-A1, which encodes a F-box protein, and increases the number 

of spikelets per spike through prolonging the maturation of inflorescence meristem proliferation, 

resulting in an increase in the number of spikelets (Kuzay et al. 2019; Voss-Fels et al. 2019; 

Muqaddasi et al. 2019). Mapping and cloning of genes regulating inflorescence development 

could be used to develop wheat spikes with increased number if spikelets per spike and other 

spike modifications that correlate with increased yield. 

With the availability of new technologies, genes underlying yield traits in wheat are 

expected to be cloned and characterized at a faster pace than in the past. Although the gene has 

yet to be cloned and characterized, Brinton et al. (2017) identified a QTL on chromosome 5A 

that leads to increased pericarp cell length and grain weight in wheat. Later research using RNA-
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sequencing revealed that ubiquitin-related genes are differentially expressed between lines with 

and without this QTL, further implying that this gene class is important for grain size and 

development (Brinton et al. 2018). New methods and technologies such as RNA-sequencing, 

TILLING populations, genome-wide association mapping, MutChromSeq, MutRenSeq, 

AgRenSeq, ‘targeted chromosome-based cloning via long-range assembly’, and cheaper and 

faster sequencing technologies will aid in the discovery and cloning on yield genes underlying 

economically important traits (Bettgenhaeuser and Krattinger 2019). 

2.4. Septoria Nodorum Blotch in Wheat 

Septoria nodorum blotch (SNB) is a foliar disease on wheat caused by the necrotrophic 

fungal pathogen Parastagonospora nodorum [syn. Leptosphaeria nodorum (Müll.), syn. 

Septoria nodorum (Berk.), syn. Stagonospora nodorum (Berk.)] nodorum (Berk.) Quaedvleig, 

Verkley & Crous. Wheat and P. nodorum interact in an inverse gene-for-gene manner (reviewed 

by Friesen and Faris 2010, Friesen and Faris 2021). P. nodorum produces necrotrophic effectors 

(NEs), which are recognized by host sensitivity/susceptibility genes.  

An extensive and detailed review of the genetics of the wheat-P. nodorum pathosystem is 

included in Chapter 3. Therefore, this topic will not be reviewed further in this chapter. 

However, it is worthy to note that much of the previous research on wheat-P. nodorum 

interactions has been in spring wheat, durum, and other wheat species. The number of studies in 

winter wheat is lagging, especially within the US along with diverse, global panels. Within US 

germplasm pools, panel studies have been performed by Crook et al. (2012), Bertucci et al. 

(2014), and Cowger et al. (2020). As for global panels, to my knowledge there has never been a 

winter wheat global panel that has been evaluated for susceptibility to P. nodorum published, 

highlighting an area of research that is lacking within this pathosystem. 
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CHAPTER 3. GENETICS OF RESISTANCE TO SEPTORIA NODORUM BLOTCH IN 

WHEAT1 

3.1. Abstract 

Septoria nodorum blotch (SNB) is a foliar disease of wheat caused by the necrotrophic 

fungal pathogen Parastagonospora nodorum. Research over the last two decades has shown that 

the wheat-P. nodorum pathosystem mostly follows an inverse gene-for-gene model. The fungus 

produces necrotrophic effectors (NEs) that interact with specific host gene products encoded by 

dominant sensitivity (S) genes. When a compatible interaction occurs, a ‘defense response’ in the 

host leads to programmed cell death thereby provided dead/dying cells from which the pathogen, 

being a necrotroph, can acquire nutrients allowing it to grow and sporulate. To date, nine S gene-

NE interactions have been characterized in this pathosystem. Five NE-encoding genes, SnTox1, 

SnTox3, SnToxA, SnTox5, and SnTox267, have been cloned along with three host S genes, Tsn1, 

Snn1, and Snn3-D1. Studies have shown that P. nodorum hijacks multiple and diverse host 

targets to cause disease. SNB resistance is often quantitative in nature because multiple 

compatible interactions usually occur concomitantly. NE gene expression plays a key role in 

disease severity, and the effect of each compatible interaction can vary depending on the other 

existing compatible interactions. Numerous SNB-resistance QTL have been identified in 

addition to the known S genes, and more research is needed to understand the nature of these 

resistance loci. Marker-assisted elimination of S genes through conventional breeding practices 

and disruption of S genes using gene editing techniques are both effective strategies for the 

 
1 The material in this chapter was co-authored by Amanda R. Peters Haugrud, Zengcui Zhang, Timothy L. Friesen, 
and Justin D. Faris. Amanda R. Peters Haugrud had primary responsibility for performing the literature search along 
with writing the initial draft. Amanda R. Peters Haugrud also drafted and revised all versions of this chapter. 
Amanda R. Peters Haugrud, Zengcui Zhang, Timothy L. Friesen, and Justin D. Faris proofread made edits, and 
added content to this chapter. [Publication has been submitted to the journal Theoretical and Applied Genetics]. 
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development of SNB-resistant wheat cultivars, which will become necessary as the global 

demand for sustenance grows.  

3.2. Introduction 

By the year 2050, the world population is expected to increase to approximately nine 

billion people, and this will lead to an increase in demand for common wheat (Triticum aestivum 

L., 2n = 6x = 42, AABBDD genomes), which provides 20% of the calories consumed by 

humans. Current wheat production is ~730 million tons annually and production need is 

predicted to increase to greater than 900 million tons annually by 2050 (Marcussen et al. 2014; 

Singh and Upadhyaya 2015). To meet increased food demand, wheat yields will need to increase 

by approximately 60% along with the additional constraint of less arable land available to 

farmers (International Wheat Yield Partnership 2017). Some major factors that influence yield 

are abiotic stresses (drought, soil degradation, floods, temperature increases, increased CO2), 

biotic stresses (viral, bacterial and fungal pathogens and insect pests), and agronomic practices 

(Singh et al. 2016; Singh and Upadhyaya 2015; International Wheat Yield Partnership 2017). 

Necrotrophic pathogens are biotic stress contributors of common wheat and durum wheat 

(T. turgidum (Desf.) Husnot., 2n = 4x = 28, AABB genomes). One such pathogen is 

Parastagonospora (syn. Stagonospora nodorum (Berk.) nodorum (Berk.) Quaedvleig, Verkley 

& Crous, the causal agent of septoria nodorum blotch (SNB). P. nodorum affects wheat leaves 

and glumes, decreasing wheat quality and yield by up to 50% (Eyal 1987). SNB can cause severe 

economic losses in wheat-growing regions where it is prevalent including North America, 

Australia, and Europe (Ficke et al. 2018). 

Genetically, wheat and P. nodorum interact in an inverse gene-for-gene manner 

(reviewed by Friesen and Faris 2010, 2021; Faris and Friesen 2020). The mechanisms underlying 
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interactions associated with the inverse gene-for-gene model are essentially the same as those 

associated with the classical gene-for-gene model (Flor 1955, 1956), which involves biotrophic 

pathogens, except that the outcomes of the interactions are susceptibility as opposed to resistance 

due to differing pathogen lifestyles (Figure 3.1). In both models, host recognition of a foreign 

invader, often through secreted pathogen proteins known as effectors, results in a host defense 

response involving an increase in reactive oxygen species (ROS), cell-to-cell signaling, DNA 

laddering, electrolyte leakage, up-regulation of defense response genes, and ultimately 

programmed cell death (PCD) (reviewed by Jones and Dangl 2006; Day et al. 2011; van Schie 

and Takken 2014). The activation of this response when a host resistance (R) gene product 

recognizes an effector produced by a biotrophic pathogen leads to effector-triggered immunity 

(ETI). In this case, the outcome is resistance because the PCD is in the form of a hypersensitive 

response (HR), which prohibits the biotroph from acquiring nutrients from living tissue, and 

other host defense responses contribute to the suppression of pathogen growth and fitness. 

Essentially the same response occurs when a plant ‘sensitivity’ gene recognizes an effector 

produced by a necrotrophic pathogen, or necrotrophic effector (NE, formerly referred to as host-

selective toxins). NEs directly or indirectly interact with host targets to induce PCD (Friesen and 

Faris 2021). In this case the outcome is susceptibility because the pathogen, being a necrotroph, 

is equipped to acquire nutrients from the dead/dying tissue as a result of the PCD and tolerate the 

other plant-induced suppression mechanisms (Friesen and Faris 2021 for review). Thus, this 

outcome is referred to as necrotrophic effector-triggered susceptibility (NETS). 

In this model, the host gene involved in the recognition of the NE is considered a 

sensitivity (S) gene when direct infiltration of the NE into the leaf results in cell death (Figure 

3.2). In most cases, recognition of the pathogen-produced NE by the host S gene also leads to the 
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development of SNB disease, in which case the host gene is also considered a susceptibility gene 

(Friesen and Faris 2010, 2021; Oliver et al. 2012). However, sensitivity to an NE does not 

always lead to disease susceptibility because the effects of S gene-NE interactions can 

sometimes be masked or suppressed due to epistasis among interactions (see below) or 

variability in different genetic backgrounds (Virdi et al. 2016). Also, host genes that condition 

susceptibility do not always recognize NEs (see van Schie and Takken 2014 for review). 

Therefore, the terms ‘sensitivity’ and ‘susceptibility’ for describing genes are not 

interchangeable.  

 

Figure 3.1. Left: Classical gene-for-gene model often found in biotrophic plant-pathogen 
interactions where the interaction between the host and pathogen components leads to disease 
resistance. Reactions to stem rust of wheat are used as an example. Right: Inverse gene-for-gene 
model found in wheat-Parastagonospora nodorum interactions where the interaction between the 
host and pathogen leads to necrotrophic effector-triggered susceptibility. Plus signs (+) represent 
compatible (sensitive/susceptible) interactions, minus signs (-) represent incompatible 
(insensitive/resistant) interactions.  

R_ rr S_ ss

Avr

avr

NE

ne

Host Host

Pa
th

og
en

Pa
th

og
en

Classical gene-for-gene model Inverse gene-for-gene model

- -

-+ -

++

+



 

44 

 

Figure 3.2. Wheat leaves inoculated (A, C) with P. nodorum spores and infiltrated (B, D) with 
NE-containing cultures derived from P. nodorum. Plants A and B are susceptible and sensitive, 
and C and D are resistance and insensitive.  

3.3. Septoria Nodorum Blotch 

Parastagonospora nodorum is a necrotrophic pathogen belonging to the 

Dothideomycetes class of fungi and causes SNB (reviewed by Oliver et al. 2012; Friesen and 

Faris 2010, 2021). P. nodorum can infect both wheat leaves (Figure 3.3) and glumes. The genetic 

relationship between wheat and P. nodorum in the glumes and leaves appear to be under 

different genetic control (Shatalina et al. 2014). The genetic mechanisms underlying resistance to 

glume blotch has not been studied as intensely as the mechanisms associated with leaf blotch. 

The focus of this review article will be on the genetics of resistance/susceptibility to the leaf 

blotch component of SNB caused by P. nodorum.  

SNB symptoms begin as small chlorotic lesions, gradually turning into a brownish tan 

and eventually into lens-shaped lesions that are ashen gray/brown in the center. A key indicator 

that the lesions are from P. nodorum and not P. tritici-repentis is the presence of pycnidia in the 
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lesions (Friskop and Liu 2016) however, the pycnidia are not always visible and can lead to a 

misdiagnosis of the causal pathogen. Current control methods for SNB include fungicide 

applications and genetic resistance in the host (reviewed by Oliver et al. 2012).  

 

Figure 3.3. Septoria nodorum blotch on leaves of susceptible wheat plants in the field. 

3.4. Inverse Gene-For-Gene Interactions in the Wheat-P. nodorum Pathosystem 

To date, a total of nine interactions have been characterized in the wheat-P. nodorum 

pathosystem: Tsn1-SnToxA (Friesen et al. 2006, 2009; Liu et al. 2006; Zhang et al. 2009; Faris 

et al. 2010, 2011; Faris and Friesen 2009), Snn1-SnTox1 (Liu et al. 2004a, b, 2012; Reddy et al. 

2008; Shi et al. 2016b), Snn2-SnTox267 (Friesen et al. 2007, 2009; Zhang et al. 2009; Richards 

et al. 2021), Snn3-B1-SnTox3 (Friesen et al. 2008; Liu et al. 2009; Shi et al. 2016a), Snn3-D1-

SnTox3 (Friesen et al. 2008; Liu et al. 2009; Zhang et al. 2011), Snn4-SnTox4 (Abeysekara et al. 

2009, 2012), Snn5-SnTox5 (Friesen et al. 2012; Sharma 2019; Kariyawasam et al. 2021), Snn6-

SnTox267 (Gao et al. 2015; Richards et al. 2021), and Snn7-SnTox267 (Shi et al. 2015; Richards 

et al. 2021). Thus far, the cloning of three host S genes including Tsn1 (Faris et al. 2010), Snn1 

(Shi et al. 2016b), and Snn3-D1 (Zhang et al. 2021), along with the NE genes SnToxA (Friesen et 
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al. 2006), SnTox3 (Liu et al. 2009), SnTox1 (Liu et al. 2012), SnTox5 (Kariyawasam et al. 2021), 

and SnTox267 (Richards et al. 2021), has been reported (Table 3.1).
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Table 3.1. Characterized wheat sensitivity gene-necrotrophic effector interactions in the wheat-P. nodorum pathosystem.  

Host 
gene(s) 

Necrotrophic 
effector 

Host gene 
chromosome 
arm location 

Host gene 
status 

NE 
cloned 

Maximum 
disease 

explained 

Differential 
Line 

Markers Reference 

Tsn1 SnToxA 5BL Cloned Yes 95% BG261 Xfcp620 and Xfcp394 
(Zhang et al. 2009) 
fcp791, fcp792 
(Running and Faris, 
unpublished) 

Friesen et al. (2006) 
Liu et al. (2006) 
Faris and Friesen (2009) 
Faris et al. (2010) 

Snn1 SnTox1 1BS Cloned Yes 58% Chinese Spring, 
W-7984 

B500093078_5 
(Cockram et al. 2015);  
Xfcp624, Xfcp618, 
Xfcp667 (Shi et al. 
2016b),  

Liu et al. (2004a) 
Liu et al. (2004b) 
Liu et al. (2012) 
Shi et al. (2016b) 

Snn2 SnTox2 2DS Fine 
mapped 

Yes 47% BG223 XTC253803, Xcfd56; 
Xcfd51 

Friesen et al. (2007) 
Zhang et al. (2009)  
Richards et al. (2021) 

Snn3-
B1 

SnTox3 5BS Cloned but 
unpublished 

Yes 35% BG220 Xfcp654, Xfcp665, 
Xmag705 

Friesen et al. (2008) 
Liu et al. (2009) 
Shi et al. (2016a) 

Snn3-
B2 

SnTox3 5BS Cloned but 
unpublished 

Yes NA NA NA NA 

Snn3-
D1 

SnTox3 5DS Cloned Yes 100% LDN2377 Xcfd18, Xhbg337, 
fcp783-fcp787 

Zhang et al. (2011) 
Zhang et al. (2021) 

Snn4 SnTox4 1AS Mapped No 41% AF89 XBG262267, 
XBG262975, Xcfd58 

Abeysekara et al. (2009) 

Snn5 SnTox5 4BL Cloned but 
unpublished 

Yes 63% LP29 Xwmc349, Xcfd22 Friesen et al. (2012); 
Sharma 2019; 
Kariyawasam et al. (2021) 

Snn6 SnTox6 6AL Mapped Yes 27% ITMI37 XBE424987, 
XBE403326 

Gao et al. (2015) 
Richards et al. (2021) 

Snn7 SnTox7 2DL Mapped Yes 33% CTm208 Xcfd44, Xgwm349 Shi et al. (2015) 
Richards et al. (2021) 
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3.4.1. Snn1-SnTox1 

The first host S gene-NE interaction identified in the wheat-P. nodorum pathosystem was 

Snn1-SnTox1 (Liu et al. 2004a). Liu et al. (2004a) used the International Triticeae Mapping 

Initiative (ITMI) population and the P. nodorum isolate Sn2000 to first characterize this 

interaction. This work led to the conclusion that one gene in the host was responsible for 

susceptibility to a NE produced by the pathogen. A dominant S gene was mapped to the short 

arm of wheat chromosome 1B and designated Snn1. SnTox1 was found to be proteinaceous and 

between 10 and 30 kDa in size. A compatible Snn1-SnTox1 interaction has explained from up to 

58% of the disease variation depending on the isolate and host genetic background (Liu et al. 

2004a; Friesen et al. 2007; Chu et al. 2010; Phan et al. 2016; Peters Haugrud et al. 2019) (Table 

3.1). 

The Snn1 gene and the gene encoding SnTox1 (designated SnTox1) have both been 

cloned and characterized (Liu et al. 2012; Shi et al. 2016b). SnTox1 was cloned using the P. 

nodorum reference genome to find candidate genes that matched previously known 

characteristics of SnTox1, along with similar characteristics of SnToxA and SnTox3 (Liu et al. 

2012). The predicted gene SNOG_20078 fit the criteria, and through yeast expression studies on 

different plant lines with and without Snn1, it was confirmed to encode SnTox1. Liu et al. (2012) 

demonstrated that SnTox1 was a highly stable protein containing 117 amino acids, with the 

mature protein consisting of 100 amino acids and a predicted size of 10.33 kDa. The mature 

protein had a cleaved signal peptide domain and was cysteine rich. SnTox1 also contained a C-

terminal conserved chitin-binding (CB) motif (Liu et al. 2012, 2016). The CB motif was more 

similar to those found in plants than those found in other fungal pathogens. This domain was 

predicted to play an important role in protecting the fungus during the initial penetration of the 
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host leaf (Liu et al. 2016). SnTox1 was shown to bind chitin and not only protect P. nodorum, 

but it also protected other fungal species from multiple wheat chitinases upregulated during 

defense (Figure 3.4). 

In planta transcription analysis of SnTox1 revealed that expression increased at 3 hours 

post infection (hpi) and then decreased at 6 hpi (Liu et al. 2012). After the 6 hpi point, expression 

slowly increased and peaked at 72 hpi, which corresponded to the onset of necrotic lesion 

development. After 72 hpi, expression of SnTox1 decreased until 7 days post inoculation where it 

reached levels similar to those observed at 6 hpi. The high levels of SnTox1 transcripts at early 

post-inoculation time points suggested SnTox1 is important in the early stages of infection (Liu 

et al. 2012). A compatible Snn1-SnTox1 interaction differs phenotypically from the other 

compatible interactions in this system in that small white flecks appear on leaves around 2 days 

post inoculation (Liu et al. 2004a; Liu et al. 2012). It was hypothesized that the necrotic and 

chlorotic lesions develop from these flecks and were related to the early expression of SnTox1 

(Liu et al. 2012).  

SnTox1 differed from the other cloned P. nodorum NEs in that direct application of the 

SnTox1 protein to the leaf surface in the absence of the fungus resulted in necrotic flecks (Liu et 

al. 2016). When SnTox1 was co-inoculated with fungal spores of an avirulent isolate onto Snn1 

lines, disease symptoms developed indicating SnTox1 assisted fungal penetration of the host leaf 

tissue allowing infection to occur. This also demonstrated SnTox1 was sufficient to transform an 

avirulent isolate into a virulent isolate. 

Fluorescent labeling of SnTox1 in planta during infection indicated it remained on the 

cell surface and was not internalized into the mesophyll or epidermal cells (Liu et al. 2016). This 

suggested the SnTox1 receptor was located on the cell surface, which was later confirmed by Shi 
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et al. (2016b) (Figure 3.4). During infection and penetration, SnTox1 was localized to the outer 

surface of the mycelium, indicating SnTox1 protects the fungal cell wall during penetration 

allowing P. nodorum to successfully penetrate and colonize (Liu et al. 2016). Liu et al. (2016) 

concluded not only does SnTox1 elicit cell death, but it also protects the fungal cells from 

degradation by wheat chitinases. The group also hypothesized that recognition of SnTox1 by 

Snn1 wheat lines occurs on the epidermal cell and triggers cell-to-cell signaling throughout the 

leaf, with PCD occurring in both epidermal and mesophyll cells within 48 h of infection. 

A compatible Snn1-SnTox1 interaction induces an oxidative burst, which is a plant cell 

biochemical response associated with defense (Liu et al. 2012). The Snn1-SnTox1 interaction 

also induces multiple pathogenesis-related (PR) genes typically associated with plant defense in 

response to biotrophic pathogens (Liu et al. 2012) (Figure 3.4). Liu et al. (2012) evaluated the 

expression of 28 wheat genes in Snn1 lines post infection and found that PR-1-A1, a thaumatin-

like protein gene, and a chitinase gene were all up-regulated with maximum expression at 36 hpi. 

DNA laddering was also observed, which is a response that has been associated with ETI and 

PCD (Dickman et al. 2001; Ryerson et al. 1996). 

A survey of a worldwide collection of 1000 P. nodorum isolates for the presence of 

SnTox1 indicated the gene was present in 84% of the isolates evaluated (McDonald et al. 2013). 

The dual function of SnTox1 in both eliciting PCD and binding chitin may be the driving factor 

behind the high frequency of SnTox1 in P. nodorum (Liu et al. 2016). Liu et al. (2012) sequenced 

SnTox1 in 159 global P. nodorum isolates and found 11 haplotypes. Remaining unchanged in all 

the isoforms of SnTox1 were the cysteine residues, providing evidence the disulfide bridges are 

important structural features of the protein.  
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Reddy et al. (2008) used a population of F2 plants derived from the common wheat line 

Chinese Spring (CS) and a genetic stock of CS that had its native chromosome 1B substituted by 

1B chromosome from the wild emmer [T. turgidum ssp. dicoccoides (Körn. Ex Asch. & 

Graebner) Aarons (2n = 4x = 28, AABB genomes)] accession TA106 (CS-DIC 1B) to develop 

high-density and high-resolution genetic linkage maps of the Snn1 region and to assess 

colinearity with the rice genome. High-resolution mapping using markers developed from wheat 

expressed-sequence tags (ESTs) delineated the Snn1 locus to a 0.46 cM interval, and two 

markers cosegregated with Snn1 in 8,510 recombinant gametes. However, subsequent BAC-

based chromosome walking attempts revealed that the CS-DIC 1B line contained a large deletion 

within the Snn1 region that severely suppressed recombination (J.D. Faris, unpublished). 

Therefore, a new mapping population was developed by crossing CS with a line where 

chromosome 1B from the common wheat variety Hope was substituted for the native CS 1B 

chromosomes (CS-Hope 1B). High-resolution mapping in over 17,000 recombinant gametes 

using the markers developed by Reddy et al. (2008) and new markers developed from a CS 

BAC-based physical map delineated the Snn1 locus to a genomic region that contained a single 

candidate gene, which was predicted to be a member of the wall-associated kinase (WAK) class 

of plant receptor kinases (Shi et al. 2016b). 

Snn1 is 3,045 bp in size and contains three exons with a coding sequence of 2,145 bp (Shi 

et al. 2016b) (Figure 3.5). The mature protein contains an N-terminal signal sequence, and a 

conserved wall-associated receptor kinase galacturonan binding domain (GUB_WAK) and an 

epidermal growth factor-calcium binding domain (EGF_CA) are predicted to be extracellular. A 

transmembrane domain is predicted to span the cellular membrane, and a serine/threonine 

protein kinase (S/TPK) domain is located intracellularly. Snn1 is a member of a group of WAK 
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genes that are specific to monocots. Through mutagenesis, the GUB_WAK, EGF_CA, and 

S/TPK domains were shown to be essential for a compatible Snn1-SnTox1 interaction. 

Snn1 was specifically expressed in wheat leaves and not in stems, spikes, or roots (Shi et 

al. 2016b). The transcription level of Snn1 in leaf tissues peaked at subjective dawn and then 

decreased throughout the day and was lowest at subjective dusk before increasing again until 

subjective dawn. The rhythmic expression oscillations were not present when plants were placed 

under continuous darkness, indicating Snn1 expression is regulated by light signals but not the 

circadian clock. Interestingly, Snn1 was down regulated after exposure to SnTox1, which differs 

from the expression pattern of SnTox1 in the fungus (Shi et al. 2016b, Liu et al. 2012).  

Shi et al. (2016b) found that once SnTox1 was recognized by Snn1, TaMAPK3 was 

activated within 15 minutes. Receptor kinase activation of MAPK genes is usually associated 

with the so-called PAMP-triggered immunity (PTI) pathway (Jones and Dangl 2006; Couto and 

Zipfel 2016; Shi et al. 2016b). Shi et al. (2016b) also provided evidence that the Snn1 and 

SnTox1 proteins interact directly, which was not surprising given the previous finding that 

SnTox1 does not enter the cell (Liu et al. 2012) and that Snn1 is a membrane-spanning protein 

with extra-cellular domains typically involved in interactions (Figure 3.4). Yeast-two hybrid 

analysis indicated SnTox1 directly bound to a 140-amino acid residue region between the 

GUB_WAK and EGF_CA domains.  

Multiple groups have reported SnTox1 sensitivity in differing germplasm groups. Shi et 

al. (2016b) reported out of 826 wheat lines evaluated, 73% of the durum lines were sensitive 

whereas only 16% of the common wheat lines were sensitive to SnTox1. Other studies have 

reported a large range based on germplasm, with 0, 12.1, 32.9, 35.1, 71.7, and 75.9 % sensitivity 

reported for collections of Southeastern US, Norwegian, Canadian, Vavilov wheat collection, 
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Australian, and European germplasm, respectively (Bertucci et al. 2014; Ruud et al. 2018; 

Downie et al. 2018; Hafez et al. 2020; Phan et al. 2018; Tan et al. 2014) (Table 3.2). This data 

indicates that depending on the germplasm base, some programs may need to focus on 

eliminating Snn1 from their germplasm if SNB occurrence is high, whereas it may not be as 

important in other programs. 

With many breeding programs moving towards marker-assisted selection (MAS), two 

groups have published marker sequences for the Snn1 locus that are more user-friendly and 

closely linked than the previously published flanking markers. The first is a KASP marker, based 

off the SNP BS00093078_5, which was designed using a MAGIC population by Cockram et al. 

(2015) (Table 3.1). Shi et al. (2016b) developed several simple sequence repeat (SSR) and gene-

based markers upon cloning Snn1, but these markers are not as amenable to high-throughput 

genotyping platforms as KASP markers. In related work to characterized Snn1 diversity in global 

panels of common and durum wheat, we have identified several causal SNPs for SnTox1 

sensitivity and have developed KASP markers for each. These markers are available upon 

request. 
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Figure 3.4. Overview of the Snn1-SnTox1, Snn3-SnTox3, and Tsn1-SnToxA interactions and 
known downstream events that result in necrotrophic effector-triggered susceptibility (NETS) in 
the wheat-P. nodorum pathosystem. The NE SnTox1, SnTox3, and SnToxA are secreted by the 
fungus. SnTox1 interacts directly with Snn1, and SnTox1 binds chitin to protect the fungal 
hyphae from wheat chitinases. SnToxA and SnTox3 interact with PR1 proteins, likely in the 
apoplast. Tsn1 and Snn3-D1 are hypothesized to be a guards of other host proteins that may 
interact directly with SnToxA and SnTox3, respectively. Upon these recognition events of 
SnTox1, SnTox3, and SnToxA by Snn1, Snn3-D1, and Tsn1, respectively, signaling is initiated 
via the MAPK signaling pathway leading to an up-regulation of defense response pathways, an 
increase in reactive oxygen species, DNA laddering, electrolyte leakage, cell-to-cell signaling, 
and ultimately programmed cell death which provides nutrients for the pathogen to survive and 
reproduce. 
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Figure 3.5. Structure of cloned P. nodorum sensitivity genes in wheat. A kilobase scale is 
indicated along the bottom. Colored boxes represent exons and grey boxes represent untranslated 
regions. A: The structure of the Tsn1 gene from Faris et al. (2010). Colored lines indicate the 
serine/threonine protein kinase (PK) domain, nucleotide binding site (NBS) domain, and leucine-
rich repeat (LRR) domain. B: The structure of the Snn1 gene from Shi et al. (2016b). Colored 
lines indicate the signal sequence (SS), the wall-associated receptor kinase galacturonan binding 
(GUB_WAK) domain, epidermal growth factor-calcium binding (EGF_CA) domain, 
transmembrane (TM) domain, and the serine/threonine protein kinase (PK) domain. C: The 
structure of the Snn3-D1 gene from Zhang et al. (2021). Colored lines indicate the collagen triple 
helix (CTH) repeat, serine/threonine protein kinase (PK) domain and the major sperm protein 
(MSP) domain. 
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Table 3.2. Reports of sensitivity to the necrotrophic effectors SnToxA, SnTox1, and SnTox3 in wheat collections and panels.  

Reference Germplasm panel Total number 
of lines 

% sensitive 
SnToxA 

% sensitive 
SnTox1 

% sensitive 
SnTox3 

Bertucci et al. 2014 US winter wheat cultivars 26 31 0 62 
Downie et al. 2018 European lines 4611 26.5 75.9 75 
Hafez et al. 2020 Canadian cultivars 79 592* 32.9 56.9 
Liu et al. 2015 North American hard red winter wheat 

cultivars 
120 69.2 5 35 

Phan et al. 2018 Vavilov collection 259 49.4 35.1 63 
Ruud et al. 2018 Norwegian and international Spring wheat 

cultivars 
157 45.2 12.1 55 

Ruud et al. 2019 Nordic spring wheat panel 121 46 14 58.5 
Tan et al. 2014 Western Australian cultivars 46 63 71.7 91.3 
Waters et al. 2011 Australian cultivars 60 55.9 NA 86.7 

*Denotes studies where % sensitivity was found screening with diagnostic marker and is % of lines with sensitivity gene.  
161 cultivars used for PCR testing 
2457 lines for SnTox3, 460 lines for SnToxA, 461 lines for SnTox1 
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3.4.2. Tsn1-SnToxA 

The Tsn1-SnToxA interaction differs from other interactions characterized in this 

pathosystem in that ToxA has been discovered in three different fungal species thus far (Friesen 

and Faris 2021 for review). ToxA was first discovered in Pyrenophora tritici-repentis, the causal 

agent of tan spot in wheat, and was designated Ptr ToxA (Tomás and Bockus 1987; Ballance et 

al. 1989). Like P. nodorum, P. tritici-repentis is a member of the Dothideomycete class and a 

necrotrophic fungal pathogen. The ToxA gene and the Tsn1-Ptr ToxA interaction, as they pertain 

to the wheat-P. tritici-repentis pathosystem, have been reviewed elsewhere (Ciuffetti et al. 2010; 

Singh et al. 2010; Faris et al. 2013) and will not be revisited in this review.  

After the P. nodorum genome was sequenced, a homolog with 99.7% similarity to Ptr 

ToxA was identified (Friesen et al. 2006). When Friesen et al. (2006) evaluated the diversity of 

ToxA in the two pathogens, they found that only one haplotype was present for P. tritici-repentis 

whereas P. nodorum had 11 haplotypes and therefore a higher level of nucleotide diversity. From 

this, it was concluded that ToxA likely originated in P. nodorum and was horizontally transferred 

to P. tritici-repentis prior to 1940, upon which it rendered P. tritici-repentis an economically 

significant disease of wheat. 

Liu et al. (2006) found that Ptr ToxA and SnToxA were functionally identical and both 

interacted with the same host gene, Tsn1, and both elicited necrosis in susceptible genotypes. 

More recently, ToxA was identified in Bipolaris sorokiniana (McDonald et al. 2017; Friesen et 

al. 2018; Navathe et al. 2020), the causal agent of spot blotch and common root rot in wheat and 

barley. As with Ptr ToxA and SnToxA, recognition of BsToxA by Tsn1 leads to disease (Friesen 

et al. 2018).  
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QTL mapping studies have revealed the Tsn1-SnToxA interaction accounts for 25- 95% 

of the disease variation to SNB in both tetraploid and hexaploid wheat (Friesen et al. 2006; Liu et 

al. 2006; Friesen et al. 2008; Faris and Friesen 2009; Chu et al. 2010; Faris et al. 2011; Virdi et 

al. 2016) (Table 3.1). In the absence of the Tsn1-SnToxA interaction, disease levels decreased, 

even in the presence of other wheat S gene-NE interactions (Virdi et al. 2016; Faris and Friesen 

2009; Friesen et al. 2012).  

The mature ToxA protein is 13.2 kDa (reviewed by Ciufetti and Touri 1999). The pre-

pro-protein is 19.7 kDa, 178 amino acids, and contains a signal peptide that is required for 

secretion (Ballance et al. 1989, 1996; reviewed by Manning and Ciuffetti 2005; Friesen and Faris 

2010, 2021; Oliver et al. 2012). The mature ToxA protein contains multiple domains and 

structural motifs, such as N-terminal pyroglutamate, C domain, two myristoylation sites, six 

phosphorylation sites, and an RGD cell attachment motif (Tuori et al. 1995; Tuori et al. 2000; 

Ciuffetti et al. 1997; Zhang et al. 1997, Meinhardt et al. 2002). Mutation of any of these 

motifs/domains decreased or halted ToxA activity in wheat lines containing Tsn1 (Manning et al. 

2004).  

Tsn1 was mapped to the long arm of chromosome 5B using P. tritici-repentis culture 

filtrates (Faris et al. 1996). Subsequent genomic targeting, marker development, and fine 

mapping (Haen et al. 2004), comparative analysis of colinearity with rice (Lu and Faris 2006), 

and BAC-based physical mapping (Lu et al. 2006) eventually led to the positional cloning of 

Tsn1 by Faris et al. (2010) using a traditional map-based chromosome walking strategy (see 

Faris et al. 2013 for review). The candidate region was delineated to a 351 kb segment that 

accounted for 0.9 cM and contained six candidate genes. Comparative sequence analysis of the 

candidate genes among sixteen ToxA-insensitive mutant lines and the corresponding wild type 
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revealed Tsn1 had C-terminal nucleotide binding (NB) and leucine-rich repeat (LRR) domains 

(Figure 3.5), which are domains typically associated with resistance to biotrophic pathogens 

(Kourelis and van der Hoom 2018). However, it also had an additional N-terminal 

serine/threonine protein kinase (S/TPK) domain. The only other gene known to date to contain 

all three domains in a single open reading frame is the barley stem rust resistance gene Rpg5 

(Brueggeman et al. 2008), with the difference being the S/TPK domains are positioned at 

opposite terminals. Tsn1 and Rpg5 do not share a recent ancestry and probably both evolved 

through independent gene-fusion events (Faris et al. 2010).  

Tsn1 is 10,581 bp in length from start to stop codon, containing eight exons, and the 

coding sequence is 4,473 bp in length (Faris et al. 2010) (Figure 3.5). The predicted protein 

product is 1,490 amino acids and all three domains are required for ToxA sensitivity. Tsn1 was 

expressed in leaves, stems, and immature spikes, but not roots. Transcriptional analysis of Tsn1 

indicated that it was regulated by light and followed the same oscillation patterns as were 

observed for Snn1 described above (Faris et al. 2010; Shi et al. 2016b).  

Unlike the Snn1-SnTox1 interaction, which was a direct interaction, yeast two-hybrid 

analysis suggested that the Tsn1 protein, which does not contain a transmembrane domain and 

was predicted to be located intracellular, did not interact directly with ToxA (Faris et al. 2010). 

Although Tsn1 was essential for ToxA recognition and sensitivity, Tsn1 was suspected to be a 

guard for ToxA recognition (Figure 3.4). Early work into un-raveling this interaction at the 

molecular level indicated that ToxA was internalized and located to chloroplasts within wheat 

cells in lines that contained Tsn1, but not in lines that lacked Tsn1. Manning et al. (2007) 

screened a yeast two-hybrid library of chloroplast specific proteins to find the potential target of 

ToxA, and they identified ToxA binding protein 1 (ToxABP1).  



 

60 

Successful recognition of ToxA in lines harboring Tsn1 led to photosystem changes and 

an accumulation of reactive oxygen species (ROS), which was associated with ETI and PCD 

(Manning et al. 2009) (Figure 3.4). The presence of ROS decreased in the absence of light, 

providing further evidence towards this being a light dependent interaction. The concentration of 

ROS present in chloroplast cells corresponded to the amount of necrosis visible on the leaf, 

which suggested that ROS accumulation led to cell death and therefore an increase in disease 

(Manning et al. 2009). This accumulation of ROS cascaded to disruption of the thylakoids, 

decreased photosystem II activity (Manning et al. 2004), and chlorophyll loss (Manning et al. 

2007), which contributed to eventual cell death and necrosis.  

Tai et al. (2007) used a similar yeast two-hybrid analysis technique and found another 

host target of ToxA, a wheat plastocyanin, which is a part of the electron transport chain of 

photosynthesis. During this study, they discovered that G141, located in the RGD motif, was 

required for plastocyanin interaction. Mutations at E145 and D149 also resulted in a loss of 

ToxA-ToxA oligomerization, resulting in a loss of ToxA activity and necrosis (Tai et al. 2007).  

A third potential target of ToxA is a PR-1-type pathogenesis-related (PR) protein, PR-1-5 

(Lu et al. 2014) (Figure 3.4), which is often involved in HR/defense pathways ending in cell 

death. Using similar methods as the two other groups, PR-1-5 physically interacted with ToxA 

and was further validated using co-immunoprecipitation assays (Lu et al. 2014). N102 and N141, 

both surface-exposed asparagine residues on turning loops, were essential for ToxA-PR-1-5 

binding. Differing from ToxABP1 and the plastocyanin interactions, PR-1-5 was upregulated in 

wheat lines post ToxA infiltration, however the expression was not significantly different 

between sensitive and insensitive lines, and it was concluded that the upregulation may not 

contribute to necrosis (Lu et al. 2014).  
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 The frequency of SnToxA sensitivity (presence of Tsn1) in various wheat germplasm 

collections has varied from 26.5% of lines in a panel of European lines evaluated by Downie et 

al. (2018) to about 86% of wheat cultivars planted in Australia up to 2008 (Oliver et al. 2008) 

(Table 3.2). Screening of different geographical panels from Canada, Australia, the southeastern 

US, and Norway have indicated the frequency of Tsn1 was around 50% (Hafez et al. 2020; 

Waters et al. 2011; Phan et al. 2018; Bertucci et al. 2014; Tan et al. 2014; Ruud et al. 2018). In 

areas where SNB can be a major problem, focusing on the elimination of Tsn1 from breeding 

program materials would likely be beneficial.  

Codominant SSR markers fcp394 and fcp620, which flank Tsn1 within a physical 

segment of about 300 kb, were developed by Zhang et al. (2009), and a PCR-based marker 

(fcp623) for Tsn1 itself was developed by Faris et al. (2010). Because ToxA-insensitive plants 

are typically null for Tsn1 due to the absence of a large segment encompassing the gene (Faris et 

al. 2010, 2013), fcp623 is dominant and not suitable for high-throughput genotyping platforms. 

Although fcp394 and fcp620 are codominant, SSRs are not optimal for modern high-throughput 

platforms either. In an effort to develop new and better markers for Tsn1, we developed 

codominant KASP markers that delineate Tsn1 to a physical segment of about 40 kb and are 

highly robust (K.L.D. Running and J.D. Faris, unpublished) (Table 3.1). These markers, 

designated fcp791 and fcp792, are available upon request from J. Faris. 

3.4.3. Snn2-SnTox267, Snn6-SnTox267, and Snn7-SnTox267 

Earlier research indicated the Snn2-SnTox2, Snn6-SnTox6, and Snn7-SnTox7 

interactions were independent of one another, and SnTox2, SnTox6 and SnTox7 were three 

different NEs (Friesen et al. 2007; Gao et al. 2015; Shi et al. 2015). However, through gene 

cloning experiments, Richards et al. (2021) recently showed that NEs SnTox2, SnTox6, and 
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SnTox7 were the same protein, and therefore the NE was redesignated SnTox267. In this section, 

we first discuss each interaction separately and then conclude with the new findings by Richards 

et al. (2021). 

The first report of the Snn2-SnTox2 interaction was by Friesen et al. (2007). Analysis of 

a population of RI lines derived from the two hard red spring wheat cultivars BR34 and Grandin 

(BG population) revealed that it segregated in a 3:1 ratio (sensitive: insensitive) when infiltrated 

with P. nodorum isolate Sn6 culture filtrates, indicating two genes in the host were interacting 

with NEs in the culture filtrate. Further analysis determined that one of the NEs was SnToxA and 

the other was a novel NE designated SnTox2. After partial purification of Sn6 culture filtrate to 

eliminate SnToxA, a single dominant host gene located at the distal end of the short arm of 

chromosome 2D was identified that conferred sensitivity to SnTox2. This gene was designated as 

Snn2. Like the previous S gene-NE interactions identified in this system, a compatible Snn2-

SnTox2 interaction resulted in the development of necrosis.  

Phenotypic evaluation of the BG population using the P. nodorum isolate Sn6 showed the 

Snn2-SnTox2 interaction explained 47% of the disease variation and the Tsn1-SnToxA 

interaction explained 20% of the disease variation (Table 3.1). The two interactions were 

generally additive with plants containing both Snn2 and Tsn1 having higher disease severity than 

those with a single S gene. This was the first study to show the inverse gene-for-gene model 

differed from the classical gene-for-gene model in that multiple interactions led to a higher 

amount of disease in affected plants (Friesen et al. 2007). A high-density genetic linkage map 

was developed for the region of chromosome 2D harboring Snn2, which narrowed the Snn2 gene 

to a 4.0 cM region and was useful in discovering markers for MAS and to begin the positional 

cloning process of the Snn2 gene (Zhang et al. 2009).  
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The Snn6-SnTox6 interaction was characterized by Gao et al. (2015) using the ITMI 

population, which was also used to initially characterize the Snn1-SnTox1 interaction (Liu et al. 

2004a). Culture filtrates of P. nodorum isolates Sn6 and Sn6KOTox3 were used to initially 

characterize this interaction and to identify and map the wheat S gene, Snn6, to the distal region 

of the long arm of chromosome 6A. Characterization of SnTox6 indicated it was likely a protein 

approximately 12 kDa in size.  

When the ITMI population was inoculated with the isolate Sn6, the Snn6-SnTox6 

interaction explained 27% of the disease variation (Table 3.1). The ITMI population segregated 

not only for Snn6, but the S genes Snn1 and Snn3-B1 as well. Interestingly, although both 

SnTox1 and SnTox3 were produced by P. nodorum isolate Sn6, the Snn1-SnTox1 and Snn3-B1-

SnTox3 interactions did not contribute significantly to SNB caused by Sn6 (Gao et al. 2015). 

Follow up experiments indicated the SnTox1 gene was not expressed in isolate Sn6 providing an 

explanation for why Snn1-SnTox1 did not contribute to disease. Related work, discussed above 

and below, indicated some wheat-P. nodorum interactions are epistatic to the Snn3-B1-SnTox3 

interaction thus providing an explanation for the lack of association of the Snn3-B1-SnTox3 

interaction with SNB development in the work by Gao et al. (2015) (Friesen et al. 2008; Peters 

Haugrud et al. 2019). 

Screening of the complete set of 21 Chinese Spring (CS)-Timstein (CS-Tm) disomic 

chromosome substitution lines with culture filtrates of P. nodorum isolate Sn6 revealed the CS-

Tm2D and CS-Tm5B substitution lines were sensitive and harbored S genes (Shi et al. 2015). 

The sensitivity was due to the presence of Snn3-B1 on the Tm5B chromosome and the presence 

of SnTox3 but not SnToxA in the culture filtrate. Evaluations of differential lines indicated the 

sensitivity of Tm2D was not due to Snn2, but rather a new S gene. This gene was designated as 
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Snn7, and it was presumed that Snn7 conferred sensitivity to a new NE, which was designated 

SnTox7. Genetic analysis and mapping in an F2 population derived from CS × CS-Tm 2D 

revealed the location of Snn7 on the long arm of chromosome 2D, approximately 170 cM from 

Snn2.  

When the population was inoculated with isolate Sn6, the Snn7-SnTox7 interaction 

explained 33% of the disease variation (Table 3.1). Evaluation of 52 diverse hexaploid wheat 

lines indicated that the Snn7 allele is rare and the only identified cultivar containing it was 

Timstein (Shi et al. 2015).  

Using GWAS, Richards et al. (2021) identified the P. nodorum gene CJJ_13380 to be a 

strong candidate for both SnTox2 and SnTox6. SnTox7 was previously found to have similar 

characteristics to SnTox2 and SnTox6, therefore Richards et al. (2021) infiltrated the NE 

encoded by CJJ_13380 on the CS × CS-Tm 2D population. QTL mapping indicated that 

CJJ_13380 interacted with Snn7, which led them to conclude that CJJ_13380 encodes SnTox7. 

Therefore, what was originally thought to be three separate NEs (SnTox2, SnTox6, and SnTox7) 

was confirmed to be one NE, now redesignated as SnTox267 (Richards et al. 2021; Friesen and 

Faris 2021 for review). 

SnTox267 consists of a single 798 bp exon and encodes a secreted protein consisting of 

265 amino acids including 10 cysteine residues (Richards et al. 2021). SnTox267 has structural 

similarity to SnTox3 and SnTox5, and diversity analysis showed that it was present in 95.43% of 

the sequenced isolates collected throughout the US; however, there is a high level of nucleotide 

diversity with 22 polymorphic nucleotides identified thus far in the coding region and a total of 

32 nucleotide haplotypes.  
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Richards et al. (2021) showed that Snn2 and Snn6 are both required for SnTox267 

sensitivity and are therefore complementary genes. The genetic relationship of Snn7 to Snn2 and 

Snn6 is not yet resolved, and related research has indicated at least several additional genes in the 

wheat genome function as S genes for SnTox267 (J. Faris, unpublished data). Therefore, it 

appears the wheat-P. nodorum interactions involving SnTox267 is genetically complex 

compared to the other interactions.  

Expression of SnTox267 was highest at 24 hpi in infected wheat leaves and tapered off 

until 120 hpi, suggesting that SnTox267 was involved in the early infection process (Richards et 

al. 2021). Whether the only role of SnTox267 is pathogen recognition or if it has secondary 

effector function remains unknown. The exact role SnTox267 plays in eliciting disease has yet to 

be uncovered, along with the pathways SnTox267 targets and whether it directly interacts with 

the protein products of Snn2, Snn6, Snn7, or other targets. Cloning of the host S genes will help 

unravel this complex relationship between SnTox267 and its targets. 

3.4.4. Snn3 -SnTox3  

The Snn3-SnTox3 interaction was first identified using the BG population and several P. 

nodorum isolates that produced various combinations of NEs (Friesen et al. 2008). A compatible 

interaction played a significant role in the development of disease explaining from 13-35% of the 

phenotypic variation in SNB (Table 3.1), but the Snn3-SnTox3 interaction was not always 

significant in the presence of other compatible interactions. Infiltrations with partially purified 

cultures containing only SnTox3 indicated a dominant Snn3 gene conferred sensitivity to 

SnTox3, and the Snn3-B1-SnTox3 interaction fit the inverse gene-for-gene model.  

Friesen et al. (2008) showed that SnTox3 was a protein between 10 and 30 kDa in size. In 

follow up work to clone the SnTox3-encoding gene, SnTox3, Liu et al. (2009) analyzed proteins 
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of avirulent and virulent isolates containing SnTox3 and identified the gene SNOG_08981 from 

the P. nodorum reference genome as the best candidate. Gene disruption and heterologous 

expression of SNOG_08981 demonstrated that it was SnTox3. SnTox3 encoded a pre-pro protein 

consisting of 230 amino acids. SnTox3 was 25.85 kDa, contained a 20 amino acid signal peptide, 

and six cysteine residues that were predicted to form disulfide bonds and help stabilize the 

mature protein and in protein activity. SnTox3 expression was highest during the first few days 

post infection and then decreases once the host tissue had been colonized (Liu et al. 2009).  

The frequency of SnTox3 in global P. nodorum populations varied among regions (Liu et 

al. 2009; McDonald et al. 2013). It was proposed that unless a NE has a dual function, like 

SnTox1, they were under positive selection and frequency of the NE corresponded with 

frequency of the corresponding S gene in that region (Liu et al. 2009, Liu et al. 2012). Liu et al. 

(2012) found that SnTox3 was present in 60% of the 923 worldwide isolates screened and was an 

important virulence factor. Recently, Sung et al. (2020) demonstrated SnTox3 does have a dual 

function in that it not only mediates Snn3-induced necrosis, but it also independently interacts 

with TaPR1 proteins to suppress host defense responses.  

Friesen et al. (2008) mapped the Snn3 gene to the distal end of chromosome arm 5BS in 

the BG population (Table 3.1). The marker Xcfd20 was located 1.4 cM proximal to Snn3, and no 

marker on the distal side of Snn3 was identified. Subsequent saturation and fine mapping of Snn3 

on 5BS using 5,600 gametes derived from the hard red spring wheat lines BR34 and Sumai3 by 

Shi et al. (2016a) led to the identification and development of additional markers that delineated 

the locus to a 1.5 cM interval. The study by Shi et al. (2016a) also suggested that different Snn3 

alleles can underlie differences in levels of SnTox3 sensitivity. However, our ongoing research 



 

67 

has recently revealed a second Snn3 gene exists on chromosome arm 5BS that is responsible for 

the higher level of sensitivity to SnTox3 in some wheat lines (see below).  

A survey of Ae. tauschii accessions for sensitivity to SnTox3 revealed several sensitive 

accessions. Subsequent genetic analysis by Zhang et al. (2011) led to the identification of a gene 

on the short arm of chromosome 5D that conferred sensitivity to SnTox3 in the Ae. tauschii 

accession TA2377 (Table 3.1). Comparative mapping analysis indicated this locus was likely 

homoeologous to the Snn3 locus on 5B in polyploid wheat, and the 5B and 5D genes were 

subsequently named Snn3-B1 and Snn3-D1, respectively. Zhang et al. (2011) tested 180 Ae. 

tauschii accessions and found that 11.7% were sensitive to SnTox3 and therefore likely harbored 

functional Snn3-D1 alleles. They also tested 93 common wheat lines and found that 38.7% were 

sensitive to SnTox3. When evaluating hexaploid wheat populations segregating for SnTox3 

sensitivity, they discovered all had Snn3-B1 and none had Snn3-D1 suggesting the D-genome 

donor of hexaploid wheat did not have Snn3-D1.  

Fine-mapping of the Snn3-D1 locus in Ae. tauschii by Zhang et al. (2011) using a 

population consisting of 1,726 recombinant gametes delineated the gene to a 1.38 cM interval by 

markers Xhbg337 and Xcfd18. In an effort to clone Snn3-D1 using a map-based approach, these 

two flanking markers were used to screen 7,700 recombinant gametes derived from an Ae. 

tauschii population and 9,200 gametes derived from a cross between the hard red spring wheat 

line BR34 and a synthetic hexaploid wheat line developed from the durum wheat variety 

Langdon and the Ae. tauschii accession TA2377 (LDN2377) (Zhang et al. 2021). This strategy 

narrowed the Snn3-D1 candidate region to a 362 kb segment in TA2377 containing 11 putative 

genes. Comparative sequence analysis of EMS-induced SnTox3-insensitive mutants 
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demonstrated that a gene containing protein kinase (PK) and major sperm protein (MSP) 

domains was Snn3-D1.  

The genomic sequence of Snn3-D1 was 1,977 bp from start to stop codon, and the coding 

region was 1,476 bp and contained six exons (Figure 3.5) (Zhang et al. 2021). Mutagenesis 

confirmed the PK and MSP domains were both critical for Snn3-D1 gene function. Snn3-D1 was 

expressed in various tissues including leaves, stems, and roots, and it showed a diurnal rhythm 

but with the opposite peak and valley times as Tsn1 and Snn1. The expression of Snn3-D1 

gradually increased during the day and reached its peak around midnight, then gradually 

decreased to the lowest level in the morning.  

A survey of 105 Ae. tauschii accessions indicated Snn3-D1 was present in 42 of them 

(Zhang et al. 2021). Subsequent sequence analysis of the Snn3-D1 gene from 17 sensitive 

accessions revealed almost 100% identity among them, which suggested a relatively recent 

origin of the gene. Genomic analysis and tracking the geographic origins of SnTox3-sensitive 

and -insensitive accessions suggested a genomic insertion harboring the functional Snn3-D1 

allele likely took place along the west bank of the Caspian Sea.  

The cloning of Snn3-D1 led to the identification of the homoeologous candidate gene for 

Snn3-B1 (Zhang et al. 2021). We continue to characterize Snn3-B1, and in doing so, we 

identified a second SnTox3-S gene on wheat chromosome arm 5BS that we refer to as Snn3-B2. 

We are in the process of characterizing both genes, and preliminary results indicate the two 

genes lie approximately 1 Mb apart. As mentioned above, Snn3-B2 appears to confer a higher 

level of sensitivity to SnTox3 than does Snn3-B1. 

Multiple panels have been screened for SnTox3 sensitivity; however, not all have not 

differentiated between whether sensitivity is due to Snn3-B1/B2 or Snn3-D1. Zhang et al. (2011) 
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showed that Snn3-D1 was not likely present in hexaploid wheat or was extremely rare. Phan et 

al. (2021) recently reported the presence of Snn3-D1 in a few hexaploid wheat lines, some of 

which were synthetic hexaploid wheats indicating the Snn3-D1 gene had been introduced from 

the Ae. tauschii accessions used to create them. This finding emphasizes the importance of being 

cautious when using synthetic hexaploids in breeding programs to not inadvertently introgress 

Snn3-D1 or other S genes.  

Percent sensitivity has been reported ranging from 55% in a European spring wheat panel 

(Ruud et al. 2018) to 91.3% in Australian cultivars (Tan et al. 2014) (Table 3.2). This high 

prevalence in different panels from multiple global locations indicates that, where there is 

SnTox3 in the local pathogen population, having Snn3-B1/B2 or Snn3-D1 in local cultivars may 

contribute to the SNB disease severity in that region.  

A few studies have been conducted to gain understanding of the molecular mechanisms 

underlying a compatible Snn3-SnTox3 interaction. Plant cell death around the site of infection 

occurred at about 72 hpi (Winterberg et al. 2014), and 24 to 48 hpi before this, there was an 

upregulation of plant defense genes such as PR proteins, jasmonic acid pathway proteins and 

phenylpropanoid pathway proteins. There was also an increase in expression of receptor-like 

kinase genes, suggesting an increased cell-to-cell signaling that was associated with an ETI 

response (Day et al. 2011; Winterberg et al. 2014). Several MAP kinases were induced in plants 

post SnTox3 infiltration. One of the kinases, TaMPK3, was also shown to be upregulated by 

SnToxA and SnTox1 (Winterberg et al. 2014; Shi et al. 2016b). Multiple microarray and 

proteomic studies have been performed on wheat leaves post infection with NEs, such as 

SnTox3, SnToxA and Ptr ToxA, and offer insights into the possible cellular mechanisms that 

lead to PCD and NETS (Pandelova et al. 2009; Vincent et al. 2012; Winterberg et al. 2014).  
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Preliminary experiments indicated that Snn3 does not interact directly with SnTox3 

(Zhang et al. 2021) (Figure 3.4). Breen et al. (2016) used a yeast-two-hybrid approach to show 

SnTox3 directly interacts with TaPR-1-1 and with additional wheat PR-1 proteins; however, the 

latter were not as strong as the SnTox3-TaPR-1-1 interaction. As mentioned above, SnToxA was 

also shown to interact with a PR-1 protein (Lu et al. 2014). Therefore, it is possible that PR 

proteins may be common targets for NE effectors leading to the upregulation of defense genes 

and ultimately NETS (Breen et al. 2016). 

3.4.5. Snn4-SnTox4 

The Snn4-SnTox4 interaction was described by Abeysekara et al. (2009). An RI 

population developed from crossing Arina and Forno (Paillard et al. 2003), which are both Swiss 

winter wheat cultivars, was used to map Snn4 using culture filtrates of the Swiss P. nodorum 

isolate Sn99CH 1A7a (Sn99). When differential wheat lines were infiltrated with Sn99 culture 

filtrate, it was discovered the filtrate contained a novel NE designated SnTox4 (Abeysekara et al. 

2009). The Snn4-SnTox4 interaction fit the inverse gene-for-gene model, with one dominant S 

gene conferring sensitivity to one NE. 

The gene, designated Snn4, was located on the short arm of chromosome 1A and 

delineated to a 2.5 cM interval (Abeysekara et al. 2009). The NE SnTox4 is most likely a small 

protein, approximately 10 to 30 kDa in size. A compatible Snn4-SnTox4 interaction explained 

41% of the disease variation with additional minor QTLs contributing to disease in an additive 

manner (Table 3.1). 

A population derived from Katepwa × Salamouni was evaluated using the same P. 

nodorum isolate, Sn99 (Abeysekara et al. 2012). In this population, the Snn4-SnTox4 interaction 

explained 23% of the disease variation, with an additional uncharacterized QTL on 7AS 
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explaining 16% of the disease variation. These two interactions were additive and accounted for 

35.7% of the total disease variation. The difference in disease explained may be due to the 

background or the presence of the minor genes. Therefore, depending on the wheat background 

and the NE susceptibility genes present, the Snn4-SnTox4 interaction explained 23-41% of the 

disease variation when plants were infected with the P. nodorum isolate Sn99. In both 

populations, the phenotype associated with this interaction was unique in that it was a mottled 

necrotic reaction and not as severe in appearance as the necrosis seen with many of the other 

interactions (Abeysekara et al. 2009).  

3.4.6. Snn5-SnTox5 

Culture filtrates of P. nodorum isolate Sn2000 were used to screen a doubled haploid 

(DH) population derived from crossing Lebsock, a North Dakota durum wheat variety, with T. 

turgidum ssp. carthlicum accession PI 94749 (LP749 population) (Friesen et al. 2012). QTL 

analysis revealed significant associations with markers on the long arm of chromosome 5B that 

represented the Tsn1 locus and with markers on the long arm of chromosome 4B. The 4BL locus 

was determined to be associated with a new host S gene-NE interaction and was designated 

Snn5-SnTox5 (Table 3.1).  

Recently, SnTox5 was cloned by Kariyawasam et al. (2021) and found to be 654 bp and 

intron-free. To validate their candidate gene as encoding SnTox5, Kariyawasam et al. (2021) 

used a combination of GWAS, QTL analysis, CRISPR/Cas9-based gene disruption, and gain-of-

function transformation. SnTox5 encoded a small, secreted protein consisting of 217 amino acids 

with a secretion signal and a 45 amino acid pro-sequence cleaved at a Kex2 protease cleavage 

site. SnTox5 also contained six cysteine residues and had structural similarity to SnTox3. SnTox5 

expression was highest at 24 hpi, and then gradually decreased and leveled off by 120 hpi. Using 
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laser confocal microscopy, Kariyawasam et al. (2021) found the Snn5-SnTox5 interaction 

resulted in PCD but that SnTox5 also facilitated mesophyll colonization even in the absence of 

Snn5. The exact mechanism of how SnTox5 facilitates colonization of the mesophyll remains 

unknown, however, it is likely that in addition to inducing PCD, SnTox5 has a secondary 

function that facilitates mesophyll colonization. A total of 22 nucleotide haplotypes were 

identified from isolates collected across the US and analysis indicated that SnTox5 had high 

levels of diversification within the US, and the type of selection differed based on region. From 

the 22 nucleotide haplotypes, there were 20 different SnTox5 isoforms, which were also under 

region-specific selection pressure.  

The LP749 population was inoculated with multiple P. nodorum isolates to characterize 

the role the Snn5-SnTox5 interaction played in disease development and severity. The population 

segregated for the NE susceptibility genes Snn5, Tsn1, and Snn3-B1. When the isolate Sn2000, 

which produces both SnTox5 and SnToxA, was inoculated onto the population, the Snn5-

SnTox5 interaction explained 37% of the disease variation and Tsn1-SnToxA explained 31% 

(Table 3.1). When the population was inoculated with Sn2000KO6-1, which lacks SnToxA, the 

Snn5-SnTox5 interaction explained 63% of the disease variation; however, the average disease 

scores for the population as a whole and for each genotypic class decreased. These experiments 

showed when both the Snn5-SnTox5 and Tsn1-SnToxA interactions were present, the disease 

level was greater than when only one was present and therefore, the effects of the two 

interactions were additive.  

The authors also used Sn1501, which produces SnTox5 and SnTox3, and isolate 

Sn1501∆Tox3, which lacks SnTox3 but still produces SnTox5 (Friesen et al. 2012). The Snn5-

SnTox5 interaction explained 53% of the disease variation caused by Sn1501, but the Snn3-B1-
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SnTox3 interaction explained only 3% of the variation. When inoculated with Sn1501∆Tox3, the 

Snn5-SnTox5 interaction explained 51% of the disease variation, indicating that, depending on 

the host and pathogen genetic backgrounds, the Snn5-SnTox5 interaction can play a major role in 

SNB development.  

Recently, Sharma (2019) reported the development of a saturated map of the Snn5 region 

to initiate the gene cloning process. The Snn5 locus was delineated to 2.8 cM, which 

corresponded to a physical distance of 1.38 Mb and contained 16 putative genes flanked by 

markers Xfcp762 and Xfcp763. Recent work in our labs using various wheat genomic resources 

have led to the cloning of Snn5, and we are currently in the process of characterizing the gene 

and the interaction. This work will provide additional insights into this complex pathosystem and 

tools to breed for genetic resistance.  

3.5. Studies on Multiple Interactions and NE Expression 

Multiple studies have been performed evaluating disease using isolates that produce 

multiple NEs and populations that segregate for two or more NE susceptibility genes (Liu et al. 

2004a; Liu et al. 2012; Liu et al. 2009; Zhang et al. 2011; Friesen et al. 2008; Virdi et al. 2016; 

Liu et al. 2006; Friesen et al. 2007; Abeysekara et al. 2009; Abeysekara et al. 2012; Friesen et al. 

2012; Gao et al. 2015; Faris et al. 2011; Phan et al. 2016; Peters Haugrud et al. 2019). In many of 

these studies, multiple compatible interactions were additive, with wheat genotypes containing 

multiple NE susceptibility genes exhibiting a greater level of disease than systems where only 

one interaction occurred. Thus, SNB development in systems involving multiple interactions 

appears to be controlled quantitatively. 

Although past research has determined which NEs are produced in cultures of specific 

isolates, few studies have examined the expression of NEs in planta and how this corresponds to 
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the interactions observed and the amount of disease on infected plants. Gao et al. (2015) 

observed that although P. nodorum isolate Sn6 had previously been shown to produce SnTox1 

and SnTox3, the Snn1-SnTox1 and Snn3-B1-SnTox3 interactions were not significantly 

associated with disease in the population under study. Expression levels were tested at 3 days 

post infection in sensitive wheat lines. No transcripts of SnTox1 were observed, providing an 

explanation for the lack of significance of the Snn1-SnTox1 interaction, however, high levels of 

SnTox3 transcripts were observed. One explanation was that the Snn3-B1-SnTox3 interaction 

was relatively weak compared to other wheat-P. nodorum interactions and may therefore be 

masked in some backgrounds (Gao et al. 2015).  

Faris et al. (2011) examined the Tsn1-SnToxA and Snn2-SnTox2 interactions in a 

segregating RI population to determine the effects of each interaction on disease using multiple 

P. nodorum isolates. For isolate Sn4, Snn2-SnTox267 explained 26% of the variation in SNB 

development and Tsn1-SnToxA explained 25%. When the same population was inoculated with 

isolate Sn5, Snn2-SnTox267 explained only 6% of the disease variation and Tsn1-SnToxA 

explained 56%. Expression of SnToxA in parental lines was studied using quantitative PCR with 

samples collected at multiple time points post infection. Expression of SnToxA was highest in 

both Sn4 and Sn5 at 26 hpi, and higher levels of transcription were observed in both the resistant 

and susceptible line inoculated with Sn5 compared to the same lines inoculated with Sn4. This 

corresponded to the disease level difference observed for the Tsn1-SnToxA interaction between 

the two isolates. Because the same host population was used for both isolates, Faris et al. (2011) 

suggested that the difference was not due to host background differences, but rather pathogen 

genetic factors that influence NE gene expression.  
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Virdi et al. (2016) used a tetraploid wheat population to show the level of disease 

attributed to the Tsn1-ToxA interaction differed between P. nodorum and P. tritici-repentis 

isolates. When plants were inoculated with isolates of each pathogen, the level of ToxA 

expression differed substantially with the P. nodorum isolate Sn2000 transcribing ToxA at much 

higher levels than the P. tritici-repentis isolate 86-124. This corresponded to the disease 

evaluation findings and provided further evidence that pathogen genetic factors influence NE 

gene expression and therefore the significance of a particular interaction in causing disease.  

Phan et al. (2016) evaluated the expression of SnTox1 and SnTox3 in P. nodorum isolate 

SN15 on a wheat population that segregated for Snn1 and Snn3-B1. In seedlings inoculated with 

SN15, the Snn1-SnTox1 interaction explained 18% of the disease variation, and the Snn3-B1-

SnTox3 interaction was not significant. Expression of SnTox1 and SnTox3 was studied in planta 

at 48 hpi in all four genotypic combinations (snn1/snn3-B1; snn1/Snn3-B1; Snn1/snn3-B1; 

Snn1/Snn3-B1). No significant difference was observed in expression of SnTox1 and SnTox3 

among the four genotypic classes, indicating that the presence of the corresponding NE 

susceptibility gene did not influence NE expression. SnTox3 expression differences between 

SN15 and SN15tox1-6, which lacks SnTox1, were also evaluated. Here, transcriptional 

expression of SnTox3 was significantly higher in the SN15tox1-6 isolate compared to the 

wildtype SN15. This led Phan et al. (2016) to conclude that SnTox3 expression may be 

suppressed by SnTox1. 

Some research indicates NE genes are positively regulated by transcription factors that 

are global regulators. PnPf2, which encodes a GAL4-like Zn2Cys6 transcription factor, was 

found to be a positive regulator of SnToxA and SnTox3 expression (Rybak et al. 2017). Lin et al. 

(2018) found that PnCon7, a zinc finger transcription factor, also positively regulates SnTox3. 
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The PnCon7 protein directly interacts with the cis-regulatory element in the SnTox3 promoter 

region. Interestingly, SnToxA and SnTox1 expression was reduced in isolates with PnCon7 

silenced; however, the authors speculated that PnCon7 acted upstream of the regulatory elements 

for these genes and did not directly regulate SnToxA or SnTox1. These findings indicate NE 

genes may be regulated by similar transcription factors. To date, no regulatory factors of SnTox1 

have been discovered.  

Peters Haugrud et al. (2019) evaluated a wheat RI population that segregated for Snn1, 

Snn3-B1, and Tsn1, with several P. nodorum isolates that produced various combinations of the 

NEs SnTox1, SnTox3, and SnToxA. For isolates that produced all three NEs, only the Tsn1-

SnToxA and Snn3-B1-SnTox3 interactions contributed to disease, but the relative effects of these 

interactions ranged from additive to epistatic depending on the pathogen isolate. The Snn1-

SnTox1 interaction contributed very little to disease development except when an isolate with a 

disrupted SnToxA gene (Sn2000KO6-1) was used. In this case, the Snn1-SnTox1 interaction 

played a much more significant role in SNB development compared to when the wild type 

isolate (Sn2000) was used. Transcription experiments indicated that the enhanced role of the 

Snn1-SnTox1 interaction was due to a significance increase in the expression level of the SnTox1 

gene when SnToxA was eliminated. This suggests SnToxA may downregulate SnTox1 expression. 

Overall, the experiments by Faris et al. (2011), Phan et al. (2016), and Peters Haugrud et al. 

(2019) demonstrated that differences in the genetic background of both the pathogen and host, 

along with inter-NE gene regulation leading to complex interplay among the interactions, all play 

roles in determining the significance of individual interactions and ultimately, overall disease 

severity. 
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Further research into how multiple wheat-P. nodorum interactions interact with one 

another to confer disease is needed. As previously stated, the disease-severity potential of 

individual isolates appears to be governed by the expression levels of pathogen NE genes. It is 

possible that there is a fitness cost to the pathogen for NE gene expression, which would explain 

why all NE genes possessed by a given isolate are not all expressed at high levels. Perhaps the 

pathogen acquires feedback from the host as to the S genes it carries and then upregulates those 

that would cause the host to induce PCD most efficiently. This might explain why an NE gene is 

upregulated when another is rendered nonfunctional as seen in the case with SnTox1 and SnToxA 

in the wild type isolate Sn2000 and the corresponding SnToxA-knockout isolate Sn2000KO6-1 

(Peters Haugrud et al. 2019). These findings were corroborated by Richards et al. (2021), who 

demonstrated that a deletion of SnTox267 resulted in increased expression of SnToxA, SnTox1, 

and SnTox3. Studies examining not only pathogen expression but also host S gene expression are 

needed to further characterize this pathosystem at the molecular level as are studies to determine 

if epistasis occurs between NE genes and how these genes are regulated in the pathogen. 

Research in these areas will provide a broader understanding of this system, which will be useful 

for devising novel control strategies.  

3.6. Additional QTLs Associated with a Compatible Wheat-P. nodorum Interaction 

In addition to the S gene-NE interactions, multiple QTL have been reported in the wheat-

P. nodorum pathosystem for susceptibility to SNB on leaves (Figure 3.6, Table 3.3). QTLs that 

explain over 10% of the SNB variation in biparental studies have been reported on chromosomes 

1A (Ruud et al. 2017; Singh et al. 2019), 1B (Francki et al. 2011), 2A (Francki et al. 2011; Phan 

et al. 2016), 2B (Czembor et al. 2003), 2D (Aguilar et al. 2005; Shanker et al. 2008; Phan et al. 

2016; Ruud et al. 2017), 3B (Czembor et al. 2003; Lu and Lillemo 2014), 4B (; Liu et al. 2004, 
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2012; Aguilar et al. 2005); 5A (Friesen et al. 2007, 2009; Shankar et al. 2008; Hu et al. 2019; 

Singh et al. 2019), 5B (Czembor et al. 2003; Shankar et al. 2008; Francki et al. 2011); 5D 

(Czembor et al. 2003), 6A (Arseniuk et al. 2004), 6B (Phan et al. 2016), 7A (Abeysekara et al. 

2012), and 7B (Aguilar et al. 2005; Ruud et al. 2017).  

In MAGIC panels, significant marker trait associations that explain over 10% of the SNB 

variation have been reported on chromosomes 2A (Lin et al. 2021), 2D (Lin et al. 2021), 3A (Lin 

et al. 2021), and 5A (Cockram et al. 2015). In association mapping panels, significant marker 

trait associations that explain over 10% of the SNB variation have been reported on 

chromosomes 1A (Ruud et al. 2019), 1B (Ruud et al. 2019; Francki et al. 2020), 2B (Ruud et al. 

2019), 2D (Ruud et al. 2019), 3A (Phan et al. 2018; Ruud et al. 2019), 3B (Ruud et al. 2019), 4A 

(Phan et al. 2018; Ruud et al. 2019), 4B (Phan et al. 2018; Ballini et al. 2020), 5A (Liu et al. 

2015; Phan et al. 2018; Hu et al. 2019; Ruud et al. 2019), 5D (Ruud et al. 2019), 6A (Francki et 

al. 2020); 6B (Ruud et al. 2019), 7A (Adhikari et al. 2011; Phan et al. 2018; Ruud et al. 2019), 

7B (Ruud et al. 2019; Ballini et al. 2020), and 7D (Phan et al. 2018; Ruud et al. 2019). Whether 

the active genes underlying these QTLs confer susceptibility or resistance to P. nodorum has yet 

to be determined. Recently, Zhang et al. (2019) identified genes for resistance to both SNB and 

tan spot on chromosome 2S of Aegilops speltoides, but the nature of the resistance mechanism 

has yet to be identified. Additionally, Friesen et al. (2007) hypothesized that some QTLs may be 

due to general non-pathogen specific resistance or susceptibility mechanisms and may not follow 

the inverse gene-for-gene model commonly observed in this pathosystem. Studies examining 

host populations that segregate for the genes underlying these QTLs are needed to determine the 

type of resistance each provides against P. nodorum. 
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Table 3.3. Studies reporting QTL associated with SNB on wheat leaves that explain 10% or more of the disease variation.  

Reference Population 
Type 

Total number 
of QTL 

Variation 
explained (%) 

Chromosomes with QTL Field or Greenhouse Sensitivity gene potentially 
associated with SNB QTLs 

Czembor et al. 2003 Bi-parental 4 14-37% 2B, 3B, 5B, 5D Greenhouse None 
Arseniuk et al. 2004 Bi-parental 1 36% 6A Greenhouse Snn6 
Liu et al. 2004, 2012 Bi-parental 1 50% 4B Greenhouse Snn5 
Aguilar et al. 2005 Bi-parental 3 13-21% 2D, 4B, 7B Field Snn7 
Friesen et al. 2006 Bi-parental 2 10-62% 1B, 5B Greenhouse Tsn1, Snn1 
Liu et al. 2006 Bi-parental 2 10-62% 1B, 5B Greenhouse Tsn1, Snn1 
Friesen et al. 2007 Bi-parental 4 10-47% 1B, 2D, 5A, 5B Greenhouse Tsn1, Snn1, Snn2 
Shankar et al. 2008 Bi-parental 3 13-21% 2D, 5A, 5B Field/Greenhouse Tsn1 
Friesen et al. 2008 Bi-parental 3 13-37% 2D, 5B (2) Greenhouse Tsn1, Snn2, Snn3-B1 
Liu et al. 2009 Bi-parental 2 10-64% 2D, 5B Greenhouse Snn2, Snn3-B1 
Abeysekara et al. 2009 Bi-parental 1 41% 1A Greenhouse Snn4 
Friesen et al. 2009 Bi-parental  4 10-37% 1B, 2D, 4B, 5A, 5B Field/Greenhouse Tsn1, Snn1, Snn2, Snn5  
Chu et al. 2010 Bi-parental 2 22-50% 1B, 5B Greenhouse Tsn1, Snn1 
Adhikari et al. 2011 AM panel 2 10-12% 7A, 2D Greenhouse Snn2 
Francki et al. 2011 Bi-parental 3 14-22% 1B, 2A, 5B Field Snn1 
Zhang et al. 2011 Bi-parental 2 25-56% 2D, 5B Greenhouse Tsn1, Snn2 
Abeysekara et al. 2012 Bi-parental 2 16-24% 1A,7A Greenhouse Snn4 
Friesen et al. 2012 Bi-parental 2 31-63% 4B, 5B Greenhouse Tsn1, Snn5 
Gurung et al. 2014 AM panel 2 12-15% 2D, 5B Greenhouse Snn2, Tsn1 
Lu and Lillemo 2014 Bi-parental 2 12% 3B(2) Field None 
Cockram et al. 2015 MAGIC 2 NA 1B, 5A Greenhouse Snn1 
Liu et al. 2015 AM panel 2 10% 5A, 5B Greenhouse Tsn1 
Gao et al. 2015 Bi-parental 1 27% 6A Greenhouse Snn6 
Shi et al. 2015 Bi-parental 1 33% 2D Greenhouse Snn7 
Phan et al. 2016 Bi-parental 3 10-29% 2A, 2D, 6B Field/Greenhouse Snn2 
Virdi et al. 2016 Bi-parental 1 38% 5B Greenhouse Tsn1 
Ruud et al. 2017 Bi-parental 3 11-16% 1A, 2D, 7B Field Snn2, Snn4 
Phan et al. 2018 AM panel 10 NA 1B, 2D (2), 3A, 4A, 4B, 

5A, 5B, 7A, 7D 
Greenhouse Snn1, Snn3-B1, Snn2, Snn7 

Hu et al. 2019 Bi-parental 1 17% 5A Greenhouse None 
Ruud et al. 2019 AM panel 18 NA 1A(2), 1B, 2B, 2D, 3A, 

3B(2), 4A, 4B, 5A, 5B(2), 
5D, 6B, 7A, 7B, 7D 

Field/Greenhouse Snn3-B1, Snn7, Tsn1, Snn5 

Singh et al. 2019 Bi-parental 3 11-21% 1A, 5A, 5B Greenhouse Tsn1 
Peters Haugrud et al. 
2019 

Bi-parental 4 10-34% 1B, 4B, 5B(2) Greenhouse Tsn1, Snn1, Snn3-B1, Snn5  

Ballini et al. 2020 AM panel 2 9-18% 4B, 7B Greenhouse None 
Francki et al. 2020 AM panel 3 10-11% 1B, 6A(2) Field None 
Lin et al. 2021 MAGIC 5 10-16% 2A, 2D, 3A, 5B(2) Field/Greenhouse Snn3-B1, Tsn1 
Kariyawasam et al. 2021 Bi-parental 2 10-66% 4B, 5B Greenhouse Tsn1, Snn5 
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Figure 3.6. QTLs associated with septoria nodorum blotch disease that explain over 10% of the 
disease variation and are not associated with characterized NE sensitivity genes. The genomic 
positions of the known septoria nodorum blotch NE sensitivity genes Tsn1, Snn1, Snn2, Snn3-
B1, Snn3-D1, Snn4, Snn5, Snn6, and Snn7 are shown for reference. Table 3.3 contains a 
summary of the results illustrated here, along with studies that have identified QTLs associated 
with known sensitivity genes. Colored bars next to QTL designations indicates the approximate 
locations of the QTLs, and the different colors indicate QTLs identified from different studies. 
dark blue Shanker et al. (2008); light blue Arseniuk et al. (2004); orange Phan et al. (2016); light 
green Francki et al. (2011); dark green Lu and Lillemo (2014); dark pink Ruud et al. (2017); 
gold Czembor et al. (2003); light purple Adhikari et al. (2011); brown Phan et al. (2018); light 
pink Cockram et al. (2015); hatched blue Hu et al. (2019); red Aguilar et al. (2005); hatched 
orange Liu et al. (2015); hatched purple Ruud et al. (2019); hatched green Singh et al. (2019); 
hatched brown Lin et al. (2021); hatched pink Gurung et al. (2014); hatched yellow Ballini et al. 
(2020); maroon Friesen et al. (2009), Abeysekara et al. (2012). 
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3.7. Breeding and Marker-Assisted Selection for SNB Resistance 

Because SNB susceptibility is typically quantitative due to the presence of multiple S 

genes that all play roles in conferring susceptibility, all the host S genes should be eliminated to 

achieve genetic resistance. A lack of understanding or awareness of the genetic control of SNB 

resistance is the main reason that breeders have been hindered in their efforts to develop SNB-

resistant germplasm. With the knowledge that wheat possesses susceptibility genes as opposed to 

resistance genes and the availability of molecular markers linked to those genes, breeders now 

have the tools available to effectively select against multiple S genes at once (Table 3.1).  

Gene-based markers have been developed for Tsn1 and Snn1 (Faris et al. 2010; Shi et al. 

2016b), but even though markers have been developed based on the gene sequences themselves, 

they are not perfect. Tsn1 lies on an inserted segment in the genome, and ToxA-insensitive lines 

are in the null state (Faris et al. 2010). Therefore, the Tsn1 gene-based marker is dominant 

making it less than ideal for MAS platforms. Flanking codominant KASP markers suitable for 

high-throughput platforms that predict the Tsn1 allelic state with high accuracy have recently 

been developed and are available upon request from the corresponding author (K.L.D. Running 

and J.D. Faris, personal communication). Ongoing work to characterize Snn1 allelic diversity has 

revealed that recessive alleles exist, but there are at least four functional SNPs (S. Seneviratne 

and J.D. Faris, personal communication). Work is ongoing to develop markers specific to each 

SNP and to determine the frequency of each SNP across global collections. Cloning of additional 

S genes or high-resolution mapping will provide more accurate and precise markers for selecting 

against these genes.  

Another method breeders and geneticists may use to detect S genes is to infiltrate plants 

with cultures of the yeast Pichia pastoris expressing a cloned NE gene. To date, SnToxA, 
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SnTox1, SnTox3, and SnTox267 have been cloned into P. pastoris for culture production (Liu et 

al. 2006; Liu et al. 2012; Liu et al. 2009; Richards et al. 2021). This method is more accurate in 

showing which plants are truly insensitive or sensitive to a particular NE, however this method is 

typically not as user friendly for large plant breeding programs compared to high-throughput 

genotyping. Infiltrations are more laborious and require expertise working with fungal and yeast 

cultures. Another disadvantage of plant infiltrations using NE-containing cultures is the inability 

to detect heterozygotes in the F2 generation and beyond. Because host S genes are dominant, 

culture infiltrations will not distinguish between homozygous dominant and heterozygous plants 

because both will be sensitive. For use in breeding, MAS is the recommended method for 

detecting the genotypes for these genes whereas when working with RI or DH populations for 

genetic studies, P. pastoris culture filtrates work just as well as markers.  

A set of S gene differential lines for the known wheat-P. nodorum interactions involving 

cloned NEs have been established (Figure 3.7). If using crude culture filtrates of P. nodorum or 

P. pastoris cultures to evaluate wheat lines or accessions for the presence of known S genes, it is 

important to include the differentials as controls. It is important to note that not all compatible S 

gene-NE interactions result in the same type of reaction or level of cell death. As Figure 3.7 

shows, some reactions yield strong and fast-occurring necrosis whereas others occur more slowly 

or simply do not lead to the same level of cell death. 
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Figure 3.7. Wheat NE sensitivity gene differentials infiltrated with the different NEs. BR34 is a 
universally insensitive line and was infiltrated with SnToxA to show the lack of a reaction. The 
corresponding reaction for each is shown on the right. All images were taken at 3 days post 
infiltration, except BG223, which was taken at 6 days post infiltration. Infiltration borders were 
marked with a permanent marker. SnToxA, SnTox1, and SnTox3 expressed in Pichia pastoris 
were used for infiltrations, and SnTox5 and SnTox267 were concentrated from P. nodorum 
grown in Fries media. SnTox4 was not infiltrated in its respective differential (AF89) due to not 
being cloned.  

3.8. Future Work 

Modern genetic research methods and resources can help to expedite research progress 

and advance our understanding of the wheat-P. nodorum pathosystem. GWAS employs large 

panels of lines and takes advantage of historical recombination events to detect multiple QTL at 
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once and are often more powerful than bi-parental studies (i.e., traditional QTL studies). 

Currently, research is being conducted on both wheat and P. nodorum to detect additional 

susceptibility genes and pathogen virulence genes using GWAS. Hopefully, this will help 

facilitate more rapid cloning of host and pathogen genes, providing tools for geneticists and 

breeders alike. 

Winter wheat is currently lagging in the number of studies identifying SNB susceptibility 

genes compared to durum and spring wheat in the United States. Crook et al. (2012) studied a 

panel of southeastern United States winter wheat cultivars for SNB caused by winter wheat 

isolates, along with known S genes. Crook et al. (2012) found that very few of the cultivars 

contained Snn1, Snn3-B1, or Tsn1; however, they were still sensitive to components of culture 

filtrates. Another study performed in the same region with another winter wheat panel found that 

some cultivars contained Tsn1 and Snn3-B1, but many contained unknown S genes (Bertucci et 

al. 2014). Recently, Cowger et al. (2020) published a perspective article discussing preliminary 

evidence indicating within the eastern region of the U.S., there is durable quantitative resistance 

to SNB and none of the previously characterized S gene-NE interactions play substantial roles in 

SNB disease severity within this region. These studies show that U.S. winter wheat germplasm 

may contain different S loci than those observed thus far in spring and durum wheat and provides 

an area of future research.  

Additionally, the number of studies dissecting S gene-NE interactions under field 

conditions is lagging compared to the amount of greenhouse studies performed to date, although 

a few have been performed. The Tsn1-SnToxA, Snn1-SnTox1, Snn2-SnTox267, Snn3-B1-

SnTox3, and likely Snn6-SnTox267 interactions have each been shown to be important for the 

development of SNB under field conditions as well as in the greenhouse (Friesen et al. 2009; 
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Phan et al. 2016; Ruud et al. 2017; Ruud et al. 2018; Ruud et al. 2019; Lin et al. 2021; Francki et 

al. 2020). These results provide evidence that results of greenhouse studies on this pathosystem 

are generally transferable to what is observed in the field. However, field studies provide a more 

accurate depiction of what is occurring in a farmer’s field due to the presence of multiple isolates 

infecting wheat at the same time, whereas greenhouse studies usually focus on single-isolate 

infections. Field studies allow researchers to determine what interactions are important for 

causing disease from a variety of isolates in a geographic region. Additional field studies will 

provide breeders with the information on which S genes are most important in their region, and 

therefore should be considered highest priority for removal from their germplasm.  

Now that more S genes and their corresponding NE genes have been cloned, future work 

should focus on the characterization of these interactions at the molecular level. As previously 

stated, only Snn1 and SnTox1 have been shown to directly interact (Shi et al. 2016), and the 

relationship between recognition of SnToxA and SnTox3 and the Tsn1 and Snn3 proteins, 

respectively, remains unknown. Once these relationships are known, further work can include 

identifying the genetic pathways and networks associated with the host response post pathogen 

recognition. Within the host, the fate of the NEs remains unknown, along with how the pathogen 

is able to tolerate the host defense response and how the wheat-P. nodorum relationship changes 

as disease progresses. Lastly, dominant S genes are ideal candidates for disruption via 

CRISPR/cas9, especially when developing elite germplasm. By “turning off” the S gene, the 

plant is no longer able to recognize the pathogen, PCD does not occur, and the outcome is a 

resistance response. To use CRISPR/cas9 on S genes, the genes must be cloned. This tool could 

be used to expedite the disruption of S genes from breeding lines leading to an increase in 

genetic resistance to SNB and therefore less disease. One caveat to eliminating S genes is they 
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could provide resistance to biotrophic and/or hemibiotrophic pathogens. However, to date, none 

of the S genes within the wheat-P. nodorum have been found to confer resistance to other 

pathogens.  

Overall, there are still many aspects of the wheat-P. nodorum pathosystem that warrant 

further study. Progress over the last twenty years has shown that the interaction mimics that 

which occurs between plants and biotrophic pathogens; however, recognition leads to 

susceptibility rather than resistance due to the ability of the necrotrophs to feed and thrive on 

dead/dying tissue and to tolerate the plant’s defense response. This finding has shed light not 

only on this pathosystem, but on how other crop plants and necrotrophic pathogens interact with 

one another. 
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CHAPTER 4. GENETIC ANALYSIS OF YIELD RELATED TRAITS IN A DURUM × 

CULTIVATED EMMER WHEAT POPULATION UNDER FIELD AND GREENHOUSE 

CONDITIONS 

4.1. Abstract 

Wheat (Triticum ssp.) yields will need to increase by at least 60% by 2050 to meet the 

expected demands. Numerous studies have identified yield component genes in hexaploid wheat; 

however, fewer studies have been performed in tetraploid wheat. Additionally, no studies in 

tetraploid wheat have evaluated the same population for kernel dimension traits under field and 

greenhouse growing conditions. Here, I evaluated a tetraploid recombinant inbred line 

population derived from a cross between the North Dakota durum wheat variety Divide and the 

cultivated emmer wheat accession PI 272527, or the DP527 population. Plants were grown in the 

summers of 2017 and 2019 in Prosper, ND and 2020 in Casselton, ND in a randomized complete 

block design in hill plots under non-irrigated conditions. Additionally, the population was grown 

in two trials under greenhouse conditions and the same eleven traits were evaluated. QTL 

analysis identified 108 QTL under field conditions, 67 under greenhouse conditions, 27 QTL 

observed in two or more field environments, and 17 QTL that were present under greenhouse 

conditions and multiple field environments. PI 27527 contributed to increased days to heading, 

plant height, spikelets per spike, thousand kernel weight, kernel area, kernel width, kernel length, 

kernel circularity, and kernel length:width ratio. The findings from this study provides insights 

into the traits that differ between the two tetraploid wheat subspecies and are consistent between 

greenhouse and field conditions, along with tools breeders can use to introgress these traits into 

their breeding lines. 
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4.2. Introduction 

Wheat (Triticum ssp.) is one of the major global food crops, supplying approximately 

20% of the calories in the average human’s diet. About 95% of wheat grown is hexaploid 

common (bread) wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD genomes), and tetraploid 

durum wheat (T. turgidum ssp. durum L., 2n = 4x = 28, AABB genomes) accounts for about 5%. 

Durum wheat is grown on approximately 16 million hectares worldwide and is used to make 

pasta and other semolina-based products (Arriagada et al. 2020). Due to the rapidly rising global 

population, wheat production and yields need to increase by upwards of 50% of current 

production by 2050 to meet expected increased demands (IWYP 2017).  

Rapid increases in wheat yields were observed in the mid to late 1900s during the green 

revolution (Hedden 2003). In the latter part of the 20th century, the increase in wheat yield per 

year due to genetic improvements was slight, with changing agronomic practices contributing 

more to yield gains. Genetic advancements in wheat partially lagged due to the complexity of the 

wheat genome and the ability of researchers to identify genes underlying wheat yield 

components (Brinton and Uauy 2018; Taagen et al. 2021).  

Grain yield is a complex trait controlled by a multitude of genes and pathways (Cao et al. 

2020). Final grain yield is determined by three main subcomponents: the number of spikes per 

unit area, the number of kernels per spike and grain weight/size and shape (Gegas et al. 2010; 

Brinton and Uauy 2018; Cao et al. 2020). Each component can be further split into numerous 

subcomponents, adding to the overall complexity of wheat yield, and many yield genes are 

present as homoeologs, which can also influence the phenotypic variation explained by one locus 

(Borrill et al. 2018). Additionally, the wheat genome is an allopolyploid and is comparably larger 
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in size than most cultivated crop genomes (IWGSC 2018), requiring a larger number of markers 

to adequately cover the genome. 

Grain morphology has traditionally been an understudied yield component due to the 

difficulty in measuring this trait (Gegas et al. 2010), and the few studies that have been 

conducted have been in hexaploid wheat populations (Russo et al. 2014; Sun et al. 2020). Grain 

yield and grain size/shape components have been reported to be significantly correlated (Gegas 

et al. 2010; Russo et al. 2014; Sun et al. 2020; Corsi et al. 2021), therefore breeding for increased 

grain size may increase grain yield. 

Recently, multiple reviews have been published on QTLs present in durum wheat 

(Colasuonno et al. 2021; Arriagada et al. 2020) along with reviews on yield component traits and 

pathways in tetraploid and hexaploid wheat (Nadolska-Orczyk et al. 2017; Brinton and Uauy 

2018; Gauley and Boden 2018; Cao et al. 2020). However, the majority of the work done to 

identify mechanisms governing wheat yield components has been in hexaploid wheat (Cao et al. 

2020). In durum wheat, various quality, abiotic, and biotic stress QTL studies have been 

published, whereas relatively few have been published on mapping yield components (Arriagada 

et al. 2020, Colasuonno et al. 2021).  

Cultivated emmer, T. turgidum ssp. dicoccum (Schrank) Schübl (2n = 4x = 28, AABB), is 

the direct progenitor of durum wheat and is considered a minor crop globally (Zaharieva et al. 

2010, Scott et al. 2019). Cultivated emmer was first domesticated in the Fertile Crescent (Faris 

2014; Scott et al. 2019) from wild emmer (T. turgidum ssp. dicoccoides (Körn.) Thell (2n = 4x = 

28, AABB) due to mutations in the Br loci, resulting in cultivated emmer having a non-brittle 

rachis, but it remained non free-threshing with hulled seed (Faris 2014). Subsequently, durum 

arose from cultivated emmer through the acquisition of mutations in Q, the major wheat 
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domestication gene, and the tenacious glume gene Tg, resulting in free-threshing plants (Faris et 

al. 2014).  

Historically, genes from cultivated emmer have been introgressed for disease resistance, 

stress tolerance, and quality traits (Ellis et al. 2014; Sun et al. 2004, Guzmán et al. 2011; Mohler 

et al. 2013; reviewed by Zaharieva et al. 2010). A few studies have been published using bi-

parental populations and mapping spike and agronomic related traits. Previously, durum × 

cultivated emmer populations were grown under greenhouse conditions by Faris et al. (2014) and 

Sharma et al. (2019), and under field conditions by Russo et al. (2014). Findings from these 

studies have identified QTL for yield traits with the cultivated emmer parents contributing the 

desired phenotype. Cultivated emmer has been shown to be a promising resource for improving 

durum genetic diversity. 

To date, most QTL mapping studies in tetraploid wheat have been durum × durum or 

durum × wild emmer. Recombinant inbred line (RIL) populations with closely related parents 

often lack the power to detect QTL due to reduced diversity in the germplasm pool. Durum × 

wild emmer crosses are highly diverse and useful for identifying a larger number of QTL; 

however, introgressing traits from wild emmer into the durum germplasm pool is often 

associated with increased linkage drag of deleterious traits (Yu et al. 2019). Durum × cultivated 

emmer crosses are useful for not only identifying genes in both durum and cultivated emmer but 

cultivated emmer has been cultivated for centuries and may be a source of beneficial yield genes 

(Zaharieva et al. 2010).  

In this study, I phenotyped a durum × cultivated emmer population derived from Divide 

× PI 272527, referred to as the DP527 population, under field and greenhouse conditions. My 

two primary objectives were 1) to identify QTLs associated with 11 yield component traits in the 
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DP527 population under field and greenhouse conditions and 2) determine which QTLs are 

stable over multiple environments and suitable for deployment in breeding programs in durum 

improvement.  

4.3. Materials and Methods 

4.3.1. Plant Material 

The durum × cultivated emmer RIL population DP527 was evaluated for grain yield 

components under greenhouse and field conditions in North Dakota, USA. The DP527 

population was developed by crossing Divide (PI 642021), a North Dakota hard amber durum 

variety (Elias and Manthey 2007), with PI 27527, a cultivated emmer accession collected near 

Pest, Hungary. The DP527 population consists of 219 RILs, which were developed using the 

single-seed descent method by Dr. Steven Xu, Cereal Crops Research Unit, USDA-ARS, Fargo, 

ND. 

4.3.2. Phenotyping 

The population and parental lines were evaluated under field conditions for a total of 

three seasons and were grown in a randomized complete block design (RCBD) with three 

replicates each season. Plants were grown in hill plots, with each plot consisting of 10-15 seeds 

and considered an experimental unit. The 2017 and 2019 plots were grown at the North Dakota 

State University (NDSU) field site near Prosper, ND (47.002, -97.115). The 2020 plots were 

grown at the NDSU agronomy seed farm in Casselton, ND (46.880, -97.243).  

The DP527 population and parental lines were phenotyped for eleven traits: days to 

heading (DTH), plant height (PHT), total number of spikelets per spike (SPS), kernels per spike 

(KPS), grain weight per spike (GWS), thousand kernel weight (TKW), kernel area (KA), kernel 

width (KW), kernel length (KL), kernel circularity (KC), and kernel length:width ratio (KLW). 
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DTH was measured as the number of days from planting until 50% of the spikes were beyond 

the flag leaf. PHT was measured from the base of the hill plot to the tip of the highest spike 

(excluding awns) in the plot in centimeters. Fifteen main heads per plot were hand harvested, and 

eight heads were used for phenotypic evaluations. SPS was counted as the total number of 

spikelets per head. KPS, GWS, TKW, KA, KW, KL, KC, and KLW data was obtained using a 

MARVIN grain analyzer (GAT Sensorik GMBH, Neubrandenburg, Germany). KPS and GWS 

data from the MARVIN was divided by the number of heads in the sample to obtain an average 

per wheat head. For the 2019 growing season, planting occurred in late May, and by early 

September about one third of the lines were not mature. Therefore, for the 2019 season only 

DTH, PHT, and SPS were evaluated.  

The DP527 population and parents were evaluated under greenhouse conditions in two 

greenhouse seasons (2018 and 2019) with two replicates per season. Plants were grown in 6-in 

pots in a greenhouse with 16-h photoperiod and a temperature of 21 °C. All plants were grown in 

a completely randomized design (CRD) with one plant per pot, which was one experimental unit. 

DTH was measured as the number of days from planting until the emergence of the first spike 

beyond the flag leaf, and PHT was measured from the base of the plant to the tip of the highest 

spike in centimeters. Plants were hand harvested and four heads per plant were used for the rest 

of the phenotypic evaluations, which were measured the same as the field trials. 

4.3.3. Genotyping and Linkage Mapping 

DNA extraction, genotyping, linkage analysis, and map construction were done by the 

USDA-ARS small grains genotyping lab at Fargo, ND, Megan Overlander, and Dr. Justin Faris. 

Briefly, DNA of the DP527 population along with the parental lines was extracted using the 

methods described in Sharma et al. (2019a). The DP527 population along with the parental lines 
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was genotyped using the iSelect 90k wheat SNP array (Wang et al. 2014). The genotyping assay 

was carried out using Illumina’s Infinium assay following the manufacture’s protocols. SNP 

clustering and genotyping calling were performed using Illumina’s GenomeStudio software 

v.2011.1. The genotype callings were manually inspected to correct cluster shifts due to copy 

number differences and to ensure call accuracy for every SNP.  

The Q gene functional marker Xfcp650(Q), a simple sequence repeat (SSR) marker 

designed by Simons et al. (2006), was used to map the Q gene on chromosome 5A. The primer 

sequences for the FCP650 set are 5’ GCACTAGCTAATTCAGTGGTTAGATTTGCTCA 3’ and 

5’ ATTCAGTGGTAGCAACAGTTTCAGTAAGCTGG 3’ and an annealing temperature of 65 

°C was used.  

Linkage maps were assembled using MapDisto 1.7.7.0.1.1 (Lorieux et al. 2012). Markers 

were first organized into groups using the ‘find groups’ command with a minimum LOD = 3.0 

and a maximum theta of 0.30. The ‘order’ sequence command was used to establish the initial 

order of markers within a linkage group. Subsequent interrogation of the sequence using the 

‘check inversions’, ‘ripple order’, and ‘drop locus’ commands was conducted to determine the 

best map. Map distances were calculated using the Kosambi mapping function (Kosambi 1943).  

4.3.4. Statistical Analysis and QTL Mapping 

Statistical analysis was performed using the PROC GLM procedure in SAS 9.4 (SAS 

institute). Fisher’s Least Significant Difference (LSD) test was used to determine significant 

differences among the RILs at the 0.05 level of probability. For each season (field and 

greenhouse), Bartlett’s Chi squared test for homogeneity of error variances (Snedecor and 

Cochran 1989) was used to determine if replicates within the same environment could be 

combined. For those traits that were not normally distributed, Levene’s test (Levene 1960) was 
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used instead. For those that could be combined, the scores of each replicate for those traits were 

used to calculate the overall mean, which was used in further analyses and QTL mapping. For 

field data, TKW 2020 replicates were not homogeneous using both Bartlett’s and Levene’s, and 

DTH and GWS could not be combined across years in the GH; therefore, each replicate for these 

traits was analyzed separately. Trait mean, max, min, and correlations were calculated in R 

v4.0.3, with Pearson correlation coefficients calculated using the R command cor (R 

Development Core Team) and plotted using R/corrplot (Wei and Simko 2017). 

QTL analysis was performed using R/qtl (Broman et al. 2003). For simple interval 

mapping, significant QTL were identified using the function ‘scanone’ with the extended Haley-

Knott method (Haley and Knott 1992). An LOD significance threshold was determined using a 

permutation test with 1000 interactions. ‘Scantwo’ with the extended Haley-Knott method was 

used to identify QTL × QTL interactions and a LOD significance threshold was determined 

using a permutation test with 1000 interactions. Multiple QTL mapping was performed using the 

stepwiseqtl command (Manichaikul et al. 2009) using method=imp (Sen and Churchill 2001). A 

forward/backward search method was used, with a maximum of 12 QTL allowed. The initial 

model was given based on the ‘scanone’ QTL results. An approximate Bayesian credible interval 

was calculated using ‘Bayesint’ with a probability of 0.99 (Broman et al. 2003). QTL names 

include the trait abbreviation followed by “fcu”, which stands for Fargo Cereals Unit. 

Markers that were significantly associated with each QTL were subjected to BLASTn 

searches against Svevo RefSeq Rel. 1.0 pseudomolecules (Maccaferri et al. 2019), Zavitan 

WEWSeq v2.0 pseudomolecules (Zhu et al. 2019), and the Chinese Spring IWGSC RefSeq v2.1 

genome assembly (Zhu et al. 2021) using the Graingenes website (https://wheat.pw.usda.gov/ 

GG3/) to obtain the physical positions for comparing QTL between environments, along with 
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identifying previously reported genes that may reside within each QTL region. The sequence for 

reported genes were obtained from Genbank or the gene cloning papers. 

4.4. Results 

4.4.1. Map Construction 

The DP527 population map was constructed using the 90K iSelect polymorphic SNP 

results and the SSR marker Xfcp650(Q) (Table 4.1). The final map consisted of 10,486 markers 

and was assembled into 14 linkage groups representing each of the 14 durum wheat 

chromosomes (Supplementary File 1). The average number of markers per chromosome was 

749, with a range from 466 markers on chromosome 5A to 1,188 markers on chromosome 1B 

(Table 4.1). The average chromosome map length was 174.31 cM, with chromosome 6A being 

the shortest at 129.23 cM in length and chromosome 5A was the longest at 226.73 cM. Density 

ranged from 2.06 to 6.79 markers/cM among linkage groups, with a genome-wide density of 

4.30 markers/cM. The B genome had a higher marker density than the A genome. A total of 

3,519 (33.56%) markers had segregation ratios that significantly (P < 0.05) deviated from the 

expected 1:1 ratio. The percentage of markers with distorted segregations varied, ranging from 

0.19% on chromosome 4B to 79.04% on chromosome 1B.  
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Table 4.1. Chromosome assignment and distribution of markers, length of chromosome linkage 
groups, and marker density of maps generated in the Divide × PI 272527 (DP527) recombinant 
inbred population. 

Chromosome SSR SNP Total markers Loci Length Markers/cM 
% distorted 

markers 
1A 0 658 658 137 163.68 4.02 27.20 
1B 0 1,188 1,188 181 166.03 7.16 79.04 
2A 0 699 699 120 187.95 3.72 46.49 
2B 0 1,107 1,107 220 188.00 5.89 56.37 
3A 0 637 637 163 196.38 3.24 7.38 
3B 0 923 923 215 169.11 5.46 17.01 
4A 0 554 554 126 173.57 3.19 55.78 
4B 0 523 523 118 141.72 3.69 0.19 
5A 1 465 466 144 226.73 2.06 41.20 
5B 0 771 771 173 192.16 4.01 9.60 
6A 0 621 621 133 129.23 4.81 43.00 
6B 0 964 964 170 141.94 6.79 17.22 
7A 0 680 680 176 195.50 3.48 7.94 
7B 0 695 695 137 168.29 4.13 26.62 
A genome 1 4,314 4,315 999 1273.04 3.39 31.82 
B genome 0 6,171 6,171 1,214 1167.25 5.29 34.78 
Total 1 10,485 10,486 2,213 2440.29 4.30 33.56 

 
4.4.2. Trait Evaluations Under Greenhouse Conditions 

In the greenhouse, DTH and GWS were not homogeneous across years (Table 4.2), 

therefore, the data for each year, consisting of two replicates each, were analyzed separately. 

Mature spikes and seeds of Divide and PI 272527 are presented in Figure 4.1. In the 2019 

greenhouse environment, the population mean, range, and the two parental lines headed ~10 days 

earlier than in the 2018 environment (Table 4.3, Figure 4.2a). The 2019 environment was planted 

in mid-October whereas the 2018 environment was planted in late September. PI 272527 headed 

24.50 days later in 2018 than Divide and 30.50 days later in 2019; however, the population range 

was 54.50 to 95.50 days in 2018 and 39.00 to 83.00 days in 2019, indicating the two parental 

lines possess different genes for DTH. For PHT, a population range of 56.25 to 154.00 cm was 

observed, with a mean of 112.98 cm (Table 4.3, Figure 4.2b). PI 272527 had a mean PHT of 

152.5 cm, indicating that it most likely contributes all the alleles for increased PHT.  



 

114 

For SPS, PI 272527 had a mean of 31.00 SPS, whereas Divide was 17.06 and the 

population range was 14.75 to 28.56 (Table 4.3, Figure 4.2c), suggesting that PI 262527 was the 

main contributor to increased SPS. Average KPS for the parents differed by 0.13 KPS, with 

Divide and PI 272527 having values of 33.38 and 33.25 (Table 4.3), respectively, and were not 

significantly different. However, the population mean was 30.19 and the range was 4.19 to 45.81 

KPS (Table 4.3, Figure 4.2d), indicating that the two parents possess different genes for KPS, 

and transgressive segregation was observed.  

For GWS, the two seasons were analyzed separately. In 2018, Divide had greater GWS at 

2.25 g than PI 272527 at 1.78 g; however, in 2019, Divide had lower GWS at 0.71 g than PI 

272527 at 1.20 g (Table 4.3). The population mean and range was also lower in 2018, at 1.00 g 

and 0.06 g to 1.96 g, respectively, compared to the 2019 season (Table 4.3, Figure 4.2e). For 

TKW, the two parental lines did not significantly differ with 40.89 g and 44.53 g for Divide and 

PI 272527, respectively (Table 4.3). The population mean was 43.90 g, which was not 

significantly different than the parental lines; however, the population range was 27.01 g to 

60.46 g for TKW (Table 4.3, Figure 4.2f), suggesting the two parental lines possess different 

genes for kernel weight.  

For kernel dimension traits, the parental lines significantly differed for KA, KL, KC, and 

KLW (Table 4.3). The two parental lines were not significantly different for KW, with a KW of 

3.39 mm and 3.44 mm for Divide and PI 272527, respectively. However, the population mean 

was 2.31 mm, with a range of 1.49 mm to 3.80 mm for KW, indicating that the two parental lines 

differ in their genes for KW (Table 4.3, Figure 4.2h). For KA, KL, KC, and KLW, PI 272572 

had a higher value for all of these than Divide, and the PI 272527 value was near the maximum 

value observed in the population, suggesting PI 272527 was the main contributor of genetic 
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factors for increased KA, KL, KC, and KLW in the DP527 population (Table 4.3, Figures 4.2g, i, 

j, k).  

Table 4.2. Homogeneity test values for the DP527 population when grown under greenhouse 
environments.  

Trait Bartlett’s P-value Levene’s P-value 
DTH* 10.03 <0.05 3.64 <0.05 
DTH2018 0.05 0.83 <0.05 0.87 
DTH2019 <0.05 0.90 0.10 0.75 
PHT 0.33 0.95 0.98 0.40 
SPS 12.05 <0.05 2.05 0.11 
KPS 1.37 0.71 0.17 0.92 
GWS* 24.95 <0.05 5.73 <0.05 
GWS2018 <0.05 0.97 <0.05 0.98 
GWS2019 <0.05 0.94 0.06 0.80 
TKW 3.62 0.31 1.49 0.22 
KA 7.12 0.07 0.50 0.68 
KW 22.46 <0.05 0.80 0.49 
KL 7.50 0.06 0.50 0.68 
KC 5.39 0.15 2.40 0.07 
KLW 1.72 0.63 0.56 0.64 

*year/trait combinations that could not be combined based on both the Bartlett’s and Levene’s 
test 
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Table 4.3. Parental and population means, ranges, and least significant differences (LSD) at the 
0.05 level of probability (P<0.05) for the DP527 population grown under greenhouse conditions. 

TraitA Mean    
DP527 population range 

LSD 
(0.05)  Divide PI 272527 DP527 population  

DTH18B 62.50 87.00 70.31  54.50-95.50 9.85 
DTH19B 52.00 82.50 59.63  39.00-83.00 14.06 
PHT 87.25 152.5 112.98  56.25-154.00 27.40 
SPS 17.06 31.00 22.89  14.75-28.56 4.25 
KPS 33.38 33.25 30.19  4.19-45.81 12.67 
GWS18B 2.25 1.78 1.74  0.10-2.57 0.75 
GWS19B 0.71 1.20 1.00  0.06-1.96 0.71 
TKW 40.89 44.53 43.90  27.01-60.46 11.85 
KA 18.07 21.16 19.49  15.22-23.82 2.96 
KW 3.39 3.44 2.31  1.49-3.80 0.31 
KL 7.32 9.01 8.05  6.87-9.55 0.66 
KC 1.46 1.72 1.56  1.40-1.76 0.07 
KLW 2.18 2.64 2.40  2.03-2.82 0.14 

ATrait abbreviations are: days to heading (DTH), plant height (PHT), spikelets per spike (SPS), 
kernels per spike (KPS), grain weight per spike (GWS), thousand kernel weight (TKW), kernel 
area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 
BReplicates were not statistically homogeneous and therefore analyzed separately. 
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Figure 4.1. Spike and seed morphology of Divide and PI 272527, the two parental lines of the 
DP527 population. (a) Mature spikes of Divide (left) and PI 272527 (right). (b) seed of the 
durum variety Divide (top) and the cultivated emmer wheat accession PI 272527 (bottom).  
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Figure 4.2. Histograms of the DP527 population under greenhouse conditions for the traits a) 
days to heading (DTH), b) plant height (PHT), c) spikelets per spike (SPS), d) kernels per spike 
(KPS), e) grain weight per spike (GWS), f) thousand kernel weight (TKW), g) kernel area (KA), 
h) kernel weight (KW), i) kernel length (KL), j) kernel circularity (KC), k) kernel length:width 
ratio (KLW). The values in pink are those replicates that were homogenous and combined across 
trials. For panels a and e, those in blue are from the 2018 replicate and yellow from the 2019 
replicate.  
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4.4.3. Correlations Under Greenhouse Conditions 

Correlations between all the traits under greenhouse conditions are shown in Figure 4.3, 

along with the correlation coefficient values given in Table 4.4. DTH had a positive correlation 

with SPS in environments. DTH had a negative correlation with KPS in 2018, GWS18, GWS19, 

TKW, KA, KW, and KL. PHT was positively correlated with SPS, KPS, GWS18, GWS19, 

TKW, KA, KW, and KL. SPS was positively correlated with KPS, GWS18, and GWS19, 

whereas KPS was positively correlated with GWS18, GWS19, TKW, and KW. Both GWS18 

and GWS19 had a strong positive correlation with TKW, KA, KW, and KL, but not KC or 

KLW. Similar to GWS, TKW had a strong positive correlation with KA, KW, and KL, but not 

KC or KLW. KA was positively correlated with the other kernel dimension traits, KW, KL, KC, 

KLW; whereas KW other had a positive correlation with KL. KL, KC, and KLW all had a strong 

positive correlation with one another.  
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Figure 4.3. Pearson correlation coefficients between the 11 traits measured in the DP527 
population grown under greenhouse conditions. Trait abbreviations are: days to heading (DTH), 
plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain weight per spike 
(GWS), thousand kernel weight (TKW), kernel area (KA), kernel width (KW), kernel length 
(KL), kernel circularity (KC), and kernel leght:width ratio (KLW). For DTH and GWS, the 
replicates were not statistically homogeneous and therefore were analyzed separately. Along the 
right is a color scale for the correlation values. Blocks that are orange to pink have a negative 
correlation, with dark pink being a correlation close to -1. Blocks that are orange to light yellow 
have a positive correlation, with light yellow being a correlation close to 1. Significance values 
are denoted as *P<0.05, **P<0.01, ***P<0.001. 
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Table 4.4. Correlation coefficients for the DP527 population grown under greenhouse conditions between the mean values of the traits 
days to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain weight per spike (GWS), 
thousand kernel weight (TKW), kernel area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW).  

 DTH18A DTH19A PHT SPS KPS GWS18A GWS19A TKW KA KW KL KC KLW 

DTH18A 1.00             

DTH19A 0.64*** 1.00            

PHT -0.01 0.07 1.00           

SPS 0.19** 0.24*** 0.43*** 1.00          

KPS -0.25*** -0.11 0.42*** 0.39*** 1.00         

GWS18A -0.56*** -0.32*** 0.40*** 0.22** 0.71*** 1.00        

GWS19A -0.23*** -0.31*** 0.35*** 0.22** 0.73*** 0.43*** 1.00       

TKW -0.59*** -0.56*** 0.30*** -0.02 0.26*** 0.65*** 0.51*** 1.00      

KA -0.45*** -0.43*** 0.24*** -0.04 0.10 0.47*** 0.39*** 0.88*** 1.00     

KW -0.16* -0.22** 0.19** 0.01 0.33*** 0.23*** 0.51*** 0.42*** 0.43*** 1.00    

KL -0.31*** -0.26*** 0.26*** -0.02 0.11 0.36*** 0.33*** 0.66*** 0.87*** 0.33*** 1.00   

KC 0.09 0.13 0.12 0.04 0.05 -0.03 0.06 -0.02 0.22*** 0.01 0.65*** 1.00  

KLW 0.04 0.10 0.12 0.03 0.05 0.00 0.09 0.02 0.25*** -0.04 0.67*** 0.96*** 1.00 

*P<0.05 
**P<0.01 
***P<0.001 
AReplicates were not statistically homogeneous and therefore analyzed separately. 
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4.4.4. Trait Evaluations Under Field Conditions 

Replicates for TKW in the 2020 field experiment were not homogeneous (Table 4.5), so 

each replicate was evaluated separately in QTL analysis and correlations, but the overall mean of 

the three replicates was used for population mean and range (Table 4.6). For DTH, PI 272527 

had a mean of 69.67 and 71.33 days in 2017 and 2019, respectively, which was close to the 

population maximum in those years (Table 4.6, Figure 4.4a). In 2019, PI 272527 headed at 94.50 

days, which was greater than the population maximum of 91.00, suggesting that PI 272527 was 

the main genetic contributor of increased DTH. Additionally, PI 272527 was taller than Divide in 

all three environments and was the same as the population maximum in 2020 with a PHT of 

138.00 cm (Table 4.6, Figure 4.4b), suggesting that PI 272527 was also the main genetic 

contributor for increased plant height.  

Transgressive segregation was observed for SPS (Table 4.6, Figure 4.4c), with some 

individuals having fewer SPS than Divide and others having greater than PI 272527. Divide and 

PI 272527 had average SPS values of 17.67 and 24.47 over the three years, respectively. The 

DP527 population had a range of 13.50 in 2017 to 27.29 in 2020, with a mean of 20.86 across 

the three years, suggesting that both parents contributed some genetic factors for increased SPS. 

Interestingly, although PI 272527 had a greater number of SPS than Divide, Divide had an 

average of 39.88 KPS across the two years whereas PI 272527 had 29.10 KPS. This suggests that 

Divide had more fertile florets per spike than PI 272527. The DP527 population range was 15.92 

to 52.75 KPS and 15.67 to 43.54 KPS in 2017 and 2020, respectively (Table 4.6, Figure 4.4d), 

suggesting that both Divide and PI 272527 contain genes that contribute to increased KPS, but 

the genes differ between the two lines.  
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As for GWS and TKW, although PI 272527 had fewer KPS, it had greater GWS than 

Divide in 2017 and higher TKW in both years (Table 4.6). For both GWS and TKW, 

transgressive segregation was observed, with the population maximum being higher than the 

average of either parents (Table 4.6, Figures 4.4e, f), suggesting that for GWS and TKW, the two 

parental lines harbor different genes that confer increases in these traits.  

Typically, cultivated emmer has longer but more narrow kernels than durum. I observed 

that PI 272527 had a significantly higher value for KA, KW, KC, and KL traits measured across 

the two years than Divide (Table 4.6). For KA, Divide averaged 18.10 mm2 whereas PI 272527 

averaged 21.95 mm2. The population mean was between the two parental lines at 20.53 mm2, 

and the population range both years had a minimum and maximum below and above the two 

parental lines (Table 4.6, Figure 4.4g), indicating both parents contributed genetic factors 

towards increased KA. Although the two parental lines were not significantly different for KW 

in 2020, they were in 2017 with Divide having a KW of 3.24 mm and PI 272527 of 3.48 mm 

(Table 4.6). As with KA, the population had a population mean that was between the two 

parental lines in both environments, and the population range in 2020 was 2.85 to 3.76 mm 

(Table 4.6, Figure 4h), indicating both parents contributed genetic factors towards increased KW. 

For the other kernel dimension traits (KL, KC, KLW), the population mean was between the two 

parental lines in each environment, along with the population range falling lower than Divide 

and greater than PI 272527 for KL, KC, KLW (Table 4.6, Figures 4.4i, j, k), indicating that both 

parents contributed genetic factors governing these traits. 
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Table 4.5. Bartlett Chi-Square values for the DP527 population when grown under field 
environments.  

Trait Year Bartlett’s P-value Levene’sA P-value 
SPS 2017 3.74 0.15   

KPS 2017 4.93 0.09   

GWS 2017 5.56 0.06   

TKW 2017 4.57 0.10   

DTH 2017 4.77 0.09   

PHT 2017 0.53 0.77   

KA 2017 0.90 0.64   

KW 2017 1.19 0.55   

KL 2017 0.12 0.94   

KC 2017 0.44 0.80   

KLW 2017 0.65 0.72   

SPS 2019 0.49 0.78   

DTH 2019 0.79 0.67   

PHT 2019 3.30 0.19   

SPS 2020 11.58 <0.05 0.71 0.49 
KPS 2020 1.99 0.37   

GWS 2020 1.00 0.61   

TKW* 2020 15.76 <0.05 4.01 <0.05 
DTH 2020 11.64 <0.05 2.88 0.06 
PHT 2020 1.71 0.43   

KA 2020 1.76 0.41   

KW 2020 1.79 0.41   

KL 2020 1.61 0.45   

KC 2020 0.31 0.86   

KLW 2020 0.45 0.80   

*year/trait combinations that could not be combined based on both the Bartlett’s and Levene’s 
test 
AThose which could not be combined were tested using Levene’s, with those values shown for 
those traits. 
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Table 4.6. Parental and population means, ranges, and least significant differences (LSD) at the 
0.05 level of probability (P<0.05) for the DP527 population grown under field conditions. 

TraitA YearB Mean    DP527 population 
range 

LSD 
(0.05)   Divide PI 272527 DP527 population  

DTH 2017 57.00 69.67 62.56  55.33-71.67 3.38 
DTH 2019 63.33 94.50 65.98  49.33-91.00 6.86 
DTH 2020 53.00 71.33 57.09  47.33-75.00 4.33 
PHT 2017 90.67 129.00 110.36  73.33-150.33 7.41 
PHT 2019 119.33 144.00 122.32  88.00-157.33 14.83 
PHT 2020 82.00 138.00 105.88  70.00-138.00 11.23 
SPS 2017 15.38 24.04 19.04  13.50-25.83 2.63 
SPS 2019 18.92 24.13 21.31  16.71-25.63 2.02 
SPS 2020 18.71 25.23 22.22  17.25-27.29 2.09 
KPS 2017 40.67 34.63 33.44  15.92-52.75 6.01 
KPS 2020 39.08 23.56 31.02  15.67-43.54 5.95 
GWS 2017 1.77 2.00 1.70  0.73-2.49 0.32 
GWS 2020 1.36 1.02 1.20  0.58-1.83 0.34 
TKW 2017 45.31 59.72 51.12  40.23-70.36 5.87 
TKW 2020 34.82 43.52 38.39  13.28-53.47 7.60 
KA 2017 18.65 24.06 21.94  18.30-25.40 1.16 
KA 2020 17.54 19.83 19.11  15.65-22.70 1.59 
KW 2017 3.24 3.48 3.45  3.00-3.80 0.12 
KW 2020 3.17 3.26 3.23  2.85-3.76 0.17 
KL 2017 7.82 9.82 8.79  7.70-9.90 0.22 
KL 2020 7.61 8.66 8.27  7.36-9.44 0.33 
KC 2017 1.54 1.75 1.61  1.50-1.80 0.05 
KC 2020 1.57 1.70 1.65  1.45-1.85 0.06 
KLW 2017 2.43 2.83 2.57  2.20-3.00 0.08 
KLW 2020 2.42 2.67 2.58  2.10-3.04 0.10 

ATrait abbreviations are: days to heading (DTH), plant height (PHT), spikelets per spike (SPS), 
kernels per spike (KPS), grain weight per spike (GWS), thousand kernel weight (TKW), kernel 
area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 
BEach field environment was analyzed separately. 
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Figure 4.4. Histograms of the DP527 population under field conditions for the traits a) days to 
heading (DTH), b) plant height (PHT), c) spikelets per spike (SPS), d) kernels per spike (KPS), 
e) grain weight per spike (GWS), f) thousand kernel weight (TKW), g) kernel area (KA), h) 
kernel weight (KW), i) kernel length (KL), j) kernel circularity (KC), k) kernel length:width ratio 
(KLW). The values in blue are from the 2017 environment, pink from 2019, and yellow from 
2020. For panel d, dark blue was 2017 and purple, coral, and yellow were 2020 replicates.  

4.4.5. Correlations Under Field Conditions  

Correlations between all the traits under field conditions are shown in Figure 4.5, along 

with the correlation coefficient values given in Tables 4.7, 4.8, and 4.9. For each trait, there was 
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a strong, significant positive correlation across environments within each trait. The general trend 

was that when correlations were significant, they tended to be in the positive direction. Traits 

that had strong, negative correlations were KW with KC and KLW, and DTH with KPS, GWS, 

and TKW; which were trends observed in both 2017 and 2020 (Tables 4.7, 4.9, Figure 4.5). In 

2017, KPS had a strong positive correlation (near one) with GWS. Additional traits that had 

strong positive correlations near one in 2017 were TKW and KA, KA with KL, and KLW with 

KL and KC.  

In 2019, only three traits were measured. SPS had a significant positive correlation with 

DTH and PHT, whereas DTH and PHT were negatively correlated (Table 4.8, Figure 4.5). In 

2020, traits that had a strong positive correlation were KPS with GWS, GWS with TKW, TKW 

with KA and KW, KA with KW and KL, and KL with KC and KLW (Table 4.9, Figure 4.5). 

The kernel weight traits GWS and TKW were significantly correlated with the kernel dimension 

traits KA, KW, and KL in 2017 and 2020, along with TKW being correlated with KC and KLW 

in 2017 and 2020 (Tables 4.7, 4.9, Figure 4.5). Interestingly, in 2017 all the kernel dimension 

traits were significantly correlated; however, in 2020, KA was not correlated with KC and KLW, 

and KW and KL were not correlated.  
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Table 4.7. Correlation coefficients for the DP527 population grown under field conditions in 2017 between the mean values of the 
traits days to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain weight per spike (GWS), 
thousand kernel weight (TKW), kernel area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 

 
SPSavg KPSavg GWSavg TKWavg DTHavg PHTavg KAavg KWavg KLavg KCavg KLWavg 

SPSavg 1.00           

KPSavg 0.46*** 1.00          

GWSavg 0.46*** 0.85*** 1.00         

TKWavg 0.07 -0.11 0.43*** 1.00        

DTHavg 0.51*** 0.28*** 0.18** -0.17* 1.00       

PHTavg 0.36*** 0.13 0.31*** 0.37*** 0.24*** 1.00      

KAavg 0.08 -0.16* 0.34*** 0.88*** -0.09 0.32*** 1.00     

KWavg -0.01 -0.12 0.24*** 0.66*** -0.04 0.29*** 0.61*** 1.00    

KLavg 0.17* -0.12 0.27*** 0.67*** -0.05 0.27*** 0.86*** 0.19** 1.00   

KCavg 0.19** -0.08 0.06 0.21** -0.01 0.12 0.42*** -0.28*** 0.77*** 1.00  

KLWavg 0.16* -0.05 0.09 0.21** -0.02 0.03 0.42*** -0.40*** 0.79*** 0.87*** 1.00 

*P<0.05 
**P<0.01 
***P<0.001 

Table 4.8. Correlation coefficients for the DP527 population grown under field conditions in 2019 between the mean values of the 
traits days to heading (DTH), plant height (PHT), and spikelets per spike (SPS). 

 SPSavg DTHavg PHTavg 

SPSavg 1.00   

DTHavg 0.17* 1.00  

PHTavg 0.18** -0.21** 1.00 

*P<0.05 
**P<0.01 
***P<0.001 

 



 

 

129 

Table 4.9. Correlation coefficients for the DP527 population grown under field conditions in 2020 between the mean values of the 
traits days to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain weight per spike (GWS), 
thousand kernel weight (TKW), kernel area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW).  
 

SPSavg KPSavg GWSavg TKWrep1A TKWrep2A TKWrep3A DTHavg PHTavg KAavg KWavg KLavg KCavg KLWavg 

SPSavg 1.00             

KPSavg 0.30*** 1.00            

GWSavg 0.14* 0.73*** 1.00           

TKWrep1A -0.08 0.08 0.59*** 1.00          

TKWrep2A -0.09 0.13 0.61*** 0.55*** 1.00         

TKWrep3A -0.11 0.12 0.62*** 0.56*** 0.59*** 1.00        

DTHavg 0.14* -0.37*** -0.40*** -0.47*** -0.36*** -0.36*** 1.00       

PHTavg 0.37*** 0.18** 0.29*** 0.12 0.19** 0.20** 0.21** 1.00      

KAavg -0.19** -0.14* 0.40*** 0.66*** 0.67*** 0.71*** -0.25*** 0.11 1.00     

KWavg -0.12 -0.06 0.39*** 0.60*** 0.54*** 0.64*** -0.14* 0.14* 0.72*** 1.00    

KLavg -0.11 -0.10 0.22** 0.37*** 0.43*** 0.41*** -0.20** 0.09 0.75*** 0.12 1.00   

KCavg 0.02 -0.06 -0.19** -0.24*** -0.13 -0.22** 0.04 -0.01 0.07 -0.56*** 0.70*** 1.00 
 

KLWavg 0.00 -0.05 -0.13 -0.15* -0.07 -0.13 -0.04 -0.03 0.07 -0.62*** 0.70*** 0.96*** 1.00 

*P<0.05 
**P<0.01 
***P<0.001 
AFor TKW, replicates were not statistically homogeneous and therefore were analyzed separately. 
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Figure 4.5. Pearson correlation coefficients between the 11 traits measured in the DP527 
population grown under field conditions in 2017, 2019, and 2020. Trait abbreviations are: days 
to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain 
weight per spike (GWS), thousand kernel weight (TKW), kernel area (KA), kernel width (KW), 
kernel length (KL), kernel circularity (KC), and kernel leght:width ratio (KLW). For TKW 2020 
the replicates were not combines because they were not statistically homogeneous. For 2019, 
only the traits SPS, DTH and PHT were evaluated. Along the right is a color scale for the 
correlation values. Blocks that are orange to pink have a negative correlation, with dark pink 
being a correlation close to -1. Blocks that are orange to light yellow have a positive correlation, 
with light yellow being a correlation close to 1. Significance values are denoted as *P<0.05, 
**P<0.01, ***P<0.001. 

4.4.6. QTL Analysis Under Greenhouse and Field Conditions 

In the greenhouse experiments, I identified 67 significant QTL and QTL×QTL 

interactions using forward/backward selection to identify the QTL model with the highest LOD 
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score. DTH and GWS were not homogeneous between 2018 and 2019 (Table 4.2) and were 

therefore analyzed separately. The 67 QTL and their statistics are presented in Supplementary 

File 2. The main purpose of this study was to identify QTL that were consistent between both 

greenhouse and field environments. Therefore, the greenhouse QTL discussed in this section 

were present under both greenhouse and field environments (Table 4.10, Figure 4.6). Of the 67 

QTL identified under greenhouse conditions, 17 were also identified under two or more field 

environments.  

Among the three field seasons for the DP527 population, I identified 108 significant QTL 

and QTL×QTL interactions using forward/backward selection to identify the QTL model with 

the highest LOD score. Within individual field seasons, 54, 10, and 44 QTL were identified in 

2017, 2019, and 2020, respectively (Supplementary File 2). Fewer QTL were observed in the 

2019 field season due to only measuring SPS, DTH, and PHT.  

A total of 24 QTL were observed to be present in two field environments, and three were 

observed in all three field environments (Table 4.11, Figure 4.6, Supplementary File 2). A total 

of 11 genomic regions were associated with the 27 QTL that were observed in multiple field 

environments. Of these 27 QTL, 17 were for kernel dimension traits. No QTL for KPS and GWS 

were observed under multiple environments, therefore these traits will not be discussed below. 

Additionally, no QTL × QTL interactions were observed across multiple environments and 

therefore will not be discussed.  

Only one QTL for SPS was observed in multiple field seasons. QSpn.fcu-7B, which 

mapped on chromosome 7B, was also observed under greenhouse conditions (Tables 4.10, 4.11, 

Figure 4.6). QSpn.fcu-7B is within the FT-1 region. The maximum LOD was 14.20 and 5.19, and 

QSpn.fcu-7B explained up to 19.58 and 9.34% of the variation in SPS under greenhouse and field 
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conditions, respectively. PI 272527 was the donor of the increased effects in SPS at QSpn.fcu-

7B.  

For TKW, three stable QTL were identified under field conditions. These QTL, 

designated QTkw.fcu-3A, QTkw.fcu-6A, and QTkw.fcu-7B mapped on chromosomes 3A, 6A, and 

7B (Tables 4.10, 4.11, Figure 4.6). QTkw.fcu-7B was also associated with TKW under 

greenhouse conditions, but not QTkw.fcu-3A and QTkw.fcu-6A. QTkw.fcu-6A is within the GRF4 

region and QTkw.fcu-7B mapped near FT-1. QTkw.fcu-3A and QTkw.fcu-6A had maximum LOD 

values of 7.33 and 4.73 and explained as much as 13.49 and 7.75% of the variation in TKW, 

respectively. QTkw.fcu-7B had a maximum LOD of 6.29 and 3.92 and explained up to 11.45 and 

7.30% of the variation in TKW under field and greenhouse conditions, respectively. PI 272527 

contributed the alleles for increased effects at QTkw.fcu-3A and QTkw.fcu-6A and Divide was the 

donor parent at QTkw.fcu-7B.  

As with SPS and TKW, a QTL within the FT-1 region on chromosome 7B was associated 

with DTH (Tables 4.10, 4.11, Figure 4.6). This QTL, designated QEet.fcu-7B, was present under 

three field environments and the greenhouse environment and had a maximum LOD value of 

34.93 and 20.65 and explained up to 49.64 and 27.37% of the variation in DTH, respectively. PI 

272527 was the donor of increased effects at QEet.fcu-7B.  

A total of five stable QTL were identified to be associated with PHT in the DP527 

population. These QTL, designated QHt.fcu-3A.1, QHt.fcu-3A.2, QHt.fcu-5A.1, QHt.fcu-5A.2, 

and QHt.fcu-7B were mapped to chromosomes 3A, 5A, and 7B (Table 4.11, Figure 4.6). Three 

of these QTL, QHt.fcu-3A.1, QHt.fcu-3A.2, and QHt.fcu-5A.2 were also observed under 

greenhouse conditions (Table 4.10, Figure 4.6). QHt.fcu-3A.1 and QHt.fcu-5A.2 were observed 

in three field environments, whereas the others in only two environments. QHt.fcu-5A.2 and 
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QHt.fcu-7B are near the known genes Q and FT-1. Under field conditions, QHt.fcu-3A.1, 

QHt.fcu-3A.2, QHt.fcu-5A.1, QHt.fcu-5A.2, and QHt.fcu-7B had maximum LOD values of 23.43, 

6.14, 7.36, 11.25, and 7.73 and explained up to 26.09, 4.85, 5.90, 10.68, and 6.22% of the 

variation in PHT, respectively. As for those QTL under greenhouse conditions, QHt.fcu-3A.1, 

QHt.fcu-3A.2, and QHt.fcu-5A.2 had maximum LOD values of 20.25, 6.69, and 22.53 and 

explained up to 22.20, 6.31, and 25.36% of the variation in PHT, respectively. PI 272527 was the 

donor of the increased effects at each QTL.  

Three QTL were identified for KA in two or more environments. These QTL were 

mapped to chromosomes 3A, 3B, and 6A and designated QKa.fcu-3A, QKa.fcu-3B, and 

QKa.fcu-6A (Table 4.11, Figure 4.6). QKa.fcu-6A was also observed under greenhouse 

conditions and had a maximum LOD of 5.23 and explained 8.42% of the variation in KA (Table 

4.10, Figure 4.6). Under field conditions, QKa.fcu-3A, QKa.fcu-3B, and QKa.fcu-6A had 

maximum LOD values of 8.44, 4.58, and 11.88 and explained up to 10.33, 6.08, and 15.10% of 

the variation in KA, respectively. Divide contributed the increased effects at QKa.fcu-3B 

whereas PI 272527 was the donor parent for increased effects at QKa.fcu-3A and QKa.fcu-6A.  

For KW, four stable QTL were identified on chromosomes 2A, 3A, 3B, and 6A (Table 

4.11, Figure 4.6). None of these four QTL were observed under greenhouse conditions. These 

QTL, designated QKw.fcu-2A, QKw.fcu-3A, QKw.fcu-3B, and QKw.fcu-6A had maximum LOD 

values of 6.11, 4.12, 11.86, and 6.44 and explained up to 8.52, 5.61, 14.58, and 9.01% of the 

variation in KW, respectively. PI 272526 contributed to increased effects at all four QTL.  

Five stable QTL were identified for KL, with all five also being observed under 

greenhouse conditions (Tables 4.10, 4.11, Figure 4.6). Under greenhouse conditions, these QTL, 

designated QKl.fcu-1B, QKl.fcu-2A.2, QKl.fcu-2B, QKl.fcu-3A.1, and QKl.fcu-6A had maximum 
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LOD values of 5.02, 10.86, 12.47, 4.99, and 7.51 and explained 4.37, 10.06, 11.76, 4.34, and 

6.70% of the variation in KL, respectively (Table 4.10). Under field conditions, these QTL were 

QKl.fcu-1B, QKl.fcu-2A, QKl.fcu-2B, QKl.fcu-3A, and QKl.fcu-6A and had maximum LOD 

values of 9.58, 5.58, 12.42, 7.27, and 11.41 and explained up to 10.21, 5.76, 13.65, 8.64, and 

12.40% of the variation in KL, respectively (Table 4.11). At all five QTL, PI 272527 was the 

contributor of increased effects.  

As with KL, all the stable QTL for KC identified under field conditions were also present 

under greenhouse conditions (Tables 4.10, 4.11, Figure 4.6). These two QTL are designated 

QKc.fcu-1B and QKc.fcu-2B under field conditions (Table 4.11) and QKc.fcu-1B and QKc.fcu-

2B.1 under greenhouse conditions (Table 4.10). QKc.fcu-1B had a maximum LOD value of 

10.17 and 10.20 and explained up to 16.93 and 10.55% of the variation in KL under field and 

greenhouse conditions, respectively. QKc.fcu-2B and QKc.fcu-2B.1 had maximum LOD values 

of 10.11 and 7.16 and explained up to 11.93 and 7.16% of the variation in KL, respectively. All 

these QTL had PI 272527 as the donor of the positive alleles.  

The three QTL that were observed across multiple environments for KLW were also 

identified under greenhouse conditions (Tables 4.10, 4.11, Figure 4.6). These QTL were mapped 

to chromosomes 1B, 2A, and 2B. Under field conditions, they are QKlw.fcu-1B, QKlw.fcu-2A, 

and QKlw.fcu-2B and under greenhouse conditions they are QKlw.fcu-1B, QKlw.fcu-2A.1, and 

QKlw.fcu-2B.1. Under field conditions, QKlw.fcu-1B, QKlw.fcu-2A, and QKlw.fcu-2B had 

maximum LOD values of 10.36, 11.45, and 9.56 and explained as much as 13.48, 14.15, and 

11.58% of the variation in KLW, respectively. As for greenhouse QTL, QKlw.fcu-1B, QKlw.fcu-

2A.1, and QKlw.fcu-2B.1 had LOD values of 10.47, 13.79, and 7.24 and explained 13.20, 18.03, 
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and 8.81% of the variation in KLW, respectively. Divide contributed the increased effects at 

QKlw.fcu-2A and QKlw.fcu-2A.1, whereas PI 272527 was the donor parents at the other QTL.  

 

 



 

 

136 

Table 4.10. Quantitative trait loci associated with the traits evaluated in the Divide × PI 272527 (DP527) recombinant inbred 
population grown under greenhouse conditions and were present in two or more environments in the field.  

Trait QTL Chromosome Position (cM) Peak marker LOD R2 × 100 Donor parent Putative gene 
SPS QSpn.fcu-7B 7B 10.58 IWB3164 14.20 19.58 PI 272527 FT-1 
TKW QTkw.fcu-7B 7B 12.49 IWB11170 3.92 7.30 Divide FT-1 
DTH QEet.fcu-7B 7B 10.58-12.49 IWB3164-IWB11170 15.25-20.65 23.08-27.37 PI 272527 FT-1 
PHT QHt.fcu-3A.1 3A 89.85 IWB65564 20.25 22.20 PI 272527  
PHT QHt.fcu-3A.2 3A 151.61 IWB16621 6.69 6.31 PI 272527  
PHT QHt.fcu-5A.2 5A 180.22 Xfcp650 22.53 25.36 PI 272527 Q 
KA QKa.fcu-6A 6A 70.25 IWB8079 5.23 8.42 PI 272527  
KL QKl.fcu-1B 1B 30.78 IWB27824 5.02 4.37 PI 272527  
KL QKl.fcu-2A.2 2A 114.04 IWB72154 10.86 10.06 PI 272527  
KL QKl.fcu-2B 2B 45.91 IWB2317 12.47 11.76 PI 272527  
KL QKl.fcu-3A.1 3A 87.98 IWB74967 4.99 4.34 PI 272527  
KL QKl.fcu-6A 6A 74.06 IWB7281 7.51 6.70 PI 272527  
KC QKc.fcu-1B 1B 32.87 IWB7813 10.20 10.55 PI 272527  
KC QKc.fcu-2B.1 2B 48.25 IWB8355 7.16 7.16 PI 272527  
KLW QKlw.fcu-1B 1B 31.48 IWB60559 10.47 13.20 PI 272527  
KLW QKlw.fcu-2A.1 2A 87.16 IWB62849 13.79 18.03 Divide  
KLW QKlw.fcu-2B.1 2B 48.25 IWB8355 7.24 8.81 PI 272527  
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Table 4.11. Quantitative trait loci associated with the traits evaluated in the Divide × PI 272527 (DP527) recombinant inbred 
population grown under field conditions and were present in two or more environments.  

Trait QTL Chromosome Position (cM) Peak marker LOD R2 × 100 Donor parent Putative gene 

SPS QSpn.fcu-7B 7B 10.58 IWB3164 4.62-5.19 8.37-9.34 PI 272527 FT-1 
TKW QTkw.fcu-3A 3A 78.66-87.98 IWB49380-IWB74967 4.35-7.33 7.51-13.49 PI 272527  
TKW QTkw.fcu-6A 6A 67.10-72.65 IWB30925-IWB9600 3.52-4.73 7.24-7.75 PI 272527 GRF4 
TKW QTkw.fcu-7B 7B 4.89-12.49 IWB70086-IWB11170 4.39-6.29 7.58-11.45 Divide FT-1 
DTH QEet.fcu-7B 7B 10.58 IWB3164 21.32-34.93 23.79-49.64 PI 272527 FT-1 
PHT QHt.fcu-3A.1 3A 89.39-89.85 IWB2704-IWB65564 10.30-23.43 18.30-26.09 PI 272527  
PHT QHt.fcu-3A.2 3A 142.50-145.68 IWB64845-IWB41859 3.71-6.14 3.38-4.85 PI 272527  
PHT QHt.fcu-5A.1 5A 76.49-82.04 IWB66908-IWB6959 4.76-7.36 4.39-5.90 PI 272527  
PHT QHt.fcu-5A.2 5A 180.22 Xfcp650 5.04-11.25 8.44-10.68 PI 272527 Q 
PHT QHt.fcu-7B 7B 10.58 IWB3164 3.68-7.73 3.36-6.22 PI 272527 FT-1 
KA QKa.fcu-3A 3A 87.98-89.39 IWB74967-IWB2704 7.24-8.44 9.91-10.33 PI 272527  
KA QKa.fcu-3B 3B 62.78-63.95 IWB76128-IWB13416 4.24-4.58 4.95-6.08 Divide  
KA QKa.fcu-6A 6A 67.34-68.06 IWB33567-IWB81565 7.51-11.88 10.30-15.10 PI 272527  
KW QKw.fcu-2A 2A 87.16 IWB62849 3.81-6.11 4.29-8.52 PI 272527  
KW QKw.fcu-3A 3A 8.43-9.13 IWB63094-IWB46311 3.66-4.12 4.11-5.61 PI 272527  
KW QKw.fcu-3B 3B 62.78 IWB76128 9.62-11.86 13.92-14.58 PI 272527  
KW QKw.fcu-6A 6A 65.45 IWB66345 5.68-6.44 6.52-9.01 PI 272527  
KL QKl.fcu-1B 1B 23.44-25.36 IWB72705-IWB21571 6.03-9.58 7.72-10.21 PI 272527  
KL QKl.fcu-2A 2A 105.86-114.04 IWB35671-IWB72154 4.54-5.58 4.57-5.76 PI 272527  
KL QKl.fcu-2B 2B 47.09-48.02 IWB77048-IWB76653 7.39-12.42 9.59-13.65 PI 272527  
KL QKl.fcu-3A 3A 80.73-87.98 IWB38468-IWB74967 6.70-7.27 7.55-8.64 PI 272527  
KL QKl.fcu-6A 6A 73.83-76.68 IWB6286-IWB78960 5.61-11.41 7.15-12.40 PI 272527  
KC QKc.fcu-1B 1B 25.36-28.44 IWB21571-IWB16228 8.22-10.17 9.50-16.93 PI 272527  
KC QKc.fcu-2B 2B 47.55 IWB70916 5.02-10.11 7.90-11.93 PI 272527  
KLW QKlw.fcu-1B 1B 25.36-31.48 IWB21571-IWB60559 7.81-10.36 9.27-13.48 PI 272527  
KLW QKlw.fcu-2A 2A 87.16 IWB62849 7.24-11.45 9.09-14.15 Divide  
KLW QKlw.fcu-2B 2B 47.09-48.02 IWB77048-IWB76653 7.88-9.56 9.98-11.58 PI 272527  
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Figure 4.6. Illustration of the chromosomal locations of the quantitative trait loci (QTL) associated with the eleven traits evaluated in 
the Divide × PI 272527 (DP527) recombinant inbred line population under field and greenhouse conditions. Under field conditions, 
only those QTL which were present in two or more are shown and for those identified under greenhouse conditions, only those which 
were also present in the field are illustrated. A total of 27 QTL are shown which were identified under field conditions. Those 
observed in two environments are illustrated with dashed lines and those in three with solid lines. A total of 17 QTL associated with 
greenhouse conditions are illustrated with dotted lines. The known positions of the Q and FT-1 loci are indicated in black. 
Chromosomes 1A, 4A, 4B, 5B, 6B, and 7A are not shown because not stable QTL were detected on them in this research.  
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4.5. Discussion 

4.5.1. Trade-offs Between Yield Component Traits 

In this study, I analyzed the correlations between all the traits measured. The correlations 

given between yield components and PHT and DTH may be of interest in breeding and the 

selection process; however, our interest lie with how the different yield components measured 

were correlated and trade-offs between them.  

Increased SPS was positively correlated with the number of KPS and GWS. Plants that 

have more spikelets have increased capacity to produce more kernels, which influences the grain 

weight per spike (Gauley and Boden 2018). However, the number of kernels per spike is often 

negatively correlated with kernel weight and size due to limitations in nutrient availability and 

trade-offs in the size-shape relationship (Sandras 2007; Mangini et al. 2018). Surprisingly, KPS 

had a significant positive correlation with TKW and KW under greenhouse conditions, but not 

under field conditions. The reasoning behind this may be due to increased water and nutrient 

availability for plants under greenhouse conditions compared to the field, therefore, the 

competition for resources wasn’t as intense as under field conditions.  

Generally, studies to evaluate different yield component interactions in wheat have 

shown negative correlations between the number of kernels per spike and kernel size/weight (Li 

and Yang 2017; Brinton and Uauy 2018; Corsi et al. 2021). In this study, KA was the only kernel 

dimension trait that was negatively associated with KPS under the field environments. KPS had a 

correlation value near zero for the other kernel dimension traits. These findings were interesting 

because increasing kernel size in this population does not lead to a significant reduction in the 

number of KPS, indicating that the genes that control these pathways may be beneficial for 

breeders who are interested in increasing the number of KPS without significantly reducing 
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kernel size or vice versa. Additional trials under varying environmental conditions are needed to 

determine if this lack of a negative correlation is due to environmental factors or has high 

heritability, and the utility of this population for breeding programs.  

As expected, GWS and TKW were positively correlated with KA, KW, and KL, i.e., 

increased kernel size, in all environments. However, KC and KLW were only correlated with 

increased TKW in the 2017 field environment and there was a negative correlation between KC 

and KLW in the 2020 field season. These findings are similar to those by Corsi et al. (2021), 

with KA, KW, and KL being positively associated with kernel weight, whereas KLW is not a 

significant indicator of increased kernel weight. Sun et al. (2020) found using a durum panel of 

150 lines that TKW was significantly correlated with KA, KW, KL, and KC, but not KLW, 

indicating our results are consistent with those of previous studies. Using KA, KW, and KL may 

be useful for breeders when selecting lines for increased kernel weight, especially in situations in 

which kernel weight is difficult to accurately measure.  

Interestingly, when comparing trade-offs between the kernel dimension traits, the results 

varied depending on the environment. Increases in KW and KL consistently resulted in increased 

KA and therefore larger kernels. These findings were identical to those of Corsi et al. (2021) and 

Sun et al. (2020). Under field conditions, both studies also observed KW to be negatively 

correlated with KLW, and KL to be positively correlated with KLW. These same results were 

observed in two other durum × cultivated emmer populations, BP025 and RP883 (Chapter 5). 

KL must have a larger influence on the KLW ratio than KW. Additionally, Gegas et al. (2010) 

found that kernel shape and size are independent traits and most likely under the influence of 

different pathways and genes. KL and KLW, along with KC, are often described as kernel shape 

traits, whereas KA and KW are kernel size traits. The results seen in this study are consistent 
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with those of Gegas et al. (2010) and further support their hypothesis. Further research 

elucidating the interaction between the different kernel size components and how they interact to 

determine kernel size is needed at the molecular and physiological level to untangle these 

relationships.  

4.5.2. QTL Associated with Multiple Traits in Multiple Environments 

4.5.2.1. Chromosome 1B 

I identified a multi-trait QTL on the short arm of chromosome 1B involved in the control 

of multiple kernel dimension traits under greenhouse and field conditions. Within this region, 

QTL for KL, KC, and KLW were identified. Interestingly, no stable QTL for KW was observed 

although a significant KLW QTL was present. However, there was a QTL at this location for 

KW in 2020, indicating that KL, KC, KLW may be less influenced by environmental factors 

then KW. Few studies have been published on kernel dimension traits in tetraploid wheat. Russo 

et al. (2014) identified QTL near this physical region for multiple kernel dimension traits in a 

durum × tetraploid wheat population. To my knowledge, there have been no other QTL reported 

in this region in either durum or hexaploid wheat. Li et al. (2018) reported a QTL for KPS near 

this region in hexaploid wheat. PI 272527 may be a source of increasing KL, KC, and KLW in 

durum wheat if breeders are interested in changing kernel shape. 

4.5.2.2. Chromosome 2A 

A region on chromosome 2A from 87.16 cM to 114.04 cM harbored three QTL. A QTL 

for KW was observed under field conditions, and QTL for KLW and KL were observed under 

both greenhouse and field conditions. Corsi et al. (2021) also identified QTL for KL, KW, and 

KLW within this region in a European hexaploid MAGIC population. To my knowledge, no 

other studies have identified kernel size QTL within this region. QTL for KPS and TKW have 
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been identified near this region (McCartney et al. 2005; Würschum et al. 2018), which are often 

associated with kernel size. Although the underlying gene(s) within this region for these traits 

remains unknown, an increase in kernel size is due to cell size and rate of grain filling (Brinton 

and Uauy 2018). Also, located less than 100 Mb from the peak markers is GNI1-A1, which is a 

gene associated with kernel weight and size (Sakuma et al. 2019). In this study, I observed that 

PI 272527 alleles resulted in an increase in KW, whereas at the same peak marker, Divide alleles 

resulted in increased KLW. It remains unclear if there is a trade-off occurring at this locus, and if 

so, the mechanism behind it.  

4.5.2.3. Chromosome 2B 

A multi-trait QTL was identified on chromosome 2B to be associated with KL, KC, and 

KLW under greenhouse and field conditions. The increased effects at this locus were contributed 

by PI 272527 for each trait, indicating that PI 272527 alleles within this region may be useful for 

breeding for increased kernel size. To my knowledge, no QTL for grain kernel traits have been 

identified within this region. Russo et al. (2014) and Corsi et al. (2021) identified QTL for kernel 

size on chromosome 2B, but not within the same region. The gene Ppd-B1, which is part of the 

photoperiod regulatory flowering pathway (Beales et al. 2007; Nishida et al. 2013) is located 

within 20 Mb of the peak markers and could potentially be a candidate gene for these QTL. My 

peak markers may have shifted due to environmental effects and/or my QTL analysis method. 

Further studies under diverse environments or additional GH replicates would be required to 

determine if this is the case or an uncharacterized gene for KL, KC, and KLW is within this 

region.  
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4.5.2.4. Chromosome 3A 

A region spanning 40.52 Mb on chromosome 3A was associated with QTL for TKW, 

PHT, KA, and KL. QTL near this region for yield component traits have been identified by 

Blanco et al. (2012), Russo et al. (2014), and Son et al. (2020). Within two other durum × 

cultivated emmer populations, I have observed QTL for PHT and TKW at the same locus 

Chapter 5). The physiological relationship between these two traits remains unclear. Often, either 

TKW or PHT is associated with DTH; however, I did not observe a DTH QTL in this region 

under field or greenhouse conditions. Previously, it was shown that increased kernel size is 

correlated with increased kernel weight (Brinton and Uauy 2018). Depending on the magnitude 

of the height increase that having PI 272527 alleles within this region confers, if it is slight this 

region may be useful for introgressing into current durum breeding programs who are looking to 

increase kernel size and weight.  

4.5.2.5. Chromosome 3B 

A multi-trait QTL was identified on chromosome 3B to be associated with KA and KW. 

Russo et al. (2014) identified QTL on chromosome 3B that were near this region and Li et al. 

(2018) identified a QTL for TKW within this physical region. The gene TaCKX2 is within 35 

Mb of our peak marker (Supplementary File 2). TaCKX2 plays a role in the regulation of 

cytokinin and has been previously been shown to influence yield related traits (Zhang et al. 2012; 

Jablonski et al. 2021). Although introgressing this QTL may increase kernel size, one caveat is 

that Divide alleles within this region resulted in increased KA whereas PI 272527 alleles resulted 

in wider kernels. Because no kernel weight QTL was associated with this region under both 

greenhouse and field conditions, this QTL region may not be of interest to breeders.  
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4.5.2.6. Chromosome 6A 

QTL for TKW, KA, KW, and KL co-located on the long arm of chromosome 6A. The 

presence of the TKW QTL at this locus is mostly likely due to increased kernel size having a 

pleiotropic effect and influencing kernel weight (Gegas et al. 2010; Brinton and Uauy 2018). 

Within this QTL region is the previously identified gene TtGRF4 (Anvi et al. 2018). TtGRF4 is 

an ortholog of OsGRF4 from rice, which encodes the transcription factor GROWTH-

REGULATING FACTOR, and is negatively regulated by OsmiR396 (Sun et al. 2016; Duan et 

al. 2016). Duan et al. (2016) found in rice that OsGRF4 is involved in chromatin-remodeling in 

rice panicles, with mutations in the miR396 cleavage location having larger and longer hulls and 

grains (Duan et al. 2016; Sun et al. 2016). Studies are still needed to determine the relationship 

between TtGRF4 and increased TKW, however, it can be hypothesized that the most likely 

scenario is that mutations in TtGRF4 result in decreased binding of a transcription factor 

resulting in longer and wider kernels, aka larger kernels, which lead to an increased in grain 

weight. Interestingly, PI 272527 was the donor parent of the positive allele at this QTL, 

indicating that potentially the allele of TtGRF4 is not present or is an alternative allele in North 

Dakota durum germplasm. Breeding this QTL into local germplasm may prove beneficial to 

breeders for increasing kernel weight.  

4.5.2.7. Chromosome 7B 

A multi-trait QTL was identified on the distal end of the short arm of chromosome 7B. 

QTL for SPS, TKW, DTH, and PHT co-segregated at this locus, with the wheat gene FT1 

physically located within this region. FT1 was cloned by Yan et al. (2006) and is involved in 

flowering time regulation and the transition from vegetative to reproductive growth (reviewed by 

Gauley and Boden 2018). Dixon et al. (2018) found that the different alleles of FT1 perform 
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different under varying environmental conditions, and FT1 plays a role in promoting 

inflorescence development. Interestingly, QTL associated with PHT and TKW have not been 

reported at the FT1 locus. Potentially, because FT1 is part of the regulation of the vegetative to 

reproductive growth transition, an earlier transition to reproductive growth may result in shorter 

plants. Additionally, the donor parent of increased TKW at this locus was Divide, whereas the 

other QTL had PI 272527 as the positive parent. Potentially, the Divide FT1 allele may result in 

reduced number of SPS, which may result in fewer kernels but increased grain weight. Further 

investigation is needed to determine the molecular and physiological mechanisms behind these 

relationships and if FT1 is indeed the gene underlying these QTL. If this is the case, although 

selecting for the PI 272527 allele at FT1 would result in increased number of SPS, it may lead to 

an increase in DTH and PHT, which are not desirable traits in most situations. Therefore, the PI 

272527 allele at FT1 would not be a strong candidate to introgress into most breeding programs.  

4.5.3. Beneficial Traits from PI 272527 

Genes transferred from cultivated emmer into the durum germplasm pool have 

traditionally been related to disease and stress tolerance (reviewed in Zaharieva et al. 2010, 

Sharma et al. 2019b). Here, I identified nine robust multi-trait QTL, for which many had the 

agronomically desired phenotype contributed by PI 272527. As discussed above, some of these 

may be resources for improving yield component traits in durum wheat. PI 272527 had a greater 

number of SPS, TKW, and grain size compared to the durum parent, Divide. In 2020, Divide 

was grown on 20% of the acres in North Dakota (https://www.ag.ndsu.edu/publications/crops/ 

north-dakota-durum-wheat-variety-trial-results-for-2020-and-selection-guide) and is considered 

to have a high test weight. Therefore, because PI 272527 had a higher TKW in this study than 
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Divide, it may be useful for improvement of durum varieties in the USA and potentially other 

regions of the world.  

4.5.4. Future Directions/Conclusion 

Previously, the vast majority of yield component studies in wheat have been under 

greenhouse or field conditions. In this study, I evaluated the DP527 population under both field 

and greenhouse conditions for the same 11 traits. My results illustrate that many of the QTL 

identified in two or more environments were also observed under greenhouse conditions. 

Therefore, these QTL can be considered robust and stable, and the genes underlying these QTL 

are ideal candidates for implementing into durum breeding programs. Recently, it has been 

shown that in winter wheat that using SNP associated with large effect or stable QTL as fixed 

effects may improve genomic selection models (Lozada et al. 2019; Sarinelli et al. 2019). 

Therefore, QTL identified in this study, along with their associated markers, may provide useful 

tools for improving yield in durum breeding programs to increase grain yield and change kernel 

morphological traits to meet consumer demands.  
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CHAPTER 5. GENETIC ANALYSIS OF YIELD RELATED TRAITS IN TWO DURUM 

× CULTIVATED EMMER WHEAT POPULATIONS UNDER FIELD CONDITIONS 

5.1. Abstract 

Wheat (Triticum ssp.) is a major world food crop, and with the projected increases in 

world population, wheat yields will need to increase by at least 60% by 2050 to meet the 

increased expected demands. Numerous studies have identified yield component QTL in 

hexaploid wheat; however, fewer yield evaluation studies have been performed in tetraploid 

wheat grown under field conditions. A potential source for allelic variation for wheat 

improvement is cultivated emmer (T. turgidum ssp. dicoccum). Here, I evaluated two populations 

of tetraploid recombinant inbred lines derived from crosses between North Dakota durum wheat 

varieties and cultivated emmer wheat accessions under field conditions to identify quantitative 

trait loci for eleven yield component and seed morphological traits. The two populations were 

developed from the following crosses: Ben × PI 41025 (BP025) and Rusty × PI 193883 (RP883). 

Plants were grown in the summers of 2017, 2018, and 2019 in Prosper, ND and in 2020 in 

Casselton, ND in a randomized complete block design in hill plots under non-irrigated 

conditions. QTL associated with each of these traits were identified on every chromosome in 

these populations. A total of 164 QTL were identified in the BP025 population, with 44 QTL 

observed in two or more environments. For the RP883 population, 149 QTL were identified, 

with 34 observed in multiple environments. The findings from this study provide insights into 

the traits that differ between the two tetraploid wheat subspecies, along with tools breeders can 

use to introgress these traits into their breeding lines. 
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5.2. Introduction 

Wheat (Triticum ssp.) is one of the major global food crops, supplying approximately 

20% of the calories in the average human’s diet. Approximately 95% of wheat grown is 

hexaploid common (bread) wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD genomes), and 

5% is tetraploid durum wheat (T. turgidum ssp. durum L., 2n = 4x = 28, AABB genomes). 

Durum wheat is grown on approximately 16 million hectares worldwide and is used to make 

pasta and other semolina-based products (Arriagada et al. 2020). Within the United States, North 

Dakota is the largest durum wheat producer (https://www.ndwheat.com/buyers/NorthDakota 

WheatClasses/Durum/). With the growing world population, wheat production and yields need to 

increase by 50% to meet increased demands (IWYP 2017).  

Grain yield is a quantitative trait controlled by a multitude of genes and pathways, many 

which have a complex interplay with one another (Cao et al. 2020). Final grain yield is 

determined by three main components: kernel weight/size and shape, the number of kernels per 

spike, and the number of spikes per unit area (Gegas et al. 2010; Brinton and Uauy 2018; Cao et 

al. 2020). Each component can be further split into numerous subcomponents, adding to the 

overall complexity of wheat yield. Additionally, the wheat genome is an allopolyploid and is 

comparably larger in size than most cultivated crop genomes (IWGSC 2018), and the presence of 

multiple homoeologs of yield associated genes confounds the effects of the individual loci and 

ability to map the gene regions (Borrill et al. 2018).  

Recently, a review was published on characterized yield component traits in both 

tetraploid and hexaploid wheat (Cao et al. 2020), along with two reviews on the various QTL 

identified in durum wheat relating to yield component traits (Arriagada et al. 2020; Colasuonno 

et al. 2021). However, the majority of the work done on identifying and unraveling wheat yield 
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has been in hexaploid wheat (Cao et al. 2020). In durum wheat, more quality, abiotic, and biotic 

stress studies have been published compared to studies on yield components (Arriagada et al. 

2020, Colasuonno et al. 2021).  

According to Arriagada et al. (2020), over 665 QTL for yield component traits have been 

identified in durum wheat, with 264 of these being kernel weight QTLs. The majority of these 

studies under field conditions have been in the Mediterranean region, which is the largest durum 

production region globally. To my knowledge, the only study mapping yield component traits in 

tetraploid wheat in North Dakota under field conditions is Salsman et al. (2021). Due to the 

complexity of grain yield and the relatedness of the lines in their GWAS panel, no yield 

component gene regions were identified.  

Cultivated emmer, T. turgidum ssp. dicoccum (Schrank) Schübl (2n = 4x = 28, AABB), is 

the progenitor of durum and hexaploid wheat and currently is grown in isolated areas for local 

use (Zaharieva et al. 2010). Cultivated emmer arose through mutations in the Br loci in wild 

emmer, T. turgidum ssp. dicoccoides (Körn.) Thell (2n = 4x = 28, AABB), resulting in cultivated 

emmer having a non-brittle rachis and non free-threshing, or hulled, seed (Faris 2014). 

Acquisition of mutations in q and Tg resulted in free-threshing durum wheat.  

Previously, two durum × cultivated emmer recombinant inbred line (RIL) populations, 

one derived from crossing the durum cultivar Ben with the cultivated emmer accession PI 41025 

(referred to as BP025) and the other derived from crossing the durum germplasm line Rusty with 

the cultivated emmer accession PI 193883 (referred to as RP883), have been evaluated in the 

greenhouse for various spike and domestication traits (Sharma et al. 2019a; Faris et al. 2014), 

and the BP025 population was also evaluated for multiple agronomic traits (Faris et al. 2014). 

Additionally, the BP025 population has been used to map QTL for Fusarium head blight 
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resistance, resistance to tan spot, and to validate the spikelet per spike gene WAPO-A1 (Zhang et 

al. 2014; Kuzay et al. 2019; Liu et al. 2020; Guo et al. 2020). The RP883 population has also 

been evaluated for resistance to tan spot (Liu et al. 2020) and stem rust resistance (Sharma et al. 

2019b).  

To date, most QTL mapping studies in tetraploid wheat have been durum × durum or 

durum × wild emmer populations. RIL populations with closely related parents often lack the 

power to detect QTL due to the genetic similarities between the two parents and the population 

size is often too small to detect minor effect QTL. Durum × wild emmer crosses are diversely 

related and useful for identifying a larger number of QTL; however, introgressing traits from 

wild emmer into the durum germplasm pool is often associated with deleterious linkage drag (Yu 

et al. 2019). To overcome this, durum × cultivated emmer crosses are useful for not only 

identifying genes in both durum and cultivated emmer but cultivated emmer has been cultivated 

for centuries and may be a source of beneficial yield genes (Zaharieva et al. 2010).  

Previously, the BP025 population was evaluated in the greenhouse but kernel shape/size 

traits were not measured (Faris et al. 2014). Additionally, although the RP883 population was 

evaluated in the greenhouse by Sharma et al. (2019a), the focus of their analysis was on 

threshability and domestication, therefore kernel size/shape traits were not evaluated. In this 

study, my two primary objectives were 1) to identify QTLs associated with various yield 

component traits in the BP025 and RP883 populations grown under field conditions and 2) 

determine which QTLs were stable over multiple environments and across populations and 

suitable for deployment in breeding programs for durum improvement.  
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5.3. Materials and Methods 

5.3.1. Plant Material 

Two durum × cultivated emmer RIL populations were evaluated for grain yield 

components under field conditions in North Dakota, US. The two RIL populations were 

developed using single-seed descent. The BP025 population was developed by Steven Xu at the 

USDA-ARS in Fargo, ND from crossing Ben (PI 596557), a North Dakota hard amber durum 

variety (Elias and Miller 1998), with PI 41025, a cultivated emmer accession collected near 

Samara, Russia. The BP025 population consists of 200 RILs, was genotyped using the 9k iSelect 

SNP array (Cavanagh et al. 2013), and the map was published by Faris et al. (2014). The RP883 

population was developed by Steven Xu at the USDA-ARS in Fargo, ND from crossing Rusty 

(PI 639869), a North Dakota durum germplasm line (Klindworth et al. 2006), with PI 193883, a 

cultivated emmer wheat accession collected near Shewa, Ethiopia. The RP883 population 

consists of 190 RILs, was genotyped using the 90k iSelect SNP array (Wang et al. 2014), and the 

map was published by Sharma et al. (2019a).  

5.3.2. Phenotyping 

The BP025 and RP883 populations and parental lines were phenotyped for eleven traits: 

days to heading (DTH), plant height (PHT), total number of spikelets per spike (SPS), kernels 

per spike (KPS), grain weight per spike (GWS), thousand kernel weight (TKW), kernel area 

(KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel length:width 

ratio (KLW).  

The two populations and parental lines were evaluated under field conditions for a total 

of three seasons each and were grown in a randomized complete block design (RCBD) with 

three replicates each season. Plants were grown in hill plots, with each plot consisting of 10-15 
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seeds and considered an experimental unit. The 2017, 2018, and 2019 plots were grown at the 

North Dakota State University (NDSU) field site near Prosper, ND (47.002, -97.115). The 2020 

plots were grown at the NDSU agronomy seed farm in Casselton, ND (46.880, -97.243). The 

BP025 population was planted and evaluated in 2017, 2018, and 2019. The RP883 population 

was evaluated in 2018, 2019, and 2020. DTH was measured as the number of days from planting 

until 50% of the spikes were beyond the flag leaf. PH was measured in centimeters from the base 

of the plot to the tip of the tallest spike (excluding awns). Fifteen main heads per plot were hand 

harvested and eight heads were used for phenotypic evaluations. SPS was counted as the total 

number of spikelets per head. KPS, GWS, TKW, KA, KW, KL, KC, and KLW were obtained 

using a MARVIN grain analyzer (GAT Sensorik GMBH, Neubrandenburg, Germany). For KPS 

and GWS, the value given by MARVIN for each sample was divided by the number of spikes in 

that sample to obtain KPS and GWS for data analysis.  

5.3.3. Statistical Analysis and QTL Mapping 

Statistical analysis was performed using the PROC GLM procedure in SAS 9.4 (SAS 

institute). Fisher’s Least Significant Difference (LSD) test was used to determine significant 

differences among the RILs at the 0.05 level of probability. For each field season, Bartlett’s Chi 

squared test for homogeneity of error variances (Snedecor and Cochran 1989) was used to 

determine if replicates within the same environment could be combined (Tables 5.1, 5.2). For 

those traits that were not normally distributed, Levene’s test (Levene 1960) was used instead. For 

those that could be combined, the scores of each replicate for those traits were used to calculate 

the overall average, which was used in further analyses and QTL mapping. For field data, RP883 

TKW 2018, RP883 KW 2018, and RP883 PHT 2020 replicates were not homogeneous using 

both Bartlett’s and Levene’s; therefore, each replicate for these traits was analyzed separately. 
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Trait mean, maximum, minimum, and correlations were calculated in R v4.0.3, with Pearson 

correlation coefficients calculated using the R command cor (R Development Core Team) and 

plotted using R/corrplot (Wei and Simko 2017). 

Table 5.1. Bartlett Chi-Square values for the BP025 population. 

Trait Year Bartlett’s P-value 
SPS 2017 4.71 0.09 
KPS 2017 0.32 0.85 
GWS 2017 0.06 0.97 
TKW 2017 1.30 0.52 
DTH 2017 3.14 0.21 
PHT 2017 3.19 0.20 
KA 2017 0.94 0.63 
KW 2017 2.01 0.37 
KL 2017 0.16 0.93 
KC 2017 1.68 0.43 

KLW 2017 1.62 0.45 
SPS 2018 0.05 0.98 
KPS 2018 2.96 0.23 
GWS 2018 4.03 0.13 
TKW 2018 4.10 0.13 
DTH 2018 0.18 0.92 
PHT 2018 0.37 0.83 
KA 2018 2.14 0.34 
KW 2018 4.69 0.10 
KL 2018 2.24 0.33 
KC 2018 5.13 0.08 

KLW 2018 2.62 0.27 
SPS 2019 0.34 0.84 
KPS 2019 1.13 0.57 
GWS 2019 0.33 0.85 
TKW 2019 0.26 0.88 
DTH 2019 3.90 0.14 
PHT 2019 0.51 0.78 
KA 2019 0.52 0.77 
KW 2019 0.35 0.84 
KL 2019 0.68 0.71 
KC 2019 0.25 0.88 

KLW 2019 0.10 0.95 
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Table 5.2. Bartlett Chi-Square values for the RP883 population when grown under field 
environments. 

Trait Year Bartlett’s P-value Levene’sA P-value 
SPS 2018 0.09 0.96   

KPS 2018 0.46 0.80   

GWS 2018 5.31 0.07   

TKW* 2018 17.73 <0.05 8.19 <0.05 
DTH 2018 0.56 0.76   

PHT 2018 0.98 0.61   

KA 2018 7.02 <0.05 2.35 0.10 
KW* 2018 20.07 <0.05 9.9 <0.05 
KL 2018 0.08 0.96   

KC 2018 4.66 0.10   

KLW 2018 2.49 0.29   

SPS 2019 0.76 0.68   

KPS 2019 0.82 0.66   

GWS 2019 2.68 0.26   

TKW 2019 1.87 0.39   

DTH 2019 3.33 0.19   

PHT 2019 9.83 <0.05 0.56 0.57 
KA 2019 0.30 0.86   

KW 2019 1.46 0.48   

KL 2019 0.34 0.84   

KC 2019 0.40 0.82   

KLW 2019 0.45 0.80   

SPS 2020 4.82 0.09   

KPS 2020 9.64 <0.05 2.87 0.06 
GWS 2020 3.22 0.20   

TKW 2020 3.58 0.17   

DTH 2020 1.45 0.48   

PHT* 2020 26.69 <0.05 10.76 <0.05 
KA 2020 0.97 0.62   

KW 2020 1.25 0.54   

KL 2020 0.43 0.81   

KC 2020 0.96 0.62   

KLW 2020 0.57 0.75   

*year/trait combinations that could not be combined based on both the Bartlett’s and Levene’s 
test 
AThose which could not be combined were tested using Levene’s, with those values shown for 
those traits. 
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QTL analysis was performed using R/qtl (Broman et al. 2003). For simple interval 

mapping, significant QTL were identified using the function ‘scanone’ with the extended Haley-

Knott method (Haley and Knott 1992). An LOD significance threshold was determined using a 

permutation test with 1000 interactions. ‘Scantwo’ with the extended Haley-Knott method was 

used to identify QTL × QTL interactions and an LOD significance threshold was determined 

using a permutation test with 1000 interactions. Multiple QTL mapping was performed using the 

stepwiseqtl command (Manichaikul et al. 2009) using method=imp (Sen and Churchill 2001). A 

forward/backward search method was used, with a maximum of 12 QTL allowed. The initial 

model was given based on the ‘scanone’ QTL results. An approximate Bayesian credible interval 

was calculated using ‘Bayesint’ with a probability of 0.99 (Broman et al. 2003). QTL names 

include the trait abbreviation followed by “fcu”, which stands for Fargo Cereals Unit. 

Markers most significantly associated with each QTL were subjected to BLASTn 

searches against Svevo RefSeq Rel. 1.0 pseudomolecules, Zavitan WEWSeq v2.0 

pseudomolecules, and Chinese Spring IWGSC RefSeq v2.1 genome assembly to obtain the 

physical positions for comparing QTL between environments, along with identifying known 

genes within each QTL region. Markers that were the most significantly associated with each 

QTL were subjected to BLASTn searches against Svevo RefSeq Rel. 1.0 pseudomolecules 

(Maccaferri et al. 2019), Zavitan WEWSeq v2.0 pseudomolecules (Zhu et al. 2019), and Chinese 

Spring IWGSC RefSeq v2.1 genome assembly (Zhu et al. 2021) using the Graingenes website 

(https://wheat.pw.usda.gov/GG3/) to obtain the physical positions for comparing QTL between 

environments, along with identifying previously reported genes within each QTL region. The 

sequences for reported genes were obtained from Genbank or the published articles. 
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5.4. Results 

5.4.1. Trait Evaluations in BP025 

For DTH, the two parental lines differed significantly in 2017, with Ben and PI 41205 

having values of 55.67 and 64.00, respectively (Table 5.3). However, in 2018, Ben and PI 41025 

differed only by one day for DTH and in 2019 by three days, which were not significantly 

different. The population mean was 59.06 days in 2017, which was between the two parental 

means, with a population range of 48.33 to 68.00 (Table 5.3, Figure 5.1a). However, in 2018 and 

2019 the population mean was lower than the two parental lines at 52.02 and 52.42 DTH, 

respectively. In 2018 the population range was 42.67 to 74.33 DTH, and in 2019 it was 43.50 to 

80.67 DTH, indicating that the two parents possess different genes governing heading date.  

For PHT, the two parental means were significantly different with Ben averaging 100.22 

cm and PI 41025 averaging 117.89 cm across the three field seasons (Table 5.3). The population 

mean each season was between the two parental lines; however, the value was closer to Ben at 

105.76 cm than PI 41025. The population range fell below Ben each season and greater than PI 

41025, indicating that both parental lines are contributing genetic factors to increased PHT 

(Table 5.3, Figure 5.1b).  

Mature spikes and seed of Ben and PI 40125 are presented in Figure 5.2. PI 41025 had 

significantly more SPS than Ben in all three environments (Table 5.3). PI 41025 averaged 23.13, 

24.71, and 24.79 SPS in 2017, 2018, and 2019, respectively. Between the three summers, PI 

41025 averaged 6.79 more SPS than Ben. The maximum values for the population in 2017, 

2018, and 2019 were 22.79, 25.58, and 26.54, respectively, suggesting that PI 41025 is most 

likely contributing most or all of the genetic factors for increased SPS (Table 5.3, Figure 5.1c). 

Interestingly, Ben averaged 39.65 KPS whereas PI 41025 averaged 36.00 KPS. Although the two 
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parental lines were not significantly different, it suggested that PI 41025 had fewer fertile 

spikelets per spike than Ben. The BP025 population mean fell between that of the two parents at 

34.27 KPS, with a population range of 12.17 to 45.75 KPS in 2017, 24.46 to 47.50 KPS in 2018, 

and 16.04 to 51.42 KPS in 2019, suggesting that both Ben and PI 41025 are contributing to 

increased KPS; however, both harbor different genes for the number of KPS (Table 5.3, Figure 

5.1d).  

For the kernel weight components, Ben had significantly higher values than PI 41025 in 

all three environments. On average, Ben had 1.73 g per spike whereas PI 41025 was 1.00 g per 

spike (Table 5.3). The BP025 population mean was 1.17 g, with a population range of 0.43 to 

1.91 g, 0.73 to 2.08 g, and 0.29 to 1.73 g in 2017, 2018, and 2019, respectively (Table 5.3, 

Figure 5.1e). As for TKW, Ben averaged 43.92 g across the three environments, with PI 41025 

averaging 28.90 g (Table 5.3). The BP025 population average was between the two parents at 

34.13 g, with a population range of 27.50 to 49.65 g, 24.96 to 49.02 g, and 12.23 to 38.96 g in 

2017, 2018 and 2019, respectively (Table 5.3, Figure 5.1f). Interestingly, for both GWS and 

TKW, the population range was near the value for Ben in most years. This suggests that Ben 

most likely harbors genes that confer increased GWS and TKW; however, these genes may be 

highly influenced by environmental factors. 

For kernel morphology traits, Ben had a significantly higher KA and KW than PI 41025, 

whereas PI 41025 had significantly higher KC and KLW than Ben (Table 5.3). The two parental 

lines did not differ at the significance level for KL; however, Ben had a longer KL in all three 

environments. Ben averaged 18.50 mm2, 3.29 mm, 7.64 mm, 1.51 mm, and 2.33 mm for KA, 

KW, KL, KC, and KLW, respectively. PI 41025 averaged 14.43 mm2, 2.77 mm, 7.48 mm, 1.73 

mm, and 2.73 mm for KA, KW, KL, KC, and KLW, respectively. The BP025 population mean 
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was between the two parental averages, with population means of 16.51 mm2, 3.02 mm, 7.62 

mm, 1.62 mm, and 2.55 mm for KA, KW, KL, KC, and KLW, respectively (Table 5.3, Figures 

5.1g,h,i,j,k). For KA, the BP025 population range was 14.48 to 20.89 mm2 in 2017, 13.90 to 

20.80 mm2 in 2018, and 10.59 to 18.64 mm2 in 2019 (Figure 5.1g), suggesting that both Ben and 

PI 41025 contribute genetic factors to KA. For KW, the population range was 2.74 to 3.51 mm in 

2017, 2.70 to 3.50 mm in 2018, and 2.30 to 3.40 mm in 2019 (Figure 5.1h), suggesting that both 

Ben and PI 41025 contribute genetic factors to KW. As was observed for KA and KW, the 

BP025 population range fell below and above both parental lines for KL and KLW (Figures 

5.1i,k), suggesting that both parents are contributing genetic factors for increases in these traits. 

However, for KC, PI 41025 had an average of 1.77 mm in 2017, which was the same as the 

population maximum (Figure 5.1j). In 2018 and 2019, the population maximum was above the 

PI 41205 value at 1.80 and 1.85, respectively. This suggest that PI41025 most likely harbors 

most of the genetic factors that confer increased KC; however, these factors may be highly 

influenced by the environment. 
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Table 5.3. Parental and population means, ranges, and least significant differences (LSD) at the 
0.05 level of probability (P<0.05) for the BP025 population grown under field conditions. 

TraitA YearB Mean    BP025 population 
range 

LSD 
(0.05)   Ben PI 41025 BP025 population  

DTH 2017 55.67 64.00 59.06  48.33-68.00 2.71 
DTH 2018 58.00 57.00 52.02  42.67-74.33 2.24 
DTH 2019 58.00 55.00 52.42  43.50-80.67 3.44 
PHT 2017 90.33 111.67 101.59  74.00-128.33 7.54 
PHT 2018 101.67 119.00 106.00  82.83-139.00 8.14 
PHT 2019 108.67 123.00 109.70  88.00-136.00 8.87 
SPS 2017 14.67 23.13 17.71  11.75-22.79 1.81 
SPS 2018 18.13 24.71 19.87  14.25-25.58 1.07 
SPS 2019 19.46 24.79 20.28  15.25-26.54 1.20 
KPS 2017 34.25 31.58 32.96  12.17-45.75 5.67 
KPS 2018 40.17 37.79 34.54  24.46-47.50 4.09 
KPS 2019 44.54 38.63 35.32  16.04-51.42 6.36 
GWS 2017 1.61 0.87 1.28  0.43-1.91 0.25 
GWS 2018 2.00 1.19 1.27  0.73-2.08 0.27 
GWS 2019 1.57 0.94 0.95  0.29-1.73 0.28 
TKW 2017 47.16 30.72 38.97  27.50-49.65 4.02 
TKW 2018 49.82 31.49 36.73  24.96-49.02 5.56 
TKW 2019 34.79 24.49 26.68  12.23-38.96 5.08 
KA 2017 19.00 14.03 17.68  14.48-20.89 0.97 
KA 2018 19.73 15.43 17.01  13.90-20.80 2.36 
KA 2019 16.77 13.83 14.83  10.59-18.64 1.28 
KW 2017 3.30 2.70 3.12  2.74-3.51 0.11 
KW 2018 3.43 2.90 3.08  2.70-3.50 0.15 
KW 2019 3.13 2.70 2.86  2.30-3.40 0.16 
KL 2017 7.73 7.47 7.90  6.93-8.76 0.20 
KL 2018 7.80 7.67 7.71  6.60-8.70 0.31 
KL 2019 7.40 7.30 7.26  6.38-8.06 0.29 
KC 2017 1.50 1.77 1.61  1.44-1.77 0.04 
KC 2018 1.50 1.70 1.61  1.40-1.80 0.06 
KC 2019 1.53 1.73 1.65  1.42-1.85 0.06 
KLW 2017 2.30 2.80 2.56  2.15-2.91 0.08 
KLW 2018 2.30 2.67 2.53  2.10-2.90 0.10 
KLW 2019 2.40 2.73 2.57  2.08-2.99 0.10 

ATrait abbreviations are: days to heading (DTH), plant height (PHT), spikelets per spike (SPS), 
kernels per spike (KPS), grain weight per spike (GWS), thousand kernel weight (TKW), kernel 
area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 
BEach field environment was analyzed separately. 
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Figure 5.1. Histograms of the BP025 population for the traits a) days to heading (DTH), b) plant 
height (PHT), c) spikelets per spike (SPS), d) kernels per spike (KPS), e) grain weight per spike 
(GWS), f) thousand kernel weight (TKW), g) kernel area (KA), h) kernel weight (KW), i) kernel 
length (KL), j) kernel circularity (KC), k) kernel length:width ratio (KLW). The blue, pink, and 
yellow bars represent the 2017, 2018, and 2019 environments, respectively.  
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Figure 5.2. Spike and seed morphology of Ben and PI 41025, the two parental lines of the BP025 
population. (a) Mature spikes of Ben (left) and PI 41025 (right). (b) seed of the durum variety 
Ben (top) and the cultivated emmer wheat accession PI 41025 (bottom).  
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5.4.2. Correlations in BP025 

Correlations for the BP025 population between all the traits are shown in Figure 5.3, 

along with the correlation coefficient values given in Tables 5.4, 5.5, 5.6. For each trait, there 

was a strong positive correlation across environments, suggesting that these traits are stable 

across environments. Within the 2017 season, SPS was strongly positively correlated with KPS, 

GWS, DTH, and PHT (Table 5.4, Figure 5.3). In 2018, SPS was strongly correlated with those 

traits, along with KW (Table 5.5, Figure 5.3). However, in 2019, SPS was only positively 

correlated with DTH, PHT, and GWS, not KPS and GWS (Table 5.6, Figure 5.3). SPS had a 

weak, but significant negative correlation with KL in 2017 (Table 5.4), KLW in all three 

environments (Figure 5.3), with the strong correlation in 2018, and KC in 2018 (Table 5.5). KPS 

and GWS had a consistent, strong positive correlation in all three environments (Figure 5.3), 

along with GWS and TKW having a significant, positive correlation in all three environments. 

GWS and TKW had strong positive correlations with PHT, KA, KW, and KL in 2017, 2018, and 

2019 (Tables 5.4, 5.5, 5.6, Figure 5.3), except for GWS and KL in 2017 (Table 5.4, Figure 5.3). 

Significant negative correlations were observed for GWS and TKW with KC and KLW in all 

three environments (Tables 5.4, 5.5, 5.6, Figure 5.3). 

As for the kernel dimension traits, KA was significantly correlated with KW, KL, KC, 

and KLW in 2019 (Table 5.6, Figure 5.3). A strong positive correlation was observed for KA 

with KW and KL in 2019, along with 2017 and 2018 (Tables 5.4, 5.5, 5.6, Figure 5.3). However, 

a strong negative correlation was observed for KA with KC and KLW in 2019 (Table 5.6, Figure 

5.3), but in 2017 and 2018 there was no significant correlations between these traits (Tables 5.4, 

5.5, Figure 5.3). As for the other kernel dimension traits with one another, KW with KL, KL 

with KC, KL with KLW, and KC with KLW in 2017, 2018, and 2019 all had strong positive 
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correlations (Tables 5.4, 5.5, 5.6, Figure 5.3). The only negative correlations between kernel 

dimension traits were KW with KC and KW with KLW in all three environments (Figure 5.3).  
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Table 5.4. Correlation coefficients for the BP025 population grown under field conditions in 2017 between the mean values of the 
traits days to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain weight per spike (GWS), 
thousand kernel weight (TKW), kernel area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 

 
SPSavg KPSavg GWSavg TKWavg DTHavg PHTavg KAavg KWavg KLavg KCavg KLWavg 

SPSavg 1.00           
KPSavg 0.58*** 1.00          
GWSavg 0.44*** 0.81*** 1.00         
TKWavg -0.12 -0.16* 0.45*** 1.00        
DTHavg 0.23*** 0.14 0.03 -0.18** 1.00       
PHTavg 0.40*** 0.12 0.23** 0.22** 0.26*** 1.00      
KAavg -0.11 -0.21** 0.36*** 0.93*** -0.15* 0.13 1.00     
KWavg 0.04 -0.01 0.49*** 0.83*** -0.02 0.26*** 0.78*** 1.00    
KLavg -0.18* -0.34*** 0.04 0.57*** -0.15* -0.03 0.76*** 0.21** 1.00   
KCavg -0.09 -0.23** -0.31*** -0.18* -0.02 -0.20** 0.03 -0.53*** 0.67*** 1.00 

 

KLWavg -0.17* -0.27*** -0.35*** -0.17* -0.10 -0.22** 0.02 -0.59*** 0.66*** 0.97*** 1.00 

*P<0.05 
**P<0.01 
***P<0.001 
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Table 5.5. Correlation coefficients for the BP025 population grown under field conditions in 2018 between the mean values of the 
traits days to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain weight per spike (GWS), 
thousand kernel weight (TKW), kernel area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 

 
SPSavg KPSavg GWSavg TKWavg DTHavg PHTavg KAavg KWavg KLavg KCavg KLWavg 

SPSavg 1.00           
KPSavg 0.26*** 1.00          
GWSavg 0.26*** 0.68*** 1.00         
TKWavg 0.10 -0.07 0.67*** 1.00        
DTHavg 0.43*** -0.12 0.08 0.23*** 1.00       
PHTavg 0.55*** -0.09 0.26*** 0.46*** 0.52*** 1.00      
KAavg 0.11 -0.10 0.61*** 0.95*** 0.28*** 0.41*** 1.00     
KWavg 0.29*** -0.03 0.58*** 0.83*** 0.37*** 0.51*** 0.81*** 1.00    
KLavg -0.06 -0.15 0.33*** 0.61*** 0.08 0.15* 0.75*** 0.27*** 1.00   
KCavg -0.23** -0.07* -0.25*** -0.29*** -0.25*** -0.32*** -0.14 -0.57*** 0.50*** 1.00 

 

KLWavg -0.27*** -0.09 -0.25*** -0.27*** -0.26*** -0.33*** -0.12 -0.63*** 0.54*** 0.90*** 1.00 

*P<0.05 
**P<0.01 
***P<0.001 
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Table 5.6. Correlation coefficients for the BP025 population grown under field conditions in 2019 between the mean values of the 
traits days to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain weight per spike (GWS), 
thousand kernel weight (TKW), kernel area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 

 
SPSavg KPSavg GWSavg TKWavg DTHavg PHTavg KAavg KWavg KLavg KCavg KLWavg 

SPSavg 1.00           
KPSavg 0.13 1.00          
GWSavg 0.06 0.62*** 1.00         
TKWavg -0.05 0.05 0.80*** 1.00        
DTHavg 0.57*** -0.16* -0.14 -0.09 1.00       
PHTavg 0.45*** -0.02 0.31*** 0.39*** 0.44*** 1.00      
KAavg 0.06 -0.02 0.70*** 0.91*** 0.09 0.37*** 1.00     
KWavg 0.15* -0.01 0.69*** 0.89*** 0.15* 0.42*** 0.90*** 1.00    
KLavg -0.02 -0.08 0.39*** 0.55*** 0.03 0.15* 0.76*** 0.45*** 1.00   
KCavg -0.04 -0.08 -0.49*** -0.58*** 0.01 -0.30*** -0.35*** -0.65*** 0.32*** 1.00 

 

KLWavg -0.16* -0.06 -0.44*** -0.53*** -0.12 -0.33*** -0.37*** -0.71*** 0.30*** 0.95*** 1.00 

*P<0.05 
**P<0.01 
***P<0.001 
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Figure 5.3. Pearson correlation coefficients between the 11 traits measured in the BP025 
population grown under field conditions in 2017, 2018, and 2019. Trait abbreviations are: days 
to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain 
weight per spike (GWS), thousand kernel weight (TKW), kernel area (KA), kernel width (KW), 
kernel length (KL), kernel circularity (KC), and kernel leght:width ratio (KLW). Significance 
values are denoted as *P<0.05, **P<0.01, ***P<0.001. Along the right is a color scale for the 
correlation values. Blocks that are orange to pink have a negative correlation, with dark pink 
being a correlation close to -1. Blocks that are orange to light yellow have a positive correlation, 
with light yellow being a correlation close to 1. Significance values are denoted as *P<0.05, 
**P<0.01, ***P<0.001. 

5.4.3. QTL Analysis in BP025 

Among the three environments for the BP025 population, I identified 164 significant 

QTL and QTL×QTL interactions using forward/backward selection to identify the QTL model 
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with the highest LOD score. Within individual field seasons, 56, 59, and 49 QTL were identified 

in 2017, 2018, and 2019, respectively (Supplementary File 3). 

For the purpose of this study, I was most interested in QTL that were significant across 

multiple environments. Twenty-six QTL were observed in two environments, and 18 were 

observed in all three years (Table 5.7, Figure 5.4, Supplementary File 3). A total of 15 genomic 

regions were associated with the 44 QTL that were observed in multiple environments. No QTL 

× QTL interactions were found to be consistent across environments.  

Three QTL were associated with DTH in two or more environments. These QTL, 

QEet.fcu-2B, QEet.fcu-5A, QEet.fcu-5B, were mapped on chromosomes 2B, 5A, and 5B, and 

within the QTL regions are the known genes Ppd-B1, Vrn-A1, and Vrn-B1, respectively (Table 

5.7, Figure 5.4). The QTL QEet.fcu-2B and QEet.fcu-5B were observed in all three 

environments. QEet.fcu-2B, QEet.fcu-5A, and QEet.fcu-5B had maximum LOD values of 13.11, 

21.57, and 25.87 and explained up to 15.60, 25.74, and 32.61% of the variation in heading date, 

respectively. Ben contributed to increased DTH at the QEet.fcu-5A and QEet.fcu-5B QTL, 

whereas PI 41025 was at the QEet.fcu-2B QTL.  

For PHT, five QTL were identified across two or more environments. These QTL were 

mapped to chromosomes 2A, 3A, 5A, and 5B and designated QHt.fcu-2A, QHt.fcu-3A, QHt.fcu-

5A.1, QHt.fcu-5A.2, and QHt.fcu-5B (Table 5.7, Figure 5.4). The two QTL on 5A, QHt.fcu-5A.1, 

QHt.fcu-5A.2, were located approximately 70 cM apart, and QHt.fcu-5A.2 was near the Vrn-A1 

locus. The only other PHT QTL near a known gene was QHt.fcu-5B, which was near the Vrn-B1 

locus. QHt.fcu-3A, QHt.fcu-5A.1, and QHt.fcu-5B were observed in all three environments. 

QHt.fcu-2A, QHt.fcu-3A, QHt.fcu-5A.1, QHt.fcu-5A.2, and QHt.fcu-5B had maximum LOD 

values of 16.56, 16.00, 7.60, 10.59, and 13.86 and explained up to 23.17, 19.37, 9.55, 11.99, and 



 

176 

16.34% of the variation in PHT. PI 41025 contributed to increased PHT at the QHt.fcu-2A, 

QHt.fcu-3A, and QHt.fcu-5A.1 QTLs and Ben at the QHt.fcu-5A.2 and QHt.fcu-5B QTLs.  

Seven genomic regions had QTL associated with SPS across two or more environments, 

which was the most of the 11 traits evaluated in this population (Table 5.7, Figure 5.4). These 

QTL, designated QSpn.fcu-1A, QSpn.fcu-2B, QSpn.fcu-3B, QSpn.fcu-5A.1, QSpn.fcu-5A.2, 

QSpn.fcu-5B, and QSpn.fcu-7A, were located on chromosomes 1A, 2B, 3B, 5A, 5B, and 7A, 

respectively. QSpn.fcu-2B, QSpn.fcu-5A.2, QSpn.fcu-5B, and QSpn.fcu-7A were near the Ppd-

B1, Q, Vrn1-B1, and WAPO-A1 loci, respectively. Two of these QTL, QSpn.fcu-5A.2 and 

QSpn.fcu-7A were observed in all three environments. QSpn.fcu-1A, QSpn.fcu-2B, QSpn.fcu-3B, 

QSpn.fcu-5A.1, QSpn.fcu-5A.2, QSpn.fcu-5B, and QSpn.fcu-7A had maximum LOD values of 

6.14, 7.87, 9.04, 4.11, 15.94, 5.67, and 14.14 and explained up to 7.05, 6.56, 11.24, 4.03, 14.59, 

9.14, and 17.87% of the variation in SPS. PI 41025 alleles at the QSpn.fcu-2B, QSpn.fcu-3B, 

QSpn.fcu-5A.1 and QSpn.fcu-7A QTL contributed to increased number of SPS, whereas Ben 

alleles contributed to increased SPS at QSpn.fcu-2B, QSpn.fcu-5A.2, and QSpn.fcu-5B. 

Only one QTL was associated with KPS across multiple environments (Table 5.7, Figure 

5.4). QKps.fcu-2A, located on chromosome 2A, was mapped near the GNI1-A1 locus. This QTL 

had a maximum LOD of 6.22 and explained up to 12.39% of the variation in KPS. Ben 

contributed to increased KPS at QKps.fcu-2A. 

Two QTL were identified for GWS across multiple environments (Table 5.7, Figure 5.4). 

These QTL, located on chromosomes 1A and 3B, are designated QGws.fcu-1A and QGws.fcu-

3B, respectively, and had maximum LOD values of 6.10 and 10.26 and explained 8.84 and 

16.61% of the variation in GWS. QGws.fcu-3B was observed in all three environments. Ben 

contributed the positive alleles for both QTL. 
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For TKW, a total of five stable QTL were identified (Table 5.7, Figure 5.4). These QTL, 

designated QTkw.fcu-1A, QTkw.fcu-2A, QTkw.fcu-3B, QTkw.fcu-4A, and QTkw.fcu-5B, mapped 

to chromosomes 1A, 2A, 3B, 4A, and 5B, respectively. Within the genetic regions of QTkw.fcu-

2A and QTkw.fcu-5B are the known genes GNI1-A1 and Vrn1-B1, respectively. QTkw.fcu-3B 

was observed in all three environments. The TKW QTL QTkw.fcu-1A, QTkw.fcu-2A, QTkw.fcu-

3B, QTkw.fcu-4A, and QTkw.fcu-5B had maximum LOD values of 6.51, 6.82, 12.27, 4.94, and 

9.56 and explained up to 9.73, 9.00, 17.28, 7.11, and 13.02% of the variation in TKW, 

respectively. PI 41025 was the contributor of increased TKW at QTkw.fcu-2A, whereas Ben was 

at the other four TKW QTL.  

Four stable QTL were significantly associated with KA in the BP025 population. These 

four QTL, QKa.fcu-1A, QKa.fcu-3B, QKa.fcu-4A, and QKa.fcu-5B, were mapped to 

chromosomes 1A, 3B, 4A, and 5B (Table 5.7, Figure 5.4). Only one QTL, QKa.fcu-5B, was 

within the genomic region of a known gene (Vrn1-B1). QKa.fcu-3B was the only QTL observed 

in all three environments. QKa.fcu-1A, QKa.fcu-3B, QKa.fcu-4A, and QKa.fcu-5B had maximum 

LOD scores of 7.47, 9.45, 4.81, and 9.28 and explained up to 10.73, 14.28, 7.39, and 13.78% of 

the variation in KA, respectively. Ben was the contributor of increased KA at all four QTL.  

For the kernel dimension trait KW, six stable QTL were identified. These QTL were 

mapped to chromosomes 1A, 3B, 4A, 5A, 5B, and 7A and were designated QKw.fcu-1A, 

QKw.fcu-3B, QKw.fcu-4A, QKw.fcu-5A, QKw.fcu-5B, and QKw.fcu-7A (Table 5.7, Figure 5.4). 

Q and Vrn1-B1 are within the genetic regions of QKw.fcu-5A and QKw.fcu-5B. The QTL 

QKw.fcu-3B, QKw.fcu-4A, QKw.fcu-5A, and QKw.fcu-7A were observed in all three 

environments. QKw.fcu-1A, QKw.fcu-3B, QKw.fcu-4A, QKw.fcu-5A, QKw.fcu-5B, and QKw.fcu-

7A had maximum LOD values of 8.72, 10.38, 13.98, 8.26, 13.89, and 17.12 and explained up 
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11.37, 9.97, 11.65, 7.93, 16.44, and 17.49% of the variation in KW. As with KA, Ben was the 

contributor of increased KW at all six QTL.  

For KL, four QTL were identified in the BP025 population across two or more 

environments. These QTL, QKl.fcu-1A, QKl.fcu-2A, QKl.fcu-3A, and QKl.fcu-3B mapped to 

chromosomes 1A, 2A, 3A, and 3B, had maximum LOD values of 6.48, 9.71, 4.00, and 8.16 and 

explained up to 9.99, 15.47, 5.95, and 12.83% of the variation in KL, respectively (Table 5.7, 

Figure 5.4). Only QKl.fcu-3B was observed under all three environments. QKl.fcu-1A and 

QKl.fcu-2A are within the genomic regions of ELF3 and GNI1-A1, respectively. At QKl.fcu-1A, 

QKl.fcu-2A and QKl.fcu-3A, PI 41025 was the contributor to increased KL, whereas at QKl.fcu-

3B Ben was.  

In the BP025 population, three stable QTL were identified for KC and were designated 

QKc.fcu-1A, QKc.fcu-5B, and QKc.fcu-7A and mapped to chromosomes 1A, 5B, and 7A, 

respectively (Table 5.7, Figure 5.4). Within the mapped genomic regions of QKc.fcu-1A and 

QKc.fcu-5B are the genes ELF3 and Vrn1-B1. QKc.fcu-1A and QKc.fcu-7A were observed under 

all three environments. QKc.fcu-1A, QKc.fcu-5B, and QKc.fcu-7A had maximum LOD values of 

8.35, 3.73, and 11.57 and explained up to 11.02, 5.53, and 15.87% of the variation in KC, 

respectively. PI 41025 was the donor parent at all three QTL for increased KC.  

Lastly, within the BP025 population I identified four stable QTL which were associated 

with KLW. These QTL were mapped to chromosomes 1A, 2A, 5A, and 7A and were designated 

QKlw.fcu-1A, QKlw.fcu-2A, QKlw.fcu-5A, and QKlw.fcu-7A (Table 5.7, Figure 5.4). ELF3, 

GNI1-A1, and Q are within the genomic regions of QKlw.fcu-1A, QKlw.fcu-2A, and QKlw.fcu-

5A, respectively. QKlw.fcu-7A is the only QTL which was identified in all three environments 

for KLW. QKlw.fcu-1A, QKlw.fcu-2A, QKlw.fcu-5A, and QKlw.fcu-7A had maximum LOD 
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values of 6.49, 6.17, 5.28, and 12.50 and explained up to 9.87, 9.35, 7.23, and 21.83% of the 

variation in KLW, respectively. PI 41025 was the donor parent at all four QTL associated with 

KLW.  
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Table 5.7. Quantitative trait loci associated with the traits evaluated in the Ben × PI 41025 (BP025) recombinant inbred population 
grown under field conditions and were present in two or more environments.  

Trait QTL Chromosome Position (cM) Marker interval LOD R2 × 100 Donor 
parent  

Putative 
gene 

SPS QSpn.fcu-1A 1A 47.31-48.86 IWA2981-IWA2319 5.83-6.14 4.72-7.05 Ben  
SPS QSpn.fcu-2B 2B 55.99 IWA1359-IWA6474 5.74-7.87 6.53-6.56 PI 41025 Ppd-B1 
SPS QSpn.fcu-3B 3B 96.18-101.68 IWA2661-IWA81 6.87-9.04 7.61-11.24 PI 41025  
SPS QSpn.fcu-5A.1 5A 38.21-44.69 IWA8155-IWA8582 3.62-4.11 3.26-4.03 PI 41025  
SPS QSpn.fcu-5A.2 5A 159.26-187.03 Xwmc110-IWA1670 4.77-15.94 7.60-14.59 Ben Q 
SPS QSpn.fcu-5B 5B 110.34-117.03 IWA4774-Xwmc75 3.73-5.67 2.95-9.14 Ben Vrn1-B1 
SPS QSpn.fcu-7A 7A 128.27-132.97 IWA5791-IWA5912 8.63-14.14 7.34-17.87 PI 41025 WAPO-A1 
KPS QKps.fcu-2A 2A 108.70 IWA241 4.75-6.22 9.50-12.39 Ben GNI1-A1 
GWS QGws.fcu-1A 1A 45.27-48.86 IWA4649-IWA2319 5.57-6.10 8.53-8.84 Ben  
GWS QGws.fcu-3B 3B 63.58-73.73 Xwmc612-IWA3997 5.19-10.26 7.44-16.61 Ben  
TKW QTkw.fcu-1A 1A 42.97-44.76 IWA3884-IWA492 4.50-6.51 7.43-9.73 Ben  
TKW QTkw.fcu-2A 2A 92.08 IWA549 4.54-6.82 6.62-9.00 PI 41025 GNI1-A1 
TKW QTkw.fcu-3B 3B 63.58-75.57 Xwmc612-Xwmc1 7.30-12.27 11.21-17.28 Ben  
TKW QTkw.fcu-4A 4A 12.53-13.32 IWA7124-IWA8494 4.85-4.94 6.37-7.11 Ben  
TKW QTkw.fcu-5B 5B 120.80-128.03 IWA7910-IWA3275 4.99-9.56 8.28-13.02 Ben Vrn1-B1 
DTH QEet.fcu-2B 2B 59.19-59.44 IWA3868-IWA546 7.18-13.11 10.31-15.60 PI 41025 Ppd-B1 
DTH QEet.fcu-5A 5A 126.09 IWA4805 10.38-21.57 15.50-25.74 Ben Vrn1-A1 
DTH QEet.fcu-5B 5B 116.48-117.03 IWA6718-Xwmc75 10.08-25.87 11.49-32.61 Ben Vrn1-B1 
PHT QHt.fcu-2A 2A 88.27-90.15 Xgwm372-IWA2948 7.50-16.56 8.17-23.17 PI 41025  
PHT QHt.fcu-3A 3A 78.83-79.59 IWA7541-IWA6914 8.05-16.00 10.16-19.37 PI 41025  
PHT QHt.fcu-5A.1 5A 47.60-55.04 IWA1630-IWA300 4.70-7.60 5.18-9.55 PI 41025  
PHT QHt.fcu-5A.2 5A 125.84 IWA4276 3.66-10.59 4.39-11.99 Ben Vrn1-A1 
PHT QHt.fcu-5B 5B 117.03-120.80 Xwmc75-IWA7910 5.01-13.86 6.11-16.34 Ben Vrn1-B1 
KA QKa.fcu-1A 1A 42.97-45.27 IWA492-IWA4649 4.40-7.47 6.73-10.73 Ben  
KA QKa.fcu-3B 3B 62.30-64.98 IWA6201-IWA6017 8.85-9.45 13.80-14.28 Ben  
KA QKa.fcu-4A 4A 12.53 IWA7124 4.65-4.81 6.53-7.39 Ben  
KA QKa.fcu-5B 5B 128.03 IWA3275 5.14-9.28 7.92-13.78 Ben Vrn1-B1 
KW QKw.fcu-1A 1A 44.01-44.76 IWA3338-IWA5956 8.64-8.72 6.82-11.37 Ben  
KW QKw.fcu-3B 3B 70.11-82.91 IWA8480-IWA1703 6.22-10.38 7.95-9.97 Ben  
KW QKw.fcu-4A 4A 2.38 IWA4321 4.76-13.98 5.98-11.65 Ben  
KW QKw.fcu-5A 5A 153.44-159.26 Xcfa2155-Xwmc110 5.13-8.26 6.42-7.93 Ben Q 
KW QKw.fcu-5B 5B 120.80-128.03 IWA7989-IWA3275 10.47-13.89 8.36-16.44 Ben Vrn1-B1 
KW QKw.fcu-7A 7A 92.99 IWA1456-IWA4584 8.20-17.12 9.06-17.49 Ben  
KL QKl.fcu-1A 1A 142.80 IWA3378 5.10-6.48 7.69-9.99 PI 41025 ELF3 
KL QKl.fcu-2A 2A 108.70 IWA240 5.15-9.71 7.81-15.47 PI 41025 GNI1-A1 
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Table 5.7. Quantitative trait loci associated with the traits evaluated in the Ben × PI 41025 (BP025) recombinant inbred population 
grown under field conditions and were present in two or more environments (continued). 

Trait QTL Chromosome Position (cM) Marker interval LOD R2 × 100 Donor 
parent  

Putative 
gene 

KL QKl.fcu-3A 3A 172.89 IWA7099 3.47-4.00 5.16-5.95 PI 41025  
KL QKl.fcu-3B 3B 94.42-111.28 IWA2399-IWA3332 3.83-8.16 7.57-12.83 Ben  
KC QKc.fcu-1A 1A 143.57 IWA1559-IWA2035 3.85-8.35 5.72-11.02 PI 41025 ELF3 
KC QKc.fcu-5B 5B 120.80-128.03 IWA7989-IWA3275 3.56-3.73 4.67-5.53 PI 41025 Vrn1-B1 
KC QKc.fcu-7A 7A 90.92-92.99 IWA305-IWA4584 8.17-11.57 11.33-15.87 PI 41025  
KLW QKlw.fcu-1A 1A 142.80-143.57 IWA3378-IWA2035 4.56-6.49 6.18-9.87 PI 41025 ELF3 
KLW QKlw.fcu-2A 2A 108.70 IWA240 3.25-6.17 5.09-9.35 PI 41025 GNI1-A1 
KLW QKlw.fcu-5A 5A 148.22-161.83 Xbarc319-Xfcp650 4.33-5.28 6.86-7.23 PI 41025 Q 
KLW QKlw.fcu-7A 7A 92.74-93.50 IWA2496-IWA5895 7.93-12.50 11.20-21.83 PI 41025  
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Figure 5.4. Illustration of the chromosomal locations of the 44 quantitative trait loci (QTL) associated with the eleven traits evaluated 
in the Ben × PI 41025 (BP025) recombinant inbred line population under field conditions. Only those QTL which were identified in 
two or more environments are illustrated. QTL observed in two environments are illustrated with dashed lines and those in three 
environments with solid lines. The known positions of the ELF3, Ppd-B1, Vrn-A1, Q, Vrn-B1, and WAPO-A1 loci are indicated in 
black. Chromosomes 1B, 4B, 6A, 6B, and 7B are not shown because not stable QTL were detected on them in this research. 
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5.4.4. Trait Evaluations in RP883 

For the RP883 population, the data for TKW 2018, KW 2018, and PHT 2020 were not 

homogeneous (Table 5.2) and therefore each replicate were evaluated separately in correlation 

and QTL analysis; however, I used the overall means for these trait/year combinations to 

determine the population mean and range (Table 5.8). For DTH, Rusty headed on average 65.56 

days post planting whereas PI 193883 headed 46.89 days. The RP883 population mean was 

52.54 DTH, with a population range of 46.33 to 67.33 days, 47.00 to 67.67 days, and 44.33 to 

59.67 days in 2018, 2019, and 2020, respectively (Table 5.8, Figure 5.5a). Rusty had a higher 

number of DTH in 2019 than the population maximum, along with a value close to the 

population maximum in 2018 and 2020. The value for PI 193883 was lower than the population 

min in 2019, along with being close to the population minimum in 2018 and 2020. These values 

and ranges indicate that the Rusty is the sole contributor of genetic factors conferring increased 

number of DTH for the RP883 population.  

For PHT, PI 193883 had an average height of 77.39 cm whereas Rusty had an average 

height that was 113.67 cm, which was 36.28 cm taller than PI 193883 (Table 5.8). The RP883 

population mean was 100.13 cm, 104.96 cm, and 84.45 cm in 2018, 2019, and 2020, 

respectively. The population ranged from 77.00 to 123.00 cm in 2018, 82.00 to 132.00 cm in 

2019, and 62.33 to 112.33 cm in 2020 (Table 5.8, Figure 5.5b). This data suggests that both 

parents are contributing genetic factors leading to increased height within this population.  

Mature spikes and seed of Rusty and PI 193883 are presented in Figure 5.6. Rusty had on 

average 2.32 more SPS than PI 193883, however the only year the two parents were significantly 

different was 2019 (Table 5.8). The RP883 population had a mean of 18.87 SPS and a range of 

15.63 to 23.00 SPS in 2018, a mean of 19.23 and a range of 15.54 to 23.04 SPS in 2019, and a 
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mean of 18.85 and a range of 15.46 to 29.17 SPS in 2020 (Table 8, Figure 5.5c). This data 

suggests that Rusty and PI 193883 possess different genes for increased number of spikelets per 

spike. Mean KPS values for Rusty, PI 193883, and the RP883 population were 32.34, 19.31, and 

27.45, respectively (Table 5.8). For all three field seasons, the two parental lines significantly 

differed for the number of KPS, along with the population range falling below and above the 

parental values (Table 5.8, Figure 5.5d). This suggests that both Rusty and PI 193883 contribute 

genetic factors to increased KPS.  

For GWS, Rusty had a higher weight than PI 193883 in all three years, however, the 

difference was not significant in 2019 (Table 5.8). GWS for Rusty widely varied across years, 

with values of 1.20 g, 0.57 g, and 0.94 g in 2018, 2019, and 2020, respectively. PI 193883 had 

more consistent values, with means of 0.62 g, 0.44 g, and 0.53 g in 2018, 2019, and 2020, 

respectively. The RP883 population averaged 0.82 g per spike. The population mean coupled 

with the population range suggest both Rusty and PI 193883 are contributing to genetic factors 

for increased spike weight (Table 5.8, Figure 5.5e). Unlike most of the other traits observed for 

the RP883 population, for TKW Rusty had a greater value than PI 193883 in 2018 with 41.30 g 

compared to 28.40; however, in 2019 Rusty had a TKW of 16.51 g and 27.91 g in 2020 whereas 

PI 193883 had a TKW of 22.89 g in 2019 and 30.79 g in 2020 (Table 5.8). The RP883 

population mean was 35.49, 23.55, and 29.97 g in 2018, 2019, and 2020, respectively, which was 

close to or above the highest parental value. The population range fell far below and above the 

parental values (Table 5.8, Figure 5.5f), indicating that Rusty and PI 193883 possess different 

genes for kernel weight that results in increased TKW in a subset of the RILs.  

For kernel size and shape, Rusty and PI 193883 did not significantly differ for KA 2019, 

KA 2020, and KL 2019 (Table 5.8). For KA, mean values for Rusty, PI 193883, and the RP883 
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population were 17.90, 15.93, and 17.83 mm2 in 2018, 15.15, 14.43, and 15.15 mm2 in 2019, and 

15.90, 16.47, and 16.43 mm2 in 2020, respectively. The RP883 population ranged from 12.50 to 

22.70 mm2 in 2018, 11.98 to 19.60 mm2 in 2019, and 13.11 to 21.41 mm2 in 2020 (Table 5.8, 

Figure 5.5g). The population range coupled with the parental means suggesting that the two 

parents both contribute to increased KA. Rusty had wider kernels with a mean of 3.04 mm for 

KW than PI 193883, which was 2.66 mm (Table 5.8). The RP883 population mean across all 

three years was 2.89 mm, with a range below and above the parental values (Table 5.8, Figure 

5.5h), suggesting both parents contribute to increased KW in this population. For KL, KC, and 

KLW, PI 193883 had a higher value than Rusty for each of these traits (Table 5.8), with values 

of 7.34 mm, 1.60 mm, 2.44 mm for Rusty and values of 8.03 mm, 1.83 mm, and 3.01 mm for PI 

193883 for KL, KC, and KLW, respectively. The RP883 population mean fell between the two 

parental lines with values of 7.79 mm, 1.71 mm, and 2.74 mm for KL, KC, and KLW, 

respectively, with transgressive segregation observed based on the population range (Table 84., 

Figure 5.5i, j, k). These results suggest that although PI 193883 had a higher value for KL, KC, 

and KLW, both PI 193883 and Rusty contribute genetic factors controlling these traits in the 

RP883 population.  
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Table 5.8. Parental and population means, ranges, and least significant differences (LSD) at the 
0.05 level of probability (P<0.05) for the RP883 population grown under field conditions. 

TraitA YearB Mean    RP883 population 
range 

LSD 
(0.05)   Rusty PI 193883 RP883 population  

DTH 2018 66.00 48.33 54.45  46.33-67.33 2.57 
DTH 2019 74.00 46.67 53.77  47.00-67.67 4.47 
DTH 2020 56.67 45.67 49.41  44.33-59.67 2.06 
PHT 2018 116.00 76.50 100.13  77.00-123.00 8.03 
PHT 2019 115.33 84.33 104.96  82.00-132.00 11.51 
PHT 2020 109.67 71.33 84.45  62.33-112.33 12.16 
SPS 2018 18.08 17.71 18.87  15.63-23.00 0.94 
SPS 2019 19.50 16.25 19.23  15.54-23.04 1.04 
SPS 2020 20.67 17.33 18.85  15.46-29.17 4.08 
KPS 2018 29.17 21.96 28.38  11.67-42.44 5.46 
KPS 2019 34.38 18.92 28.55  16.63-41.25 7.13 
KPS 2020 33.46 17.04 25.41  12.08-38.71 5.75 
GWS 2018 1.20 0.62 1.01  0.41-1.93 0.32 
GWS 2019 0.57 0.44 0.68  0.30-1.21 0.28 
GWS 2020 0.94 0.53 0.76  0.32-1.25 0.28 
TKW 2018 41.30 28.40 35.49  18.81-54.14 8.30 
TKW 2019 16.51 22.89 23.55  12.16-42.11 6.42 
TKW 2020 27.91 30.79 29.97  18.29-49.41 7.14 
KA 2018 17.90 15.93 17.38  12.50-22.70 1.79 
KA 2019 15.15 14.43 15.15  11.98-19.60 2.19 
KA 2020 15.90 16.47 16.43  13.11-21.41 1.79 
KW 2018 3.27 2.73 3.01  2.46-3.51 0.20 
KW 2019 2.85 2.57 2.78  2.35-3.33 0.27 
KW 2020 3.00 2.67 2.87  2.37-3.35 0.20 
KL 2018 7.43 8.00 7.97  6.80-9.10 0.37 
KL 2019 7.35 7.80 7.56  6.62-8.49 0.52 
KL 2020 7.23 8.30 7.83  6.61-9.08 0.37 
KC 2018 1.50 1.80 1.67  1.40-1.90 0.07 
KC 2019 1.70 1.87 1.74  1.55-1.94 0.12 
KC 2020 1.60 1.83 1.71  1.51-1.97 0.07 
KLW 2018 2.30 2.90 2.69  2.20-3.20 0.13 
KLW 2019 2.60 3.07 2.76  2.37-3.22 0.24 
KLW 2020 2.43 3.07 2.76  2.30-3.31 0.14 

ATrait abbreviations are: days to heading (DTH), plant height (PHT), spikelets per spike (SPS), 
kernels per spike (KPS), grain weight per spike (GWS), thousand kernel weight (TKW), kernel 
area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 
BEach field environment was analyzed separately. 
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Figure 5.5. Histograms of the RP883 population for the traits a) days to heading (DTH), b) plant 
height (PHT), c) spikelets per spike (SPS), d) kernels per spike (KPS), e) grain weight per spike 
(GWS), f) thousand kernel weight (TKW), g) kernel area (KA), h) kernel weight (KW), i) kernel 
length (KL), j) kernel circularity (KC), k) kernel length:width ratio (KLW). For panels a, b, c, e, 
g, i, j, and k, values in blue are from the 2018 environment, pink from 2019, and yellow from 
2020. For TKW, PHT, and KW, not all replicates were homogenous and therefor the data was 
not combined. For panel d, the three 2018 TKW replicates were dark blue, purple, and dark pink, 
with 2019 in coral and 2020 in yellow. For panel f, 2018 was dark blue, purple was 2019, and 
three 2020 replicates were dark pink, coral and yellow. For panel h, the three 2018 KW 
replicates were dark blue, purple, and dark pink, with 2019 in coral and 2020 in yellow.  
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Figure 5.6. Spike and seed morphology of Rusty and PI 193883, the two parental lines of the 
RP883 population. (a) Mature spikes of Rusty (left) and PI 193883 (right). (b) seed of the durum 
variety Rusty (top) and the cultivated emmer wheat accession PI 193883 (bottom).  
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5.4.5. Correlations in RP883 

Correlations for the RP883 population between all the traits are shown in Figure 5.7, 

along with the correlation coefficient values given in Tables 5.9, 5.10, and 5.11. For each trait, 

there was a strong positive correlation across years (Figure 5.7), suggesting that these traits are 

consistent across environments. SPS had a strong, consistent positive correlation with KPS and 

DTH across all three years (Tables 5.9, 5.10, 5.11, Figure 5.7), with a strong correlation with 

GWS in 2018 (Table 5.9, Figure 5.7) and a weaker positive correlation with GWS in 2019 and 

2020 (Tables 5.10, 5.11, Figure 5.7). KPS had a strong positive correlation with GWS across all 

three environments (Tables 5.9, 5.10, 5.11, Figure 5.7), along with a significant positive 

correlation with KLW. KPS also was significantly correlated with other traits, however these 

correlations were not consistent across environments.  

In all three environments, GWS had a strong positive correlation with TKW, PHT, KA, 

KW, and KL (Tables 5.9, 5.10, 5.11, Figure 5.7). In 2019, GWS had a strong negative 

correlation with KC and KLW (Table 5.10, Figure 5.7). Interestingly, TKW also had a strong 

negative correlation with KC and KLW in 2019, along with 2018 (TKWrep2 and TKWrep3) and 

2020 (Tables 5.9, 5.11, Figure 5.7). TKW had a strong positive correlation with PHT, KA, KW, 

and KL in 2018, 2019, and 2020 (Tables 5.9, 5.10, 5.11, Figure 5.7). DTH only had consistent 

significant correlations with PHT and KW, which ranged from weakly positive to strong. 

However, DTH had a significant negative correlation with KC in 2018 and 2020 and KLW in 

2018, 2019, and 2020. As for PHT, weak to strong positive correlations were observed with KA, 

KW, and KL across all three environments.  

For the kernel dimension traits, strong significant correlations were observed across all 

three environments between traits except for KA with KC and KLW in 2018 (Tables 5.9, 5.10, 
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5.11, Figure 5.7). KA was positively correlated with KW and KL all three environments and was 

negatively correlated with KC and KLW in 2019 and 2020. KW reps were analyzed separately in 

2018 and consistent correlations were observed for the three replicates (Table 5.9, Figure 5.7). 

KW had a strong positive correlation with KL, and a strong negative correlation with KC and 

KLW. Across all three environments, KL, KC, and KLW all had strong positive correlations 

with one another (Tables 5.9, 5.10, 5.11, Figure 5.7). 
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Figure 5.7. Pearson correlation coefficients between the 11 traits measured in the RP883 
population grown under field conditions in 2018, 2019, and 2020. Trait abbreviations are: days 
to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain 
weight per spike (GWS), thousand kernel weight (TKW), kernel area (KA), kernel width (KW), 
kernel length (KL), kernel circularity (KC), and kernel leght:width ratio (KLW). For TKW and 
KW in 2018, and PHT in 2020 the replicates were not combined because they were not 
statistically homogeneous. Significance values are denoted as *P<0.05, **P<0.01, ***P<0.001. 
Along the right is a color scale for the correlation values. Blocks that are orange to pink have a 
negative correlation, with dark pink being a correlation close to -1. Blocks that are orange to 
light yellow have a positive correlation, with light yellow being a correlation close to 1. 
Significance values are denoted as *P<0.05, **P<0.01, ***P<0.001. 
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Table 5.9. Correlation coefficients for the RP883 population grown under field conditions in 2018 between the mean values of the 
traits days to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain weight per spike (GWS), 
thousand kernel weight (TKW), kernel area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 

*P<0.05 
**P<0.01 
***P<0.001 
 
 
 
 
 
 

 
SPSavg KPSavg GWSavg TKWrep1 TKWrep2 TKWrep3 DTHavg PHTavg KAavg KWrep1 KWrep2 KWrep3 KLavg KCavg KLWavg 

SPSavg 1.00               

KPSavg 0.25*** 1.00              

GWSavg 0.24*** 0.69*** 1.00             

TKWrep1 0.04 0.03 0.59*** 1.00            

TKWrep2 0.07 -0.05 0.58*** 0.55*** 1.00           

TKWrep3 0.10 0.03 0.66*** 0.61*** 0.62*** 1.00          

DTHavg 0.36*** -0.14 0.10 0.04 0.30*** 0.31*** 1.00         

PHTavg 0.11 0.15* 0.41*** 0.35*** 0.39*** 0.34*** 0.24*** 1.00        

KAavg 0.05 -0.06 0.63*** 0.80*** 0.79*** 0.83*** 0.28*** 0.41*** 1.00       

KWrep1 0.15* -0.15* 0.42*** 0.82*** 0.54*** 0.55*** 0.24*** 0.31*** 0.73*** 1.00      

KWrep2 0.16* -0.17* 0.46*** 0.51*** 0.90*** 0.61*** 0.42*** 0.36*** 0.77*** 0.69*** 1.00     

KWrep3 0.18* -0.13 0.49*** 0.54*** 0.61*** 0.87*** 0.40*** 0.30*** 0.78*** 0.71*** 0.75*** 1.00    

KLavg -0.07 0.06 0.53*** 0.64*** 0.52*** 0.62*** 0.07 0.28*** 0.81*** 0.33*** 0.35*** 0.37*** 1.00   

KCavg -0.20** 0.16* -0.07 -0.09 -0.28*** -0.21** -0.27*** -0.17* -0.10 -0.47*** -0.51*** -0.49*** 0.45*** 1.00 
 

KLWavg -0.24** 0.21** 0.01 -0.05 -0.24** -0.14* -0.31*** -0.07 -0.05 -0.50*** -0.52*** -0.50*** 0.52*** 0.89*** 1.00 
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Table 5.10. Correlation coefficients for the RP883 population grown under field conditions in 2019 between the mean values of the 
traits days to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain weight per spike (GWS), 
thousand kernel weight (TKW), kernel area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 

 
SPSavg KPSavg GWSavg TKWavg DTHavg PHTavg KAavg KWavg KLavg KCavg KLWavg 

SPSavg 1.00           
KPSavg 0.31*** 1.00          
GWSavg 0.18* 0.54*** 1.00         
TKWavg -0.01 -0.01 0.83*** 1.00        
DTHavg 0.45*** -0.04 -0.02 -0.03 1.00       
PHTavg 0.25*** 0.23** 0.44*** 0.38*** 0.19** 1.00      
KAavg 0.07 -0.08 0.63*** 0.81*** 0.09 0.40*** 1.00     
KWavg 0.15* -0.13 0.57*** 0.76*** 0.16* 0.36*** 0.91*** 1.00    
KLavg -0.02 0.01 0.48*** 0.58*** -0.02 0.29*** 0.78*** 0.47*** 1.00   
KCavg -0.10 0.14 -0.29*** -0.43*** -0.14 -0.22** -0.40*** -0.70*** 0.25*** 1.00 

 

KLWavg -0.18* 0.15* -0.24*** -0.37*** -0.20** -0.17* -0.38*** -0.72*** 0.27*** 0.97*** 1.00 

*P<0.05 
**P<0.01 
***P<0.001 
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Table 5.11. Correlation coefficients for the RP883 population grown under field conditions in 2020 between the mean values of the 
traits days to heading (DTH), plant height (PHT), spikelets per spike (SPS), kernels per spike (KPS), grain weight per spike (GWS), 
thousand kernel weight (TKW), kernel area (KA), kernel width (KW), kernel length (KL), kernel circularity (KC), and kernel 
length:width ratio (KLW). 

 
SPSavg KPSavg GWSavg TKWavg DTHavg PHTrep1A PHTrep2A PHTrep3A KAavg KWavg KLavg KCavg KLWavg 

SPSavg 1.00             

KPSavg 0.24*** 1.00            

GWSavg 0.14* 0.70*** 1.00           

TKWavg -0.10 -0.23** 0.52*** 1.00          

DTHavg 0.35*** 0.13 0.19** 0.07 1.00         

PHTrep1A 0.10 0.31*** 0.46*** 0.28*** 0.11 1.00        

PHTrep2A 0.11 0.11 0.31*** 0.30*** 0.24** 0.57*** 1.00       

PHTrep3A 0.21** 0.20** 0.42*** 0.32*** 0.30*** 0.53*** 0.75*** 1.00      

KAavg -0.10 -0.29*** 0.42*** 0.93*** 0.08 0.25*** 0.27*** 0.29*** 1.00     

KWavg -0.01 -0.33*** 0.31*** 0.83*** 0.22** 0.12 0.18* 0.21** 0.85*** 1.00    

KLavg -0.14* -0.07 0.39*** 0.62*** -0.10 0.27*** 0.23*** 0.22** 0.75*** 0.32*** 1.00   

KCavg -0.05 0.24*** -0.05 -0.35*** -0.24*** 0.03 -0.07 -0.10 -0.21** -0.65*** 0.47*** 1.00 
 

KLWavg -0.10 0.24*** -0.02 -0.31*** -0.29*** 0.09 0.00 -0.03 -0.22** -0.69*** 0.46*** 0.97*** 1.00 

*P<0.05 
**P<0.01 
***P<0.001 
AFor PHT, replicates were not statistically homogeneous and therefore were analyzed separately. 
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5.4.6. QTL Analysis in RP883 

Between the three field seasons for the RP883 population, I identified 149 significant 

QTL and QTL×QTL interactions using forward/backward selection to identify the QTL model 

with the highest LOD score (Supplementary File 3). Within individual environments, 64, 38, and 

47 QTL were identified in 2018, 2019, and 2020, respectively. 

A total of 17 QTL were observed to be present in two environments, and 17 QTL were 

observed in all three environments (Table 5.12, Figure 5.8, Supplementary File 3). A total of 14 

genomic regions were associated with these 34 QTL. No QTL × QTL interactions were found to 

be consistent across environments. 

Two QTL were associated with SPS in two or more environments. These QTL, QSpn.fcu-

5A and QSpn.fcu-6B, were mapped to chromosome 5A and 6B (Table 5.12, Figure 5.8). The 

peak marker for QSpn.fcu-5A was Xfcp650, the diagnostic marker for Q, and QSpn.fcu-5A was 

the only QTL for SPS observed in all three environments. QSpn.fcu-5A and QSpn.fcu-6B had 

maximum LOD values of 12.99 and 12.73 and explained up to 16.28 and 15.91% of the variation 

in SPS, respectively. Rusty contributed the alleles to increased SPS at both QTL.  

Only one QTL was significantly associated with KPS in three environments (Table 5.12, 

Figure 5.8). This QTL, QKps.fcu-2B, was mapped on chromosome 2B and had a maximum LOD 

of 5.22 and explained as much as 11.88% of the variation in KPS. Rusty contributed the positive 

allele at this QTL.  

As with KPS, only one stable QTL for GWS was identified in the RP883 population in 

two environments. QGws.fcu-1B was mapped on chromosome 1B (Table 5.12, Figure 5.8), and 

had a maximum LOD of 5.63 and explained as much as 12.03% of the variation in GWS. As 

with the KPS QTL, Rusty contributed the positive allele at QGws.fcu-1B.  
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For TKW, four QTL were identified in two or more environments. These QTL were 

mapped on chromosomes 3A, 4A, and 5A and designated QTkw.fcu-3A, QTkw.fcu-4A, 

QTkw.fcu-5A.1, and QTkw.fcu-5A.2 (Table 5.12, Figure 5.8). Only QTkw.fcu-3A was identified 

in all three environments. The two QTL on chromosome 5A, QTkw.fcu-5A.1 and QTkw.fcu-5A.2, 

were within the genomic regions of Vrn1-A1 and Vrn2. QTkw.fcu-3A, QTkw.fcu-4A, QTkw.fcu-

5A.1, and QTkw.fcu-5A.2 had maximum LOD values of 6.54, 5.51, 10.55, and 8.69 and 

explained up to 9.89, 6.99, 10.55, and 8.69% of the variation in TKW, respectively. PI 193883 

alleles contributed to increased TKW at QTkw.fcu-3A and QTkw.fcu-5A.2, whereas Rusty was 

the donor parent at QTkw.fcu-4A and QTkw.fcu-5A.1. 

Six stable QTL were associated with DTH in the RP883 population. These QTL mapped 

to chromosomes 1A, 4B, 5A, and 7B and were designated QEet.fcu-1A, QEet.fcu-4B, QEet.fcu-

5A.1, QEet.fcu-5A.2, QEet.fcu-5A.3, and QEet.fcu-7B (Table 5.12, Figure 5.8). All but QEet.fcu-

4B were within the genomic regions of known genes, along with QEet.fcu-4B was the only QTL 

listed that was observed under two, rather than three, environments. QEet.fcu-1A, QEet.fcu-5A.1, 

QEet.fcu-5A.2, QEet.fcu-5A.3, and QEet.fcu-7B were near ELF3, Vrn1-A1, Q, Vrn2, and FT-1, 

respectively. QEet.fcu-1A, QEet.fcu-4B, QEet.fcu-5A.1, QEet.fcu-5A.2, QEet.fcu-5A.3, and 

QEet.fcu-7B had maximum LOD values of 20.39, 7.97, 34.55, 9.50, 12.61, and 24.58 and 

explained up to 14.31, 4.51, 27.72, 9.50, 7.56, and 17.23% of the variation in DTH, respectively. 

Rusty was the donor of alleles for increased DTH at each QTL except QEet.fcu-5A.3.  

For PHT, three stable QTL were identified and mapped on chromosomes 1B, 4A, and 7B 

in the RP883 population. These QTL, QHt.fcu-1B, QHt.fcu-4A, and QHt.fcu-7B, had maximum 

LOD values of 10.78, 8.64, and 4.33 and explained up to 15.04, 16.96, and 6.59% of the 

variation in PHT, respectively (Table 5.12, Figure 5.8). QHt.fcu-1B and QHt.fcu-4A were both 
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observed in all three environments. Only QHt.fcu-7B was associated with a known gene (FT-1). 

Rusty contributed the alleles at all three QTL for increased PHT.  

A total of four stable QTL were identified for KA in the RP883 population. These QTL, 

designated QKa.fcu-1B, QKa.fcu-3A, QKa.fcu-4A, and QKa.fcu-5A were mapped on 

chromosomes 1B, 3A, 4A, and 5A (Table 5.12, Figure 5.8). QKa.fcu-5A was within the Vrn1-A1 

gene region. QKa.fcu-1B, QKa.fcu-3A, QKa.fcu-4A, and QKa.fcu-5A had maximum LOD values 

of 13.38, 9.49, 5.33, and 8.41 and explained as much as 13.28, 12.28, 6.86, and 10.60% of the 

variation in KA, respectively. Rusty contributed the alleles at all the QTL except QKa.fcu-3A, in 

which PI 193883 was the donor.  

For KW, the RP883 population had four QTL significant in two or more environments. 

These QTL were mapped on chromosomes 2B, 4B, and 5A and were designated QKw.fcu-2B, 

QKw.fcu-4B, QKw.fcu-5A.1, and QKw.fcu-5A.2 (Table 5.12, Figure 5.8). Both QTL on 

chromosome 5A were identified in all three environments. QKw.fcu-5A.1 was within the Vrn1-

A1 region on 5A. QKw.fcu-2B, QKw.fcu-4B, QKw.fcu-5A.1, and QKw.fcu-5A.2 had maximum 

LOD values of 11.93, 5.32, 8.10, and 12.15 and explained up to 14.93, 7.36, 16.19, and 15.24% 

of the variation in KW, respectively. PI 193883 contributed the increased KW effects at 

QKw.fcu-2B, whereas Rusty was the donor parent at the other three QTL.  

Three stable QTL were identified to be associated with KL. QKl.fcu-2A, QKl.fcu-3A.1, 

and QKl.fcu-3A.2 mapped to chromosomes 2A and 3A (Table 5.12, Figure 5.8). QKl.fcu-2A and 

QKl.fcu-3A.1 were identified in all three environments. QKl.fcu-2A, QKl.fcu-3A.1, and QKl.fcu-

3A.2 had maximum LOD values of 7.20, 10.03, and 5.66 and explained as much as 11.24, 16.21, 

and 8.66% of the variation in KL, respectively. PI 193883 was the donor parent of increased 

effects at all three QTL.  
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For KC, three stable QTL were identified in the RP883 population. These QTL were 

present on chromosomes 2B, 5A, and 6B and were designated QKc.fcu-2B, QKc.fcu-5A, and 

QKc.fcu-6B (Table 5.12, Figure 5.8). Only QKc.fcu-5A was observed in all three environments 

and was mapped near the Q region. QKc.fcu-2B, QKc.fcu-5A, and QKc.fcu-6B had maximum 

LOD values of 6.61, 7.06, and 8.52 and explained as much as 11.27, 11.15, and 15.31% of the 

variation in KC, respectively. Rusty contributed the increased effects for QKc.fcu-2B, whereas PI 

193883 did for QKc.fcu-5A and QKc.fcu-6B. 

Lastly, three QTL were also identified for KLW in the RP883 population. These QTL 

were present on chromosomes 2B, 5A, and 6B, like for KC, and were designated QKlw.fcu-2B, 

QKlw.fcu-5A, and QKlw.fcu-6B (Table 5.12, Figure 5.8). Of these QTL, only QKlw.fcu-2B was 

not observed in all three environments. QKlw.fcu-5A mapped near the Q region. QKlw.fcu-2B, 

QKlw.fcu-5A, and QKlw.fcu-6B had maximum LOD values of 6.19, 9.33, and 10.24 and 

explained as much as 9.83, 17.51, and 15.03% of the variation in KLW, respectively. Rusty 

contributed the increased effects for QKlw.fcu-2B, whereas PI 193883 did for QKlw.fcu-5A and 

QKlw.fcu-6B. 
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Table 5.12. Quantitative trait loci associated with the traits evaluated in the Rusty × PI 193883 (RP883) recombinant inbred 
population grown under field conditions and were present in two or more environments.  

Trait QTL Chromosome Position (cM) Peak marker LOD R2 × 100 Donor parent Putative 
gene 

SPS QSpn.fcu-5A 5A 169.50 Xfcp650 3.35-12.99 7.06-16.28 Rusty Q 
SPS QSpn.fcu-6B 6B 65.96 Xwmc756 8.72-12.73 14.87-15.91 Rusty  
KPS QKps.fcu-2B 2B 68.62-78.11 IWB8102-IWB55767 5.13-5.22 10.50-11.88 Rusty  
GWS QGws.fcu-1B 1B 46.44-51.35 IWB60559-IWB80169 5.29-5.63 11.71-12.03 Rusty  
TKW QTkw.fcu-3A 3A 72.52-89.40 IWB79897-IWB69427 4.24-6.54 5.29-9.89 PI 193883  
TKW QTkw.fcu-4A 4A 60.60-87.24 IWB32896-IWB35060 4.49-5.51 6.63-6.99 Rusty  
TKW QTkw.fcu-5A.1 5A 140.98-152.41 IWB38320-IWB77935 4.60-5.65 7.28-10.55 Rusty Vrn1-A1 
TKW QTkw.fcu-5A.2 5A 205.19-206.08 Xgwm291-IWB60850 4.53-6.75 6.68-8.69 PI 193883 Vrn2 
DTH QEet.fcu-1A 1A 154.06 IWB35476 7.21-20.39 10.23-14.31 Rusty ELF3 
DTH QEet.fcu-4B 4B 28.85 IWB62043 4.58-7.97 4.32-4.51 Rusty  
DTH QEet.fcu-5A.1 5A 133.26 IWB56489 7.00-34.55 7.89-27.72 Rusty Vrn1-A1 
DTH QEet.fcu-5A.2 5A 169.50-173.78 Xfcp650-IWB34731 6.17-9.50 4.35-9.50 Rusty Q 
DTH QEet.fcu-5A.3 5A 204.06-205.19 IWB65661-Xgwm291 3.57-12.61 4.85-7.56 PI 193883 Vrn2 
DTH QEet.fcu-7B 7B 8.47 IWB3164 6.45-24.58 8.60-17.23 Rusty FT-1 
PHT QHt.fcu-1B 1B 54.66 IWB79935 3.73-10.78 7.57-15.04 Rusty  
PHT QHt.fcu-4A 4A 63.29-65.71 IWB57309-IWB77157 5.15-8.64 6.70-16.96 Rusty  
PHT QHt.fcu-7B 7B 0.00-0.27 IWB54418-IWB46416 3.90-4.33 5.57-6.59 Rusty FT-1 
KA QKa.fcu-1B 1B 51.08-52.73 IWB12387-IWB58936 3.58-13.38 4.51-13.28 Rusty  
KA QKa.fcu-3A 3A 67.23-68.32 IWB67595-IWB68071 9.10-9.49 8.96-12.28 PI 193883  
KA QKa.fcu-4A 4A 62.22-63.29 IWB47489-IWB57309 3.61-5.33 6.58-6.86 Rusty  
KA QKa.fcu-5A 5A 132.99-140.98 IWB36340-IWB38320 5.67-8.41 7.84-10.60 Rusty Vrn1-A1 
KW QKw.fcu-2B 2B 73.49-78.11 IWB65409-IWB55767 6.95-11.93 10.96-14.93 PI 193883  
KW QKw.fcu-4B 4B 97.81 IWB76600 4.70-5.32 7.21-7.36 Rusty  
KW QKw.fcu-5A.1 5A 132.99-136.80 IWB36340-IWB76977 3.43-8.10 8.01-16.19 Rusty Vrn1-A1 
KW QKw.fcu-5A.2 5A 151.59-152.41 IWB10765-IWB77935 4.73-12.15 6.50-15.24 Rusty  
KL QKl.fcu-2A 2A 132.920135.67 IWB32430-IWB81441 4.14-7.20 7.86-11.24 PI 193883  
KL QKl.fcu-3A.1 3A 68.32-69.72 IWB68071-IWB72601 6.24-10.03 11.76-16.21 PI 193883  
KL QKl.fcu-3A.2 3A 168.14-172.45 IWB52090-IWB11837 3.62-5.66 6.83-8.66 PI 193883  
KC QKc.fcu-2B 2B 74.30-81.27 IWB65533-IWB73000 4.82-6.61 8.42-11.27 Rusty  
KC QKc.fcu-5A 5A 152.41-159.64 IWB77935-IWB73761 4.28-7.06 7.42-11.15 PI 193883  
KC QKc.fcu-6B 6B 63.45-67.89 IWB6601-IWB79198 8.39-8.52 14.86-15.31 PI 193883  
KLW QKlw.fcu-2B 2B 74.30-81.27 IWB65533-IWB73000 4.42-6.19 6.04-9.83 Rusty  
KLW QKlw.fcu-5A 5A 152.41-183.50 IWB77935-IWB10029 4.24-9.33 5.78-17.51 PI 193883 Q 
KLW QKlw.fcu-6B 6B 63.45-67.89 IWB6601-IWB79198 7.95-10.24 14.51-15.03 PI 193883  
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Figure 5.8. Illustration of the chromosomal locations of the 34 quantitative trait loci (QTL) associated with the eleven traits evaluated 
in the Rusty × PI 193883 (RP883) recombinant inbred line population under field conditions. Only those QTL which were identified 
in two or more environments are illustrated. QTL observed in two environments are illustrated with dashed lines and those in three 
environments with solid lines. The known positions of the ELF3, Vrn-A1, Q, Vrn2, and FT-1 loci are indicated in black. Chromosomes 
3B, 5B, 6A, and 7A are not shown because not stable QTL were detected on them in this research.  
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5.5. Discussion 

5.5.1. Trade-offs Between Yield Component Traits 

In this study, I calculated the correlations between the eleven traits measured. For the 

sake of our interest, although PHT and DTH are correlated with multiple yield component traits, 

it has already extensively shown that there are correlations between DTH and PHT with these 

traits (Cao et al. 2020). In all but one environment/population combination, the number of SPS 

was positively correlated with the number of KPS and overall GWS. This was consistent with the 

findings for the BP025 population when grown under greenhouse conditions (Faris et al. 2014), 

whereas Sharma et al. (2019a) did not measure grain weight and KPS for the RP883 population 

in the greenhouse. Consistently, I observed in both populations when the number of KPS 

increased, overall GWS increased but individual kernel weight, measured as TKW, had no 

correlation or a negative correlation with the number of KPS. These findings have been 

previously observed in other studies (as reviewed by Brinton and Uauy 2018; Cao et al. 2020), 

along with my findings in the DP527 paper, as discussed in chapter 4. As the number of KPS 

increases, source limitations often cause the plant to reduce kernel size and weight, therefore 

decreasing TKW. This has been an obstacle when breeding for increased yield when balancing 

the trade-offs that occur under source limited situations (Brinton and Uauy 2018). 

A large focus of this study was identifying regions of the genome associated with kernel 

size traits, along with how kernel size is correlated with different yield component traits. To my 

knowledge, relatively few studies have evaluated the relationship between kernel number and 

size, with most focusing on kernel number and weight. In this study, I observed either no 

correlation or a negative correlation between the number of KPS and KA, KW, and KL under 

field conditions in both populations. However, in the RP883 population, a positive correlation 
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was observed between KPS and KC and KLW. Corsi et al. (2021) observed a negative to no 

correlation between KPS and kernel size traits, implying that as the spike produces more kernels, 

resources are limited, and kernel size is reduced (Brinton and Uauy 2018). Additionally, these 

results are consistent with the findings in the DP527 population, as discussed in Chapter 4.  

In general, I observed that there was a positive correlation between the kernel size 

components KA, KW, and KL with kernel weight (both GWS and TKW). However, I observed a 

negative to no correlation between kernel weight with KC and KLW. These findings are 

consisted with those of Sun et al. (2020), Corsi et al. (2021) and the DP527 population (Chapter 

4). As reviewed by Brinton and Uauy (2018), there are mechanical and physical forces and 

constraints that influence final kernel size, along with complex interactions occurring during the 

development phase. Based on our observations, I suggest that when selecting for increased 

kernel weight, the kernel size traits KA and KW are useful physical markers to use when 

selecting lines for increased kernel weight, especially when the sample size is too small to obtain 

accurate TKW values.  

Lastly, my findings for relationships between the various kernel size components were 

consistent with those by Sun et al. (2020), Corsi et al. (2021), and in the DP527 population 

discussed in Chapter 4. KA and KW are described as kernel size traits, whereas KL, KC, and 

KLW are grain shape traits (Gegas et al. 2010). In each population/environment combinations in 

this study, KA was always positively correlated with KW and KL, but had no to a negative 

correlation with KC and KLW. Therefore, measuring just KW or KL may be useful for 

indicating KA in situations that KA cannot be measured. Interestingly, I found, along with the 

other two studies, that KL, KC, and KLW were always positively correlated, and KW and KL 

were positively correlated, but KW was not correlated with KLW. Therefore, the KL must have a 
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larger influence on the KLW ratio than KW. Brinton and Uauy (2018) illustrate that KL reaches 

its max before the grain filling period, whereas KW does not reach its max until the maturation 

and desiccation period of grain development. Gegas et al. (2010) found that kernel shape and 

size are independent traits and are most likely under the influence of different pathways and 

genes. Potentially, the physiological mechanisms underlying this, along with the developmental 

difference, may play a factor in the differences among the grain size components and their 

interactions with one another.  

5.5.2. QTL Associated with Multiple Traits in Multiple Environments in the BP025 and 

RP883 Populations 

5.5.2.1. Chromosome 1A 

Two multi-trait QTL were identified on chromosome 1A. One was specific to the BP025 

population and associated with SPS, GWS, TKW, KA, and KW. Typically, an increase in the 

number of SPS is associated with an increase in the number of kernels per spike and decreased 

kernel weight. However, a KPS QTL was not observed at this multi-trait QTL. Faris et al. (2014) 

reported QTL within this genomic region of the BP025 population under greenhouse conditions 

for GWS and TKW, but not SPS. Perhaps the underlying genetic and/or physiological 

mechanisms underlying the SPS phenotype associated with this region is more influenced by 

environmental factors than GWS and TKW. Cao et al. (2020) reported a region slightly distal to 

this region as being QTL rich for multiple yield component traits. Although I did not observe a 

KPS QTL within this region, Hai et al. (2008) reported one, along with Li et al. (2018) reported a 

QTL for SPS within this region. Gegas et al. (2010) reported a meta-QTL for kernel shape within 

this region. Although there is a good probability that this genomic region is fixed within the 

North Dakota Durum breeding germplasm, introgressing this region into other North American 
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durum lines may be beneficial for increasing yield. Because of the lack of the negative trade-off 

between the number of SPS and kernel weight/size observed in this region, potentially breeders 

could use this region to increase SPS without affecting yield. However, although the number of 

SPS may be increased, the fertility of these spikelets may not increase and therefor may not 

result in more kernels. Further elucidation is needed to untangle the relationships between these 

different phenotypes and their usefulness in breeding endeavors.  

The second multi-trait QTL observed was on the long arm of chromosome 1A and 

physically located near the circadian clock regulator gene ELF3 (Alvarez et al. 2016). ELF3 is 

involved in controlling flowering time and an interaction between ELF3 and temperature has 

been documented (Ochagavía et al. 2019). In the RP883 population, only one QTL was observed 

at this locus and was associated with DTH. A DTH QTL was also present under GH conditions 

at this genetic location (Sharma et al. 2019a). Interestingly, in the BP025 population, a QTL for 

DTH was not associated with ELF3; however, QTL for KL, KC, and KLW were. The presence 

of these QTL could be due to differences in the number of days to grain filling, with lines having 

the PI 41025 allele at the ELF3 locus having an increased number of days for grain filling, 

resulting in increased kernel shape due to increases in KL, KC, and KLW. The parental lines in 

both the BP025 and RP883 populations will need to be sequenced to determine if 1) ELF3 is 

polymorphic and indeed the gene underlying these QTL and 2) if not, whether there is another 

gene within this region controlling these traits. Introgressing this QTL region from PI 41025 may 

not be beneficial to breeders if it significantly increases the number of DTH. However, in the 

RP883 population, lines with PI 193883 alleles in this region had decreased number of DTH than 

lines with Rusty alleles, and PI 193883 may be a source for slightly decreasing the number of 

DTH.  
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5.5.2.2. Chromosome 1B 

A region spanning from 56.67 Mb to 334.67 Mb was associated with QTL for GWS, KA, 

and PHT in the RP883 population. Based on previous research, PHT is not often associated with 

increases in GWS and KA, especially when a DTH or SPS QTL is not observed, but major genes 

controlling PHT have often been reported in close linkage with yield component QTL (Cao et al. 

2020). Therefore, I hypothesize that two different loci are within this region, one controlling 

PHT and the other controlling GWS and KA. To determine if this hypothesis is true, further 

mapping is needed with a larger population size and additional markers within this region.  

5.5.2.3. Chromosome 2A 

Within the BP025 population, a region spanning 16.62 cM and 85.18 Mb on chromosome 

2A had QTL associated with TKW, KPS, PHT, KL, and KLW. GNI-A1, which encodes an HD-

Zip I transcription factor, is located within this physical region based on the Svevo reference 

sequence (Sakuma et al. 2019). Sakuma et al. (2019) found that the level of GNI1 expression has 

decreased over the course of wheat domestication, resulting in increased number of fertile florets 

per spike. Golan et al. (2019) found the GNI-A1 protein to be a transcriptional activator and a 

reduction in kernel number resulted in enlarged and heavier kernels. In the BP025 population 

within this region, increased number of KPS was conferred by the Ben alleles, whereas increases 

in TKW, KL, and KLW were conferred by PI 41025 alleles. These findings are consistent with 

the relationship between grain number and grain weight at GNI-A1 reported by Golan et al. 

(2019) and Sakuma et al. (2019); where a reduction in GNI-A1 expression, common in 

domesticated wheat, results in an increase in the fertile number of florets per spike and increased 

number of KPS but smaller kernel weight/size. The PI 41025 allele of GNI-A1 may be a strong 

candidate for introgression into durum germplasm for breeders interested in increasing grain 
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size/weight; however, further field studies and validation are needed to determine the effects of 

these QTL and their interactions with one another.  

5.5.2.4. Chromosome 2B 

Two multi-trait QTL regions were identified on chromosome 2B. The first multi-trait 

QTL region was in the BP025 population, was associated with SPS and DTH, and the peak 

markers for each was within 10 Mb of Ppd-B1. This QTL was also associated with DTH under 

greenhouse conditions in this population (Faris et al. 2014). Ppd is a component in the 

photoperiod regulatory flowering pathway (Beales et al. 2007; Nishida et al. 2013) and 

differences in DTH due to Ppd-B1 is from copy number variation, with two copies of the gene 

resulting in earlier DTH (Würschum et al. 2019). Boden et al. (2015) found Ppd to be a regulator 

of FT, with increased number of DTH at the Ppd locus resulting in a modification of the number 

and arrangement of spikelets. Surprisingly, I only observed a QTL at FT for SPS in Field 2018 

within the BP025 population (suppl material). Analysis of copy number between the Ben and PI 

41025 is needed to validate if Ppd-B1 is influencing the number of SPS and DTH within the 

BP025. However, although PI 41025 alleles within this region led to an increase in the number of 

SPS, this also resulted in increased number of DTH, which may not be desirable in most durum 

breeding programs.  

The second mulit-trait QTL region on chromosome 2B was observed in the RP883 

population and was associated with KPS, KW, KC, and KLW. QTL associated with kernel 

dimension traits were identified near this physical region by Corsi et al. (2021) and Sun et al. 

(2020). Surprisingly, there was not any QTL for increased kernel weight (GWS or TKW) in this 

region, although there was QTL for kernel number and size/shape traits. Within this region, lines 

with PI 193883 alleles had wider kernels, but lower KPS, KC, and KLW. As has been previously 
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stated, the number of KPS and kernel size/weight are typically negatively correlated (Brinton and 

Uauy 2018; Cao et al. 2020). I hypothesis that at the physiological level, having 193883 alleles 

within this region results in plants with wider grains but does not affect KC and KLW because 

kernel shape is controlled by a different pathway (Golan et al. 2010). This results in these lines 

having fewer KPS, which is the reason behind Rusty being the positive parent for KPS at this 

QTL. From a breeding perspective, lines with certain parental alleles within this region could be 

used to fine tune the number of KPS or kernel size, depending on what the breeder is interested 

in.  

5.5.2.5. Chromosome 3A 

A multi-trait QTL was identified on chromosome 3A to be associated with TKW, KA, 

and KL in the RP883 population. Under these same field studies, I observed QTL for TKW, 

PHT, KA, and KL within this physical region in another durum × cultivated emmer population, 

DP527 (Chapter 4). Sun et al. (2020) also observed QTL within this region for TKW and kernel 

size. kernel size and weight are normally positively correlated, therefore breeding for one often 

results in an increase in the other (Brinton and Uauy 2018). The QTL at this locus for TKW and 

KL were present in all three environments, indicating that these were stable QTL in our 

experiment and would be good candidates to develop lines with the PI 193883 alleles within this 

region for germplasm improvement.  

5.5.2.6. Chromosome 3B 

Two multi-trait QTL associated with five QTL were observed on chromosome 3B in the 

BP025 population, along with a QTL for KW that spanned between the two multi-trait regions. 

The first region spanned from 127 Mb to 518 Mb, however the peak markers for most 

environments were localized within 50 Mb of 150 Mb. The second region spanned form 374 Mb 
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to 747 Mb, however the genetic distance was less than 10 cM. These two QTL regions could 

potentially belong to one large, multi-trait QTL; however, further analysis is needed under GH 

and field conditions to determine this. Interestingly, Faris et al. (2014) observed under 

greenhouse conditions a QTL for SPS on chromosome 3B near the first multi-trait QTL and QTL 

for TKW near our second multi-trait QTL in the BP025 population, which is the opposite from 

what I observed. Peak markers may have shifted due to environmental influences, differences in 

our QTL analysis methods, along with differences in how the traits were measured. Further work 

will be needed to untangle if one locus is responsible for all these traits, or if this is a yield 

component gene rich region. Russo et al. (2014), Sun et al. (2020), and Corsi et al. (2021) all 

identified QTL for grain size traits near this region on chromosome 3B, suggesting the later may 

be the more likely scenario. 

5.5.2.7. Chromosome 4A 

In this study, I identified two multi-trait QTL on chromosome 4A, with one in each 

population. These two regions, which are located ~55 Mb apart, both had QTL for TKW and 

KW, whereas the BP025 population also had a QTL for KW and the RP883 population a QTL 

for PHT. None of these QTL were observed under greenhouse conditions (Faris et al. 2014; 

Sharma et al. 2019a). For both multi-trait QTL, lines with the durum parent alleles saw an 

increase in the phenotype, implying that these QTL may already be present and potentially fixed 

in the NDSU durum breeding program. However, they may be beneficial for other breeding 

programs for increasing kernel size and weight. It would be interesting to cross Ben and Rusty 

with one another to see the effects the combination would have on kernel size and weight and if a 

germplasm line could be developed with significantly higher kernel weight. Numerous QTL for 
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kernel weight have been identified on chromosome 4A (Cao et al. 2020), with some identified in 

tetraploid wheat (Arriagada et al. 2020).  

5.5.2.8. Chromosome 5A 

Among the BP025 and RP883 populations, a total of five multi-trait QTL were identified 

on chromosome 5A, with two regions overlapping between the two populations. In both 

populations, the physical regions of Q and Vrn-A1 were associated with multiple traits, which 

were also observed under greenhouse conditions (Faris et al. 2014; Sharma et al. 2019a). For the 

BP025 population, QTL for SPS, KW, and KLW were associated with Q, whereas in the RP883 

population, QTL for SPS, DTH, KW, KC, and KLW were present. It has been previously shown 

that Q influences numerous yield component traits in these two populations (Faris et al. 2014; 

Sharma et al. 2019a), along with durum and cultivated emmer having different alleles of Q 

(Simons et al. 2006). Recently, Zhang et al. (2020) showed using near isogenic lines that Q is 

involved in the regulation of over 3000 genes and numerous pathways. Therefore, it was not a 

surprise to see numerous yield component traits associated with Q in the BP025 and RP883 

populations.  

Vrn-A1 was associated with QTL in both populations. In the BP025 population, a QTL 

for DTH and PHT was observed in this region, and QTL for TKW, DTH, KA, and KLW in the 

RP883 population. Vrn-A1 is involved in vernalization-mediated flowering in wheat and is 

therefore influences DTH (Yan et al. 2003; Yan et al. 2004). Vrn-A1 was associated with a QTL 

for DTH for both populations under field and greenhouse conditions (Faris et al. 2014; Sharma et 

al. 2019a). Additionally, changes in PHT may be associated with the increased number of DTH 

at this locus within the BP025 population. In the RP883 population, Vrn-A1 was shown to be 

associated with numerous yield related QTL under greenhouse conditions (Sharma et al. 2019a). 
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Interestingly, Sharma et al. (2019a) sequenced Rusty and PI 193883 at the Vrn-A1 locus and did 

not find any polymorphisms, along with no differences in expression. Further investigation is 

needed to determine if Vrn-A1 is truly underlying this multi-trait QTL.  

Under field conditions, QTL for TKW and DTH are hypothesized to be associated with 

Vrn2 but a DTH QTL was not observed at this locus under greenhouse conditions (Sharma et al. 

2019a). VRN2 interacts with VRN1, including Vrn-A1, and plays a role in flowering repression 

during the vernalization process (Yan et al. 2004; Distelfeld et al. 2009; Kippes et al. 2016). It 

was not surprising to identify a DTH QTL within this region, but the presence of a TKW QTL 

was not expected. Lines with PI 193883 alleles within this region had an increase in the number 

of DTH, along with TKW. Further work is needed to unravel the relationship between these two 

traits.  

Lastly, a region on the short arm of chromosome 5A in the BP025 population was 

associated with SPS and PHT. An increase in both traits was observed in lines with PI 41025 

alleles in this region, with this QTL having a small effect on SPS and PHT. Therefore, this QTL 

may not be worth breeding into durum breeding programs due to the small effect on SPS, 

increase in PHT associated with it, and potential linkage drag from the cultivated emmer 

background.  

5.5.2.9. Chromosome 5B 

QTL for SPS, TKW, DTH, PHT, KA, KW, and KC were associated with the physical 

region near the Vrn-B1 locus on chromosome 5B in the BP025 population. When this population 

was grown under greenhouse conditions, Faris et al. (2014) also observed QTL for DTH, KPS 

and GWS in this region but not SPS and TKW. In my study, a QTL was observed for GWS in 

the 2019 environment, implying a strong environmental influence of the genetic factors for the 
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phenotypes associated with this region. Vrn-B1 is homoeologous to Vrn-A1 (Yan et al. 2004), 

with both these genes having an effect on DTH, PHT, kernel weight and kernel size in both of 

the populations I studied. At both Vrn-A1 and Vrn-B1 loci, the durum parent, Ben and Rusty, 

were the donor of the allele which resulted in increased number of DTH, PHT, and kernel 

size/weight. Recently, Royo et al. (2020) found that Vrn-1 and Ppd-1 genes influence numerous 

agronomic traits through differences in days to anthesis and a prolonged grain filling period. 

Although lines with Ben alleles within this region result in increased number of DTH, these lines 

also had increased SPS, TKW, KA, KW, and KC. The Ben allele at Vrn-B1 should already be 

fixed in local durum germplasm but may be beneficial for durum breeders outside of North 

America.  

5.5.2.10. Chromosome 6B 

In the RP883 population, a multi-trait QTL was identified on chromosome 6B for SPS, 

KC, and KLW. A trade-off between the number of SPS and kernel size was observed at this 

locus, where lines with Rusty alleles had increased number of SPS but decreased kernel size, 

which has been previously reported in the literature (Brinton and Uauy 2018; Cao et al. 2020). 

Relatively few QTL have been identified for yield component traits on chromosome 6B (Brinton 

and Uauy 2018; Cao et al. 2020, Arriagada et al. 2020); however, located near this QTL region is 

the grain protein content gene Gpc-B1 (Uauy et al. 2006; Distelfeld et al. 2007). Although I did 

not measure grain protein content in this study, it has been proposed that because spike 

development and grain yield formation are tightly linked, a gene controlling one may influence 

the other (Cao et al. 2020).  
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5.5.2.11. Chromosome 7A 

A multi-trait QTL was identified on chromosome 7A associated with KW, KC, and KLW 

near 92.5 cM in the BP025 population. Interestingly, lines with Ben alleles in this region had 

increased KW, but lines with PI 41025 had higher KC and KLW values. Potentially, in cases 

when KL is not lengthened, this may influence the overall KLW ratio. This interplay between the 

two different parental allele types and kernel size may be the reason a kernel weight QTL is not 

observed consistently within this region. QTL for kernel size traits have been observed on 

chromosome 7A near this region by Corsi et al. (2021), Sun et al. (2020), and Russo et al. 

(2014). 

Additionally, a QTL was identified on the long arm of chromosome 7A associated with 

the number of SPS. Previously, the 2017 and 2018 field data for the BP025 population was used 

validate the candidate region for WAPO-A1 (Kuzay et al. 2019). WAPO-A1 encodes an F-box 

protein and regulates floral organ identity (Muqaddasi et al. 2019; Kuzay et al. 2019; Voss-Fels 

et al. 2019). Kuzay et al. (2019) found that in the BP025 population, PI 41025 contained the 

favorable haplotype for increased number of SPS. Further analysis of a diverse panel of diploid, 

tetraploid, and hexaploid wheat identified the WAPO-A1b allele, which PI 41025 has, to be less 

frequent in modern cultivars than the other two WAPO-A1 alleles. Almost all durum lines 

sequenced by Kuzay et al. (2019) had the WAPO-A1a allele, including Ben, which has on 

average a fewer number of SPS than the WAPO-A1b allele. The results from our study, along 

with Kuzay et al. (2019), indicate that WAPO-A1 can be used for increasing the number of SPS 

in durum wheat. I have already begun the backcrossing process to introgress the PI 41025 allele 

at WAPO-A1 into a more suitable background for use in germplasm improvement.  
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5.5.2.12. Chromosome 7B 

A multi-trait QTL was identified on the distal end of the short arm of chromosome 7B in 

the RP883 population. QTL for DTH and PHT co-segregated at this locus, with the wheat gene 

FT1 within this region. FT1 was cloned by Yan et al. (2006) and is involved in flowering time 

regulation and the transition from vegetative to reproductive growth (reviewed by Gauley and 

Boden 2018). Surprisingly, a QTL for SPS was not observed at this locus. FT1 is known to play 

a role in promoting inflorescence development and regulate the number of SPS (Dixon et al. 

2018). In the DP527 population, FT1 was found to be associated with a SPS QTL, along with 

DTH and PHT (Peters Haugrud et al. unpublished). Potentially, the effects of the other SPS QTL 

may play a strong enough role in determining the final number of SPS that FT1 had no effect on 

this phenotype. The two parental lines still need to be sequenced and polymorphisms identified 

in order to determine if FT1 is indeed the gene underlying these two QTL. Having Rusty alleles 

within this region resulted in an increased in PHT and DTH.  

5.5.3. Beneficial Traits from PI 41025 

A focus of this study was not only identifying yield component traits and their 

relationships, but useful genes that may be introduced into the local germplasm from the 

cultivated emmer parents. In the PI 41025 population, PI 41025 had consistently a greater 

number of SPS than Ben. Three QTL, QSpn.fcu-2B, QSpn.fcu-3B, and QSpn.fcu-5A.1 were 

consistently responsible for an increase in the number of SPS in lines that had PI 41025 alleles 

under these QTL. Additionally, an increase in lines with PI 41025 alleles at the TKW QTL 

QTkw.fcu-2A may be beneficial in breeding endeavors. If GNI1-A1 is indeed the gene underlying 

this QTL, introgressing the cultivated emmer allele of GNI1-A1 into the durum germplasm pool 

may provide benefits for increasing kernel weight and yield (Golan et al. 2019).  
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5.5.4. Beneficial Traits from PI 193883 and Rusty 

PI 193883 had many more desirable traits in the RP883 population than Rusty, the durum 

parent. Rusty was initially developed as a genetic stock for stem rust resistance (Klindworth et 

al. 20016). Therefore, it has not been released as a durum cultivar and selections were not made 

for yield and quality. Compared to the other two populations grown, BP025 and DP527 (Peters 

Haugrud et al. unpublished), PI 193883 headed very early and may be useful in breeding for 

decreased heading data if desired. Overall, none of the other yield component traits studied 

performed much superior for either parent compared to the BP025 population. Individual 

QTL/mulit-trait QTL, such as those discussed above, may be useful in durum breeding programs.  

5.5.5. Future Directions/Conclusions 

Now that multiple genetic regions have been identified in the BP025 and RP883 

populations to be associated with various yield component traits, the next steps include 1) 

verifying those with known genes within the genetic regions whether these are the underlying 

genes for these traits, 2) identify candidate genes within QTL regions, and 3) develop breeder 

friendly markers for these QTL regions. Recently, more breeding programs and implementing 

the use of large effect SNP as fixed markers in their genomic selection models in wheat (Lozada 

et al. 2019; Sarinelli et al. 2019). Markers associated with stable QTL identified in this study 

may be beneficial to local breeding programs who implement genomic selection. Additionally, 

the use of the BP025 population to validate the WAPO-A1 (Kuzay et al. 2019) illustrates the 

usefulness of these types of populations in the gene validation process. Lastly, identifying yield 

component genes is critical in not only gene cloning, but unraveling the genetic mechanisms that 

determine final grain yield and providing knowledge to increase overall yield and feed future 

generations.  
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CHAPTER 6. MARKER DEVELOPMENT AND FINE-MAPPING OF A KERNELS PER 

SPIKE QTL ON CHROMOSOME 2B IN TETRAPLOID WHEAT 

6.1. Abstract 

Compared to other major food crops, relatively few yield genes have been cloned in 

characterized in wheat (Triticum ssp.) partially due to the large genome size and complexity of 

being an allopolyploid. Previously, a QTL on chromosome 2B associated with kernels per spike 

was identified in the tetraploid wheat population BP025, derived from crossing the North Dakota 

durum variety Ben with the cultivated emmer accession PI 41025. In this study, I developed a 

backcross population to ‘mendelize’ this QTL region for fine mapping using recombinant inbred 

lines from the BP025 population as donor parents and Ben as the recurrent parent. Here, I report 

the use of a BC3F2 population to fine map this region, along with the results of screening BC3F2 

plants twice to narrow down this region, and greenhouse results from one replicated yield trial 

using BC3F4 plants. Additionally, I report the development of additional STARP and KASP 

markers in this target region. Findings from this study provides a base for future work in cloning 

the kernels per spike gene within this region, along with closely linked markers that may be used 

by breeders who are interested in introgressing this trait into their germplasm.  

6.2. Introduction 

Durum wheat (Triticum turgidum L. ssp. durum) is a major world food crop and is used 

to make pasta and other semolina-based products. Although the FAOSTAT does not report 

separate values for durum and bread, or common, wheat (Triticum aestivum L.), durum wheat is 

grown on approximately 16 million hectares annually (Arriagada et al. 2020). Within the United 

States, North Dakota produces over half of the 75 million bushels grown per year 

(https://www.ndwheat.com/buyers/NorthDakotaWheatClasses/Durum/). As with other crops, 
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durum yield will need to significantly increase to feed the growing global population by 2050, 

while adapting to climate change and extreme weather (Cao et al. 2020).  

One approach to increase grain yield is to map, clone, and characterize yield component 

traits to better understand the genetic mechanisms that control yield (Kuzay et al. 2019). Grain 

yield can be broken up into three main parts: the number of spikes per unit area, the number or 

kernels per spike, and grain weight/size; with each part being comprised of multiple additional 

subunits (Brinton and Uauy 2018; Cao et al. 2020). Compared to other major cereal crops, such 

as rice (Oryza sativa) and maize (Zea mays), relatively few yield-related genes have been cloned 

in wheat (Cao et al. 2020; Arriagada et al. 2020; Colasuonno et al. 2021). This is partially due to 

the complexity of the wheat genome, with durum wheat having two subgenomes and bread 

wheat having three (Borrill et al. 2015). Additionally, the first reference sequences were not 

publsihed until 2018 and 2019 for common and durum wheat, respectively (IWGSC et al. 2018; 

Maccaferri et al. 2019).  

To overcome this lag in cloning and characterizing wheat yield genes, multiple initiatives 

have been formed over the last 10 years to not only address this issue but to form larger 

collaborations and networks. These groups include the International Wheat Yield Partnership, 

Designing Future Wheat, and the Wheat Coordinated Agriculture Project (WheatCAP). The goal 

of the current WheatCAP project is the “validation, characterization and deployment of QTL for 

grain yield components in wheat and the training of a new generation of plant breeders” 

(https://www.triticeaecap.org/about/). The project discussed in this chapter is part of this group.  

A QTL governing kernels per spike (KPS) was identified in a tetraploid recombinant 

inbred line (RIL) population developed from crossing Ben, a North Dakota durum variety (Elias 

and Miller 1998) by PI 41025, a cultivated emmer wheat (T. turgidum ssp. dicoccum (Schrank) 
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Schübl) accession collected near Samara, Russia. The population, referred to as BP025, consisted 

of 200 RILs. A KPS QTL was mapped to chromosome 2B under greenhouse conditions with a 

LOD score of 17.7 and explained 15.2% of the phenotypic variation in the number of kernels per 

spike (Faris et al. 2014). Peters Haugrud et al. (unpublished) evaluated the BP025 population 

under field conditions and observed a significant QTL in this region in summer 2017. This QTL 

region was also associated with increased grain weight per spike under greenhouse conditions 

but not field conditions, indicating that the increase in weight is due to increased kernel number. 

The durum parent, Ben, contributed to the increase in KPS due to this QTL region (Faris et al. 

2014).  

As part of the WheatCAP project, my goal was to perform fine mapping of this 2BL KPS 

QTL region to eventually identify the gene underlying this trait. My objectives were to develop a 

mapping population for fine mapping and to add additional markers within this region using a 

variety of resources. This work provides a solid base for further fine and high-resolution 

mapping within this region, along with markers for breeders who are interested in introgressing 

this trait into their breeding program.  

6.3. Material and Methods 

6.3.1. Initial Greenhouse Trials to Determine RILs for Crossing 

The BP025 population was previously evaluated for kernels per spike under greenhouse 

conditions by Faris et al. (2014) and in the field (Chapter 5). To determine which RILs to use for 

population development, a replicated greenhouse trial was planted in Fall 2016 in 15 cm pots 

with 16-h photoperiod and a temperature around 21 °C. The two parental lines, Ben and PI 

41025, along with three RILs, BP025-26, BP025-28, and BP025-83, were grown with 10 

replicates of each. The three RILs had PI 41025 alleles in the 2BL KPS region, spanning form 



 

225 

IWA8599 to IWA6076 on chromosome 2B on the map published by Faris et al. (2014), and Ben 

alleles in the other KPS QTL regions identified by Faris et al. (2014). Four spikes per plant were 

harvested and the number of kernels per spike was manually counted. The two RILs with the 

lowest number of kernels per spike were used for population development (Table 6.1). 

Table 6.1. Results of the replicated greenhouse trial to determine which RILs to use for 
population development.  

 Kernels per spike 
Line Meana Range 
PI 41025 26.33a 7.50-36.75 
Ben 23.42ab 18.75-26.50 
BP025-83 22.85ab 15.75-27.00 
BP025-28 20.68bc 13.50-28.00 
BP025-26 16.63c 9.00-21.75 

aLSD=4.75, numbers followed by the same number are not significantly different at the 0.05 
level of probability. 

6.3.2. Population Development and Selection of F1 Plants 

The BP025 population was developed by Steven Xu at the USDA-ARS in Fargo, ND 

from crossing Ben (PI 596557), a North Dakota hard amber durum variety (Elias and Miller 

1998), with PI 41025, a cultivated emmer accession collected near Samara, Russia. The BP025 

RIL population consists of 200 lines and was developed using the single seed descent method.  

Two RILs in the BP025 population, BP025-26 and BP025-28, were selected as donor 

parents for backcrossing to Ben for high-resolution mapping population development. The two 

RILs, BP025-26 and BP025-28, were used as the donor parents and Ben was the recurrent 

parent, and a total of three backcrosses were performed (Figure 6.1). For each backcross, plants 

were screened with the SSR marker Xwmc245 and the STARP marker IWA427 to select plants 

which were heterozygous in the target region. BC3F1 plants were screened with the same two 

markers to select plants which were heterozygous in my target region, which were selfed to 

produce BC3F2 plants. 
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Figure 6.1. Crossing scheme used for population development for saturation mapping. BP025-RI 
stands for either BP025-26 or BP025-28. Ben was the recurrent parent. A total of three 
backcrosses were done. For selections, genetic markers were used to select desired plants.  

6.3.3. Marker Development 

Markers were developed using a combination of the 9K SNP array data (Cavanagh et al. 

2013) from the Faris et al. (2014) genetic map, 90K SNP array data (Wang et al. 2014), and 

exome capture data. Bulk segregate analysis was used to genotype with the 90K SNP array. The 

90K iSelect SNP array was genotyped at the small grains genotyping laboratory in Fargo, ND by 

Dr. Jason Fiedler. Clustering data was analyzed using Genome Studio from Illumina, Inc (2013). 
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Both the parental lines, Ben and PI 41025, were genotyped along with two unique sets of the two 

different bulk groups. One bulk group consisted of 10 lines with PI 41025 alleles in the region 

between Xwmc245 and IWA427 and the other bulk was 10 lines with Ben alleles in this same 

region. Markers that were polymorphic within each bulk where discarded, and only markers that 

were monomorphic within each bulk but polymorphic between the two were converted into 

semi-thermal asymmetric reverse PCR (STARP) (Long et al. 2016) and competitive allele-

specific PCR (KASP) (https://www.biosearchtech.com) markers.  

Exome capture was performed on the two parents, Ben and PI 41025, in Spring 2018 by 

Dr. Eduard Akhunov (Department of Plant Pathology, Kansas State University, Manhattan, KS). 

The exome capture array developed by Jordan et al. (2015) was used. The Akhunov Lab used 

GATK software to do variant calling. Data was filtered to remove multiallelic SNPs, 

heterozygous sites, and singletons with less than 10x coverage. The data was aligned to the 

IWGSC WGA v1.0. Polymorphic SNPs between the two parents were converted into STARP 

and KASP markers when used during genotyping. 

6.3.4. PCR Amplification and Electrophoresis 

DNA was extracted from young leaf tissue as described by Faris et al. (2000) for tube 

extractions and the ammonium acetate method as described by Pallota et al. (2003) for plate 

extractions. DNA for plate extractions was used for the initial screening process, and then tube 

extractions of leaf tissue of homozygous recombinant BC3F3 plants. DNA fragments were 

amplified using a GeneAmpTMPCR system 97000 for PCR. For SSR markers, the 10 µl PCR 

reaction consisted of 100 ng of template DNA, 1X PCR buffer, 2 mM MgCl2, 0.2 mM dNTPs, 4 

pmol of each primer, and 0.5 unit of Taq DNA polymerase, with diluted water added to a final 

volume of 10 µL. The PCR conditions were: 94°C for 5 minutes, 35 cycles consisting of 30 sec 
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94°C, 30 sec 65-56°C, 90 sec 72°C; finishing with one cycle for 7 min at 72°C and cooling to 

4°C. For STARP markers, the 10 µl PCR reaction consisted of 100 ng of template DNA, 0.9 

µL × NH4 + buffer, 1.5 mM MgCl2, 50 μM dNTPs, 0.8 M betaine, 0.04% (w/v) bovine serum 

albumin (BSA), 200 nM common reverse primer, 200 nM of each priming element-adjustable 

primer (PEA-primer 1 and PEA-primer 2), 40 nM of each asymmetrically modified allele-

specific primer (AMAS forward primer 1 and AMAS forward primer 2), and 1.5 units of Taq 

DNA polymerase. The PCR conditions were: 94°C for 5 minutes; cycle 6 times through: 30 sec 

94°C, 2 minutes 56°C; cycle 40 times through 20 sec 94°C, 30 sec 62°C, 90 sec 72°C; finishing 

with one cycle for 7 min at 72°C and cooling to 4°C. PCR products from both SSR and STARP 

makers were separated on 6% polyacrylamide gels, stained with GelRed nucleic acid gel stain, 

and scanned on a Typhoon FLA 9500 variable mode laser scanner (GE Healthcare Life Sciences, 

Piscataway, NJ). KASP markers were ran by the USDA-ARS small grains genotyping laboratory 

in Fargo, ND. 

6.3.5. Fine Mapping 

For each round of fine mapping, BC3F2 plants were genotyped to identify heterozygous 

recombinants. Plants were grown in 2 inch 98 well plug flats (Greenhouse Megastore, Danville, 

IL) and genotyped using markers listed in Table 6.2 and Table 6.3. Heterozygous recombinants 

were transplanted to pots, grown, selfed, and harvested. Each BC3F3 family was screened using 

the same markers and method to identify one homozygous recombinant BC3F3 individual. BC3F3 

plants were also genotyped with internal markers (Tables 6.2, 6.3) and self-pollinated to obtain 

BC3F4 seed, which was homozygous for the selected recombination event. The BC3F4 plants 

were grown for replicated greenhouse trials to delineate the location of the target QTL. 
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Table 6.2. Primers used in the first round of saturation mapping. Those in red font were used as the flanking primers when selecting 
heterozygous recombinants in the BC3F2 and homozygous recombinants in the BC3F3.  

Marker 
designation 

Marker 
Type Forward primer 1 Forward primer 2* Reverse primer SNP source* 

Xbarc230 SSR CCCCTCCTCCTTCTCCCTCCTCCT  GGCTCATGCGGGCGTGTTTGG  
Xwmc245 SSR GCTCAGATCATCCACCAACTTC  AGATGCTCTGGGAGAGTCCTTA  
Xbarc18 SSR CGCTTCCCATAACGCCGATAGTAA  CGCCCGCATCATGAGCAATTCTATCC  
Xwmc272 SSR TCAGGCCATGTATTATGCAGTA  ACGACCAGGATAGCCAATTCAA  
Xgwm319 SSR GGTTGCTGTACAAGTGTTCACG  CGGGTGCTGTGTGTAATGAC  
IWB74647 STARP 1-TGTCCGGTGAAGGACGAT 2-TGTCCGGTGAAGGAAAAC AGTGCAAACATAGTCCTGCGA 90K array 
IWB77487 STARP 1-CAAACATAGTCCTGCAACCA 2-CAAACATAGTCCTGCGATCG CGCCGACATCCTTGAGTTCT 90K array 
Chr2B426480198 STARP 1-CCCATACATCTTAAAATGCAAGAT 2-CCCATACATCTTAAAATGCAGAAG ATCTTACCTGCACACAAGGCA Exome capture 
IWB75857 STARP 2-GAGACTTATCTGGAACCACTAC 1-GAGACTTATCTGGAACCATCAT CCTGATCGCAGAATCTTGGC 90K array 
Xwmc265 SSR GTGGATAACATCATGGTCAAC  TACTTCGCACTAGATGAGCCT  
IWA7524 STARP 2-TTCCCAGGCTCAAGAATG 1-TTCCCAGGCTCAAGGCTA CATCAAATGACGAATGCCGC 9K array 
Chr2B432555726 STARP 1-CTTTGTCAATGCATGTTTAAGCAA 2-CTTTGTCAATGCATGTTTAAAAAG TGCATCAACCACAGCTACCA Exome capture 
Chr2B433542242 STARP 1-CTCGATGACCTGTATGTCCTA 2-CTCGATGACCTGTATGTTTTG CGATCATGTATTGGATGGGCA Exome capture 
Chr2B434695029 STARP 2-CGAGGATGGCAAGTTTAATTG 1-CGAGGATGGCAAGTTTAGCTT GCAACAAGTAGCACAGAGGC Exome capture 
Xgwm630 SSR GTGCCTGTGCCATCGTC  CGAAAGTAACAGCGCAGTGA  
Chr2B443160586 STARP 1-CCTGCTGTTTTCTTCTACCGA 2-CCTGCTGTTTTCTTCTATTGC AGGTTGTTTTCATTGGCAAGC Exome capture 
Chr2B446082351 STARP 1-AGTTTTTTGGTTACTACGTACCCT 2-AGTTTTTTGGTTACTACGTATACC CCAAGACGTTCTACGACCCG Exome capture 
Chr2B446116612 STARP 2-CACCTTTTTATTTAACGGACTCG 1-CACCTTTTTATTTAACGGAACCT AACGGACAAGGACATTTGGC Exome capture 
Chr2B448579361 STARP 1-GTCGAGATCGGGAGCAGA 2-GTCGAGATCGGGAAAAGG CCGGAGGGTTCCTAGTTCCT Exome capture 
IWB77429 STARP 2-CACAAAGATTTAATGCAGATTGG 1-CACAAAGATTTAATGCAGGCTGA AGCGTGCCAATAACGATGAA 90K array 
IWB42378 STARP 1-GCACAAAGATTTAATGCAGGTCGA 2-GCACAAAGATTTAATGCAGATTGG AGCGTGCCAATAACGATGAA 90K array 
Chr2B450759236 STARP 1-GATCGGTTTTATATACACTGCGAT 2-GATCGGTTTTATATACACTGTAAC TGGCGTTTAGGGGGCAAAAT Exome capture 
IWB9833 STARP 1-CAGCACAGCATGACCACA 2-CAGCACAGCATGATAACG TGGTGCGCTCAAGCACTG 90K array 
IWA1215 STARP 1-ACGGACGACTACAGCAGA 2-ACGGACGACTACAATAGC TCAAGCCGCCAGTGAAATTG 9K array 
IWB29666 STARP 1-ATTATCGACCATCTCCATCGA 2-ATTATCGACCATCTCCACTGC AGCACCGCCTAAAGACGAC 90K array 
Chr2B459250101 STARP 1-ATGTCCATGTATCGACTACGT 2-ATGTCCATGTATCGACTCTGC CTGAAATCGCTGGAGGTGGA Exome capture 
Chr2B465653389 STARP 2-CTCCTCCCAATTCCCTACG 1-CTCCTCCCAATTCCTCACA TTTCCTGTGCCCGAAGTTGA Exome capture 
Xgwm55 SSR GCATCTGGTACACTAGCTGCC  TCATGGATGCATCACATCCT  
Chr2B486953078 STARP 1-GGTACTCACCAGAGTAGCA 2-GGTACTCACCAGAGCAACG TGCAGGCACGAAAACCATCA Exome capture 
Chr2B501009984 STARP 1-TCTCAGCCATACGACTCCTT 2-TCTCAGCCATACGACTTTTC CGGCACCCTGAACATAGGTAA Exome capture 
Chr2B504323864 STARP 1-CACATCCCCATTGCTCTT 2-CACATCCCCATTGCCTTC TCATGGTGTCCCTTCCAAGA Exome capture 
Chr2B523086763 STARP 2-TCACGTAAACCTGGACCATC 1-TCACGTAAACCTGGACTGTA GGTAGCACACATCAGTCACCA Exome capture 
Chr2B528794281 STARP 1-TACTGCCTGAACGTACTCT 2-TACTGCCTGAACGTGTTCC ACAGGTCGTTGATGAGGTCG Exome capture 
IWA1690 STARP 1-GATCCAAATGATCTGAATAACGGT 2-GATCCAAATGATCTGAATAAAAGC CGCGCTCATTCAAATACGCC 9K array 
Chr2B538239714 STARP 2-GATACCAACAGCGAAGACG 1-GATACCAACAGCGAAAGCA AGTCCAACAAGGAGCTGCAA Exome capture 
IWA6969 STARP 1-GCCCTGGAGAAAGTACAGT 2-GCCCTGGAGAAAGTGTAGC TCTAAAACTACACACGCAGAAGC 9K array 
IWA7019 STARP 1-CGAACCTCCGTTAGATGCT 2-CGAACCTCCGTTAGGTACC TCTCAACATCCTTCCGCAGC 9K array 
IWB50897 STARP 1-GGTTCAACTACCTTGCTGAT 2-GGTTCAACTACCTTGCCAAC ATATCCCTTCGCCTCCGGG 90K array 

*not applicable for SSR primers. 
1=[Tail 2] = 5′-GACGCAAGTGAGCAGTATGAC-3′ 
2=[Tail 1] = 5′-GCAACAGGAACCAGCTATGAC-3′ 
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Table 6.3. Primers used in the second round of saturation mapping. Those in red font were used as the flanking primers when selecting 
heterozygous recombinants in the BC3F2 and homozygous recombinants in the BC3F3. All primers listed are KASP markers. 

Marker designation Forward primer 1 Forward primer 2 Reverse primer SNP source 
Chr2B446082351 FAMAGTTTTTTGGTTACTACGTACCCT HEXAGTTTTTTGGTTACTACGTATACC CCAAGACGTTCTACGACCCG Exome capture 
Chr2B446116612 FAMCACCTTTTTATTTAACGGAATCG HEXCACCTTTTTATTTAACGGAATCT AACGGACAAGGACATTTGGC Exome capture 
Chr2B447741566 FAMCATCATCTGGTAATAATGGGTTGAGG HEXCATCATCTGGTAATAATGGGTTGAGC TGAAGATCCAATCCGCACAC Exome capture 
Chr2B447822409 FAMCCGCTTCTCCCGGCTCCGC HEXCCGCTTCTCCCGGCTCCGT TGGCTCTGCCCTCTTTCCT Exome capture 
Chr2B448080365 FAMCTGATGACGAGGAACCTGGAG HEXCTGATGACGAGGAACCTGGAA GCAACTCACACGCCGATGTA Exome capture 
Chr2B448905051 FAMCTGGATTCGGTATTTGTTTTTGCCAT HEXCTGGATTCGGTATTTGTTTTTGCCAC GCGGCAGGTCGTACTGTG Exome capture 
Chr2B449166206 FAMGTGAGCTGTGATGTTTGGTGC HEXGTGAGCTGTGATGTTTGGTGT CGGTTCCTGAGACTCTTTGTT Exome capture 
IWB77429 FAMGCACAAAGATTTAATGCAGGTTGA HEXGCACAAAGATTTAATGCAGGTTGG AGCTAGCGTGCCAATAACGA 90K array 
IWB42378 FAMGCACAAAGATTTAATGCAGGTTGA HEXGCACAAAGATTTAATGCAGGTTGG AGCTAGCGTGCCAATAACGA 90K array 
Chr2B450183215 FAMTGTTCAGCGGTTGCCTTTTGT HEXTGTTCAGCGGTTGCCTTTTGC AGCAAAAACTACCTCAGCTAAAAC Exome capture 
Chr2B450739111 FAMGCACTACCACCAGCACCAC HEXGCACTACCACCAGCACCAG ATAAGCAGGAGGCGGCAAG Exome capture 
Chr2B451890281 FAMGTAAGGTCTAAGGAGCATGGGGA HEXGTAAGGTCTAAGGAGCATGGGGG AAGATGAACTCCACCACCACC Exome capture 
Chr2B451923155 FAMCCATAGCCATAAACATCAACTTTTGT HEXCCATAGCCATAAACATCAACTTTTGC CAGCAAGAGGAACCGTAGGA Exome capture 
Chr2B453751477 FAMGCATTCCGAAGGACACCATTCC HEXGCATTCCGAAGGACACCATTCT GGTATGCGCTACATTGCTGT Exome capture 
Chr2B454482299 FAMTAATGGGTGCTATGGCCGACA HEXTAATGGGTGCTATGGCCGACG GAAAGGGCGGGTACCAATC Exome capture 
Chr2B455466692 FAMAGCTCACCAAAACAAGATCAGCAA HEXAGCTCACCAAAACAAGATCAGCAG AAGATGTCGATGATGCAGCCG Exome capture 
IWB9833 FAMGCAGCACAGCATGACAACA HEXGCAGCACAGCATGACAACG CTCTGGGTGGTGCGCTCA 90K array 
IWB76099 FAMCTTGTTGTAGCCGCCACTT HEXCTTGTTGTAGCCGCCACTG GGTGGGTACAGGAACACCG 90K array 
IWA1215 FAMACGGACGACTACAGTAGA HEXACGGACGACTACAGTAGC TCAAGCCGCCAGTGAAATTG 9K array 
IWB29666 FAMGAGATTATCGACCATCTCCATTGA HEXGAGATTATCGACCATCTCCATTGC ACCGCCTAAAGACGACCG 90K array 
IWB51413 FAMAAAGGGGAAGAACTTGGACAA HEXAAAGGGGAAGAACTTGGACAG CTGCTGATTTTGCGCCTCT 90K array 
Chr2B456024533 FAMGGACCGGCGAGCAAGTGC HEXGGACCGGCGAGCAAGTGT TTGATGTCGGTCTCTCCCCA Exome capture 
Chr2B456304658 FAMCCGAGAAAGGCTAACAGCTA HEXCCGAGAAAGGCTAACAATTG AGGCAGCAAAGTAGCAAAACGA Exome capture 
Chr2B456019275 FAMCGGCAAAGTACAGCGTGTCGG HEXCGGCAAAGTACAGCGTGTCGT GCCTTTGCCTCCAAAGGACA Exome capture 
Chr2B459800224 FAMCAGCCAAGACTGGAGTTTCAT HEXCAGCCAAGACTGGAGTTTCAC CCAGGATCACCACATTTGTCA Exome capture 
Chr2B463768947 FAMCTCCAGCCTACTGAGGTCAAT HEXCTCCAGCCTACTGAGGTCAAC GAAGCTCCAAACAAGGATCGC Exome capture 
Chr2B464291292 FAMCCGATAATGTTATAATCAGGACAAG HEXCCGATAATGTTATAATCAGGAACAA TGCAGAGAAGGCTCAACAGT Exome capture 
Chr2B466193574 FAMAGCTCTACATTGACCACGCTA HEXAGCTCTACATTGACCACGCTA CAGCAGCTTGACCAGTACCT Exome capture 
Chr2B467477266 FAMCTGACTCTCCATGTTGACTAC HEXCTGACTCTCCATGTTGCATAT GTGTACGGAGTTATAGTCATTTGGC Exome capture 
Chr2B476407551 FAMATGGTTTTAATAGCTTTGTTAATGTA HEXATGGTTTTAATAGCTTTGTTAACATC ATCCGCGCTGGCTATTGAAA Exome capture 
Chr2B465653389 FAMCTCCTCCCAATTCCCCACG HEXCTCCTCCCAATTCCCCACA TTTCCTGTGCCCGAAGTTGA Exome capture 
Chr2B470913679 FAMATCCCGGCATTGTTAGCTATTA HEXATCCCGGCATTGTTAGCTATTT CCATGTTCAGATTGGTGCTG Exome capture 
Chr2B477564181 FAMGCTCTTGATGAAGCTATGAAGTCC HEXGCTCTTGATGAAGCTATGAAGTCT GTTAATTGTGGTGGTGCTGCAT Exome capture 
Chr2B478107531 FAMTTTGTTGTTTGTGCCCATTGTAA HEXTTTGTTGTTTGTGCCCATTGTAG TCTTCTGGACTGGGTTCATCT Exome capture 
Chr2B486194062 FAMTAGAAACATTCCAACAAGCAGGGT HEXTAGAAACATTCCAACAAGCAGGGC TGTGTAGTTCTTTTCTTGTGGCT Exome capture 
Chr2B491023492 FAMCAGGAAGTAGCATTTCTCCCACTG HEXCAGGAAGTAGCATTTCTCCCACTA TGAACTGCAGGCATTTACAGA Exome capture 
Chr2B491054244 FAMAAGTGGCTTGTGAGTTCCAT HEXAAGTGGCTTGTGAGTTTTAC ATATTCTTGTGGCGAAGCACG Exome capture 
Chr2B494278866 FAMGTGGTGGGTCGGCGAGA HEXGTGGTGGGTCGGCGAGC GATGGGTTCAGGCGACGA Exome capture 
Chr2B494860481 FAMCCGGCAGCATGTGGTTGG HEXCCGGCAGCATGTGGTTGA CGCATCTCCACCGTCCTAAC Exome capture 
Chr2B494880740 FAMGTCATAAGAAACATCCTCAACCT HEXGTCATAAGAAACATCCTCACTCC GACGGTGAACCTGAAAGGGA Exome capture 
Chr2B494273758 FAMAACACACCCCAAAGTTGTTACGT HEXAACACACCCCAAAGTTGTTACGC TGTGCGCACGATCGGTAGAT Exome capture 
Chr2B500593313 FAMATGGTCAGGTAAGGCGACTGG HEXATGGTCAGGTAAGGCGACTGA CAGGCCAGAGCTGGGTTC Exome capture 
Chr2B501009984 FAMGTTTCTCAGCCATACGACTTCTT HEXGTTTCTCAGCCATACGACTTCTC TGATCAACCCATCCACTCCG Exome capture 
Chr2B504323864 FAMTGCCACATCCCCATTGCTTTT HEXTGCCACATCCCCATTGCTTTC ACATGAGCAGAGTGGTCTTTCT Exome capture 
Chr2B506507689 FAMCAGGTCAAGAGGAAACGGT HEXCAGGTCAAGAGGAAAAAGC CACTATCTGGCACGGACGAA Exome capture 
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Table 6.3. Primers used in the second round of saturation mapping (continued). Those in red font were used as the flanking primers 
when selecting heterozygous recombinants in the BC3F2 and homozygous recombinants in the BC3F3. All primers listed are KASP 
markers. 

Marker designation Forward primer 1 Forward primer 2 Reverse primer SNP source 
Chr2B507911105 FAMGATTCCCATGATACCCAATCAC HEXGATTCCCATGATACCCAACTAT TGAGACCCCTTCCCTGTCAT Exome capture 
Chr2B509713066 FAMCTCCGCACCATCGCTCTTCG HEXCTCCGCACCATCGCTCTTCA TCCCTAGTTTTGGTGCGTCG Exome capture 
Chr2B511136108 FAMGGGATCAAGGGAGCCATCGA HEXGGGATCAAGGGAGCCATCGG CGAGCACCGTCACCTCCG Exome capture 
Chr2B513480840 FAMGCAGACCTTGCGCATCTGGC HEXGCAGACCTTGCGCATCTGGT ACCGAGCTGCAGGAGATCA Exome capture 
Chr2B513499035 FAMTGTCCTCTCATTGAACTGTAGAAGCA HEXTGTCCTCTCATTGAACTGTAGAAGCG CGTCATGTGTCCGCTTTTGT Exome capture 
Chr2B517599131 FAMTTTGTTCTGGTTATGTCAATCTCC HEXTTTGTTCTGGTTATGTCAATACCT ATCAGTAGCAGCAAGCCAGC Exome capture 
Chr2B523086763 FAMATCACGTAAACCTGGACCGTA HEXATCACGTAAACCTGGACCGTC TGTGACTGCATTGCATTGGT Exome capture 
Chr2B525074970 FAMTTTAATCCAGTCTCCAGTGCCC HEXTTTAATCCAGTCTCCAGTGCCT TGCTGCGTTTCCTCTGACAT Exome capture 
Chr2B526776450 FAMGCTGGGCACGGAATCCTCG HEXGCTGGGCACGGAATCCTCC CGCGCTGAAGGTGATGGAAT Exome capture 
Chr2B526886014 FAMCCCTAGAAGATGCGAGTGCTC HEXCCCTAGAAGATGCGAGTGCTT GTACATCTTCCGGGACACGC Exome capture 
Chr2B527877066 FAMGTAGATTACAAAACTCGACACTCATC HEXGTAGATTACAAAACTCGACACTCATG ACAGATGCATATTGTTACTACACTG Exome capture 
Chr2B528794281 FAMTACTGCCTGAACGTGCTCT HEXTACTGCCTGAACGTGCTCC ACAGGTCGTTGATGAGGTCG Exome capture 
Chr2B529290113 FAMCCCTAGAGCAAGATGAGGCAAAC HEXCCCTAGAGCAAGATGAGGCAAAT AACTGCTGCACCACAAGCAA Exome capture 
Chr2B530731940 FAMTGAATAGGATGCGAAACAGAAGGA HEXTGAATAGGATGCGAAACAGAAGGG ATCTGCGCGTGATGTAGGTT Exome capture 
Chr2B532010814 FAMGGGGCTCGCCAAGGAGG HEXGGGGCTCGCCAAGGAGA CCACTGGTGCAGAGGTTGTA Exome capture 
Chr2B534398278 FAMCGTCATTATTATTTTGCCTGGTTTCG HEXCGTCATTATTATTTTGCCTGGTTTCC GGCTAAAAGGGCCGCATCT Exome capture 
Chr2B534843854 FAMCGCTCAGGGACGGGAGAAC HEXCGCTCAGGGACGGGAGAAT GCCCTCTTTCCGCATTCAATTT Exome capture 
IWB35321 FAMTTCTCTGGCAGAGGCGGA HEXTTCTCTGGCAGAGGCGGC CAATAGGACACCATAATAACCAAGC 90K array 
IWB75883 FAMTTCTCTGGCAGAGGCGGA HEXTTCTCTGGCAGAGGCGGC CAATAGGACACCATAATAACCAAGC 90K array 
IWA1690 FAMGATCCAAATGATCTGAATAAAGGT HEXGATCCAAATGATCTGAATAAAGGC CGCGCTCATTCAAATACGCC 9K array 
Chr2B538239714 FAMGATACCAACAGCGAAGACG HEXGATACCAACAGCGAAAGCA AGTCCAACAAGGAGCTGCAA Exome capture 

FAM:GAAGGTGACCAAGTTCATGCT 
HEX:GAAGGTCGGAGTCAACGGATT 
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6.3.6. Phenotyping for Fine Mapping 

Replicated yield trials of BC3F4 plants were grown under greenhouse conditions in 15 cm 

pots with 16-h photoperiod and a temperature around 21 °C. In this first round of fine mapping, 

the yield trial consisted of five replicates from each BC3F3:4 family along with Ben, PI 41025, 

BP025-26, and BP025-28. Four spikes per plant were evaluated for the number of kernels per 

spike, with the plant average representing the score for mapping. Kernels per spike were counted 

manually for each spike, along with the total number of kernels per plant were counted using a 

MARVIN seed analyzer (GAT Sensorik GMBH, Neubrandenburg, Germany). Each family mean 

was calculated and used for determining which internal markers were most significantly 

associated with the kernel per spike trait. A one-tailed t-test was performed comparing the mean 

of families with Ben alleles at each marker with the mean of families with PI 41025 alleles at 

that same marker. 

6.4. Results 

6.4.1. RILs Used for Population Development 

A replicated experiment was done to determine which RILs to use for backcrossing and 

population development. BP025-83, BP025-28, and BP025-26 averaged 22.85, 20.68, and 16.63 

KPS, respectively (Table 6.1). My aim was to identify two RILs with PI 41025 alleles in this 

region and Ben alleles in the other KPS QTL regions and had lower number of KPS than Ben, 

which I backcrossed to. Although BP025-83 had lower number of KPS than Ben, it was not 

significantly different than either parent. BP025-26 had significant lower number of KPS than 

Ben and PI 41025. BP025-28 had fewer KPS than both parents but was only significantly lower 

than PI 41025. Therefore, I used BP025-26 and BP025-28 for my backcrosses.  
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6.4.2. Fine Mapping: Round One 

All markers used for mapping were tested for polymorphism between Ben and PI 41025, 

along with the ability to distinguish heterozygous individuals. In the results published by Faris et 

al. (2014), the markers IWA1217 and IWA652 flanked the KPS QTL peak on chromosome 2B 

using CIM (Figure 6.2). The physical location of IWA1217 and IWA652 in the Svevo R1.0 was 

445,441,818 and 483,022,545 bp, respectively, which were 37.58 Mb apart. For the first round of 

fine mapping, I screened outside of this region due to the complexity of the KPS trait, along with 

moving out towards a drop LOD score of 1.5 from the peak marker in SIM. I screened 1,072 

BC3F2 gametes with the SSR marker Xbarc230 and the STARP marker IWB50897 (Table 6.2). 

Xbarc230 was on the original BP025 map and IWB50897 was developed from the 90K bulk 

segregate analysis and converted to a STARP marker. On the Svevo reference, Xbarc230 was 

physically located at 213,613,003 bp and was on the short arm. IWB50897 was located at 

536,078,652 bp on the long arm, making the physical size of this region 322,465,649 bp in 

Svevo and spanning the centromere.  

I identified 87 recombinants between Xbarc230 and IWB50897 (Table 6.4). Forty-four of 

these were from BP025-28/3*Ben BC3F2 plants and 43 from BP025-26/3*Ben BC3F2 plants. 

These same two markers were used to screen each BC3F2 family to identify BC3F3 homozygous 

recombinants. Homozygous recombinants were genotyped with an additional 36 markers, 

consisting of 7 SSR markers and 36 STARP markers (5 designed from 9k, 7 from 90k, and 17 

from exome capture). These markers, listed in Table 6.2, consisted of the SSR markers on the 

original map, along with newly developed STARP markers. The newly developed markers were 

mapped using the first 94 lines of the BP025 population to validate that they mapped between the 

flanking markers (data not shown) before genotyping homozygous recombinants. 
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Figure 6.2. Map-based analysis of the KPS QTL region on chromosome 2B in the BP025 population. Left: The original BP025 map 
construction from 200 RILs as publsihed by Faris et al. (2014). Loci which had multiple-cosegregating markers are represented by one 
marker, unless multiple markers at that locus were used for saturation mapping. Markers highlighted in red were the original flanking 
markers in Faris et al. (2014). Center: Saturation map constructed from 1,072 BC3F2 gametes from the BP025-26/3*Ben BP025-
28/3*Ben populations. Right: Physical map constructed using the Svevo Re. 1.0 pseudomolecules. The dashed lines between each 
map connect the same markers. The golden dashed lines indicate markers in which inversions were observed between the two maps.  
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Table 6.4. Results from replicated BC3F3:4 greenhouse yield trial and recombination region in BC3F3. For each BC3F3, the markers that 
flank the recombination event are listed.  

  KPS  Recombination region 
Line Donor RIL Mean Range St. dev  Left marker1 Allele2 Right marker1 Allele2 

Ben NA 28.50 18.25-36.50 6.69  NA NA NA NA 
PI 41025 NA 33.95 23.75-39.00 6.03  NA NA NA NA 
BP025-26 NA 20.13 15.25-23.00 3.45  NA NA NA NA 
BP025-28 NA 26.55 9.50-33.75 10.16  NA NA NA NA 
J19P1275 BP025-26 32.95 29.00-40.75 4.98  Xbarc230 B Xwmc245 A 
J19P1371 BP025-26 32.85 25.00-41.00 7.88  Xbarc230 B Xwmc245 A 
J19P1409 BP025-26 16.50 13.75-20.75 3.35  Xwmc245 A Xbarc18a B 
J19P1283 BP025-26 24.55 20.50-27.50 2.81  Xgwm319 A IWB77487b B 
J19P962 BP025-26 31.58 28.00-36.75 4.58  IWB77487b A Xwmc265c B 
J19P1368 BP025-26 31.30 25.75-37.25 4.45  Xwmc265c B Chr2B434695029 A 
J19P1015 BP025-26 27.00 25.25-29.50 1.66  Xwmc265c B Chr2B434695029 A 
J19P1373 BP025-26 32.31 27.75-36.25 3.56  Chr2B434695029 B Xgwm630d A 
J19P1853 BP025-26 24.56 22.50-26.00 1.56  Xgwm630d A Chr2B446116612e B 
J19P1292 BP025-26 20.30 12.50-28.25 7.34  Chr2B446116612e B IWB77429f A 
J19P1406 BP025-26 25.60 22.50-29.75 2.63  Chr2B446116612e B IWB77429f A 
J19P1360 BP025-26 30.06 26.50-34.50 3.56  IWA1215 B IWB29666h A 
J19P1376 BP025-26 17.85 10.25-20.75 4.35  IWA1215 A IWB29666h B 
J19P965 BP025-26 31.45 28.25-33.50 2.12  IWB29666h A Chr2B465653389 B 
J19P1022 BP025-26 20.83 18.75-23.25 2.27  Chr2B465653389 B Xgwm55 A 
J19P1003 BP025-26 27.90 23.75-30.50 2.64  Chr2B465653389 B Xgwm55 A 
J19P1279 BP025-26 20.87 16.50-24.00 2.73  Chr2B465653389 B Xgwm55 A 
J19P1282 BP025-26 23.20 20.75-24.5 1.44  Chr2B465653389 B Xgwm55 A 
J19P1858 BP025-26 19.88 6.25-22.50 3.10  Chr2B465653389 B Xgwm55 A 
J19P1413 BP025-26 21.72 18.33-24.50 2.27  Chr2B465653389 B Xgwm55 A 
J19P1005 BP025-26 31.25 22.00-41.00 9.51  Chr2B465653389 A Xgwm55 B 
J19P1277 BP025-26 25.38 21.75-31.50 4.38  Chr2B465653389 A Xgwm55 B 
J19P1852 BP025-26 34.58 30.75-39.25 3.63  Chr2B465653389 A Xgwm55 B 
J19P1288 BP025-26 20.40 16.00-23.50 2.75  Xgwm55 B Chr2B486953078 A 
J19P1358 BP025-26 35.20 23.75-47.25 9.47  Xgwm55 A Chr2B486953078 B 
J19P1013 BP025-26 28.56 25.00-32.00 2.88  Xgwm55 A Chr2B486953078 B 
J19P1293 BP025-26 26.05 22.50-33.25 4.28  Chr2B486953078 A Chr2B501009984 B 
J19P1017 BP025-26 26.95 25.25-29.00 1.52  Chr2B501009984 B Chr2B504323864 A 
J19P1290 BP025-26 22.25 18.00-27.50 3.48  Chr2B504323864 B Chr2B523086763 A 
J19P1012 BP025-26 25.00 19.00-29.25 4.32  Chr2B504323864 B Chr2B523086763 A 
J19P1286 BP025-26 27.94 25.00-30.25 2.18  Chr2B504323864 A Chr2B523086763 B 
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Table 6.4. Results from replicated BC3F3:4 greenhouse yield trial and recombination region in BC3F3 (continued). For each BC3F3, the 
markers that flank the recombination event are listed. 

  KPS  Recombination region 
Line Donor RIL Mean Range St. dev  Left marker1 Allele2 Right marker1 Allele2 
J19P1273 BP025-26 40.25 37.75-42.33 2.32  Chr2B504323864 A Chr2B523086763 B 
J19P1361 BP025-26 29.83 26.75-33.00 3.13  Chr2B504323864 A Chr2B523086763 B 
J19P1357 BP025-26 28.30 26.00-29.75 1.51  Chr2B504323864 A Chr2B523086763 B 
J19P1364 BP025-26 21.73 16.50-27.75 4.32  Chr2B504323864 A Chr2B523086763 B 
J19P1369 BP025-26 28.08 26.25-30.00 1.88  Chr2B504323864 A Chr2B523086763 B 
J19P1407 BP025-26 33.13 29.50-36.50 2.93  Chr2B528794281i A Chr2B538239714 B 
J19P961 BP025-26 18.75 17.50-19.50 0.79  IWA6969 B IWA7019 A 
J19P956 BP025-26 19.45 13.25-26.00 5.80  IWA6969 B IWA7019 A 
J19P972 BP025-26 34.13 31.75-38.75 3.24  IWA6969 A IWA7019 B 
J19P963 BP025-26 29.30 26.25-33.50 2.90  IWA6969 A IWA7019 B 
J19P1265 BP025-26 14.65 12.25-18.00 2.21  IWA7019 B IWB50897 A 
J19P958 BP025-26 29.33 27.25-33.33 2.74  IWA7019 B IWB50897 A 
J19P983 BP025-28 20.63 16.75-24.75 3.27  Xbarc230 B Xwmc245 A 
J19P1384 BP025-28 23.61 21.50-26.67 2.71  Xbarc230 B Xwmc245 A 
J19P1385 BP025-28 26.30 21.25-29.25 3.11  Xbarc230 B Xwmc245 A 
J19P1388 BP025-28 29.83 28.50-30.75 1.18  Xbarc230 B Xwmc245 A 
J19P993 BP025-28 17.75 14.25-19.25 2.35  Xwmc245 A Xbarc18a B 
J19P1396 BP025-28 21.83 21.50-22.25 0.38  Xwmc245 A Xbarc18a B 
J19P998 BP025-28 19.83 16.75-22.00 2.74  Xbarc18a B Xgwm319 A 
J19P1270 BP025-28 19.19 14.50-26.50 5.35  Xbarc18a A Xgwm319 B 
J19P951 BP025-28 23.63 21.25-29.75 4.10  Chr2B434695029 B Xgwm630d A 
J19P1379 BP025-28 25.52 21.33-29.00 2.93  Chr2B446116612e B IWB77429f A 
J19P974 BP025-28 31.50 26.25-36.00 4.92  Chr2B446116612e B IWB77429f A 
J19P1394 BP025-28 24.81 24.00-26.00 0.99  IWB77429f A Chr2B450759236g B 
J19P1027 BP025-28 23.50 18.50-30.00 5.12  Chr2B450759236g A IWA1215 B 
J19P969 BP025-28 29.83 26.50-36.25 5.56  IWA1215 B IWB29666h A 
J19P1001 BP025-28 25.30 20.50-28.00 3.46  IWA1215 B IWB29666h A 
J19P954 BP025-28 14.13 1.25-38.33 14.96  IWA1215 A IWB29666h B 
J19P1393 BP025-28 12.69 4.25-21.25 6.95  Chr2B465653389 B Xgwm55 A 
J19P1404 BP025-28 16.75 14.25-18.75 2.98  Chr2B465653389 B Xgwm55 A 
J19P994 BP025-28 27.88 24.50-31.25 2.98  Chr2B465653389 A Xgwm55 B 
J19P990 BP025-28 29.25 23.25-33.50 4.32  Chr2B465653389 A Xgwm55 B 
J19P1025 BP025-28 20.03 6.67-34.75 12.06  Chr2B465653389 A Xgwm55 B 
J19P1023 BP025-28 28.80 24.25-31.75 2.79  Chr2B465653389 A Xgwm55 B 
J19P1268 BP025-28 26.29 22.25-29.50 3.00  Chr2B465653389 A Xgwm55 B 
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Table 6.4. Results from replicated BC3F3:4 greenhouse yield trial and recombination region in BC3F3 (continued). For each BC3F3, the 
markers that flank the recombination event are listed. 

  KPS  Recombination region 
Line Donor RIL Mean Range St. dev  Left marker1 Allele2 Right marker1 Allele2 
J19P1400 BP025-28 25.17 23.75-26.75 1.51  Chr2B465653389 A Xgwm55 B 
J19P1264 BP025-28 28.50 21.75-35.50 5.62  Xgwm55 A Chr2B486953078 B 
J19P1381 BP025-28 20.15 19.00-21.00 0.89  Chr2B486953078 B Chr2B501009984 A 
J19P1390 BP025-28 24.83 17.75-31.75 7.00  Chr2B501009984 A Chr2B504323864 B 
J19P981 BP025-28 23.15 21.25-26.50 2.00  Chr2B504323864 B Chr2B523086763 A 
J19P975 BP025-28 20.06 18.25-21.75 1.70  Chr2B504323864 B Chr2B523086763 A 
J19P1410 BP025-28 25.42 24.50-26.25 0.88  Chr2B504323864 B Chr2B523086763 A 
J19P1391 BP025-28 21.92 17.75-24.75 3.69  Chr2B504323864 B Chr2B523086763 A 
J19P1855 BP025-28 22.92 19.33-28.50 3.49  Chr2B504323864 B Chr2B523086763 A 
J19P1398 BP025-28 21.13 17.00-25.25 3.49  Chr2B504323864 B Chr2B523086763 A 
J19P953 BP025-28 25.55 17.00-35.00 6.70  Chr2B504323864 A Chr2B523086763 B 
J19P992 BP025-28 29.85 24.25-31.75 4.07  Chr2B504323864 A Chr2B523086763 B 
J19P1008 BP025-28 19.31 10.50-27.75 7.95  Chr2B504323864 A Chr2B523086763 B 
J19P1401 BP025-28 22.04 17.67-24.75 3.05  Chr2B504323864 A Chr2B523086763 B 
J19P985 BP025-28 10.40 3.25-17.25 6.62  Chr2B523086763 B Chr2B528794281i A 
J19P966 BP025-28 15.92 12.50-18.75 3.17  Chr2B523086763 A Chr2B528794281i B 
J19P977 BP025-28 30.58 27.25-32.75 2.93  Chr2B528794281i A Chr2B538239714 B 
J19P1000 BP025-28 29.06 27.50-31.00 1.71  Chr2B528794281i A Chr2B538239714 B 
J19P1378 BP025-28 20.30 15.25-26.00 4.98  Chr2B538239714 B IWA6969 A 
J19P1009 BP025-28 28.21 25.33-32.75 3.22  IWA6969 A IWA7019 B 
J19P971 BP025-28 19.12 7.33-30.25 8.69  IWA7019 A IWB50897 B 

1List of markers that co-segregate: 
aXbarc18, Xwmc272 
bIWB77487, IWB74647, Chr2B426480198 
cXwmc265, IWB75857, IWA7524, Chr2B432555726, Chr2B433542242 
dXgwm630, Chr2B443160586, Chr2B446082351 
eChr2B446116612, Chr2B448579361 
fIWB77429, IWB42378 
gChr2B450759236, IWB9833 
hIWB29666, Chr2B459250101 
iChr2B528794281, IWA1690 

2Ben allele=A, PI 41025 allele=B 
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A total of three markers were added that mapped between the original flanking markers 

(Figure 6.2). IWB29666 was designed from the 90K SNP array and Chr2B459250101 and 

Chr2B465653389 were from the exome capture results. The region was expanded from 1.8 cM 

in the original BP025 genetic map to 2.15 cM in the fine map. Compared to the original map, the 

fine map showed an inversion between Xwmc245 and Xbarc230. Comparing the fine map to the 

physical location, the markers Chr2B426480198 and IWB75857 were inverted between the two 

maps.  

BC3F3:4 plants were phenotyped with five replicates per family under greenhouse 

conditions. Five replicates were used because this filled an entire greenhouse room. The results 

of this trial are shown in Table 6.4. Due to the complexity of the KPS trait, along with a few 

discrepancies in values for a handful of lines, the candidate region was delineated by markers 

Chr2B446082351 and Chr2B538239714 by comparing the mean values for each allele type for 

each internal marker (Table 6.5). Based on the Svevo reference sequence, Chr2B446082351 was 

at 439,345,516 bp and Chr2B538239714 was at 529,773,026 bp. The physical size of this 

delineated region was 90,427,510 bp and no longer spanned the centromere.  
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Table 6.5. Comparison of means and t-test for the different markers. The markers highlighted in 
red are on the outer edge of the QTL region associated with KPS. 

 Allele KPS average  
Marker Ben PI 41025 T-test P-value 
Xbarc230 26.18 23.59 0.015459092 
Xwmc245 26.36 22.93 0.001573134 
Xbarc18 26.85 22.61 0.000150597 
Xwmc272 26.85 22.61 0.000150597 
Xgwm319 26.86 22.59 0.000135347 
IWB74647 26.91 22.64 0.000130887 
IWB77487 26.91 22.64 0.000130887 
Chr2B426480198 26.91 22.64 0.000130887 
IWB75857 26.81 22.85 0.00038427 
Xwmc265 26.81 22.85 0.00038427 
IWA7524 26.81 22.85 0.00038427 
Chr2B432555726 26.81 22.85 0.00038427 
Chr2B433542242 26.81 22.85 0.00038427 
Chr2B434695029 26.91 22.54 9.3967E-05 
Xgwm630 26.95 22.25 2.88122E-05 
Chr2B443160586 26.95 22.25 2.88122E-05 
Chr2B446082351 26.95 22.25 2.88122E-05 
Chr2B446116612 27.00 22.31 2.84552E-05 
Chr2B448579361 27.00 22.31 2.84552E-05 
IWB77429 26.90 21.92 1.12797E-05 
IWB42378 26.90 21.92 1.12797E-05 
Chr2B450759236 26.94 22.00 1.21493E-05 
IWB9833 26.94 22.00 1.21493E-05 
IWA1215 27.01 22.04 9.93909E-06 
IWB29666 27.53 21.18 8.4298E-09 
Chr2B459250101 27.53 21.18 8.4298E-09 
Chr2B465653389 27.45 21.45 6.17462E-08 
Xgwm55 26.28 23.12 0.004247403 
Chr2B486953078 25.87 23.76 0.040551293 
Chr2B501009984 25.74 23.91 0.064886613 
Chr2B504323864 25.79 23.86 0.055122224 
Chr2B523086763 24.91 24.89 0.492436734 
Chr2B528794281 24.79 25.02 0.424684836 
IWA1690 24.79 25.02 0.424684836 
Chr2B538239714 24.35 25.41 0.1904714 
IWA6969 24.26 25.53 0.146590889 
IWA7019 23.56 26.15 0.015463157 
IWB50897 23.59 26.18 0.015459092 
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6.4.3. Fine Mapping: Round Two 

New BC3F2 plants were screened for the reduced region using the STARP markers 

Chr2B446082351 and Chr2B538239714. A total of 73 heterozygous recombinants were 

identified from 1,556 gametes. Forty-six of these were from BC3F2 plants derived from BP025-

28 and 27 were from BC3F2 plants derived from BP025-26. These same two markers were used 

to screen each BC3F2 family to identify BC3F3 homozygous recombinants; however, the markers 

were converted to KASP markers for genotyping BC3F3 plants to speed up the process (Table 

6.3). The BC3F3 homozygous recombinants were genotyped with 64 internal markers using 

KASP assays for the development of the new genetic linkage map.  

The genetic linkage map developed using the BC3F3 homozygous recombinants was 4.65 

cM and spanned a physical distance from 439,345,516 bp to 529,773,026 bp on the Svevo 

reference (Figure 6.3). No inversions or translocations were observed when comparing the 

marker order in the genetic map with the physical map (Figure 6.3). The markers in which a 

recombination occurred for each BC3F2 family are listed in Table 6.6. A total of 18 new markers 

were added between the original flanking markers of IWA1215 and XGwm55 from Faris et al. 

(2014). Based on the Svevo reference, a total of 576 high confidence genes are within this 

region.  
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Figure 6.3. Map-based analysis of the KPS QTL region on chromosome 2B in the BP025 population. Left: Saturation map constructed 
from 1,556 BC3F2 gametes from the BP025-26/3*Ben BP025-28/3*Ben populations. Right: Physical map constructed using the Svevo 
Re. 1.0 pseudomolecules. The dashed lines connect the flanking markers between the two maps.  
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Table 6.6. Genetic linkage results from the second round of fine-mapping and the markers in 
which a recombination occurred in the BC3F3 plants.  

  Recombination region 
Line Donor RIL Left marker1 Allele2 Right marker1 Allele2 

J21P21 BP025-26 Chr2B446082351a A Chr2B448905051 B 
J21P115 BP025-28 Chr2B448905051 B Chr2B449166206 A 
J21P1 BP025-26 Chr2B449166206 B Chr2B450183215b A 
J21P24 BP025-26 Chr2B449166206 A Chr2B450183215b B 
J21P56 BP025-28 Chr2B449166206 A Chr2B450183215b B 
J21P145 BP025-28 Chr2B450183215b A Chr2B450739111c B 
J21P91 BP025-28 Chr2B450739111c B IWB9833 A 
J21P78 BP025-28 IWB9833 B IWA1215d A 
J21P98 BP025-28 IWA1215d B Chr2B453751477 A 
J21P108 BP025-28 IWA1215d A Chr2B453751477 B 
J21P69 BP025-28 IWA1215d A Chr2B453751477 B 
J21P88 BP025-28 IWA1215d A Chr2B453751477 B 
J21P101 BP025-28 Chr2B453751477 B Chr2B454482299e A 
J21P137 BP025-26 Chr2B454482299e B Chr2B463768947f A 
J21P161 BP025-28 Chr2B463768947f B Chr2B477564181 A 
J21P40 BP025-26 Chr2B477564181 B Chr2B478107531 A 
J21P123 BP025-28 Chr2B477564181 A Chr2B478107531 B 
J21P99 BP025-28 Chr2B478107531 B Chr2B486194062 A 
J21P157 BP025-28 Chr2B478107531 B Chr2B486194062 A 
J21P28 BP025-26 Chr2B478107531 B Chr2B486194062 A 
J21P158 BP025-28 Chr2B478107531 B Chr2B486194062 A 
J21P116 BP025-28 Chr2B478107531 A Chr2B486194062 B 
J21P26 BP025-26 Chr2B478107531 A Chr2B486194062 B 
J21P3 BP025-26 Chr2B478107531 A Chr2B486194062 B 
J21P120 BP025-28 Chr2B486194062 B Chr2B494273758g A 
J21P142 BP025-28 Chr2B486194062 B Chr2B494273758g A 
J21P73 BP025-28 Chr2B486194062 B Chr2B494273758g A 
J21P94 BP025-28 Chr2B486194062 A Chr2B494273758g B 
J21P105 BP025-28 Chr2B486194062 A Chr2B494273758g B 
J21P81 BP025-28 Chr2B486194062 A Chr2B494273758g B 
J21P23 BP025-26 Chr2B486194062 A Chr2B494273758g B 
J21P7 BP025-26 Chr2B486194062 A Chr2B494273758g B 
J21P93 BP025-28 Chr2B494273758g A Chr2B491054244h B 
J21P85 BP025-28 Chr2B491054244h B Chr2B500593313i A 
J21P31 BP025-26 Chr2B491054244h B Chr2B500593313i A 
J21P154 BP025-28 Chr2B500593313i B Chr2B506507689 A 
J21P14 BP025-26 Chr2B500593313i A Chr2B506507689 B 
J21P55 BP025-28 Chr2B500593313i A Chr2B506507689 B 
J21P58 BP025-28 Chr2B506507689 B Chr2B507911105j A 
J21P59 BP025-28 Chr2B506507689 A Chr2B507911105j B 
J21P19 BP025-26 Chr2B507911105j B Chr2B511136108 A 
J21P113 BP025-28 Chr2B507911105j A Chr2B511136108 B 
J21P30 BP025-26 Chr2B511136108 B Chr2B513480840k A 
J21P36 BP025-26 Chr2B511136108 B Chr2B513480840k A 
J21P37 BP025-26 Chr2B511136108 B Chr2B513480840k A 
J21P42 BP025-26 Chr2B511136108 B Chr2B513480840k A 
J21P44 BP025-26 Chr2B511136108 B Chr2B513480840k A 
J21P46 BP025-26 Chr2B511136108 B Chr2B513480840k A 
J21P48 BP025-26 Chr2B511136108 B Chr2B513480840k A 
J21P52 BP025-26 Chr2B511136108 B Chr2B513480840k A 
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Table 6.6. Genetic linkage results from the second round of fine-mapping and the markers in 
which a recombination occurred in the BC3F3 plants (continued).  

  Recombination region 
Line Donor RIL Left marker1 Allele2 Right marker1 Allele2 
J21P71 BP025-28 Chr2B511136108 B Chr2B513480840k A 
J21P68 BP025-28 Chr2B513480840k B Chr2B517599131 A 
J21P65 BP025-28 Chr2B513480840k B Chr2B517599131 A 
J21P15 BP025-26 Chr2B513480840k B Chr2B517599131 A 
J21P130 BP025-28 Chr2B513480840k B Chr2B517599131 A 
J21P97 BP025-28 Chr2B513480840k A Chr2B517599131 B 
J21P103 BP025-28 Chr2B513480840k A Chr2B517599131 B 
J21P33 BP025-26 Chr2B513480840k A Chr2B517599131 B 
J21P119 BP025-28 Chr2B513480840k A Chr2B517599131 B 
J21P109 BP025-28 Chr2B513480840k A Chr2B517599131 B 
J21P112 BP025-28 Chr2B517599131 B Chr2B523086763 A 
J21P89 BP025-28 Chr2B517599131 B Chr2B523086763 A 
J21P16 BP025-26 Chr2B517599131 B Chr2B523086763 A 
J21P136 BP025-26 Chr2B517599131 B Chr2B523086763 A 
J21P5 BP025-26 Chr2B517599131 A Chr2B523086763 B 
J21P76 BP025-28 Chr2B517599131 A Chr2B523086763 B 
J21P127 BP025-28 Chr2B517599131 A Chr2B523086763 B 
J21P125 BP025-28 Chr2B517599131 A Chr2B523086763 B 
J21P9 BP025-26 Chr2B523086763 B Chr2B525074970 A 
J21P174 BP025-28 Chr2B523086763 B Chr2B525074970 A 
J21P75 BP025-28 Chr2B523086763 A Chr2B525074970 B 
J21P63 BP025-28 Chr2B523086763 A Chr2B525074970 B 
J21P61 BP025-28 Chr2B525074970 A Chr2B526776450l B 

1List of markers that co-segregate: 
aChr2B446082351, Chr2B446116612, Chr2B447741566, Chr2B447822409, 
Chr2B448080365 
bChr2B450183215, IWB42378, IWB77429 
cChr2B450739111, Chr2B451890281, Chr2B451923155 
dIWA1215, IWB76099 
eChr2B454482299, Chr2B455466692, Chr2B456019275, Chr2B456024533, IWB51413, 
IWB29666, Chr2B456304658, Chr2B459800224 
fChr2B463768947, Chr2B464291292, Chr2B465653389, Chr2B46619357, 
Chr2B467477266, Chr2B470913679, Chr2B476407551 
gChr2B494273758, Chr2B494278866, Chr2B491023492, Chr2B494860481 
hChr2B491054244, Chr2B494880740 
iChr2B500593313, Chr2B501009984, Chr2B504323864 
jChr2B507911105, Chr2B509713066 
kChr2B513480840, Chr2B513499035 
lChr2B526776450, Chr2B526886014, Chr2B527877066, Chr2B528794281, IWA1690, 
Chr2B529290113, Chr2B530731940, Chr2B532010814, Chr2B534398278, IWB35321, 
IWB75883, Chr2B534843854, Chr2B538239714 

2Ben allele=A, PI 41025 allele=B 
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6.5. Discussion 

Relatively few yield related genes have been cloned in wheat compared to the other two 

major cereal crop species, rice and maize (Nadolska-Orczyk et al. 2017). This is partially due to 

the large genome size of wheat, the complexity with multiple subgenomes, and the difficulty of 

phenotyping yield and yield components (Borrill et al. 2015). It is important to clone yield 

components genes to understand the underlying pathways involved in determining final yield, 

along with using this information for breeding purposes (Cao et al. 2020). Previously, a QTL for 

increased kernels per spike was identified by Faris et al. (2014) under greenhouse conditions and 

later under field conditions (Chapter 5) in the BP025 population. Here, I reported the 

development of a fine map around the genetic region of a kernels per spike QTL on chromosome 

2B in tetraploid wheat. 

One issue with map-based cloning of yield related traits is the small effect of these genes 

and effects from homoeologous genes. One method to overcome this is the use of heterogenous 

inbred families (Taagen et al. 2021). However, the use of these type of lines also presents 

challenges. In this study, I developed near-isogenic lines to ‘Mendelize’ the trait. To develop 

these lines, I performed a series of backcrosses to develop lines that contained high percentage of 

the Ben background throughout the genome but were heterozygous for both Ben and PI 41025 

alleles in the target region. Ben was chosen as the recurrent parent due to having more favorable 

traits for greenhouse work, such as shorter height and days to heading, than PI 41025 (Faris et al. 

2014).  

One hurdle I have observed, along with others, was the presence of many yield related 

traits near the centromeric region (Chapters 4, 5; Arriagada et al. 2020; Colasuonno et al. 2021; 

Cao et al. 2020). Maccaferri et al. (2019) demonstrated using the sequence of Zavitan, a wild 
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emmer wheat line, and Svevo, a durum wheat cultivar, that QTL in tetraploid wheat for 

numerous traits have been mapped to the pericentromeric region. In Svevo, the pericentromeric, 

low recombinogenic region spans from 209.7 to 441.5 Mb. The initial region included in the first 

round of the fine mapping in this study included this region. Few recombinants were observed 

between the markers which were physically located within this region, although the physical size 

of this region is quite large (Figure 6.2, Table 6.4). Fortunately, I was able to delineate the region 

for the second round of fine mapping to be on the edge of this region and outwards, from 439.3 

to 529.8 Mb.  

An initial aim of this project was to develop and map markers between the original 

flanking markers of IWA1217 and IWA652 (Faris et al. 2014). I was not able to convert these 

SNP markers to STARP markers for my initial fine mapping. Therefore, I used the SSR marker 

Xgwm55 and converted the SNP marker IWA1215 into a STARP marker. For this first round, I 

only added three markers which mapped between the original flanking markers, IWB29666, 

Chr2B459250101, and Chr2B465653389 (Figure 6.2). More markers could have been developed 

from the exome capture data; however, for this first round I was visualizing markers using 

polyacrylamide gels. Due to the time commitment of running these gels, it was not feasible 

possible to run a large number of markers within this region. Additionally, I added markers 

around these flanking markers outside of my region in case the initial peak QTL region identified 

by Faris et al. (2014) did not contain the target gene for KPS.  

The second round of fine mapping added 18 markers between the original flanking 

markers of IWA1215 and XGwm55 reported by Faris et al. (2014). A larger number of markers 

was used for genotyping in this round due to converting my markers to KASP based and using a 

non-gel based visualization method. Currently, we are growing BC3F4 plants representing each 
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BC3F3 family in the greenhouse in a replicated yield trial to delineate this region further using the 

newly developed genetic linkage map of this region.  

Once I have identified a narrower target region, I will use reference sequence data to look 

for candidate genes within this region. Recently, the wheat gene WAPO-A1 was cloned and is an 

ortholog of the rice gene ABERRANT PANICLE ORGANIZATION 1 (Muqaddasi et al. 2019; 

Voss-Fels et al. 2019; Kuzay et al. 2019). Additional wheat yield related genes which have been 

identified and have orthologs in rice include TaGW2, TaTGW6-A1, TaFlo2-A1, TaTPP-6AL1, 

TaTGW-7A, TaCwi-A1, Tabas1-B1, TaCWI, and TaCYP78A3 (Wang et al. 2018; Hanif et al. 

2015; Sajjad et al. 2017; Zhang et al. 2017; Hu et al. 2016; Ma et al. 2012; Zhu et al. 2016; Jiang 

et al. 2015; Ma et al. 2015); however, many of these have not been validated. Many yield related 

genes have been cloned and characterized in rice (Huang et al. 2018), therefore I will use 

BLAST analysis to evaluate genes within the region in comparison to genes in rice and other 

cereal genomes as needed. Once strong candidates are identified, I will utilize reverse genetic 

methods, such as the Kronos and Cadenza Targeting Induced Local Lesions in Genomes 

(TILLING) populations (Krasileva et al. 2016) and multiplex gene editing via CRISPR-Cas9 

(Wang et al. 2018), to determine if any candidate genes have an effect on kernel number per 

spike.  

In conclusion, I am currently working on fine mapping a region on chromosome 2B that 

is associated with kernels per spike in tetraploid wheat. To overcome many of the obstacles due 

to the complexity of the wheat genome, I developed near-isogenic lines using the backcross 

method to “Mendelize” the trait, along with the use of replicated yield trials. If I succeed in 

identifying, cloning, and characterizing my target gene, this knowledge will contribute to the 

understanding of the genes or pathways are involved in determining the final number of kernels 



 

247 

per spike. The cloning of yield related genes may prove useful for the future of plant breeding, 

giving breeders the knowledge and power to fine-tune wheat yield to feed future generations.  
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CHAPTER 7. GENOME-WIDE ASSOCIATION MAPPING FOR SUSCEPTIBILITY TO 

PARASTAGONOSPORA NODORUM AND ASSESSING NECROTROPHIC EFFECTOR 

SENSTIVITIES IN A GLOBAL WINTER WHEAT PANEL 

7.1. Abstract 

A major pathogen in wheat (Triticum aesitivum L.) is Parastagonospora nodorum, a 

necrotroph which causes septoria nodorum blotch (SNB). Wheat and P. nodorum interact in an 

inverse gene-for-gene manner, with a total of nine interactions characterized to date. Here, I 

report the evaluation of a global winter wheat panel for SNB susceptibility and the first report of 

the prevalence of sensitivity in a wheat panel to the necrotrophic effectors (NEs) SnTox5 and 

SnTox267. Infiltrations with the NEs SnToxA, SnTox1, SnTox267, SnTox3 and SnTox5 found 

38.64, 36.74, 53.03, 48.86, and 42.42% of the lines were sensitive, respectively. Significant QTL 

associated with SNB susceptibility were identified above the previously characterized sensitivity 

genes Tsn1 and Snn3-B1 on chromosome 5B when the panel was inoculated with P. nodorum 

isolates Sn2000 and Sn4, respectively. Therefore, I did not identify any new genomic regions 

associated with SNB disease in this panel. Future research is needed using additional isolates 

collected from Iran and Europe, which many of the lines in this panel originate from, to 

determine whether there are truly no new regions associated with SNB in this panel. However, 

the screening results with purified NEs will be useful for cloning and validation of the sensitivity 

genes Snn3-B1, Snn2, Snn5, Snn6, and Snn7, along with marker development.  

7.2. Introduction 

Bread, or common, wheat (Triticum aestivum L.) is a major world food crop and is grown 

on over 200 million hectares worldwide (www.wheatinitiative.org). There are two growth habits 

of bread wheat: spring type, which is planted in the spring and harvested in the summer/fall, and 
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winter type, which is planted in the fall and overwinters to reach a vernalization requirement for 

flowering and is harvested mid-summer. Within the United States, winter wheat production 

accounts for 70-80 % of the total wheat production 

(https://www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance/#classes) and therefore 

has major economic importance. Like other crop species, wheat yield can be reduced due to 

abiotic stresses (drought, soil degradation, floods, temperature increases, increased CO2) and 

biotic stresses, such as pathogens (Singh and Upadhyaya 2016).  

A major pathogen on wheat is the necrotrophic pathogen Parastagonospora nodorum 

(Berk.) Quaedvleig, Verkley, & Crous. P. nodorum is the causal agent of septoria nodorum 

blotch (SNB), which results in chlorotic and necrotic lens-shaped lesions on wheat leaves and 

can decrease wheat quality and yield by up to 50% (Eyal 1987). Wheat and P. nodorum interact 

in an inverse gene-for-gene manner (reviewed by Friesen and Faris 2010, 2021; Faris and 

Friesen 2020), with host sensitivity genes recognizing P. nodorum necrotrophic effectors (NEs). 

Once a compatible interaction occurs where the host recognizes the pathogen, a host defense 

response occurs, resulting in programmed cell death of the leaf tissue surrounding the pathogen. 

Due to P. nodorum being a necrotroph, this recognition results in P. nodorum gaining nutrients 

from the dying and dead tissue and disease progressing further.  

A total of nine interactions have been characterized in the wheat-P. nodorum 

pathosystem, and they involved the wheat genes Tsn1, Snn1, Snn2, Snn3-B1, Snn3-D1, Snn4, 

Snn5, Snn6, and Snn7 along with the NEs SnToxA, SnTox1, SnTox267, SnTox3, SnTox4, and 

SnTox5 (see Chapter 3). Additional host genes associated with SNB have been identified on 

almost every chromosome except 1D, 3D, 4D, and 6D (see Chapter 3). To date, the host genes 

Tsn1 (Faris et al. 2010), Snn1 (Shi et al. 2016b), and Snn3-D1 (Zhang et al. 2021) have been 
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cloned. In P. nodorum, the NE genes SnToxA (Friesen et al. 2006), SnTox3 (Liu et al. 2009), 

SnTox1 (Liu et al. 2012), SnTox5 (Kariyawasam et al. 2021), and SnTox267 (Richards et al. 

2021) have been cloned.  

Discovery and validation of all the characterized interactions, along with much of the 

early work on this pathosystem, involved the use of bi-parental mapping populations (see 

Chapter 3 for review). However, QTL mapping in biparental populations has drawbacks. 

Identification of new genomic regions is limited by whether the two parents have those genes, 

and if so, they must be polymorphic, along with low mapping resolution due to fewer 

recombination events, and bi-parental populations are tedious to develop (Xu et al. 2017). Using 

genome-wide association studies (GWAS), some of the disadvantages of bi-parental mapping 

can be overcome. For example, the laborious process of biparental population development is 

circumvented and large panels of unrelated lines allows for the sampling of much greater 

diversity compared to a single biparental population (Korte and Farlow 2013). In the last decade, 

multiple GWAS studies in wheat have been published evaluating genomic regions associated 

with resistance/susceptibility to SNB (Adhikari et al. 2011; Gurung et al. 2014; Liu et al. 2015; 

Downie et al. 2018; Phan et al. 2018; Halder et al. 2019; Ruud et al. 2019; Cowger et al. 2020; 

Ballini et al. 2020; Francki et al. 2020; Phan et al. 2021; AlTameemi et al. 2021). These studies 

have been able to identify new genomic regions associated with SNB that were not detected in 

bi-parental mapping populations. 

Previously, a winter wheat collection from the National Small Grains Collection was 

evaluated for stripe and stem rust resistance (Bulli et al. 2016; Muleta et al. 2020; Mihalyov et al. 

2017). In this study, I investigated a subset of this collection consisting of 264 lines for 

prevalence of sensitivity to the known NEs SnToxA, SnTox1, SnTox267, SnTox3, and SnTox5. 
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I also inoculated the panel with three P. nodorum isolates to identify genomic regions associated 

with SNB. Findings from this study will provide beneficial knowledge for breeders on the 

prevalence of NE sensitivity genes in winter wheat, which interactions contribute to disease for 

particular isolates, and useful information for marker development and gene cloning projects.  

7.3. Materials and Methods 

7.3.1. Association Mapping Panel 

A subset of the National Small Grains Collection core global hexaploid winter wheat 

(Triticum aestivum ssp. aestivum) germplasm collection was used in this study. The original set 

consisted of 300 lines representing most of the diversity of the panel used by Bulli et al. (2016), 

Mihalyoy et al. (2017); and Muleta et al. (2020). After two rounds of seed increase, 264 lines 

were selected and used for disease evaluations based on the number of seed available (100+ 

seeds). Of the 264 lines used in this study, 46 countries from six continents were represented 

(0.4% Africa, 34.47% Asia, 55.3% Europe, 8.0% North America, 0.4% Oceania, 1.5% South 

America), and the panel consisted of 35 breeding lines (13.3%), 84 cultivars (31.8%), 32 

uncertain improvement status (12.1%), 1 genetic line (0.4%), and 112 landraces (42.4%) 

(Appendix A). 

7.3.2. Phenotyping 

The P. nodorum genes SnTox1, SnToxA, SnTox3, SnTox267, and SnTox5 were previously 

cloned (Liu et al 2012; Friesen et al. 2006; Liu et al. 2009, Richards et al. 2021; Kariyawasam et 

al. 2021). SnTox1, SnToxA, SnTox3, and SnTox267 were expressed separately in the yeast Pichia 

pastoris as described by Friesen and Faris (2012), which was used to make culture filtrate for 

infiltrations with these NEs. SnTox5 has not been cloned into Pichia pastoris, therefore culture 

filtrates of Sn79+Tox5-4 were used as described by Kariyawasam et al. (2021).  
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For both infiltrations and inoculations, plants were grown in plastic cones that were 3.8 

cm in diameters and 21 cm deep (Stuewe and Sons, Inc., Corvallis, OR, USA), with 3 plants per 

cone. For inoculations, lines were arranged in a completely randomized design (CRD) with 

Alsen, a susceptible wheat variety, planted as the border to reduce any edge effect. Infiltrations 

and inoculations of P. nodorum on seedlings was as described by Friesen and Faris (2012). P. 

nodorum isolates Sn4, Sn2000, and AR2-1 were used for inoculations (Table 7.1).  

For infiltrations with NE-encoding genes expressed in P. pastoris, cultures for each were 

obtained from Dr. Tim Friesen at the USDA-ARS Cereal Crop Unit in Fargo, ND. The tip of a 

toothpick was inserted into the frozen culture, then dropped into 2 ml YPD (10 g yeast extract, 

20 g peptone, 900 mL distilled H2O, autoclaved, then 100 mL 10 X dextrose) and incubated at 30 

°C with vigorous shaking for 48 hours. Samples were diluted to 1:1000 in a new tube with YPD. 

Another incubation period of 30 °C for 48 hours with vigorous shaking followed. Culture filtrate 

was harvested by centrifuging at 1250 rpm/rcf for 10 minutes, and then filtered through a 0.45 

µm bottle top filter. The harvested culture filtrate was stored at -20 °C until plants were 

infiltrated.  

Plants were infiltrated when the second leaf was fully expanded. Two plants per cone 

were infiltrated on the second leaf using a 1-mL needleless syringe. The infiltration boundaries 

were marked using a permanent marker. Plants were placed in a growth chamber at 21 °C with a 

12-h photoperiod. For culture filtrates, reactions were scored at 5 days post infiltration, SnToxA, 

SnTox1, SnTox3, and SnTox5 were scored at 5 days post infiltration, and SnTox267 was scored 

at 7 days post infiltration. The scoring system was as follows: 0 = no visible necrosis or 

chlorosis, 1 = mottled chlorosis or necrosis extending to boundaries of the infiltrated area, 2 = 

highly visible necrosis or chlorosis with little mottling extending to the boundaries of the 
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infiltrated area without complete tissue collapse and little or no shriveling or narrowing of the 

leaf within the infiltrated region, 3 = necrosis throughout the entire infiltrated area with complete 

tissue collapse and shriveling or narrowing of the leaf within the infiltrated region (Zhang et al. 

2011). Reaction types of 2 and 3 were considered sensitive and 0 and 1 were insensitive. 

For inoculations, P. nodorum fungal plugs were grown on V-8-potato dextrose agar under 

24 hour fluorescent light for 7 days until the pycnidium released spores, The agar plate was 

rinsed with sterile-distilled water, after which 200 µL of spore suspension was streaked onto a 

new V8 plate. Spores were collected after 7 days and diluted to a concentration of 106 spores/mL 

and one drop of Tween 20 was added to the inoculum for every 50 mL of spore suspension. 

Plants were inoculated when the second leaf was fully expanded for all plants with an airflow of 

17 psi until runoff was observed. After inoculation, plants were placed in a 100% humidity 

growth chamber at 21 °C for 24 hours under constant light, then moved to a controlled growth 

chamber at 21 °C with a 12 h photoperiod. Plants were scored at 7 days post inoculation using 

the scale described by Liu et al. (2004) (Table 7.2). 
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Table 7.1. Isolates used in this study, along with the collection information and when the genome sequence was published.  

Isolate Location Year Wheat type Sequenced NEs 
Sn2000 North Dakota 2000 Durum Richards et al. (2018) SnToxA, SnTox1, SnTox5 
Sn4 North Dakota 2003 Spring wheat Richards et al. (2018) SnToxA, SnTox1, 

SnTox267, SnTox3 
AR2-1 Arkansas 1995 Winter wheat Richards et al. (2019) SnTox1, SnTox267 

 
 
 
Table 7.2. Inoculation scoring scale to be used on wheat leaves inoculated with P. nodorum isolates. 

Scale Phenotype Disease Level 
0 Absence of visible lesions Highly resistant 
1 Few penetration points with lesions consisting of flecking or small dark spots Resistant 
2 Lesions consisting of dark spots with surrounding necrosis or chlorosis Moderately resistant 
3 Dark lesions completely surrounded by necrosis or chlorosis, lesions 2-3 mm Moderately susceptible 
4 Larger necrotic or chlorotic lesions 4 mm or greater, little coalescence Susceptible 
5 Large coalescent lesions with very little green tissue remaining Highly susceptible 
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7.3.3. SNP Genotyping 

The panel was previously genotyped with the Illumina 9K SNP array (data available on 

T3 and Bulli et al. 2016). Here, I genotyped the 264 lines in my subset using the Illumina 90K 

SNP array (Wang et al. 2014). DNA was extracted using the ammonium acetate method (Pallota 

et al. 2003) and diluted to 40 ng/ul for running the SNP array. A BeadStation and iScan 

instrument from Illumina were used for the assay, which was performed at the small grains 

genotyping laboratory in Fargo, ND, USA. Clustering data was analyzed using GenomeStudio 

2.0.5 from Illumina, Inc. (2020). SNPs were ordered based on their physical position in the 

Chinese Spring IWGSC RefSeq v2.0. In TASSEL v5.2 (Bradbury et al. 2007), SNP markers 

were filtered with a minor allele frequency greater than 0.01 and missing data less than 50%. For 

the remaining markers, missing values were imputed using the LD-KNNi method (Money et al. 

2015).  

7.3.4. Population Structure and Linkage Disequilibrium 

The principal component analysis (PCA) was performed using TASSEL v5.2. Linkage 

disequilibrium (LD) was estimated using a Fischer’s Exact test as r2 between pairs of SNPs in 

TASSEL v5.2. Heterozygous SNP markers were converted to missing, and markers were again 

filtered for missing data less than 50%. LD decay plots were generated in R v4.0.3. The half-

decay distance was calculated using the estimated maximum value of LD and the Remington 

model was used to fit a nonlinear model for the relationship between LD decay and distance 

(Remington et al. 2001).  

7.3.5. Statistical Analysis 

Statistical analysis was performed using SAS 9.4 (SAS Institute). The PROC GLM 

procedure was used because my dataset contained missing entries. The data were analyzed for 
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homogeneity of variances between replicates using Bartlett’s Chi squared test for homogeneity 

of error variances (Snedecor and Cochran 1989) to determine if replicates could be combined 

(Table 7.3). Pearson’s correlation coefficients were calculated in R v4.0.3 using the R command 

cor (R Development Core Team).  

Table 7.3. Bartlett’s Chi squared test for homogeneity of error variances. 

Trait χ2 p-value 
SnToxA 0.03 0.99 
SnTox1 1.07 0.59 
SnTox267 0.16 0.92 
SnTox3 0.42 0.81 
SnTox5 0.88 0.65 
Sn4 2.58 0.28 
Sn2000 3.90 0.14 
AR2-1 0.62 0.74 

 
7.3.6. Genome-wide Association Analyses 

Association mapping was conducted using TASSEL and the R package GAPIT v.3 

(Lipka et al. 2012; Wang and Zhang 2020). The naïve model was run in TASSEL and the other 

models in GAPIT. Based on the eigenplots, the first four principal components (PCs) were used 

for analysis. A kinship matrix (K) was calculated using the Emma algorithm in GAPIT. The four 

models evaluated were: (i) a naïve model, (ii) a general linear model (GLM) with four PCs 

included as mixed effects (Patterson et al. 2006); (iii) a mixed linear model (MLM) with four 

mixed-effect PCs and a random-effect kinship matrix (K matrix) (Zhao et al. 2007); and (iv) 

FarmCPU, a fixed and random model Circulating Probability Unification model, which fits 

associated markers as cofactors to control false positives (Liu et al. 2016).  

Models naïve, GLM, MLM, and FarmCPU were run and the most robust model was 

chosen based off of visualization of the Q-Q plots (which show the observed vs expected 

unadjusted P-values) and the lowest mean of the squared difference (MSD) values. The MSD 

values were calculated with the R package hydroGOF (Zambrano-Bigiarini 2020) using the mse 
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function which returns the difference between the observed and expected P values for that 

model. Marker P-values were adjusted using a false discovery rate (FDR) and markers with an 

FDR adjusted P-value of 0.001 or less were deemed significant for infiltrations, and a P-value of 

0.05 or less was significant for inoculations. Manhattan plots were developed using the R 

package qqman (Turner 2018). 

7.4. Results 

7.4.1. Population Structure and Linkage Disequilibrium 

The final SNP marker set used for association mapping consisted of 42,022 markers after 

filtering for a minor allele frequency greater than 1%, missing values less than 50%, and 

removing minor SNP states. The first four PCs were used for GWAS analysis and explained 

13.91, 9.18, 4.41, and 2.01% of the total variation, respectively. For linkage disequilibrium, the 

data set was further filtered for markers with a high percentage of heterozygous calls. The 

estimated r2 for half decay ranged from 0.2290 on chromosome 7D to 0.2347 on chromosome 

5B. The physical distance for LD decay to reach 50% ranged from 323,535 bp on chromosome 

6D to 2,601,754 bp on chromosome 5B (Figures 7.1, 7.2, 7.3). For both values, chromosome 4D 

was the outlier, with an estimated r2 for half decay of 0.6453 and a physical distance of 6,425 bp 

(Figure 7.3). 
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Figure 7.1. LD decay plots based on pairwise comparisons of loci for the A genome chromosomes. The red line is the estimated LD 
points. The horizontal line is the LD significance based on the estimated LD value for half decay. The green line shows the distance in 
Mb for half decay, with the half decay distnace shown in green along the bottom of each plot. These values were calculated as 
described by Remington et al. (2001).  
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Figure 7.2. LD decay plots based on pairwise comparisons of loci for the B genome chromosomes. The red line is the estimated LD 
points. The horizontal line is the LD significance based on the estimated LD value for half decay. The green line shows the distance in 
Mb for half decay, with the half decay distnace shown in green along the bottom of each plot. These values were calculated as 
described by Remington et al. (2001).  
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Figure 7.3. LD decay plots based on pairwise comparisons of loci for the D genome chromosomes. The red line is the estimated LD 
points. The horizontal line is the LD significance based on the estimated LD value for half decay. The green line shows the distance in 
Mb for half decay, with the half decay distnace shown in green along the bottom of each plot. These values were calculated as 
described by Remington et al. (2001).  
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7.4.2. Sensitivity to Known NEs 

Sensitivity to the known P. nodorum NEs SnToxA, SnTox1, SnTox267, SnTox3 and 

SnTox5 were evaluated in this global winter wheat panel (Table 7.4). For GWAS analysis, I 

chose to use the MLM model for all five NEs based on MSD values (Table 7.5) and visualization 

of Q-Q plots.  

In this panel, 38.64% of lines were sensitive to SnToxA (Table 7.4). Sensitivity among 

the different geographic origins varied, with the three main groups, North America, European, 

and Asian lines having 42.86, 13.01, and 78.02% SnToxA sensitivity, respectively (Appendix 

A). GWAS data on SnToxA infiltrations yielded 14 SNP markers with FDR adjusted P-values 

below 0.001 (Table 7.6, Figure 7.4). These SNPs ranged in physical position from 549,788,309 

(IACX9261) to 549,933,008 bp (Excalibur_rep_c105815_305) on chromosome 5B and were 

within the Tsn1 region. The most significant SNP, Tdurum_contig25513_123, explained 22.95% 

of the total variation. 

For SnTox1, 36.74% of the panel was sensitive (Table 7.4). As with SnToxA, a high 

percentage of Asian lines were sensitive (62.64%). Only two SNP markers, 

RAC875_rep_c97766_145 and BS00064465_51, were significantly associated with SnTox1 

sensitivity in the MLM model based on FDR adjusted P-values (Table 7.6, Figure 7.5). 

RAC875_rep_c97766_145 and BS00064465_51 were positioned at 2,381,165 and 2,358,687 bp 

on chromosome 1B, respectively, and the Snn1 gene is positioned at 2,383,732 bp in the CS ref 

v2, indicating the region associated with SnTox1 sensitivity in this panel is the Snn1 region. 

RAC875_rep_c97766_145 and BS00064465_51 explained 15.92 and 11.86% of the total 

variation, respectively.  
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Sensitivity to SnTox3 had a slightly different pattern than SnTox1 and SnToxA. Overall, 

a higher percent, 48.86%, was sensitive to SnTox3, with 45.21 and 59.34% of the European and 

Asian lines being sensitive, respectively (Table 7.4). Only one North American line out of 21 

lines was sensitive. A total of 11 SNP markers had P-values below 0.001 with FDR adjustment 

(Table 7.6, Figure 7.6). The genomic region ranged from 6,704,549 (GENE-3324_338) to 

7,091,681 bp (Kukri_c912_1423) on chromosome 5B. BLAST searches of Snn3-D1 sequence 

(Zhang et al. 2021) against the CS Ref v2 yielded a high identity hit on chromosome 5B at 

7,041,691, suggesting this is the Snn3-B1 region. The most significant marker, 

Excalibur_c47452_183, explained 35.36% of the total variation. Two additional markers, 

wsnp_Ku_c439_913400 and Ex_c1846_1818, were located slightly more proximal at 65,759,133 

and 65,759,716 bp, respectively.  

SnTox267 sensitivity was the most prevalent for the five NEs screened on this panel, 

with 53.03% of lines being sensitive (Table 7.4). Both North America and European lines had 

approximately the same percent of sensitive lines, with 42.86 and 44.52%, respectively, whereas 

70.32% of Asian lines were sensitive to SnTox267. No markers were significant after the FDR-

adjustment (Figure 7.7). The markers with the lowest P-values were located on chromosomes 

2B, 2D, and 3B.  

Lastly, 42.42% of lines in this panel were sensitive to SnTox5 (Table 7.4). Major 

differences were observed in the percent per geographic origins, with only 21.23% of European 

lines having sensitivity, whereas 81.32% of Asian lines were sensitive. For the GWAS results, no 

markers were significant after the FDR-adjustment (Figure 7.8). The three markers with the 

lowest P-values, BS00023035_51, Excalibur_c1706_1413, and BS00102481_51, were 
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positioned from 635,842,996 to 635,844,327 bp on chromosome 4B and within the proposed 

Snn5 gene region (Sharma 2019).  

As for individual lines, 35 lines in this panel were insensitive to SnToxA, SnTox1, 

SnTox267, SnTox3, and SnTox5 (Table 7.4, Figure 7.9). The majority of these lines originated 

from European countries (Appendix A). Interestingly, of these 35 lines, 10 had disease scores of 

2.5 or higher to one or more of the isolates and were considered susceptible. On the contrary, 19 

lines were sensitive to all five NEs, and all but one of these lines originated from Asian 

countries. The majority of these were landraces from Iran. Six of these 19 lines had disease 

scores of 2.5 or lower to one or more isolates and were considered resistant.  
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Table 7.4. Infiltration results using purified NEs.  

 Score   
NE 0-0.49 0.5-0.99 1-1.49 1.5-1.99 2-2.49 2.5-3 % insensitive % sensitive 
SnToxA 161 1 0 0 1 101 61.36 38.64 
SnTox1 153 6 8 1 26 70 63.26 36.74 
SnTox267 79 24 21 7 39 94 46.97 53.03 
SnTox3 128 4 3 2 7 120 51.14 48.86 
SnTox5 135 5 12 3 22 87 57.58 42.42 

 
 

 

Table 7.5. MSD values for the naïve, GLM, MLM, and FarmCPU models for infiltrations. 

 naïve GLM MLM FarmCPU 
SnToxA 0.097428 0.002606 0.000328 0.000252 
SnTox1 0.103818 0.001099 0.000062 0.000058 
SnTox3 0.019960 0.002236 0.000075 0.000017 
SnTox5 0.194716 0.000019 0.000239 0.001058 
SnTox267 0.029853 0.000083 0.000067 0.000079 
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Table 7.6. Significant associations between single nucleotide polymorphism (SNP) markers and Parastagonospora nodorum 
necrotrophic effectors. The MLM model was used for each trait to identify significant marker trait associations. Markers with a P-
value less than 0.001 after the FDR adjustment were considered significant.  

NE SNPa Allele Chromosome Position (bp)b P-value FDR adjusted 
P-value 

-Log10(P) R2 × 
100 

Effect 

SnToxA Tdurum_contig25513_123 A/G 5B 549,910,986 1.93E-17 8.12E-13 16.71 22.95 2.01 
SnToxA BobWhite_c48435_165 T/C 5B 549,911,221 6.78E-17 9.49E-13 16.17 22.03 2.01 
SnToxA Tdurum_contig12066_126 T/G 5B 549,910,391 6.78E-17 9.49E-13 16.17 22.03 2.01 
SnToxA wsnp_Ku_c40334_48581010 A/G 5B 549,932,605 3.19E-16 3.35E-12 15.50 20.91 1.90 
SnToxA tplb0027f13_1346 A/G 5B 549,911,640 4.65E-16 3.91E-12 15.33 20.64 1.90 
SnToxA Tdurum_contig12066_247 G/A 5B 549,910,462 1.17E-15 8.18E-12 14.93 19.98 -1.89 
SnToxA tplb0027f13_1493 C/T 5B 549,911,493 1.68E-14 9.04E-11 13.78 18.12 -1.77 
SnToxA Tdurum_contig25513_195 C/T 5B 549,911,058 1.72E-14 9.04E-11 13.76 18.10 -1.66 
SnToxA Excalibur_rep_c105815_305 C/T 5B 549,933,008 5.61E-13 2.62E-09 12.25 15.73 -1.43 
SnToxA GENE-3198_56 C/T 5B 549,911,389 5.79E-10 2.43E-06 9.24 11.25 0.90 
SnToxA IACX9261 A/C 5B 549,788,309 1.68E-09 6.42E-06 8.77 10.59 -1.56 
SnToxA tplb0027f13_452 A/G 5B 549,914,572 7.58E-09 2.66E-05 8.12 9.67 1.09 
SnToxA CAP8_c7929_203 G/T 5B 549,788,353 2.88E-08 9.31E-05 7.54 8.86 1.42 
SnToxA BS00010590_51 T/G 5B 549,788,359 7.27E-08 2.20E-04 7.14 8.31 1.20 
SnTox1 RAC875_rep_c97766_145 C/A 1B 2,381,165 3.15E-11 1.32E-06 10.50 15.92 -0.75 
SnTox1 BS00064465_51 T/C 1B 2,358,687 6.52E-09 1.40E-04 8.19 11.86 -1.02 
SnTox3 Excalibur_c47452_183 T/C 5B 6,710,705 2.19E-16 9.20E-12 15.66 35.36 -1.77 
SnTox3 GENE-3324_338 A/G 5B 6,704,549 6.69E-16 1.40E-11 15.17 34.02 1.77 
SnTox3 BS00091519_51 A/G 5B 6,705,156 2.11E-15 2.96E-11 14.68 32.66 -1.72 
SnTox3 BobWhite_c4838_58 T/C 5B 6,710,620 1.59E-14 1.67E-10 13.80 30.31 1.65 
SnTox3 wsnp_Ku_c439_913400 G/A 5B 65,759,133 3.10E-12 2.61E-08 11.51 24.37 -1.05 
SnTox3 BS00091518_51 T/C 5B 6,705,136 5.36E-12 3.75E-08 11.27 23.78 1.35 
SnTox3 RAC875_c39204_91 C/T 5B 6,909,035 2.03E-11 1.22E-07 10.69 22.33 -1.59 
SnTox3 BS00064298_51 G/A 5B 7,031,414 4.05E-11 2.13E-07 10.39 21.59 0.93 
SnTox3 Kukri_c912_1423 T/C 5B 7,091,681 1.36E-10 6.33E-07 9.87 20.31 1.25 
SnTox3 BS00064297_51 C/T 5B 7,031,396 1.92E-10 8.07E-07 9.72 19.94 -0.89 
SnTox3 Ex_c1846_1818 G/A 5B 65,759,716 9.39E-10 3.59E-06 9.03 18.28 -1.05 

aSNP markers are from the Infinium SNP 90K array (Wang et al. 2014) 
bPhysical location is based on the IWGSC RefSeq v2 
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Figure 7.4. Manhattan plots for the association mapping using the MLM model for sensitivity to SnToxA. For the top Manhattan plot, 
the y-axis indicated –log10(p) for SNP markers whereas for the bottom Manhattan plot, the y-axis indicated –log10(FDR) for SNP 
markers. The x-axis for both is the physical distribution of all the SNP markers on the 21 common wheat chromosomes based on the 
alignment to the IWGSC Chinese Spring Ref Seq v2. On the right is the QQ plot output for the MLM model from GAPIT.  
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Figure 7.5. Manhattan plots for the association mapping using the MLM model for sensitivity to SnTox1. For the top Manhattan plot, 
the y-axis indicated –log10(p) for SNP markers whereas for the bottom Manhattan plot, the y-axis indicated –log10(FDR) for SNP 
markers. The x-axis for both is the physical distribution of all the SNP markers on the 21 common wheat chromosomes based on the 
alignment to the IWGSC Chinese Spring Ref Seq v2. On the right is the QQ plot output for the MLM model from GAPIT.  
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Figure 7.6. Manhattan plots for the association mapping using the MLM model for sensitivity to SnTox3. For the top Manhattan plot, 
the y-axis indicated –log10(p) for SNP markers whereas for the bottom Manhattan plot, the y-axis indicated –log10(FDR) for SNP 
markers. The x-axis for both is the physical distribution of all the SNP markers on the 21 common wheat chromosomes based on the 
alignment to the IWGSC Chinese Spring Ref Seq v2. On the right is the QQ plot output for the MLM model from GAPIT.  
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Figure 7.7. Manhattan plots for the association mapping using the MLM model for sensitivity to SnTox267. For the top Manhattan 
plot, the y-axis indicated –log10(p) for SNP markers whereas for the bottom Manhattan plot, the y-axis indicated –log10(FDR) for 
SNP markers. The x-axis for both is the physical distribution of all the SNP markers on the 21 common wheat chromosomes based on 
the alignment to the IWGSC Chinese Spring Ref Seq v2. On the right is the QQ plot output for the MLM model from GAPIT.  
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Figure 7.8. Manhattan plots for the association mapping using the MLM model for sensitivity to SnTox5. For the top Manhattan plot, 
the y-axis indicated –log10(p) for SNP markers whereas for the bottom Manhattan plot, the y-axis indicated –log10(FDR) for SNP 
markers. The x-axis for both is the physical distribution of all the SNP markers on the 21 common wheat chromosomes based on the 
alignment to the IWGSC Chinese Spring Ref Seq v2. On the right is the QQ plot output for the MLM model from GAPIT.  
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Figure 7.9. Histograms displaying the distribution of infiltration scores in the winter wheat panel to the NEs SnToxA, SnTox1, 
SnTox267, SnTox3, and SnTox5. 
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7.4.3. Inoculations 

For inoculations, there were three homogenous replicates for each isolate (Table 7.3), 

therefore, the averages for each isolate was used for analysis. For all three isolates, the model 

with the lowest MSD value was MLM (Table 7.7). For AR2-1, no significant markers associated 

with disease were detected (Figure 7.10), therefore the AR2-1 GWAS results are not discussed 

below.  

Table 7.7. MSD values for the naïve, GLM, MLM, and FarmCPU models for inoculations 

 naïve GLM MLM FarmCPU 
Sn4-avg 0.062862 0.003281 0.000050 0.001938 
AR2avg 0.001171 0.004656 0.000041 0.000101 
Sn2000avg 0.165204 0.000193 0.000013 0.000180 

 
The winter wheat lines in this panel ranged from highly resistant to highly susceptible in 

their reaction to SNB caused by the isolates Sn4, Sn2000, and AR2-1. The overall average 

disease scores were 3.35, 2.52, and 2.19 for Sn4, AR2-1, and Sn2000, respectively (Figure 7.11). 

For disease caused by Sn4, a total of 10 lines were considered highly resistant (score of 0.5 or 

lower) and 58 lines were highly susceptible (score of 4.5 or higher). As shown in the GWAS 

inoculation results (discussed below), the Snn3-SnTox3 interaction was the most significant 

contributor to disease for Sn4 inoculations; however, no significant associations were identified 

to be associated with the Tsn1-SnToxA, Snn1-SnTox1, Snn2-SnTox267, Snn6-SnTox267, and 

Snn7-SnTox267 interactions. Interestingly, some lines that were highly susceptible were not 

sensitive to SnTox3 based on the infiltration data. However, all the highly resistant lines were 

insensitive to SnTox3.  

For disease caused by Sn2000, the panel had 72 lines that were resistant and 19 lines that 

were susceptible. Sn2000 is known to produce SnToxA, and GWAS results showed that the 

Tsn1-SnToxA interaction was the largest contributor of disease severity from Sn2000 in this 
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panel. No significant associations were observed at the Snn1 or Snn5 loci, although Sn2000 has 

been shown to produce SnTox1 and SnTox5 (Table 7.1). All of the highly susceptible lines were 

sensitive to SnToxA, whereas all of the highly resistant were not, which is consistent with the 

GWAS results. Lastly, 15 lines were highly resistant to AR2-1, whereas 17 lines were highly 

susceptible. No known interactions were found to be significantly associated with disease, 

although AR2-1 has been shown to contain the SnTox1 and SnTox267 genes; therefore, we had 

expected the Snn1-SnTox1, Snn2-SnTox267, Snn6-SnTox267, and Snn7-SnTox267 interactions 

to present but there were instead absent.  
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Figure 7.10. Manhattan plots for the association mapping using the MLM model for reaction to septoria nodorum blotch caused by the 
P. nodorum isolate AR2-1. For the top Manhattan plot, the y-axis indicated –log10(p) for SNP markers whereas for the bottom 
Manhattan plot, the y-axis indicated –log10(FDR) for SNP markers. The x-axis for both is the physical distribution of all the SNP 
markers on the 21 common wheat chromosomes based on the alignment to the IWGSC Chinese Spring Ref Seq v2. On the right is the 
QQ plot output for the MLM model from GAPIT.  
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Figure 7.11. Histograms displaying the distribution of the disease reaction to the P. nodorum isolate Sn4, Sn2000, and AR2-1. 
Replicates of each were statistically homogeneous and therefore were combined.  
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7.4.4. Sn4 

GWAS for SNB response to P. nodorum isolate Sn4 identified four significant marker-

trait associations (Table 7.8, Figure 7.12). These four markers, BS00091519_51, GENE-

3324_338, Excalibur_c47452_183 and BS00064298_51 were within the Snn3-B1 region on 

chromosome 5BS. BS00064298_51 was the most significant marker and explained 0.94% of the 

disease variation. These significant SNPs spanned from 6,704,549 bp (GENE-3324_338) to 

7,031,414 bp (BS00064298_51).  

7.4.5. Sn2000 

For response to Sn2000, a total of 14 SNPs were significantly associated with disease in 

the GWAS analysis (Table 7.8, Figure 7.13). These 14 SNPs were within the Tsn1 region on 

chromosome 5BL. The first 13 most significant SNPs spanned from 549,788,309 bp (IACX9261) 

to 549,933,008 bp (Excalibur_rep_c105815_305). The significant SNP 

wsnp_Ex_c63909_62932437 was at 784,753,007 bp. BobWhite_c48435_165 and 

Tdurum_contig12066_126 were the most significant markers, each explaining 10.83% of the 

disease variation.  
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Table 7.8. Significant associations between single nucleotide polymorphism (SNP) markers and Septoria nodorum blotch disease after 
inoculating with multiple Parastagonospora nodorum isolates. The MLM model was used for each trait to identify significant marker 
trait associations. Markers with a P-value less than 0.05 after the FDR adjustment were considered significant. 

Isolate SNPa Allele Chromosome Positionb P-value FDR adjusted 
P-value 

-Log10(P) R2 × 
100 

Effect 

Sn4 avg BS00091519_51 A/G 5B 6,705,156 8.38E-07 0.03236 6.08 9.04 -0.83 
Sn4 avg GENE-3324_338 A/G 5B 6,704,549 1.54E-06 0.03236 5.82 8.58 0.82 
Sn4 avg Excalibur_c47452_183 T/C 5B 6,710,705 2.42E-06 0.03387 5.62 8.25 -0.79 
Sn4 avg BS00064298_51 G/A 5B 7,031,414 3.61E-06 0.03789 5.44 7.95 0.51 
Sn2000 avg BobWhite_c48435_165 C/T 5B 549,911,221 4.51E-10 6.41E-06 9.35 10.83 1.54 
Sn2000 avg Tdurum_contig12066_126 G/T 5B 549,910,391 4.51E-10 6.41E-06 9.35 10.83 1.54 
Sn2000 avg Tdurum_contig25513_123 G/A 5B 549,910,986 4.58E-10 6.41E-06 9.34 10.82 1.50 
Sn2000 avg tplb0027f13_1346 A/G 5B 549,911,640 5.58E-09 4.17E-05 8.25 9.37 1.40 
Sn2000 avg wsnp_Ku_c40334_48581010 G/A 5B 549,932,605 5.66E-09 4.17E-05 8.25 9.36 1.39 
Sn2000 avg Tdurum_contig12066_247 G/A 5B 549,910,462 5.95E-09 4.17E-05 8.23 9.34 -1.42 
Sn2000 avg Tdurum_contig25513_195 C/T 5B 549,911,058 7.27E-09 4.37E-05 8.14 9.22 -1.29 
Sn2000 avg tplb0027f13_1493 C/T 5B 549,911,493 4.43E-08 0.00023 7.35 8.20 -1.30 
Sn2000 avg Excalibur_rep_c105815_305 C/T 5B 549,933,008 2.17E-07 0.00101 6.66 7.31 -1.03 
Sn2000 avg IACX9261 A/C 5B 549,788,309 3.15E-07 0.00132 6.50 7.10 -1.30 
Sn2000 avg CAP8_c7929_203 G/T 5B 549,788,353 3.90E-07 0.00149 6.41 6.99 1.30 
Sn2000 avg BS00010590_51 T/G 5B 549,788,359 3.92E-06 0.01372 5.41 5.73 1.05 
Sn2000 avg GENE-3198_56 C/T 5B 549,911,389 8.34E-06 0.02696 5.08 5.33 0.69 
Sn2000 avg wsnp_Ex_c63909_62932437 C/T 2A 784,753,007 1.62E-05 0.04877 4.79 4.97 0.83 

aSNP markers are from the Infinium SNP 90K array (Wang et al. 2014) 
bPhysical location is based on the IWGSC RefSeq v2 
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Figure 7.12. Manhattan plots for the association mapping using the MLM model for reaction to septoria nodorum blotch caused by the 
P. nodorum isolate Sn4. For the top Manhattan plot, the y-axis indicated –log10(p) for SNP markers whereas for the bottom 
Manhattan plot, the y-axis indicated –log10(FDR) for SNP markers. The x-axis for both is the physical distribution of all the SNP 
markers on the 21 common wheat chromosomes based on the alignment to the IWGSC Chinese Spring Ref Seq v2. On the right is the 
QQ plot output for the MLM model from GAPIT.  
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Figure 7.13. Manhattan plots for the association mapping using the MLM model for reaction to septoria nodorum blotch caused by the 
P. nodorum isolate Sn2000. For the top Manhattan plot, the y-axis indicated –log10(p) for SNP markers whereas for the bottom 
Manhattan plot, the y-axis indicated –log10(FDR) for SNP markers. The x-axis for both is the physical distribution of all the SNP 
markers on the 21 common wheat chromosomes based on the alignment to the IWGSC Chinese Spring Ref Seq v2. On the right is the 
QQ plot output for the MLM model from GAPIT.  
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7.4.6. Correlation Between Sensitivity and Disease Reactions 

Using Pearson’s correlation coefficients, I determined whether there were correlations 

between the disease scores from inoculations and the NE sensitivity scores (Table 7.9). Sn4 

average disease scores had strong significant correlations with scores for infiltrations of SnToxA, 

SnTox1, SnTox267, and SnTox3. Sn4 is known to produce SnToxA, SnTox1, SnTox3, 

SnTox267. Sn2000 average disease scores had strong significant correlations with SnToxA, 

SnTox1, and SnTox5. Sn2000 is known to produce these three NEs. Interestingly, a significant 

positive correlation between Sn2000 with SnTox267 and SnTox3 was also observed. This may 

be due to a high percentage of lines being sensitive to two or more NEs. Lastly, AR2-1 average 

disease scores had strong significant correlations with SnTox1 and SnTox267. A slight 

correlation was observed between AR2-1 and SnTox5.  

Table 7.9. Correlations among the NEs and the inoculation results. 

 SnToxA SnTox1 SnTox267 SnTox3 SnTox5 
Sn4 avg 0.35*** 0.23*** 0.39*** 0.47*** 0.13* 
Sn2000 avg 0.76*** 0.61*** 0.20** 0.17** 0.49*** 
AR2-1 avg 0.09 0.24*** 0.55*** 0.11 0.15* 

*P<0.05 
**P<0.01 
***P<0.001 

7.5. Discussion 

SNB is an economically damaging foliar disease on wheat and is part of the fungal leaf 

disease complex. The wheat-P. nodorum pathosystem has been studied extensively over the last 

three decades as a model system for the inverse gene-for-gene interaction (Liu et al. 2004; 

Friesen and Faris 2010, 2021; Faris and Friesen 2020; Oliver et al. 2012). Previously, nine host 

sensitivity gene-pathogen NE interactions have been characterized and shown to play an 

important role in contributing to disease severity. Multiple winter wheat panels have previously 

been evaluated for SNB resistance/susceptibility using GWAS (AlTameemi et al. 2021; Downie 
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et al. 2018; Cowger et al. 2020; Liu et al. 2015; Phan et al. 2018; Halder et al. 2019). However, 

to my knowledge, these panels have consisted of only regional germplasm or the global sets 

include both winter and spring type common wheat.  

 In this study, my goal was to evaluate a diverse global panel to evaluate SNB disease and 

identify genomic regions associated with SNB resistance/susceptibility. Although I found 

genomic regions significantly associated with SNB disease caused by the P. nodorum isolates 

Sn4 and Sn2000, these regions corresponded to the known NE sensitivity genes Snn3-B1 and 

Tsn1, respectively. Potential reasons I may not have identified new genomic regions associated 

with SNB disease include a) GWAS is not powerful enough to detect rare variants and small 

effect alleles, b) my population size was not large enough, c) population structure and relatedness 

confounded my results, and d) the number of markers I observed in high LD may influence my 

observed results (Korte and Farlow 2013; Cortes et al. 2021).  

It is possible the large effect of the Tsn1-SnToxA and Snn3-B1-SnTox3 interactions may 

mask interactions with minor effects. Previously, Phan et al. (2021) performed GWAS analysis 

on a wheat panel that lacked lines with SnTox1 and SnToxA sensitivity to reduce disease 

complexity and increase their chances of detecting minor interactions. I tried this method with 

my analysis by removing SnToxA-sensitive lines and SnTox3-sensitive lines (not at the same 

time) and rerunning GWAS. For Sn4, the Snn3-B1-SnTox3 peak disappeared when analyzing 

lines that were SnTox3-insensitive, but no new significant marker-trait associations were 

detected. The same occurred when re-analyzing disease caused by Sn2000 where the Tsn1-

SnToxA peaked disappeared when only SnToxA insensitive lines were used (results not shown). 

Therefore, it appears the effects of the Tsn1-SnToxA and Snn3-B1-SnTox3 interactions did not 

hinder the detection of other interactions.  
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Recently, AlTameemi et al. (2021) published a study evaluating a US hard red winter 

wheat panel for SNB caused by P. nodorum isolate Sn2000. In their model, the SNP 

tplb0027f13_1346 on chromosome 5B associated with the Tsn1 locus was the most significant. 

tplb0027f13_1346 was also significantly associated with SNB caused by Sn2000 in the panel I 

evaluated. However, AlTameemi et al. (2021) also identified six other genomic regions 

associated with SNB caused by Sn2000 on chromosomes 1B, 2A, 2D, 4A, 6B, and 7A. The 

model they used in their analysis was the FarmCPU model. I also ran the FarmCPU model and 

had SNPs on chromosomes 2A and 7A (results not shown) which were significant and in the 

same region as significant SNPs in AlTameemi et al. (2021). However, whether these regions 

were associated with disease or were introduced due to the model needs to be validated.  

Additionally, the P. nodorum isolate Sn2000 was used for disease evaluations by Halder 

et al. (2019) on a subset of the Watkins wheat landrace collection. Halder et al. (2019) found 

using MLM, the same model I used in this study, that the Tsn1-SnToxA interaction was 

significantly associated with disease. Consistent with my findings, they did not identify the 

Snn1-SnTox1 and Snn5-SnTox5 interactions to be significantly associated with disease. 

However, they identified markers on chromosome 2B, 5A, and 7A to be associated with disease 

that are not associated with any previously characterized interactions. Therefore, based on the 

findings in this study, along with Halder et al. (2019) and AlTameemi et al. (2021), I think it is 

reasonable to conclude that the Tsn1-SnToxA interaction plays a significant role in determining 

disease in the panel I evaluated.  

The rate of LD decay I observed and the number of SNPs with high LD was partially 

skewed by a large proportion of heterozygous calls in this panel at SNP markers. Another round 

of filtering was recommended for LD analysis by Dr. Jason Fiedler, to remove heterozygous 
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markers. This was most likely caused by using seed that was not completely homozygous and 

this panel may have benefited from additional single seed descent increases. The panel I used is a 

subset of a larger panel. Research on the whole panel by Bulli et al. (2016) and two subsets by 

Muleta et al. (2020) and Mihalyov et al. (2017) found that the rate of LD decay within this panel 

is slower than that in spring wheat collections, which may also skew or influence my marker trait 

association results.  

I decided to run a correlation between the infiltration results with the disease scores to 

determine if sensitivity to a NE was correlated with disease even though a marker-trait 

association was not detected in the GWAS analysis. Previously, Ruud et al. (2018) did 

something similar with the wheat-P. nodorum pathosystem. From my correlation results, 

SnTox1, SnTox5, and SnToxA infiltration results were highly correlated with Sn2000 disease 

scores. This is consistent with genome sequencing results, with the Sn2000 genome containing 

SnToxA, SnTox1, and SnTox5, but not SnTox3 or SnTox267 (Richards et al. 2018, 

Kariyawasam et al. 2021; Richards et al. 2021). Although we observed a correlation between 

Sn2000 scores with SnTox3 and SnTox267, it was not as significant as the other three 

interactions. Additionally, many of the lines that were sensitive to SnToxA, SnTox1, and/or 

SnTox5 were sensitive to SnTox3 and/or SnTox267, which may inflate the correlation between 

the latter two NEs and Sn2000 disease. Previous research showed that the Tsn1-SnToxA 

interaction can have an antagonistic effect on the Snn1-SnTox1 and Snn5-SnTox5 interactions in 

Sn2000 in a biparental population (Peters Haugrud et al. 2019). The white flecking phenotype 

associated with a compatible Snn1-SnTox1 interaction does not always fit into the published 

scoring scale (Liu et al. 2004), which may influence the lack of a significant marker trait 

association at the Snn1 locus (Liu et al. 2016; Peters Haugrud et al. 2019).  
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As for Sn4 disease reaction, only the Snn3-B1-SnTox3 interaction was significant. It has 

been previously shown that Sn4 produces SnTox3, SnToxA, SnTox1, SnTox267 (Richards et al. 

2018; Richards et al. 2021). For these four NEs, the correlation results were significantly 

correlated with SNB disease caused by Sn4. Surprisingly, I did not observe any marker trait 

associations at the Tsn1, Snn1, Snn2, Snn6, and Snn7 loci. Previous work has illustrated variable 

expression of NE genes within P. nodorum, which directly influences the disease severity 

contributed to a host gene-NE interaction (Faris et al. 2011; Phan et al. 2016; Peters Haugrud et 

al. 2019; Jones et al. 2019; John et al. 2021). It is possible that SnTox3 had higher expression 

than the other NE genes in Sn4, which could have masked the effects of other interactions in 

disease severity. 

For the isolate AR2-1, I observed no significant marker trait associations. AR2-1 is an 

isolate first collected in Arkansas. Only 8% of the panel is North American lines and none of 

these lines originate from the southern part of the United States. Disease severity caused by 

AR2-1 was significantly correlated with SnTox1 and SnTox267 infiltration results. AR2-1 has 

the NE genes SnTox267 (Richards et al. 2021) and SnTox1 (Dr. Timothy Friesen, personal 

communication), and the differentials for SnTox267 and SnTox1 were susceptible in my 

inoculations (data not shown). In my GWAS results for infiltrations with SnTox267, I did not 

identify any marker-trait associations. This may be due to the NE SnTox267 interacting with 

multiple host target genes. In my AR2-1 GWAS results, the marker with the highest association 

was on the long arm of chromosome 2D, which could potentially be Snn7 (Shi et al. 2015). 

Another observation I made was that the percent of leaf area affected by AR2-1 was lower than 

when the panel was infected with Sn4 and Sn2000. Richards et al. (2019) found AR2-1 to be less 

virulent than Sn4 and Sn2000 on six wheat lines tested. Therefore, the lower virulence and the 
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interaction of SnTox267 with multiple host genes most likely contributed to the lack of any 

significant marker trait associations for SNB disease caused by AR2-1 on this panel.  

Lastly, a large portion of this project was to determine the prevalence of sensitivity to the 

different NEs in a global winter wheat panel. To my knowledge, this is the first panel that has 

been screened for sensitivity to SnTox5 and SnTox267. My results show that a little over half 

(53.03%) of the lines were sensitive to SnTox267, whereas only 42.42% of lines were sensitive 

to SnTox5. This difference may be due to SnTox267 interacting with Snn2, Snn6, and Snn7 

(Richards et al. 2021; Friesen et al. 2007; Gao et al. 2015; Shi et al. 2015). As for prevalence of 

SnToxA, SnTox1, and SnTox3 sensitivity, my results fall approximately in the middle of the 

range reported for other panels (Chapter 3). The knowledge gained from testing for sensitivity 

using infiltrations is being applied in marker development and for future cloning projects and 

validation. Currently, new markers are being developed with more accurate genotyping for Tsn1 

and Snn1, and this panel was used as part of the validation. Additionally, Snn3-B1 and Snn5 are 

in the final cloning validation steps and this panel will be used to validate markers developed 

from those projects.  

Although no new genomic regions associated with SNB disease were identified in this 

study, I have shown the importance of the known interactions Snn3-B1-SnTox3 and Tsn1-

SnToxA in contributing to disease. Additionally, I have evaluated the first global winter wheat 

panel, to my knowledge, for prevalence of sensitivity to five NEs. Lastly, this project has been a 

steppingstone for the future direction with this panel. I plan to evaluate the panel for SNB 

disease severity using isolates from Iran and Europe. A large portion of this panel is Iranian 

landraces and lines from Europe, therefore using isolates from those geographic regions may 

provide beneficial for identifying new genomic regions associated with SNB. I also plan to 
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inoculate this panel with Pyrenophora tritici-repentis, the causal agent of tan spot. I hope that 

future findings will provide us with new avenues to explore in the wheat-P. nodorum 

pathosystem, along with aiding in the cloning of host NE sensitivity genes and marker 

development.  
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APPENDIX A. LIST OF LINES IN THE GLOBAL WINTER WHEAT PANEL 

OBTAINED FROM THE USDA NATIONAL SMALL GRAINS COLLECTION 

 

The average results for each line for infiltration with the necrotrophic effectors SnToxA, 

SnTox1, SnTox3, SnTox5, and SnTox267 are listed, along with the average disease score to 

inoculations with the Parastagonospora nodorum isolates Sn4, AR2-1, and Sn2000. 
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Accession Line ACIMPT Country Continent SnToxA SnTox1 SnTox3 SnTox5 SnTox267 Sn4 avg AR2-1 
avg 

Sn2000 
avg 

PI238406 358-R.3.C Breeding Kenya Africa 3.00 0.67 0.00 2.00 3.00 4.33 4.17 3.83 
PI269407 322 Landrace Afghanistan Asia 3.00 1.00 0.00 3.00 3.00 4.17 1.50 3.00 
PI347180 Sirhosha Landrace Afghanistan Asia 0.00 0.33 0.00 0.00 1.00 1.33 2.83 0.17 
PI367025 1566 Landrace Afghanistan Asia 0.00 3.00 3.00 3.00 0.67 3.17 3.00 2.67 
PI68236 413 Cultivated Azerbaijan Asia 0.33 0.00 0.00 3.00 3.00 2.50 1.67 1.17 
PI73338 2908 Landrace Azerbaijan Asia 3.00 0.00 0.00 0.00 0.67 4.50 0.67 4.67 
PI262603 Hydri Bugda Landrace Azerbaijan Asia 3.00 2.33 0.00 0.33 0.00 2.83 1.17 2.50 
PI68265 64 Cultivated Azerbaijan Asia 0.00 0.33 0.00 3.00 3.00 4.50 4.50 1.50 
PI615323 Ker Yi 26 Cultivar China Asia 3.00 3.00 3.00 2.00 3.00 4.17 3.33 4.33 
PI414568 Feng Chan 3 Cultivar China Asia 0.33 3.00 3.00 0.33 1.67 3.33 2.33 3.17 
PI57164 CI 7111 Landrace Georgia Asia 3.00 0.33 0.00 3.00 2.50 4.33 2.50 4.00 
PI591870 HW 6554/86 Landrace Georgia Asia 0.00 0.33 0.00 0.33 0.67 2.33 2.00 0.00 
PI221699 3 Cultivated Indonesia Asia 3.00 2.67 0.00 3.00 2.00 4.67 1.25 3.75 
PI210371  Landrace Iran Asia 3.00 2.67 2.67 2.33 0.67 4.50 2.33 4.25 
PI222650 1620 Landrace Iran Asia 0.33 0.33 3.00 3.00 2.50 5.00 2.00 2.00 
PI243674 5396 Landrace Iran Asia 3.00 2.67 3.00 2.67 2.67 4.50 3.00 4.67 
PI243777 5520 Landrace Iran Asia 3.00 2.33 3.00 2.33 3.00 4.50 1.67 4.17 
PI621168 IWA8607008 Landrace Iran Asia 3.00 0.00 3.00 3.00 3.00 4.33 3.00 3.17 
PI621178 IWA8607024 Landrace Iran Asia 3.00 0.17 3.00 3.00 2.33 3.17 3.17 3.50 
PI621205 IWA8607058 Landrace Iran Asia 0.00 3.00 3.00 3.00 2.67 3.33 3.17 4.00 
PI621237 IWA8607130 Landrace Iran Asia 3.00 3.00 0.33 3.00 0.00 3.17 2.50 3.67 
PI621404 IWA8607810 Landrace Iran Asia 3.00 3.00 3.00 3.00 0.67 5.00 2.33 4.75 
PI621434 IWA8607941 Landrace Iran Asia 3.00 3.00 3.00 2.17 2.67 5.00 3.67 3.83 
PI621449 IWA8608044 Landrace Iran Asia 3.00 0.00 2.67 2.33 2.00 4.17 2.00 3.83 
PI621480 IWA8608194 Landrace Iran Asia 3.00 3.00 3.00 2.00 0.33 4.83 1.00 3.67 
PI621550 IWA8608626 Landrace Iran Asia 3.00 0.00 2.67 3.00 2.33 5.00 3.50 5.00 
PI621642 IWA8609149 Landrace Iran Asia 3.00 0.00 0.50 2.33 3.00 4.17 2.83 3.67 
PI621645 IWA8609160 Landrace Iran Asia 0.00 0.00 3.00 2.83 3.00 2.83 3.33 0.33 
PI621654 IWA8609181 Landrace Iran Asia 3.00 3.00 3.00 0.83 3.00 3.00 4.00 3.50 
PI621655 IWA8609182 Landrace Iran Asia 3.00 3.00 0.00 3.00 1.00 3.17 4.00 3.83 
PI621657 IWA8609184 Landrace Iran Asia 3.00 2.67 0.33 2.67 2.67 3.83 3.67 4.83 
PI621710 IWA8609329 Landrace Iran Asia 3.00 3.00 3.00 2.67 2.67 4.33 2.67 3.83 
PI621720 IWA8609352 Landrace Iran Asia 3.00 0.00 3.00 3.00 2.67 3.83 4.17 4.83 
PI621846 IWA8609690 Landrace Iran Asia 2.67 3.00 3.00 3.00 0.00 3.00 2.00 3.67 
PI621874 IWA8609910 Landrace Iran Asia 3.00 0.00 0.00 2.67 0.00 2.33 2.00 3.00 
PI621900 IWA8609948 Landrace Iran Asia 3.00 3.00 3.00 3.00 2.67 4.17 3.50 3.67 
PI621939 IWA8610035 Landrace Iran Asia 3.00 3.00 0.50 3.00 2.67 3.50 1.83 3.50 
PI621959 IWA8610093 Landrace Iran Asia 3.00 3.00 3.00 3.00 3.00 2.83 2.67 3.33 
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Accession Line ACIMPT Country Continent SnToxA SnTox1 SnTox3 SnTox5 SnTox267 Sn4 avg AR2-1 
avg 

Sn2000 
avg 

PI621980 IWA8610164 Landrace Iran Asia 3.00 0.00 2.33 3.00 2.67 4.50 3.50 4.75 
PI622004 IWA8610266 Landrace Iran Asia 3.00 3.00 3.00 3.00 3.00 3.67 3.83 3.83 
PI622065 IWA8610508 Landrace Iran Asia 3.00 0.33 2.67 3.00 1.83 3.50 1.75 3.67 
PI622558 IWA8611883 Landrace Iran Asia 3.00 3.00 0.00 2.67 2.00 2.75 2.50 3.50 
PI622589 IWA8612001 Landrace Iran Asia 3.00 2.67 3.00 0.00 3.00 2.83 3.00 4.17 
PI622609 IWA8612063 Landrace Iran Asia 3.00 3.00 2.67 3.00 2.67 5.00 3.50 4.50 
PI622644 IWA8612218 Landrace Iran Asia 3.00 3.00 3.00 2.33 3.00 3.17 2.33 4.33 
PI622719 IWA8612533 Landrace Iran Asia 0.00 3.00 0.00 2.67 0.33 3.67 2.50 2.67 
PI622801 IWA8613087 Landrace Iran Asia 3.00 3.00 3.00 3.00 0.50 3.83 1.00 4.00 
PI622884 IWA8613583 Landrace Iran Asia 3.00 2.67 0.33 3.00 2.17 3.83 3.33 4.67 
PI622919 IWA8613811 Landrace Iran Asia 3.00 3.00 0.00 2.33 3.00 4.50 2.33 4.50 
PI622926 IWA8613853 Landrace Iran Asia 3.00 3.00 0.00 2.67 0.67 4.00 1.83 4.17 
PI622963 IWA8613954 Landrace Iran Asia 3.00 0.00 1.33 3.00 2.67 4.33 1.67 2.67 
PI622972 IWA8613988 Landrace Iran Asia 3.00 0.00 3.00 3.00 2.67 4.17 2.33 4.50 
PI623020 IWA8614108 Landrace Iran Asia 3.00 3.00 3.00 3.00 3.00 2.50 3.83 4.00 
PI623036 IWA8614166 Landrace Iran Asia 3.00 3.00 3.00 3.00 2.67 4.83 2.17 4.33 
PI625352 IWA8610928 Landrace Iran Asia 3.00 3.00 3.00 2.67 3.00 3.67 3.33 3.67 
PI626716 IWA8600106 Landrace Iran Asia 0.00 3.00 3.00 3.00 0.67 4.50 3.00 2.83 
PI626785 IWA8600215 Landrace Iran Asia 0.00 3.00 2.33 3.00 2.33 2.83 2.67 3.25 
PI626830 IWA8600282 Landrace Iran Asia 3.00 0.00 1.00 3.00 0.00 3.33 1.17 4.33 
PI626842 IWA8600299 Landrace Iran Asia 3.00 3.00 0.00 3.00 2.33 4.83 3.50 3.67 
PI627071 IWA8600667 Landrace Iran Asia 3.00 1.33 2.67 3.00 0.33 4.00 4.17 4.17 
PI627093 IWA8600702 Landrace Iran Asia 3.00 3.00 3.00 2.67 0.75 4.33 4.50 4.00 
PI627122 IWA8600748 Landrace Iran Asia 3.00 3.00 0.00 3.00 2.67 3.50 3.33 4.17 
PI627137 IWA8600773 Landrace Iran Asia 3.00 3.00 0.00 3.00 2.33 3.00 3.33 3.00 
PI627236 IWA8600968 Landrace Iran Asia 3.00 3.00 3.00 3.00 3.00 4.33 2.83 4.50 
PI627377 IWA8602246 Landrace Iran Asia 3.00 3.00 0.00 3.00 1.00 3.83 2.67 3.25 
PI627480 IWA8602500 Landrace Iran Asia 3.00 0.00 3.00 2.33 2.67 4.67 2.83 3.83 
PI627605 IWA8603012 Landrace Iran Asia 3.00 3.00 3.00 3.00 2.67 1.67 1.83 2.67 
PI627629 IWA8603046 Landrace Iran Asia 3.00 0.00 3.00 0.33 2.33 4.33 3.33 3.00 
PI627660 IWA8603087 Landrace Iran Asia 3.00 3.00 0.00 3.00 0.50 3.33 2.50 4.00 
PI627662 IWA8603089 Landrace Iran Asia 3.00 0.00 3.00 3.00 2.33 5.00 1.00 4.00 
PI627688 IWA8603128 Landrace Iran Asia 3.00 3.00 2.33 2.33 0.00 5.00 2.83 3.75 
PI627780 IWA8603251 Landrace Iran Asia 3.00 3.00 2.67 3.00 2.00 2.67 2.00 3.67 
PI627798 IWA8603271 Landrace Iran Asia 3.00 3.00 3.00 3.00 0.33 5.00 4.67 4.33 
PI627861 IWA8604057 Landrace Iran Asia 0.00 3.00 0.00 0.67 1.00 2.33 3.33 3.50 
PI627963 IWA8604293 Landrace Iran Asia 3.00 3.00 3.00 3.00 3.00 1.50 2.33 3.00 
PI628233 IWA8604924 Landrace Iran Asia 0.33 2.67 3.00 2.67 2.67 4.00 2.83 3.33 
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Accession Line ACIMPT Country Continent SnToxA SnTox1 SnTox3 SnTox5 SnTox267 Sn4 avg AR2-1 
avg 

Sn2000 
avg 

PI285896 Akakkowa Aka Cultivated Japan Asia 0.00 0.00 3.00 0.00 3.00 2.83 2.83 0.25 
PI383988 Furutsu Masari Cultivar Japan Asia 0.00 0.00 3.00 0.00 3.00 5.00 1.83 0.00 

PI420646 Krasnovodopadskaja 
210 Cultivar Kazakhstan Asia 3.00 0.33 0.33 3.00 3.00 5.00 4.67 4.67 

PI572648 Bogarnaja 56 Cultivar Kazakhstan Asia 3.00 0.00 0.00 0.33 0.00 4.00 0.83 2.83 
PI94479 159 Landrace Kazakhstan Asia 0.00 0.00 0.00 0.00 2.00 4.33 3.00 0.33 
PI362187 Won Kwang Cultivar Korea, South Asia 0.00 0.00 3.00 1.00 2.67 4.17 3.83 2.00 
PI157577 Nang Rim No. 17 Cultivated Korea, South Asia 0.00 0.00 0.00 3.00 2.67 3.17 4.50 2.50 
PI362180 Seu Seun 7 Cultivar Korea, South Asia 0.00 0.00 2.67 0.33 1.83 4.83 4.33 1.00 
PI362184 Seu Yuk 126 Cultivar Korea, South Asia 2.67 0.00 3.00 2.33 2.33 5.00 3.17 2.50 
PI157608 Yuc Song 3 Cultivated Korea, South Asia 3.00 2.67 0.00 2.33 1.75 4.33 4.33 4.67 
PI172582 8728 Landrace Turkey Asia 3.00 3.00 0.33 0.67 2.33 2.33 2.17 3.25 
PI178184 Tir Landrace Turkey Asia 3.00 2.67 0.33 3.00 0.17 4.50 2.00 4.00 
PI560615 TU85-033-01-1 Landrace Turkey Asia 3.00 2.50 0.00 0.00 3.00 4.33 3.67 4.67 
PI262605 Karagach Landrace Turkmenistan Asia 3.00 3.00 0.00 3.00 1.00 3.17 1.69 3.67 
PI278491 2447 Landrace Uzbekistan Asia 3.00 3.00 3.00 3.00 3.00 4.50 4.50 4.33 
PI565358 Teremai Bugdai Landrace Uzbekistan Asia 0.00 2.67 3.00 3.00 2.67 4.00 2.17 4.17 
PI162002 Ritzelhofer I Cultivar Austria Europe 3.00 2.67 0.67 3.00 0.00 2.83 2.17 4.00 
PI195545 Hohenauer Cultivar Austria Europe 0.00 2.33 2.67 0.00 0.00 3.00 2.83 2.83 
PI195546 Korneuburger Cultivar Austria Europe 0.00 2.67 0.00 0.00 1.67 2.17 3.50 2.75 
PI278185 Immendorfer Kolben Cultivar Austria Europe 0.00 0.00 3.00 3.00 0.00 4.00 3.33 2.83 
PI519235 P 4821-80 Breeding Austria Europe 0.00 0.00 0.00 0.33 0.00 2.33 4.50 0.33 
PI254844 Primus Cultivar Austria Europe 0.00 0.00 0.00 0.00 3.00 3.17 4.17 0.00 
PI193067 Directeur Journee Cultivar Belgium Europe 0.00 0.00 0.00 0.00 0.00 1.00 0.67 1.33 
PI284551 Leda Cultivar Belgium Europe 0.00 0.00 0.00 3.00 0.00 2.00 3.33 0.00 
PI338358 Cama Cultivar Belgium Europe 0.00 0.00 3.00 2.33 1.00 4.67 1.33 0.33 
PI338360 Mina Cultivar Belgium Europe 0.00 3.00 3.00 1.00 1.00 3.83 3.83 3.33 
PI340733 Panter Cultivar Belgium Europe 3.00 0.00 0.00 0.00 0.00 4.67 1.25 4.00 

PI278612 Sarajevo 18 Landrace Bosnia and 
Herzegovina Europe 0.00 0.00 0.00 0.00 0.00 1.00 2.67 1.00 

PI345417 416-V/69 Landrace Bosnia and 
Herzegovina Europe 0.00 0.00 0.00 0.00 0.33 0.25 0.75 0.00 

PI374678 216/71 Landrace Bosnia and 
Herzegovina Europe 0.00 0.67 3.00 0.00 0.50 4.67 0.50 0.50 

PI350267 911-IX/4 Landrace Bosnia and 
Herzegovina Europe 0.00 0.00 2.67 0.00 3.00 1.33 2.50 0.83 

PI520594 ID 779-11 Breeding Bulgaria Europe 0.00 0.00 0.50 3.00 0.00 0.00 0.83 0.83 
PI564287 1037-24-5 Breeding Bulgaria Europe 0.00 0.00 0.00 0.33 2.33 3.83 4.50 0.50 
PI564351 5989-1 Breeding Bulgaria Europe 0.00 0.00 0.00 0.00 0.00 0.17 0.83 0.00 
PI564354 6063-5 Breeding Bulgaria Europe 0.00 0.00 0.00 0.00 2.33 4.50 4.00 0.00 
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Accession Line ACIMPT Country Continent SnToxA SnTox1 SnTox3 SnTox5 SnTox267 Sn4 avg AR2-1 
avg 

Sn2000 
avg 

PI564363 622-24-65 Breeding Bulgaria Europe 0.00 0.00 1.83 0.00 3.00 2.50 2.17 0.00 
PI294930 Titscha Cultivated Bulgaria Europe 3.00 2.67 3.00 0.00 0.67 4.33 2.83 3.00 
PI344545  Cultivated Croatia Europe 0.00 0.00 3.00 0.00 2.67 4.00 3.75 0.00 
PI278614 Dalmatia 3 Landrace Croatia Europe 0.00 2.67 3.00 0.00 0.33 4.00 2.25 3.67 
CItr15192 Dubrava Cultivar Croatia Europe 0.00 0.00 3.00 0.33 1.00 4.00 4.17 0.00 
PI574324 KM 803-92 Breeding Czech Republic Europe 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 
PI574330 KM 669-92 Breeding Czech Republic Europe 0.00 0.00 0.00 2.00 0.00 3.00 0.00 1.33 
PI330406 Lada Cultivar Czech Republic Europe 0.00 0.00 0.00 0.00 3.00 2.83 3.00 0.25 
PI428660 Slavia Cultivar Czech Republic Europe 0.00 0.00 0.00 0.33 0.00 0.67 0.00 1.25 
PI584795 Zdar Cultivar Czech Republic Europe 0.00 0.00 0.00 0.00 0.67 1.33 1.33 0.00 
PI428657 Draga Cultivar Czechoslovakia Europe 0.00 0.00 3.00 0.00 2.33 4.83 2.83 0.17 
PI351217 Nevodvorska Niva Cultivated Czechoslovakia Europe 0.00 1.33 2.33 0.00 2.33 5.00 5.00 1.50 
PI361855 Krim Cultivated Denmark Europe 3.00 0.00 3.00 3.00 3.00 4.83 1.83 3.00 
PI361783 Tystofte Stakket Cultivar Denmark Europe 0.00 2.00 2.00 0.00 0.00 3.17 2.00 3.17 
PI361749 Konrad Cultivated Denmark Europe 3.00 0.00 0.00 2.67 3.00 4.17 3.50 4.00 
PI340762 Trifolium Cultivar Denmark Europe 0.00 2.67 3.00 0.00 0.83 4.33 5.00 4.50 
PI361785 Varma Tammisto Cultivar Denmark Europe 3.00 0.00 3.00 0.00 3.00 5.00 3.67 4.00 
PI361713 XIII T.I Cultivated Denmark Europe 0.00 0.00 3.00 0.00 2.33 3.00 2.17 0.17 
PI361755 Paduvano Cultivated Denmark Europe 0.00 2.33 3.00 0.00 0.00 3.67 2.17 1.00 

PI361810 Blak. Fra. Prof. 
Tsckem. Cultivated Denmark Europe 0.00 1.33 0.00 0.00 1.00 2.50 3.17 2.50 

PI254046  Cultivated Europe Europe 0.00 0.00 3.00 0.33 1.67 4.33 1.83 0.00 
PI254049  Cultivated Europe Europe 0.00 0.00 0.00 0.33 2.33 4.33 3.00 0.67 
PI254080  Cultivated Europe Europe 0.67 0.00 0.33 2.67 2.00 2.00 3.50 0.00 
PI265484 Varma Cultivar Finland Europe 3.00 0.00 3.00 0.00 3.00 5.00 3.67 4.33 
PI351207 Malakof Cultivated Former Soviet Union Europe 3.00 0.00 0.00 0.00 0.67 2.33 0.83 2.67 
PI368010 187-199-VI/8 A Cultivated Former Yugoslavia Europe 0.00 0.00 0.00 0.00 0.00 1.83 1.33 1.50 
PI346424 29/60 Cultivated Former Yugoslavia Europe 0.00 0.00 0.00 2.67 0.00 1.17 0.67 1.33 
PI352032 Floress Cultivar France Europe 0.00 2.00 3.00 0.00 0.00 3.67 1.17 0.17 
PI174649 Hybride de Bonnance Cultivar France Europe 0.00 2.00 3.00 0.33 0.00 4.17 2.50 2.67 
PI174653 Hybride du Joncquois Cultivar France Europe 0.00 0.00 3.00 0.00 2.00 4.17 2.33 0.17 
PI298405 Druchamp 1940 Cultivar France Europe 0.00 0.00 0.00 0.33 0.00 0.83 0.50 1.83 
PI315976 Chambord Cultivar France Europe 0.00 2.67 0.33 0.00 0.50 4.83 3.83 3.00 
PI315997 Moeres Cultivar France Europe 0.00 0.00 0.00 1.33 1.00 2.67 4.00 1.75 
PI351410 Lemaire 4 Cultivar France Europe 0.00 0.00 0.00 0.00 0.00 0.33 0.17 0.33 
PI180610 Strain No. 1827/47 Breeding Germany Europe 0.33 0.33 3.00 0.00 0.00 5.00 1.00 0.00 
PI180588 Rimpaus Bastard II Cultivar Germany Europe 0.00 0.33 3.00 0.33 2.00 5.00 2.67 0.67 
PI209794 Heines VII Cultivar Germany Europe 0.00 0.00 0.33 2.67 0.50 1.83 3.00 2.25 
PI285953 Heines VI Cultivar Germany Europe 0.00 0.33 0.00 0.00 0.67 3.5 2.17 0.33 
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Accession Line ACIMPT Country Continent SnToxA SnTox1 SnTox3 SnTox5 SnTox267 Sn4 avg AR2-1 
avg 

Sn2000 
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PI300950 Hanno Cultivar Germany Europe 0.00 0.00 0.00 1.17 0.00 1.83 0.33 0.00 
PI351268 Graf Toerring II Cultivar Germany Europe 0.00 0.33 0.00 1.33 1.00 1.33 0.83 2.17 
PI351330 Siegerlander Neu Cultivar Germany Europe 0.00 2.33 0.00 0.00 2.50 4.33 5.00 3.67 
PI351333 Marquardt II Cultivar Germany Europe 0.33 2.33 3.00 1.17 3.00 3.33 3.17 2.17 
PI352152 Berthold Cultivar Germany Europe 0.00 0.00 0.00 0.00 1.00 1.83 1.17 0.00 
PI192030 Roemer Cultivated Germany Europe 0.00 2.33 3.00 1.00 0.00 3.83 2.67 2.67 
PI272351 Hezohegyesi 7286 Cultivar Hungary Europe 0.00 0.33 0.00 0.00 3.00 4.33 3.33 0.00 
PI272384 Arpadhalmi 267 Cultivar Hungary Europe 0.00 0.00 3.00 0.33 0.00 3.33 0.50 0.00 
PI272411 Eszterhazai Mindenes Cultivar Hungary Europe 0.00 0.00 2.67 0.00 3.00 4.00 2.67 0.00 
PI272433 Lovaszpatonai 157 Cultivar Hungary Europe 0.00 0.00 2.67 1.67 1.67 4.17 4.25 1.25 
PI278315 Szekacs 267 Cultivar Hungary Europe 0.00 2.33 0.00 0.00 2.67 3.33 3.67 3.33 
PI272374 Barabas-Fele Landrace Hungary Europe 0.00 0.00 0.33 0.33 3.00 2.50 1.50 2.67 
PI278318 Hungarian 3 Landrace Hungary Europe 0.00 0.00 0.00 0.33 0.00 1.17 2.17 1.33 
PI107302 Galway Land Wheat Landrace Ireland Europe 0.00 0.00 0.33 1.00 2.00 3.17 2.83 1.67 
PI294570 Cologna Lunga Cultivar Italy Europe 3.00 3.00 3.00 3.00 2.17 4.33 2.83 4.50 
PI351461 T-1164 Breeding Italy Europe 0.00 0.00 3.00 0.33 0.00 4.17 1.83 0.50 
PI259889 San Pastore Cultivar Italy Europe 0.00 0.00 3.00 3.00 0.00 3.25 2.75 1.83 
PI284531 Acciaio Cultivar Italy Europe 0.00 2.00 0.00 0.00 0.00 2.50 2.33 3.50 
PI192716 T de Lituania Cultivated Lithuania Europe 0.00 2.67 3.00 0.00 2.33 4.00 3.33 3.17 
PI378391 1666 Landrace Macedonia Europe 2.67 2.00 3.00 0.00 0.00 4.00 0.67 3.17 
PI345244 243-VII/4 Landrace Macedonia Europe 0.00 2.33 2.67 0.00 1.00 3.50 0.83 2.83 
PI362612 VII/8-B Landrace Macedonia Europe 3.00 0.00 0.00 0.00 0.00 3.50 1.00 4.00 
PI378519 1794 Landrace Macedonia Europe 0.00 3.00 3.00 0.00 0.83 4.50 2.83 2.83 
PI390330 I/2 Landrace Macedonia Europe 0.33 2.33 3.00 0.33 0.00 2.00 2.67 3.67 
PI390342 I/14 Landrace Macedonia Europe 0.00 0.00 0.00 3.00 3.00 4.00 5.00 1.33 
PI405857 I/23 Landrace Macedonia Europe 0.00 0.00 0.00 0.00 0.00 1.33 1.00 1.50 
PI572642 Mil'turum 1 Cultivar Moldova Europe 0.00 0.33 0.00 0.00 3.00 3.00 4.67 0.00 
PI262653 Beltskaya Mestnaya Landrace Moldova Europe 0.00 0.00 0.00 0.00 2.67 4.00 2.83 0.00 
PI345355 354A-I/7 Landrace Montenegro Europe 0.00 1.00 3.00 3.00 3.00 1.33 3.00 1.17 
PI197639 Elisabeth Cultivar Netherlands Europe 0.00 0.00 3.00 0.00 0.33 4.83 1.33 0.50 
PI197640 Juliana Cultivar Netherlands Europe 0.00 0.00 3.00 0.50 2.50 4.17 3.00 0.00 
PI315840 Apollo Cultivar Netherlands Europe 0.00 0.00 0.00 0.00 1.00 2.00 2.83 0.00 
PI342612 Vada Cultivar Netherlands Europe 0.00 0.00 3.00 0.00 0.00 5.00 2.17 0.67 
PI351580 Moystad 0944 Cultivar Norway Europe 3.00 0.00 3.00 0.00 0.33 3.33 1.33 2.00 
PI542450 H82-710-1 Breeding Poland Europe 0.00 0.00 0.00 0.00 3.00 5.00 5.00 1.83 
PI285773 Edel Epp Markowicka Cultivated Poland Europe 0.00 0.67 3.00 3.00 2.33 4.50 4.00 1.83 
PI285921 Stylowa Cultivated Poland Europe 0.00 2.33 3.00 2.00 0.00 4.50 3.17 3.75 
PI285999 Ruska Cultivated Poland Europe 0.00 2.33 0.00 0.00 1.00 2.83 2.50 1.33 
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PI286030 For East 32996 Cultivated Poland Europe 0.00 0.00 0.00 0.00 2.67 3.33 3.83 0.00 
PI338387 C 48 Cultivar Poland Europe 0.00 0.00 0.00 0.00 0.00 1.33 1.67 0.00 
PI338389 Dankowska Biala Cultivar Poland Europe 0.00 0.00 3.00 0.50 2.00 4.33 4.50 0.33 
PI338401 Szelejewska Cultivar Poland Europe 0.00 0.00 0.00 0.00 0.00 1.17 1.50 0.17 
PI304095 Cenad 512 Cultivar Romania Europe 0.00 0.00 0.00 3.00 3.00 2.50 3.33 2.00 
PI304105 520B Cultivated Romania Europe 3.00 0.00 3.00 1.00 3.00 4.67 3.33 1.83 
PI306510 Tiganesti 906 Cultivated Romania Europe 0.00 0.00 0.00 2.33 2.67 3.50 2.00 0.00 
PI306566 2878 Cultivated Romania Europe 0.00 2.33 0.00 2.50 2.67 4.33 3.50 3.67 
PI282687 Bezostaja 1 Cultivar Russian Federation Europe 3.00 0.00 0.00 0.00 0.00 1.25 0.67 2.33 
PI295349 Mil'turum 321 Cultivar Russian Federation Europe 0.00 2.00 0.00 0.00 2.33 3.00 3.00 0.50 
PI361858 L'govskaja Cultivar Russian Federation Europe 0.00 0.00 0.00 0.00 0.00 0.83 0.67 0.00 
PI565427 Lutescens 321 Cultivar Russian Federation Europe 0.00 0.00 0.00 0.00 2.67 2.00 2.17 0.00 
PI591858 Pirotriks 50 Cultivar Russian Federation Europe 0.00 0.00 0.33 0.33 3.00 3.50 3.33 0.33 
PI591992 Yugtina Cultivar Russian Federation Europe 0.00 0.00 0.00 0.00 2.33 3.17 2.83 0.00 
PI278451 Blaue Dame Cultivated Russian Federation Europe 0.00 0.00 3.00 3.00 2.33 4.00 3.67 0.67 
PI350046 650-IV/6 Landrace Serbia Europe 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.17 
PI350118 736-VII/1 Landrace Serbia Europe 0.00 0.00 3.00 0.00 0.50 1.67 0.50 0.50 
PI362412 II/7-B Landrace Serbia Europe 0.00 1.00 0.00 0.00 0.00 0.00 1.33 1.00 
PI362443 III/15-X27 Landrace Serbia Europe 0.00 0.50 3.00 0.00 0.00 3.67 0.00 1.00 
PI362486 IV/9-E Landrace Serbia Europe 0.33 0.00 3.00 2.00 1.33 4.17 2.17 0.83 
PI362526 V/2-A Landrace Serbia Europe 0.00 0.00 0.00 2.67 0.00 1.75 2.50 1.17 
PI362546 VI/3-A Landrace Serbia Europe 2.33 0.00 0.00 0.00 0.00 3.67 0.67 3.00 
PI378276 1548 Landrace Serbia Europe 0.00 0.00 0.00 0.00 2.00 2.00 1.67 0.00 
PI378527 1802 Landrace Serbia Europe 3.00 0.00 3.00 2.67 2.67 3.00 2.33 2.50 
PI434671 NS 18-99 Breeding Serbia Europe 0.00 0.00 0.00 3.00 3.00 3.17 4.50 2.00 
CItr15203 Ebro Cultivar Spain Europe 0.00 0.00 0.33 0.00 1.17 2.67 1.67 0.33 
PI469020 MG 27174 Landrace Spain Europe 0.33 2.33 3.00 0.33 1.00 4.50 4.17 2.50 

PI190985 Akagomugh Involcable 
Vilmorin Cultivated Spain Europe 0.00 3.00 0.00 2.33 0.00 2.00 2.75 2.83 

PI192416 Ankar II Cultivar Sweden Europe 3.00 0.33 1.00 0.00 3.00 3.83 4.50 2.50 
PI192701 Saxo Cultivar Sweden Europe 3.00 2.67 3.00 0.00 2.33 4.50 3.33 3.00 
PI192582 Plantahof 3 Cultivar Switzerland Europe 0.33 2.00 3.00 0.33 0.67 5.00 4.00 1.33 
PI350885 69Z2.11/1147I Landrace Switzerland Europe 0.00 0.00 3.00 0.00 0.00 3.50 0.17 0.00 
PI350974 69Z2.104/672A Landrace Switzerland Europe 0.00 1.83 3.00 0.00 2.67 4.17 3.17 1.17 
PI351983 A 912 Breeding Switzerland Europe 0.00 0.00 0.00 1.67 0.00 0.83 1.17 2.17 
PI351172 Rothenbrunnen 32 Cultivar Switzerland Europe 0.00 0.00 3.00 0.00 0.33 4.17 0.83 0.00 
PI350905 69Z2.32/840C Landrace Switzerland Europe 0.33 2.67 3.00 0.00 3.00 4.50 3.83 2.83 
PI350959 69Z2.88/7B Landrace Switzerland Europe 0.00 2.33 0.00 0.00 3.00 3.83 2.67 2.67 
PI350972 69Z2.102/85A Landrace Switzerland Europe 0.00 2.33 0.33 0.00 3.00 4.00 3.67 2.50 
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PI293918 Michurinka Cultivar Ukraine Europe 3.00 0.00 0.00 0.00 3.00 3.50 2.75 2.33 
PI393980 Novostepniachka Cultivar Ukraine Europe 0.33 0.00 1.67 1.33 3.00 4.17 3.83 0.00 
PI572638 Saljut Cultivar Ukraine Europe 3.00 0.00 0.00 0.00 2.67 4.00 4.17 5.00 
PI94464 144 Landrace Ukraine Europe 0.00 0.00 3.00 0.33 2.33 5.00 2.50 0.17 
PI94468 148 Landrace Ukraine Europe 0.00 0.00 0.00 1.67 2.33 1.50 2.00 0.00 
PI94499 179 Landrace Ukraine Europe 0.00 0.00 3.00 0.00 2.33 4.50 1.67 0.25 
PI292998 TP 114/78-79 Breeding United Kingdom Europe 0.00 0.00 0.00 3.00 0.00 0.17 0.25 1.75 
CItr6316 Gold Drop Cultivar United Kingdom Europe 0.00 0.00 3.00 0.00 0.00 4.00 0.83 0.33 
CItr12569 Holdfast Cultivar United Kingdom Europe 0.00 2.00 2.33 0.00 2.33 4.00 2.67 1.00 
PI278595 Little Tich Cultivar United Kingdom Europe 0.00 0.00 0.00 0.33 0.00 0.83 1.00 0.50 
PI447429 Virtue Cultivar United Kingdom Europe 0.33 0.00 0.00 0.33 0.00 0.50 2.50 0.17 
PI547263 Colonel Cultivar United Kingdom Europe 0.00 0.00 2.67 0.33 3.00 3.50 2.00 0.00 
PI592129 Twyford 71 Cultivar United Kingdom Europe 0.00 2.67 0.00 0.00 1.00 4.50 4.33 2.50 
CItr11731 Kansas No. 343273 Breeding United States North America 3.00 0.00 0.00 0.00 2.67 4.67 2.67 3.67 
CItr12523 Nebr. Sel. 383134 Breeding United States North America 0.00 0.00 0.00 2.00 0.33 1.83 0.33 1.50 
CItr17561 OH 106 Breeding United States North America 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 
PI486211 NE 76706 Breeding United States North America 3.00 0.00 0.00 0.00 0.67 3.33 2.50 2.50 
PI595379 KS95WGRC33 Breeding United States North America 2.67 0.83 3.00 1.00 2.67 4.83 2.00 3.33 
PI620732 943075 Breeding United States North America 3.00 0.00 3.00 0.33 3.00 4.83 4.00 4.50 
PI620751 910231 Breeding United States North America 3.00 1.00 3.00 0.00 3.00 3.00 2.00 3.50 
PI631091 ARS92 303 Breeding United States North America 3.00 0.00 2.67 2.67 0.00 3.83 0.33 4.00 
PI633777 N02Y4648 Breeding United States North America 0.00 0.00 0.00 0.00 2.33 2.67 2.83 0.00 
PI633885 N02Y5057 Breeding United States North America 3.00 0.67 0.00 2.33 2.50 4.67 3.00 3.33 
PI633901 N02Y5191 Breeding United States North America 3.00 0.00 0.00 0.00 3.00 3.83 3.33 2.83 
PI638644 99CF 810 Breeding United States North America 0.00 0.00 2.00 3.00 2.67 1.83 3.17 0.50 
CItr6471 Fulcaster Cultivar United States North America 0.00 0.00 3.00 0.00 0.00 5.00 1.25 0.00 
CItr11605 Hymar Cultivar United States North America 0.00 0.00 0.00 3.00 2.50 2.83 3.50 1.33 
PI583669 Iobred 73 Cultivar United States North America 0.00 0.00 0.00 0.00 1.00 1.33 2.00 0.00 
PI599664 Ivory Cultivar United States North America 3.00 2.33 0.00 0.00 0.67 4.33 3.00 4.00 
CItr17774 REA 77-2 Breeding United States North America 0.00 0.00 0.00 0.00 0.00 0.67 0.67 0.00 
PI620650 910102 Breeding United States North America 0.00 0.00 0.00 3.00 0.00 0.17 0.75 2.00 
PI639107 KW981718h0024 Breeding United States North America 2.67 0.00 0.00 0.33 0.67 3.33 1.00 2.83 
PI565371 Bearded Winter Cultivated United States North America 0.00 0.00 0.00 0.00 0.17 4.33 4.17 0.50 
CItr14121 Near Isogenic (Pm3b) Genetic United States North America 0.00 1.00 3.00 0.00 0.00 3.17 1.33 1.00 
PI198267  Breeding Australia Oceania 3.00 2.17 2.67 0.33 3.00 4.00 3.83 5.00 
CItr15985 CAR 59 Breeding Chile South America 0.00 2.67 0.00 0.00 1.00 1.83 2.00 2.67 
CItr16003 CAR 76 Breeding Chile South America 0.00 0.00 2.67 1.33 0.00 2.83 1.00 0.33 
CItr16268 CAR 341 Breeding Chile South America 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.33 
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CItr16343 CAR 416 Breeding Chile South America 0.00 0.00 0.00 3.00 0.00 1.00 1.17 1.50 

 


