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Dr. Torin Greenwood

Dr. Mark Strand

Approved:

22 June 2021
Date

Dr. Friedrich Littmann
Department Chair



ABSTRACT

Motivated by the study of chained permutations and alternating sign matrices, we inves-

tigate partial permutations and alternating sign matrices. We give a length generating function

for partial permutations and show bijections relating certain subsets to decorated permutations

and set partitions. We prove bijections among partial alternating sign matrices and several other

combinatorial objects as well as results related to their dynamics, analogous to those in the usual

alternating sign matrix setting. We also study families of polytopes which are the convex hulls

of these matrices. We determine inequality descriptions, facet enumerations, and face lattice de-

scriptions. Finally, we study partial permutohedra which arise naturally as projections of these

polytopes, revealing connections to graph associahedra.
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1. INTRODUCTION

A classical enumeration problem in combinatorics is to find the number of ways to place m

non-attacking rooks on an n × n chess board. Many variations of this problem have been studied

as well: one can change the shape of the board, the types of pieces, introduce restricted positions,

and more. One recent generalization of the non-attacking rook problem was inspired by 3-person

chess [25]. The motivating problem for this study was to figure out the number of ways to place

m non-attacking rooks on the three-person chessboard in Figure 1.1. This was solved and further

generalized to new families of boards, namely k boards of size n × n chained together in circular

or linear configurations. The original case corresponding to 3-person chess is, in this context, 6

chained together 4× 4 boards in the circular configuration. An example of the original board and

how to interpret it in the chained case is given in Figure 1.1.

Figure 1.1. Top left: the original 3-person chess board, with a dot representing a rook, and
highlights representing the positions where that rook can attack. Top right: the board “pulled
apart” into six 4 × 4 boards. Bottom: the board in a “standard position,” helping interpret rows
and columns.
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In the classical setting, placements of n non-attacking rooks on an n×n board corresponds

naturally with permutation matrices, which have an interesting generalization called alternating

sign matrices. Relevant background information on permutations and alternating sign matrices

can be found in Chapter 2. In the chained setting, there is a similar correspondence between rook

placements on chained boards and chained permutations, which can be then generalized to chained

alternating sign matrices. Examples of these are shown found in Figure 1.2, with definitions and

explanations in [25].

0 0 0 0
0 0 0
0 0 0 0
0 0 0 0

1
0 0 0
0 0 0

0 0 0 0
0 0 0

1
1

1

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0
0 0 0
0 0 0 0

1
1

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

0 0 0
0 0 0 0
0 0 0
0 0 0

1

1
1

0 1 0 0
1 0 0
0 0 1 0
0 0 0 0

-1
0 0 0

0 1 0
0 1 -1 0
0 0 0

0
0

1

0 0 0
0 0 0 1
1 0 -1 0
0 0 1 -1

1 0 0 1
0 0 0
0 1 -1
0 0 0 1

0
0

0

0 0 0 0
0 0 1 0
0 1 -1 1
0 0 1 -1

0 0 0
0 1 0 0
1 -1 0
0 0 1

0

0
0

Figure 1.2. An example of a chained permutation (top) and chained alternating sign matrix (bot-
tom).

In [25], we enumerated chained permutations (maximum rook placements) in both the linear

and circular case. The enumeration depends on the composition of a chained permutation, which is a

tuple recording the number of ones on each n×n component. For example, in Figure 1.2, the chained

permutation has six 4× 4 components and composition (1, 3, 1, 3, 1, 3). We also found bijections to

other combinatorial objects on both chained permutations and alternating sign matrices.
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These chained generalizations of permutations and alternating sign matrices inspired further

study. In particular, we consider a partial order on chained permutations analogous to the strong

Bruhat order in the usual permutation setting. We hope to show that this partial order extends

chained alternating sign matrices in such a way that the poset of chained alternating sign matrices

is the MacNeille completion of the poset of chained permutations, which would be an interesting

analogue to a result of Lascoux and Schützenberger in the classic setting [27]. See Chapter 5 for a

short summary of progress on this problem. In order to aid in this endeavor, we sought to better

understand the properties and structure of the individual components of chained permutations and

alternating sign matrices, which led us to the main subjects of this thesis: partial permutations and

alternating sign matrices.

We begin in Chapter 2 by providing a summary of well-known combinatorial definitions and

results which may be useful to help understand the main results, found in Chapters 3 and 4. We

split this into four main topics: permutations (Section 2.1), alternating sign matrices (Section 2.2),

dynamics (Section 2.3), and polytopes (Section 2.4).

Then in Chapter 3, we study rectangular analogues of permutations and alternating sign

matrices. We begin in Section 3.1, by focusing on Pm,n, the set of m × n partial permutations

matrices. Our main results therein are comprised of the generating function result below and two

interesting bijections. These bijections related certain subsets of partial permutations to decorated

permutations and set partitions.

Theorem 3.1.6. The length generating function of m× n partial permutations is given by:

∑
w∈Pm,n

q`(w) =

m∑
r=0

([
m

r

]
q

([n]q)r · q
r(r+1)

2

)
.

In Section 3.2, turn to our main topic: m× n partial alternating sign matrices. We explore

several bijections, which in most cases, are analogues of those studied in the usual alternating sign

matrix setting (see [37, 47]). These bijections culminate in our main result of this chapter, which

is the following theorem. See Figure 1.3 for an example of each of the objects in the statement of

the theorem.
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Theorem 3.2.6. There are explicit bijections among m×n partial alternating sign matrices, (m,n)-

partial monotone triangles, (m,n)-partial height function matrices, (m,n)-partial fully-packed loop

configurations, (m,n)-rectangular ice configurations, the set of order ideals of Pm,n, and (m,n)-

nests of osculating paths.


1 0 0 0
0 0 1 0
−1 1 0 0

1 0 −1 1


1

1 3
0 2 3

0 1 2 4


0 1 2 3 4
1 2 3 4 3
2 3 2 3 2
3 4 3 2 3
4 3 4 3 2



Figure 1.3. From left to right, top to bottom: a 4×4 partial alternating sign matrix, along with its
corresponding partial monotone triangle, partial height function matrix, partial fully-packed loop
configuration, rectangular ice configuration, order ideal, and nest of osculating paths.

Such bijections among combinatorial objects provide new angles from which to study them.

For example, after these bijections, in Section 3.3, we apply an analogue of Wieland’s gyration

action [51] on fully-packed loop configurations, and following [47], we relate this to the study of

4



toggles and order ideals. We obtain the following theorem, showing that rowmotion on order ideals

of a certain poset and gyration on partial fully-packed loop configurations have the same orbit

structure.

Theorem 3.3.6. J (Pm,n) under Row and (m,n)-partial fully-packed loop configurations under

gyration are in equivariant bijection.

In Chapter 4, we study polytopes which are built from the matrices defined in Sections 3.1

and 3.2. We continue the study of analogous results to those in the usual permutation and al-

ternating sign matrix cases, now in the realm of polytopes, and reveal new connections to graph

associahedra. In Section 4.1, we briefly discuss the matrices of the previous chapter, giving equiv-

alent definitions that are more consistent with existing polytope literature. In Section 4.2, we

summarize some known results on partial permutation polytopes. In Section 4.3, we define a new

family of polytopes, partial alternating sign matrix polytopes, denoted PASM(m,n). We determine

their inequality descriptions, facet enumerations and face lattice description in terms of labeled

graphs, as stated in the theorems below.

Theorem 4.3.6. PASM(m,n) consists of all m× n real matrices X = (Xij) such that:

0 ≤
i∑

i′=1

Xi′j ≤ 1, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n,

0 ≤
j∑

j′=1

Xij′ ≤ 1, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Theorem 4.3.8. The number of facets of PASM(m,n) equals 4mn− 3m− 3n+ 5.

Theorem 4.3.18. Let F be a face of PASM(m,n) and M(F ) be equal to the set of partial alter-

nating sign matrices that are vertices of F . The map ψ : F 7→ g(M(F )) induces an isomorphism

between the face lattice of PASM(m,n) and the set of sum-labelings of Γ(m,n) ordered by contain-

ment. Moreover, the dimension of F equals the number of regions of ψ(F ).

In Section 4.4, we discuss partial permutohedra, denoted P(m,n). We then determine

inequality descriptions and facet enumerations and characterize their face lattice using chains in

5



the Boolean lattice. The following three theorems from Section 4.4 comprise our second set of main

results of Chapter 4.

Theorem 4.4.9. P(m,n) consists of all vectors u ∈ Rm such that:

∑
i∈S

ui ≤
(
n+ 1

2

)
−
(
n− k + 1

2

)
, where S ⊆ [m], |S| = k 6= 0, and

ui ≥ 0, for all 1 ≤ i ≤ m.

Theorem 4.4.10. The number of facets of P(m,n) equals m+ 2m − 1−
m−n∑
r=1

(
m

m− r

)
.

We reinterpret the result [29, Prop. 56] that P(m,m) is a graph associahedron called the

stellohedron to prove an alternate characterization of its face lattice in terms of chains in the

Boolean lattice. This connection is helpful conceptually, as it relates the face structure of these

polytopes to familiar combinatorial objects.

Theorem 4.4.23. The face lattice of P(m,m) is isomorphic to the lattice of chains in Bm, where

C < C ′ if C ′ can be obtained from C by iterations of (1) and/or (2) from Lemma 4.4.20. A face

of P(m,m) is of dimension k if and only if the corresponding chain has k missing ranks.

We conjecture a similar face lattice characterization for P(m,n) in the case m 6= n.

We furthermore connect these polytopes by showing PASM(m,n) projects to P(m,n), by a

similar technique used to show that alternating sign matrix polytopes project to permutohedra [46].

Our last main result is as follows; here φz is the map that multiplies a matrix by z on the right

and Pz is a generalized partial permutohedron determined by z.

Theorem 4.4.27. Let z be a strictly decreasing vector in Rm. Then φz(PASM(m,n)) = Pz(m,n).

This projection gives us a way to connect matrix polytopes to graph associahedra.

Finally, we have computed the volume and Ehrhart polynomials of the polytopes studied

in this paper. We note that the Ehrhart polynomials we were able to compute have positive

coefficients, and have found the following result and conjecture regarding the volume of the partial

permutohedron.

6



Theorem 4.4.28. P(2, n) has normalized volume equal to 2n2 − 1.

Conjecture 4.4.29. P(m, 2) has normalized volume equal to 3m −m.

7



2. PRELIMINARIES

In this chapter, we give preliminary definitions, results, and references that the reader

may find helpful in understanding the relevance and content of our main results, which appear in

Chapters 3 and 4.

2.1. Permutations

Permutations are foundational combinatorial objects. They are well-studied and lie at the

core of many enumeration problems, such as counting non-attacking rook placements. Permutations

are also widely used in mathematics and other disciplines; they make appearances in group theory,

computer science, biology, and even quantum physics. Simply put, a permutation of length n is

a linear arrangement of the elements of the set [n] ..= {1, 2, . . . , n}. For example, 462513 is a

permutation of length 6. We will denote the set of all permutations of length n as Sn. A fixed point

of a permutation w = w1 . . . wn is an element i such that wi = i. An r-permutation of [n] is a linear

arrangement of r elements of [n]. For example, 6413 is a 4-permutation of [6]. The representation

of the above permutation is called one-line notation; we will also view permutations as permutation

matrices.

Definition 2.1.1. An n× n permutation matrix is a matrix whose entries are in {0, 1} and whose

rows and columns sum to 1. In other words, there is exactly one 1 in each row and column, and

zeros elsewhere.

Permutation matrices can be viewed as maximal non-attacking rook placements on square

boards. Given a permutation in one-line notation, w = w1w2 · · ·wn, one can construct its associated

permutation matrix by putting a 1 in position (i, wi) and zeros everywhere else. For example,

the permutation 462513 has the permutation matrix given in Figure 2.1. The enumeration of

permutations is a well-known, simple counting problem: there are n! permutations of length n.

To help study the structure of combinatorial objects such as permutations, combinatorial

statistics are often used. A combinatorial statistic is an integer given to each element of a set
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

0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0


Figure 2.1. The matrix representation of the permutation 462513.

of combinatorial objects. A statistic can be used to refine the enumeration of the set and help

understand its structure. One such statistic on permutations is inversion number.

Definition 2.1.2. Let w = w1w2 . . . wn be a word whose elements are nonnegative integers. An

inversion of w is a pair (i, j) such that i < j but wi > wj . The inversion number of w, denoted

inv(w), is the number of inversions of w. That is, inv(w) = |{(i, j) | i < j, wi > wj}|.

In particular, we can compute the inversion number of a permutation. For our running

example of w = 462513, we have inv(w) = 10. The inversion number can be used to help quantify

how “far away” a given permutation is from the identity permutation, 12 · · ·n. It can also be

used to refine the enumeration of permutations. A q-analogue of an expression is an extension or

generalization of it involving the parameter q such that when you take the limit as q approaches

1, the original expression is returned. Define the q-analogue of a positive integer n to be [n]q ..=(
1 + q + q2 + · · ·+ qn−1

)
. Let [n]q! ..= [n]q[n − 1]q · · · [2]q[1]q be the q-analogue of n!. We can

similarly define the q-analogue of binomial coefficients:
[
n
k

]
q

=
[n]q !

[k]q ![n−k]q ! . It can be shown that∑
w∈Sn

qinv(w) = [n]q!. This gives us a way to find how many inversions of a given length have

inversion number of k by inspecting the coefficient of qk in this polynomial. For example, when

n = 3, we have
∑

w∈S3
qinv(w) = [3]q! = (1 + q + q2)(1 + q) = 1 + 2q + 2q2 + q3. This tells us that

in S3, there is one permutation with inversion number 0, two permutations with inversion number

1, two with inversion number 2, and one with inversion number 3. There is a similar well-known

q-analogue result on binary words, that is, words whose digits are in {0, 1}. Denote by Bn,k the set

of binary words with n total digits, k of which are zeros. There are
(
n
k

)
such binary words. Further,

we have that
∑

w∈Bn,k

qinv(w) =

[
n

k

]
q

, giving a refined enumeration of binary numbers [44].
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It is also of interest to study how certain actions affect words, and in particular permuta-

tions. An adjacent transposition, denoted si (where 1 ≤ i ≤ n − 1), is an action which swaps wi

and wi+1 in the permutation w written in one-line notation. This action swaps rows i and i + 1

in the corresponding permutation matrix. Applying an adjacent transposition to a permutation

produces another permutation whose inversion number differs by exactly one. For example, with

w = 462513, we have s2w = u = 426513. Notice that inv(w) = 10 and inv(u) = 9. Another way to

view the inversion number of a permutation is as the minimum number of adjacent transpositions

that would need to be applied to get to the identity permutation. For example, inv(4213) = 4 and

we can apply, in order, s1, s2, s3, and s1 to get from 4213 to 1234.

We can use the inversion number to construct a partially ordered set on Sn.

Definition 2.1.3. A partially ordered set, or poset, is a set P with a binary relation ≤ which is

reflexive, antisymmetric, and transitive. We say y covers x in P (or x is covered by y) if x < y and

no element z exists in P such that x < z < y. A poset is often represented by its Hasse diagram,

a graph whose vertices are the elements of P and whose edges are the covering relations; if x < y,

then y is drawn above x in the Hasse diagram.

For more information about partially ordered sets, and for additional relevant terminology,

see Chapter 3 of [44].

Two common partial orders on Sn are the weak and strong Bruhat orders. The weak order

is defined as follows: v is covered by w if and only if w = siv and inv(w) = inv(v) + 1. The strong

Bruhat order allows any transposition (swapping wi and wj for any i 6= j) instead of just adjacent

ones. Figure 2.2 shows the Hasse diagrams for both the weak and strong Bruhat orders on S3.

2.2. Alternating Sign Matrices

A well-studied generalization of permutation matrices is alternating sign matrices. Alter-

nating sign matrices have a very interesting history, enumeration, and connection to other areas

of mathematics and science [9]. There exist beautiful bijections between alternating sign matri-

ces and many other combinatorial objects, including monotone triangles, height function matrices,

fully-packed loop configurations, square ice configurations and order ideals of a particular poset.

In particular, the bijection with square ice configurations revealed connections to physics which
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Figure 2.2. The weak Bruhat order (left) and strong Bruhat order (right) on S3.

proved useful in one of the proofs of the enumeration of alternating sign matrices [26]. We will

include a description of the bijection with monotone triangles in this section. See [37] and [47] for

details on the other bijections. Generalizations of these bijections are given in Section 3.2. We

begin with the definition of an alternating sign matrix.

Definition 2.2.1. An alternating sign matrix of order n is an n×n matrix with entries in {−1, 0, 1}

whose rows and columns sum to 1 and whose entries alternate in sign across each row and column.

We will denote the set of all alternating sign matrices of order n by An.

Note that permutation matrices are the alternating sign matrices with no −1 entries. The

only alternating sign matrix of order 3 which is not a permutation matrix is


0 1 0

1 −1 1

0 1 0

. Alter-

nating sign matrices have a beautiful counting formula:

|An| =
n−1∏
j=0

(3j + 1)!

(n+ j)!
.
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This formula was conjectured in 1983 [32], and not proven until several years later [52, 26].

We now give the definition of a monotone triangle, and describe the bijection between

monotone triangles and alternating sign matrices.

Definition 2.2.2. A monotone triangle of order n is a triangular array of positive integers

(ai,j)1≤i≤j≤n taken from the set [n] whose rows are strictly increasing and whose southwest-to-

northeast and northwest-to-southeast diagonals are weakly increasing.

Given an alternating sign matrix, first construct its matrix of partial column sums. Then

create the corresponding monotone triangle whose ith row consists of the values j for which entry

(i, j) of this partial sum matrix is 1. An example is given in Figure 2.3. A natural partial order to

put on monotone triangles is component-wise comparison. That is, (aij) ≤ (bij) if aij ≤ bij for all

i, j. The poset of monotone triangles with this partial order is closely related to the strong Bruhat

order on Sn. It is known to be the MacNeille completion of the strong Bruhat order; in other words

it is the smallest lattice which contains the strong Bruhat order [27]. See Figure 2.4 for an example

of this poset with n = 3.


0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

←→


0 1 0 0
1 0 0 1
1 0 1 1
1 1 1 1

←→
2

1 4
1 3 4

1 2 3 4

Figure 2.3. A 4 × 4 alternating sign matrix along with its matrix of partial column sums and its
corresponding monotone triangle.

Another of the objects alternating sign matrices are in bijection with are fully-packed loop

configurations (or just fully-packed loops), which we define below. In order to do so, we must first

define a certain graph.

Definition 2.2.3. Define the graph Gm,n as follows. The vertex set is:

Vm,n ..= {vi,j : 0 ≤ i ≤ m+ 1, 0 ≤ j ≤ n+ 1} − {v0,0, v0,n+1, vm+1,0, vm+1,n+1} .
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Figure 2.4. The poset of monotone triangles of order 3, ordered by component-wise comparison.

We say the internal vertices are {vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and the remaining vertices are

boundary vertices. We also say a vertex vi,j is even (resp. odd) if i + j is even (resp. odd). The

edge set is:

Em,n ..=


vi,jvi+1,j 0 ≤ i ≤ m, 1 ≤ j ≤ n

vi,jvi,j+1 1 ≤ i ≤ m, 0 ≤ j ≤ n.

See Figure 2.5 for a visual example of Gm,n.

Definition 2.2.4. A fully-packed loop configuration of order n is a subgraph of Gn,n such that

each interior vertex has exactly two incident edges and the following boundary conditions are met.

When n is odd, edges include v0,jv1,j and vn,jvn+1,j for j odd, as well as vi,0vi,1 and vi,nvi,n+1 for i

even. When n is even, edges include v0,jv1,j for j odd, vn,jvn+1,j for j even, vi,0vi,1 for i even, and

vi,nvi,n+1 for i odd.

See Figure 2.6 for examples of fully-packed loops.
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Figure 2.5. The graph Gm,n.

Figure 2.6. The gyration action on a fully-packed loop configuration, first performing the local
action on even squares (shaded on the left) and then odd squares (shaded in the middle). The
initial and final fully-packed loops have labeled boundary edges for constructing their link patterns.

We now introduce an action on fully-packed loops which has some very nice properties [51].

First, define a local action on a square of a fully-packed loop as follows. If its only edges are a

pair of parallel lines, swap them to a pair of parallel lines in the other orientation. Otherwise, do

nothing.

Also assign a parity to each square, starting with even in the top left corner, and alternating

between even and odd for adjacent squares. Then define an action on a fully-packed loop as applying

this local move first to all of the even squares, and then all of the odd squares. This produces another

fully-packed loop since the local action does not change the degree of any interior vertex and does

not affect the boundary conditions. Call this action gyration. An example of this action can be

seen in Figure 2.6.
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One can label along the boundary of a fully-packed loop where the edges “exit” the graph

with the numbers {1, . . . , 2n}. Then each number is connected to one other by a path, and each

fully-packed loop can be reduced to a non-crossing matching, meaning that if the numbers are

arranged in a circle and connected with arcs, none of the arcs cross. This is called the link pattern

of a fully-packed loop. Wieland showed the following theorem [51].

Theorem 2.2.5 ([51]). Gyration on a fully-packed loop rotates the corresponding link pattern.

Specifically, if i and j are connected in a link pattern, then in the corresponding link pattern after

gyration is applied, i− 1 and j − 1 (mod 2n) will be connected.

See Figure 2.7 for an example of this rotation.

Figure 2.7. The link patterns for the fully-packed loops from Figure 2.6.

2.3. Dynamics

Some combinatorial objects behave particularly nicely with respect to various actions -

notably those which break up the set of objects into orbits, such as when the action is bijective and

the set is finite. Given a set of objects and such an action, it is especially noteworthy when the

order of the action is predictable and when the action exhibits special properties, such as the cyclic

sieving phenomenon [39] or homomesy phenomenon [38]. For more information on the background

and an overview of some results in this area called dynamical algebraic combinatorics, see [48]. For

more detailed information on results related to homomesy, see, for example [40].

While much could be said about this topic, we now provide a few relevant definitions which

will help the reader understand the results of Section 3.3.
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Definition 2.3.1. Let P be a poset. An order ideal of P is a subset X ⊆ P such that if y ∈ X

and z ≤ y, then z ∈ X. The set of order ideals of P is denoted J(P ).

J(P ), ordered by inclusion, itself is a poset. In fact it is a distributive lattice (see Chapter

3 of [44]).

We now define an action on order ideals of poset, introduced by Cameron and Fon-Der-

Flaass [12] and studied later by Striker and Williams [49].

Definition 2.3.2. Let P be a poset and let X ∈ J(P ). For any q ∈ P , the toggle tq : J(P )→ J(P )

is defined as follows:

tq(X) =


X ∪ {q} if q /∈ X and X ∪ {q} ∈ J(P )

X − {q} if q ∈ X and X − {q} ∈ J(P )

X otherwise.

The toggle group of P is the group generated by the tq for all q ∈ P , with operation composition.

In other words, if an element is not in the order ideal, and adding it in would result in

another order ideal, then toggling the element adds it in. If an element is in the order ideal, and

removing it would result in another order ideal, then toggling the element removes it. Otherwise,

toggling the element does nothing. Notice that toggles are involutions, and that toggles commute

whenever there are no covering relations between the elements [12].

Definition 2.3.3. Let P be a poset, and let X ∈ J(P ). Then rowmotion, Row(X), is the order

ideal generated by the minimal elements of P not in X.

In [12], it was shown that rowmotion on X is the order ideal obtained from X by toggling

the elements of P from top to bottom (in other words, toggling by rows). The order of rowmo-

tion on order ideals of particular posets, such as root posets and minuscule posets exhibits very

nice properties, such as having predictable order, cyclic sieving, and homomesy. In some cases,

rowmotion corresponds to another action, called promotion, on tableaux or tableaux-like objects

[18, 19, 49]. Interpreting actions as toggle group actions on order ideals of certain posets can be
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advantageous. There may be results or properties of the original action that reveal something new

about the posets, or conversely, known results of posets may be used to prove something about the

original action.

2.4. Polytopes

Polytopes are objects which lie at the intersection of combinatorics and geometry. See [54]

for an excellent introduction and summary of known polytope results and further definitions.

Definition 2.4.1. A (convex) polytope P can be defined in two ways:

1. as the convex hull of a finite set of points in Rn. That is, given ~x = {x1, x2, . . . , xk} ⊂ Rn,

then P =
{
λ1x1 + · · ·+ λkxk : λi ≥ 0,

∑k
i=1 λi = 1

}
.

2. as the bounded intersection of finitely many closed halfspaces in Rn.

In 2 dimensions, polytopes are just convex polygons. Informally speaking, one can think

of a 2-dimensional polytope as taking a rubber band and stretching around a set of points in the

plane. In 3 dimensions, one can think of tightly shrink-wrapping a set of points in space.

Of particular interest may be the faces of polytopes. Faces include vertices (extreme points),

edges, and higher dimensional analogues of these. Maximal proper faces (that is, the highest-

dimensional faces which are not the polytope itself) are called facets. One can study the structure

of the faces of a polytope by constructing its face lattice, which is the poset of its faces ordered by

inclusion. An example is given in Figure 2.8. Different interpretations of face lattices can be useful

conceptually or for computations involving large-dimensional polytopes.

Many examples of polytopes are either simple (meaning that every vertex is contained in

the minimal number of facets) or simplicial (meaning that every proper face is a simplex ). Some

important examples of non-simple and non-simplicial polytopes related to objects we have already

discussed include the nth Birkhoff polytope for n > 3 (the convex hull of n×n permutation matrices)

[8, 50] and the nth alternating sign matrix polytope for n ≥ 3 (the convex hull of n×n alternating

sign matrices) [6, 46]. The nth Birkhoff polytope is (n − 1)2-dimensional, has vertices which are

exactly the n×n permutation matrices, has n2 facets, and has a characterization of its face lattice

in terms of elementary bipartite graphs [7]. The nth alternating sign matrix polytope is (n − 1)2-
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Figure 2.8. An example of a polytope and its face lattice.

dimensional, has vertices which are exactly the n× n alternating sign matrices, has 4[(n− 2)2 + 1]

facets, and has a characterization of its face lattice in terms of elementary flow grids [6, 46].

Both Birkhoff and alternating sign matrix polytopes project [46] to another well-studied

family of polytopes called permutohedra. The nth permutohedron is (n − 1)-dimensional, has

vertices which are exactly the one-line representation of permutations, has k!
{
n
k

}
faces of size k

(where
{
n
k

}
are Stirling numbers of the second kind) and in particular has 2n− 2 facets. It is also a

zonotope, meaning that it is the Minkowski sum of line segments that connect pairs of standard basis

vectors, and has a characterization of its face lattice in terms of ordered set partitions [7, 42, 54].

Another topic of interest in the study of polytopes involves their Ehrhart polynomials and

normalized volume. The t-th dilation of a polytope P is tP = {t~x : ~x ∈ P}. Denote by LP (t)

the number of lattice points in tP , that is, points with integer coordinates. LP (t) was shown by

Ehrhart [20] to be a polynomial when P is a lattice polytope, a polytope whose vertices are lattice

points. This polynomial is known as the Ehrhart polynomial of a polytope. The normalized volume

of a polytope of dimension d is the volume multiplied by d!, and it is known that this is the leading

coefficient of the Ehrhart polynomial. Of special interest is when the coefficients of the Ehrhart

polynomial of P are positive. In this case, P is called Ehrhart positive. Some classes of polytopes

have been shown to be (or to not be) Ehrhart positive, but in general, this is a very difficult problem
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with no standard approach. For background, further information, and references regarding these

topics, see for example [4] or [28].
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3. BIJECTIONS

In this chapter, we study analogues of permutations and alternating sign matrices. We

allow the matrices to be rectangular, and in doing so relax the condition that each row and column

must sum to 1.

3.1. Partial Permutations

In this section, we define partial permutations and give straightforward enumerative results.

We then state and prove a q-analogue result, providing a refined way of counting partial permu-

tations based on their length. We also show a connection to decorated permutations. Finally, we

define a subfamily of partial permutations which has an interesting relation to set partitions and a

previously studied polytope.

Definition 3.1.1. An m×n partial permutation matrix is an m×n matrix M = (Mij) with entries

in {0, 1} such that the entries in each row and column sum to either 0 or 1. We denote the set of

all m×n partial permutation matrices as Pm,n. We may also refer to partial permutation matrices

simply as partial permutations.

Remark 3.1.2. Partial permutations matrices are sometimes called subpermutation matrices, see,

for example, [11]. We choose the terminology partial permutation since we consider our matrices

as objects in their own right, rather than as submatrices of larger (square) permutation matrices.

The use of the term partial permutation is consistent with literature on square partial permutation

matrices, such as [13]. Rectangular partial permutation matrices are mentioned in [34].

3.1.1. Enumeration

We now enumerate partial permutations, using standard counting arguments. See Table 3.1

for the number of m× n partial permutations for m,n ≤ 6.

Proposition 3.1.3. Pm,n and Pn,m are each enumerated by

m∑
k=0

(
m

k

)
(n)k,
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where (n)k denotes the falling factorial (n)k := n(n− 1)(n− 2) · · · (n− k + 1).

Proof. Let m ≤ n. For any partial permutation matrix in Pm,n, there can be at most one 1 in each

row and column, and all other entries must be 0. We begin by choosing which k rows will have a 1.

There are
(
m
k

)
ways to do this. Label these rows ri1 , ri2 , . . . , rik . Now consider which columns will

contain these ones. There are n possible columns for the 1 in row ri1 . This leaves n − 1 possible

columns for the 1 in row rn2 . Continuing in this manner, there will be n− t+ 1 columns available

for the 1 in row rit for 1 ≤ t ≤ k. So there are (n)k possibilities of columns for each of the
(
m
k

)
choices of rows. Since m ≤ n, there can be at most m ones in the matrix, so summing k over these

values gives us the total number of matrices in Pm,n. Pn,m has the same cardinality as Pm,n, since

there is a bijection given by transposing the matrix, so the result follows.

Table 3.1. The number of m× n partial permutation matrices.

@
@
@

m
n

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 7 13 21 31 43

3 4 13 34 73 136 229

4 5 21 73 209 501 1045

5 6 31 136 501 1546 4051

6 7 43 229 1045 4051 13327

Example 3.1.4. The 13 elements of P2,3 are:

M1 =

0 0 0

0 0 0



M2 =

1 0 0

0 0 0



M3 =

0 1 0

0 0 0



M4 =

0 0 1

0 0 0



M5 =

0 0 0

1 0 0



M6 =

0 0 0

0 1 0



M7 =

0 0 0

0 0 1



M8 =

1 0 0

0 1 0



M9 =

1 0 0

0 0 1


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M10 =

0 1 0

1 0 0



M11 =

0 1 0

0 0 1



M12 =

0 0 1

1 0 0



M13 =

0 0 1

0 1 0


A one-line representation of a partial permutation matrix can be obtained in the following

way: for each row, record the column of the 1, unless there is no 1 in that row, in which case record

a 0. This will be a word with m digits in letters {0, 1, . . . , n}, where each nonzero number may be

used at most once. An example of a partial permutation matrix along with its one-line notation

can be found in Figure 3.1.


1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0

←→ 1302

Figure 3.1. A 4× 4 partial permutation matrix along with its one-line notation.

Definition 3.1.5. The length of an m × n partial permutation w, denoted `(w), is its inversion

number plus the sum of its entries.

In [23], a partial order is put on the set of partial injective functions of order n, which are

equivalent to n× n partial permutation matrices. This partial order is a generalization of Bruhat

order on Sn. The length of a partial permutation corresponds to its rank in this poset, and this is

easily extended to the m× n case.

We now give some notation and a q-analogue result on partial permutation matrices which is

analogous to that of usual permutations (as mentioned in Section 2.1). For w = w1w2 · · ·wm ∈ Pm,n,

let inv(w) be the usual inversion number. Denote by inv0(w) the number of inversions involving a 0

and by inv1(w) the number of inversions of w not involving a 0, so that inv(w) = inv0(w)+inv1(w).

Let inc(w) ..=

m∑
i=1

wi −
r(r + 1)

2
, where r is the number of nonzero entries of w. Then since
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inv(w) = inv0(w) + inv1(w) and the sum of entries of w is inc(w) + r(r+1)
2 , we have that `(w) =

inv0(w) + inv1(w) + inc(w) + r(r+1)
2 . This deconstruction of `(w) will be useful in our proof of

Theorem 3.1.6. Finally, let ([n]q)k
..= [n]q[n− 1]q · · · [n− k + 1]q. That is ([n]q)k is the q-analogue

of the falling factorial.

Theorem 3.1.6. The length generating function of m× n partial permutations is given by:

∑
w∈Pm,n

q`(w) =

m∑
r=0

([
m

r

]
q

([n]q)r q
r(r+1)

2

)
.

Proof. First note that ([n]q)k = [r]q!
[
n
r

]
q
, so the summand on the right hand side can be expanded

to
[
m
r

]
q
[r]q!

[
n
r

]
q
q

r(r+1)
2 . We will begin by keeping track of what is contributed by each disjoint

substatistic: inv0(w), inv1(w), and inc(w).

Let w = w1w2 · · ·wm ∈ Pm,n. Let W = {wi1 , wi2 , . . . , wir} be the ordered set of nonzero

entries of w, that is 0 < wi1 < wi2 < · · · < wir ≤ n. Let {j1, j2, . . . , jm−r} be the positions of the

zeros in w. Then inv0(w) = inv(w̃), where w̃ ∈ Bm,m−r is the corresponding binary word with zeros

in positions {j1, j2, . . . , jm−r}. Since
∑

w∈Bm,m−r

qinv(w) =

[
m

r

]
q

, we have the portion of our length

generating function corresponding to inv0.

Now, consider the word u obtained by removing all of the zeros in w. u is an r-permutation

of [n], and in particular is a permutation of W as defined above. Associate to u its normalized

permutation û ∈ Sr by replacing wik with k. Then inv1(w) = inv(u) = inv(û). Since
∑
û∈Sr

qinv(û) =

[r]q!, we have the portion of our length generating function corresponding to inv1.

Consider once again the set W . There is a bijection between r-subsets of [n] and Bn,r,

where the r zeros are in positions i1, i2, . . . , ir. Call the image of W under this bijection v. Now,

counting inc(w) is the same as finding the difference wik − k for each k and summing the results.

But this is just inv(v), because the difference wik − k is precisely how many ones are to the left

of the 0 in the position ik. So we have that inc(w) = inv(v). Again, we can use the fact that∑
v∈Bn,r

qinv(v) =

[
n

r

]
q

, and so we have the portion of our length generating function corresponding

to inc(w). We now simply need to multiply by q
r(r+1)

2 to account for what was subtracted from the

total sum of entries.
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Finally, since each of these substatistics are disjoint, combining their contributions and

summing from r = 0 to m gives us the final result.

The following example shows the deconstruction described above for a particular partial

permutation.

Example 3.1.7. Let w = 250704 ∈ P6,7. Then inv(w) = 7 and the sum of the entries of w is 18,

so `(w) = 25. Following the proof of Theorem 3.1.6, we have the following: r = 4 (the number of

nonzero entries of w), W = {2, 4, 5, 7} (the ordered set of nonzero entries of w), {j1, j2} = {3, 5}

(the positions of the zeros in w), w̃ = 110101 (the binary word with 6 digits whose zeros are in

the same as the zeros of w), u = 2574 (the 4-permutation of [7] obtained by deleting the zeros

of w), û = 1342 (the normalized permutation of u), and v = 1010010 (the binary word with 7

digits whose zeros are in the positions of the elements of W ). We see that inv0(w) = inv(w̃) = 5,

inv1w = inv(u) = inv(û) = 2, inc(w) = inv(v) = 8, 4(4+1)
2 = 10, and adding these together we get

5 + 2 + 8 + 10 = 25 = `(w).

3.1.2. Relation to Decorated Permutations

We now state a connection between certain partial permutations and decorated permu-

tations, which are defined below. Decorated permutations are in bijection with various other

combinatorial objects, such as Grassmannian necklaces and Le-diagrams, and arise in the study of

positroids (see, for example [35]).

Definition 3.1.8. A decorated permutation of length n is a permutation π = π1 . . . πn where fixed

points πi = i are replaced by either a positive or negative decoration, i or i respectively. We denote

the set of decorated permutations of size n as Dn.

Remark 3.1.9. Another way to write decorated permutations is to instead write π = (π1, . . . , πn)

and replace each positively decorated fixed point with a “+” and each negatively decorated fixed

point with a “−.” This representation is equivalent because only fixed points are decorated. For

example, the π = 15342 would be written as (+, 5,−,+, 2). This is the convention we will use in

the upcoming examples and theorem.
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Example 3.1.10. The following are the 16 elements of D3:

(+,+,+), (−,+,+), (+,−,+), (+,+,−), (−,−,+), (−,+,−), (+,−,−), (−,−,−),

(+, 3, 2), (−, 3, 2), (2, 1,+), (2, 1,−), (2, 3, 1), (3, 1, 2), (3,+, 1), and (3,−, 1).

Theorem 3.1.11. Decorated permutations of length n are in bijection with the partial permutations

written in one-line notation whose nonzero entries are maximized.

Proof. Let π ∈ Dn. First, strip π of any positive decorations, that is replace any “+” with the

position that “+” occupies. Then replace any negative decorations with 0. Note that if there

are no negative decorations, the result is simply a permutation of n. Let the number of negative

decorations of π (i.e. the number of zeros in the result) be z. The final step is to replace the

remaining nonzero entries with the n − z largest entries from [n] (that is, {z + 1, z + 2, . . . , n}),

while keeping the same relative order. By construction, the end result is a unique element of Pn,n

whose nonzero entries are maximized.

Furthermore, since each of the steps is easily reversible without loss of information, this

map is a bijection. For the reverse map, consider v = (v1, . . . , vn) of P(n, n) whose nonzero entries

are maximized. Let Zv = {i : vi = 0}, that is Zv is the set of positions whose entries are 0 in v.

Let Iv = [n] − Zv. Replace the nonzero entries in v with those from Iv while keeping the same

relative order. Then replace the zeros with negative decorations. Finally, decorate any remaining

fixed points with “+”.

See Example 3.1.12 for an example of this bijection.

Example 3.1.12. Let π = (+, 4,−, 6,−, 2) ∈ D6. We first strip π of any positive decorations:

(1, 4,−, 6,−, 2). We then replace any negative decorations with 0: (1, 4, 0, 6, 0, 2). Finally, we

replace the remaining nonzero entries with the numbers {3, 4, 5, 6} while keeping the same relative

order: (3, 5, 0, 6, 0, 4) = v, an element of P(6, 6) whose nonzero entries are maximized.

For the reverse direction, start with v = (3, 5, 0, 6, 0, 4). Then Zv = 3, 5 and so Iv = 1, 2, 4, 6.

We replace the nonzero entries of v with those from Iv while keeping the same relative order:
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(1, 4, 0, 6, 0, 2), then positively decorate any fixed points: (+, 4, 0, 6, 0, 2). Finally, replace the zeros

with negative decorations: (+, 4,−, 6,−, 2) = π.

The partial permutations which are in bijection with decorated permutations are exactly

the vertices of the partial permutohedra studied in Section 4.4.

3.1.3. Relation to Set Partitions

In [15], the authors investigated certain families of permutation matrices whose entries

below the second diagonal are fixed to be zero. The polytopes formed by these matrices, called

CRY polytopes, are certain faces of the Birkhoff polytope. They were conjectured [15] and later

shown [53] to have very nice volume formulas given by the product of Catalan numbers. Motivated

by this, the authors of [31] studied the alternating sign matrix analogue of these polytopes. They

showed, among other things, that these polytopes are order polytopes, allowing for explicit formulas

for their volumes and Ehrhart polynomials.

We investigated “partial analogues” of these polytopes but were unable to find analogous

results. However, we found an interesting bijection in the case of partial permutations which allows

us to enumerate such families in terms of Bell numbers, so we include it here.

Definition 3.1.13. A k-CRY partial permutation matrix is a square partial permutation matrix

M ∈ Pn,n such that Mij = 0 for i + j > n + k. In other words, there is an additional restriction

requiring that the entries below an antidiagonal depending on the parameter k are equal to 0. We

denote the set of n× n k-CRY partial permutation matrices as P kn,n.

Example 3.1.14. The 15 matrices in P 1
3,3 are below. The entries which must follow the additional

restriction from Definition 3.1.13 are bolded and blue.

M1 =


0 0 0

0 0 0

0 0 0

 M2 =


0 0 0

0 0 0

1 0 0

 M3 =


0 0 0

1 0 0

0 0 0



26



M4 =


0 0 0

0 1 0

0 0 0



M5 =


1 0 0

0 0 0

0 0 0



M6 =


0 1 0

0 0 0

0 0 0



M7 =


0 0 1

0 0 0

0 0 0



M8 =


0 0 0

0 1 0

1 0 0



M9 =


1 0 0

0 1 0

0 0 0



M10 =


0 1 0

0 0 0

1 0 0



M11 =


0 1 0

1 0 0

0 0 0



M12 =


0 0 1

0 0 0

1 0 0



M13 =


0 0 1

1 0 0

0 0 0



M14 =


0 0 1

0 1 0

0 0 0



M15 =


0 0 1

0 1 0

1 0 0


In the next theorem, we relate P kn,n to set partitions, which we now define.

Definition 3.1.15. A partition of a set A, or set partition is a grouping of its elements into

nonempty subsets, called blocks.

Theorem 3.1.16. P kn,n is bijection with set partitions of {1, 2, . . . , n+k} such that none of 1, . . . , k

may be in the same block and none of n+ 1, . . . , n+ k may be in the same block.

Proof. We begin with the case k = 1. Let M ∈ P 1
n,n, so every entry of M below the main

antidiagonal is 0. We construct a bijection to set partitions of {1, 2, . . . , n + 1}. Construct the

corresponding set partition by iterating the following: if Mij = 1, then i must be in the same block

as n− j + 2. If one of these numbers has already been put in a block, merge the blocks.

To reverse this, start with a set partition of {1, 2, . . . , n + 1}. Construct a matrix (Mi,j)

by the following rule: If there is a group of more than 2, say {a1, a2, . . . , am} such that a1 < a2 <

· · · < am, then put a 1 in row ai, column n− ai+1 + 2 for 1 ≤ i ≤ m− 1. Set the rest of the entries

equal to zero. Note in particular that the entries for which i+ j > n+ 1 will be zero, resulting in

a matrix in P 1
n,n. So we have a bijection between P 1

n,n and set partitions of n+ 1.
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Now consider any 1 < k ≤ n. We apply a similar bijection. In this case, we construct a set

partition by iterating the following: if Mij = 1, then i must be in the same block as n− j + k + 1.

Since Mij = 0 for i + j > n + k, this results in a set partition of n + k such that none of 1, . . . , k

may be in the same block and none of n + 1, . . . , n + k may be in the same block. We follow the

same rule as above to reverse this. Note that in particular, starting with a set partition of n + k

such that none of 1, . . . , k are in the same block and none of n+ 1, . . . , n+ k are in the same block

guarantees that the resulting matrix will have zeros in entries for which i+ j > n+ k.

An example of this bijection is given in Example 3.1.17.

Example 3.1.17. Let M =



0 1 0 0

0 0 1 0

0 0 0 0

1 0 0 0


∈ P 1

4,4. A straightforward way to see the bijection is

to label the rows of M with the numbers 1, 2, . . . n and the columns with the numbers n + k, n +

k − 1, . . . , k + 1. Then a 1 in a position labeled (i, j) corresponds to i being in the same block of j

in the set partition. Our labeling of M in this example is the following:



5 4 3 2

1 0 1 0 0

2 0 0 1 0

3 0 0 0 0

4 1 0 0 0


There are ones in positions with labels (1, 4), (2, 3), and (4, 5), so the blocks are {1, 4, 5}

and {2, 3}. That is, the set partition of 5 corresponding to M is {{1, 4, 5}, {2, 3}}.

Theorem 3.1.16 relates k-CRY partial permutations to set partitions. Set partitions are

counted by Bell numbers. This allows us to enumerate k-CRY permutations for small k completely

in terms of Bell numbers.
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Definition 3.1.18. The nth Bell number, denoted Bn, is defined to be the number of ways that a set

of size n can be partitioned into nonempty subsets. Bell numbers are calculated as Bn =
n∑
i=0

{
n

i

}
,

where
{
n
i

}
are the Stirling numbers of the second kind, the number of ways to partition a set of

cardinality n into exactly i nonempty subsets.

Definition 3.1.19. Given a sequence A = {a1, a2, a3, . . .}, the first difference sequence of A is

∆A = {a2 − a1, a3 − a2, . . .}. Denote the nth term of ∆A as ∆An. The second difference sequence

of A, ∆2A, is the first difference sequence of ∆A. Likewise the kth difference sequence of A, ∆kA,

is the first difference sequence of ∆k−1A for k ∈ N.

If B is the sequence of Bell numbers, ∆Bn is the number of set partitions of n where n is

not a singleton. This is because we are taking the number of set partitions of n and subtracting

the number of set partitions of n − 1, which we can count by removing all set partitions where n

is a singleton (since the rest of the set partition can be interpreted as a set partition of n − 1).

Similarly, ∆2Bn is the number of set partitions of n where neither n nor n − 1 are singletons.

Equivalently, ∆2Bn is the number of set partitions of n where neither i nor j are singletons for

i 6= j. So in particular, ∆2Bn can be thought of as the number of set partitions where neither 1

nor n are singletons, which is the interpretation we use in the following lemma.

Proposition 3.1.20. Let S be the set of set partitions of n where neither 1 nor n are singletons,

so that |S| = ∆2Bn, and T be the set of set partitions of n where 1 is not in the same block as 2

and n− 1 is not in the same block as n. There exists an explicit bijection between S and T .

Proof. Let x ∈ S. Then x is a set partition of n where neither 1 nor n are singletons. Map x to

y ∈ T as follows. If 1 is in the same block as 2, remove 1 from that block, making it a singleton.

Likewise, if n is in the same block as n− 1, remove n from that block, making it a singleton. Then

y is necessarily a set partition such that 1 is not in the same block as 2 and n − 1 is not in the

same block as n. This is easily reversible; the reverse map is the following. Given y ∈ T , map it to

x ∈ S as follows. If 1 is a singleton, move it to the block containing 2. Likewise, if n is a singleton,

move it to the block containing n− 1. Thus we have a bijection.
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Corollary 3.1.21.
∣∣P 1
n,n

∣∣ = Bn+1. Moreover, P 2
n,n is enumerated by the second difference of Bell

numbers. That is, |P 2
n,n| = (Bn+2 −Bn+1)− (Bn+1 −Bn) = Bn+2 − 2Bn+1 +Bn.

Proof. This follows directly from Theorem 3.1.16 and Lemma 3.1.20.

3.2. Partial Alternating Sign Matrix Bijections

In this section, we first define an analogue of alternating sign matrices, which we call

partial alternating sign matrices. We then describe several bijections akin to those in the usual

alternating sign matrix setting (see, for example [37, 47]). Our initial motivation for the study

of partial alternating sign matrices was to better understand the structure of chained alternating

sign matrices, as each component of a chained alternating sign matrix is a partial alternating sign

matrix (see [25] as well as Chapter 5 for more information). While this is still in progress, the study

of partial alternating sign matrix bijections themselves is robust and presented here.

Definition 3.2.1. An m× n partial alternating sign matrix is an m× n matrix M = (Mij) with

entries in {−1, 0, 1} such that:

• the entries in each row and column sum to either 0 or 1,

• the nonzero entries in each row and column alternate in sign, and

• the first nonzero entry (if any) in each column and last nonzero entry (if any) in each row

are 1.

We denote the set of all m× n partial permutation matrices as PASMm,n.

Remark 3.2.2. It may be more natural to require that the first nonzero entry (if any) in each row

is one rather than the last nonzero entry. This would give us an equivalent set of objects, since

the matrices would just be reflections of the ones we have defined. In fact, in Chapter 4, we will

use the opposite convention. However, for the sake of defining the upcoming bijections, it is more

convenient to use the requirement in the definition above.

Remark 3.2.3. The set of matrices in PASMm,n with no −1 entries is the set Pm,n of partial

permutation matrices, since the second condition is vacuous.
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Example 3.2.4. PASM2,3 consists of the 13 matrices from Example 3.1.4 plus the following four

additional matrices:

M14 =

0 1 0

0 −1 1

 M15 =

0 1 0

1 −1 1



M16 =

 1 0 0

−1 0 1

 M17 =

 1 0 0

−1 1 0


The cardinality of PASMn,n is given by sequence A202751 in the Online Encyclopedia of

Integer Sequences [1]. It is unlikely that there exists a product formula for |PASMm,n|, since, for

example, |PASM6,6| = 1442764 = 22 · 373 · 967. See Table 3.2 for the number of m × n partial

alternating sign matrices for m,n ≤ 6, calculated with SageMath [45].

Table 3.2. The number of m× n partial alternating sign matrices.

@
@
@

m
n

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 8 17 31 51 78

3 4 17 62 184 462 1022

4 5 31 184 924 3809 13197

5 6 51 462 3809 26394 150777

6 7 78 1022 13197 150777 1442764

Remark 3.2.5. n× n partial permutation and alternating sign matrices were studied in a different

context by Fortin [23]. He showed that, with a poset structure analogous to the strong Bruhat

order, the lattice of partial alternating sign matrices is the MacNeille completion of the poset

of partial permutations. That is, the lattice of partial alternating sign matrices is the smallest

lattice containing the poset of partial permutations. This is analogous to the result of Lascoux and

Schützenberger [27] that the lattice of n× n alternating sign matrices is the MacNeille completion

of the strong Bruhat order on Sn.
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We now state our main result of this section, which is the goal of the remainder of this

section.

Theorem 3.2.6. There are explicit bijections among m×n partial alternating sign matrices, (m,n)-

partial monotone triangles, (m,n)-partial height function matrices, (m,n)-partial fully-packed loop

configurations, (m,n)-rectangular ice configurations, the set of order ideals of Pm,n, and (m,n)-

nests of osculating paths.

We prove this theorem via a series of lemmas and define the needed objects along the way.

We begin with partial monotone triangles.

Definition 3.2.7. An (m,n)-partial monotone triangle is a triangular array of non-negative inte-

gers (ai,j)1≤j≤i≤m with entries in {0, 1, . . . , n} and with the following properties:

• rows are weakly increasing: ai,j ≤ ai,j+1,

• nonzero entries in rows are strictly increasing, and

• diagonals are weakly increasing: ai,j ≤ ai−1,j and ai,j ≤ ai+1,j+1.

An example of the triangular array with indexing as described above is given in Figure 3.2,

and an example of a partial monotone triangle can be found in Figure 3.3

Remark 3.2.8. Objects similar to this definition have appeared in the literature before. In par-

ticular, a certain transformation of an (n, n)-partial monotone triangle is what is referred to as a

“generalized key” in [23].

a11
a12 a22

... · · · . . .

a1m a2m · · · amm

Figure 3.2. A triangular array of numbers with the indexing as described in Definition 3.2.7.
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
1 0 0 0
0 0 1 0
−1 1 0 0

1 0 −1 1


1

1 3
0 2 3

0 1 2 4


0 0 0 0 0
1 0 0 0 0
2 1 1 0 0
2 2 1 0 0
3 2 1 1 0




0 1 2 3 4
1 2 3 4 3
2 3 2 3 2
3 4 3 2 3
4 3 4 3 2


Figure 3.3. A 4× 4 partial alternating sign matrix along with its corresponding partial monotone
triangle, corner-sum matrix, and partial height function matrix.

Lemma 3.2.9. There is an explicit bijection between m× n partial alternating sign matrices and

(m,n)-partial monotone triangles.

Proof. Given an m × n partial alternating sign matrix M , construct (Ci,j)1≤i≤m,1≤j≤n, its m × n

matrix of partial column sums, by setting Cij =
∑i

k=1Mkj . By the alternating condition on partial

alternating sign matrices, this will be a {0, 1}-matrix. Construct an array of numbers from (Ci,j)

as follows: in the ith row, record in increasing order the values j for which Cij = 1. If there are

less than i such values, fill in zeros from the left until there are i values in row i. By construction,

the nonzero entries in each row are strictly increasing. The restrictions on partial alternating sign

matrices, namely the rows and columns summing to 0 or 1, the alternating condition, and the fact

that the first (last) nonzero entry in each column (row) must be 1 guarantee that the diagonals

are weakly increasing from southwest to northeast and northwest to southeast. Thus, the result is

an (m,n)-partial monotone triangle. Since any matrix can be uniquely determined by its partial

column sums, this is a one-to-one map.

Furthermore, this map is easily reversible. Given an (m,n)-partial monotone triangle (ai,j),

first build an m × n {0, 1}-matrix (Ci,j) by setting Ci,k = 1 whenever ai,j = k > 0 and filling the

rest of the matrix with zeros. This matrix (Ci,j) records the partial column sums of a unique partial

alternating sign matrix, M , where M1j = C1j and Mij = Cij − Ci−1,j for 2 ≤ i ≤ m.

Putting the natural partial order (component-wise comparison) on partial monotone tri-

angles forms a lattice, which is the MacNeille completion of the poset of partial permutations as

mentioned in Remark 3.2.5. This is proven for m = n in [23], and can be extended to m 6= n. A

similar poset construction using all sign matrices was studied in [10].
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Figure 3.4. The poset of partial permutations (left) and the poset of partial alternating sign matrices
(right), for m = n = 2.

We now move on to corner-sum matrices, which are useful for showing the correspondence

with partial height function matrices.

Definition 3.2.10. Given any m × n matrix (Mi,j)1≤i≤m,1≤j≤n, we can define its (north-east)

corner-sum matrix (ci,j)0≤i≤m,0≤j≤n by setting ci,j =
∑

i′≥i,j′≤j
Mi′,j′ .

Lemma 3.2.11. There is an explicit bijection between m×n partial alternating sign matrices and

(m + 1) × (n + 1) matrices whose first row and last column are all zeros, and whose entries are

increasing by from top to bottom and right to left and whose entries increase by at most one.

Proof. We claim the set of matrices described above is exactly the set of corner-sum matrices of

m×n partial alternating sign matrices. The first row and last column of any such corner-sum matrix

are all zeros by definition. The fact that an m×n partial alternating matrix has entries in {−1, 0, 1},

along with the alternating condition guarantees that adjacent entries in the corresponding corner-

sum matrix differ by at most one. Note that given any corner-sum matrix c, one can recover the

original matrix M by Mij = cij − ci−1,j − ci,j+1 + ci−1,j+1.

See Figure 3.3 for an example of a partial alternating sign matrix along with its correspond-

ing corner-sum matrix.
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Definition 3.2.12. An (m,n)-partial height function matrix is a matrix (hi,j)0≤i≤m,1≤j≤n with

h0,k = k for 0 ≤ k ≤ n, and h`,0 = ` for 0 ≤ ` ≤ m, and such that adjacent entries in any row or

column are non-negative and differ by exactly 1.

Lemma 3.2.13. There is an explicit bijection between m×n partial alternating sign matrices and

(m,n)-partial height function matrices.

Proof. The bijection is given by first mapping a partial alternating sign matrix (Mi,j)1≤i≤m,1≤j,≤n

to its corner-sum matrix (ci,j). By Lemma 3.2.11, this is an (m+ 1)× (n+ 1) matrices whose first

row and last column are all zeros, and whose entries increase by at most one from top to bottom

and right to left. Then define the matrix (hi,j)0≤i≤m,0≤j,≤n as hi,j = i+ j − 2ci,n−j . (hi,j) satisfies

Definition 3.2.12 because of the following. The condition that the first row and last column of the

corner-sum matrix are 0 guarantees that the first row and first column start at 0 and increase by 1.

The condition that the entries of the corner-sum matrix increase by at most one from top to bottom

and right to left is equivalent to the condition that adjacent entries in (hi,j) differ by exactly one.

In particular, when moving along a row (right-to-left) or column (top-to-bottom), if the entry stays

the same in the corner-sum matrix, then the corresponding entry in (hi,j) goes down by one, and

if the entry increases by one in the corner-sum matrix, then the corresponding entry in (hi,j) goes

up by one (this can be seen using the formula hi,j = i+ j − 2ci,n−j). Thus (hi,j) is a partial height

function matrix.

Given a partial height function matrix (hi,j), we can recover (ci,j) by setting ci,n−j =

i+j−hi,j
2 , from which we can recover the partial alternating sign matrix as mentioned in the proof

of Lemma 3.2.11.

An example of a partial alternating sign matrix and its corresponding partial height function

matrix is given in Figure 3.3.

The next several bijections make use of the graph Gm,n of Definition 2.2.3. These bijections

will give us more interesting angles from which to study partial alternating sign matrices, with

visualizable objects and connections to physics and dynamics.
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Definition 3.2.14. An (m,n)-partial fully-packed loop configuration is a subgraph of Gm,n whose

edges include v0,jv1,j for j odd and vi,0vi,1 for i even, and such that each interior vertex has exactly

two incident edges.

See Figure 3.5, left, for an example.

Figure 3.5. An example of the (4, 4)-partial fully-packed loop configuration, this partial fully-packed
loop with its edges directed, and the associated (4, 4)-rectangular ice configuration corresponding
to the partial alternating sign matrix from Figure 3.3.

Lemma 3.2.15. There is an explicit bijection between (m,n)-partial fully-packed loop configura-

tions and (m,n)-partial height function matrices.

Proof. Starting with an (m,n)-partial height function matrix (hi,j), overlay Gm,n so that each

interior number in the partial height function matrix has four surrounding vertices. Separate two

horizontally adjacent numbers by an edge if the numbers are 2k and 2k + 1 (in either order) for

any integer k. Separate two vertically adjacent numbers by an edge if the numbers are 2k − 1 and

2k (in either order) for any integer k. Since h0,k = k for 0 ≤ k ≤ n, and h`,0 = ` for 0 ≤ ` ≤ m,

we will have the required boundary conditions for an (m,n)-partial fully-packed loop. Also, each

partial height function matrix entry differs by exactly one, so this yields the condition that interior

vertices have exactly two incident edges. For the reverse map, start with the partial fully-packed

loop configuration and fill in the boundary conditions for the partial height function matrix. Then,

simply use the rule described above in reverse, using the condition that each adjacent entry in the

partial height function matrix must be exactly one apart.
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See Figure 3.6 for an example.

Figure 3.6. The partial height function matrix from Figure 3.3 overlaid with its corresponding
partial fully-packed loop configuration.

Definition 3.2.16. An (m,n)-rectangular ice configuration is a directed graph whose underlying

graph is Gm,n such that the directed edges along the left point inward, the directed edges on the

top point outward, and each interior vertex has both in-degree and out-degree equal to two.

In general when a directed graph whose underlying graph is Gm,n has all directed edges

pointing inward along the left and right and outward along the top and bottom, that graph is said

to have domain wall boundary conditions. Here, we have a partial analogue of those conditions.

An example of a rectangular ice configuration is given in Figure 3.5, right.

Lemma 3.2.17. There is an explicit bijection between (m,n)-rectangular ice configurations and

(m,n)-partial fully-packed loop configurations.

Proof. Given an (m,n)-rectangular ice configuration, keep only those edges which start at an even

vertex and end at an odd vertex. Note that there is no loss of information here, as each interior

vertex had in-degree and out-degree equal to two. Then make those edges undirected. Again, we

lose no information here because we know that each of these edges was originally directed towards

an odd vertex. Each vertex will now have degree equal to two, resulting in an (m,n)-partial

fully-packed loop configuration by definition. Note that since we started with edges along the

left pointing inward and edges along the top pointing outward, keeping edges that were originally

directed towards an odd vertex give us the fixed boundary conditions along the top and left edges

for a partial fully-packed loop.
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For the reverse direction, we simply start with an (m,n)-partial fully-packed loop configu-

ration “undo” each of the steps: direct the edges so that they go from even vertices to odd vertices.

Then, fill in the remaining directed edges so that each interior vertex has in- and out-degree equal

to 2. The boundary condition on rectangular ice that the directed edges along the left point inward

and the directed edges on the top point outward is satisfied because we started with a partial

fully-packed loop, which by definition has edges v0,jv1,j for j odd and vi,0vi,1 for i even.

We now relate partial alternating sign matrices to order ideals of a certain poset (recall Def-

initions 2.1.3 and 2.3.1). This, along with the connection to partial fully-packed loop configurations

lays the groundwork for the study of related dynamics in Section 3.3.

Definition 3.2.18. Define the poset elements Pm,n as the coordinates (i, j, k) in Z3 such that

0 ≤ k ≤ m − 1, k ≤ j ≤ n − 1, and k ≤ i ≤ m − 1. Define the partial order via the following

covering relations: (i, j, k) covers (i+1, j, k), (i, j+1, k), (i−1, j, k−1), and (i, j−1, k−1) whenever

these coordinates are poset elements.

See Figure 3.7 for an example of Pm,n. The construction of this poset directly gives us the

following proposition and corollary.

Proposition 3.2.19. Pm,n is a ranked poset in which the rank of (i, j, k) in Pm,n equals m+ n−

2− i− j + 2k. It has a unique minimal element (m− 1, n− 1, 0) which has rank 0. The maximal

elements are of the form (i, i, i) and have rank m+ n− 2.

Corollary 3.2.20. J(Pm,n) is a distribute lattice of rank −m
3+3m2n+3m+m

6 .

Proof. Since we have an explicit construction of Pm,n, we can use this to determine the rank of

J(Pm,n) (viewed as the lattice of order ideals by inclusion). The maximum element of J(Pm,n) has

rank equal to the number of elements in Pm,n. At each k value, we have (m−k)× (n−k) elements,

and so we have

m−1∑
k=0

(m− k)(n− k) =
−m3 + 3m2n+ 3m+m

6
total elements.

We now show that the order ideals of this poset are in correspondence with the other objects

we have been studying.
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Figure 3.7. An example of P4,4 plotted in R3.

Lemma 3.2.21. There is an explicit bijection between J(Pm,n) and (m,n)-partial height function

matrices.

Proof. Let O ∈ J(Pm,n). For 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, define the subset Si,j ..=

{(i, j, t) | (i, j, t) ∈ Pm,n}. That is, Si,j is the intersection of the elements of Pm,n from the explicit

construction in Definition 3.2.18 with the line (x, y, z) = (i, j, t). Construct an (m + 1) × (n + 1)

matrix (hi,j) as follows. First, set h0,k = k for 0 ≤ k ≤ n and h`,0 = ` for 0 ≤ ` ≤ m. Then,

entry hi,j for 1 ≤ i ≤ m, 1 ≤ j ≤ n is determined by the cardinality of the intersection between

O and Si,j . If this cardinality equals k, then, hi,j = i+ j − 2k. The fact that O is an order ideal,

along with covering relations of Pm,n guarantee that adjacent entries in (hi,j) differ by exactly one,

thus the result is an (m,n)-partial height function matrix. Notice that if the cardinality of the

intersection is k, then hi,j will be 2k less than the maximum possible value of that partial height

function entry.

An example of this bijection is given in Figure 3.8.

Finally, we relate partial alternating sign matrices to certain sets of nested lattice paths.

This allows us to explicitly count the number of partial alternating sign matrices with total sum 1,

which gives some hope of finding a refined enumeration of partial alternating sign matrices.
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
0 1 2 3 4
1 2 3 4 3
2 3 2 3 2
3 4 3 2 3
4 3 4 3 2

←→

Figure 3.8. A (4, 4)-partial height function matrix and its corresponding order ideal in P4,4.

Definition 3.2.22. An (m,n)-nest of osculating lattice paths is any set of osculating paths (non-

crossing paths which can only touch at corners) in the m×n grid with south and east steps, whose

starting points are on the left side, and whose end points are on the bottom of the grid.

See Figure 3.9 for an example. The next lemma follows from known results of osculating

paths (see [5] for more information further references) and so we present it without proof, though

we do give a description of the bijection.

Lemma 3.2.23. There is an explicit bijection between m×n partial alternating sign matrices with

total sum t and the set of (m,n)-nests of osculating lattice paths with t paths.

The map from partial alternating sign matrices to nests of osculating paths can be described

as follows. Given an m × n partial alternating sign matrix, first construct its (m,n)-rectangular

ice configuration, and reflect it horizontally. Then, starting at the topmost inward-facing directed

edge along the left, create a path by following the directed edges to the right when possible and

down otherwise. Do this similarly for each other inward-facing directed edge along the left. Finally,

delete the first and last edge of each path. An example is given in Figure 3.9. This correspondence

gives us the following enumeration for partial alternating sum matrices with total sum 1.

Corollary 3.2.24. The number of m×n partial alternating sign matrices with sum 1 is
(
m+n
m

)
−1.

Proof. By Lemma 3.2.23, the set of m×n partial alternating sign matrices with sum 1 is in bijection

with the set of (m,n)-nests of osculating paths with 1 path. That is, the set of paths in an m× n

grid with starting point on the left and ending point on the bottom of the grid. Each of these paths

can be uniquely extended to a lattice path in an the (m+ 1)× (n+ 1) grid (where the additional
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column has been added on the left and additional row on the bottom) which starts in the upper

left corner and ends in the lower right corner. To do so, the start of the path gets extended one

step to the left, and then up to the upper left corner, and the end of the path gets extended one

step down and then right to the lower right corner. This will account for all such paths in the

(m+ 1)× (n+ 1) grid, except for the one which is all south steps followed by all east steps. (This

path is excluded because no path starting on the left edge of the m× n grid can have its starting

point as the lower left corner of the (m + 1) × (n + 1) grid.) Since those paths are counted by(
m+n
m

)
, the total number of m× n partial alternating sign matrices with sum 1 is

(
m+n
m

)
− 1.

Figure 3.9. An example of how to map a (4, 4)-rectangular ice to its corresponding nest of osculating
paths.

We leave it as an open question to enumerate {M ∈ PASMm,n | sum(M) = t} for t > 1.

Table 3.3 gives the number of n× n partial alternating sign matrices with total sum t, for n, t ≤ 6

calculated using SageMath. Note the value for n = 6, t = 2 is prime, so there will not be a product

formula in general, though this does not preclude the existence of a sum formula. It would be

interesting to find a formula for the cardinality of the set {M ∈ PASMm,n | sum(M) = t}, since for

t = m = n, this is the set of n× n alternating sign matrices, enumerated by
n−1∏
j=0

(3j + 1)!

(n+ j)!
[52, 26].
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Table 3.3. The number of n× n partial alternating sign matrices with total sum t.

@
@
@

n
t

0 1 2 3 4 5 6

1 1 1

2 1 5 2

3 1 19 35 7

4 1 69 425 387 42

5 1 251 4845 13861 7007 429

6 1 923 55897 458263 709242 210912 7436

Proof of Theorem 3.2.6. Explicit bijections among the objects are given in Lemmas 3.2.9, 3.2.13,

3.2.15, 3.2.17, 3.2.21, and 3.2.23.

3.3. Partial Alternating Sign Matrix Dynamics

In this section, we explore dynamics related to partial alternating sign matrices, inspired

by [47]. We first describe a local move on partial fully-packed loop configurations, which leads to

the definition of an action called gyration on these configurations. This is analogous to Wieland’s

gyration of fully-packed loops [51], as discussed in Section 2.2. We then show how gyration acts

on the corresponding height function matrices and order ideals. Finally, we use Theorem 2.2.5 to

prove a rotation-like result on partial link patterns.

Given an (m,n)-partial fully-packed loop configuration, call a square even (resp. odd) if the

vertex in its upper-left corner (or lower-right corner) is even (resp. odd). Call a square interior if

all of its surrounding vertices are interior, and exterior otherwise. Additionally, we say a square is

a boundary square if it is in the first row or column.

Define a local action on a square as follows. For an interior square, if its only edges are a

pair of parallel lines, swap it to a pair of parallel lines in the other orientation. For an exterior

square, we define the local action based on location. If the square is on the far right (and not a

corner), we swap only the left edge with the pair of horizontal parallel edges (and vice versa). If

the square is on the bottom (and not a corner), we swap only the top edge with the pair of vertical

parallel edges (and vice versa). If the square is the bottom-right corner, we swap only the left edge

with only the top edge (and vice versa). In all other cases, we do nothing. Note that with this
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definition, the action will never act on a boundary square. See Figure 3.10 for an example of each

of the local actions described above.

Definition 3.3.1. Define the action gyration on an (m,n)-partial fully-packed loop configuration

by first performing the local action on all even squares, then on all odd squares.

An example of this action is given in Figure 3.11. Note that by construction, since this

action never changes the total degree of any interior vertex and does not affect the fixed boundary,

it always produces another (m,n)-partial fully-packed loop configuration.

Figure 3.10. From left to right: the local moves on interior squares, exterior squares along the right
side, exterior squares along the bottom side, and the exterior square in the bottom-right corner.

ge−→ go−→

Figure 3.11. The gyration action on a partial fully-packed loop configuration. ge denotes performing
the local action on the even squares (shaded in the first diagram), and go denotes performing the
local action on the odd squares (shaded in the second diagram).

Given the results of the previous section, we can examine how the local action described

above affects the different objects in bijection with partial fully-packed loop configurations. In

particular, we can describe exactly what happens on the corresponding partial height function

matrices and order ideals.
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Lemma 3.3.2. Let (hi,j) be an (m,n)-partial height function matrix, O ∈ J (Pm,n) the corre-

sponding order ideal, and F the corresponding (m,n)-partial fully-packed loop, via the bijections of

Lemmas 3.2.15 and 3.2.21. Then the following are equivalent:

(1) The local action applied to F at the square in row i and column j, where the rows (columns)

are numbered from the top (left) starting at 1.

(2) Incrementing or decrementing the partial height function matrix entry hi,j by 2, if possible.

(3) Toggling Si,j (from the proof of Lemma 3.2.21).

Proof. To see the equivalence between (1) and (2), we follow the bijection in Lemma 3.2.15. We

see that when the local action would change edges on F , this corresponds to hi,j being surrounded

by the same number (each entry above, below, to the right, and to the left is either hi,j − 1 or

hi,j + 1). Making the local action change in edges corresponds exactly to changing the value hi,j

to the only other possible height function value: if the surrounding values are all hi,j − 1, then

hi,j gets changed to hi,j − 2, and if the surrounding values are all hi,j + 1, then hi,j gets changed

to hi,j + 2. In the case where the local action would do nothing, this corresponds to hi,j having

surrounding values which are not all the same.

To see the equivalence between (2) and (3), we follow the bijection in Lemma 3.2.21. We

see that incrementing hi,j by 2 (and having it stay a partial height function matrix) is only possible

when removing an element from Si,j (in O) results in another order ideal. Likewise, decrementing

hi,j by 2 is only possible when adding an element of Si,j results in another order ideal. When it is

not possible to change hi,j and have the result be a partial height function matrix, then adding or

removing an element from Si,j results in a subset that is not an order ideal.

See Figure 3.12 for an example of this correspondence.

We now define a toggle group action and show that this action corresponds to gyration on

partial fully-packed loops.

Definition 3.3.3. For any finite ranked poset P , define Gyr : J(P ) → J(P ) as the toggle group

action which toggles the elements in even ranks first, then odd ranks. Its inverse, Gyr−1, toggles

the elements in odd ranks first, then even ranks.
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
0 1 2 3 4
1 2 3 4 3
2 3 2 3 2
3 4 3 2 3
4 3 4 3 2




0 1 2 3 4
1 2 3 4 3
2 3 4 3 2
3 4 3 2 3
4 3 4 3 2



Figure 3.12. Performing the local action on a single square of a partial fully-packed loop (top),
the result on corresponding partial height function matrices (middle), and the result on the corre-
sponding order ideals (bottom).

Note that this this action is well-defined because elements in ranks of the same parity do

not have covering relations between them, so the corresponding toggles commute.

Proposition 3.3.4 (Proposition 6.4, [47]). For any finite ranked poset P , there is an equivariant

bijection between J(P ) under Row and under Gyr, that is, Row and Gyr are conjugate elements in

the toggle group T (P ).

In the case where P = Pm,n, we have the following proposition, which follows from

Lemma 3.2.21 and Lemma 3.3.2.

Proposition 3.3.5. Gyration on (m,n)-partial fully-packed loop configurations is equivalent to Gyr

acting on J (Pm,n) when m+ n is even, and Gyr−1 acting on J (Pm,n) when m+ n is odd.

Proof. Notice that the parity of a square in an (m,n)-partial fully-packed loop configuration corre-

sponds to the parity of rank in Pm,n. When m+ n is even, even squares correspond to even ranks,
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and when m + n is odd, even squares correspond to odd ranks. Thus, when we perform gyration

on an (m,n)-partial fully-packed loop (which applies the local move on all of the even squares and

then all of the odd squares), by Lemma 3.3.2, this corresponds to toggling even ranks followed

by odd ranks when m + n is even, which is exactly Gyr from Definition 3.3.3. When m + n is

odd, performing gyration on an (m,n)-partial fully-packed loop corresponds to toggling odd ranks

followed by even ranks, which is Gyr−1.

The previous two propositions give the following theorem, which is an analogue of Theo-

rem 8.13 in [49].

Theorem 3.3.6. J (Pm,n) under Row and (m,n)-partial fully-packed loops (or (m,n)-partial height

function matrices) under gyration are in equivariant bijection.

Recall Theorem 2.7, which says that in the usual n × n alternating sign matrix setting,

gyration acting on a fully-packed loops rotates the link pattern. We close this section with a

result on partial fully-packed loops that follows from this, and for completeness provide a table of

rowmotion (or equivalently gyration) orbit sizes in the partial setting (see Table 3.4).

Definition 3.3.7. Given an (m,n)-partial fully-packed loop configuration, F , label the places

where the paths exit the graph along the left and top (the fixed boundary conditions) with the

numbers
{

1, . . . , bm2 c+ dn2 e
}

, starting with 1 in the lower left. Arrange these numbers in a circular

arc, and connect any numbers that are connected by a path in F with an arc. Call this the partial

link pattern for F .

See Figure 3.13 for an example of partial link patterns.

Corollary 3.3.8. Gyration on (m,n)-partial fully-packed loop configurations exhibits a partial ro-

tation on the corresponding partial link patterns. Specifically, if i and j are connected in a partial

link pattern, then in the corresponding partial link pattern after gyration is applied, i− 1 and j − 1

will either be connected to each other or not at all.

Proof. This follows from Theorem 2.2.5. Any (m,n)-partial alternating sign matrix can be inter-

preted as the upper-left corner of a larger alternating sign matrix; for any rows or columns that
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have a sum of 0, we can systematically add zeros and ones to the left and below until we have

a larger matrix with each row and column summing to 1. So, the corresponding (m,n)-partial

fully-packed loop is really the upper-left corner of a larger fully-packed loop. Let F1 be a partial

fully-packed loop and F2 be the result of applying gyration on F1. Let F ′1, be a larger fully-packed

loop for which F1 is the corner, and F ′2 be the result after gyration is applied to F ′1 so that F2

is the corner of F ′2. Let i and j be connected in the partial link pattern for F1. Then they will

also be connected in the link pattern for F ′1. When gyration is applied on F ′1, the link pattern is

rotated, i− 1 and j − 1 will be connected in the link pattern for F ′2. If the path connecting them

stays entirely within the corner that is F2, then i − 1 and j − 1 will be connected in the partial

link pattern for F2. However, the path connecting them in F ′2 may leave that corner, in which case

they will not be connected to anything in the partial link pattern for F2.

Figure 3.13. A (5, 7)-partial fully-packed loop configuration along with is partial link pattern (left),
and the result of each after gyration is applied (right). For any numbers that do not have a
connection, we choose to draw a line that terminates so that it does not cross any other lines or
connect to any other numbers, to more closely mimic the feeling of being a piece of a larger link
pattern.
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Table 3.4. A table of rowmotion orbit sizes for Pm,n for small values of m and n.

Orbit Size Number of Orbits

m = 1, n = 1 2 1

m = 1, n = 2 3 1

m = 1, n = 3 4 1

m = 1, n = 4 5 1

m = 1, n = 5 6 1

m = 2, n = 2 2 2
4 1

m = 2, n = 3 2 1
5 3

m = 2, n = 4 3 2
6 3
7 1

m = 2, n = 5 7 5
8 2

m = 3, n = 3 2 4
6 7
12 1

m = 3, n = 4 2 2
7 16
26 1
42 1

m = 3, n = 5 2 2
8 27
9 2
14 1
18 1
36 1
46 1
52 1
58 1

m = 4, n = 4 2 7
4 10
8 55
10 1
11 2
14 1
16 14
18 1
24 2
30 2
34 1
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4. POLYTOPES1

In this chapter, we study polytopes which are built from partial permutations and alter-

nating sign matrices.

4.1. Matrices

In this section, we briefly discuss the matrices from the previous chapter. We give equivalent

definitions that are more useful in the context of polytopes and consistent with existing polytope

literature.

Definition 4.1.1. An m×n partial permutation matrix is an m×n matrix M = (Mij) with entries

in {0, 1} such that:

m∑
i′=1

Mi′j ∈ {0, 1} , for all 1 ≤ j ≤ n. (4.1)

n∑
j′=1

Mij′ ∈ {0, 1} , for all 1 ≤ i ≤ m. (4.2)

We denote the set of all m× n partial permutation matrices as Pm,n.

Remark 4.1.2. This definition is exactly Definition 3.1.1, since requiring row and column sums of

a {0, 1} matrix to be in {0, 1} is equivalent to there being at most one 1 in each row and column.

Definition 4.1.3. An m× n partial alternating sign matrix is an m× n matrix M = (Mij) with

entries in {−1, 0, 1} such that:

i∑
i′=1

Mi′j ∈ {0, 1} , for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. (4.3)

j∑
j′=1

Mij′ ∈ {0, 1} , for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. (4.4)

1The material in this chapter was coauthored by Dylan Heuer and Dr. Jessica Striker. Heuer had primary respon-
sibility for the calculations and finding connections to existing research. Heuer and Striker worked collaboratively on
the proofs of most of the theorems. Heuer was the primary drafter of this chapter; both Heuer and Striker revised
and proofread this chapter.
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We denote the set of all m× n partial alternating sign matrices as PASMm,n.

Remark 4.1.4. Note that this is equivalent to Definition 3.2.1, but with the opposite convention, as

mentioned in Remark 3.2.2. Here, we require that the partial row and column sums must be equal

to 0 or 1. This means that the first nonzero entry in each row or column (if any) must be 1 (if it

were −1, a partial row or column sum would then be −1). Also, the nonzero entries must alternate

in sign (if not, a partial row or column sum could be greater than 1 or less than 0). Finally, the

total row and column sums must be equal to 0 or 1 since the total sums are the last partial sums.

An example of a 4× 4 partial alternating sign matrix with this convention is given in Figure 4.1.


0 0 0 1
0 1 0 0
0 0 1 −1
1 −1 0 1


Figure 4.1. A 4× 4 partial alternating sign matrix.

Remark 4.1.5. Partial alternating sign matrices are a subset of sign matrices, which differ from

Definition 4.1.3 in that each row partial sum is not restricted to {0, 1} as in (4.4), but may equal

any non-negative integer. See [43] for information about polytopes whose vertices are sign matrices

and Lemma 4.3.10 for the relationship between these polytopes.

4.2. Partial Permutation Polytopes

In this section, we give the definition of partial permutation polytopes, review their in-

equality descriptions, and provide the enumeration of their vertices and facets. All of these results

are known (see Remark 4.2.3) or easily deduced, but we include them for completeness and for

comparison to the polytopes of the next section. We also compute data for the volume of these

polytopes and conjecture a formula for m = 2.

Definition 4.2.1. Let PPerm(m,n) be the polytope defined as the convex hull, as vectors in Rmn,

of all the matrices in Pm,n. Call this the (m,n)-partial permutation polytope.

Remark 4.2.2. The dimension of PPerm(m,n) is mn. To see this, let Ui,j be the m × n matrix

with (i, j) entry equal to 1 and zeros elsewhere. Note that Ui,j ∈ PPerm(m,n) for all 1 ≤ i ≤ m,
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1 ≤ j ≤ n. Since PPerm(m,n) contains each of these mn unit vectors, its dimension equals the

ambient dimension mn.

Remark 4.2.3. The polytopes PPerm(m,n) have been previously studied in different contexts.

Since any partial permutation matrix can be reinterpreted as an incidence vector of some match-

ing, PPerm(m,n) is a matching polytope. In [3, 16], adjacency conditions of vertices of matching

polytopes were studied. For a nice summary and proof of these results, see [41, Chapter 25]. Also,

Mirsky showed that the set of n × n doubly substochastic matrices is the convex hull of all n × n

partial permutation matrices [33]. This is easily extendable to the m×n case, which is stated below

in Proposition 4.2.4. In [2], partial permutations were viewed as rook placements, and edges and

faces of PPerm(m,n) were enumerated.

Proposition 4.2.4. PPerm(m,n) consists of all m× n real matrices X = (Xij) such that:

Xij ≥ 0, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, (4.5)

n∑
j′=1

Xij′ ≤ 1, for all 1 ≤ i ≤ m, (4.6)

n∑
i′=1

Xi′j ≤ 1, for all 1 ≤ j ≤ n. (4.7)

Since these inequalities are irredundant, we obtain the following corollary by counting the

inequalities.

Corollary 4.2.5. The number of facets of PPerm(m,n) equals mn+m+ n.

Proposition 4.2.6. The vertices of PPerm(m,n) are exactly the matrices in Pm,n, so PPerm(m,n)

has

m∑
k=0

(
m

k

)
(n)k vertices.

Proof. Let B ∈ Pm,n. In order to show that B is a vertex of PPerm(m,n), we will find a hyperplane

in Rmn with B on one side and all other matrices in Pm,n on the other. Then since PPerm(m,n)

is the convex hull of Pm,n, B must be a vertex.

Let HB(X) ..=
∑

1≤i≤m,1≤j≤n
aijXij , where aij =


+1, if Bij = 1

−1, if Bij = 0

. Then define a hyperplane

in Rmn by the equation HB(X) = sum(B)− 1
2 , where sum(B) is the sum of all the entries of B.
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Given a hyperplane formed this way, we can easily recover the matrix from which it was

formed, and so HB is unique for each B. Let B′ 6= B be any other matrix in Pm,n. Then there is

some (i, j) such that either Bij = 0 and B′ij = 1 or Bij = 1 and B′ij = 0. Thus by construction,

HB(B) = sum(B) > sum(B)− 1
2 , and HB(B′) < sum(B)− 1

2 . Therefore the vertices of PPerm(m,n)

are the m× n partial permutation matrices, and Proposition 3.1.3 gives the enumeration.

Example 4.2.7. The 7 matrices in P2,2 are:

A1 =

 0 0

0 0

 , A2 =

 1 0

0 0

 , A3 =

 0 1

0 0

 , A4 =

 0 0

1 0

 , A5 =

 0 0

0 1

 ,
A6 =

 1 0

0 1

 , and A7 =

 0 1

1 0

.

Then we have HA2(X) = X11−X12−X21−X22, and the hyperplane is defined by HA2(X) =

0.5. When we substitute the entries of each matrix in P2,2 into the equation for HA2 , we see that

A2 is on one side of this hyperplane, while all the other matrices are on the other side.

A1 : X11 = 0, X12 = 0, X21 = 0, X22 = 0→ HA2(A1) = 0− 0− 0− 0 = 0 < 0.5;

A2 : X11 = 1, X12 = 0, X21 = 0, X22 = 0→ HA2(A2) = 1− 0− 0− 0 = 1 > 0.5;

A3 : X11 = 0, X12 = 1, X21 = 0, X22 = 0→ HA2(A3) = 0− 1− 0− 0 = −1 < 0.5;

A4 : X11 = 0, X12 = 0, X21 = 1, X22 = 0→ HA2(A4) = 0− 0− 1− 0 = −1 < 0.5;

A5 : X11 = 0, X12 = 0, X21 = 0, X22 = 1→ HA2(A5) = 0− 0− 0− 1 = 0 < 0.5;

A6 : X11 = 1, X12 = 0, X21 = 0, X22 = 1→ HA2(A6) = 1− 0− 0− 1 = 0 < 0.5;

A7 : X11 = 0, X12 = 1, X21 = 1, X22 = 0→ HA2(A7) = 0− 1− 1− 0 = −2 < 0.5.

Remark 4.2.8. The normalized volume of PPerm(m,n) for small values of m and n is given in

Table 4.1, computed using SageMath [45]. Due to the large size of the polytopes, further compu-

tations are not easily obtained. Note that there does not appear to be a nice general formula for

these volumes. However, when one parameter is set equal to two, we have the following conjecture.
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Table 4.1. The normalized volume of PPerm(m,n) for small values of m and n.

@
@
@

m
n

1 2 3 4 5

1 1 1 1 1 1

2 1 4 17 66 247

3 1 17 642 22148 622791

4 1 66 22148 12065248 5089403019

5 1 247 622791 5089403019 53480547965190

Conjecture 4.2.9. The normalized volume of PPerm(n, 2) (or equivalently PPerm(2, n)) is equal

to
(
2n
n

)
− n.

We have confirmed this conjecture for m ≤ 14 using SageMath.

Remark 4.2.10. We have used SageMath to compute the Ehrhart polynomials for PPerm(m,n) for

m,n ≤ 5 and note that in all of these cases their coefficients are positive.

4.3. Partial Alternating Sign Matrix Polytopes

In this section, we define partial alternating sign matrix polytopes. We give an inequality

description and facet enumeration in Subsection 4.3.1. In Subsection 4.3.2, we determine the face

lattice. We also compute the volume for small values of m and n in Subsection 4.3.3.

4.3.1. Vertices, Facets, Inequality Description

In this subsection, we give the definition of partial alternating sign matrix polytopes. In

Proposition 4.3.3, we determine the vertices. We prove an inequality description in Theorem 4.3.6.

Then in Theorem 4.3.8, we enumerate the facets. Finally, we relate these polytopes to PPerm(m,n)

in Lemma 4.3.10.

Definition 4.3.1. Let PASM(m,n) be the polytope defined as the convex hull, as vectors in Rmn,

of all the matrices in PASMm,n. Call this the (m,n)-partial alternating sign matrix polytope.

Remark 4.3.2. PASM(m,n) contains PPerm(m,n), since, as noted in Remark 3.2.3, the set of

partial alternating sign matrices PASMm,n contains all the partial permutation matrices Pn,m. So

the dimension of PASM(m,n) is the ambient dimension mn, since by Remark 4.2.2, this is the

dimension of PPerm(m,n).
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Proposition 4.3.3. The vertices of PASM(m,n) are exactly the matrices in PASMm,n.

Proof. In [43, Theorem 4.3], a hyperplane is constructed that separates a given m× n sign matrix

from all other m × n sign matrices. Since m × n partial alternating sign matrices are a subset of

m× n sign matrices, this hyperplane must separate a given m× n partial alternating sign matrix

from all others. The hyperplane construction is as follows. Let M be an m× n partial alternating

sign matrix and CM = {(i, j) :
∑i

i′=1Mi′j = 1}. Then the hyperplane in Rmn that separates M

from the other elements of PASMm,n is
∑

(i,j)∈CM

∑i
i′=1Xi′j −

∑
(i,j)/∈CM

∑i
i′=1Xi′j = |CM | − 1

2 .

Thus the vertices of PASM(m,n) are the m× n partial alternating sign matrices.

We now give the following definitions from [43], which we will use in the proof of Theo-

rem 4.3.6.

Definition 4.3.4 ([43, Definition 3.3]). We define the m × n grid graph Γ(m,n) as follows. The

vertex set is V (m,n) := {(i, j) : 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1}−{(m+ 1, n+ 1)}. We separate the

vertices into two categories. We say the internal vertices are {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and

the boundary vertices are {(m+ 1, j) and (i, n+ 1) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The edge set is:

E(m,n) :=


(i, j) to (i+ 1, j) 1 ≤ i ≤ m, 1 ≤ j ≤ n

(i, j) to (i, j + 1) 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Edges between internal vertices are called internal edges and any edge between an internal and

boundary vertex is called a boundary edge. We draw the graph with i increasing to the right and

j increasing down, to correspond with matrix indexing.

Definition 4.3.5 ([43, Definition 3.4]). Given an m× n matrix X, we define a labeled graph, X̂,

which is a labeling of the vertices and edges of Γ(m,n) from Definition 4.3.4. The internal vertices

(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, are each labeled with the corresponding entry of X: X̂ij = Xij .

The horizontal edges from (i, j) to (i, j + 1) are each labeled by the corresponding row partial sum

rij =

j∑
j′=1

Xij′ (1 ≤ i ≤ m, 1 ≤ j ≤ n). Likewise, the vertical edges from (i, j) to (i+ 1, j) are each

labeled by the corresponding column partial sum cij =
i∑

i′=1

Xi′j (1 ≤ i ≤ m, 1 ≤ j ≤ n).
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The following theorem gives an inequality description of PASM(m,n). The proof uses a

combination of ideas from [43, 46].

Theorem 4.3.6. PASM(m,n) consists of all m× n real matrices X = (Xij) such that:

0 ≤
i∑

i′=1

Xi′j ≤ 1, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, (4.8)

0 ≤
j∑

j′=1

Xij′ ≤ 1, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. (4.9)

Proof. Let X ∈ PASM(m,n). First we need to show that X satisfies (4.8) and (4.9). Now X =∑
γ µγMγ where

∑
γ µγ = 1 and the Mγ ∈ PASMm,n. Since we have a convex combination of

partial alternating sign matrices, by Definition 4.1.3, we obtain (4.8) and (4.9) immediately. Thus

PASM(m,n) fits the inequality description.

Let X be a real-valued m × n matrix satisfying (4.8) and (4.9). We wish to show that X

can be written as a convex combination of partial alternating sign matrices in PASMm,n, so that

X is in PASM(m,n).

Consider the corresponding labeled graph X̂ of Definition 4.3.5. We will construct a trail

in X̂ all of whose edges are labeled by inner numbers and show it is a simple path or cycle. (A

number α is inner if 0 < α < 1.) Let ri0 = 0 = c0j for all i, j. Then for all 1 ≤ i ≤ λ1, 1 ≤ j ≤ n,

we have X̂ij = rij − ri,j−1 = cij − ci−1,j . Thus,

rij + ci−1,j = cij + ri,j−1. (4.10)

Note that if there are no inner edge labels, then X is already a partial alternating sign

matrix. If there exists i or j such that X̂i,n+1 or X̂m+1,j is inner, begin constructing the trail at

the adjacent boundary edge. If no such i or j exist, start the trail on any vertex, say X̂ij adjacent

to an edge with inner label. By (4.10), at least one of c(i±1,j), r(i,j±1) is also inner, so we may begin

forming a trail by moving through edges with inner labels. From the starting point, construct the

trail as follows. Go along a row or column from the starting point along edges with inner labels.

Continue in this manner until either (1) you reach a vertex adjacent to an edge that was previously
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in the trail, or (2) you reach a new boundary edge. If (1), then the part of the trail constructed

between the first and second time you reached that vertex will be a simple cycle. That is, we cut

off any part that was constructed before the first time that vertex was reached. If (2), then the

starting point for the trail must have been a boundary edge, since there exist at least one boundary

vertex with inner label. Thus our trail is actually a path.

Label the corners of the path or cycle (not the boundary vertices) alternately (+) and (−).

Set `+ equal to the largest number that we could subtract from the (−) entries and add to the

(+) entries while still satisfying (4.8) and (4.9). Construct a matrix X+ by subtracting and adding

in this way. X+ is a matrix which stills satisfies (4.8) and (4.9) and which has least one more

non-inner edge label than X.

Now give opposite labels to the corners and set `− equal to the largest number we could

subtract from (−) entries and add to (+) entries while still satisfying (4.8) and (4.9). Add and

subtract in a similar way to create X−, another matrix satisfying (4.8) and (4.9) and which has at

least one more non-inner edge label than X.

Both X+ and X− satisfy (4.8) and (4.9) by construction. Also by construction,

X =
`−

`+ + `−
X+ +

`+

`+ + `−
X−

and `−

`++`− + `+

`++`− = 1. So X is a convex combination of the two matrices X+ and X− that still

satisfy the inequalities and are each at least one step closer to being partial alternating sign matrices,

since that have at least one more partial sum attaining its maximum or minimum bound. By

repeatedly applying this procedure, X can be written as a convex combination of partial alternating

sign matrices.

See Figure 4.2 and Example 4.3.7 for an example of this construction.

Example 4.3.7. Let X =


0.2 0.4 0.3

0.7 −0.3 −0.1

0 0.5 −0.2

. Then by the construction described in the proof

of Theorem 4.3.6 and shown in Figure 4.2, X can be decomposed as X = 0.3
0.1+0.3X

+ + 0.1
0.1+0.3X

−,
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where X+ =


0.2 0.5 0.2

0.8 −0.4 0

9 0.5 −0.2

 and X− =


0.2 0.1 0.6

0.4 0 −0.4

0 0.5 −0.2

. In this step of decomposing,

`+ = 0.1 and `− = 0.3. Continuing the process of decomposition, one could write X as a convex

combination of partial alternating sign matrices.

↙ ↘

Figure 4.2. An example of the path construction described in the proof of Theorem 4.3.6. The
bold blue edges and vertices are those included in the path.
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Theorem 4.3.6 gives a simple inequality description, but it is not a minimal inequality

description. That is, some of the inequalities in (4.8) and (4.9) are redundant. In the following

theorem, we determine these redundancies to count the inequalities that determine facets.

Theorem 4.3.8. The number of facets of PASM(m,n) equals 4mn− 3m− 3n+ 5.

Proof. There are 4mn total defining inequalities given in (4.8) and (4.9). Therefore there are at

most 4mn facets, each made by turning one of the inequalities into an equality. We begin by

showing how 3m+ 3n− 5 of these are redundant.

First, we have that 0 ≤ X1j from the column partial sums, so 0 ≤
∑j

j′=1X1j′ for 1 ≤ j ≤ n

are all unnecessary. This is n total redundant inequalities.

From the column partial sums we already have that 0 ≤ X11 and from row partial sums

we have 0 ≤ X21. Together these imply 0 ≤ X11 + X21. Similarly, all of the partial column sums

0 ≤
∑i

i′=1Xi′1 for 2 ≤ i ≤ m are implied by the partial row sums 0 ≤ Xi′1. This gives another

m− 1 redundancies.

Now note that
∑m

i′=1Xi′1 ≤ 1, and that 0 ≤ Xm1. This implies that
∑m−1

i′=1 Xi′1 ≤ 1−Xm1 ≤

1. Similarly, all of the m− 1 inequalities of the form
∑i

i′=1Xi′1 ≤ 1 for 1 ≤ i < m are all implied

by the partial row sums 0 ≤ Xi′1. This gives us another m− 1 redundant inequalities. By a similar

argument, we will also have that the n−1 inequalities of the form
∑j

j′=1X1j′ ≤ 1 for 1 ≤ j < n are

implied by the partial column sums 0 ≤ X1j′ . This give us another n− 1 redundant inequalities.

Finally, note that
∑i−1

i′=1Xi′1 ≥ 0 and
∑i

i′=1Xi′1 ≤ 1. This implies that Xi1 ≤ 1 −∑i−1
i′=1Xi′1 ≤ 1 for 2 ≤ i ≤ m. This gives us another m−1 redundancies. By a similar argument we

also have that
∑j−1

j′=1X1j′ ≥ 0 and
∑j

j′=1X1j′ ≤ 1 combine to imply that X1j ≤ 1 for 2 ≤ j ≤ n.

This gives n− 1 additional redundancies.

Overall, this means that the number of facets is at most 4mn−3m−3n+ 5. We claim that

this upper bound is the facet count. That is, a facet can be defined as all X ∈ PASM(m,n) which

satisfy exactly one of the following:
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rij =

j∑
j′=1

Xij = 0, for all 2 ≤ i ≤ m and 1 ≤ j ≤ n (4.11)

rij =

j∑
j′=1

Xij = 1, for all 2 ≤ i ≤ m and 2 ≤ j ≤ n (4.12)

cij =

i∑
i′=1

Xij = 0, for all 1 ≤ i ≤ m and 2 ≤ j ≤ n (4.13)

cij =
i∑

i′=1

Xij = 1, for all 2 ≤ i ≤ m and 2 ≤ j ≤ n (4.14)

cm1 =

m∑
i=1

Xi1 = 1 (4.15)

r1m =

n∑
j=1

X1j = 1 (4.16)

r11 = c11 = X11 = 0 (4.17)

To show this, let two generic equalities of the form (4.11)-(4.17) be denoted as αij = γ and

βk` = δ for α, β ∈ {r, c} and γ, δ ∈ {0, 1}, where the choice of r or c for each of α and β indicates

whether the equality involves partial row sum rij or partial column sum cij , and the indices (i, j)

and (k, `) must be in the corresponding ranges indicated by (4.11)–(4.17). In the cases below, we

will construct an m × n partial alternating sign matrix M , such that M satisfies αij = γ and not

βk` = δ.

Case 1: αij = 0 and βk` = 1. We set M equal to the zero matrix.

In each of the following, we will specify the nonzero entries of M , and assume all other

entries are zero.

Case 2: αij = 0 and βk` = 0.

• If i 6= k and j 6= ` let Mk` = 1.

• Suppose α = β = c. If j 6= `, let Mk` = 1. If j = ` and i < k, let Mk` = 1. If j = ` and i > k,

let Mk` = Mk+1,`−1 = 1 and Mk+1,` = −1.
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• Suppose α = β = r. If i 6= k, let Mk` = 1. If i = k and j < `, let Mk` = 1. If i = k and j > `,

let Mk` = Mk−1,`+1 = 1 and Mk+1,` = −1.

• If α = r and β = c, let M1` = 1.

• If α = c and β = r, let Mk1 = 1.

Case 3: αij = 1 and βk` = 1.

• If i 6= k and j 6= `, let Mij = 1.

• Suppose α = β = c. If j 6= `, let Mij = 1. If j = ` and i < k, let Mij = Mi+1,j−1 = 1 and

Mi+1,j = −1 If j = k and i > `, let Mij = 0.

• Suppose α = β = r. If i 6= k, let Mij = 1. If i = k and j < `, let Mij = Mi−1,j+1 = 1 and

Mi,j+1 = −1. If i = k and j > `, let Mij = 1.

• If α = r and β = c, let M1j = 1.

• If α = c and β = r, let Mi1 = 1.

Case 4: αij = 1 and βk` = 0.

• If i 6= k and j 6= `, let Mij = Mk` = 1.

• Suppose α = β = c. If i = k and j 6= `, let Mij = M1` = 1. If j = `, let M1j = 1.

• Suppose α = β = r. If i = k, let Mi1 = 1. If j = ` and i 6= k, let Mij = Mk1 = 1.

• Suppose α = r and β = c. If i = k and j < `, let Mij = M1` = 1. If i = k and j > `, let

Mk` = 1. If j = ` and i ≤ k, let Mij = 1. If j = ` and i < k, let Mk` = Mi1 = 1 .

• Suppose α = c and β = r. If i = k and j ≤ `, let Mij = 1. If i = k and j > `, let

Mk` = M1j = 0. If j = ` and i < k, let Mij = Mk1 = 1. If j = ` and i > k, let Mk` = 1.

In each of these cases, M is constructed so that it satisfies αij = γ but not βij = δ, so each

of the equalities in (4.11)–(4.17) gives rise to a unique facet. Thus there are 4mn − 3m − 3n + 5

facets of PASM(m,n).
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Remark 4.3.9. The above inequality description may make one wonder whether the matrix defining

PASM(m,n) is totally unimodular. Consider the case when m = n = 2. Then there are 3 × 3

submatrices with determinant 2 and −2, so the matrix is not totally unimodular.

Recall from Remark 4.1.5 that partial alternating sign matrices are a subset of sign matri-

ces [43]. It was shown in [43, Theorem 5.3] that the convex hull of m × n sign matrices, denoted

P (m,n), has inequality description as in Theorem 4.3.6, except in (4.9) the ≤ 1 is not present.

More specifically, we have the following relation.

Lemma 4.3.10. PASM(m,n) is the intersection of P (m,n) with the subspace of m×n real matrices

X = (Xij) such that:
i∑

i′=1

Xi′j ≤ 1, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

4.3.2. Face Lattice

In this subsection, we characterize the face lattice of PASM(m,n) in Theorem 4.3.18, using

sum-labelings of the graph Γ(m,n) (see Definition 4.3.4).

We first state some definitions and a lemma that will help prove Theorem 4.3.18 describing

the face lattice of PASM(m,n). This theorem is analogous to [43, Theorems 7.15 and 7.16] which

describe the face lattice of P (m,n). The proof is also similar.

Recall M̂ from Definition 4.3.5.

Definition 4.3.11. A basic sum-labeling of Γ(m,n) is a labeling of the edges of Γ(m,n) with 0 or 1

such that the edge labels equal the corresponding edge labels of M̂ for some M ∈ PASMm,n.

Remark 4.3.12. Recall we can recover any matrix from its column partial sums, thus basic sum-

labelings of Γ(m,n) are in bijection with partial alternating sign matrices PASMm,n.

Definition 4.3.13. Let δ and δ′ be labelings of the edges of Γ(m,n) with 0, 1, or {0, 1} (where by

0 we mean {0} and similarly for 1). Define the union δ ∪ δ′ as the labeling of Γ(m,n) such that each

edge is labeled by the union of the corresponding labels on δ and δ′. Define intersection δ ∩ δ′ and

containment δ ⊆ δ′ similarly.
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Definition 4.3.14. A sum-labeling δ of Γ(m,n) is either the empty labeling of Γ(m,n) (denoted ∅)

or a labeling of the edges of Γ(m,n) with 0, 1, or {0, 1} such that there exists a set S of basic

sum-labelings of Γ(m,n) so that δ =
⋃
δ′∈S δ

′.

Definition 4.3.15. Given M ∈ PASMm,n, let g(M) denote the sum-labeling of Γ(m,n) associated

to M . Given a collection of partial alternating sign matrices M = {M1,M2, . . . ,Mr} ⊆ PASMm,n,

define the map g(M) =
r⋃
i=1

g(Mi).

Definition 4.3.16. Given a sum-labeling δ, consider the planar graph G composed of the edges

of δ labeled by the two-element set {0, 1} (and all incident vertices), where we regard any external

edges on the right and bottom as meeting at a point in the exterior. We say a region of δ is defined

as a planar region of G, excluding the exterior region. Let R(δ) denote the number of regions of δ.

(For consistency we set R(∅) = −1.)

See Figure 4.3 for an example of a sum-labeling of Γ(2,3) with 4 regions.

Figure 4.3. The sum-labeling of Γ(2,3) which is g(M3)∪ g(M13)∪ g(M15), where M3, M13, and M15

are as in Examples 3.1.4 and 3.2.4. Edges labeled {0, 1} are bolded and blue to accentuate the
regions.
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Lemma 4.3.17. Suppose a sum-labeling δ has R(δ) = ω. If δ ⊂ δ′ then R(δ′) > ω.

Proof. By convention, the empty labeling has R(∅) = −1. If δ is a basic sum-labeling, R(δ) = 0,

as there are no edges labeled {0, 1} in a basic sum-labeling. Suppose a sum-labeling δ has R(δ) =

ω > 0. We wish to show if δ ⊂ δ′ then R(δ′) > ω. δ ⊂ δ′ implies that the labels of each edge

of δ are subsets of the labels of each edge of δ′, where at least one of these containments is strict.

So there is an edge in δ′ labeled {0, 1} that was labeled 0 or 1 in δ. So δ′ contains a basic sum

labeling β′ that differs from all the basic sum labelings in δ at edge e. Let β denote a basic sum

labeling such that β ⊆ δ. By Equation (4.10), at least one edge label of β′ adjacent to e must also

differ from the corresponding edge label of β. By iterating this (as in the proof of Theorem 4.3.6),

β′ differs from β by at least one simple path (connecting boundary vertices) or cycle of differing

partial sums. This path or cycle appears as edges labeled by {0, 1} in δ′, and at least one of these

edges was not labeled by {0, 1} in δ. So δ′ has at least one new region. Therefore, R(δ′) > ω.

We are now ready to state and prove the main theorem of this subsection.

Theorem 4.3.18. Let F be a face of PASM(m,n) and M(F ) be equal to the set of partial alter-

nating sign matrices that are vertices of F . The map ψ : F 7→ g(M(F )) induces an isomorphism

between the face lattice of PASM(m,n) and the set of sum-labelings of Γ(m,n) ordered by contain-

ment. Moreover, dim F = R(ψ(F )).

Proof. Let F be a face of PASM(m,n). Then g(M(F )) is a sum-labeling of Γ(m,n) since g(M(F )) =
r⋃
i=1

g(Mi) is a union of basic sum-labelings. We now construct the inverse of ψ, call it ϕ. Given a

sum-labeling ν of Γ(m,n), let ϕ(ν) be the face that results as the intersection of the facets corre-

sponding to the edges of ν with label 0 or 1.

We wish to show ψ(ϕ(ν)) = ν. First, we show ν ⊆ ψ(ϕ(ν)). Let M ∈ PASM(m,n) such

that g(M) ⊂ ν is a basic sum-labeling. M is in the intersection of the facets that yields ϕ(ν), since

otherwise g(M) would not be a basic sum-labeling such that g(M) ⊂ ν. Thus g(M) ⊆ ψ(ϕ(ν)) as

well. So ν ⊆ ψ(ϕ(ν)).

Next, we show ψ(ϕ(ν)) ⊆ ν. Suppose not. Then there exists some edge e of Γ(m,n) whose

label in ψ(ϕ(ν)) strictly contains the label of e in ν. The label of e in ν is 0 or 1 and the label of e in
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ψ(ϕ(ν)) is {0, 1}. Let γ denote the label of e in ν. As in the previous case, the facet corresponding

to the label γ on e would have been one of the facets intersected to get ϕ(ν). Therefore the matrix

partial column sum corresponding to edge e would be fixed as γ in each partial alternating sign

matrix in ϕ(ν). So in the union ψ(ϕ(ν)), that edge label would be the union of the edge labels of

all the partial alternating sign matrices in ϕ(ν), and this union would be γ. This is a contradiction.

Thus ν = ψ(ϕ(ν)).

Let F1 and F2 be faces of PASM(m,n) such that F1 ⊂ F2. Then F1 is an intersection of

F2 and some facet hyperplanes. In other words, F1 is obtained from F2 by setting at least one of

the inequalities in Theorem 4.3.6 to an equality. We have that ψ(F1) is obtained from ψ(F2) by

changing at least edge label of {0, 1} to a label of 0 or 1. Therefore we have ψ(F1) ⊂ ψ(F2).

Conversely, suppose that ψ(F1) ⊂ ψ(F2). Recall the inverse of ψ is ϕ, where for any sum-

labeling ν of Γ(m,n), ϕ(ν) is the face of PASM(m,n) that results as the intersection of the facets

corresponding to the edges of ν with labels 0 or 1. Now if ψ(F1) ⊂ ψ(F2), the edges of ψ(F1) with

label {0, 1} are a subset of such edges of ψ(F2), so the edges of ψ(F2) with labels of either 0 or

1 are a subset of such edges of ψ(F1). So ϕ(ψ(F1)) is an intersection of the facets intersected in

ϕ(ψ(F2)) and one or more additional facets. Thus F1 = ϕ(ψ(F1)) ⊂ ϕ(ψ(F2)) = F2.

Now, we prove the dimension claim. Recall from Remark 4.3.2 that dim(PASM(m,n)) =

mn. Since ψ is a poset isomorphism, ψ maps a maximal chain of faces F0 ⊂ F1 ⊂ · · · ⊂ Fmn to the

maximal chain ψ(F0) ⊂ ψ(F1) ⊂ · · · ⊂ ψ(Fmn) in the sum-labelings of Γ(m,n). The sum-labeling

whose labels are all equal to {0, 1} contains all other sum-labelings, and this sum-labeling has mn

regions. Thus the result follows by Lemma 4.3.17.

4.3.3. Volume

The normalized volume of PASM(m,n) for small values of m and n is given in Table 4.2

(computed in SageMath). Due to the large size of the polytopes, further computations are not

easily obtained. Note that there does not appear to be a nice formula for the volume.

Remark 4.3.19. We have used SageMath to compute the Ehrhart polynomials for PASM(m,n) for

m,n ≤ 4 and note that in all of these cases their coefficients are positive.
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Table 4.2. The normalized volume of PASM(m,n) for small values of m and n.

@
@
@

m
n

1 2 3 4

1 1 1 1 1

2 1 6 43 308

3 1 43 5036 696658

4 1 308 696658 3106156252

4.4. Partial Permutohedron

In this section, we study partial permutohedra that arise naturally as projections of

PPerm(m,n) and PASM(m,n). After giving the definition, we count vertices and facets and find an

inequality description in Subsection 4.4.1. Then in Subsection 4.4.2, we note the relation between

the partial permutohedron and the stellohedron and give a new combinatorial description of its

face lattice. We show in Subsection 4.4.3 that partial permutation and partial alternating sign

matrix polytopes project to partial permutohedra. Finally, in Subsection 4.4.4, we give a result

and conjecture on volume.

4.4.1. Vertices, Facets, Inequality Description

In this subsection, we first give the definition of partial permutohedra. We enumerate the

vertices in Proposition 4.4.6 and the facets in Theorem 4.4.10 and prove an inequality description

in Theorem 4.4.9.

Definition 4.4.1. Given a partial permutation matrix M ∈ Pm,n, its one-line notation w(M) is a

word w1w2 . . . wm where wi = j if there exists j such that Mij = 1 and 0 otherwise.

Example 4.4.2. Let M =



0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

0 1 0 0 0


. Then w(M) = 3502.

Proposition 4.4.3. w(Pm,n) can be characterized as the set of all words of length m whose entries

are in {0, 1, . . . , n} and whose nonzero entries are distinct.

Proof. By definition, any matrix in Pm,n has m rows and n columns with at most one 1 in any given

row or column. Thus its image under w will be a word of length m with entries in {0, 1, . . . , n}
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such that the nonzero entries are all distinct. It follows from the definition of w that this map is

bijective.

Definition 4.4.4. Let P(m,n) be the polytope defined as the convex hull, as vectors in Rm, of

the words in w(Pm,n). Call this the (m,n)-partial permutohedron.

Definition 4.4.5. Let z ∈ Rn be a vector with distinct nonzero entries. Define φz : Rm×n → Rm

as φz(X) = Xz. Also define wz(Pm,n) as the set of all words of length m whose entries are in

{0, z1, z2, . . . , zn} and whose nonzero entries are distinct. Then Pz(m,n) is the polytope defined as

the convex hull, as vectors in Rm, of the words in wz(Pm,n).

Note that we will not use Definition 4.4.5 until later in this section, but the upcoming

results about the structure of partial permutohedra can also be extended to Pz polytopes.

Proposition 4.4.6. The number of vertices of P(m,n) equals

m∑
k=max(m−n,0)

m!

k!
.

Proof. The extreme points of P(m,n) are those whose nonzero entries are maximized. That is, if k

is the number of zeros, the (m−k) nonzero entries must be precisely {n, n−1, . . . , n− (m−k)+1}.

Now, since there are m total entries and k zeros, there are m!
k! distinct vectors whose m−k nonzero

elements are maximized.

For the proof of the next theorem, and for that of Theorem 4.4.27, we need the concept of

(weak) majorization [30].

Definition 4.4.7 ([30, Definition A.2]). Let u and v be vectors of length N . Then u ≺w v (that

is, u is weakly majorized by v) if

k∑
i=1

u[i] ≤
k∑
i=1

v[i], for all 1 ≤ k ≤ N

where the vector
(
u[1], u[2], . . . , u[N ]

)
is obtained from u by rearranging its components so that they

are in decreasing order (and similarly for v).

66



Proposition 4.4.8 ([30, Proposition 4.C.2]). For vectors u and v of length n, u ≺w v if and only

if u lies in the convex hull of the set of all vectors z which have the form z =
(
ε1vπ(1), . . . , εnvπ(n)

)
,

where π is a permutation and each εi is either 0 or 1.

Theorem 4.4.9. P(m,n) consists of all vectors u ∈ Rm such that:

∑
i∈S

ui ≤
(
n+ 1

2

)
−
(
n− k + 1

2

)
, where S ⊆ [m], |S| = k 6= 0, and (4.18)

ui ≥ 0, for all 1 ≤ i ≤ m. (4.19)

Proof. First, note that if P ∈ Pm,n, then w(P ) satisfies (4.18) and (4.19). This is because the

largest values that may appear are the m largest non-negative integers less than or equal to n, and

the nonzero integers must be distinct. Since w(P ) satisfies the inequalities for any P , so must any

convex combination.

Now, suppose x ∈ Rm satisfies (4.18) and (4.19). We will proceed by using Proposition 4.4.8.

Fix n and let v = (n, n−1, n−2, . . . , 1, 0, . . . , 0) be the decreasing vector in Rm whose largest entry

is n, and whose subsequent nonzero entries decrease by 1 and for which all other entries are 0.

Note that if n ≥ m, then v will have no 0 entries: it will be (n, n − 1, . . . , n − m + 1). Since x

satisfies (4.18) and (4.19), it is by definition weakly majorized by v; note in particular that (4.18)

requires that the sum of the k largest entries is never more than the k largest integers less than

or equal to n. But now the convex hull described in Proposition 4.4.8 is actually P(m,n), thus

x ∈ P(m,n).

Theorem 4.4.10. The number of facets of P(m,n) equals m+ 2m − 1−
m−n∑
r=1

(
m

m− r

)
.

Proof. There are 2m − 1 total inequalities given in (4.18), and m inequalities given in (4.19). Note

that
(
n−k+1

2

)
= 0 whenever k ≥ n. When m > n, there are m−n values of k such that

(
n−k+1

2

)
= 0,

creating redundancies. For each r between 1 and m − n, we have redundant inequalities for the

subsets of [m] of size m− r. These are counted by
(
m
m−r

)
.

When m ≤ n, none of the inequalities in (4.18) are redundant, since
(
n−k+1

2

)
= 0 may only

be satisfied by k = n.
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Remark 4.4.11. When m ≥ n, the number of facets of P(m,n) can also be written as:

m+
m∑

r=m−n+1

(
m

m− r

)
.

4.4.2. Face Lattice

In this subsection, we give a combinatorial description of the face lattice of P(m,m) in

Theorem 4.4.23 involving chains in the Boolean lattice. We furthermore state Conjecture 4.4.24,

which extends this characterization to m 6= n.

We begin by relating P(m,m) to a specific graph associahedron, the stellohedron. But first,

we need the following definitions.

Definition 4.4.12 ([14, Definition 2.2]). Let G be a connected graph. A tube is a proper nonempty

set of vertices of G whose induced graph is a proper, connected subgraph of G. There are three

ways that two tubes t1 and t2 may interact on the graph:

1. Tubes are nested if t1 ⊂ t2.

2. Tubes intersect if t1 ∩ t2 6= ∅ and t1 6⊂ t2 and t2 6⊂ t1.

3. Tubes are adjacent if t1 ∩ t2 = ∅ and t1 ∪ t2 is a tube in G.

Tubes are compatible if they do not intersect and they are not adjacent. A tubing T of G

is a set of tubes of G such that every pair of tubes is compatible. A k–tubing is a tubing with k

tubes.

Definition 4.4.13 ([17, Definition 2]). For a graph G, the graph associahedron Assoc(G) is a

simple, convex polytope whose face poset is isomorphic to the set of tubings of G, ordered such

that T < T ′ if T obtained from T ′ by adding tubes.

Of particular interest to us is the graph associahedron of the star graph, Assoc(K1,m), also

called the stellohedron.

Definition 4.4.14. The star graph (with m+1 vertices) is the complete bipartite graph K1,m. We

label the lone vertex ∗, and call it the inner vertex. We label the other m vertices x1, x2, . . . , xm,

and call them outer vertices.
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Remark 4.4.15. Note that if G has n nodes, vertices of Assoc(G) correspond to maximal tubings

of G (i.e. (n− 1)–tubings), and in general, faces of dimension k correspond to (n− k − 1)-tubings

of G. Thus for the star graph K1,m, which has m+ 1 nodes, vertices of Assoc(K1,m) correspond to

m-tubings, and in general, faces of dimension k correspond to (m− k)–tubings.

We examine the polytope Assoc(K1,m) through the lens of partial permutations, which

allows us to understand it in a different way. Lemmas 4.4.19 and 4.4.20 and Corollary 4.4.22, which

culminate in Theorem 4.4.23, shed light on a way to view these tubings, and thus the faces of

the stellohedron, as certain chains in the Boolean lattice. Furthermore, in Conjecture 4.4.24 we

describe what we think happens for P(m,n), where m 6= n. But first, we review the following

result that relates P(m,m) to the stellohedron; this can be found, in other language, in [29]. See

also [24], which gives connections to representation theory.

Theorem 4.4.16 ([29, Proposition 56]). P(m,m) is a realization of Assoc(K1,m).

We describe the explicit map for vertices in the remark below.

Remark 4.4.17. The map which sends maximal tubings of K1,m to the vertices of P(m,m) is as

follows. Let T be a maximal tubing of K1,m, and for each outer vertex xi, let ti be the smallest

tube containing xi. Then the coordinate in Rm corresponding to T is (|t1| − 1, |t2| − 1, . . . , |tm| − 1).

Note that two tubes of the star graph are compatible only if they each contain a single outer vertex

and do not contain ∗, or one is contained in the other. So a maximal tubing will have r tubes

which are singleton outer vertices and tubes of each size from r + 1 to m+ 1. Moreover, the tube

of size r + 1 must contain each of the r singleton outer vertices along with the inner vertex. Thus

such a tubing gets mapped to a coordinate in Rm with r zeros and whose nonzero entries are

{m,m− 1, . . . , r + 1}, which is a vertex of P(m,m).

One can view a tubing instead as its corresponding spine, defined below. This will help

in our goal of describing a bijection between tubings of the star graph and chains in the Boolean

lattice.
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Definition 4.4.18. Let T be a tubing of the star graph. The spine of T is the poset of tubes of

T ordered by inclusion, whose elements are labeled not by the tubes themselves but by the set of

new vertices in each tube. For simplicity, we will use the label i in place of xi.

Spines are defined (in more generality) in [29, Remark 10] and are called B-trees in [36,

Definition 7.7]. See Figure 4.4 for examples of tubings with their corresponding spines, as well as

their corresponding chains from the bijection in the following lemma. The Boolean lattice Bm is

the poset of all subsets of [m], ordered by inclusion.

Lemma 4.4.19. Tubings of K1,m are in bijection with chains in the Boolean lattice Bm.

Proof. Given a spine S of a tubing T of K1,m, we can construct the corresponding chain in the

Boolean lattice as follows. The bottom element of the chain is the subset including anything that

is grouped with ∗ in S. Each subsequent subset is made by adding in the elements in the next level

of S, until we reach the top level. Any elements not used in the subsets of the chain will be those

that appear below the ∗ in S.

Starting with a chain C ∈ Bm, we can recover the corresponding spine S (and thus the

tubing) by reversing this process. Any elements not in the maximal subset of C will be in the

bottom level of S as singletons. Any elements in the minimal chain of C will appear with ∗ in S.

The new elements that appear in each subsequent subset in C appear together as a new level in S.

Once we have S, we can, of course, recover T .

Lemma 4.4.20. Let T be a k-tubing and T ′ be a (k+ j)-tubing of K1,m, and let C and C ′ be their

corresponding chains in Bm via the bijection in Lemma 4.4.19. T ⊂ T ′ if and only if C ′ can be

obtained from C by j iterations of the following:

1. adding a non-maximal subset, or

2. removing the same element from every subset.

Proof. Consider T ⊂ T ′, i.e. T ′ is obtained from T by adding tubes. Suppose T and T ′ differ

by adding a single tube, that is, T = {t1, t2, . . . , tk} and T ′ = {t1, t2, . . . , tk, t′}. Let S and S′ be

their corresponding spines, and let C and C ′ be their corresponding chains. First note that by the
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←→ ←→ ∅ ⊂ {1, 4} ⊂ {1, 3, 4}

←→ ←→ ∅

←→ ←→ {3} ⊂ {1, 2, 3, 4}

Figure 4.4. Examples of tubings of K1,4 along with their corresponding spines (see Definition 4.4.18)
and chains in B4 (via the bijection in Lemma 4.4.19)

nature of the star graph, a tube either is a singleton outer vertex, xi, or contains the inner vertex, ∗.

Note that a singleton xi and the singleton ∗ cannot coexist as tubes in a tubing since they are not

compatible (they are adjacent).

First consider the case that t′ was a singleton outer vertex, xi. This means that in S, i was

grouped with ∗, while in S′, {i} now appears below ∗. On the level of chains, this means that i is

removed from all of the subsets in C to obtain C ′.

Now consider the case that t′ was not a singleton outer vertex. Then it necessarily contains ∗.

In this case, S′ has a new level which was not present in S. In particular, this level contains ∗ (and
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possibly other labels). A new level containing ∗ corresponds to a non-maximal subset being added

on the level of chains. In other words, C ′ is obtained from C by adding a non-maximal subset.

Now suppose T and T ′ differ by more than one tube, say T is a k-tubing and T ′ is a (k+ j)-

tubing for some j. Then T ′ is obtained from T by adding one tube at a time, j times, and thus C ′

is obtained from C by j iterations of (1) and/or (2) above.

We now give a description of the dimension of a face in terms of its corresponding chain.

This description involves missing ranks, which we define below.

Definition 4.4.21. Given a chain C ∈ Bm, we say a rank j is missing from C if there is no subset

of size j in C and there is a subset of size greater than j in C.

Corollary 4.4.22. A face of P(m,m) is of dimension k if and only if the corresponding chain has

k missing ranks.

Proof. We know that adding a tube reduces the dimension of the corresponding face by one. Also,

by Lemma 4.4.20, we know that adding a tube corresponds to either adding a non-maximal subset or

removing an element from every subset in the corresponding chain. In either case, this reduces the

number of missing ranks in the chain by one. So, having k missing ranks in the chain corresponds

to having m− k tubes, which by definition of the graph associahedron corresponds to a face being

of dimension k.

The theorem below follows directly from the above lemmas and corollary.

Theorem 4.4.23. The face lattice of P(m,m) is isomorphic to the lattice of chains in Bm, where

C < C ′ if C ′ can be obtained from C by iterations of (1) and/or (2) from Lemma 4.4.20. A face

of P(m,m) is of dimension k if and only if the corresponding chain has k missing ranks.

As chains in the Boolean lattice are generally more familiar objects than tubings of graphs,

presenting results in terms of these chains is conceptually helpful. In fact, because of the description

of the faces of P(m,m) in terms of chains, we are able to form the following conjecture for P(m,n).
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Conjecture 4.4.24. Faces of P(m,n) are in bijection with chains in Bm whose difference between

largest and smallest nonempty subsets is at most n− 1. A face of P(m,n) is of dimension k if and

only if the corresponding chain has k missing ranks

Remark 4.4.25. This conjecture has been tested and verified for m,n ≤ 4 using SageMath.

4.4.3. Projection from Partial Alternating Sign Matrix Polytopes

In this subsection, we show that the partial permutohedron is a projection of both

PPerm(m,n) (in Theorem 4.4.26) and PASM(m,n) (in Theorem 4.4.27). Recall φz from Defini-

tion 4.4.5.

Theorem 4.4.26. φz(PPerm(m,n)) = Pz(m,n).

Proof. First we need to show Pz(m,n) ⊆ φz(PPerm(m,n)). Suppose v ∈ Pz(m,n). We wish to

show v ∈ φz(PPerm(m,n)). By definition, v =
∑
λiwi where the sum is over all length m words wi

whose entries are in {0, z1, z2, . . . , zn} and whose nonzero entries are distinct. But wi = Xiz where

Xi ∈ Pm,n. So v =
∑
λiXiz = (

∑
λiXi)z, which proves our claim.

Then we need to show that φz(PPerm(m,n)) ⊆ Pz(m,n). Define ẑ as z with m − n zeros

appended if m ≥ n and as the largest n−m components of z if m < n. Let X = {xij} be an m×n

partial permutation matrix. Then, by Proposition 4.4.8, the proof will be completed by showing

Xz ≺w ẑ since the convex hull described will then be Pz(m,n). So, by Definition 4.4.7, we need to

show:
k∑
i=1

(Xz)[i] ≤
k∑
i=1

ẑ[i], for 1 ≤ k ≤ m.

This is true, since each component of the vector Xz is either 0 or zj for some 1 ≤ j ≤ n, because

each column of X has at most one nonzero entry.

Theorem 4.4.27. Let z be a strictly decreasing vector in Rn. Then φz(PASM(m,n)) = Pz(m,n).

Proof. Let z be a strictly decreasing vector in Rn. It follows from Theorem 4.4.26 and

PPerm(m,n) ⊆ PASM(m,n) that Pz(m,n) ⊆ φz(PASM(m,n)). Thus it only remains to be shown

that φz(PASM(m,n)) ⊆ Pz(m,n).
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As in the previous theorem, define ẑ as z with m− n zeros appended if m ≥ n and as the

largest n−m components of z if m < n. Let X = {xij} be an m×n partial alternating sign matrix.

Then, by Proposition 4.4.8, the proof will be completed by showing Xz ≺w ẑ since the convex hull

described will then be Pz(m,n). So, by Definition 4.4.7, we need to show:

k∑
j=1

(Xz)[i] ≤
k∑
i=1

ẑi, for 1 ≤ k ≤ m.

To prove this, we will show that
∑

i∈I(Xz)i ≤
∑|I|

i=1 ẑi given any I ⊆ {1, . . . ,m}, so that, in

particular,
∑|I|

i=1(Xz)[i] ≤
∑|I|

i=1 ẑi.

We will need to verify the following:

∑̀
j=1

∑
i∈I

xij ≤ min(`, |I|), for 1 ≤ ` ≤ n (4.20)

To prove this, note that

∑̀
j=1

∑
i∈I

xij =
∑
i∈I

∑̀
j=1

xij ≤ |I|

since
∑̀
j=1

xij ≤ 1. But since
∑̀
j=1

xij ≥ 0 and
m∑
i=1

xij ∈ {0, 1}, we also have that:

∑
i∈I

∑̀
j=1

xij ≤
m∑
i=1

∑̀
j=1

xij =
∑̀
j=1

m∑
i=1

xij ≤ `.
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Now using (4.20) we see that

∑
i∈I

(Xz)i =
∑
i∈I

∑̀
j=1

xijzi =
n∑
j=1

zi
∑
i∈I

xij =
n−1∑
`=1

(z` − z`+1)
∑̀
i=1

∑
j∈J

xij + zn

m∑
i=1

∑
j∈J

xij

≤
m−1∑
`=1

(z` − z`+1)
∑̀
j=1

∑
i∈I

xij + zn min(n, |I|) by (4.20)

=

min(n,|I|)−1∑
`=1

(z` − z`+1)
∑̀
j=1

∑
i∈I

xij +
n−1∑

`=min(n,|I|)

(z` − z`+1)
∑̀
j=1

∑
i∈I

xij + zn min(n, |I|)

≤
min(n,|J |)−1∑

`=1

(z` − z`+1)`+
n−1∑

`=min(n,|I|)

(z` − z`+1)|I|+ zn min(n, |I|)

by (4.20) and since z` ≥ z`+1. Furthermore, this equals

min(n,|I|)∑
`=1

z` by telescoping sums,

=

|I|∑
`=1

ẑ`, since the last m− n entries of ẑ are zero in the case n < m.

Thus Xz ≺w ẑ and so Xz is contained in the convex hull of the partial permutations of z.

Therefore φz(PASM(m,n)) = Pz(m,n).

4.4.4. Volume

Regarding the volume of P(m,n), we have the following theorem for m = 2 and conjecture

for n = 2. We also give normalized volume computations for m,n ≤ 7 in Table 4.3.

Theorem 4.4.28. P(2, n) has normalized volume equal to 2n2 − 1.

Proof. P(2, n) is a 2-dimensional polytope whose extreme points consist of exactly (0, 0), (n, 0),

(0, n), (n, n− 1), and (n− 1, n). This forms an n× n square with one corner “cut off” by the line

segment connecting (n, n − 1) to (n − 1, n). We can explicitly calculate the area of this region to

be n2 − 1
2 . To obtain the normalized volume we multiply by dim (P(2, n))! = 2! giving us 2n2 − 1.

Refer to Figure 4.5 for the case m = n = 2.
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Conjecture 4.4.29. P(m, 2) has normalized volume equal to 3m −m.

Using SageMath, we have confirmed this conjecture for m ≤ 50.

Table 4.3. Some normalized volume computations for P(m,n).

@
@
@

m
n

1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 1 7 17 31 49 71 97

3 1 24 129 342 699 1236 1989

4 1 77 954 4554 12666 27882 53370

5 1 238 6521 59040 262410 751380 1741950

6 1 723 42207 707669 5295150 22406130 65379150

7 1 2180 264501 7975502 99170254 651354480 2657217150

Figure 4.5. A plot of P(2, 2).

Remark 4.4.30. We have used SageMath to compute the Ehrhart polynomials for P(m,n) for

m,n ≤ 7 and note that in all of these cases their coefficients are positive.
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5. FUTURE WORK

While the study of partial permutations and alternating sign matrices, as well as their

corresponding polytopes, has proved to be a rich and interesting area of study, it is by no means

finished. One obvious direction for future work would be to prove Conjectures 4.2.9, 4.4.24, and

4.4.29. Along with this, we noted that in the cases which we could compute, the Ehrhart polyno-

mials of the polytopes we studied had positive coefficients. This would be interesting to prove in

general if it were true.

In the usual alternating sign matrix setting, there are intriguing connections to domino

tilings of the Aztec diamond (see for example [21, 22]). In particular, there is a way to interleave

posets related to alternating sign matrices such that order ideals in the resulting poset correspond

to tilings of the Aztec diamond. This correspondence can also be seen by using compatible pairs

of alternating sign matrices (pairs of alternating sign matrices, one of order n+ 1 and one of order

n, along with certain compatibility conditions). Such pairs are in bijective correspondence with

domino tilings of the Aztec diamond of order n. We have begun to explore an analogue of this in the

partial setting. We can interleave posets in a similar way, and use the same notion of compatible

pairs to produce “partial tilings” (see Figure 5.1 for an example).

Figure 5.1. An order ideal of a poset which corresponds to a “partial tiling” of an Aztec diamond.

There is also the subject of the structure of chained permutations and alternating sign

matrices, which was our original motivation for studying partial permutations and alternating sign
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matrices. It would be very interesting to find a partial order on chained alternating sign matrices

which is the MacNeille completion of the corresponding poset of chained permutations. We have

put a partial order on chained permutations, using analogues of adjacent transpositions, and with

SageMath have been able to look at these posets. This order was built using chained permutations

with fixed composition corresponding to maximum rook placements on the corresponding boards.

We have few results thus far in this direction, but have made some observations relating to

the structure of the posets. For example, in the circular case, when there are k components of size

2× 2, there is a connection to hypercube posets. In particular, when k is odd, the poset is exactly

the hypercube poset of dimension k. When k is even, the poset is either the hypercube poset of

dimension k or k
2 , depending on the composition. Additionally (also in the circular case), when

the size of each component is fixed, it appears that increasing the number of components from one

even number to the next corresponds to taking a Cartesian product of posets. That is, if k = 2`

for a positive integer `, and we let Cm,2` = (n−m,m, n−m,m, · · · , n−m,m) for 1 ≤ m ≤ n be

the allowable compositions (see [25] for more information on allowable compositions) and Qm,2` be

the corresponding posets, then we conjecture that Qm,2` = Qm,2×Qm,2× · · ·×Qm,2 (the cartesian

product of Qm,2 with itself ` times). Finally, while this is not easy to describe, it may be worth

noting that it does appear that certain “pieces” of these posets seem to appear often within many

different larger posets. See Figure 5.2 for some examples.

Figure 5.2. Left: the poset of chained permutations with 4 components of size 2 × 2 and with
composition (1, 1, 1, 1). This poset is isomorphic to the hypercube poset of dimension 4. Right: the
poset of chained permutations with 2 components of size 3 × 3 and composition (2, 1). This is an
example of a poset which also appears as a piece of larger posets of chained permutations.
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We were unable to extend this poset structure naturally to the case of chained alternating

sign matrices. In the future, we would like to study a similar poset structure that includes all

“partial chained permutations” which fit into a maximum composition. This would more closely

mimic the poset of partial permutations, and may then extend nicely to the chained alternating

sign matrix case. However, looking at it this way also complicates matters, as there are many more

objects to consider, making the posets much harder to compute, produce, and study.
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