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ABSTRACT 

RNA-seq data simulated from a negative binomial distribution, sampled without 

replacement, or modified from read counts were analyzed to compare differential gene 

expression analysis methods in terms of false discovery rate control and power. The goals of the 

study were to determine optimal sample sizes/proportions of differential expression needed to 

adequately control false discovery rate and which differential gene expression methods 

performed best with the given simulation methods.  

Parametric tools like edgeR and limma-voom tended to be conservative when controlling 

false discovery rate from a negative binomial distribution as the proportion of differential 

expression increased. For the nonparametric simulation methods, many differential gene 

expression methods did not adequately control false discovery rate and results varied greatly 

when different reference data sets were used for simulations.  
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CHAPTER 1. INTRODUCTION 

RNA sequencing (RNA-seq) is a popular and relatively new method of identifying 

potentially differentially expressed (DE) genes in a dataset as opposed to the more antiquated 

microarray technology. Identifying DE genes is done through differential gene expression (DGE) 

analysis. Gene expression data generated from microarray technology are generally assumed to 

be continuous and normally distributed, implying that linear models can be used to analyze the 

data. RNA-seq technologies, on the other hand, generate expression levels that are counts, 

implying that generalized linear models (GLMs) should be used to analyze the data. 

Nonparametric methods can also be used to analyze both microarray and RNA-seq data.  There 

are multiple types of RNA-seq data, including bulk RNA-seq, microRNA-seq, and single-cell 

RNA-seq. For clarity, any reference to RNA-seq in this disquisition will refer to bulk RNA-seq. 

Before analysis can be performed on RNA-seq data, the reads must be aligned (Frazee, 

Jaffe, Kirchner, and Leek 2015) based on if the samples are single or paired-end. After 

alignment, the data are formatted into a read count matrix with columns represented by the 

samples (experimental units) and rows represented by the genes. 

RNA-seq read counts were originally analyzed using Poisson GLMs because of the 

discrete nature of the data (Wu, Wang, and Wu 2014; Anders and Huber 2010). The support of 

the read counts has a lower bound of zero reads and no upper bound, which is consistent with 

Poisson random variables. Mathematically speaking, this GLM would work in practice, but 

previous research tells us that this model only accounts for the technical variation in the data 

(Frazee, Jaffe, Kirchner, and Leek 2015; Robinson, Mccarthy, and Smyth 2010; McCarthy, 

Chen, and Smyth 2012). Another component needs to be accounted for in our model: biological 

variation. Biological variation is associated with the individual replicates in the treatments and is 
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not accounted for in the Poisson GLM because the variance is greater than the mean (Robinson, 

Mccarthy, and Smyth 2010; Anders and Huber 2010; McCarthy, Chen, and Smyth 2012). The 

negative binomial (NB) model accounts for this overdispersion of the Poisson model. 

Multiple simulations run under the assumption that RNA-seq read counts are NB 

distributed have been proposed in previous research (Wu, Wang, and Wu 2014) to determine 

appropriate sample sizes and compare differential expression analysis methods. Some 

researchers argue that parametric methods of simulations fail to replicate the complex structure 

of real RNA-seq data, and thus, should not be used to determine appropriate sample size or 

compare DGE methods (Benidt and Nettleton 2015; Gerard 2020). The debate of parametric and 

non-parametric simulations for RNA-seq was the motivation for this paper. 

The goal of this study was to determine appropriate combinations of sample sizes and 

proportions of equivalent expression regarding each DGE method for both the parametric 

simulation method and the nonparametric simulation methods. Proportions of equivalently 

expressed (EE) genes cannot be prespecified in practice, but a simulation study allows us to 

control this particular setting of a study. Powers for DGE analysis methods that adequately 

controlled false discovery rate (FDR) were also of interest. 

This paper is organized as follows: (1) chapter II contains a literature review of all the 

methods reviewed by the researcher (implemented or not), (2) chapter III is an outline of the 

procedures followed in each implemented method, (3) chapter IV presents the results found in 

the study, and (4) chapter V discusses the results while providing thoughts and recommendations 

for future research as well as limitations of the study.  
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CHAPTER 2. LITERATURE REVIEW 

To our knowledge, little research has been done on directly comparing previous RNA-seq 

simulation methods. Most papers (e.g. seqgendiff and SimSeq) propose their own simulation 

methods and discuss the findings in the context of their proposed method (Benidt and Nettleton 

2015; Gerard 2020). More research has been done for DGE analysis methods. Schurch et al. 

(2016), a popular example, made recommendations for DGE analysis tools to use for small and 

large sample sizes alike in yeast data.  

Previous research led to R (R Core Team 2020) being a popular tool of choice for RNA-

seq both for its open-source capabilities and the high popularity of Bioconductor (Huber et al. 

2015, Gentleman et al. 2004), a software for molecular biology and bioinformatics. 

Simulation Methods 

Parametric 

PROPER (Wu, Wang, and Wu 2014), which stands for PROspective Power Evaluation 

for RNASeq, is a parametric simulation method that simulates data from the NB distribution 

based on the parameters of a count matrix from a real RNA-seq dataset. This method starts by 

simulating gene-wise baseline expression levels and dispersions from the provided dataset. 

Effect sizes can also be set. Some DGE analysis methods are built into the package, but 

predefined DGE methods are used to have more control over specific steps and genes filtered. It 

also has nice graphical and tabular visualizations for power and sample size estimation. 

Another method that was examined in the literature search was powsimR (Vieth, 

Ziegenhain, Parekh, Enard, and Hellmann 2017). Like PROPER, it is a parametric simulation 

method that simulates counts from a NB distribution. It can also be used for single-cell RNA-seq 

data simulation. This method also starts by simulating gene-wise baseline expression levels, but 
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it differs from PROPER in that it estimates dispersion parameters through fitting a mean-

dispersion spline. Also, unlike PROPER, the powsimR method can directly account for batch 

data as part of the simulation. DGE analysis methods are also built into the package. 

Semiparametric 

A semiparametric method for simulating RNA-seq data is seqgendiff (Gerard 2020). It 

takes a nonparametric approach to the systematic components of the model but adds a signal to 

the data represented by an error term that follows a prespecified distribution. The read counts are 

modified by binomial thinning. Additionally, data from more complex models can be simulated 

by providing a correlation matrix or additional surrogate variables, but the simplest procedure for 

the two-group model can also be used. 

Nonparametric 

A nonparametric simulation method that is appropriate for reference data sets with large 

sample sizes in two or more treatment groups is SimSeq (Benidt and Nettleton 2015). SimSeq 

simulates RNA-seq reads by “subsampling columns from a large source RNA-seq dataset and 

then swapping individual read counts within genes adjusted by a correction factor to create 

differential expression” (Benidt and Nettleton 2015). 

Another simulation method explored is a simple resampling method. This method 

randomly samples columns of equal sample sizes for each treatment group from the original read 

count matrix. According to the procedure outlined in Schurch et al. (2016), genes declared to be 

DE for the original read count matrix (the “true” DE genes) are identified using a DGE analysis 

method. Then, for each resampled data set, DGE analysis is again performed to identify genes 

declared differentially expressed (DDE). Performance of the DGE methods is performed by 
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comparing the list of true DE genes to the lists of DDE genes from the resampled data sets. More 

information on this can be found in the “Hypotheses of Interest” section. 

Parametric or Nonparametric 

Polyester (Frazee, Jaffe, Kirchner, and Leek 2015) is another simulation method 

explored. It is a unique simulation method in that it starts at the sequencing level to account for 

read alignment and counting. To start, the researcher downloads SRA (Sequence Read Archive) 

files for each sample from the NCBI SRA. Next, the SRA files are converted to FASTA files (a 

special type of FASTQ file) for input to the package. The SRA Run Selector is used to examine 

the samples to determine if they are single or paired-end prior to converting the files. With the 

FASTA files, the researcher can start simulating count matrices. Polyester has a built-in NB 

model for simulating reads or a user-defined count model that can be specified. The library sizes 

can also be modified by a certain factor. 

Differential Gene Expression Analysis Methods 

Parametric 

Many parametric and nonparametric DGE analysis methods have been proposed for 

RNA-seq data. One of the first methods was edgeR (Robinson, Mccarthy, and Smyth 2010). 

edgeR is a parametric DGE analysis method that assumes the count data follows a NB 

distribution. edgeR starts preprocessing the data by filtering out lowly expressed genes before 

running analysis. The normalization factors are calculated, and the dispersion parameters are also 

calculated. A GLM fit or exact test is conducted for each gene to obtain a p-value. 

Another DGE analysis method is DESeq2 (Love, Huber, and Anders 2014). This tool 

assumes the data follows a NB distribution and is the successor of DESeq (Anders and Huber 

2010). It makes improvements in estimating dispersion parameters, introduces a regularized log 
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transformation option, and is overall less conservative in controlling type I error. The DESeq2 

procedure begins by calculating size factors and dispersion parameters. Then, the dispersions are 

shrunk by an empirical Bayes’ method. Gene-wise GLMs are fit, and Wald statistics are 

calculated and used to calculate a p-value for each gene. DESeq2 includes filter options, 

including independent filtering and Cook’s distance filtering. 

Another commonly used DGE analysis method is limma-voom. limma (Ritchie et al. 

2015; McCarthy, Chen, and Smyth 2012) is a parametric DGE analysis method that was 

originally proposed for microarray data. Data modeled with limma is assumed to follow a log-

normal distribution. The voom (Law, Chen, Shi, and Smyth 2014) method in limma is one of the 

more common methods used for RNA-seq data. The read count data is first transformed into log-

count per million units. Gene-wise linear models (LMs) are fit to the data and precision weights 

are calculated. Gene-wise LMs are refit to the data, and dispersion parameters are shrunk with an 

empirical Bayes’ method. 

Another DGE analysis method is baySeq (Hardcastle and Kelly 2010), which also utilizes 

a parametric model for DGE analysis. It is similar to edgeR in that it can estimate parameters 

with quasi-likelihood estimation. As initial inputs, the user provides a list of a vector assuming 

the null hypothesis of no differential expression among replicates and a vector assuming 

differential expression between replicates. baySeq also uses an empirical Bayes approach to 

calculating the dispersion parameters. The prior distribution for read counts is assumed to be a 

NB distribution, and the posteriors are calculated with either maximum likelihood estimation or 

quasi-likelihood estimation. 
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Nonparametric 

A nonparametric DGE analysis method is NOISeq (Tarazona, Garcia-Alcalde, Dopazo, 

Ferrer, and Conesa 2011; Tarazona et al. 2015). NOISeq is used for gene expression experiments 

with two treatments. The function used for biological replicates utilizes an empirical Bayes 

method for differential expression. This approach assumes there are two distinct populations: (1) 

genes with non-varying expression between two conditions of an experiment and (2) genes with 

changing expression between two experimental conditions. First, Z-statistics are calculated from 

the groups by permuting samples from the read count matrices and corresponding posterior 

probabilities of differential expression are computed and filtered by a cutoff.  
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CHAPTER 3. METHODS 

Data 

Two RNA-seq read count datasets were examined to compare simulation methods and 

DGE analysis methods. The primary dataset of interest measured expression levels of kidney 

genes. The participants (𝑁 = 144) were paired into tumor (𝑁1 = 72) and non-tumor (𝑁2 = 72) 

groups. There were 20531 genes total for each participant. The data for this experiment was 

queried from the SimSeq package.  

The second dataset used for this paper measured expression levels of whole blood genes. 

The participants (𝑁 =  82) were comprised of patients diagnosed with type I diabetes (T1D) 

(𝑁1 = 39) and healthy volunteers (𝑁2 = 43). There were 16785 genes examined for each 

patient/volunteer. The data for this experiment was queried from the NCBI (National Center for 

Biotechnology Information) GEO (Gene Expression Omnibus) (Edgar, Domrachev, and Lash 

2002). The accession for the data was GSE123658. 

Settings 

For each simulation method, a subset of samples (columns) was randomly selected from 

the original dataset. Denoting the subsetted samples as 𝑛 such that 𝑛 ⊂ 𝑁1 and 𝑛 ⊂ 𝑁2, three 

different sample size settings were examined: 𝑛 = 3, 𝑛 = 6, and 𝑛 = 10. Letting 𝑝 denote the 

proportion of EE genes (rows) for each simulation, four different proportion settings were 

examined: 𝑝 =  0.5, 𝑝 =  0.7, and 𝑝 =  0.9, and 𝑝 =  1. There were 10000 genes simulated for 

each simulation. At each simulation setting, 100 total simulations were run. Table 1 below gives 

a visual representation of the simulation settings. 
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Table 1. Simulation Settings. 

Sample Size (𝒏) Proportion EE Genes (𝒑) Simulation Method DGE Method 

3 0.5 PROPER edgeR 

6 0.7 seqgendiff DESeq2 

10 0.9 SimSeq limma-voom 

 1 Resampling NOISeq 

 

Every possible combination of sample size, proportion of EE genes, simulation method, 

and DGE analysis method was run. 

Filtering 

In agreement with the SimSeq paper (Benidt and Nettleton 2015), genes were kept that 

had a mean read count of ten or greater and a lower bound of two for nonzero read counts for the 

SimSeq, seqgendiff, and resampling methods. From the total number of genes in the original 

read count matrices, 10000𝑝 EE genes were randomly sampled from the total number of EE 

genes, and consequently 10000(1 −  𝑝) DE genes were randomly sampled from the total 

number of DE genes. 

For the PROPER NB simulation method, genes from the RNA-seq count data were 

removed if they yielded all zero read counts. 

Design Matrix 

Some preliminary analysis showed that there was a significant batch effect in this 

experiment. The batch information was obtained from the NCBI GEO website with the 

GEOquery (Davis and Meltzer 2007) package in R. The methods that did not account for a batch 

effect used a design matrix 𝑋 
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𝑋 =

[
 
 
 
 
1 0
1 0
⋮ ⋮
1 1
1 1]

 
 
 
 

(1) 

where the column vector of 1s corresponds to the intercept term, and the second column vector 

corresponds to the indicator variable (0/1) of T1D. The methods that did account for the batch 

effect were represented by a different design matrix 𝑋 such that 

𝑋 =

[
 
 
 
 
 
1 0 𝑏13

2 𝑏14
3

1 0 𝑏23
2 𝑏24

3

⋮ ⋮ ⋮ ⋮
1 1 𝑏(𝑛−1)3

2 𝑏(𝑛−1)4
3

1 1 𝑏𝑛3
2 𝑏𝑛4

3 ]
 
 
 
 
 

(2) 

where 

𝑏𝑖3
2  represents the column vector corresponding to the indicator variable of Batch 2 and, 

𝑏𝑖4
3  represents the column vector corresponding to the indicator variable of Batch 3. 

Rows where (𝑏𝑖3
2 , 𝑏𝑖4

3 ) = (0, 0) represented the effect of Batch 1. 

Simulation Methods 

PROPER 

The first simulation method, PROPER (Wu, Wang, and Wu 2014), had three main steps 

to simulate data from a read count matrix: (1) estimation of the simulation parameters from the 

original read count matrix, (2) determination of the options of the simulation using the returned 

objects, and (3) running the simulations with the given options. The first step computed the 

sequencing depth for each sample, the log baseline expression rate per gene, and the log 

dispersion for each gene. 

To run the simulations, 𝑦𝑔𝑘 represented the observed read count of the 𝑔𝑡ℎ gene and the 

𝑘𝑡ℎ replicate.  It was assumed that the corresponding random variable 
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𝑌𝑔𝑘 ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑠𝑘μ𝑔, ϕ𝑔) (3) 

where 

𝑠𝑘 is the normalization factor for the 𝑘𝑡ℎ replicate, 

μ𝑔 represents the baseline expression level (mean) for the 𝑔𝑡ℎ gene, and 

ϕ𝑔 represents the dispersion parameter for the 𝑔𝑡ℎ gene. 

This step could have been skipped entirely if the researcher decided to estimate the simulation 

parameters with the built-in datasets (i.e., Cheung, Gilad, Bottomly, MAQC). The second step 

retained the previous simulation options as well as user input for number of genes simulated, the 

percentage of genes DE, the log (base 2) fold change of the DE genes, and a random seed 

number used to reproduce the results if needed. The function returned the read counts, the 

treatment vector (indicator for T1D) for the selected samples, an index of selected DE genes, and 

the previous simulation options. 

seqgendiff 

Two main steps were performed to simulate data from the seqgendiff package: (1) 

selection of the samples and (2) addition of a signal following a specific parametric model to the 

data through binomial thinning. 

A simple random sample without replacement (SRSWOR) approach was implemented in 

the first step. The 𝑁1 samples (tumor group and T1D patients) were selected first and then the 𝑁2 

samples (non-tumor group and healthy volunteers) were selected afterward for the datasets. All 

genes from the original count matrices were retained. It was worth noting that for the sampled 

read counts the matrix 

𝐘𝑔 𝑥 𝑘 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2θ𝑔𝑘) (4) 

so that 
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θ = μ𝟏𝑘
𝑇 + Ω (5) 

where 

𝑘 is the number of replicates, 

μ is the column vector of intercept terms for the genes, 

𝟏𝑘 is the column vector of 1s, and 

Ω ∈ ℝ𝑔 𝑥 𝑘 is the matrix accounting for variation in the model. 

A signal (Ω) was then added to the distribution in order to better account for the real variability 

in RNA-seq data through binomial thinning. Other inputs to the function included the proportion 

of genes that were null and the proportion of genes in group 1. The remaining function inputs 

were left to their defaults. 

Suppose now there is a design matrix with 𝑝 covariates 

𝑋 ∈ ℝ𝑘 𝑥 𝑝 

and a square permutation matrix 

Π ∈ ℝ𝑘 𝑥 𝑘 

Then the resultant matrix of read counts is modeled as 

�̃�𝑔 x 𝑘 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2θ̃𝑔𝑘) (6) 

so that 

θ̃ = μ̃𝟏𝑘
𝑇 + 𝑏𝑥𝑇Π𝑇 + Ω (7) 

where 

μ̃ is the new column vector of intercept terms for the genes, 

𝑏 is the coefficients vector corresponding to the design matrix 𝑋, and 

𝑥 corresponds to the appropriate row vector of the design matrix 𝑋. 
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The coefficients vector, 𝑏, was used to identify DE and EE genes.  This vector of the selected 

genes can be notated as 

𝑏 = [

𝑐1

𝑐2

⋮
𝑐𝑔

] (8) 

where 

𝑐𝑖 for 𝑖 =  1, 2, . . . , 𝑔 represent constants. 

For any 𝑐𝑖  =  0, the genes were deemed EE, otherwise they were DE. 

The binomial thinning part of these simulations was not readily apparent to the researcher 

from these above equations, so the following steps are used to explain how to go from equation 4 

to equation 6. The binomial conditional distribution is applicable to both RNA-seq data with just 

technical variation (Poisson) and also biological variation (NB). For data with technical 

variation, we assume 𝐘 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(μ). If the conditioning on 𝐘 is such that  �̃� ∣ 𝐘 ∼

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝒚, 𝑝), then �̃� ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(μ𝑝) (Gerard 2020), resulting in the same distribution of the 

original random variable. For data with biological variation, we assume 𝐘 ∼ 𝑁𝐵(μ,ϕ). If the 

conditional distribution is binomial such that �̃� ∣ 𝐘 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝒚, 𝑝), then �̃� ∼ 𝑁𝐵(μ𝑝, ϕ). 

SimSeq 

The third simulation method, SimSeq, had a ten-step process used to simulate read counts 

(Benidt and Nettleton 2015): 

1. The set of all genes in the count matrix was denoted as 𝐺, with 𝑔 being an individual 

gene in 𝐺. Gene-wise (∀𝑔 ∈ 𝐺) p-values were computed with a DE test using the 

Wilcoxon Signed Rank test. 

2. Gene-wise local false discovery rates (FDRs) were calculated for each p-value.  
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3. Probability weights for each gene were calculated by taking the difference of 1 and the 

local FDR.  

4. 𝐆𝟏 genes were randomly selected without replacement to be DE from 𝐺 according to the 

probability weights computed above and called 𝐺1.  

5. 𝐆𝟎 genes were randomly selected without replacement from 𝐺 to be EE genes and called 

𝐺0. A new set of genes was defined as 𝐺∗ = 𝐺0 ∪ 𝐺1 which encompassed all DE and EE 

genes selected.  

6. 𝐘 was denoted as the matrix of read counts initially provided. A sample 𝒚 was randomly 

selected without replacement from the first treatment group and subsetted to the set of 

genes 𝐺∗. This column was denoted as 𝒙𝟏 and was assigned to the treatment group 1 of 

simulations.  

7. A sample was randomly selected without replacement from both treatment groups in 𝐘 

with columns 𝐘𝟏 and 𝐘𝟐. The appropriate normalization factors were denoted as 𝑠1 and 𝑠2 

for these columns. The 0.75 quantile of the 𝑘𝑡ℎ replicate was selected for normalization.  

8. The set of genes 𝐺∗ were subsetted for 𝐘𝟏 and 𝐘𝟐. 

9.  𝒙𝟐  was created ∀𝑔 ∈ 𝐺∗ by 

𝒙𝟐𝑔 = {

𝒚𝟏𝑔 𝑖𝑓 𝑔 ∈ 𝐺0

⌊𝒚𝟐𝑔 (
𝑠1

 𝑠2
) + 0.5⌋ 𝑖𝑓 𝑔 ∈ 𝐺1

(9) 

where ⌊⋅⌋ is the floor operator to round the quantity down to the nearest integer. 

10. The sixth through ninth steps were repeated 𝑛 times. 

Resampling 

The resampling method used the SRSWOR method outlined in the seqgendiff procedure. 

Denoting 𝐘 as the read count matrix, 𝑛 samples were selected from each treatment group and the 
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submatrices were denoted as 𝐘𝟏 and 𝐘𝟐. The new read count matrix was 𝐘∗ = [𝐘𝟏 𝐘𝟐]. 

Unfortunately, resampling did not explicitly define the DE genes used in the simulations. In this 

case, the approach used was such that the DGE analysis methods were run on the full dataset of 

“clean replicates” and the subsetted samples outlined in the Schurch et al. (2016) paper. The 

DDE genes from the subsetted samples were compared to the DE genes from the full dataset. 

Differential Gene Expression Analysis Methods 

edgeR 

edgeR (Robinson, Mccarthy, and Smyth 2010) is one of the more popular methods used 

for DGE analysis. The first step in the edgeR process was to create a DGEList object to hold all 

the appropriate information. The next step was to calculate the normalization factors using the 

trimmed mean of M-values method (Robinson and Oshlack 2010). There were three main steps 

in this process: (1) calculation of the M-values [gene-wise log (base 2) fold changes] of the 𝑘𝑡ℎ 

replicate and the 𝑟𝑡ℎ reference sample so that 

𝑀𝑔𝑘
𝑟 = 𝑙𝑜𝑔2 (

𝑦𝑔𝑘/𝑛𝑘

𝑦𝑔𝑟/𝑛𝑟
) (10) 

and calculate the A-values (absolute expression levels) of the 𝑘𝑡ℎ replicate and the 𝑟𝑡ℎ reference 

sample so that 

𝐴𝑔𝑘
𝑟 =

1

2
[𝑙𝑜𝑔2(𝑦𝑔𝑘/𝑛𝑘) + 𝑙𝑜𝑔2(𝑦𝑔𝑟/𝑛𝑟)] (11) 

(2) trimming the M-values and the A-values (defaults are 30% for M-values and 5% for A-

values), and (3) calculation of the weighted mean of the trimmed M-values for the 𝑘𝑡ℎ replicate 

so that 

𝑙𝑜𝑔2(𝑇𝑀𝑀𝑘
𝑟) =

𝑤𝑔𝑘
𝑟 𝑀𝑔𝑘

𝑟

𝑤𝑔𝑘
𝑟 (12) 
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where 

𝑤𝑔𝑘
𝑟 =

𝑛𝑘−𝑦𝑔𝑘

𝑛𝑘𝑦𝑔𝑘
+

𝑛𝑟−𝑦𝑔𝑟

𝑛𝑟𝑦𝑔𝑟
. 

The next step in the edgeR procedure was to calculate the dispersion parameters (ϕ𝑔) by 

shrinking them toward a common dispersion. This used an empirical Bayes weighted likelihood 

given by 

𝑊𝐿(ϕ𝑔) = 𝑙𝑔(ϕ𝑔) + α𝑙𝐶(ϕ𝑔) (13) 

where 

𝑙𝑔(⋅) is the log-likelihood function for gene 𝑔, 

𝑙𝐶(ϕ𝑔) = ∑ 𝑙𝑔(ϕ𝑔)𝑚
𝑔=1  is the gene-wise common log-likelihood and prior distribution 

  of ϕ𝑔, and 

α is the weight given to the common likelihood (prior precision). 

A likelihood-ratio test was performed for each gene and p-values were calculated. More 

information is given in the “Hypotheses of Interest” section. 

DESeq2 

DESeq2 (Love, Huber, and Anders 2014) is another popular method for DGE analysis 

used by researchers. The first step was to create a DESeq object. The next step was to call the 

DESeq function, which used three processes internally: (1) estimation of the normalization 

factors, (2) estimation of the dispersion parameters, (3) fitting a NB GLM and computation of 

the Wald statistics. Estimating the normalization factors differed from edgeR in that it used the 

median-of-ratios method defined below 

𝑠�̂� = 𝑚𝑒𝑑𝑖𝑎𝑛𝑔

𝑦𝑔𝑘

(Πν=1
𝑛 𝑦𝑔ν)

1/𝑛
(14) 

where 
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(Πν=1
𝑛 𝑦𝑔ν)

1/𝑛
 is the geometric mean of the read counts for gene 𝑔 and the   

 normalization factor, and 

𝑚𝑒𝑑𝑖𝑎𝑛𝑔(⋅) is the median function for gene 𝑔. 

Next, let the Fisher Information Matrix be denoted by  

𝕀𝑔 = 𝑋𝑇𝑊𝑔𝑋 (15) 

where 𝑋 is the design matrix, and 𝑊𝑔 is the diagonal weights matrix for gene 𝑔. The dispersion 

parameters for DESeq2 were estimated using the Cox Reid-adjusted profile likelihood which is 

given by 

𝐴𝑃𝐿𝑔(ϕ𝑔) = 𝑙(ϕ𝑔; 𝑦𝑔, β�̂�) −
1

2
𝑙𝑛[𝑑𝑒𝑡(𝕀𝑔)] (16) 

where 

𝑙(⋅) is the log-likelihood function, 

ϕ𝑔 is the dispersion parameter for gene 𝑔, 

𝑦𝑔 is the read count for gene 𝑔, and 

𝛽�̂� is the estimated coefficient vector for gene 𝑔. 

The dispersion parameters were again shrunk toward a common value, but the difference 

between this process and the one used in edgeR was that the dispersions were shrunk to a 

common prior (Wu, Wang, and Wu 2012). The log-fold changes (LFCs) were shrunk in a similar 

fashion to the dispersion parameters. The gene-wise LFCs were tested for significance with Wald 

tests and p-values were generated. More information is given in the “Hypotheses of Interest” 

section. 
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limma-voom 

limma (Ritchie et al. 2015; McCarthy, Chen, and Smyth 2012) is another popular method 

used for DGE analysis. To use limma with RNA-seq data, an edgeR DGEList object was created 

and normalization factors from edgeR were applied. The voom (Law, Chen, Shi, and Smyth 

2014) method in limma log-transformed (base 2) the count data so the units were in counts per 

million (CPM). There was an offset of 0.5 to account for read counts of zero. The documentation 

defined the formula converting read counts to log-CPM as 

𝑦𝑔𝑘 = 𝑙𝑜𝑔2 (
𝑟𝑔𝑘 + 0.5

∑ 𝑟𝑔𝑘
𝐺
𝑔=1 + 1.0

𝑥106) (17) 

where 

𝑟𝑔𝑘 is the read count for gene 𝑔 and sample 𝑘, and 

∑ 𝑟𝑔𝑘
𝐺
𝑔=1  is the sum of all read counts (mapped reads) for gene 𝑔 and sample 𝑘.  

Linear models (LMs) were then fit to the data in a similar way as what is done for microarray 

data. The gene-wise LMs were fit using ordinary least squares where the expected value of the 

log-CPM was represented as 

𝐸(𝑦𝑔) = 𝑋β𝑔 (18) 

Gene-wise mean log-CPMs were computed as  

�̃� = 𝑦𝑔̅̅ ̅ + 𝑙𝑜𝑔2(�̃�) − 𝑙𝑜𝑔2(106) (19) 

where 

�̃� is the geometric mean of the library sizes plus 1. 

A locally weighted regression (LOWESS) curve (notated as 𝑙𝑜(∙)) was fit to create a smooth 

mean-variance trend. The fitted values from the LMs (𝜇𝑔�̂�) can be written as 
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𝜆𝑔�̂� = 𝜇𝑔�̂� + 𝑙𝑜𝑔2 (∑ 𝑟𝑔𝑘

𝐺

𝑔=1

+ 1) − 𝑙𝑜𝑔2(106) (20) 

and the precision weights are calculated as 

𝑤𝑔𝑘 = 𝑙𝑜(𝜆𝑔�̂�)
−4

(21) 

and these weights are associated with the read counts, 𝑦𝑔𝑘. Gene-wise LMs were fit to the data 

and empirical Bayes’ dispersions were shrunk to a common value. The corresponding p-values 

were calculated. More information is given in the “Hypotheses of Interest” section. 

NOISeq 

 For the nonparametric DGE analysis method, NOISeq (Tarazona, Garcia-Alcalde, 

Dopazo, Ferrer, and Conesa 2011; Tarazona et al. 2015), there were three main steps to identify 

DE genes: (1) computation of the Z-statistics, (2) estimation of the Z-scores, and (3) computation 

of the posterior probabilities of differential expression. 

A Z-statistic was proposed such that 

𝑍 =
𝑀 + 𝐷

2
(22) 

where 𝑀  is the log-ratio (base 2) of the two conditions (treatment and control) and the 

difference between the two conditions, 𝐷. Next, the biological replicates were accounted for by 

recomputing the 𝑀 and 𝐷 values (denoted as 𝑀∗ and 𝐷∗, respectively). The formulas are 

𝑀∗ =
M

a0 + √𝑆𝐸(M)
(23) 

and 

𝐷∗ =
𝐷

𝑎0 + √𝑆𝐸(𝐷)
(24) 
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where 𝑆𝐸(𝐷)  and 𝑆𝐸(𝑀) are the standard errors of the 𝐷 and 𝑀 statistics, respectively, and 𝑎0 

is the user-inputted quantile of the values of √𝑆𝐸(𝑀) and √𝑆𝐸(𝐷). The new DE statistic was 

then computed as 

𝑍 =
𝑀∗ + 𝐷∗

2
(25) 

 To calculate the Z-scores for the null genes (𝑍0), the read count matrix was partitioned 

into two subsets of the original: 𝐘𝟏 (control) and 𝐘𝟐 (treatment), both of dimension 𝑔 genes and 

𝑛 samples. The sample names of these matrices were permuted 𝑟 (default is 50) times, and the Z-

statistics outlined by equations 22-25 were calculated again. Matrices of 𝑔 rows and 𝑟 columns 

were generated with the 𝑍0 statistics being the pooled results. Different approaches were used in 

dealing with small and large sample sizes. For samples with less than 5 replicates, a 𝑘-means 

clustering algorithm was used to compute M and D values for determining DE genes by 

borrowing information across genes. Within the 𝑘 clusters of genes, the sample names were 

permuted in a similar fashion and 𝑍0 statistics were calculated. 

 The distribution of the test statistic 𝑍 can be represented by the probability density 

function 

𝑓(𝑧) = 𝑝0𝑓0(𝑧) + 𝑝1𝑓1(𝑧) (26) 

where 

 𝑝0 is the probability of a gene having similar expression levels between groups, 

 𝑓0 is the density corresponding to 𝑝0, 

 𝑝1 is the probability of a gene having dissimilar expression levels between groups, and 

 𝑓1 is the density corresponding to 𝑝1. 

For any gene 𝑔, Bayes’ rule can be used to compute the probability of differential expression 

(𝑝1(𝑧)) by 
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𝑝1(𝑧) =
𝑝1𝑓1(𝑧)

𝑓(𝑧)
= 1 −

𝑝0𝑓0(𝑧)

𝑓(𝑧)
(27) 

which has significance in calculating gene-wise FDRs shown below. 

Other Methods 

Simulation methods and DGE analysis methods not listed here in the “Methods” sections 

were not used in this study due to issues with at least one of the datasets or with memory issues 

in the R computing environment. 

Hypotheses of Interest 

Gene-wise hypothesis tests were performed for the two-group setting to identify DE 

genes. The hypotheses of interest were 

𝐻0: 𝜇1 = 𝜇2 (28)  

𝐻1: 𝜇1 ≠ 𝜇2  

where rejecting 𝐻0 declared the gene DE. For 10000 genes, 10000 hypotheses were run. This 

introduced the common multiple testing problem of type I error. In table 2, a graphical 

representation of type I (and type II) error is shown to illustrate the outcomes based on the 

decision rule of these hypotheses. 

Table 2. Confusion Matrix for Decision Rule on Hypothesis. 

 Fail to reject 𝐻0 Reject 𝐻0 

𝐻0 is true Correct Decision (True Non-Discovery) Type I Error (False Discovery) 

𝐻0 is false Type II Error (False Non-Discovery) Correct Decision (True Discovery) 

 

 

In gene expression, true positives are known as true discoveries (𝑆), false positives are 

known as false discoveries (𝑉), true negatives are known as true non-discoveries (𝑈), false 
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negatives are known as false non-discoveries (𝑇), total positives are known as total discoveries 

(𝑅), and total negatives are known as total non-discoveries (𝑊). These quantities are considered 

random variables and are displayed in table 3. 

Table 3. Confusion Matrix for Decision Rule on Hypothesis in the Context of Differential Gene 

Expression. 

 Fail to reject 𝐻0 

Reject 𝐻0  

(Gene is DDE) 

Total 

𝐻0 is true (Gene is EE) 𝑈 𝑉 𝐆𝟎 

𝐻0 is false (Gene is DE) 𝑇 𝑆 𝐆𝟏 

Total 𝑊 𝑅 𝐆 

Source: Adapted from Benjamini and Hochberg (1995). 

 

The total column in table 3 represents the total number of EE genes (𝐆𝟎), the total 

number of DE genes (𝐆𝟏), and total number of genes (𝐆) in a simulated dataset. These quantities 

are fixed and were determined a priori to the experiment. 

False Discovery Rate 

Controlling the FDR is imperative as a natural result of the multiple testing conundrum in 

gene expression experiments where thousands of hypothesis tests are performed simultaneously. 

The observed FDR is defined as 

𝑄 =
𝑉

𝑅
 if 𝑅 > 0 (29) 

𝑄 = 0 otherwise 

 (Benjamini and Hochberg 1995) which was calculated for each simulation. 

Each R software package used either a q-value or Benjamini-Hochberg correction 

(adjusted p-value) to calculate the gene-wise FDR for each hypothesis test. edgeR, DESeq2, and 



23 

limma use the Benjamini-Hochberg method. Benjamini and Hochberg defined the theoretical 

FDR as the expected value of the observed FDR (Benjamini and Hochberg 1995) which is 

denoted as 

𝐹𝐷𝑅 = 𝐸(𝑄) (30)

. 

Gene-wise FDRs were controlled at a significance level of 𝛼 =  0.1, and the genes with an 

estimated FDR less than 𝛼  were deemed DE. NOISeq (Tarazona, Garcia-Alcalde, Dopazo, 

Ferrer, and Conesa 2011; Tarazona et al. 2015) used a value defined in the literature as 

𝑝1(𝑧)  = 1 − 𝐹𝐷𝑅 (31) 

where 𝐹𝐷𝑅 is the theoretical FDR for declaring genes DE. 

Controlling the theoretical FDR using the Benjamini and Hochberg (1995) procedure at a 

significance level, 𝛼, is actually controlling the FDR such that 

𝐸(𝑄) ≤ 𝛼 (
𝐆𝟎

𝐆
) ≤ 𝛼 (32) 

for multiple hypotheses. Thus, in our results, it was better to be more conservative than 𝛼. 

Power 

Assuming the FDR was adequately controlled at a predefined level, running simulations 

like these allowed the researcher to calculate the power of each hypothesis test post hoc. Power 

is generally represented in the general form 

𝑃𝑜𝑤𝑒𝑟 = 1 − 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) (33) 

 and in this case, it is the difference of 1 and the false non-discovery rate (FNDR) 

𝑃𝑜𝑤𝑒𝑟 = 1 − 𝐹𝑁𝐷𝑅 (34) 

where 
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𝐹𝑁𝐷𝑅 =
𝑇

𝑇 + 𝑆
 

(Schurch et al. 2016) in practice. 

For 𝑝 =  1, a different criterium must be used. From table 3, it is shown that 

𝑇 + 𝑆 = 𝐆𝟏 = 0 DE genes. It follows that the power simplifies to 

𝑃𝑜𝑤𝑒𝑟 =  1 −
𝑇

𝑇 + 𝑆
 

𝑃𝑜𝑤𝑒𝑟 ∣𝑇=0,𝑆=0= 1 −
0

0
 

so that the power of the test is always undefined. As such, the power calculations were not 

included in the tables or figures for simulation settings with 𝑝 =  1. 

Software 

Version 4.0.2 of R (R Core Team 2020) was used to run the code for the experiment. 

Most R packages were available through Bioconductor (Huber et al. 2015, Gentleman et al. 

2004) and are listed as follows: GEOquery (Davis and Meltzer 2007), PROPER (Wu, Wang, and 

Wu 2014), seqgendiff (Gerard 2020), SimSeq (Benidt and Nettleton 2015), edgeR (Robinson, 

Mccarthy, and Smyth 2010), DESeq2 (Love, Huber, and Anders 2014), limma (Ritchie et al. 

2015; McCarthy, Chen, and Smyth 2012) with voom (Law, Chen, Shi, and Smyth 2014), 

NOISeq (Tarazona, Garcia-Alcalde, Dopazo, Ferrer, and Conesa 2011; Tarazona et al. 2015), 

and kableExtra (Zhu 2021). 
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CHAPTER 4. RESULTS 

As stated above, observed power and observed FDR were calculated using both the 

Schurch et al. (2016) method (resampling) and the “true” DE genes in the simulated datasets. 

The appendix displays two different types of tables for each simulation method: (1) results 

corresponding to the mean observed FDR and (2) results corresponding to the mean observed 

FDR and the mean power. Tables were generated for every possible combination of simulation 

method, DGE analysis method, and proportion of EE genes. The first type of table is only used 

for (𝑝 =  1) because the power is undefined at this setting (see the “Power” subsection in the 

“Methods” section). The first column of each table shows the sample size for each combination 

and the DGE analysis tool used. The second column displays the mean power of the 100 

simulations. The third column shows the standard errors of the power estimates. The third and 

fourth columns display the mean observed FDRs and the standard errors of their estimates, 

respectively. 

Kidney Data 

PROPER (𝒑 = 𝟏) 

Results for this setting are listed in table 4. The mean observed FDR tended to decrease 

with the exception of DESeq2 as the sample size increased. The mean observed FDRs were close 

to 1 for edgeR, DESeq2, and NOISeq. The standard errors of the estimates increased as the 

sample size increased for edgeR and NOISeq while they decreased for limma-voom. These 

estimates stayed the same for DESeq2. None of the observed FDRs were controlled adequately 

at an appropriate level, 𝛼. The limma-voom method yielded the lowest observed FDRs for all 

sample sizes with 0.54 (𝑛 =  3), 0.25 (𝑛 =  6), and 0.16 (𝑛 =  10). According to the table, 
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limma-voom may be the preferred DGE method for large sample sizes of the PROPER 

simulation method because it controls FDR the best. 

PROPER (𝒑 = 𝟎. 𝟗) 

The results for this simulation setting are listed in table 5. As the sample size increased, 

the powers increased, and the standard error of the powers decreased for the DGE analysis tools. 

Observed FDRs tended to decrease for increasing sample sizes. The voom method from limma 

controlled FDR the best for each sample size with 0.1318 (𝑛 =  3),  0.0861 (𝑛 =  6), and 

0.0837 (𝑛 =  10), respectively. The corresponding mean powers for these observed FDRs are 

0.1306, 0.3304, and 0.4250. NOISeq controlled FDR adequately for 𝑛 =  10 with an observed 

FDR of 0.0845, and the corresponding power for this FDR is 0.0193. For 𝑛 =  6,  NOISeq 

yielded an observed FDR of 0.0936 and power of 0.0082. The DGE analysis method edgeR 

controlled FDR at 0.1815 (𝑛 =  6)  and 0.1353 (𝑛 =  10). The corresponding mean powers 

were 0.3677 and 0.4661. Standard errors of the observed FDRs tended to decrease for edgeR and 

voom with an increase in sample size, but they increased for DESeq2 and NOISeq. The DGE 

method limma-voom is the best choice for this setting because it controls FDR well and yields 

the highest powers for all sample sizes. 

PROPER (𝒑 = 𝟎. 𝟕) 

Table 6 lists the results for this simulation setting. As the sample size increased, mean 

power increased for the DGE analysis methods. Standard errors of these estimates tended to 

decrease or stay the same with an increase in sample size. The voom method controlled FDR 

adequately for all sample sizes with observed FDRs of 0.0722 (𝑛 =  3), 0.0623 (𝑛 =  6), and 

0.0602 (𝑛 =  10). The corresponding powers are 0.2290, 0.4018, and 0.4842. NOISeq had 

observed FDRs of 0.0796 (𝑛 =  6) and 0.0701 (𝑛 =  10). It yielded corresponding powers of 
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0.0127 and 0.0624, respectively. The DGE analysis method edgeR controlled FDR adequately 

with observed FDRs of 0.0944 (𝑛 =  6) and 0.0736 (𝑛 =  10). Corresponding powers for edgeR 

were 0.4306 and 0.5243, respectively. The edgeR method observed FDR at 𝑛 =  3 was 0.1594, 

and its corresponding power was 0.2715. DESeq2 observed FDRs were 0.1601 (𝑛 =  6) and 

0.1212 (𝑛 =  10). Their corresponding powers were 0.5005 and 0.5578. Standard errors of the 

observed FDRs tended to decrease or stay the same with an increase in sample size. The DGE 

method limma-voom is recommended for small sample sizes at this setting because of adequate 

FDR control, and edgeR is recommended for moderate/large sample sizes at this setting as it 

yields larger powers than voom with adequate FDR control. 

PROPER (𝒑 = 𝟎. 𝟓) 

Table 7 shows the results of this simulation setting. Mean power increased as sample size 

increased. Standard errors of the powers decreased or stayed the same as sample size increased. 

Observed FDRs tended to roughly stay the same or slightly decrease as sample size increased. 

The limma-voom method yielded the lowest observed FDRs of 0.0439 (𝑛 =  3), 0.0409 (𝑛 =

 6), and 0.0406 (𝑛 =  10). The corresponding powers for these observed FDRs are 0.2907, 

0.4478, and 0.5273. The DGE analysis method edgeR controlled FDR adequately with observed 

FDRs of 0.0794 (𝑛 =  3), 0.0507 (𝑛 =  6), and 0.0452 (𝑛 =  10). Corresponding powers for 

edgeR are 0.3138, 0.4756, and 0.5691. DESeq2 controlled FDR adequately with observed FDRs 

of 0.0848 (𝑛 =  6) and 0.0675 (𝑛 =  10). Corresponding powers for DESeq2 are 0.5360 and 

0.5927. At 𝑛 =  3, the observed FDR for DESeq2 was 0.1175 with a corresponding power of 

0.4392. The observed FDRs for NOISeq are 0.0601 (𝑛 =  6) and 0.0459 (𝑛 =  10). 

Corresponding powers are 0.0426 and 0.2024. At 𝑛 =  3, the observed FDR for NOISeq is 

0.2020, and its corresponding power is 0.5426. Standard errors of the observed FDRs tended to 
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decrease with sample size increases. edgeR is recommended for small sample sizes because it 

yielded the highest power and controlled FDR adequately for this simulation setting. DESeq2 is 

recommended for moderate/large sample sizes because it yielded the largest powers and 

controlled FDR well. 

seqgendiff 

The simulation settings for seqgendiff are found in tables 8, 9, 10, and 11. No DGE 

analysis method adequately controlled FDR at any sample size or proportion of equivalent 

expression. Standard errors of the observed FDRs decreased or stayed the same as sample size 

increased. 

SimSeq (𝒑 = 𝟏) 

Results for this simulation setting are listed in table 12. Observed FDRs had a decreasing 

trend as sample size increased for each DGE analysis tool. The voom method controlled FDR 

adequately with observed FDRs of 0.04 (𝑛 =  3), 0.05 (𝑛 =  6), and 0.03 (𝑛 =  10). The edgeR 

and NOISeq methods’ standard errors of the observed FDRs increased as sample size increased, 

but the DESeq2 and limma-voom methods’ standard errors stayed roughly the same. limma-

voom is the only recommended DGE method for adequate FDR control for this setting.  

SimSeq (𝒑 =  𝟎. 𝟗) 

The simulation results are displayed in table 13 for this setting. Mean power increased 

with increased sample size for the DGE analysis methods. Standard errors of these statistics 

increased as sample size increased with the exception of NOISeq. Observed FDRs tended to 

decrease with an increase in sample size. The limma-voom method yielded the smallest observed 

FDRs of 0.0466 (𝑛 =  3), 0.0725 (𝑛 =  6), and 0.0583 (𝑛 =  10). Corresponding powers for 

the voom FDRs are 0.0111, 0.1321, and 0.2934. NOISeq controlled FDR adequately at 𝑛 =  10 
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with an observed FDR of 0.0742 and a corresponding power of 0.0420. At 𝑛 =  6, NOISeq 

yielded an observed FDR of 0.1225 and a corresponding power of 0.0197. Standard errors of 

these statistics tended to decrease as the sample size increased. limma-voom is the DGE analysis 

method recommended for all sample sizes for this setting because of its adequate FDR control. 

SimSeq (𝒑 =  𝟎. 𝟕) 

Table 14 lists the simulation results for this setting. Mean power increased with increased 

sample size for each DGE analysis tool. Standard errors of the powers varied between the DGE 

analysis methods as sample size increased. The limma-voom method yielded the smallest 

observed FDRs of 0.0412 (𝑛 =  3), 0.0618 (𝑛 =  6), and 0.0560 (𝑛 =  10). The corresponding 

powers for these observed FDRs are 0.0386, 0.2389, and 0.4062. For NOISeq, FDR was 

controlled adequately with observed FDRs of 0.0705 (𝑛 =  6) and 0.0647 (𝑛 =  10). 

Corresponding powers for NOISeq are 0.0471 and 0.0950. The observed FDR at 𝑛 =  10 is 

0.1548 for DESeq2, and its corresponding power is 0.4747. The observed FDR at 𝑛 =  6 is 0.1880 

for edgeR, and its corresponding power is 0.2964. The observed FDR at 𝑛 = 10 is 0.1736 for edgeR, 

and its corresponding power is 0.4268. Standard errors of the observed FDRs tended to decrease as 

sample size increased. The DGE method limma-voom is recommended for all sample sizes at 

this setting because it yields the highest powers for methods that control FDR adequately. 

SimSeq (𝒑 =  𝟎. 𝟓) 

Simulation results for this setting are displayed in table 15. Power increased for the DGE 

analysis methods as the sample size increased. Standard errors of the powers decreased or stayed 

the same as sample size increased. Observed FDRs tended to decrease as sample size increased. 

The DGE analysis method limma-voom yielded the smallest observed FDRs of 0.0466 (𝑛 = 3), 

0.0516 (𝑛 = 6), and 0.0408 (𝑛 = 10). Corresponding powers for voom are 0.0738, 0.2841, and 
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0.4633, respectively. FDRs were controlled adequately also for NOISeq with observed FDRs of 

0.0539 (𝑛 =  6) and 0.0463 (𝑛 =  10). Corresponding powers for these sample sizes are 0.0816 

and 0.1510, respectively. The edgeR method yielded observed FDRs of 0.1426 (𝑛 =  3), 0.1165 

(𝑛 =  6), and 0.1002 (𝑛 =  10). Corresponding powers for edgeR observed FDRs are 0.1697, 

0.3220, and 0.4671. DESeq2 had observed FDRs of 0.1688 (𝑛 =  3), 0.1358 (𝑛 =  6), and 

0.0926 (𝑛 = 10). Corresponding powers for these observed FDRs are 0.2216, 0.3830, and 

0.5127, respectively. For lower to moderate sample sizes, limma-voom is recommended for this 

setting because it controls FDR adequately. DESeq2 is recommended for large sample sizes with 

this setting because it yields a larger power than limma-voom and controls FDR. 

Resampling 

The simulation results for this setting are in table 16. NOISeq controlled FDR adequately 

with observed FDRs of 0.0321 (𝑛 =  6) and 0.0304 (𝑛 =  10). Corresponding powers for these 

observed FDRs are 0.1525 and 0.2328. At 𝑛 =  3, NOISeq yielded an observed FDR of 0.1695, 

and its corresponding power is 0.3733. Standard errors of the observed FDRs decreased or stayed 

the same as sample size increased. NOISeq is recommended for the resampling method because 

it is the only DGE method that controls FDR adequately. 

Boxplots 

The PROPER power box-and-whisker plots are shown in figure 1, and the observed FDR 

box-and-whisker plots are shown in figure 2. Parametric DGE methods yielded a low spread of 

data regardless of the proportion of EE genes, 𝑝, and displayed a consistent upward trend for the 

power. NOISeq yielded a high spread for the power boxplots for low replicates but a smaller 

observed FDR spread. It yielded a lower spread for moderate to high sample sizes. The 
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parametric methods yielded a low spread for observed FDRs regardless of proportion of EE 

genes while NOISeq was more variable at high proportions of equivalent expression. 

The seqgendiff power box-and-whisker plots are shown in figure 1, and the observed 

FDR box-and-whisker plots are shown in figure 2. Parametric and nonparametric DGE methods 

alike yielded a large spread for the power boxplots and increasing proportions of equivalent 

expression did not seem to increase power. Sample size, however, did increase power. The 

observed FDRs were consistently large for all DGE methods, but they had a small spread. They 

also decreased as 𝑝 decreased. 

The SimSeq power box-and-whisker plots are shown in figure 1, and the observed FDR 

box-and-whisker plots are shown in figure 2. Parametric and nonparametric DGE methods alike 

yielded a large spread for the power boxplots and increasing proportions of equivalent 

expression along with sample size increased power. For lower proportions of EE genes, the 

parametric methods seemed to be more robust and perform even better than NOISeq with 

potential model assumption violations. The limma-voom method was more robust regardless of 

sample size or proportion of equivalent expression. 

The resampling power box-and-whisker plots are shown in figure 1, and the observed 

FDR box-and-whisker plots are shown in figure 2. NOISeq was the only method to control FDR 

well, and it yielded decent power. 



32 

 

 

Figure 1. Observed Powers for Kidney Data (Figure by author). Box-and-whisker plots of power 

by sample size for DGE analysis methods. From left to right for each DGE analysis method and 

sample size combination: pink (𝑝 =  0.9), green (𝑝 =  0.7), blue (𝑝 =  0.5) for PROPER, 

seqgendiff, and SimSeq. From left to right for each DGE analysis method: pink (𝑛 =  3), green 

(𝑛 =  6), and blue (𝑛 =  10) for the resampling simulation method. 
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Figure 2. Observed FDRs for Kidney Data (Figure by author). Box-and-whisker plots of 

observed FDRs by sample size for DGE analysis methods. From left to right for each DGE 

analysis method and sample size combination: pink (𝑝 =  0.9), green (𝑝 =  0.7), blue (𝑝 =
 0.5) for PROPER, seqgendiff, and SimSeq. From left to right for each DGE analysis method: 

pink (𝑛 =  3), green (𝑛 =  6), and blue (𝑛 =  10) for the resampling simulation method. 

Original Read Count Data 

To calculate observed powers and FDRs with the resampling method, each DGE analysis 

method needed to be run on the full dataset, which is referred to in Schurch et al. (2016) as the 

set of “clean” replicates. For the kidney data, DESeq2 declared 15161 genes to be DE. edgeR 

yielded 15120 “true” DE genes. limma with the voom method had 14818 DE genes. NOISeq 

yielded 11706 DE genes. 

Whole Blood Data 

PROPER (𝒑 = 𝟏) 

The results for this setting are listed in table 17. Observed FDRs tended to decrease with 

an increase in sample size. The DGE analysis method limma-voom yielded the lowest overall 
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observed FDR of 0.14 at 𝑛 =  10. Standard errors of the observed FDRs increased as sample 

size increased for edgeR and NOISeq, but they decreased or stayed the same for the DESeq2 and 

voom methods. The voom method may be the most appropriate method to use for large samples 

at this setting, according to the table, because of its FDR control. 

PROPER (𝒑 = 𝟎. 𝟗) 

The results for this setting are listed in table 18. Power tended to increase as sample size 

increased for the DGE analysis methods. Standard errors of these estimates increased with 

increased sample size for edgeR and limma-voom, but they decreased with increased sample size 

for DESeq2 and NOISeq. Observed FDRs tended to decrease with an increase in sample size. 

NOISeq yielded the lowest observed FDRs of 0.0729 (𝑛 =  6) and 0.0559 (𝑛 =  10). 

Corresponding powers for these observed FDRs are 0.0439 and 0.1143. The voom method 

controlled FDRs adequately with observed FDRs of 0.0880 (𝑛 =  3), 0.0768 (𝑛 =  6), and 

0.0800 (𝑛 =  10). Corresponding powers for these estimates are 0.2416, 0.4355, and 0.5256, 

respectively. The DGE analysis method edgeR controlled FDR adequately at 𝑛 =  10 with an 

observed FDR of 0.0985, and its corresponding power was 0.5510. At 𝑛 =  6, edgeR yielded an 

observed FDR of 0.1282 and a power of 0.4591. DESeq2 had an observed FDR of 0.1632 at 𝑛 =

10 and a power of 0.5642. Standard errors of the observed FDRs decreased as sample size 

increased. limma-voom is recommended for small/moderate sample sizes because it controls 

FDR adequately at this setting. edgeR is recommended for large sample sizes because it yields 

the largest power with adequate FDR control. 

PROPER (𝒑 = 𝟎. 𝟕) 

The results for this setting are shown in table 19. As the sample size increased, mean 

power increased for the DGE analysis methods. Standard errors of these estimates tended to 
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decrease with an increase in sample size. NOISeq controlled FDR adequately with observed 

FDRs of 0.0491 (𝑛 =  6) and 0.0339 (𝑛 =  10). The corresponding powers are 0.1251 and 

0.2556. The limma-voom method controlled FDR adequately with observed FDRs of 0.0645 

(𝑛 =  3), 0.0589 (𝑛 =  6), and 0.0571 (𝑛 =  10). The corresponding powers for the observed 

FDRs are 0.3659, 0.5166, and 0.5908, respectively. The DGE analysis method edgeR controlled 

FDR adequately with observed FDRs of 0.0677 (𝑛 =  6) and 0.0565 (𝑛 =  10). Corresponding 

powers for edgeR were 0.5296 and 0.6128, respectively. The edgeR method observed FDR at 

𝑛 =  3 was 0.1018. The corresponding power for this FDR was 0.3784. DESeq2 controlled FDR 

adequately for 𝑛 =  10 with an observed FDR of 0.0829 and a corresponding power of 0.6156. 

Observed FDRs for other sample sizes were 0.1419 (𝑛 =  3) and 0.1019 (𝑛 =  6). These 

corresponding powers were 0.4413 and 0.5541. Standard errors of the observed FDRs tended to 

decrease with an increase in sample size. The DGE method limma-voom is recommended for 

small sample sizes because it controls FDR well for this setting. edgeR is recommended for 

moderate sample sizes because it yields the largest power for methods that control FDR 

adequately. DESeq2 is recommended for large sample sizes because it yields the highest power 

for methods that control FDR well. 

PROPER (𝒑 = 𝟎. 𝟓) 

The results of this simulation setting are found in table 20. Mean power increased as 

sample size increased. Standard errors of the powers decreased or stayed the same as sample size 

increased. Observed FDRs tended to roughly stay the same or slightly decrease as sample size 

increased. NOISeq yielded the lowest observed FDRs of 0.0304 (𝑛 = 6) and 0.0223 (𝑛 = 10). 

The corresponding powers for these observed FDRs are 0.2631 and 0.3672. The voom method 

controlled FDR adequately with observed FDRs of 0.0377 (𝑛 = 3), 0.0371 (𝑛 = 6), 0.0393 (𝑛 =
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10). The corresponding powers are 0.4300, 0.5628, and 0.6340. The DGE analysis method 

edgeR also controlled FDR adequately with observed FDRs of 0.0533 (𝑛 = 3), 0.0398 (𝑛 = 6), 

and 0.0362 (𝑛 = 10). Corresponding powers for edgeR are 0.4353, 0.5805, and 0.6559. DESeq2 

controlled FDR adequately with observed FDRs of 0.0714 (𝑛 = 3), 0.0541 (𝑛 = 6), and 0.0482 

(𝑛 = 10). Corresponding powers for DESeq2 are 0.4810, 0.5911, and 0.6497. Standard errors of 

the observed FDRs tended to decrease with sample size increases. DESeq2 is recommended for 

small/moderate sample sizes because it yielded the largest powers for methods that adequately 

controlled FDR. edgeR is recommended for large sample sizes because it yielded the highest 

power for methods that controlled FDR well. 

seqgendiff (𝒑 = 𝟏, 𝒑 = 𝟎. 𝟗) 

The results for these simulation settings were listed in tables 21 and 22. No DGE analysis 

method adequately controlled FDR at any sample size. Observed FDRs tended to decrease as 

sample size increased. Standard errors of the observed FDRs increased or stayed the same as 

sample size increased. 

seqgendiff (𝒑 = 𝟎. 𝟕) 

The results for this simulation setting are in table 23. No DGE analysis method 

adequately controlled FDR at any sample size. The limma-voom method yielded the lowest 

observed FDRs of 0.1029 (𝑛 = 3), 0.1103 (𝑛 = 6), and 0.1365 (𝑛 = 10). With the exception of 

DESeq2, standard errors of the observed FDRs increased as sample size increased. 

seqgendiff (𝒑 = 𝟎. 𝟓) 

The results for this setting are shown in table 24. The voom method controlled FDR 

adequately with observed FDRs of 0.0397 (𝑛 =  3) and 0.0990 (𝑛 =  6). The corresponding 

powers for these observed FDRs are 0.0375 and 0.0079. At 𝑛 =  10, the limma-voom observed 
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FDR was 0.1123, and its corresponding power is 0.0068. With the exception of DESeq2, 

standard errors of the observed FDRs increased as sample size increased. limma-voom is 

recommended for small/moderate sample sizes because it was the only DGE method that 

controlled FDR adequately. 

SimSeq (𝒑 = 𝟏) 

Results for this simulation setting are listed in table 25. Observed FDRs had an overall 

decreasing trend as sample size increased for each DGE analysis tool. The voom method 

controlled FDR adequately for 𝑛 =  6 with an observed FDR of 0.04. The observed FDRs for 

other sample sizes of limma-voom were 0.18 (𝑛 =  3) and 0.10 (𝑛 =  10). The edgeR, NOISeq, 

and DESeq2 methods’ standard errors of the observed FDRs increased as sample size increased, 

but the limma-voom method’s standard errors stayed roughly the same. The voom method is 

recommended for moderate/large sample sizes at this setting because FDR is controlled 

adequately. 

SimSeq (𝒑 =  𝟎. 𝟗) 

The simulation results are displayed in table 26 for this setting. Mean power increased 

with increased sample size for the DGE analysis methods. Standard errors of these statistics 

increased as sample size increased with the exception of NOISeq. With the exception of the 

voom method, observed FDRs tended to increase with an increase in sample size. The limma-

voom method controlled FDR adequately with observed FDRs of 0.0577 (𝑛 =  6) and 0.0379 

(𝑛 =  10). Corresponding powers for the voom FDRs are 0.0026 and 0.0031. limma-voom is 

recommended for moderate/large sample sizes because it controlled FDR well at this simulation 

setting. 
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SimSeq (𝒑 =  𝟎. 𝟕) 

Table 27 lists the simulation results for this setting. Mean power increased with increased 

sample size for each DGE analysis tool. With the exception of NOISeq, standard errors of the 

powers increased for the DGE analysis methods as sample size increased. Observed FDRs 

tended to decrease as the sample size increased. The limma-voom method controlled FDR 

adequately with observed FDRs of 0.0257 (𝑛 =  6) and 0.0632 (𝑛 =  10). The corresponding 

powers for these observed FDRs are 0.0034 and 0.0093. At 𝑛 =  3, the voom method yielded an 

observed FDR of 0.1117 and a corresponding power of 0.0001. The observed FDR at 𝑛 =  10 

for NOISeq was 0.1592 and yielded a corresponding power of 0.0039. For 𝑛 =  10, DESeq2 

yielded an observed FDR of 0.1900 and a corresponding power of 0.0251. limma-voom is 

recommended for moderate/large sample sizes because it was the only DGE method that 

controlled FDR adequately. 

SimSeq (𝒑 =  𝟎. 𝟓) 

Simulation results for this setting are displayed in table 28. Power increased for the DGE 

analysis methods as the sample size increased. With the exception of NOISeq, standard errors of 

the powers increased as sample size increased. Observed FDRs tended to decrease as sample size 

increased. The DGE analysis method limma-voom controlled FDR adequately with observed 

FDRs of 0.0096 (𝑛 = 6) and 0.0279 (𝑛 = 10). Corresponding powers for voom are 0.0020 and 

0.0157, respectively. At 𝑛 =  3, limma-voom yielded an observed FDR of 0.1332 and a 

corresponding power of 0.0012. Observed FDRs for NOISeq were 0.1613 (𝑛 =  6) and 0.0985 

(𝑛 =  10) with corresponding powers of 0.0029 and 0.0064, respectively. The DESeq2 observed 

FDR was 0.1251 for 𝑛 =  10, and its corresponding power is 0.0298. With the exception of 

NOISeq, standard errors of the observed FDRs decrease with increased sample size. The DGE 
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method limma-voom is recommended for moderate/large sample sizes because it controls FDR 

adequately and yields the largest powers. 

Resampling 

The simulation results for this setting are in table 29. As sample size increased, mean 

power increased. As sample size increased, observed FDRs tended to decrease. NOISeq yielded 

an observed FDR of 0.0994 at 𝑛 =  10 with a corresponding power of 0.0273. NOISeq is 

recommended for large sample sizes for this simulation setting for adequate FDR control. 

Boxplots 

The PROPER power box-and-whisker plots are shown in figure 3, and the observed FDR 

box-and-whisker plots are shown in figure 4. Parametric DGE methods yielded a low spread of 

data regardless of the proportion of EE genes, 𝑝, and displayed a consistent upward trend for the 

power, again. NOISeq yielded a high spread for the power boxplots for low replicates, also. It 

also displayed an interesting stair step pattern for the power in contrast to the kidney data. There 

was a smaller spread for NOISeq regarding high proportions of equivalent expression for 

observed FDRs. 

The seqgendiff power box-and-whisker plots are shown in figure 3, and the observed 

FDR box-and-whisker plots are shown in figure 4. Powers were quite variable regardless of 

sample size or proportion of equivalent expression, 𝑝. The only DGE analysis method that 

showed some semblance of consistency for power in terms of increasing sample size and 

decreasing 𝑝 was DESeq2. Observed FDRs exhibited a downward trend for the DGE methods 

but did not appear to be controlled well by any method, although, DESeq2 showed better 

consistency. 
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The SimSeq power box-and-whisker plots are shown in figure 3, and the observed FDR 

box-and-whisker plots are shown in figure 4. All DGE analysis methods were consistent in 

producing powers that increased with both increased sample size and decreased proportion of 

equivalent expression. The observed FDRs were variable, but they were more consistent in being 

controlled better at lower proportions of equivalent expression. 

The resampling power box-and-whisker plots are shown in figure 3, and the observed 

FDR box-and-whisker plots are shown in figure 4. NOISeq was the only DGE analysis method 

to control FDR well at some sample size. It performed fairly well for larger sample sizes. 

 

 

Figure 3. Observed Powers for Whole Blood Data (Figure by author). Box-and-whisker plots of 

power by sample size for DGE analysis methods. From left to right for each DGE analysis 

method and sample size combination: pink (𝑝 =  0.9), green (𝑝 =  0.7), blue (𝑝 =  0.5) for 

PROPER, seqgendiff, and SimSeq. From left to right for each DGE analysis method: pink (𝑛 =
 3), green (𝑛 =  6), and blue (𝑛 =  10) for the resampling simulation method. 
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Figure 4. Observed FDRs for Whole Blood Data (Figure by author). Box-and-whisker plots of 

observed FDRs by sample size for DGE analysis methods. From left to right for each DGE 

analysis method and sample size combination: pink (𝑝 =  0.9), green (𝑝 =  0.7), blue (𝑝 =
 0.5) for PROPER, seqgendiff, and SimSeq. From left to right for each DGE analysis method: 

pink (𝑛 =  3), green (𝑛 =  6), and blue (𝑛 =  10) for the resampling simulation method. 

Original Read Count Data 

For the whole blood data, DESeq2 declared 3924 genes to be DE. NOISeq yielded 3009 

“true” DE genes. edgeR had 1153 DE genes. limma-voom yielded 1151 DE genes.  
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CHAPTER 5. DISCUSSION 

Hypotheses 

In general, it was hypothesized that when sample size was increased that power would 

also increase. It was also hypothesized that lowering the proportion of EE genes would increase 

the power of the test and the FDR would decrease.  

For the data simulated with PROPER, it was expected that DGE analysis tools following 

a NB parametric model (edgeR and DESeq2) would perform the best in terms of DE and power 

analysis. These methods would also produce the lowest FDRs, and no guesses were made on the 

rankings of said methods. Previous research tells us that the observed FDR of parametric 

methods (edgeR, DESeq2, limma-voom) is “typically lower” than the theoretical FDR (Benidt 

and Nettleton 2015). NOISeq was expected to produce the lowest powers.  

For the data simulated with SimSeq and seqgendiff, it was expected that there would be a 

lot of variability within the individual datasets themselves, so there would naturally be more 

variance in the observed FDR and power estimations. NOISeq was expected to perform fairly 

well regardless of sample size due to the nonparametric assumptions this method uses. The 

researcher was not sure in regards to violations of model assumptions how robust the DGE 

analysis parametric methods were. 

Recommendations 

The recommendations for simulation settings are given for datasets with similar 

compositions to the originals and similar to the datasets simulated. Results may vary for other 

researchers. 
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PROPER 

For datasets in which gene expressions follow a NB distribution, using parametric DGE 

analysis methods seem to perform as expected. The edgeR method seems to be a little too liberal 

in estimating FDR for the smaller sample sizes and larger proportions of equivalent expression. 

For moderate to larger sample sizes, the FDR control is quite consistent across proportions, 𝑝. 

Relative to limma-voom, edgeR yields better power with only a small disadvantage in FDR 

control as the proportion of EE genes is low. When the proportion of EE genes is high, however, 

the disparity is more pronounced, and it might be better to opt toward using the voom method 

instead. 

The DESeq2 method provides a greater power than both the edgeR or limma-voom 

methods alike, but it is too liberal in its control of FDR for most settings. For larger sample sizes 

and lower proportions of EE genes, it is expected that it overtakes edgeR and limma-voom in 

both FDR control and higher power. 

The limma-voom method is quite consistent in controlling FDR adequately at all 

proportions of EE genes (with more liberal estimates for 𝑝 =  1, but still fairly conservative 

generally) due to the lower number of DDE genes identified (see the “Original Read Count 

Data” subsections in the “Results” section). Using the voom method is a safe bet for controlling 

FDR at all proportions, 𝑝, with a small sacrifice in power. 

NOISeq does a decent job of controlling FDR at moderate and large sample sizes 

regardless of the proportion of EE genes (𝑝), but the power is greatly sacrificed due to the 

method’s lack of distributional assumptions. The k-means clustering method of genes for low 

sample sizes yields a large variance for all proportion of EE genes settings, but based on the 
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decreasing observed FDRs, it was expected to be controlled adequately for some 𝑝 <  0.5 and be 

the superior method for low replicates.  

seqgendiff 

It is difficult to make specific recommendations for the seqgendiff simulation methods 

both due to the varied results in simulated datasets between the types of genes examined (kidney 

and whole blood) and the unpredictability of how the DGE analysis methods will perform for 

data of different structures. For the kidney data, observed FDRs were much too liberal and not 

controlled well, but they were quite consistent regardless of sample size and DGE analysis 

method. For the whole blood data, unusually, mean powers decreased with sample size. The 

limma-voom method seemed to control FDR fairly well for most proportions, 𝑝, while the mean 

observed FDRs for the other DGE analysis methods were too liberal with FDR control (although 

somewhat better than the kidney data). Surprisingly, it did not appear that NOISeq would 

perform better any better than a parametric DGE analysis method for the nonparametric 

simulated seqgendiff data. In general, it would be wise to use seqgendiff for low proportions of 

EE genes for good FDR control. Other gene-filtering methods that are specific to the original 

dataset used may need to be implemented to yield more consistent results.    

SimSeq 

More inference can be made on datasets simulated with the nonparametric SimSeq 

method. Based on adequate FDR control and high power (for the kidney data), it can be said that 

the limma-voom method of DGE analysis is quite robust to the potential violation of NB model 

assumptions while edgeR and DESeq2 require larger sample sizes and/or smaller proportions of 

EE genes. Again, it was surprising to see that NOISeq did not perform as well as expected for the 

SimSeq simulated data relative to the parametric DGE analysis methods. As with seqgendiff, 
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further experimentation could be done on gene-filtering approaches in a more general sense or 

more specific to the particular RNA-seq dataset. 

Resampling 

NOISeq performed the best for all sample sizes as it adequately controlled FDR relative 

to the other parametric DGE analysis methods. 

Future Recommendations 

The choice for the number of simulations was arbitrary and could have just as easily been 

increased to 1000 or 10000. Other simulation methods such as those listed in the “Literature 

Review” section that were not implemented could be explored in other studies. Different datasets 

could also be explored. 

Limitations 

Batch Effect 

Unfortunately, some batch effects could not be accounted for with the DGE analysis 

tools. There were three main reasons for this: (1) the design matrix was not full rank, (2) the 

simulation method did not return column sample names, and (3) the DGE analysis method did 

not accept a design matrix as input. For small/moderate sample sizes (𝑛 =  3 and sometimes 

𝑛 =  6), samples were selected such that at least two of the columns of the design matrix were 

linearly dependent. For each simulation out of 100, the design matrix needed to be full rank for 

the DGE analysis methods to use it. Multiple runs of a simulation method at a particular setting 

could ensure that all design matrices were full rank, but this approach is time-consuming. Thus, 

if at least one design matrix had linearly dependent columns, the researcher used the matrix 

given in equation 1 rather than rerun the simulations.   
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Simulation methods like PROPER and SimSeq did not return sample names of the 

samples selected. If 𝑙 is denoted as the number of samples selected to generate the count matrix, 

the number of samples used in the SimSeq package was 𝑙 =  3𝑛. This implied that at each 

sample size setting there were 9, 18, and 30 replicates, respectively, actually used in the final 

read counts matrix. This discrepancy between the n samples selected and the l samples used did 

not allow us to have conformable arguments for the model matrix.  

NOISeq did not take input for a design matrix, so the batch effect was not accounted for 

with this DGE analysis method. 

DE Genes 

For the resampling simulation method, DE genes were not predefined in the simulated 

datasets. As a result, it could not be ascertained whether the identification of DE genes was 

dependent on the DGE analysis method, dependent on the random sampling of genes outlined in 

the “Filtering” section, or dependent on both DGE analysis and gene sampling. The same could 

be said for the other simulation methods (especially the nonparametric ones) because the filtering 

strategies seemed to impact the identification of DE genes more than was anticipated. 

As mentioned in the “Introduction” section, the proportion of EE genes cannot be 

prespecified in practice. Hence, experimentation was conducted with multiple proportions to see 

if there were significant differences across simulation settings. Observed FDRs and powers that 

yield consistent results for differing proportions of equivalent expression (holding everything 

else constant) are the most helpful in making general recommendations on methods to use for 

researchers. 

 

 



47 

Conclusion 

It is difficult to say whether parametric simulation methods following the Poisson and 

NB distributions truly reflect the structure of most RNA-seq data in contrast to the nonparametric 

simulation methods. Either way, the parametric simulation methods are most widely used in 

practice.  

As expected, parametric DGE analysis methods performed best with the parametric 

simulation model assumptions met. The limma-voom method may be the preferred DGE analysis 

tool for both parametric and nonparametric simulation methods because it seems to be consistent 

and robust to model assumption violations as opposed to other DGE methods. 

After running the simulations, results differed considerably by the type of RNA-seq data 

in terms of simulation method and DGE analysis method. While it cannot be determined how 

generalizable these particular results are to kidney and whole blood data, respectively, there are 

differences between datasets that are unaccounted for, especially for nonparametric simulation 

methods.  
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APPENDIX. TABLES 

Table A1. PROPER Observed FDR (𝑝 = 1) for Kidney Data. 

 Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 1.00 0.0000 

n = 6 1.00 0.0000 

n = 10 0.85 0.0359 

DESeq2 

n = 3 1.00 0.0000 

n = 6 1.00 0.0000 

n = 10 1.00 0.0000 

limma (voom) 

n = 3 0.54 0.0501 

n = 6 0.25 0.0435 

n = 10 0.16 0.0368 

NOISeq 

n = 3 1.00 0.0000 

n = 6 0.63 0.0485 

n = 10 0.71 0.0456 
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Table A2. PROPER Power and Observed FDR (𝑝 = 0.9) for Kidney Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.2140 0.0014 0.3760 0.0023 

n = 6 0.3677 0.0013 0.1815 0.0019 

n = 10 0.4661 0.0014 0.1353 0.0017 

DESeq2 

n = 3 0.3692 0.0015 0.5133 0.0014 

n = 6 0.4536 0.0013 0.3661 0.0016 

n = 10 0.5096 0.0014 0.2610 0.0018 

limma (voom) 

n = 3 0.1306 0.0016 0.1318 0.0029 

n = 6 0.3304 0.0014 0.0861 0.0016 

n = 10 0.4250 0.0014 0.0837 0.0012 

NOISeq 

n = 3 0.4403 0.0052 0.6764 0.0021 

n = 6 0.0082 0.0003 0.0936 0.0102 

n = 10 0.0193 0.0006 0.0845 0.0058 

 



53 

Table A3. PROPER Power and Observed FDR (𝑝 = 0.7) for Kidney Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.2715 0.0008 0.1594 0.0011 

n = 6 0.4306 0.0007 0.0944 0.0008 

n = 10 0.5243 0.0008 0.0736 0.0007 

DESeq2 

n = 3 0.4090 0.0008 0.2285 0.0009 

n = 6 0.5005 0.0009 0.1601 0.0008 

n = 10 0.5578 0.0008 0.1212 0.0007 

limma (voom) 

n = 3 0.2290 0.0010 0.0722 0.0009 

n = 6 0.4018 0.0009 0.0623 0.0007 

n = 10 0.4842 0.0008 0.0602 0.0007 

NOISeq 

n = 3 0.4860 0.0042 0.3596 0.0020 

n = 6 0.0127 0.0004 0.0796 0.0048 

n = 10 0.0624 0.0013 0.0701 0.0016 
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Table A4. PROPER Power and Observed FDR (𝑝 = 0.5) for Kidney Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.3138 0.0007 0.0794 0.0006 

n = 6 0.4756 0.0006 0.0507 0.0005 

n = 10 0.5691 0.0007 0.0452 0.0004 

DESeq2 

n = 3 0.4392 0.0008 0.1175 0.0006 

n = 6 0.5360 0.0006 0.0848 0.0005 

n = 10 0.5927 0.0006 0.0675 0.0005 

limma (voom) 

n = 3 0.2907 0.0008 0.0439 0.0005 

n = 6 0.4478 0.0006 0.0409 0.0004 

n = 10 0.5273 0.0007 0.0406 0.0004 

NOISeq 

n = 3 0.5426 0.0041 0.2020 0.0017 

n = 6 0.0426 0.0010 0.0601 0.0017 

n = 10 0.2024 0.0015 0.0459 0.0007 
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Table A5. seqgendiff Observed FDR (𝑝 = 1) for Kidney Data. 

 Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 1.00 0.0000 

n = 6 1.00 0.0000 

n = 10 1.00 0.0000 

DESeq2 

n = 3 1.00 0.0000 

n = 6 1.00 0.0000 

n = 10 1.00 0.0000 

limma (voom) 

n = 3 0.92 0.0273 

n = 6 1.00 0.0000 

n = 10 1.00 0.0000 

NOISeq 

n = 3 1.00 0.0000 

n = 6 1.00 0.0000 

n = 10 1.00 0.0000 
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Table A6. seqgendiff Power and Observed FDR (𝑝 = 0.9) for Kidney Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.2021 0.0098 0.8985 0.0035 

n = 6 0.3028 0.0083 0.9096 0.0009 

n = 10 0.4191 0.0067 0.9106 0.0008 

DESeq2 

n = 3 0.2411 0.0106 0.9043 0.0030 

n = 6 0.3370 0.0082 0.9131 0.0009 

n = 10 0.4414 0.0064 0.9128 0.0007 

limma (voom) 

n = 3 0.1296 0.0105 0.8411 0.0247 

n = 6 0.2664 0.0095 0.9172 0.0010 

n = 10 0.4093 0.0071 0.9134 0.0008 

NOISeq 

n = 3 0.5201 0.0119 0.8990 0.0011 

n = 6 0.1550 0.0083 0.9108 0.0010 

n = 10 0.2494 0.0074 0.9082 0.0008 
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Table A7. seqgendiff Power and Observed FDR (𝑝 = 0.7) for Kidney Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.1769 0.0088 0.7108 0.0042 

n = 6 0.3079 0.0080 0.7211 0.0023 

n = 10 0.4137 0.0062 0.7229 0.0015 

DESeq2 

n = 3 0.2168 0.0095 0.7223 0.0041 

n = 6 0.3454 0.0080 0.7312 0.0023 

n = 10 0.4388 0.0059 0.7290 0.0015 

limma (voom) 

n = 3 0.1055 0.0094 0.6613 0.0245 

n = 6 0.2780 0.0089 0.7291 0.0078 

n = 10 0.4023 0.0065 0.7309 0.0017 

NOISeq 

n = 3 0.4890 0.0115 0.7026 0.0015 

n = 6 0.1518 0.0075 0.7241 0.0023 

n = 10 0.2371 0.0070 0.7178 0.0014 
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Table A8. seqgendiff Power and Observed FDR (𝑝 = 0.5) for Kidney Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.1982 0.0102 0.5018 0.0065 

n = 6 0.3038 0.0080 0.5264 0.0028 

n = 10 0.4129 0.0067 0.5279 0.0018 

DESeq2 

n = 3 0.2399 0.0110 0.5160 0.0064 

n = 6 0.3416 0.0083 0.5394 0.0029 

n = 10 0.4382 0.0066 0.5359 0.0019 

limma (voom) 

n = 3 0.1251 0.0117 0.5051 0.0148 

n = 6 0.2710 0.0090 0.5400 0.0064 

n = 10 0.3994 0.0073 0.5380 0.0021 

NOISeq 

n = 3 0.5022 0.0114 0.5001 0.0025 

n = 6 0.1494 0.0070 0.5340 0.0054 

n = 10 0.2356 0.0074 0.5236 0.0018 
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Table A9. SimSeq Observed FDR (𝑝 = 1) for Kidney Data. 

 Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.98 0.0141 

n = 6 0.92 0.0273 

n = 10 0.96 0.0197 

DESeq2 

n = 3 1.00 0.0000 

n = 6 1.00 0.0000 

n = 10 1.00 0.0000 

limma (voom) 

n = 3 0.04 0.0197 

n = 6 0.05 0.0219 

n = 10 0.03 0.0171 

NOISeq 

n = 3 1.00 0.0000 

n = 6 0.67 0.0473 

n = 10 0.65 0.0479 
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Table A10. SimSeq Power and Observed FDR (𝑝 = 0.9) for Kidney Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.1215 0.0050 0.4250 0.0164 

n = 6 0.2251 0.0066 0.3528 0.0153 

n = 10 0.3485 0.0066 0.3358 0.0108 

DESeq2 

n = 3 0.1705 0.0061 0.5100 0.0144 

n = 6 0.2901 0.0071 0.4197 0.0152 

n = 10 0.3955 0.0071 0.2801 0.0107 

limma (voom) 

n = 3 0.0111 0.0019 0.0466 0.0124 

n = 6 0.1321 0.0071 0.0725 0.0104 

n = 10 0.2934 0.0078 0.0583 0.0077 

NOISeq 

n = 3 0.3878 0.0163 0.7552 0.0103 

n = 6 0.0197 0.0014 0.1225 0.0159 

n = 10 0.0420 0.0026 0.0742 0.0071 
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Table A11. SimSeq Power and Observed FDR (𝑝 = 0.7) for Kidney Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.1450 0.0068 0.2389 0.0112 

n = 6 0.2964 0.0078 0.1880 0.0075 

n = 10 0.4268 0.0068 0.1736 0.0065 

DESeq2 

n = 3 0.1939 0.0079 0.2887 0.0114 

n = 6 0.3617 0.0083 0.2204 0.0085 

n = 10 0.4747 0.0071 0.1548 0.0071 

limma (voom) 

n = 3 0.0386 0.0049 0.0412 0.0052 

n = 6 0.2389 0.0099 0.0618 0.0062 

n = 10 0.4062 0.0078 0.0560 0.0056 

NOISeq 

n = 3 0.4239 0.0138 0.5208 0.0117 

n = 6 0.0471 0.0034 0.0705 0.0064 

n = 10 0.0950 0.0048 0.0647 0.0039 
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Table A12. SimSeq Power and Observed FDR (𝑝 = 0.5) for Kidney Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.1697 0.0066 0.1426 0.0086 

n = 6 0.3220 0.0091 0.1165 0.0056 

n = 10 0.4671 0.0065 0.1002 0.0035 

DESeq2 

n = 3 0.2216 0.0079 0.1688 0.0086 

n = 6 0.3830 0.0094 0.1358 0.0061 

n = 10 0.5127 0.0065 0.0926 0.0037 

limma (voom) 

n = 3 0.0738 0.0066 0.0466 0.0074 

n = 6 0.2841 0.0114 0.0516 0.0053 

n = 10 0.4633 0.0075 0.0408 0.0030 

NOISeq 

n = 3 0.4697 0.0117 0.3354 0.0082 

n = 6 0.0816 0.0053 0.0539 0.0050 

n = 10 0.1510 0.0052 0.0463 0.0026 
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Table A13. Resampling Power and Observed FDR for Kidney Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.0000 0.0000 1.0000 0.0000 

n = 6 0.0000 0.0000 1.0000 0.0000 

n = 10 0.0000 0.0000 1.0000 0.0000 

DESeq2 

n = 3 0.1212 0.0044 0.2603 0.0009 

n = 6 0.1976 0.0041 0.2599 0.0006 

n = 10 0.2511 0.0031 0.2585 0.0004 

limma (voom) 

n = 3 0.0000 0.0000 0.9400 0.0239 

n = 6 0.0000 0.0000 1.0000 0.0000 

n = 10 0.0000 0.0000 1.0000 0.0000 

NOISeq 

n = 3 0.3733 0.0057 0.1695 0.0043 

n = 6 0.1525 0.0070 0.0321 0.0013 

n = 10 0.2328 0.0062 0.0304 0.0009 
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Table A14. PROPER Observed FDR (𝑝 = 1) for Whole Blood Data. 

 Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 1.00 0.0000 

n = 6 0.95 0.0219 

n = 10 0.70 0.0461 

DESeq2 

n = 3 1.00 0.0000 

n = 6 1.00 0.0000 

n = 10 1.00 0.0000 

limma (voom) 

n = 3 0.33 0.0473 

n = 6 0.35 0.0479 

n = 10 0.14 0.0349 

NOISeq 

n = 3 1.00 0.0000 

n = 6 0.82 0.0386 

n = 10 0.87 0.0338 
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Table A15. PROPER Power and Observed FDR (𝑝 = 0.9) for Whole Blood Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.3059 0.0013 0.2537 0.0022 

n = 6 0.4591 0.0015 0.1282 0.0015 

n = 10 0.5510 0.0015 0.0985 0.0012 

DESeq2 

n = 3 0.3887 0.0020 0.3504 0.0025 

n = 6 0.4957 0.0017 0.2222 0.0017 

n = 10 0.5642 0.0015 0.1632 0.0014 

limma (voom) 

n = 3 0.2416 0.0014 0.0880 0.0017 

n = 6 0.4355 0.0015 0.0768 0.0014 

n = 10 0.5256 0.0015 0.0800 0.0011 

NOISeq 

n = 3 0.4504 0.0055 0.5755 0.0037 

n = 6 0.0439 0.0008 0.0729 0.0038 

n = 10 0.1143 0.0014 0.0559 0.0020 
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Table A16. PROPER Power and Observed FDR (𝑝 = 0.7) for Whole Blood Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.3784 0.0009 0.1018 0.0009 

n = 6 0.5296 0.0008 0.0677 0.0006 

n = 10 0.6128 0.0007 0.0565 0.0006 

DESeq2 

n = 3 0.4413 0.0015 0.1419 0.0014 

n = 6 0.5541 0.0011 0.1019 0.0009 

n = 10 0.6156 0.0008 0.0829 0.0007 

limma (voom) 

n = 3 0.3659 0.0008 0.0645 0.0007 

n = 6 0.5166 0.0008 0.0589 0.0006 

n = 10 0.5908 0.0008 0.0571 0.0006 

NOISeq 

n = 3 0.4911 0.0045 0.2566 0.0027 

n = 6 0.1251 0.0013 0.0491 0.0011 

n = 10 0.2556 0.0015 0.0339 0.0007 
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Table A17. PROPER Power and Observed FDR (𝑝 = 0.5) for Whole Blood Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.4353 0.0007 0.0533 0.0005 

n = 6 0.5805 0.0006 0.0398 0.0004 

n = 10 0.6559 0.0006 0.0362 0.0004 

DESeq2 

n = 3 0.4810 0.0016 0.0714 0.0008 

n = 6 0.5911 0.0008 0.0541 0.0004 

n = 10 0.6497 0.0007 0.0482 0.0004 

limma (voom) 

n = 3 0.4300 0.0007 0.0377 0.0004 

n = 6 0.5628 0.0006 0.0371 0.0004 

n = 10 0.6340 0.0007 0.0393 0.0004 

NOISeq 

n = 3 0.5607 0.0038 0.1386 0.0016 

n = 6 0.2631 0.0014 0.0304 0.0005 

n = 10 0.3672 0.0011 0.0223 0.0004 
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Table A18. seqgendiff Observed FDR (𝑝 = 1) for Whole Blood Data. 

 Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.98 0.0141 

n = 6 0.86 0.0349 

n = 10 0.80 0.0402 

DESeq2 

n = 3 0.98 0.0141 

n = 6 0.90 0.0302 

n = 10 0.99 0.0100 

limma (voom) 

n = 3 0.37 0.0485 

n = 6 0.31 0.0465 

n = 10 0.33 0.0473 

NOISeq 

n = 3 0.97 0.0171 

n = 6 0.64 0.0482 

n = 10 0.70 0.0461 
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Table A19. seqgendiff Power and Observed FDR (𝑝 = 0.9) for Whole Blood Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.0454 0.0099 0.8064 0.0295 

n = 6 0.0224 0.0071 0.7296 0.0375 

n = 10 0.0202 0.0048 0.7586 0.0355 

DESeq2 

n = 3 0.0502 0.0105 0.8459 0.0226 

n = 6 0.0267 0.0077 0.7950 0.0313 

n = 10 0.0254 0.0053 0.8181 0.0312 

limma (voom) 

n = 3 0.0237 0.0066 0.3104 0.0441 

n = 6 0.0107 0.0048 0.3056 0.0444 

n = 10 0.0056 0.0023 0.3012 0.0447 

NOISeq 

n = 3 0.1827 0.0210 0.8667 0.0146 

n = 6 0.0310 0.0114 0.5319 0.0461 

n = 10 0.0075 0.0020 0.5541 0.0465 
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Table A20. seqgendiff Power and Observed FDR (𝑝 = 0.7) for Whole Blood Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.0318 0.0104 0.6304 0.0331 

n = 6 0.0205 0.0049 0.4956 0.0401 

n = 10 0.0103 0.0037 0.4951 0.0405 

DESeq2 

n = 3 0.0340 0.0105 0.6727 0.0295 

n = 6 0.0284 0.0060 0.6253 0.0330 

n = 10 0.0531 0.0080 0.7518 0.0159 

limma (voom) 

n = 3 0.0195 0.0066 0.1029 0.0276 

n = 6 0.0073 0.0034 0.1103 0.0289 

n = 10 0.0059 0.0029 0.1365 0.0320 

NOISeq 

n = 3 0.1012 0.0176 0.7067 0.0141 

n = 6 0.0430 0.0176 0.3973 0.0405 

n = 10 0.0291 0.0136 0.4875 0.0427 
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Table A21. seqgendiff Power and Observed FDR (𝑝 = 0.5) for Whole Blood Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.0412 0.0121 0.4238 0.0308 

n = 6 0.0228 0.0066 0.4020 0.0367 

n = 10 0.0105 0.0044 0.3639 0.0358 

DESeq2 

n = 3 0.0451 0.0124 0.4820 0.0276 

n = 6 0.0297 0.0074 0.5269 0.0296 

n = 10 0.0593 0.0092 0.5900 0.0188 

limma (voom) 

n = 3 0.0375 0.0101 0.0397 0.0138 

n = 6 0.0079 0.0039 0.0990 0.0253 

n = 10 0.0068 0.0035 0.1123 0.0271 

NOISeq 

n = 3 0.1073 0.0188 0.4659 0.0175 

n = 6 0.0448 0.0150 0.3302 0.0352 

n = 10 0.0294 0.0127 0.3244 0.0347 
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Table A22. SimSeq Observed FDR (𝑝 = 1) for Whole Blood Data. 

 Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.94 0.0239 

n = 6 0.63 0.0485 

n = 10 0.46 0.0501 

DESeq2 

n = 3 0.97 0.0171 

n = 6 0.73 0.0446 

n = 10 0.44 0.0499 

limma (voom) 

n = 3 0.18 0.0386 

n = 6 0.04 0.0197 

n = 10 0.10 0.0302 

NOISeq 

n = 3 0.98 0.0141 

n = 6 0.63 0.0485 

n = 10 0.64 0.0482 
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Table A23. SimSeq Power and Observed FDR (𝑝 = 0.9) for Whole Blood Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.0049 0.0014 0.7471 0.0301 

n = 6 0.0049 0.0019 0.4624 0.0411 

n = 10 0.0112 0.0030 0.3525 0.0339 

DESeq2 

n = 3 0.0066 0.0019 0.8377 0.0203 

n = 6 0.0061 0.0019 0.5371 0.0392 

n = 10 0.0131 0.0033 0.3409 0.0332 

limma (voom) 

n = 3 0.0000 0.0000 0.2325 0.0419 

n = 6 0.0026 0.0018 0.0577 0.0221 

n = 10 0.0031 0.0019 0.0379 0.0169 

NOISeq 

n = 3 0.0578 0.0102 0.8109 0.0229 

n = 6 0.0103 0.0048 0.3820 0.0453 

n = 10 0.0037 0.0008 0.3376 0.0420 
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Table A24. SimSeq Power and Observed FDR (𝑝 = 0.7) for Whole Blood Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.0053 0.0014 0.5434 0.0294 

n = 6 0.0122 0.0034 0.2977 0.0310 

n = 10 0.0210 0.0040 0.2439 0.0280 

DESeq2 

n = 3 0.0077 0.0021 0.5334 0.0232 

n = 6 0.0157 0.0038 0.3630 0.0312 

n = 10 0.0251 0.0043 0.1900 0.0243 

limma (voom) 

n = 3 0.0001 0.0000 0.1117 0.0301 

n = 6 0.0034 0.0025 0.0257 0.0143 

n = 10 0.0093 0.0027 0.0632 0.0212 

NOISeq 

n = 3 0.0751 0.0113 0.5409 0.0221 

n = 6 0.0022 0.0006 0.2136 0.0334 

n = 10 0.0039 0.0008 0.1592 0.0297 
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Table A25. SimSeq Power and Observed FDR (𝑝 = 0.5) for Whole Blood Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.0105 0.0022 0.4296 0.0301 

n = 6 0.0108 0.0022 0.2193 0.0277 

n = 10 0.0252 0.0051 0.1287 0.0174 

DESeq2 

n = 3 0.0148 0.0029 0.4215 0.0274 

n = 6 0.0154 0.0029 0.2710 0.0284 

n = 10 0.0298 0.0054 0.1251 0.0183 

limma (voom) 

n = 3 0.0012 0.0007 0.1332 0.0327 

n = 6 0.0020 0.0009 0.0096 0.0070 

n = 10 0.0157 0.0043 0.0279 0.0094 

NOISeq 

n = 3 0.0948 0.0126 0.4077 0.0208 

n = 6 0.0029 0.0007 0.1613 0.0315 

n = 10 0.0064 0.0012 0.0985 0.0233 
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Table A26. Resampling Power and Observed FDR for Whole Blood Data. 

 Mean Power SE Power Mean Observed FDR SE Observed FDR 

edgeR 

n = 3 0.0000 0.0000 0.9600 0.0197 

n = 6 0.0000 0.0000 0.8700 0.0338 

n = 10 0.0000 0.0000 0.9100 0.0288 

DESeq2 

n = 3 0.0111 0.0033 0.7486 0.0214 

n = 6 0.0130 0.0037 0.7772 0.0234 

n = 10 0.0228 0.0044 0.7379 0.0218 

limma (voom) 

n = 3 0.0000 0.0000 0.3200 0.0469 

n = 6 0.0000 0.0000 0.1800 0.0386 

n = 10 0.0000 0.0000 0.3300 0.0473 

NOISeq 

n = 3 0.1080 0.0144 0.5724 0.0219 

n = 6 0.0217 0.0063 0.2533 0.0338 

n = 10 0.0273 0.0068 0.0994 0.0166 

 


