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ABSTRACT 

Non-additive genetic effects are usually ignored in animal breeding programs due to data 

structure, computational limitations, and over-parameterization of the models. Non-additive 

genetic effects play an important role in the expression of complex traits in livestock species, such 

as longevity and stayability. Components of genetic variance for additive and non-additive genetic 

effects were estimated for longevity and stayability in U.S. Western ewes using pedigree 

relationship matrices. Litter size were also investigated for direct and maternal effects. For 

longevity, a larger proportion of phenotypic variance was explained by non-additive genetic effects 

than by additive effects for model A+D, indicating that including dominance genetic effects are 

important. Results suggest that inclusion of non-additive genetic effects in animal models is 

possible in estimating longevity and stayability and will improve selection accuracy and reduce 

overestimation of additive genetic effects.  
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CHAPTER 1: INTRODUCTION 

The success and failure of a sheep operation depend on the ewe’s ability to remain in the 

flock long enough to recoup expenses of lamb development and ewe maintenance in an economical 

manner (Snelling et al., 1995; Doyle et al., 2000; Cammack et al., 2009). To recoup these 

investments, the ewe must wean a marketable lamb as a two-year-old or younger and subsequently 

wean commercial lambs each year after until an age that covers the investment made in the 

individual ewe. The breakeven point depends on the number of lambs lambed by each ewe 

(Snelling et al., 1995; Cammack et al., 2009). The ewe’s ability to remain in the flock is known as 

its reproductive life, defined in terms of longevity and stayability. VanRaden and Klaaskate (1993) 

defined longevity as the amount of time a ewe spends producing lambs to represent the length of 

its reproductive life. Hudson and Van Vleck (1981) defined stayability as the probability of a ewe 

to survive to a certain age, given all conditions are kept constant. Litter size selected for 

reproductive traits like longevity and stayability are more enduring in respect to coping with 

production challenges than ones not selected for longevity and stayability (Theilgaard et al., 2009). 

Genetic variance is broken into two effects: additive and non-additive genetic effects (Hill 

et al., 2008). The genetic effect is called ‘additive’ when genes show summing effect on the 

quantitative trait; this results in deviance from the phenotype mean due to inheritance of a 

particular allele and its relative effect on the phenotype. Heritability is the magnitude to which 

individual phenotype differences can be partitioned due to allelic substitutions' additive effects 

(Lynch and Walsh, 1998). Non-additive genetic effects are the interaction of alleles, genotypes, or 

both within and across genes (Norris et al., 2010). Interactions between genes at the same loci are 

called dominance whereas interactions between alleles at different genes are called epistasis. These 

non-additive genetic effects are not usually included in genetic models because they require a large 
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dataset with a high ratio of full-sibling relationships (Misztal et al., 1997) and computation of non-

additive genetic relationships are always tricky with pedigree-based relationships (Mrode, 2014). 

Furthermore, the non-additive component is ignored because it is often confounded with 

the maternal environment, and estimation would involve large computational requirements 

(Varona and Misztal, 1999; Aliloo et al., 2017). Even so, it is essential to investigate the impact of 

including dominance genetic effect in genetic evaluations, as the impact of this effect on longevity 

and stayability traits in sheep flocks is not well understood (Nazarian and Gezan, 2016). Evidence 

of non-additive genetic components for reproductive traits has been reported in rabbits (Nagy et 

al., 2013), poultry (Wei and van der Werf, 1993; Guo et al., 2020), cattle (Hoeschele, 1991, Misztal 

et al., 1997) and swine (Guo et al., 2016).  If non-additive components are unaccounted for, then 

estimation of heritability is imprecise leading to inaccuracies in selecting individuals as parents 

for the next generation. Therefore, it is imperative that the non-additive genetic variance for 

reproductive traits in sheep, such as longevity and stayability, be estimated.  

Objectives 

The objectives of this study were to:  

• Identify familial structure in available data, including full and half-sibling relationships 

within breeds and across breeds of sheep reared in the western U.S. 

• Investigate the effect of genetic covariance matrix model construction on additive and 

dominance genetic variance components across breeds and within breeds of sheep 

reared in the western U.S. 

• Investigate the role of non-additive genetic effects on stayability and longevity by 

estimating additive and dominance genetic components using pedigrees of within and 

across breeds of sheep reared in the western U.S.  



 

3 

• To determine the effect of birth and rearing type of the ewe and ewe’s dam on ewe 

longevity and stayability within and across breeds of sheep reared in the western U.S. 

Hypothesis 

Dominance effects are often challenging to partition out in genetic evaluations unless 

appropriate relationships are present to clarify their role in expressing desirable traits (stayability 

and longevity). Given the dataset available, the expectation is that sufficient full and half-siblings 

are known to develop and model appropriate dominance effects within breeds and potentially 

across breeds. Furthermore, if crossbreds are to be utilized or a multi-breed evaluation is to be run 

using the entire dataset, the pedigree structure must be investigated. It is expected that an amended 

relationship matrix can be supplied to the statistical software that will allow modeling across all 

breeds for the entire dataset. It is expected that dominance effects will be a significant genetic 

inheritance component for stayability and longevity and that the birth or rearing litter size of the 

lamb’s dam will affect that lamb’s stayability and longevity in the flock, specifically that single-

born dams will yield offspring with more significant changes of stayability and longevity. Lastly, 

it is expected that dominance effects will be a significant genetic inheritance component for 

stayability and longevity.  
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CHAPTER 2: LITERATURE REVIEW 

Importance of longevity and stayability in United States sheep flocks 

Sheep are considered an all-purpose animal in that they provide meat, fiber, milk, and skin 

(Berger et al., 2004). Almost all sheep breeds can be classified based on their abilities to produce 

a particular product or a combination of these products. The relative economic importance of these 

products varies from country to country and from one continent to another. Hair sheep breeds in 

the Middle East's hotter parts dominate because heavy wool fleece is a handicap in high 

temperatures. On the other hand, wool-producing sheep are favored in the temperate regions 

because they keep the flock warm during the cold and provide commercial value. 

In all production systems, longevity and stayability are economically relevant traits for 

lamb producers. Longevity is a functional trait positively correlated to farm profitability (Pérez-

Cabal and Alenda, 2003). The average longevity will influence economic returns by affecting the 

proportion of female offspring that must be retained for replacements; this proportion might be 

available for sale and the annual depreciation cost per ewe will be reduced (Perez-Raso et al., 

2004). An increase in a flock's longevity will increase the number of lambs born per ewe (Kenyon 

et al., 2014). Hence, more lambs will be available for sale, and juvenile stock retention as 

replacements will be minimized (Castañeda-Bustos et al., 2014). In addition, increasing longevity 

helps to reduce long-term health care costs (Kizilkaya et al., 2002).  

Borg et al. (2009) stated that the average lifespan of a ewe in their commercial sheep 

production flock is six to seven years before she was culled from the flock. A ewe can be culled 

from the flock due to voluntary or involuntary reasons (Garcia et al., 2015). Voluntary culling 

occurs when the main reason for removal is a low performance from the ewe even though she is 

healthy and might accrue cost (De Vries et al., 2010). On the other hand, involuntary culling occurs 
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from death, injury, illness, and other environmental challenges, forcing the producer to remove a 

ewe from the flock (Ahlman et al., 2010). If assuming the productive life of a ewe could be 

increased to 10 to 11 years, then the lifetime earning capacity of that ewe would increase, and the 

cost of replacing her would decrease. The ability to make these changes occur, however, depends 

partially on heritability and related selection response.  

Longevity is defined as the amount of time a ewe spends producing lambs in the flock 

(VanRaden and Klaaskate, 1993). On the other hand, stayability is defined as the probability a ewe 

survives to a certain age in the flock given all stable conditions, such as ongoing good health and 

prolonged fecundity (Hudson and Van Vleck, 1981; Cammack et al., 2009; Fortes et al., 2012; 

Douhard et al., 2016). Some researchers have expanded these definitions by placing age limits 

based on economic importance (e.g., Brigham et al., 2006; 2009). Others have created variations 

of these definitions based on species and their production tendencies (Cattle: VanRaden et al., 

2006; Rogers et al., 2004; Swine: Serenius and Stalder, 2004; Buznskas, 2014). 

In any case, measuring the trait should show the age that the ewe is most productive, 

depending on the available information on the ewes so that that selection can lead to profitable 

outcomes. Attempts at this have been: 1) registering the number of days for which the ewe stays 

in the flock, 2) a binary trait assigning the value 0 to a ewe that did not survive, and a value of 1 

for a ewe that stayed in the flock for a particular time frame; or 3) as the number of offspring 

birthed or reared during her life (Martinez et al., 2005; Galeazzi et al., 2010). Stayability is a binary 

trait on the observed scale, i.e., successful lambing (1) after the defined stayability cutoff date (e.g., 

six years) or failure (0), not lambing in the designated stayability cutoff date. Stayability is 

considered lowly heritable (Douhard et al., 2016) It has been proven that the number of offspring 

birthed or reared are genetically the same, and that selection based on the number of offspring 
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(0.24) is more accurate than ewe age due to higher estimates of heritability compared to stayability 

to a specific age (0.09) (Martinez et al., 2005).  

Factors known to influence longevity and stayability 

Breed  

Garcia-Peniche et al. (2006) estimated the effects of breed type on longevity and stayability 

using Brown Swiss, Holsteins, and Jersey cows. They evaluated the performance during five years 

of life opportunity of cows born from January 1992 to June 1996 for longevity and stayability. 

They found out that there was a slight difference in the average stayability proportions of Jersey, 

Brown Swiss, and Holsteins because of breed differences. They noted that the Jersey breed could 

stay longer in the herd than the other breeds considered in many instances, but their study did have 

regional effects. Hohenboken (1977) also estimated the differences between the stayability rates 

of Columbia and Targhee ewes from 2½ years old to 8½ years old, and found that Columbia ewes 

had a higher stayability rate in comparison to Targhee ewes.  

Iman and Slyter (1996) also evaluated the differences between Finn-Dorset-Targhee (FDT) 

and Targhee breeds stayability rates in the flock. They opined that FDT ewes had the potential to 

stay longer in the flock and ultimately could produce more lambs per thousand in comparison to 

the Targhee ewes. Pellerin and Browning (2012) compared the does of Boer, Kiko, and Spanish 

goat breeds for stayability. They concluded that it was far better to use the breeds of Spanish with 

the least-squares values of 2.62 ± 0.34 to 6.21 ± 0.61 or Kiko, 2.45 ± 0.31 to 6.09 ± 0.58 for 

optimum economic advantage as those breeds stayed more in the flock than that of Boer, 1.43 

± 0.18 to 3.24 ± 0.34, measured in years. Invariably, it has been shown that there exist levels of 

differences between each breed’s ability to stay in the flock than the other breeds according to the 
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scientists who have worked on it; therefore, accounting for breeds in multi-breed populations is 

essential given that Polypay and Rambouillet have not been investigated since the 90s. 

Birth and rearing type   

The impact of birth and rearing types on reproductive traits is vastly underreported (Tosh 

and Kemp, 1994). Recently, McHugh et al. (2017) reported that type of rearing when working with 

Ireland sheep did influence the growth potential of lambs reared as singles, as lambs born and 

raised as singles had greater birth weight, 40-day weigh, and heavier than multiple-born lambs 

raised as singles. McHugh et al. (2017) found that type of rearing and type of birth ultimately 

influence growth traits as single-born lambs raised as twins performed better than triplet-born 

lambs reared as singles, especially on preweaning and on growth traits. Therefore, producers must 

record the rearing and birth types to foster proper selection and adequate ewe evaluation as 

mismanagement of records can lead to bad decision making. Pettigrew et al. (2019), while 

experimenting on the effects of birth ranks on dual-purpose New Zealand sheep, observed that ewe 

survival was lowest in ewes that were lambed as singles in comparison to the other ewe groups 

(lambed as twin, triplet, quartet or quintet and above) with the losses occurring earlier in this group 

than in other groups. This might have decreased their longevity and weaning weight of lambs 

produced and concluded that with voluntary culling, ewes that were lambed as singles had lower 

stayability and longevity than ewes that were lambed as twins. 

Selection in Animal breeding 

Genetic selection goals in animal breeding are to improve traits of economic importance in 

the next generation (Ibtisham et al., 2017).  Fisher (1918) provided a method of applying concepts 

from Mendelian genetics to the selection of quantitative phenotypes. He proposed that alleles 

(Mendelian factors) make a small contribution to producing a phenotype. This method is called 
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the additive model, summarizing that all these alleles' combined effects are produced by summing 

up their individual allele effects (Fisher, 1918; Wright, 1931; Wade and Goodnight, 1998). 

Selection in sheep breeding took advantage of Fisher’s assumption of additivity combining 

phenotypic dataset and pedigree information of individuals and their relatives to generate 

heritability values, breeding values (EBV), and selection responses using Henderson’s 1984 Best 

Linear Unbiased Predictor (BLUP) method (Kruuk, 2004).  

The difficulty of using Fisher’s additive model for selecting reproductive traits in sheep 

arises from low heritability (i.e., small additive genetic variance in proportion to a large phenotypic 

variance). This has been reported for longevity and stayability traits in literature, ranging from 

0.022 in mouse to 0.22 in captive rhesus macaques female (Gagliardi et al., 2010; Vitezica et al., 

2013). Non-additive genetic effects have been proposed as the factor that could explain the missing 

heritability (the portion of heritability not explained by the top associated variants in genome-wide 

association studies, GWAS) (Visscher et al., 2012). Because of low heritability values for some 

quantitative traits, Fisher added additional variables to account for non-additive genetic effects. 

These variables are still considered as ‘nuisance’ parameters to account for anomalies in the model. 

Fisher (1918) defined them as ‘dominance’ (interaction between two alleles at a locus) and 

‘epistasis’ (interaction between two or more loci), which are expected to contribute to variation in 

fitness (Wright, 1931; Crnokrak and Roff, 1995; Roff, 2012) as well as to determine which additive 

genetic effects contribute to bottlenecks (Wade and Goodnight, 1998; Turelli and Barton, 2004; 

Saltz et al., 2014). Researchers have commented that applying the estimates of non-additive 

genetic effects has not been used frequently in livestock breeding because it is difficult to estimate 

these effects accurately. Most selection programs aim to estimate just the additive genetic effects 

(Bolormaa et al., 2015). Many geneticists agree that these non-additive genetic effects exist but do 
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not agree on how common the phenomenon is and if they should be included in genetic studies 

(Hill et al., 2008; Powell et al., 2013).  

Modeling these non-additive genetic effects might be needed to estimate breeding values, 

heritability, and proper selection programs. They are often still ignored because the assumption of 

additivity accounts for more of the genetic variation. To estimate dominance genetic effects based 

on pedigree-based relationships, a large dataset with a high ratio of full-siblings relationship is 

needed (Misztal et al., 1997). With pedigree-based relationships, computation of non-additive 

genetic relationships is always tricky (Mrode, 2014). Even so, not estimating dominance effects 

can lead to confounding and overestimation of the additive effects (Nagy et al., 2013). 

Additive genetic effects on longevity and stayability  

Despite the economic importance of longevity and stayability in animal production 

systems, little attention has been paid to these traits in different sheep breeds. Studies on longevity 

and stayability heritability estimates are scarce in the United States sheep industry and the world 

at large because most ewes' life expectancy exceeds the period required to keep them in the flock 

to be economically viable (Al-Shorepy and Notter, 1996). This is especially true for annually 

lambing flocks, as there is sufficient time between each lambing period to build up reserves again 

(Al-Shorepy and Notter, 1996). Longevity and stayability heritability in sheep and cattle vary from 

low to moderately high (<0.10 to ≤ 0.30) (Cammack et al., 2009; Fortes et al., 2012). Estimated 

breeding values (EBV) or expected progeny differences (EPD; EBV divided by 2) are used in 

breeding programs to improve accuracy by ranking individuals available for selection (Garrick et 

al., 2009; Hanna et al., 2014). There has been much progress in increasing longevity utilizing 

selection based on EPD use in cattle production (De Vries, 2017). The use of EPD for stayability 

as a selection criterion may improve accuracy and selection effectiveness, leading to an increase 
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in the meantime of stayability in the cattle herd (Van Melis et al., 2007). Even so, this has not been 

investigated in sheep.  

Impact of age on longevity and stayability 

Kirschten et al. (2015), in their investigation on Targhee sheep, concluded that the 

heritability of lambing at one year of age was 0.15. They suggested that ewes should be selected 

to lamb at one year of age as it will ensure continuous lambing and ewes stay in the flock for a 

more extended period. Fuerst-Waltl et al. (2004) supported this theory in cattle as they reported 

that age of dam negatively impacted daughter’s longevity. Jamrozik et al. (2013) opined that there 

was a difference in heritability estimates for calving at an early age (2 years) in comparison to 

calving at a later age. They found heritability estimates of cows that calved at two years old to be 

0.36 for stayability, while cows that calved at later ages had a heritability of 0.12.  

Maiwashe et al. (2009) estimated the heritability of South African Angus cows for 

stayability using a sire threshold model, where estimates ranged from 0.26 (age 4 and 5) to 0.30 

(age 6). Shorten et al. (2015) reported that there was a quadratic relationship between the age of a 

dam at calving and pregnancy rate in Angus cattle. The rates of pregnancy of the cattle reported in 

the study increased between the ages two and seven and decreased between ages seven and eleven, 

this was independent of whatever culling strategies employed. Shorten et al. (2015) suggested that 

rate of pregnancy and overall fertility of dams diminishes once they reach a particular threshold 

that falls between ages five to seven. 

Influence of non-additive genetic modeling effects in genetic evaluation models 

Importance of non-additive effects  

Recent studies show that if additive and non-additive genetic effects are considered 

together, analyses might yield higher statistical power for portioning components of variance for 
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most livestock species' complex traits (Su et al., 2010). Palucci et al. (2007) found out that the non-

additive genetic effects were larger than the additive genetic variance for Canadian Holsteins' 

fertility traits. Esfandyri et al. (2016) opined that including both additive and dominance effects in 

their analyses significantly improved prediction accuracy. 

Challenges to estimating non-additive genetic effects  

Estimating genetic differences due to non-additive genetic effects is possible if we set up 

breeding programs that maximize favorable allelic combinations (Munoz et al., 2014); additive 

and non-additive genetic effects differences are orthogonal; therefore, we must separate additive 

and non-additive effects to avoid problems of selection pressure, and lack of genetic drift (Hill et 

al., 2010). However, these genetic effects are confounded in breeding populations due to higher 

sampling variances and shared environmental variances. A portion of variance due to alleles' 

interaction can be seen as additive genetic variance (Hill et al., 2010; Powell et al., 2013). Thus, 

ignoring non-additive genetic effects overestimates the additive genetic variance as it inflates 

breeding values resulting in biased EBV or EPD used in ranking. 

Data structure plays a significant role in separating additive and non-additive genetic 

effects. Munoz et al. (2014) suggested that separating these effects requires a large number of 

close, full-sibling relatives. Van Tassell et al. (2003) opined that a minimum of 20% full-siblings 

in the population must be established for successfully estimating non-additive genetic effects. Due 

to operational challenges, it might be difficult to generate these needed large full-sib families 

(Munoz et al., 2014). Full-sibling relationships present over several generations can also reduce 

the confounding effects of additive, and non-additive genetic effects, i.e., inaccurate and 

inadequate pedigree information can be a limiting factor. Computational requirements can also be 

a limiting factor in estimating these non-additive genetic effects (Varona and Mistal, 1999; 
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Wittenburg et al., 2011; Technow et al., 2015).  Finally, incomplete model specification due to a 

lack of computing resources can also be a limiting factor in estimating non-additive genetic effects 

(Wray et al., 2013).  Table 2.1 summarizes experiments on stayability and longevity in sheep. 

Longevity and stayability studies in other species such as the cow (Rohrer et al., 1988), pig 

(Koketsu et al., 1999), and goat (Castañeda-Bustos et al., 2014) showed they are complex traits 

and controlled by many factors. 
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Table 2.1: Summary of experiments for comparing sheep breeds’ estimates of heritability for longevity (LONG) and stayability 

(STAY)1 

Traits Country Breed N Heritability Method Reference 

LONG ZAF Dorper 42,831 0.05 Linear mixed model (LMM), Restricted maximum likelihood (REML) Zishiri et al. (2013) 

  ESP Latxa 1,541 0.13 Linear profit function Legarra et al. (2007) 

ITA Valle del Belice 2,190 0.11 Weibull model Riggio et al. (2009) 

NZL SIL Flock 2638 1,330 0.20 to 0.23 Generalized linear model (GLM), REML McIntyre et al. (2012) 

USA Columbia 4,389 0.06 GLM, REML Holland (2018) 

  Suffolk 213 0.09 GLM, REML Holland (2018) 

  Polypay 4,534 0.07 GLM, REML Holland (2018) 

  Rambouillet 5,922 0.16 GLM, REML Holland (2018) 

  Targhee 12,154 0.06 Linear animal model, REML Borg et al., (2009) 

STAY ZAF Dorper 42,831 0.05 to 0.11 LMM, REML Zishiri et al. (2013) 

  NZL SIL Flock 2638 1,330 0.11 to 0.20 GLM, REML McIntyre et al. (2012) 

USA Columbia 4,389 0.08 to 0.22 GLM, REML Holland (2018) 

  Targhee 6,482 0.17 to 0.32 GLM, REML Holland (2018) 

  Suffolk 213 0.05 to 0.17 GLM, REML Holland (2018) 

  Polypay 4,534 0.10 to 0.28 GLM, REML Holland (2018) 

  Rambouillet 5,922 0.21 to 0.28 GLM, REML Holland (2018) 

    Targhee 12,154 0.04 to 0.10 Linear animal model, REML Borg et al. (2009) 

1SIL Flock 2638: Sheep Improvement Ltd. (SIL) Flock 2638, ZAF: South Africa, NZL: New Zealand, ESP: Spain, ITA: Italy
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Modeling approaches to understanding the genetic control of longevity and stayability in 

the flock 

Methods of obtaining variance component estimation in animal breeding  

 In quantitative genetics, the animal model has been used repeatedly to estimate 

reproductive parameters, such as additive genetic variance and heritability (Muff et al., 2019). 

Still, these parameters can have their estimates affected by other factors.  

Accurate estimation of breeding values for important economic traits impacts on changing 

quantitative traits to meet consumers, producers, and breeders' ever-demanding needs. Advances 

in computer technology, software and hardware, and improved statistical methods have given 

researchers and producers the ability to recalculate and re-estimate genetic parameters to improve 

selection strategies for today’s market (Gianola and Rosa, 2014).  The development of algorithms 

summarized in Table 2.2 below has helped portion animal variance into direct, maternal, and 

environmental effects, animal and dam permanent environmental effects, litter effects, and the 

correlation between these genetic effects. This portioning helps in estimating the contribution of 

each individual effect on the overall performance of the animal.  

Bayesian school of thought 

The origin of how Bayesian methodology came to be is founded in a little bit of 

controversy.  In his review of the Bayesian method in animal breeding, Blasco (2001) mentioned 

that the Bayesian school of thought was in practice founded by Count Laplace. Even so, before 

Laplace presented his first paper on the subject matter, the new school of thought was named after 

a priest, rev. Thomas Bayes, the reason for this, I do not know.  
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Table 2.2: Models for estimating variance components in animal breeding. 

Method Reference Portioned animal variance 

Best linear unbiased predictor Henderson (1977) Permanent environmental 

effects and their correlation 

Linear model Henderson (1984) Permanent environmental 

effects 

Maximum likelihood lm et al. (1984) Litter size 

Bayesian method Gianola and Foulley 

(1982); Gianola (1986) 

Environmental and litter 

effects 

Free derivative restricted 

maximum likelihood model 

Graser et al. (1987) Litter effects 

Restricted maximum likelihood 

using several random effects 

model 

Meyer (1989) Dam’s permanent 

environmental effect 

Threshold model Wiggans et al. (2003) Direct and maternal effects 

Random regression model Schaeffer (2004) Permanent environmental 

effects 

 

There are two leading schools of thought in statistics: the Bayesian and the frequentist 

schools of thought (Gianola and Fernando, 1986). The Bayesian school of thought uses probability 

distributions to model uncertainty in the value of parameters, treating those parameters as random 

effects; this then produces a posterior probability that captures our current knowledge regarding 

the importance of those model parameters (Gianola and Fernando, 1986). The posterior 

distribution infuses prior knowledge of effects with the information about those effects already 

established from the observed dataset. In Bayesian analysis, an unobserved dataset is not 

considered. At the same time, the frequentist approach relies on a frequency definition of 

probability depending on repeated analysis of the same events, and it is unstable in comparison to 

the Bayesian approach; both the Bayesian and frequentist schools of thought are concerned with 

the same objective, which is to analyze unknown quantities of interest then interpret the degree of 

support for our theories using data.   

Bayesian modeling requires the modeler to specify a prior probability distribution for the 

model under investigation. This prior is an expression of the current knowledge of the model under 
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study, which is then updated with the observed data's information to producing the posterior 

distribution. Bayesian inference is majorly influenced by both the prior selected and the empirical 

data. There are two traditional categories of prior: 1. Informative priors and 2. Non-informative 

priors. Many scientists use non-informative priors more often because it is considered more 

objective (Blasco, 2001). This is because the prior distribution contains little information about 

the model. This, in turn, places much weight on the observed data for proper posterior information, 

unlike the informative priors that inculcate information from previous knowledge without regards 

to the data into their distributions. This reduces the importance placed on the empirical data, which 

might affect the posterior distribution (Datta and Mukerjee, 2004).  

Blasco (2001) described a Bayesian model's objective as identifying the uncertainty about 

the actual value of some parameters based on a given data using probability as the measurement 

of this uncertainty, i.e., a Bayesian model is driven by assumptions of conditional probability. 

Blasco (2001) demonstrated that if the parameter of interest is the heritability of a particular trait, 

the Bayesian model's usefulness estimates a probability density of the heritability given the data, 

f(h2|y), where y is the vector of observations. When our distribution is obtained, we can draw 

inferences in many ways: 1. We can calculate the probability of h2 between 0 and 1 by combining 

these two values' functions. 2. We can also compute the Highest Posterior Density (HPD). The 

probability of finding h2 is more than 95% using the Highest Posterior Density (HPD) distributions. 

We can also calculate the point estimate giving several values of h2 calculated from the distribution 

f(h2|y). The mode is the value that maximizes f(h2|y) more, no matter the data. The most 

distinguishing factor between the Bayesian method and other methods is the use of a prior 

distribution. 
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Bayesian model in animal genetics 

Gianola and Foulley (1982) introduced the Bayesian model in animal genetics when they 

published their work analyzing threshold traits. This paper discussed and addressed issues 

regarding Bayesian modeling in animal genetics; their work was further expanded by Gianola 

(1986 and 1990). He highlighted the possibilities associated with Bayesian models and how they 

could explain variances in animal models. Mrode (2005) and Gianola and Rosa (2002) supported 

the use of Bayesian models in animal genetic analyses. This present study is the first attempt at 

estimating longevity and stayability in sheep using Bayesian models.   

Markov Chain Monte Carlo (MCMC) 

MCMC combines both properties of Markov chain and Monte-Carlo (Brown and 

Heathcote, 2008). Monte-Carlo estimates any distribution properties by using random sampling 

methods to obtain results and calculate the sample mean of those. The Markov chain of the MCMC 

generates random samples by a unique sequential process where the random samples are used as 

a seed to produce the next random sample, creating a never-ending chain (Brown and Heathcote, 

2008). In a Markov chain, each new random sample depends on its predecessor and independent 

of its predecessor’s predecessor; MCMC estimates samples from distributions which we can use 

to calculate information about those distributions, such as means, variances, and credible intervals 

(Bolker, 2008). Specifying a prior for a Bayesian analysis represents the uncertainty about the 

parameter before the data are examined (Hadfield, 2019). A standard choice for the prior 

distribution for variance components in Bayesian modeling is an inverse-Gamma distribution.  

Conclusion 

In summary, the sheep industry has begun to shift its focus towards novel and economically 

important traits, such as longevity and stayability traits. It is essential to understand the genetic 
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architecture and control of these traits. One approach is to investigate the impact of including 

dominance genetic effects in genetic evaluations, as the impact of this effect on longevity and 

stayability traits in sheep is not well understood, especially those sheep managed in extensive 

western U.S. ranges. Dominance is essential from an evolutionary perspective and because of its 

role in the selection response. Therefore, it is expected that separating additive and non-additive 

genetic components would lead to a more nuanced dissection of the genetic architecture of 

longevity and stayability traits. Understanding the genetic architecture of these traits could impact 

the future design and implementation of breeding strategies in the sheep industry. 
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CHAPTER 3: MATERIALS AND METHODS 

Reproductive data and processing 

North Dakota State University Institutional Animal Care and Use Committee approval was 

not obtained for this study because the records were extracted from an existing database.  All 

records for this study were from the USDA, ARS, Range Sheep Production Efficiency Research 

Unit, U.S. Sheep Experiment Station (USSES) located near Dubois, ID that was previously 

described in Holland (2018). First, lambing (1950 to 2015), weaning (1950 to 2015), ewe 

productivity (1977 to 2015), and inventory (1955 to 2015) were each parsed together from 

individual year database files in R software version 4.0.4 (R Core Team, 2021; see Appendix A).  

Lambing data was merged with weaning data so that rearing type (TR), weaning weight, 

and average daily gain were included with lambing records. From this combined lamb data (n = 

267,336 records), ewes born before or by 2008 were separated off to be processed further (n = 

101,129). The year requirement was set to ensure that a given ewe could be 7 years of age by 2015 

(the last year of available data). To do this, formatting for missing data (varied between 0 and “.”) 

was replaced with NA (missing value in R) for lamb, sire, and dam ID columns. Ewe lambs missing 

formal ID tags were removed from the data set (n = 5,130). Following this, lamb, sire, and dam ID 

were used to make unique numeric strings for easier identification of animals across years. The 

string format followed YYYYBBIIII, where YYYY is a 4-digit birth year, BB is the 2-digit breed 

code, and IIII is the 4-digit ear tag identifier of that animal. This matched the format of the pedigree 

provided by the USSES, which was used to check and validate the correct lamb, sire, and dam ID. 

Following ID reformatting, the coding system for birth type (TB) was recoded as shown in 

Table 3.1. This reduced the birth types to four relevant levels rather than 10 used by USSES, most 

of which would not likely be present for reproduction. As the ewe’s dam’s birth and rearing type 
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were also of interest for this project, the dams of ewe’s were extracted from the lamb dataset with 

their birth and rearing types (DTB and DTR, respectively), then merged with lamb data so that a 

given ewe’s record included DTB and DTR, if available. 

Table 3.1: Birth type code and description provided by the United States Sheep Experiment 

Station (USSES) after recoding for similar birth types. 

New birth type USSES birth type 

Code Description Code Description 

1 Born single 0 1 immature lamb born dead 
  

1 1 normal lamb born dead 
  

5 1 live single lamb 

2 Born twin 2 2 immature lambs born dead 
  

4 2 normal lambs born dead 
  

6 2 born, 1 live, and 1 immature 
  

7 2 born, 1 live, and 1 born dead 
  

8 2 live twin lambs 

3 Born triplet 9 3, triplet, born in any condition 

4 Born quadruplet or higher 3 4-5, quadruplet-quintuplet, born in any condition 

 

Ewe productivity and inventory records were then read into R and had the same ID checks 

and formatting as described with the lamb data. Each dataset was then summarized using the dplyr 

package (Wickham et al., 2021) summarize function (Appendix A). Per ewe, the summarize 

function provided the minimum and maximum of the following columns in the ewe productivity 

records: 

• Ewe’s lifetime total number of times lambed (LY2) 

• Ewe’s lifetime total number of lambs born (LY3) 

• Ewe’s lifetime total number of lambs born alive (LY4) 

• Ewe’s lifetime total number of lambs raised to weaning (LY5) 

• Year of record (YOR) 
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Per animal, the summarize function provided the minimum and maximum year of record 

(YRREC) from inventory records. This summary was then merged with their disposal code, if 

available. Any data that was not available was set to missing (NA). Both summaries of ewe 

productivity and inventory records were merged with the lamb data by lamb ID using the base 

merge function, making sure that all lambing data was retained (i.e., setting all.x = TRUE in the 

function). After a review of YOR, YRREC, LY, and disposal traits, it was determined that the 

maximum LY2 for each ewe would be used as the longevity value. It is not typical for management 

to lamb more than once a year at USSES, therefore the maximum LY2 would be indicative of the 

number of years the ewe was productive in the flock. This final combined ewe dataset was saved 

before independent breed records were analyzed. 

The ewe data consists of multiple purebreds and crossbreds, with the largest number of 

records in Columbia, Polypay, Rambouillet, and Targhee. Each ewe record has a sub-type of 

mating (STM) column, which indicates the parental cross that ewe originated from. Due to this, 

STM corresponding to purebred Columbia (06), Polypay (30), Rambouillet (07), and Targhee (02) 

were used to partition ewe records out by breed. For each breed, any missing data for birth type 

(TB, DTB, or both), rearing type (TR, DTR, or both), birth weight, and longevity lead to removal. 

Furthermore, any ewes with dams over the age of 7 were removed as this did not follow typical 

management protocols. Table 3.2 summarizes record numbers before and after missing record 

removal. Stayability (STAY; 0 for not present, 1 for present) was assigned from ages 2 to 7 based 

on the longevity value (e.g., if longevity was 5, then STAY2 to STAY5 were 1, but STAY6 and 

STAY7 were 0).  

To ensure useful and relatively consistent sample sizes for litter size (TB, TR, DTB, DTR) 

and birth year effects, count per level in each breed were reviewed. Levels that accounted for less 
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than 1% of the data or did not represent typical management practices by USSES were removed. 

Table 3.2 provides total record numbers after removal and Table 3.3 provides summary counts for 

litter effects before and after removal.  

Table 3.2: Record numbers for each major breed from combined ewe data at start, after removal 

of missing relevant columns, removal of small sample groups (final dataset), and pedigree. 

Breed Start missing records final sample size Pedigree size 

Columbia 17,622 3,314 2,251 5,223 

Polypay 12,380 3,103 2,599 8,691 

Rambouillet 26,018 4,316 2,809 10,711 

Targhee 23,597 4,434 2,880 9,661 

Combined 79,617 15,167 10,539 24,999 

 

It was uncommon to have lambs raised as orphans, let alone kept as ewes in the flock, 

based on management at USSES. Therefore, records of ewes with rearing types (TR and DTR) of 

2, 4, and 6 were removed across all breeds. The presence of quadruplets or higher was also 

uncommon for Columbia, Rambouillet, and Targhee, therefore birth type (TB and DTB) of 4 was 

removed for these 3 breeds, leading to rearing types (TR and DTR) of 0 being absent. Furthermore, 

management at USSES did not allow these three breeds to raise triplets on extensive rangeland, 

therefore any ewe with rearing type (TR and DTR) of 9 was due to a specific experiment at the 

station and not reflective of typical management practices. Ewes with this rearing type were 

removed for Columbia, Rambouillet, and Targhee.  

Polypay, due to the selection pressure placed on them during breed development, is likely 

to have larger litter sizes and be able to raise them. Even so, birth type of quadruplets or higher 

(TB or DTB = 4), after year censoring was applied (see later description), accounted for less than 

0.1% of the data. Therefore, Polypay ewes with a birth type of 4 (TB and DTB) were removed. 

Given the breed’s ability to raise larger litter sizes, Polypay’s rearing type (TR and DTR) of 9 
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(being raised a triplet) accounted for almost 3% of the breed’s data. Due to this, Polypay ewes with 

TR and/or DTR of 9 were retained.  

 Table 3.3: Counts per level of litter effect at birth and rearing for ewe (TB, TR) or ewe’s dam 

(DTB, DTR) before and after removal of small groups or uncommon management practices for 

major breeds present at the United States Sheep Experiment Station (USSES).1 

  Columbia Polypay Rambouillet Targhee 

Effect Code Before After Before After Before After Before After 

TB 1 1,085 625 445 372 1,288 705 1,394 842 

 2 1,998 1,367 1,832 1,514 2,757 1,787 2,837 1,809 

 3 313 259 829 713 394 317 305 229 

 4 11 0 95 0 13 0 8 0 

TR 0 3 0 18 0 4 0 4 0 

 1 1,037 625 432 372 1,229 705 1,334 842 

 2 0 0 0 0 1 0 3 0 

 3 479 237 365 290 677 362 738 403 

 4 5 0 1 0 12 0 13 0 

 5 1,562 1,130 1,480 1,224 2,126 1,425 2,143 1,406 

 6 2 0 6 0 3 0 1 0 

 7 90 68 176 129 104 78 101 71 

 8 222 191 636 507 287 239 193 158 

 9 7 0 87 77 9 0 14 0 

DTB 1 1,075 573 422 341 1,320 677 1,364 815 

 2 2,052 1,448 1,850 1,537 2,751 1,810 2,878 1,843 

 3 277 230 843 721 373 322 293 222 

 4 3 0 86 0 8 0 9 0 

DTR 0 0 0 25 0 5 0 5 0 

 1 1,036 573 401 341 1,259 677 1,302 815 

 2 0 0 0 0 1 0 5 0 

 3 493 290 363 264 695 374 751 400 

 4 6 0 0 0 14 0 16 0 

 5 1,592 1,158 1,508 1,273 2,102 1,436 2,168 1,443 

 6 0 0 5 0 3 0 2 0 

 7 64 53 169 124 95 79 95 68 

 8 210 177 665 534 274 243 191 154 

 9 6 0 65 63 4 0 9 0 
1Code description for birth type (TB and DTB) include 1 – born single; 2 – born twin; 3 – born triplet; and 4 – born quadruplet or higher. USSES code description for rearing type (TR and 

DTR) include: 0 – born a quadruplet or quintuplet, weaned any number, minor category; 1 – born single, weaned single; 2 – born single, raised orphan; 3 – born twin, raised single (major) or 

born single, raised twin (minor); 4 – born twin, raised orphan; 5 – born twin, raised twin; 6 – born triplet, raised orphan; 7 – born triplet, raised single; 8 – born triplet, raised twin; and 9 – 

born triplet raised triplet. 
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Rearing type (TR and DTR) of 3 was described as born twin, raised single (major) or born 

single, raised twin (minor) by USSES files. This was not deemed an appropriate grouping for 

comparison of litter size effects, therefore singles raised as twins were reassigned to category 2. 

Even so, singles raised as twins accounted for less than 0.5% of each breed’s data. Therefore, all 

ewes with this rearing type (TR and DTR) were removed. This left TR and DTR 3 to be exclusively 

twins raised as singles. Lastly, typical management at USSES resulted in ewes being culled 

following their 7th lambing season. Ewes would only be present at USSES after 7 years for specific 

experiments. Due to this, any ewe with a longevity value over 7 years was right-censored to be 7 

to reflect typical USSES management (n = 38, 39, 111, and 42 for Columbia, Polypay, 

Rambouillet, and Targhee, respectively). 

Ewes with longevity records were present in the dataset as early as 1968 for Columbia, 

1969 for Rambouillet and Targhee, and 1978 for Polypay. Even so, management was quite 

different at that time and was not reflective of current ewe performance in those breeds. 

Furthermore, years between 1980 and 1985 had inconsistent data sizes within and across breeds. 

Due to this, years were left-censored to only include 1985 or more recent, which followed Holland 

(2018). After censoring and adjustments for litter size effects, data records per year accounted for 

1.38% to 7.08% for Columbia, 1.75% to 7.42% for Polypay, 1.03% to 6.82% for Rambouillet, and 

2.03% to 6.20% for Targhee records, respectively. After these removals, final sample sizes for 

data are reported in Table 3.2. 

Using the lamb ID of each ewe in the remaining breed datasets, pedigree was extracted for 

each breed to include all available ancestors from the pedigree file supplied by USSES (Appendix 

A). The four breeds’ datasets were combined to create the combined or “across” breed data file for 

a separate analysis. Only purebred data records were used, but the entire pedigree of purebred and 
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crossbred animals related to these was extracted from the overall pedigree file. Pedigree size of 

each breed and across breeds are reported in Table 3.2, which were used for analyses of family 

size and siblings. 

Statistical analyses 

Descriptive statistics  

Descriptive statistics were run on datasets of longevity and stayability to obtain their means 

and standard deviation using the dplyr package (Wickham et al., 2021) summarize function 

(Appendix D). Scripts in R were further developed to identify characteristics of the population per 

breed and across breeds related to family statistics such as number of sibling (full or half), overall 

family size, averages, and ranges. Relevant functions based on availability in current R packages 

were developed for publication as a pedigree analysis package on The Comprehensive R Archive 

Network following R manual guidelines (R Core Team, 2021). 

Animal model  

An animal model using pedigree was run for longevity and stayability using a Bayesian 

framework in the MCMCglmm package of R (Hadfield, 2019). Fixed effects investigated, in a 

stepwise fashion, were TB, TR, DTB, and DTR on a per breed basis (Table 3.3). In all cases, the 

age of the ewe’s dam (n = 7 levels) at her birth was assessed as either a fixed covariate or class 

effect. Birth weight of the ewe was also assessed for fit in the model as a fixed covariate. When 

all breeds and relevant crosses were included, the STM code was also used as a fixed effect to 

model breed. To this fixed-effect model, random effects for each trait were explored in a stepwise 

fashion that had additive genetic variance (ID with numerator relationship matrix), maternal 

permanent environmental variance (ewe’s dam without pedigree), birth year, and dominance 

genetic variance (ID with dominance relationship matrix). Longevity models, including additive 
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and dominance, were fitted as univariate whereas stayability models (additive and dominance) 

were fitted as multivariate models using the MCMCglmm R package. A univariate model focusing 

on stayability to 7 years of age was also run to interpret significant fixed effects.  

To ensure the data and not the priors were influencing posterior means, several priors were 

investigated for each trait (Table 3.4). Model outputted from the MCMCglmm R package was 

evaluated to ensure the model met the autocorrelation (less than 0.10) and convergence 

requirement of fuzzy caterpillar plots (Figure 3.1, Hadfield, 2019). The number of iterations (nitt) 

ran, number of starting iterations dropped at the beginning (burnin), and number of iterations 

stored in memory (thin) were evaluated and adjusted based on autocorrelation and convergence 

output of a given run and recommendations by Hadfield (2019). Lastly, the model fit compared to 

other models was assessed using the DIC criteria, which is a generalization of the Akaike 

Information Criterion (Akaike, 1974) in a Bayesian framework (Lynn et al., 2002). Models with 

lower DIC values were preference over higher values given study objectives. 
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Table 3.4:  Priors investigated when modeling longevity with additive genetic effects using the 

MCMCglmm R package 

Prior 

ID 

1MCMCglmm prior syntax Family 

A list(R=list(V=1,nu=0, fix=1), 

G=list(G1=list(p.var, 0.1), 

G2=list(p.var, 0.1) , 

G3=list(p.var, 0.1))) 

Threshold 

B list(R=list(V=1,nu=0.002), 

G=list(G1=list(p.var, 0.1), 

G2=list(p.var, 0.1), G3=list(p.var, 0.1))) 

Poisson 

C list(G=list(G1=list(V=matrix(p.var/2),n=1), 

G2=list(V=matrix(p.var/2),n=1), 

G3=list(V=matrix(p.var/2),n=1)), R=list(V=matrix(p.var/2),n=1)) 

Censored 

Gaussian 

D list(R=list(V=0.7*p.var,nu=1), 

G=list(G1=list(0.3*p.var, 1), G2=list(0.3*p.var, 1), G3=list(0.3*p.var, 

1))) 

Threshold 

E list(R=list(V=1,nu=1), 

G=list(G1=list(V=1,nu=1,alpha.mu=0,alpha.V=1000), 

G2=list(V=1,nu=1,alpha.mu=0,alpha.V=1000), 

G3=list(V=1,nu=1,alpha.mu=0,alpha.V=1000))) 

Gaussian 

F list(R=list(V=0.6*p.var,nu=1), 

G=list(G1=list(0.4*p.var, 1), G2=list(0.4*p.var, 1), G3=list(0.4*p.var, 

1))) 

Gaussian 

1MCMCglmm prior syntax: R = the prior components for the residual variance, G = list of prior 

components for the random effect variances that included birth year (1), additive genetic effects 

(2), and maternal permanent environment effects (3), V= variance, nu= ‘measurement of belief’ 

parameter, alpha.mu = mean vector, alpha.V = covariance matrix, p.var = phenotypic variation of 

longevity. 
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Figure 3.1: Fuzzy caterpillar convergence MCMCglmm plot indicating a converged model.   

 

Longevity additive model 

On a per breed basis, the univariate additive model followed: 

𝑦 =  𝑋𝛽  +  𝑍𝑎  +  𝑍𝑚 + 𝑍𝑏 +  𝑒 

where: 

𝑦 = vector of longevity records; 

𝑋 = incidence matrix of fixed effects; 

𝛽 = vector of fixed effects to be estimated; 

𝑍 = incidence matrix for random effects; 

𝑎 = vector of additive random effect to be estimated; 

𝑚 = vector of dam’s maternal permanent environmental random effect to be estimated; 

𝑏 = vector of birth year random effect to be estimated; 

e = residual.  
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The expectation of variance for random effects was: 

𝑣𝑎𝑟 (

𝑎
𝑚
𝑏
𝑒

) =  

(

  
 

𝐴𝑎
𝜎2 0 0 0

0 𝐼𝑛𝑑𝑚
𝜎2 0 0

0 0 𝐼𝑛𝑏
𝜎2 0

0 0 0 𝐼𝑛𝑒
𝜎2
)

  
 

 

Where: 

σ2𝑎 is the additive genetic variance; 

σ2𝑚 is the dam’s maternal permanent environmental variance; 

σ2𝑏 is the birth year variance; 

σ2𝑒 is the residual variance; 

A is the inverse additive numerator matrix; and 

𝐼𝑛𝑑 and 𝐼𝑛 are identity matrices of order equal to the number of dams (nd) and to the total 

number of animals with records (n), respectively. 

 

Longevity dominance model 

On a per breed basis, the univariate dominance model followed: 

𝑦 =  𝑋𝛽  +  𝑍𝑎  +  𝑍𝑑  +  𝑍𝑚 + 𝑍𝑏 +  𝑒 

where: 

𝑦 = vector of longevity records; 

𝑋 = incidence matrix of fixed effects; 

𝛽 = vector of fixed effects to be estimated; 

𝑍 = incidence matrix for random effects; 

𝑎 = vector of additive random effect to be estimated; 
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𝑑 = vector of dominance random effect to be estimated; 

𝑚 = vector of dam’s maternal permanent environmental random effect to be estimated; 

𝑏 = vector of birth year random effect to be estimated; 

e = residual.  

The dominance model expanded the random effects so that the expectation of variance 

when dominance was included was: 

𝑣𝑎𝑟

(

 
 

𝑎
𝑑
𝑚
𝑏
𝑒 )

 
 
= 

(

 
 
 
 

𝐴𝑎
𝜎2 0 0 0 0

0 𝐷𝑑
𝜎2 0 0 0

0 0 𝐼𝑛𝑑𝑚
𝜎2 0 0

0 0 0 𝐼𝑛𝑏
𝜎2 0

0 0 0 0 𝐼𝑛𝑒
𝜎2
)

 
 
 
 

 

Where: 

σ2𝑎 is the additive genetic variance; 

σ2𝑑 is the dominance genetic variance; 

σ2𝑚 is the dam’s maternal permanent environmental variance; 

σ2𝑏 is the birth year variance; 

σ2𝑒 is the residual variance; 

A is the inverse additive numerator matrix;  

D is the inverse dominance matrix; and 

𝐼𝑛𝑑 and 𝐼𝑛 are identity matrices of order equal to the number of dams (nd) and to the total 

number of animals with records (n), respectively.  

Stayability model 

On a per breed basis, the stayability additive model followed the multivariate variance expectation 

as follows: 
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(

  
 

𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7)

  
 

=

(

 
 
 

𝑋2 𝑋2, 𝑋3 𝑋2, 𝑋4 𝑋2, 𝑋5 𝑋2, 𝑋6 𝑋2, 𝑋7
𝑋3, 𝑋2 𝑋3 𝑋3, 𝑋4 𝑋3, 𝑋4 𝑋3, 𝑋6 𝑋3, 𝑋7
𝑋4, 𝑋2 𝑋4, 𝑋3 𝑋4 𝑋4, 𝑋5 𝑋4, 𝑋6 𝑋4, 𝑋7
𝑋5, 𝑋2 𝑋5, 𝑋3 𝑋5, 𝑋4 𝑋5 𝑋5, 𝑋6 𝑋5, 𝑋7
𝑋6, 𝑋2 𝑋6, 𝑋3 𝑋6, 𝑋4 𝑋6, 𝑋5 𝑋6 𝑋6, 𝑋7
𝑋7, 𝑋2 𝑋7, 𝑋3 𝑋7, 𝑋4 𝑋7, 𝑋5 𝑋7, 𝑋6 𝑋7 )

 
 
 

(

 
 
 

𝑏2
𝑏3
𝑏4
𝑏5
𝑏6
𝑏7)

 
 
 

+

(

 
 
 

𝑍2 𝑍2, 𝑍3 𝑍2, 𝑍4 𝑍2, 𝑍5 𝑍2, 𝑍6 𝑍2, 𝑍7
𝑍3, 𝑍2 𝑍3 𝑍3, 𝑍4 𝑍3, 𝑍4 𝑍3, 𝑍6 𝑍3, 𝑍7
𝑍4, 𝑍2 𝑍4, 𝑍3 𝑍4 𝑍4, 𝑍5 𝑍4, 𝑍6 𝑍4, 𝑍7
𝑍5, 𝑍2 𝑍5, 𝑍3 𝑍5, 𝑍4 𝑍5 𝑍5, 𝑍6 𝑍5, 𝑍7
𝑍6, 𝑍2 𝑍6, 𝑍3 𝑍6, 𝑍4 𝑍6, 𝑍5 𝑍6 𝑍6, 𝑍7
𝑍7, 𝑍2 𝑍7, 𝑍3 𝑍7, 𝑍4 𝑍7, 𝑍5 𝑍7, 𝑍6 𝑍7 )

 
 
 

(

  
 

𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7)

  
 

+ 

(

 
 
 

𝑍2 𝑍2, 𝑍3 𝑍2, 𝑍4 𝑍2, 𝑍5 𝑍2, 𝑍6 𝑍2, 𝑍7
𝑍3, 𝑍2 𝑍3 𝑍3, 𝑍4 𝑍3, 𝑍4 𝑍3, 𝑍6 𝑍3, 𝑍7
𝑍4, 𝑍2 𝑍4, 𝑍3 𝑍4 𝑍4, 𝑍5 𝑍4, 𝑍6 𝑍4, 𝑍7
𝑍5, 𝑍2 𝑍5, 𝑍3 𝑍5, 𝑍4 𝑍5 𝑍5, 𝑍6 𝑍5, 𝑍7
𝑍6, 𝑍2 𝑍6, 𝑍3 𝑍6, 𝑍4 𝑍6, 𝑍5 𝑍6 𝑍6, 𝑍7
𝑍7, 𝑍2 𝑍7, 𝑍3 𝑍7, 𝑍4 𝑍7, 𝑍5 𝑍7, 𝑍6 𝑍7 )

 
 
 

(

  
 

𝑚2
𝑚3
𝑚4
𝑚5
𝑚6
𝑚7)

  
 

+

(

 
 
 

𝑍2 𝑍2, 𝑍3 𝑍2, 𝑍4 𝑍2, 𝑍5 𝑍2, 𝑍6 𝑍2, 𝑍7
𝑍3, 𝑍2 𝑍3 𝑍3, 𝑍4 𝑍3, 𝑍4 𝑍3, 𝑍6 𝑍3, 𝑍7
𝑍4, 𝑍2 𝑍4, 𝑍3 𝑍4 𝑍4, 𝑍5 𝑍4, 𝑍6 𝑍4, 𝑍7
𝑍5, 𝑍2 𝑍5, 𝑍3 𝑍5, 𝑍4 𝑍5 𝑍5, 𝑍6 𝑍5, 𝑍7
𝑍6, 𝑍2 𝑍6, 𝑍3 𝑍6, 𝑍4 𝑍6, 𝑍5 𝑍6 𝑍6, 𝑍7
𝑍7, 𝑍2 𝑍7, 𝑍3 𝑍7, 𝑍4 𝑍7, 𝑍5 𝑍7, 𝑍6 𝑍7 )

 
 
 

(

 
 
 

𝑏2
𝑏3
𝑏4
𝑏5
𝑏6
𝑏7)

 
 
 

+

(

  
 

𝑒2
𝑒3
𝑒4
𝑒5
𝑒6
𝑒7)

  
 

 

 

Where: 

𝑦2 to 𝑦7 = vector of observations for stayability 2 to stayability 7. 

𝑏2 to 𝑏7 = vector of fixed effects for stayability trait.  

𝑎2 to 𝑎7 = vector of random additive effects for stayability trait. 

𝑚2  to 𝑚7 = vector of random dam’s maternal permanent effects for stayability trait. 

𝑏2  to 𝑏7 = vector of random birth year effects for stayability trait. 

X and Z are incidence matrices relating records of stayability trait to fixed and random animal 

effects respectively. 

Example variance-covariance matrices assumed include: 
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𝑣𝑎𝑟

(

  
 

𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7)

  
 

 = 

(

 
 
 
 
 
 

𝐴𝑎2
𝜎2 𝐶𝑂𝑉𝑎2,𝑎3

𝜎2 𝐶𝑂𝑉𝑎2,𝑎4
𝜎2 𝐶𝑂𝑉𝑎2,𝑎5

𝜎2 𝐶𝑂𝑉𝑎2,𝑎6
𝜎2 𝐶𝑂𝑉𝑎2,𝑎7

𝜎2

𝐶𝑂𝑉𝑎3,𝑎2
𝜎2 𝐴𝑎3

𝜎2 𝐶𝑂𝑉𝑎3,𝑎4
𝜎2 𝐶𝑂𝑉𝑎3,𝑎5

𝜎2 𝐶𝑂𝑉𝑎3,𝑎6
𝜎2 𝐶𝑂𝑉𝑎3,𝑎7

𝜎2

𝐶𝑂𝑉𝑎4,𝑎2
𝜎2 𝐶𝑂𝑉𝑎4,𝑎3

𝜎2 𝐴𝑎4
𝜎2 𝐶𝑂𝑉𝑎4,𝑎5

𝜎2 𝐶𝑂𝑉𝑎4,𝑎6
𝜎2 𝐶𝑂𝑉𝑎4,𝑎7

𝜎2

𝐶𝑂𝑉𝑎5,𝑎2
𝜎2 𝐶𝑂𝑉𝑎5,𝑎3

𝜎2 𝐶𝑂𝑉𝑎5,𝑎4
𝜎2 𝐴𝑎5

𝜎2 𝐶𝑂𝑉𝑎5,𝑎7
𝜎2 𝐶𝑂𝑉𝑎5,𝑎7

𝜎2

𝐶𝑂𝑉𝑎6,𝑎2
𝜎2 𝐶𝑂𝑉𝑎6,𝑎3

𝜎2 𝐶𝑂𝑉𝑎6,𝑎4
𝜎2 𝐶𝑂𝑉𝑎6,𝑎5

𝜎2 𝐴𝑎6
𝜎2 𝐶𝑂𝑉𝑎6,𝑎7

𝜎2

𝐶𝑂𝑉𝑎7,𝑎2
𝜎2 𝐶𝑂𝑉𝑎7,𝑎3

𝜎2 𝐶𝑂𝑉𝑎7,𝑎4
𝜎2 𝐶𝑂𝑉𝑎7,𝑎5

𝜎2 𝐶𝑂𝑉𝑎7,𝑎6
𝜎2 𝐴𝑎7

𝜎2
)

 
 
 
 
 
 

= A, 

𝑣𝑎𝑟

(

  
 

𝑚2
𝑚3
𝑚4
𝑚5
𝑚6
𝑚7)

  
 

 = 

(

 
 
 
 
 
 

𝑍𝑚2
𝜎2 𝐶𝑂𝑉𝑚2,𝑚3

𝜎2 𝐶𝑂𝑉𝑚2,𝑚4
𝜎2 𝐶𝑂𝑉𝑚2,𝑚5

𝜎2 𝐶𝑂𝑉𝑚2,𝑚6
𝜎2 𝐶𝑂𝑉𝑚2,𝑚7

𝜎2

𝐶𝑂𝑉𝑚3,𝑚2
𝜎2 𝑍𝑚3

𝜎2 𝐶𝑂𝑉𝑚3,𝑚4
𝜎2 𝐶𝑂𝑉𝑚3,𝑚5

𝜎2 𝐶𝑂𝑉𝑚3,𝑚6
𝜎2 𝐶𝑂𝑉𝑚3,𝑚7

𝜎2

𝐶𝑂𝑉𝑚4,𝑚2
𝜎2 𝐶𝑂𝑉𝑚4,𝑚3

𝜎2 𝑍𝑚4
𝜎2 𝐶𝑂𝑉𝑚4,𝑚5

𝜎2 𝐶𝑂𝑉𝑚4,𝑚6
𝜎2 𝐶𝑂𝑉𝑚4,𝑚7

𝜎2

𝐶𝑂𝑉𝑚5,𝑚2
𝜎2 𝐶𝑂𝑉𝑚5,𝑚3

𝜎2 𝐶𝑂𝑉𝑚5,𝑚4
𝜎2 𝑍𝑚5

𝜎2 𝐶𝑂𝑉𝑚5,𝑚7
𝜎2 𝐶𝑂𝑉𝑚5,𝑚7

𝜎2

𝐶𝑂𝑉𝑚6,𝑚2
𝜎2 𝐶𝑂𝑉𝑚6,𝑚3

𝜎2 𝐶𝑂𝑉𝑚6,𝑚4
𝜎2 𝐶𝑂𝑉𝑚6,𝑚5

𝜎2 𝑍𝑚6
𝜎2 𝐶𝑂𝑉𝑚6,𝑚7

𝜎2

𝐶𝑂𝑉𝑚7,𝑚2
𝜎2 𝐶𝑂𝑉𝑚7,𝑚3

𝜎2 𝐶𝑂𝑉𝑚7,𝑚4
𝜎2 𝐶𝑂𝑉𝑚7,𝑚5

𝜎2 𝐶𝑂𝑉𝑚7,𝑚6
𝜎2 𝑍𝑚7

𝜎2
)

 
 
 
 
 
 

=MPE, 

𝑣𝑎𝑟

(

 
 
 

𝑏2
𝑏3
𝑏4
𝑏5
𝑏6
𝑏7)

 
 
 

 = 

(

 
 
 
 
 
 

𝑍𝑏2
𝜎2 𝐶𝑂𝑉𝑏2,𝑏3

𝜎2 𝐶𝑂𝑉𝑏2,𝑏4
𝜎2 𝐶𝑂𝑉𝑏2,𝑏5

𝜎2 𝐶𝑂𝑉𝑏2,𝑏6
𝜎2 𝐶𝑂𝑉𝑏2,𝑏7

𝜎2

𝐶𝑂𝑉𝑏3,𝑏2
𝜎2 𝑍𝑏3

𝜎2 𝐶𝑂𝑉𝑏3,𝑏4
𝜎2 𝐶𝑂𝑉𝑏3,𝑏5

𝜎2 𝐶𝑂𝑉𝑏3,𝑏6
𝜎2 𝐶𝑂𝑉𝑏3,𝑏7

𝜎2

𝐶𝑂𝑉𝑏4,𝑏2
𝜎2 𝐶𝑂𝑉𝑏4,𝑏3

𝜎2 𝑍𝑏4
𝜎2 𝐶𝑂𝑉𝑏4,𝑏5

𝜎2 𝐶𝑂𝑉𝑏4,𝑏6
𝜎2 𝐶𝑂𝑉𝑏4,𝑏7

𝜎2

𝐶𝑂𝑉𝑏5,𝑏2
𝜎2 𝐶𝑂𝑉𝑏5,𝑏3

𝜎2 𝐶𝑂𝑉𝑏5,𝑏4
𝜎2 𝑍𝑏5

𝜎2 𝐶𝑂𝑉𝑏5,𝑏7
𝜎2 𝐶𝑂𝑉𝑏5,𝑏7

𝜎2

𝐶𝑂𝑉𝑏6,𝑏2
𝜎2 𝐶𝑂𝑉𝑏6,𝑏3

𝜎2 𝐶𝑂𝑉𝑏6,𝑏4
𝜎2 𝐶𝑂𝑉𝑏6,𝑏5

𝜎2 𝑍𝑏6
𝜎2 𝐶𝑂𝑉𝑏6,𝑏7

𝜎2

𝐶𝑂𝑉𝑏7,𝑏2
𝜎2 𝐶𝑂𝑉𝑏7,𝑏3

𝜎2 𝐶𝑂𝑉𝑏7,𝑏4
𝜎2 𝐶𝑂𝑉𝑏7,𝑏5

𝜎2 𝐶𝑂𝑉𝑏7,𝑏6
𝜎2 𝑍𝑏7

𝜎2
)

 
 
 
 
 
 

= B, 

𝑣𝑎𝑟

(

  
 

𝑒2
𝑒3
𝑒4
𝑒5
𝑒6
𝑒7)

  
 
  =

(

 
 
 
 
 
 

𝐼𝑒2
𝜎2 𝐶𝑂𝑉𝑒2,𝑒3

𝜎2 𝐶𝑂𝑉𝑒2,𝑒4
𝜎2 𝐶𝑂𝑉𝑒2,𝑒5

𝜎2 𝐶𝑂𝑉𝑒2,𝑒6
𝜎2 𝐶𝑂𝑉𝑒2,𝑒7

𝜎2

𝐶𝑂𝑉𝑒3,𝑒2
𝜎2 𝐼𝑒3

𝜎2 𝐶𝑂𝑉𝑒3,𝑒4
𝜎2 𝐶𝑂𝑉𝑒3,𝑒5

𝜎2 𝐶𝑂𝑉𝑒3,𝑒6
𝜎2 𝐶𝑂𝑉𝑒3,𝑒7

𝜎2

𝐶𝑂𝑉𝑒4,𝑒2
𝜎2 𝐶𝑂𝑉𝑒4,𝑒3

𝜎2 𝐼𝑒4
𝜎2 𝐶𝑂𝑉𝑒4,𝑒5

𝜎2 𝐶𝑂𝑉𝑒4,𝑒6
𝜎2 𝐶𝑂𝑉𝑒4,𝑒7

𝜎2

𝐶𝑂𝑉𝑒5,𝑒2
𝜎2 𝐶𝑂𝑉𝑒5,𝑒3

𝜎2 𝐶𝑂𝑉𝑒5,𝑒4
𝜎2 𝐼𝑒5

𝜎2 𝐶𝑂𝑉𝑒5,𝑒7
𝜎2 𝐶𝑂𝑉𝑒5,𝑒7

𝜎2

𝐶𝑂𝑉𝑒6,𝑒2
𝜎2 𝐶𝑂𝑉𝑒6,𝑒3

𝜎2 𝐶𝑂𝑉𝑒6,𝑒4
𝜎2 𝐶𝑂𝑉𝑒6,𝑒5

𝜎2 𝐼𝑒6
𝜎2 𝐶𝑂𝑉𝑒6,𝑒7

𝜎2

𝐶𝑂𝑉𝑒7,𝑒2
𝜎2 𝐶𝑂𝑉𝑒7,𝑒3

𝜎2 𝐶𝑂𝑉𝑒7,𝑒4
𝜎2 𝐶𝑂𝑉𝑒7,𝑒5

𝜎2 𝐶𝑂𝑉𝑒7,𝑒6
𝜎2 𝐼𝑒7

𝜎2
)

 
 
 
 
 
 

=  𝑅 

 

Where:  

I is an identity matrix with its dimension equaling the total number of animals evaluated, 

Z are the random effect matrices with their dimensions equaling the total numbers of animals 

evaluated 
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 A is the pedigree-based relationship matrix, and the diagonal elements  𝜎𝑎
2, 𝜎𝑚

2 , 𝜎𝑏
2 and 𝜎𝑒

2 

are the genetic, permanent environmental, birth year, and residual effects variances for stayability 

1 to nth, having 𝐶𝑂𝑉𝑎2,𝑎𝑛
𝜎2 , 𝐶𝑂𝑉𝑚2,𝑚𝑛

𝜎2 , 𝐶𝑂𝑉𝑏2,𝑏𝑛
𝜎2  and  𝐶𝑂𝑉𝑒2,𝑒𝑛

𝜎2  as their corresponding covariances. 

The dominance model expanded the random effects so that the expectation of variance 

when dominance was included, represented as: 

𝑣𝑎𝑟

(

 
 
 

𝑑2
𝑑3
𝑑4
𝑑5
𝑑6
𝑑7)

 
 
 

 = 

(

 
 
 
 
 
 

𝐷𝑑2
𝜎2 𝐶𝑂𝑉𝑑2,𝑑3

𝜎2 𝐶𝑂𝑉𝑑2,𝑑4
𝜎2 𝐶𝑂𝑉𝑑2,𝑑5

𝜎2 𝐶𝑂𝑉𝑑2,𝑑6
𝜎2 𝐶𝑂𝑉𝑑2,𝑑7

𝜎2

𝐶𝑂𝑉𝑑3,𝑑2
𝜎2 𝐷𝑑3

𝜎2 𝐶𝑂𝑉𝑑3,𝑑4
𝜎2 𝐶𝑂𝑉𝑑3,𝑑5

𝜎2 𝐶𝑂𝑉𝑑3,𝑑6
𝜎2 𝐶𝑂𝑉𝑑3,𝑑7

𝜎2

𝐶𝑂𝑉𝑑4,𝑑2
𝜎2 𝐶𝑂𝑉𝑑4,𝑑3

𝜎2 𝐷𝑑4
𝜎2 𝐶𝑂𝑉𝑑4,𝑑5

𝜎2 𝐶𝑂𝑉𝑑4,𝑑6
𝜎2 𝐶𝑂𝑉𝑑4,𝑑7

𝜎2

𝐶𝑂𝑉𝑑5,𝑑2
𝜎2 𝐶𝑂𝑉𝑑5,𝑑3

𝜎2 𝐶𝑂𝑉𝑑5,𝑑4
𝜎2 𝐷𝑑5

𝜎2 𝐶𝑂𝑉𝑑5,𝑑7
𝜎2 𝐶𝑂𝑉𝑑5,𝑑7

𝜎2

𝐶𝑂𝑉𝑑6,𝑑2
𝜎2 𝐶𝑂𝑉𝑑6,𝑑3

𝜎2 𝐶𝑂𝑉𝑑6,𝑑4
𝜎2 𝐶𝑂𝑉𝑑6,𝑑5

𝜎2 𝐷𝑑6
𝜎2 𝐶𝑂𝑉𝑑6,𝑑7

𝜎2

𝐶𝑂𝑉𝑑7,𝑑2
𝜎2 𝐶𝑂𝑉𝑑7,𝑑3

𝜎2 𝐶𝑂𝑉𝑑7,𝑑4
𝜎2 𝐶𝑂𝑉𝑑7,𝑑5

𝜎2 𝐶𝑂𝑉𝑑7,𝑑6
𝜎2 𝐷𝑑7

𝜎2
)

 
 
 
 
 
 

=  𝐷 

Where D is the pedigree-based dominance matrix and the diagonal elements  𝜎𝑑𝑛
2  is the dominance 

genetic variance for trait stayability to nth, having  𝐶𝑂𝑉𝑑𝑛,𝑑𝑛
𝜎2 as its corresponding covariances. 

Stayability MCMCglmm models setup 

Multivariate model setup 

Running a multivariate stayability model with additive effects, we used a multivariate 

inverse-Wishart non-informative, weak prior, and a multivariate threshold family distribution 

repeated six times. For the multivariate model, the prior and model (Appendix C) included a 

variance of 6, nu, ‘degree of belief,’ 6, fix of 0 for our residual element, and variance of 6 and nu 

of 6 for our random terms, G1, G2, G3 and G4. The trait term in MCMCglmm lets us know we 

want to fit a multivariate mixed model, the random=~us(trait):ID+us(trait):Dam+us(trait):BYR 

specifies that MCMCglmm should fit an unstructured covariance matrix for the ID, Dam and BYR 

terms, unstructured here means we are estimating the complete 6 x 6 matrix of covariances (prior). 

The rcov=~us(trait)units specify the variance and or covariance among units (individuals). The 
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cbind term means we are exploring and combining many response variables simultaneously, i.e., 

a multivariate mixed model, which in the model were six terms, stayability two to stayability seven. 

Univariate model setup 

In addition to multivariate modeling, a univariate model focused on stayability to age 7 (0 

or 1) was used following the same model parameters as longevity, including the inverse-Wishart 

non-informative prior.  

Estimation of genetic parameters 

Variance components estimated from final models were used to calculate genetic 

parameter estimates. Heritability in the narrow sense (h2, i.e., additive only) was calculated as 

follows: 

ℎ2 =
 𝑉𝐼𝐷

𝑉𝐼𝐷 + 𝑉𝐷𝐴𝑀 + 𝑉𝐵𝑌𝑅+ 𝑉𝑅
 

where: 

𝑉𝐼𝐷 = between-individual additive genetic variance,  

𝑉𝐷𝐴𝑀  = maternal variance due to permanent environmental effects,  

𝑉𝐵𝑌𝑅  = variance due to birth year effects, and  

 𝑉𝑅 = residual variance. 

 

Heritability in the broad sense (H2, i.e., additive and dominance effects) was calculated as 

follows: 

𝐻2 =
( 𝑉ID + 𝑉ID2)

𝑉ID +  𝑉ID2 + 𝑉DAM + 𝑉𝐵𝑌𝑅+ 𝑉R
 

𝑉𝐼𝐷 =between-individual additive genetic variance, 

𝑉𝐼𝐷2 = within-individual dominance genetic variance,  
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𝑉𝐷𝐴𝑀  = maternal variance due to permanent environmental effects,  

𝑉𝐵𝑌𝑅  = variance due to birth year effects, and 

 𝑉𝑅 = residual variance. 

The codes used to calculate the heritability estimates for both longevity and stayability models 

are presented in Appendix E.  

 For multivariate analyses, genetic correlations were estimated from the variance 

component estimates as: 

𝑟𝑔 = 
𝐶𝑂𝑉𝑔(𝑋, 𝑌)

√VgX. VgY
 

where: 

• 𝑟𝑔  = genetic correlation 

• 𝐶𝑂𝑉𝑔(𝑋, 𝑌) is the covariance between traits X and Y where X and Y represent stayability 

2, 3, 4, 5, 6 and 7, respectively. 

• VgX and VgY are the variances of stayability X and Y where X and Y represent 

stayability 2, 3, 4, 5, 6 and 7, respectively. 

 

Estimated marginal means  

Estimated marginal means are averages from a linear model and they are essential in the 

analysis of experimental data for summarizing the effects of factors. The Bayesian estimated 

marginal means were calculated using the R package emmeans (Lenth, 2016).   
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CHAPTER 4: FAMILY STATISTICS 

R scripts developed 

 Four functions (Appendix B) were developed in R to understand family statistics and 

generations based on pedigree as packages with these capabilities were not found prior to project 

initiation. The first function, makePed, was created to ensure that the pedigree was in correct 

chronological order (i.e., parents came before offspring) and to make sure founding animals (i.e., 

animals with no parents known) were present and coded correctly. The second function, 

GENAssign, was written to count the numbers of generations in a pedigree following the sorting 

of the makePed() function. The third function, AssignSibs, was created to identify full and half-

siblings based on sires, dams, and those matings by creating lists of animal identifiers per sire, 

dam or sire-dam combination. The output from AssignSibs was then used in the function SibCount 

to calculate descriptive statistics of siblings and mating from the pedigree provided.  

These functions will be used to publish a package in the R CRAN directory called Sibs 

(Oribamise and Hanna, 2020). After creating these functions, additional packages with some of 

those functionalities were identified (Table 4.1).  

Table 4.1: Available pedigree packages in R and their capabilities 

 R packages 
Attributes Sibs kinship2 ggroups AGHmatrix pedigreemm pedigree Nadiv sequioa 

Siblings count ✓  ✓   ✓   

Assign family ✓ ✓      ✓ 

Pedigree 

sorting 

✓ ✓ ✓ ✓ ✓ ✓ ✓  

Generation 

assignment 

✓ ✓ ✓  ✓ ✓   

1presence of a check mark (✓) indicates function is present in that R package. 

 

Figures 4.1 to 4.6 demonstrate the uses of a given function. Even though some of these 

functionalities are already present on CRAN through packages listed, the Sibs package functions 



 

37 

are faster and more comprehensive than packages indicated in Table 4.1, particularly for large, 

extensive pedigrees (Oribamise and Hanna, 2020). 

 

 

Figure 4.1: General output of makePed() function of Sibs R . 

 

 

 

Figure 4.2: GENAssign() function of Sibs R package in action 

 

 

 

Figure 4.3: AssignSibs() function of Sibs R package in action 
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Figure 4.4: Figure showing the familial relationships in a pedigree using AssignSibs() function of 

Sibs R package 

 

 

 

Figure 4.5: SibCount() function of Sibs R package in action 
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Figure 4.6: Figure showing the descriptive statistics of a pedigree using SibCount() function of 

Sibs R package 

 

Pedigree characteristics: Families 

The across-breed pedigree used in the analyses consisted of 24,999 animals with related 

crossbreds. When sub-setting by breed, the pedigrees averaged 36 generations (Table 4.2). We did 

not prune the generations used in order to capture all effects, even though it required many 

computational demands when estimating non-additive genetic effects. Extracting familial records 

and sizes is essential to ensure that non-genetic effects are not confounded with additive genetic 

effects, especially for full-siblings, because of shared environmental, additive genetic, and non-

additive genetic effects (Munoz et al., 2014). 

Table 4.2: Pedigree summary by and across breeds 

Breeds Total animals 

Maximum number of 

generations Pedigree size 

 Sire Dam   

Across breed1 4,644 14,448 39 24,999 

Columbia 894 3,074 32 5,223 

Polypay 894 3,074 33 8,691 

Rambouillet 2,706 6,431 39 10,711 

Targhee 2,347 5,704 38 9,661 
1Across breeds population consisted of purebreds from Columbia, Polypay, Rambouillet, and 

Targhee, but the pedigree includes related crossbreds of Friesian, Dorper, Texel, Finnsheep, 

Dorset, Romanov, and a USMARC-Composite developed in the 1970s. 
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Pedigree characteristics: Siblings 

Familial statistics are similar to the suggestions of Van Tassell et al. (2003). They 

suggested that a minimum of 20% full-sibling relationships must be established in the pedigree to 

estimate non-additive genetic effects. The presence of full-siblings was well above 20% for within 

and across breed pedigrees (Table 4.3). Therefore, these full-sibling relationships will help reduce 

the confounding effects of both additive and non-additive genetic effects.  
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Table 4.3: Descriptive statistics of familial relationships for Columbia, Polypay, Rambouillet, Targhee, and Across breed pedigrees  

  Breeds 

Familial relationships Summary statistics1 Columbia Polypay Rambouillet Targhee Across breed2 

Full-siblings Count 4,482 6,984 9,152 8,134 21,222 

Percent (%) 85.81 80.35 85.44 84.19 84.89 

Mean ± SD 2.03 ± 0.18 2.05 ± 0.24 2.03 ± 0.20 2.05 ± 0.24 2.04 ± 0.27 

Min 2.00 2.00 2.00 2.00 2.00 

Max 4.00 5.00 4.00 4.00 5.00 

Paternal Half-siblings       

Count 721 1,320 1,979 1,682 3,802 

Percent (%) 13.81 15.18 18.47 17.41 15.21 

Mean ± SD 6.57 ± 5.54 5.35 ± 5.19 4.57 ± 4.31 4.81 ± 4.93 5.90 ± 5.60 

Min 2 2 2 2 2 

Max 41 47 37 57 57 

Maternal Half-siblings       

Count 1,144 1,578 2,169 1,923 5,484 

Percent (%) 21.91 18.15 20.25 19.90 21.94 

Mean ± SD 2.64 ± 0.99 2.64 ± 1.05 2.60 ± 0.95 2.64 ± 1.01 2.70 ± 1.01 

Min 2 2 2 2 2 

Max 8 11 9.00 9.00 11 
1Mean: This is the mean number of a given sibling type per sire, dam, or sire x dam combination in a given pedigree. Count: This is 

the number of individuals marked as either full-sibs or half-sibs (maternal and paternal). Percent (%): The count divided by the total 

pedigree size and multiplying by 100.  
2Across breeds population consisted of purebreds from Columbia, Polypay, Rambouillet, and Targhee, but the pedigree includes 

related crossbreds of Friesian, Dorper, Texel, Finnsheep, Dorset, Romanov, and a USMARC-Composite developed in the 1970s. 
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Summary of litter size characteristics 

The simple means and standard deviations of litter size effects are reported in Tables 4.4 

to 4.6. Longevity, regardless of ewe or ewe’s dam, ranged from 3.30 years (Polypay born a twin) 

to 4.08 years (Rambouillet born a triplet) for birth type. In terms of rearing type, longevity ranged 

from 3.11 years (Polypay born a twin, raised a single) to 4.10 years (Rambouillet born a triplet, 

raised a twin). In the same respect, stayability proportions to a given age (STAY) ranged for birth 

type between 0.08 to 0.86. On a per-year basis, these ranges were: 0.74 to 0.86 (STAY2), 0.56 to 

0.72 (STAY3), 0.39 to 0.59 (STAY4), 0.26 to 0.45 (STAY5), 0.17 to 0.30 (STAY6), and 0.08 to 

0.17 (STAY7). For rearing types, STAY proportions ranged between 0.05 to 0.88. On a per year 

basis, these ranges were: 0.65 to 0.88 (STAY2), 0.51 to 0.77 (STAY3), 0.39 to 0.62 (STAY 4), 

0.27 to 0.45 (STAY5), 0.16 to 0.33 (STAY6), and 0.05 to 0.21 (STAY7). Differences in mean 

values for STAY between breeds in each factor may indicate differences in productive and 

reproductive performance or could indicate differences in the intensities of selection practiced by 

the breeders. 

The STAY proportions are within the range of estimates from other studies. Martinez et al. 

(2005) reported higher stayability values for Hereford cows for all stayability years except STAY6 

with a mean value of 0.26. Van der Westhuizen et al. (2001) reported mean values of 0.56, 0.38, 

and 0.27 for stayability to ages four, five, and six. The proportion of beef cows that had successful 

observations to eight years of age in a study by Maiwashe et al. (2009) was 0.37. Stayability mean 

per breed per traits from our study is similar to that of Lee et al. (2015), whose means for New 

Zealand rams ranged from 0.73 for stayability to age three to 0.18 for stayability to age six. The 

choice of the sixth-year cutoff for stayability was selected because of its correlated relationship 

with herd profitability as it is the year a cow can break-even (Snelling et al., 1995) which was first 
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reported for breeding programs in 1994 Red Angus Association of America National cattle 

evaluation for the beef industry. The mean results observed for stayability demonstrates one of the 

advantages of stayability’s definition to consecutive lambing which commanded the study of the 

different breeds observed in this study regarding this trait. 
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Table 4.4: Mean and standard deviations of longevity for individual levels of birth and rearing types of ewes (TB, TR) and their dams 

(DTB, DTR) by breed and across breeds. 

  Breed 

Level Across Columbia Polypay Rambouillet Targhee 

 TB DTB TB DTB TB DTB TB DTB TB DTB 

1 3.53 ± 1.98 3.59 ± 1.98 3.40 ± 1.87 3.46 ± 1.93 3.37 ± 1.98 3.38 ± 1.98 3.88 ± 2.02 3.82 ± 2.03 3.39 ± 1.96 3.57 ± 1.96 

2 3.59 ± 2.02 3.54 ± 2.01 3.52 ± 1.98 3.54 ± 1.93 3.40 ± 2.03 3.30 ± 2.01 3.94 ± 2.05 3.93 ± 2.06 3.43 ± 1.95 3.36 ± 1.96 

3 3.54 ± 2.03 3.63 ± 2.04 3.69 ± 1.86 3.42 ± 1.99 3.37 ± 2.04 3.59 ± 2.06 3.89 ± 2.16 4.08 ± 2.04 3.38 ± 1.98 3.35 ± 1.92 
           

 TR DTR TR DTR TR DTR TR DTR TR DTR 

1 3.53 ± 1.97 3.59 ± 1.98 3.40 ± 1.87 3.46 ± 1.93 3.37 ± 1.98 3.38 ± 1.98 3.88 ± 2.02 3.82 ± 2.03 3.39 ± 1.96 3.57 ± 1.96 

3 3.46 ± 2.01 3.57 ± 2.03 3.54 ± 2.04 3.65 ± 2.04 3.11 ± 1.96 3.40 ± 2.13 3.84 ± 2.10 3.89 ± 2.03 3.32 ± 1.88 3.32 ± 1.94 

5 3.62 ± 2.02 3.53 ± 2.00 3.52 ± 1.97 3.51 ± 1.91 3.47 ± 2.05 3.28 ± 1.99 3.97 ± 2.04 3.94 ± 2.07 3.47 ± 1.97 3.37 ± 1.96 

7 3.49 ± 2.05 3.63 ± 2.10 3.87 ± 1.76 3.59 ± 1.94 3.19 ± 2.11 3.52 ± 2.14 3.81 ± 2.13 4.05 ± 2.14 3.31 ± 2.00 3.37 ± 2.06 

8 3.57 ± 2.04 3.61 ± 2.01 3.63 ± 1.89 3.36 ± 2.01 3.42 ± 2.03 3.55 ± 2.03 3.92 ± 2.17 4.10 ± 2.01 3.42 ± 1.98 3.34 ± 1.86 

9 NA NA NA NA 3.38 ± 1.93 4.00 ± 2.21 NA NA NA NA 

NA: data not available for that level of effect. 
1Code description for birth type (TB and DTB) include: 1 – born single; 2 – born twin; 3 – born triplet. Code description for rearing 

type (TR and DTR) include: 1 – born single, raised single; 3 – born twin, raised single; 5 – born twin, raised twin; 7 – born triplet, 

raised single; 8 – born triplet, raised twin; and 9 – born triplet, raised triplet.  
2Across breeds population consisted of purebreds from Columbia, Polypay, Rambouillet, and Targhee. 
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Table 4.5: Mean and standard deviations of stayability (STAY) for individual levels of birth types of ewes (TB) and their dams (DTB) 

by breed and across breeds.  

    Breed 

  Across Columbia Polypay Rambouillet Targhee 

STAY Level TB DTB TB DTB TB DTB TB DTB TB DTB 

2 1 0.81 ± 0.39 0.81 ± 0.39 0.81 ± 0.39 0.80 ± 0.40 0.80 ± 0.40 0.78 ± 0.42 0.83 ± 0.37 0.82 ± 0.39 0.79 ± 0.41 0.82 ± 0.38 

 2 0.80 ± 0.40 0.79 ± 0.41 0.80 ± 0.40 0.82 ± 0.39 0.75 ± 0.43 0.74 ± 0.44 0.83 ± 0.37 0.82 ± 0.38 0.80 ± 0.40 0.78 ± 0.41 

 3 0.78 ± 0.41 0.80 ± 0.40 0.86 ± 0.35 0.79 ± 0.41 0.74 ± 0.44 0.78 ± 0.41 0.79 ± 0.41 0.86 ± 0.35 0.80 ± 0.40 0.80 ± 0.40 

3 1 0.62 ± 0.48 0.64 ± 0.48 0.62 ± 0.48 0.62 ± 0.48 0.58 ± 0.49 0.60 ± 0.49 0.70 ± 0.46 0.69 ± 0.46 0.58 ± 0.49 0.63 ± 0.48 

 2 0.63 ± 0.48 0.62 ± 0.48 0.62 ± 0.49 0.64 ± 0.48 0.59 ± 0.49 0.56 ± 0.59 0.70 ± 0.46 0.70 ± 0.46 0.60 ± 0.49 0.58 ± 0.49 

 3 0.62 ± 0.49 0.63 ± 0.48 0.70 ± 0.46 0.59 ± 0.49 0.58 ± 0.49 0.62 ± 0.49 0.67 ± 0.47 0.72 ± 0.45 0.57 ± 0.50 0.60 ± 0.49 

4 1 0.45 ± 0.50 0.47 ± 0.50 0.42 ± 0.49 0.45 ± 0.50 0.39 ± 0.49 0.42 ± 0.49 0.55 ± 0.50 0.53 ± 0.50 0.42 ± 0.49 0.46 ± 0.50 

 2 0.48 ± 0.50 0.46 ± 0.50 0.46 ± 0.50 0.46 ± 0.50 0.44 ± 0.50 0.41 ± 0.49 0.56 ± 0.50 0.56 ± 0.50 0.43 ± 0.50 0.42 ± 0.49 

 3 0.47 ± 0.50 0.49 ± 0.50 0.49 ± 0.50 0.43 ± 0.50 0.44 ± 0.50 0.49 ± 0.50 0.56 ± 0.50 0.59 ± 0.49 0.42 ± 0.50 0.41 ± 0.49 

5 1 0.33 ± 0.47 0.34 ± 0.47 0.30 ± 0.46 0.30 ± 0.46 0.28 ± 0.45 0.30 ± 0.46 0.40 ± 0.49 0.39 ± 0.49 0.31 ± 0.46 0.35 ± 0.48 

 2 0.34 ± 0.47 0.33 ± 0.47 0.32 ± 0.47 0.33 ± 0.47 0.31 ± 0.46 0.29 ± 0.45 0.41 ± 0.49 0.41 ± 0.49 0.31 ± 0.46 0.29 ± 0.46 

 3 0.33 ± 0.47 0.34 ± 0.48 0.33 ± 0.47 0.31 ± 0.46 0.31 ± 0.46 0.34 ± 0.47 0.41 ± 0.49 0.45 ± 0.50 0.29 ± 0.45 0.26 ± 0.44 

6 1 0.21 ± 0.40 0.22 ± 0.41 0.17 ± 0.37 0.20 ± 0.40 0.19 ± 0.40 0.18 ± 0.39 0.27 ± 0.44 0.25 ± 0.44 0.19 ± 0.39 0.22 ± 0.41 

 2 0.23 ± 0.42 0.22 ± 0.41 0.21 ± 0.41 0.20 ± 0.40 0.20 ± 0.40 0.19 ± 0.39 0.28 ± 0.45 0.29 ± 0.45 0.20 ± 0.40 0.19 ± 0.39 

 3 0.22 ± 0.42 0.23 ± 0.42 0.20 ± 0.40 0.19 ± 0.39 0.20 ± 0.40 0.23 ± 0.42 0.29 ± 0.46 0.30 ± 0.46 0.21 ± 0.41 0.18 ± 0.38 

7 1 0.11 ± 0.31 0.11 ± 0.31 0.08 ± 0.27 0.09 ± 0.28 0.12 ± 0.32 0.11 ± 0.31 0.14 ± 0.34 0.13 ± 0.34 0.09 ± 0.29 0.10 ± 0.30 

 2 0.12 ± 0.32 0.11 ± 0.32 0.10 ± 0.30 0.10 ± 0.30 0.11 ± 0.32 0.10 ± 0.30 0.15 ± 0.36 0.15 ± 0.36 0.09 ± 0.29 0.09 ± 0.38 

  3 0.12 ± 0.32 0.13 ± 0.34 0.10 ± 0.30 0.11 ± 0.39 0.10 ± 0.31 0.13 ± 0.33 0.17 ± 0.38 0.17 ± 0.38 0.09 ± 0.29 0.09 ± 0.29 

NA: data not available for that level of effect. 
1Code description for birth type (TB and DTB) include: 1 – born single; 2 – born twin; 3 – born triplet.  
2Across breeds population consisted of purebreds from Columbia, Polypay, Rambouillet, and Targhee. 
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Table 4.6: Mean and standard deviations of stayability (STAY) for individual levels of rearing types of ewes (TR) and their dams 

(DTR) by breed and across breeds.  

    Breeds 

  Across Columbia Polypay Rambouillet Targhee 

STAY Level TR DTR TR DTR TR DTR TR DTR TR DTR 

2 1 0.81 ± 0.39 0.81 ± 0.39 0.81 ± 0.39 0.80 ± 0.40 0.80 ± 0.40 0.78 ± 0.42 0.83 ± 0.37 0.82 ± 0.39 0.79 ± 0.41 0.82 ± 0.38 

 3 0.77 ± 0.42 0.79 ± 0.41 0.79 ± 0.41 0.81 ± 0.39 0.71 ± 0.45 0.72 ± 0.45 0.80 ± 0.40 0.81 ± 0.39 0.79 ± 0.41 0.80 ± 0.40 

 5 0.80 ± 0.40  0.79 ± 0.40 0.81 ± 0.40  0.82 ± 0.38 0.76 ± 0.42  0.75 ± 0.43 0.84 ± 0.37  0.83 ± 0.38 0.80 ± 0.40  0.78 ± 0.41 

 7 0.76 ± 0.43 0.80 ± 0.40  0.88 ± 0.32 0.87 ± 0.34  0.67 ± 0.47 0.76 ± 0.43  0.79 ± 0.41 0.85 ± 0.36 0.75 ± 0.44 0.74 ± 0.44 

 8 0.79 ± 0.41 0.80 ± 0.40  0.85 ± 0.36 0.76 ± 0.43  0.76 ± 0.43 0.78 ± 0.41  0.78 ± 0.41 0.86 ± 0.35  0.82 ± 0.39 0.83 ± 0.38 

 9 NA NA NA NA 0.65 ± 0.43 0.81 ± 0.40 NA NA NA NA 

3 1 0.62 ± 0.48 0.64 ± 0.48 0.62 ± 0.48 0.62± 0.48 0.58 ± 0.49 0.60 ± 0.49 0.70 ± 0.46 0.69 ± 0.46 0.58 ± 0.49 0.63 ± 0.48 

 3 0.60 ± 0.49 0.62 ± 0.49 0.62 ± 0.49 0.63 ± 0.48 0.51 ± 0.50 0.58 ± 0.49 0.67 ± 0.47 0.70 ± 0.46 0.58 ± 0.49 0.56 ± 0.50 

 5 0.64 ± 0.48 0.62 ± 0.48 0.62 ± 0.49 0.64 ± 0.48 0.61 ± 0.49  0.56 ± 0.50 0.71 ± 0.45  0.70 ± 0.46 0.61 ± 0.49  0.58 ± 0.49 

 7 0.62 ± 0.49 0.62 ± 0.49 0.77 ± 0.43 0.61 ± 0.49  0.53 ± 0.50 0.57 ± 0.50  0.67 ± 0.47 0.72 ± 0.45 0.57 ± 0.50 0.60 ± 0.49 

 8 0.62 ± 0.48 0.64 ± 0.48 0.68 ± 0.47 0.59 ± 0.49  0.60 ± 0.49 0.63 ± 0.48  0.67 ± 0.47 0.72 ± 0.45  0.57 ± 0.50 0.59 ± 0.49  

 9 NA NA NA NA 0.58 ± 0.50 0.68 ± 0.47 NA NA NA NA 

4 1 0.45 ± 0.50 0.47 ± 0.50 0.42 ± 0.49 0.45 ± 0.50 0.39 ± 0.49 0.42 ± 0.49 0.55 ± 0.50 0.53 ± 0.50 0.42 ± 0.49 0.46 ± 0.50 

 3 0.46 ± 0.50 0.47 ± 0.50 0.46 ± 0.50 0.48 ± 0.50 0.39 ± 0.49 0.43 ± 0.50 0.54 ± 0.50 0.57 ± 0.50 0.43 ± 0.50 0.40 ± 0.49 

 5 0.48 ± 0.50 0.46 ± 0.50 0.46 ± 0.50 0.45 ± 0.50 0.45 ± 0.50  0.41 ± 0.49 0.56 ± 0.50  0.56 ± 0.50 0.43 ± 0.50  0.43 ± 0.49 

 7 0.47 ± 0.50 0.47 ± 0.50 0.55 ± 0.50 0.48 ± 0.50  0.40 ± 0.49 0.45 ± 0.50  0.54 ± 0.50 0.51 ± 0.50  0.42 ± 0.50 0.43 ± 0.50 

 8 0.47 ± 0.50 0.49 ± 0.50 0.47 ± 0.50 0.42 ± 0.49  0.44 ± 0.50 0.49 ± 0.50  0.57 ± 0.50 0.62 ± 0.49  0.42 ± 0.50 0.41 ± 0.49  

 9 NA NA NA NA 0.49 ± 0.50 0.56 ± 0.50 NA NA NA NA 

5 1 0.33 ± 0.47 0.34 ± 0.47 0.30 ± 0.46 0.30 ± 0.46 0.28 ± 0.45 0.30 ± 0.46 0.40 ± 0.49 0.39 ± 0.49 0.31 ± 0.46 0.35 ± 0.48 

 3 0.32 ± 0.47 0.35 ± 0.48 0.32 ± 0.47 0.37 ± 0.48 0.27 ± 0.44 0.31 ± 0.46 0.40 ± 0.49 0.41 ± 0.49 0.28 ± 0.45 0.29 ± 0.45 

 5 0.34 ± 0.48 0.33 ± 0.47 0.32 ± 0.47 0.31 ± 0.46 0.32 ± 0.47 0.29 ± 0.45 0.41 ± 0.49  0.41 ± 0.49 0.31 ± 0.46  0.30 ± 0.46 

 7 0.32 ± 0.47 0.35 ± 0.48 0.39 ± 0.49 0.31 ± 0.47  0.27 ± 0.45 0.37 ± 0.48 0.38 ± 0.49 0.43 ± 0.50  0.29 ± 0.46 0.28 ± 0.45  

 8 0.33 ± 0.47 0.34 ± 0.47 0.31 ± 0.46 0.30 ± 0.46  0.31 ± 0.46 0.32 ± 0.47 0.42 ± 0.49 0.45 ± 0.50  0.29 ± 0.45 0.26 ± 0.44 

 9 NA NA NA NA 0.32 ± 0.47 0.41 ± 0.50 NA NA NA NA 

6 1 0.21 ± 0.40 0.22 ± 0.41 0.17 ± 0.37 0.20 ± 0.40 0.19 ± 0.40 0.18 ± 0.39 0.27 ± 0.44 0.25 ± 0.44 0.19 ± 0.39 0.22 ± 0.41 

 3 0.21 ± 0.41 0.23 ± 0.42 0.23 ± 0.42 0.24 ± 0.43 0.16 ± 0.37 0.21 ± 0.41 0.28 ± 0.45 0.27 ± 0.44 0.16 ± 0.37 0.19 ± 0.40 
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Table 4.6: Mean and standard deviations of stayability (STAY) for individual levels of rearing types of ewes (TR) and their dams 

(DTR) by breed and across breeds (continued). 

    Breeds 

  Across Columbia Polypay Rambouillet Targhee 

STAY Level TR DTR TR DTR TR DTR TR DTR TR DTR 

6 5 0.23 ± 0.42 0.22 ± 0.41 0.21 ± 0.41 0.19 ± 0.39 0.21 ± 0.41  0.18 ± 0.38 0.29 ± 0.45  0.29 ± 0.46 0.21 ± 0.41  0.19 ± 0.39 

 7 0.21 ± 0.41 0.24 ± 0.43 0.20 ± 0.41 0.19 ± 0.39  0.19 ± 0.39 0.22 ± 0.42 0.26 ± 0.44 0.33 ± 0.47  0.19 ± 0.40 0.21 ± 0.41  

 8 0.23 ± 0.42 0.22 ± 0.42 0.20 ± 0.40 0.19 ± 0.39  0.21 ± 0.41 0.23 ± 0.42 0.31 ± 0.46 0.29 ± 0.45  0.22 ± 0.41 0.17 ± 0.37  

 9 NA NA NA NA 0.17 ± 0.38 0.33 ± 0.48 NA NA NA NA 

7 1 0.11 ± 0.31 0.11 ± 0.31 0.08 ± 0.27 0.09 ± 0.28 0.12 ± 0.32 0.11 ± 0.31 0.14 ± 0.34 0.13 ± 0.34 0.09 ± 0.29 0.10 ± 0.30 

 3 0.10 ± 0.30 0.11 ± 0.32 0.12 ± 0.33 0.11 ± 0.32 0.07 ± 0.25 0.14 ± 0.35 0.14 ± 0.35 0.13 ± 0.33 0.07 ± 0.25 0.08 ± 0.27 

 5 0.12 ± 0.33 0.11 ± 0.31 0.10 ± 0.30 0.09 ± 0.29 0.12 ± 0.33  0.10 ± 0.29 0.16 ± 0.36  0.16 ± 0.37 0.10 ± 0.30  0.09 ± 0.29 

 7 0.12 ± 0.32 0.15 ± 0.36 0.07 ± 0.26 0.13 ± 0.34  0.12 ± 0.33 0.14 ± 0.35 0.17 ± 0.38 0.21 ± 0.41  0.08 ± 0.28 0.12 ± 0.32  

 8 0.12 ± 0.33 0.12 ± 0.32 0.11 ± 0.32 0.10 ± 0.31  0.11 ± 0.31 0.12 ± 0.32 0.17 ± 0.38 0.16 ± 0.37  0.10 ± 0.30 0.08 ± 0.28  

 9 NA NA NA NA 0.05 ± 0.22 0.21 ± 0.41 NA NA NA NA 

NA: data not available for that level of effect. 
1Description for rearing type (TR and DTR) include: 1 – born single, raised single; 3 – born twin, raised single; 5 – born twin, raised 

twin; 7 – born triplet, raised single; 8 – born triplet, raised twin; and 9 – born triplet, raised triplet.  
2Across breeds population consisted of purebreds from Columbia, Polypay, Rambouillet, and Targhee. 
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CHAPTER 5: MODEL EXPLORATION FOR LONGEVITY USING BAYESIAN 

ANALYSIS  

Additive Bayesian model 

Priors testing 

Testing the five priors listed in Table 3.3 on the Columbia dataset, we observed that we 

could use fewer iterations, burn-in, and smaller thinning intervals while maintaining 

autocorrelation and convergence criteria with prior E (Table 5.1 and 5.2). This also meant that we 

could support faster run times. As an example, Table 5.2 demonstrates running model 1 (ewe’s 

age effect only) with different priors. Only prior E found effect sample sizes above 1,000 for all 

model parameters with lower DIC value than the other priors. Due to these comparisons in 

Columbia, prior E was used to run longevity models because it gave high effective sample sizes at 

a very low iteration time, following the directive of Gong and Flegal (2016). Other breeds and 

across breed tests supported this outcome.  

Initially, only a single MCMC chain was considered. However, the addition of the dominance 

variance-covariance structure slowed the analysis down considerably (over 600 times slower 

compared to the additive effect only model). Therefore, different number of MCMC chains were 

investigated along with varying amount of iterations, burn-in, and thinning intervals. Multiple-

chain MCMC process does not require communication between different chains during sampling 

(Gilks et al., 1995). Therefore, as long as a common posterior is found among those chains, saved 

samples can converge into a single chain for post-analysis summary. Convergence of multiple 

chains was assessed through visualization of chain posteriors including a convergence plot 

(gelman.plot function based on Gelman and Rubin (1992) statistic in the coda R package; Plummer 

et al., 2006), a cumulative quantile plot (cumuplot function of the coda R package), and a chain 
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density overlay plot (mcmc_dens_overlay function of the bayesplot R package; Gabry et al., 2019) 

per model effect. Through tests, it was found that running additive models in 10 chains of 10,000 

iterations, 1,000 burn-in and a thinning interval of 90 per chain and running additive and 

dominance models in 10 chains of 20,000 iterations, 11,000 burn-in, and a thinning interval of 90 

per chain helped conserve time and met convergence criteria (Appendix C).  

Table 5.1:  Priors investigated and their results when modeling longevity using the MCMCglmm 

R package1 
Prior 

ID 

MCMCglmm prior syntax2 Family Results 

A list(R=list(V=1,nu=0, fix=1), 

G=list(G1=list(p.var, 0.1), 

G2=list(p.var, 0.1) , 

G3=list(p.var, 0.1))) 

 

Threshold Higher run time 

Small effective sample 

sizes 

High autocorrelation values 

B list(R=list(V=1,nu=0.002), 

G=list(G1=list(p.var, 0.1), 

G2=list(p.var, 0.1), G3=list(p.var, 0.1))) 

 

Poisson Higher run time 

Small effective sample 

sizes 

High autocorrelation values 

C list(G=list(G1=list(V=matrix(p.var/2),n=1), 

G2=list(V=matrix(p.var/2),n=1), 

G3=list(V=matrix(p.var/2),n=1)), R=list(V=matrix(p.var/2),n=1)) 

Censored 

Gaussian 
Higher run time 

Small effective sample 

sizes 

High autocorrelation values 

Zero DIC value 

D list(R=list(V=0.7*p.var,nu=1), 

G=list(G1=list(0.3*p.var, 1), G2=list(0.3*p.var, 1), G3=list(0.3*p.var, 1))) 

 

Threshold High run time 

Slightly high effective 

sample sizes 

E list(R=list(V=1,nu=1), 

G=list(G1=list(V=1,nu=1,alpha.mu=0,alpha.V=1000), 

G2=list(V=1,nu=1,alpha.mu=0,alpha.V=1000), 

G3=list(V=1,nu=1,alpha.mu=0,alpha.V=1000))) 

 

Gaussian Lower run time. 

Large effective sample 

sizes 

Lower autocorrelation 

values 

F list(R=list(V=0.6*p.var,nu=1), 

G=list(G1=list(0.4*p.var, 1), G2=list(0.4*p.var, 1), G3=list(0.4*p.var, 1))) 

 

Gaussian High run time 

Slightly high effective 

sample sizes 

High autocorrelation values 

1The priors were coded using different family distributions ran in multiple chains of 10,000 iterations, burn-in of 1,000, thinning 

interval of 90, resulting in an expected effective sample size of 1,000 per prior parameter. 2MCMCglmm prior syntax: R = the 

prior components for the residual variance, G = list of prior components for the random effect variances, V= variance, nu= 

‘measurement of belief’ parameter, alpha.mu = mean vector, alpha.V = covariance matrix, p.var = variation component of 

longevity. G1= random effect of additive matrix, G2= random effect of dam’s permanent environmental variance, G3: random 

effect of birth year. 
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Table 5.2: Summary statistics of tested priors1 

  Priors 

Statistics  A B C D E F 

ESS        

 Intercept 835.6 357.7 26.38 37.19 1,000 1,193 

 AGE 1,000 114.4 63.03 55.00 890.8 1,067 

 ID 106.5 71.89 155.4 75.81 895 219.1 
 MPE 414.5 140.1 59.16 55.17 1,000 605.3 
 BYR 1,000 550.1 221.1 111.2 1,112 1,000 
 R 0 45.12 129.9 17.84 1,104 570.9 
Autocorrelation        
 Intercept 0.0891 0.2901 0.6853 0.7216 0.0418 0.0302 
 AGE -0.0059 0.7036 0.8162 0.2937 0.0572 0.0343 
 ID 0.7558 0.8202 0.6546 0.8139 0.0549 0.6403 
 MPE 0.3502 0.7035 0.4194 0.5886 0.0229 0.2453 
 BYR -0.0129 0.0602 0.2446 0.2023 -0.0537 0.0291 
 R NA 0.8638 0.5137 0.9591 -0.0500 0.1782 
DIC  8,543.95 9,147.33 0 8,321.8 9,300.73 9,289.47 
Variance estimate        
 ID 0.13 0.03 0.20 0.27 0.24 0.33 
 MPE 0.08 0.02 0.20 0.18 0.11 0.22 
 BYR 0.06 0.03 0.29 0.14 0.07 0.17 
 R 1.00 0.003 0.19 2.70 3.33 3.17 
 P 1.27 0.0053 0.88 3.29 3.75 3.89 

Runtime  15mins 16mins 16mins 17 mins 14mins 15.35mins 
1
ESS: Effective sample sizes, DIC: deviance information criterion, BYR: birth year, autocorr: autocorrelation, R: 

error variance, P: phenotypic variance, MPE: dam’s permanent environmental variance, ID: additive genetic 

variance. The priors were coded using different family distributions ran in multiple chains of 10,000 iterations, burn-

in of 1,000, thinning interval of 90, resulting in an expected effective sample size of 1,000 per prior parameter. 
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Additive and additive and dominance models summary 

The best model within individual and across breeds included fixed effects of TB, TR, DTB, 

and DTR as well as fixed covariate of AGE. A summary of the multichain model, when posterior 

saved samples were combined to a single chair are presented below (Table 5.3).  

Initial model efforts included birth year as a fixed effect rather than a random effect. Model 

fit criteria (DIC in this case) had slightly lower values when using birth year as a fixed effect, 

which provided evidence it may be appropriate in this format. Even so, including birth year as a 

random effect adjusted the additive genetic variance to be comparable to when dominance was 

included (Table 5.4) and the number of years was large (n = 30). Therefore, birth year was included 

as a random effect for all other analyses to ensure that additive genetic variance was not 

overestimated and random effects due to environmental differences across years was accounted 

for. 

Continuing with the already established multiple MCMC chains iterations, burn-in and 

thinning interval, we found out that the effective sample sizes for the fixed effects of TB, TR, DTB 

and DTR and the fixed covariate of AGE were in the acceptable ranges for both within and across 

breeds (greater than or equal to 1,000) which showed the models ran, selected and reported below 

achieved convergence according to the suggestions of Geweke (1992). The autocorrelation values 

for both the random and fixed effects were within the acceptable ranges of less than 0.10 (Hadfield, 

2019) which is shown in figure 5.1. The model reported on achieved convergence based on 

Geweke (1992) criterion suggestion. 

Additive and dominance models were run by extending prior E to include an additional 

random effect (Dominance genetic effect, Table 5.2). Iterations and burn-in when including the 
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dominance effect had to be increased to 20,000 and 11,000, respectively, to account for the extra 

random effect and meeting necessary convergence criteria. 

Table 5.3: Summary statistics by breeds using prior E for longevity when including additive 

genetic effects. 

  Breeds 

Statistics1  Across2 Columbia Polypay Rambouillet Targhee 
Effective sample size  

 Intercept 1,000 1,111 1,000 838.6 1,000 

 STM 1,000 -- -- -- -- 

 AGE 1,000 1,141 1,000 1,117.1 1,000 

 TB 1,000 1,000 1,000 1,000 1,324.7 

 TR 1,000 1,000 1,000 871.4 1,000 

 DTB 1,000 1,000 1,000 1,149.2 1,000 

 DTR 1,000 1,000 1,000 1,149.2 1,000 

 ID 1,000 1,000 1,000 877.7 1,000 

 MPE 1,000 1,000 1,000 1,000 1,172 

 BYR 867.7 1,111 979.9 1,319 1,000 

 R 1,000 1,000 1,000 822 1,000 

Autocorrelation  

 Intercept -0.0029 0.0361 -0.0210 0.0123 0.0417 

 STM 0.0325 -- -- -- -- 

 AGE 0.0179 -0.0026 0.0431 0.0142 0.0391 

 TB 0.0010 0.0366 0.0521 -0.0056 -0.0331 

 TR -0.010 0.0366 -0.0123 -0.0099 -0.0331 

 DTB -0.0018 0.0103 0.0734 -0.0699 -0.0351 

 DTR -0.0007 -0.0026 0.0003 -0.0218 -0.0235 

 ID -0.0245 0.0049 0.0117 0.0646 -0.0078 

 MPE -0.0033 -0.0531 0.0025 0.0025 -0.0798 

 BYR 0.0765 -0.0352 0.0540 -0.0281 0.0324 

 R 0.0149 0.0101 -0.0029 0.0971 -0.0020 

DIC  44,112.58 9,332.73 10,961.89 11,923.95 11,955.46 

Variance Estimate  

 ID 0.33 0.15 0.21 0.18 0.09 

 MPE 0.01 0.15 0.04 0.04 0.05 

 BYR 0.11 0.07 0.18 0.23 0.14 

 R 3.54 3.43 3.77 3.90 3.58 

 P 3.98 3.80 4.20 4.35 3.86 

Prior E was coded as list(R = list(V=1,nu=1), G = list(G1=list(V=1,nu=1,alpha.mu=0,alpha.V=1000), G2 

= list(V1,nu=1,alpha.mu=0,alpha.V=1000) , G3 = list(V1,nu=1,alpha.mu=0,alpha.V=1000))) using 

Gaussian family distribution with 10,000 iterations, burn-in of 1,000, thinning interval of 90, resulting in 

an expected effective sample size of 1,000 per breed when combined into a single chain. 1Model effects 

could include fixed effects of intercept (mean), Age of ewe (AGE), ewe birth type (TB), ewe rear type 

(TR), ewe’s dam’s birth type (DTB), ewe’s dam’s rear type (DTR) and random effects of individual ewe 

(ID) with relationship matrix (additive genetic variance), ewe’s dam ID without pedigree (maternal 

permanent environmental variance), birth year (BYR), residual (R) variance, and phenotypic variance (P). 

The DIC is the deviance information criterion. 
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Table 5.4: Example of variance component estimates when birth year was included in the 

longevity model as fixed or random in Columbia for additive (A) only or additive and dominance 

(A + D) models.1 

Effect Type Model VA VD VMPE VBYR Ve VP 

Fixed A only 0.27 -- 0.12 -- 3.35 3.74 

 A + D 0.23 0.54 0.10 -- 2.88 3.75 

 Ratio 1.17 -- 1.20 -- 1.16 0.99 

Random A only 0.25 -- 0.11 0.07 3.32 3.75 

 A + D 0.22 0.38 0.09 0.06 3.01 3.76 

 Ratio 1.14 -- 1.22 1.17 1.10 0.99 
1Prior E was used  as list(R = list(V=1,nu=1), G = list(G1=list(V=1,nu=1,alpha.mu=0,alpha.V=1000), G2 

= list(V1,nu=1,alpha.mu=0,alpha.V=1000) , G3 = list(V1,nu=1,alpha.mu=0,alpha.V=1000))) using 

Gaussian family distribution with 2,000 iterations, burn-in of 1,000, thinning interval of 10 in multiple 

chains of 10 MCMC. VA = between-individual additive genetic variance, VD = within-individual 

dominance genetic variance, VMPE = maternal variance due to permanent environmental effects, 

VBYR = Birth year variance, Ve = Error variance, VP = Phenotypic variance. The ratio is always 

variance of A only model to variance of A + D model
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Figure 5.1: Density plots of posterior estimates for fixed effects using Columbia longevity dataset when modeling additive genetic 

variance only. Density distributions should appear normal or bell-shaped to indicate proper mixing of multiple MCMC chains and 

convergence in the analysis was met.
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Estimates of genetic parameters 

Estimates of additive genetic, maternal permanent environmental, birth year and 

dominance genetic variances differed among breeds for longevity. Table 5.5 reports variance 

proportions for the genetic effects of longevity using pedigree. The phenotypic variance reported 

is the sum of the variance components estimated and provides an avenue of comparison across 

models. In general, the proportion of phenotypic variance due to additive and dominance genetic 

variances (A+D) was significantly larger than the proportion of variance due to additive (A) 

genetic variance, as evident by heritability ratios greater much than 1. Incorporating non-additive 

genetic effects within breeds reduced the proportion of phenotypic variance due to additive genetic 

effects for longevity in all cases (i.e., narrow sense heritability). 

In contrast to what has been reported in other complex traits (e.g., Muñoz et al., 2014), 

non-additive genetic effects (dominance effects) estimated from pedigree information in this study 

represented a large proportion of the total phenotypic variance for both within and across breeds 

(8.27% to 36.55%) compared to additive genetic, birth year, and maternal permanent 

environmental variances (Table 5.5, A+D models). Vitezica, Varona, and Legarra (2013) found a 

large standard error for dominance estimates, which was also seen with the highest posterior 

density (HPD) interval shown in Table 5.5. The narrow-sense heritability estimates for within 

breeds (Table 5.5) were similar to those reported for Columbia (0.06 ± 0.022) and Polypay (0.07 

± 0.021) by Holland (2018) and Brash et al. (1994) who reported a heritability estimate of 0.06 for 

Australian Dorset ewes, which validates our modeling compared to the traditional animal model 

approach used in his study. 

Other studies reported higher additive genetic variances and narrow sense heritability than 

our study. For example, in crossbred Mule ewe by Mekkawy et al. (2009) while using a univariate 
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Bayesian method with additive genetic effect fitted as random effect reported 0.27 as crossbred 

Mule ewes heritability estimate for longevity which was higher than our estimates; this could be 

due to their analysis based on their 1,500 hill ewes 1998 to 2000 three years of record. The 

heritability estimates obtained across and within breeds were lower than those obtained for Czech 

Republic’s Suffolk sheep (0.40) in their experiment using records of 20,502 ewes from 137 flocks 

and fitting birth year as a fixed effect (Milerski et al., 2018).  
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Table 5.5: Estimates of genetic parameters for Additive (A) models and Additive + Dominance (A+D) Bayesian models for Longevity 

with lower and upper confidence intervals in brackets1  

1VA = between-individual additive genetic variance, VD = within-individual dominance genetic variance, VMPE = maternal variance due to permanent environmental effects, VBYR = Birth year variance, Ve = Error variance, VP = 

Phenotypic variance, h2 = narrow-sense heritability, H2 = broad sense heritability. The ratio is always variance of A only model to variance of A + D model. 
2Across population consisted of purebreds from Columbia, Polypay, Rambouillet, and Targhee and related crossbreds of Friesian, Dorper, Texel, Finnsheep, Dorset, Romanov, and a USMARC-Composite developed in the 1970s.

Group Model VA VD VMPE VBYR Ve VP h2 H2 H2/h2 

2Across A only 0.33 (0.21, 0.45) -- 0.01 (0.0, 0.04) 0.10 (0.05, 0.18) 3.54 (3.40, 3.68) 3.98 0.09 -- -- 

 A + D  0.32 (0.21, 0.44) 0.33 (0.0, 0.90) 0.01 (0.0, 0.05) 0.11 (0.05, 0.17) 3.22 (2.62, 3.63) 3.99 0.08 0.17 2.13 

 Ratio 1.03 -- 1.00 0.90 1.09 0.99 1.13 -- -- 

Columbia A only 0.15 (0.0, 0.48) -- 0.15 (0.0, 0.31) 0.07 (0.01, 0.12) 3.43 (3.11, 3.71) 3.80 0.04 -- -- 

 A + D 0.15 (0.0, 0.49) 0.64 (0.0, 1.68) 0.13 (0.0, 0.30) 0.06 (0.09, 0.14) 2.86 (1.82, 3.68) 3.84 0.03 0.21 7.00 

 Ratio 1.00 -- 1.15 1.17 1.19 0.99 1.33 -- -- 

Polypay A only 0.21 (0.0, 0.67) -- 0.04 (0.0, 0.14) 0.18 (0.07, 0.34) 3.77 (3.50, 4.01) 4.20 0.05 -- -- 

 A + D 0.16 (0.0, 0.50) 0.82 (0.0, 1.92) 0.03 (0.0, 0.11) 0.17 (0.06, 0.31) 3.06 (2.06, 3.99) 4.24 0.04 0.24 6.00 

 Ratio 1.31 -- 1.33 1.05 1.23 0.99 1.25 -- -- 

Rambouillet A only 0.18 (0.0, 0.55) -- 0.04 (0.0, 0.14) 0.23 (0.08, 0.40) 3.90 (3.60, 4.18) 4.35 0.04 -- -- 

 A + D 0.17 (0.0, 0.57) 0.90 (0.0, 2.10) 0.03 (0.0, 0.11) 0.22 (0.09, 0.40) 3.07 (1.90, 4.05) 4.39 0.03 0.25 8.33 

 Ratio 1.05 -- 1.33 1.05 1.27 0.99 1.33 -- -- 

Targhee A only 0.09 (0.0, 0.35) -- 0.05 (0.0, 0.14) 0.14 (0.05, 0.25) 3.58 (3.36, 3.84) 3.86 0.03 -- -- 

 A + D 0.07 (0.0, 0.25) 1.44 (0.05, 2.51) 0.03 (0.0, 0.11) 0.14 (0.05, 0.25) 2.26 (1.15, 3.34) 3.94 0.02 0.38 19 

 Ratio 1.29 -- 1.67 1.00 1.58 0.97 1.5 -- -- 
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Still, they were similar to Riggio et al. (2008) findings for Scottish Blackface sheep (0.06). 

Hatcher et al. (2007) discovered that the heritability of survival in adult Merino ewes was 

negligible at two years of age, but it increased as they grew older. The heritability of survival 

increased at 0 from a two-year-old to 0.13 at five years of age. It has been observed that additive 

genetic variance can be overestimated when fitting only additive variance because this model 

captures some non-additive genetic variance (Su et al., 2012; Munoz et al., 2014); our results 

corroborate these observations as the inclusion of the dominance genetic effect resulted in a 

reduction of the other genetic variances i.e. additive, birth year and maternal permanent and error 

effects (Table 5.5), this shows that when dominance effects are included, estimation of additive 

genetic effects becomes exact. Columbia’s heritability ratio compared to the other within breeds’ 

heritability estimates shows that if consideration is put into modeling dominance effects, selection 

could improve. Our findings are novel because the sheep literature is inadequate on longevity 

studies for comparison. Still, it enforces Falconer’s and Mackay’s (1996) postulation that several 

components influence ewe’s productivity. Overall, the inclusion of dominance effects in our 

models helped to make additive effects more precise, which helped to make the ranking of 

estimated breeding values better.  

Even though it is computationally demanding to estimate non-additive genetic effects, 

nevertheless the results from this research indicate that non-additive genetic effects do contribute 

to the variance of complex traits like longevity, and the inclusion of this effect would lead to an 

improvement in genetic evaluations, even if selecting only using an additive genetic variation.   
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Estimated marginal means 

The estimated marginal means presented in Tables 5.6 and 5.7 are on a per breed basis and 

none from the across breed analysis. The highest posterior density (HPD) from the emmeans 

function is a 95% confidence region where 95% of the mass (posterior estimates) fall, regardless 

of the symmetry of the distribution (Hespanhol et al., 2019). Due to convergence criteria 

established in this study, multimodal posterior distributions per effect were avoided. Therefore, 

the mean difference and supporting HPD between two comparison groups can be used to determine 

significant differences (Hespanhol et al., 2019). Furthermore, the inclusion of additive only or 

additive and dominance genetic effects did not impact differences found among fixed effects.  

Based on this, no estimated marginal means were different from each other for birth type 

in any breed (Tables 5.6 and 5.7). It is evident that breeds often had very different estimated 

marginal means per effect, even though across breed effects are not reported. Other significant 

effects are broken down by breed. 

Columbia 

Only rearing type and age had significant differences observed among posterior estimates 

for longevity in Columbia ewes. Columbia ewes born as triplets and either raised as twins or 

singles were found to have the highest longevity, where triplets raised as singles were different 

from twins (raised as singles or twins) and singles. Furthermore, Columbia ewes that came from 

first-time dams had significantly lower longevity than other Columbia ewes with experienced 

dams (i.e., 2nd or higher lambing event). Columbia ewes from dams that were 2 or older had an 

increasing trend of longevity but were statistically the same. The only exception was ewes with 7-

year-old dams, which had higher longevity estimates compared to ewes with 2, 3, or 4-year-old 

dams. 
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Polypay 

 Rearing type, ewes’ dams’ type of birth, ewes’ dams’ type of rearing, and age had 

significant differences observed among posterior estimates for longevity in Polypay ewes. Polypay 

ewes born as singles and weaned as single and those born as twin and raised as twin had the highest 

longevity values statistically recorded where ewes born as twin and raised as single or born as 

single and raised as twin, ewes born as twin and raised as twin, ewes born triplet raised as twin 

and ewes born as a triplet and raised as triplet were different from those born triplet and raised as 

single. In addition, ewes’ dams’ born as triplets had the highest value for longevity and they were 

statistically different from those born as singles and twins.  

Also, ewes’ born as a triplet and raised as triplet had the highest recorded value for 

longevity and were different statistically from those born as triplet raised as single and those born 

as a triplet and raised as a twin. Additionally, Polypay ewes that came from fifth-time dams had 

lower longevity in comparison to other lambing age which was surprising as it did not follow the 

trend observed in Columbia ewes. 

Rambouillet    

Only dam’s age of ewes lambing had a significant impact on longevity for Rambouillet 

ewes. Rambouillet ewes that came from third-time dams had lower longevity in comparison to 

dams that lambed for the first time. Rambouillet ewes from dams that were 2 or older had a 

decreasing trend of longevity but were statistically the same. 

Targhee 

Only rearing type and age had significant differences observed among posterior estimates 

for longevity in Targhee ewes. Ewes that were born as a triplet and raised as singles had the lowest 

recorded value for longevity while those born as single and weaned as single had the highest 
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longevity value recorded; the other rearing groups were not significantly different from each other. 

Furthermore, ewes that came from the first time of lambing had lower longevity value than those 

from second and older lambing ages that had an increasing trend of longevity but were statistically 

the same. 

Not a lot has been reported for how longevity is affected by ewes type of birth, ewes type 

of rearing, ewes dams’ type of birth, ewes’ dams’ type of rearing, and age of dam at lambing in 

Columbia, Polypay, Rambouillet, and Targhee ewes but the findings we have reported here 

suggests that ewes’ type of birth does not affect longevity in any of the breeds but ewes type of 

rearing affects longevity in Columbia, Polypay and Targhee ewes which implies that producers 

should pay more attention to record-keeping and how the system of rearing undertaken in 

Columbia, Polypay, and Targhee ewes especially as this could ultimately affect longevity. 

Additionally, ewes’ dams’ type of birth only affected longevity in Polypay ewes but did not have 

any impact on longevity in Columbia, Rambouillet, and Targhee ewes which suggest that longevity 

in Polypay ewes will be impacted by how their dams’ were lambed so producers should pay more 

attention to how their ewes were lambed in Polypay breed.  

Conclusively, producers should pay more attention to how the dams of their ewes were 

reared and at the age, those dams lambed as they ultimately affect longevity in Columbia, Polypay, 

Rambouillet, and Targhee ewes, and depending on production goals, dam age may need to be a 

factor for selecting females with the goal of increased long-term profitability.
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Table 5.6: Estimated marginal means and highest posterior density (HPD; lowest and highest in parentheses) for type of birth (TB), 

type of rearing (TR), ewe’s dam’s type of birth (DTB), ewe’s dam’s type of rearing (DTR) and ewe’s dam’s age (AGE) within breeds 

when only including additive genetic variance in the model. 

  Breeds 

Effect Level Columbia Polypay Rambouillet Targhee 

TB 1 3.50 (3.26, 3.71) 3.57 (3.33, 3.92) 3.92 (3.63, 4.18) 3.53 (3.31, 3.77)  
2 3.48 (3.28, 3.68) 3.44 (3.22, 3.68) 3.95 (3.72, 4.20) 3.42 (3.21, 3.62)  
3 3.66 (3.37, 3.96) 3.40 (3.08, 3.66) 3.88 (3.55, 4.22) 3.34 (3.00, 3.66) 

TR 1 3.50 (3.26, 3.71)b 3.57 (3.33, 3.92)a 3.92 (3.63, 4.18) 3.53 (3.31, 3.77)a  
3 3.47 (3.17, 3.73)b 3.35 (3.02, 3.64)a,b 3.85 (3.56, 4.15) 3.39 (3.14, 3.66)a,b  
5 3.49 (3.32, 3.69)b 3.53 (3.34, 3.77)a 4.05 (3.79, 4.29) 3.45 (3.25, 3.67)a,b  
7 3.79 (3.34, 4.28)a 3.25 (2.88, 3.67)b 3.89 (3.41, 4.37) 3.30 (2.84, 3.79)b  
8  3.56 (3.24, 3.87)a,b 3.46 (3.22, 3.73)a,b 3.88 (3.53, 4.19) 3.38 (3.04, 3.74)a,b 

 9 NA 3.49 (3.00, 3.94)a,b NA NA 

DTB 1 3.46 (3.23, 3.72) 3.47 (3.16, 3.85)a,b 3.85 (3.54, 4.13) 3.65 (3.40, 3.88)  
2 3.57 (3.31, 3.76) 3.45 (3.12, 3.72)b 3.90 (3.60, 4.14) 3.44 (3.21, 3.67)  
3 3.47 (3.11, 3.81) 3.82 (3.48, 4.20)a 3.99 (3.64, 4.37) 3.50 (3.17, 3.88) 

DTR 1 3.51 (3.29, 3.72) 3.37 (3.04, 3.62)b,c 3.84 (3.60, 4.13) 3.55 (3.31, 3.76)  
3 3.70 (3.43, 3.96) 3.41 (3.09, 3.71)b,c 3.87 (3.58, 4.15) 3.34 (3.10, 3.60)  
5 3.54 (3.35, 3.72) 3.26 (3.05, 3.49)c 3.92 (3.69, 4.18) 3.33 (3.14, 3.55)  
7 3.59 (3.05, 4.11) 3.60 (3.19, 3.98)b 4.00 (3.52, 4.48) 3.43 (2.96, 3.92)  
8 3.45 (3.11, 3.76) 3.54 (3.32, 3.84)b 3.98 (3.65, 4.33) 3.37 (2.99, 3.74) 

 9 NA 4.00 (3.47, 4.53)a NA NA 

AGE 1 3.04 (2.70, 3.34)c 3.53 (3.28, 3.90)a,b 4.05 (3.74, 4.37)a 3.19 (2.87, 3.51)b 

 2 3.47 (3.21, 3.72)b 3.63 (3.32, 3.96)a 3.76 (3.48, 4.05)a,b 3.49 (3.25, 3.73)a 

 3 3.42 (3.14, 3.67)b 3.62 (3.28, 3.94)a,b 3.72 (3.38, 4.02)b 3.63 (3.35, 3.90)a 

 4 3.56 (3.28, 3.85)a,b 3.79 (3.45, 4.14)a 4.01 (3.65, 4.32)a,b 3.46 (3.18, 3.77)a,b 

 5 3.59 (3.26, 3.92)a,b 3.30 (2.92, 3.70)b 3.95 (3.58, 4.27)a,b 3.59 (3.27, 3.89)a 

 6 3.54 (3.17, 3.82)a,b 3.62 (3.23, 4.03)a,b 3.93 (3.54, 4.30)a,b 3.72 (3.42, 4.07)a 
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Table 5.6: Estimated marginal means and highest posterior density (HPD; lowest and highest in parentheses) for type of birth (TB), 

type of rearing (TR), ewe’s dam’s type of birth (DTB), ewe’s dam’s type of rearing (DTR) and ewe’s dam’s age (AGE) within breeds 

when only including additive genetic variance in the model (continued). 
  Breeds 

Effect Level Columbia Polypay Rambouillet Targhee 

AGE 7 3.86 (3.50, 4.25)a 3.56 (3.07, 4.01)a,b 3.98 (3.60, 4.42)a,b 3.60 (3.23, 3.96)a 
1Levels: USSES code description for rearing type (TR and DTR) include: 0 – born a quadruplet or quintuplet, weaned any number, minor 

category; 1 – born single, weaned single; 2 – born single, raised orphan; 3 – born twin, raised single (major) or born single, raised twin (minor); 4 

– born twin, raised orphan; 5 – born twin, raised twin; 6 – born triplet, raised orphan; 7 – born triplet, raised single; 8 – born triplet, raised twin; 

and 9 – born triplet raised triplet.NA: Not available. 
a,b,cMeans with different superscripts have evidence based on HPD that they differ (P < 0.05)
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Table 5.7: Estimated marginal means and highest posterior density (HPD; lowest and highest in parentheses) for type of birth (TB), 

type of rearing (TR), ewe’s dam’s type of birth (DTB), ewe’s dam’s type of rearing (DTR) and ewe’s dam’s age (AGE) within breeds 

when only including additive and dominance genetic variance in the model. 

 

  Breeds 

Effect Level Columbia Polypay Rambouillet Targhee 

TB 1 3.50 (3.30, 3.71) 3.58 (3.28, 3.88) 3.91 (3.66, 4.19) 3.51 (3.29, 3.73)  
2 3.48 (3.29, 3.69) 3.44 (3.19, 3.69) 3.94 (3.69, 4.19) 3.40 (3.20, 3.62)  
3 3.68 (3.35, 3.95)  3.40 (3.12, 3.67) 3.87 (3.55, 4.22) 3.31 (3.01, 3.64) 

TR 1 3.50 (3.30, 3.71)b 3.58 (3.28, 3.88)a 3.91 (3.66, 4.19) 3.51 (3.29, 3.73)a  
3 3.46 (3.16, 3.73)b 3.35 (3.03, 3.69)a,b 3.84 (3.54, 4.15) 3.37 (3.12, 3.64)a,b  
5 3.50 (3.29, 3.68)b 3.53 (3.30, 3.76)a 4.03 (3.81, 4.28) 3.43 (3.23, 3.64)a,b  
7 3.80 (3.29, 4.28)a 3.24 (2.88, 3.65)b 3.89 (3.41, 4.38) 3.25 (2.76, 3.71)b  
8  3.58 (3.25, 3.92)a,b 3.46 (3.18, 3.71)a,b 3.86 (3.51, 4.17) 3.38 (3.03, 3.70)a,b 

 9 NA 3.48 (3.00, 4.01)a,b NA NA 

DTB 1 3.47 (3.24, 3.70) 3.48 (3.13, 3.82)a,b 3.85 (3.57, 4.14) 3.63 (3.39, 3.85)  
2 3.57 (3.35, 3.78) 3.45 (3.13, 3.76)b 3.90 (3.63, 4.17) 3.41 (3.17, 3.63)  
3 3.47 (3.11, 3.78) 3.82 (3.48, 4.19)a 3.99 (3.63, 4.35) 3.49 (3.17, 3.84) 

DTR 1 3.53 (3.28, 3.71) 3.36 (3.05, 3.63)b 3.84 (3.58, 4.10) 3.52 (3.30, 3.73)  
3 3.71 (3.41, 3.96) 3.40 (3.09, 3.72)b 3.87 (3.55, 4.15) 3.31 (3.07, 3.57)  
5 3.53 (3.37, 3.71) 3.26 (3.05, 3.48)b 3.92 (3.68, 4.15) 3.31 (3.12, 3.51)  
7 3.60 (3.10, 4.20) 3.62 (3.24, 4.04)a,b 4.00 (3.52, 4.53) 3.44 (2.96, 3.92)  
8 3.44 (3.12, 3.75) 3.53 (3.26, 3.80)b 3.97 (3.64, 4.30) 3.34 (2.96, 3.65) 

 9 NA 3.99 (3.50, 4.57)a NA NA 

AGE 1 3.03 (2.75, 3.37)c 3.55 (3.21, 3.83)a,b 4.06 (3.74, 4.37)a 3.17 (2.88, 3.52)b 

 2 3.47 (3.21, 3.70)b 3.64 (3.29, 3.94)a 3.78 (3.49, 4.06)a,b 3.47 (3.21, 3.71)a,b 

 3 3.42 (3.17, 3.68)b 3.61 (3.27, 3.98)a,b 3.72 (3.40, 4.05)b 3.62 (3.33, 3.88)a 

 4 3.55 (3.29, 3.83)a,b 3.80 (3.44, 4.16)a 4.02 (3.69, 4.33)a,b 3.47 (3.16, 3.74)a,b 

 5 3.60 (3.31, 3.90)a,b 3.28 (2.87, 3.64)b 3.93 (3.56, 4.26)a,b 3.56 (3.20, 3.85)a 
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Table 5.7: Estimated marginal means and highest posterior density (HPD; lowest and highest in parentheses) for type of birth (TB), 

type of rearing (TR), ewe’s dam’s type of birth (DTB), ewe’s dam’s type of rearing (DTR) and ewe’s dam’s age (AGE) within breeds 

when only including additive and dominance genetic variance in the model (continued). 

  Breeds 

Effect Level Columbia Polypay Rambouillet Targhee 

AGE 6 3.54 (3.23, 3.87)a,b 3.63 (3.24, 4.06)a,b 3.92 (3.55, 4.29)a,b 3.69 (3.33, 3.99)a 

 7 3.86 (3.50, 4.25)a 3.56 (3.07, 4.01)a,b 3.98 (3.60, 4.42)a,b 3.60 (3.23, 3.96)a 
1Levels: USSES code description for rearing type (TR and DTR) include: 0 – born a quadruplet or quintuplet, weaned any number, minor 

category; 1 – born single, weaned single; 2 – born single, raised orphan; 3 – born twin, raised single (major) or born single, raised twin (minor); 4 

– born twin, raised orphan; 5 – born twin, raised twin; 6 – born triplet, raised orphan; 7 – born triplet, raised single; 8 – born triplet, raised twin; 

and 9 – born triplet raised triplet.NA: Not available. 
a,b,cMeans with different superscripts have evidence based on HPD that they differ (P < 0.05)
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CHAPTER 6: MODEL EXPLORATION FOR STAYABILITY USING BAYESIAN 

ANALYSIS 

Priors used  

Building off of modeling procedures described for longevity in Chapter 5, the priors used 

to run multivariate and univariate stayability analyses are shown in Table 6.1. The idea behind 

using different priors for stayability and longevity stemmed from the fact that they are different 

traits following different family distributions. The family distribution used to run the models was 

the “threshold” family distribution, this is because the response variable is binary (successful 

lambing (1) after the defined stayability cutoff date (e.g., seven years) or failure (0), not lambing 

in the designated stayability cutoff date). 

Table 6.1: Priors used to run stayability 

Model Prior Family Type of run 

Additive list(R=list(V=diag(6),nu=6, 

fix=0),G=list(G1=list(V=diag(6), 

nu=6), G2=list(V=diag(6), nu=6), 

G3=list(V=diag(6), nu=6))) 

Threshold Multivariate 

Additive list(G=list(G1=list(V=1,nu=1000), 

G3=list(V=1,nu=1000), 

G3=list(V=1,nu=1000)),R = list(V 

=1, nu =1000)) 

Threshold Univariate 

Dominance list(R=list(V=diag(6),nu=6, 

fix=0),G=list(G1=list(V=diag(6), 

nu=6), G2=list(V=diag(6), nu=6), 

G3=list(V=diag(6), nu=6), 

G4=list(V=diag(6), nu=6))) 

Threshold Multivariate 

Dominance list(G=list(G1=list(V=1,nu=1000), 

G3=list(V=1,nu=1000), 

G3=list(V=1,nu=1000), 

G4=list(V=1,nu=1000)),R = list(V 

=1, nu =1000)) 

Threshold Univariate 
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Summary of additive (A) and additive and dominance stayability Bayesian models 

Models were run in multivariate and univariate analyses using MCMCglmm to explore the 

within and across breed datasets. All models followed effects outlined for longevity in Chapter 5, 

including random effects of ID with pedigree (additive genetic variance), birth year effect (BYR), 

and maternal permanent environment (MPE). These models also used the same chain and iteration 

criteria previously discussed for longevity (additive genetic only model: 10 chains, 10,000 

iterations, 1,000 burn-in, and 90 thinning interval; additive and dominance genetic model: 10 

chains, 20,000 iterations, 11,000 burn-in, and 90 thinning interval). The MCMCglmm summary 

presented below is for stayability to age seven (7) only (Tables 6.2 and 6.3). The R codes used to 

run stayability models are presented in Appendix B. The effective sample sizes for all fixed and 

random effects exceeded the recommended value of 1000 and the autocorrelation values for both 

the random and fixed effects were less than 0.1. Figures 6.1 and 6.2 provide examples showing 

that all chains achieved convergence via the criterion of Geweke (1992).  
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Table 6.2: Summary statistics of MCMCglmm models by breeds for univariate additive 

stayability to age seven models. 

  Breeds 

Statistics1  Across2 Columbia Polypay Rambouillet Targhee 

Effective sample size  

 Intercept 1,064.6 1,000 1,000 1,000 874.7 

 STM 1,000 -- -- -- -- 

 AGE 1,000 1,000 1,000 1,000 910.3 

 TB 1,000 1,000 1,261.7 1,000 871.7 

 TR 1,000 1,000 892.8 1,000 1,000 

 DTB 1,000 1,151 1,000 1,000 1,092.9 

 DTR 1,000 1,000 1,000 1,026 1,000 

 ID 1,000 843.1 1,000 1,000 1,000 

 MPE 1,148 1,000 1,000 1,000 1,000 

 BYR 648.5 1,000 1,000 1,000 1,000 

 R 1,000 839.8 1,000 1,000 1,000 

Autocorrelation  

 Intercept 0.0337 -0.0041 -0.0173 -0.0023 0.0151 

 STM 0.0372 -- -- -- -- 

 AGE 0.0133 -0.0232 -0.0069 -0.0351 0.0071 

 TB 0.0264 -0.0191 0.0547 0.0245 -0.0011 

 TR 0.0025 0.0373 -0.0401 0.0200 -0.0231 

 DTB -0.0020 -0.0085 0.0122 -0.0461 -0.0449 

 DTR -0.0113 -0.0046 0.0306 -0.0126 -0.0128 

 ID 0.0163 0.0846 <0.0001 -0.0060 0.0007 

 MPE -0.0023 -0.0364 -0.0047 -0.0413 -0.0127 

 BYR 0.0499 0.0071 0.0324 -0.0100 -0.0084 

 R -0.0184 0.0484 -0.0415 -0.0251 -0.0026 

DIC  6,698.27 1,255.46 1,641.1 2,177 1,562.71 
Variance Estimate  

 ID 1.01 1.00 1.01 1.01 1.00 

 MPE 0.92 0.99 0.97 0.96 0.99 

 BYR 0.98 0.98 0.99 0.99 0.98 

 R 1.14 1.03 1.05 1.06 1.05 

 P 4.05 4.00 4.02 4.02 4.02 
The models were ran with univariate threshold prior coded as list(G=list(G1=list(V=1,nu=1000), 

G3=list(V=1,nu=1000), G3=list(V=1,nu=1000)),R = list(V =1, nu =1000)) using 10,000 iterations, burn-

in of 1,000, thinning interval of 90, resulting in an expected effective sample size of 1,000 per breed 

parameter. 1Model effects could include fixed effects of intercept (mean), Age of ewe (AGE), ewe birth 

type (TB), ewe rear type (TR), ewe’s dam’s birth type (DTB), ewe’s dam’s rear type (DTR) and random 

effects of individual ewe (ID) with relationship matrix (additive genetic variance), ewe’s dam ID without 

pedigree (maternal permanent environmental variance), birth year (BYR), residual (R) variance, and 

phenotypic variance (P). The DIC is the deviance information criterion. 2Across population consisted 

of purebreds from Columbia, Polypay, Rambouillet, and Targhee and related crossbreds of 

Friesian, Dorper, Texel, Finnsheep, Dorset, Romanov, and a USMARC-Composite developed in 

the 1970s. 
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Figure 6.1: Density plots of posterior estimates for fixed effects using Columbia longevity 

dataset when modeling additive genetic variance only using a multiple chain MCMC model. 

Density distributions should appear normal or bell-shaped to indicate proper mixing and 

convergence in the analysis was met. 

 

 

 



 

70 

Summary of additive + dominance stayability univariate Bayesian models 

Table 6.3: Summary statistics of additive and dominance univariate stayability to age seven 

models 

  Breeds 

Statistics1  Across2 Columbia Polypay Rambouillet Targhee 

Effective sample size  

 Intercept 1,000 1,000 1,000 1,000 1,000 

 STM 1,000 -- -- -- -- 

 AGE 1,076 1,000 1,000 1,230 1,072.6 

 TB 1,139 1,141.7 910.9 1,000 959.9 

 TR 1,000 1,000 1,000 1,000 1,000 

 DTB 1,000 891.5 794.2 1,175 1,000 

 DTR 1,000 1,000 1,000 1,000 1,000 

 ID 1,000 1,000 1,000 1,000 1,000 

 ID2 1,000 1,000 1,000 1,000 1,000 

 MPE 1,000 1,000 1,000 1,000 1,000 

 BYR 1,000 1,000 1,000 1,000 1,000 

 R 1,000 1,000 1,000 783.7 1,000 

Autocorrelation  

 Intercept -0.0008 0.0026 -0.0131 -0.0156 0.0235 

 STM -0.0764 -- -- -- -- 

 AGE -0.0210 0.0568 0.0001 -0.0495 0.0222 

 TB -0.0652 -0.0666 -0.0081 -0.0011 0.0004 

 TR 0.0224 0.0187 0.0256 0.0126 0.0499 

 DTB 0.0052 0.0568 0.0146 0.0458 -0.0069 

 DTR 0.0140 -0.0038 0.0376 -0.0324 0.0002 

 ID 0.0275 -0.0035 -0.0362 0.0114 -0.0089 

 ID2 0.0135 -0.0418 -0.0432 0.0217 0.0342 

 MPE 0.0201 0.0341 -0.0361 -0.0211 0.0129 

 BYR 0.0212 -0.0049 0.0103 -0.0223 0.0349 

 R 0.0265 0.0214 -0.0157 -0.0030 -0.0207 

DIC  5,875.81 1,129.35 1,478.16 1,973.84 1,403.68 
Variance Estimate  

 ID 0.97 1.00 1.00 1.00 0.99 

 ID2 1.06 1.02 1.02 1.03 1.02 

 MPE 0.95 1.00 0.98 0.97 0.99 

 BYR 0.98 0.98 0.99 0.99 0.98 

 R 1.07 1.01 1.03 1.05 1.02 

 P 5.03 5.01 5.02 5.04 5.00 
The models were ran with univariate threshold prior coded as list(G=list(G1=list(V=1,nu=1000), G3=list(V=1,nu=1000), G3=list(V=1,nu=1000) 

, G3=list(V=1,nu=1000)),R = list(V =1, nu =1000)) using 20,000 iterations, burn-in of 11,000, thinning interval of 90, resulting in an expected 

effective sample size of 1,000 per breed parameter. 1Model effects could include fixed effects of intercept (mean), Age of ewe (AGE), ewe birth 
type (TB), ewe rear type (TR), ewe’s dam’s birth type (DTB), ewe’s dam’s rear type (DTR) and random effects of individual ewe (ID) with 

relationship matrix (additive genetic variance), individual ewe (ID2) with relationship matrix (dominance genetic variance), ewe’s dam ID 

without pedigree (maternal permanent environmental variance), birth year (BYR), residual (R) variance, and phenotypic variance (P). The DIC is 
the deviance information criterion. 2Across population consisted of purebreds from Columbia, Polypay, Rambouillet, and Targhee and related 

crossbreds of Friesian, Dorper, Texel, Finnsheep, Dorset, Romanov, and a USMARC-Composite developed in the 1970s. 



Figure 6.2: Density plots of posterior estimates for fixed effects using Columbia longevity dataset 

when modeling additive genetic variance and dominance genetic variance when using a multiple 

MCMC chain. Density distributions should appear normal or bell-shaped to indicate proper mixing 

and convergence in the analysis was met.  

Genetic parameters 

Estimates of heritability for models 

Estimates of heritability for within breeds analyses using a multivariate Bayesian model 

were lower for Polypay ewe stayability to different ages than other breeds (Table 6.4). Estimates 

for stayability across breeds for the dominance model were not estimated because of computational 

demands. The values obtained for A models are lower than those reported by Martinez et al. 

(2005), where a heritability estimate of 0.30 ± 0.14 for the ability of a female to remain in the flock 

until six years of age was observed. These estimates recorded are similar to that of Borg et al. 

(2009) in their single-trait evaluations experiment for stayability, which ranged from 0.00 to 0.09 

for stayability 5|2 to 6|5. These estimates of stayability were equally lower than those recorded for 
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Columbia, Polypay, Rambouillet, and Targhee by Holland (2018). Conington et al. (2001) reported 

a heritability estimate of 0.08 similar to our additive model estimates for removal from the flock 

in Scottish Blackface hill sheep. Brash et al. (1994) reported a heritability estimate of 0.06 for age 

at last breeding in an Australian Dorset flock. These estimates for heritability for the additive 

model are similar to that of Lee et al. (2015) when they reported heritability estimates for 

commercial New Zealand flock for STAY3 to STAY6 ranging from 0.048 to 0.082. Lower 

heritability values have equally been reported for stayability in other species; Hudson and Van 

Vleck (1981) reported heritability estimates ranging from 0.02 to 0.05 using a linear model in 

Holstein cows for stayability of 36 to 84 months of age, respectively. Doormaal et al. (1984) 

reported low heritability estimates for stayability to 42, 54, 66, and 78 months of total life for 

Canadian Holsteins which were 0.051, 0.040, 0.045, and 0.059, respectively. Stayability in Large 

White and Landrace sows evaluated by Lopez-Serrano et al. (2000) were reported to be 0.07 and 

0.11 before culling. Estimates of heritability for additive univariate models for stayability to age 

seven (7) were similar to those reported by Holland (2018) for STAY6 for within breeds and across 

breeds (Table 6.5). The heritability estimates reported for additive models (Table 6.5) are similar 

to those reported by Quieroz et al. (2007) in their experiment on Caracu cows whose heritability 

estimates were 0.28, 0.27, and 0.23 for stayability to 48, 60, and 72 months, respectively. 

Heritability estimates of a similar proportion to those reported in this present study were observed 

for beef cattle; in Nellore cattle, Van Melis et al. (2007) reported a heritability estimate of 0.28 for 

stayability to age seven (Table 6.5). Estimates of heritability for dominance multivariate models 

are not yet reported. Inclusion of dominance genetic effects tends to increase the heritability values 

(Table 6.5), which supports the assertion that including non-additive genetic effects in genetic 

evaluation models could improve EBVs and heritability and ultimately lead to better selection 
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decisions (Aliloo et al. 2016). This shows that stayability is a heritable trait, and when dominance 

effects are included in the models, the heritability estimates increased (Table 6.5). 

Table 6.4: Estimates of heritability and their standard error for an additive model (A) for 

stayability 

  Stayability to age 

Breed Model 2 3 4 5 6 7 

Columbia A 0.02 ± 

0.01 

0.01 ± 

0.008 

0.02 ± 

0.008 

0.01 ± 

0.006 

0.02 ± 

0.01 

0.03 ± 

0.01 

Polypay A 0.02 ± 

0.01 

0.01 ± 

0.01 

0.009 ± 

0.007 

0.009 ± 

0.005 

0.02 ± 

0.01 

0.01 ± 

0.01 

Rambouillet A 0.03 ± 

0.01 

0.01 ± 

0.007 

0.007 ± 

0.004 

0.01 ± 

0.007 

0.01 ± 

0.009 

0.02 ± 

0.01 

Targhee A 0.03 ± 

0.01 

0.01 ± 

0.009 

0.009 ± 

0.005 

0.009 ± 

0.004 

0.01 ± 

0.007 

0.03 ± 

0.02 
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Table 6.5: Estimates of genetic parameters for Additive (A) models and Additive + Dominance (A+D) Bayesian models for Univariate 

stayability models with lower and upper confidence intervals in brackets1 

 

 

 

 

 

 

 

 

 

 

 

 

2Across population consisted of purebreds from Columbia, Polypay, Rambouillet, and Targhee and related crossbreds of Friesian, 

Dorper, Texel, Finnsheep, Dorset, Romanov, and a USMARC-Composite developed in the 1970s

Group Model VA VD VMPE VBYR Ve VP h2 H2 H2/h2 

Across2 A only 1.01 (0.93, 1.11) -- 0.92 (0.84, 0.99) 0.98 (0.90, 1.07) 1.14 (1.05, 1.25) 4.05 0.25 -- -- 

 A + D  0.99 (0.91, 1.08) 0.99 (0.91, 1.07) 0.95 (0.88, 1.03) 0.98 (0.91, 1.08) 1.12 (1.08, 1.22) 5.03 0.20 0.39 1.95 

 Ratio 1.02 -- 0.97 1.00 1.01 0.80 1.25 -- -- 

Columbia A only 1.00 (0.92, 1.09) -- 0.99 (0.91, 1.08) 0.98 (0.91, 1.07) 1.03 (0.93, 1.11) 4.00 0.25 -- -- 

 A + D 1.00 (0.91, 1.08) 1.02 (0.93, 1.11) 1.00 (0.92, 1.09) 0.98 (0.91, 1.07) 1.01 (0.93, 1.10) 5.01 0.19 0.40 2.11 

 Ratio 1.00 -- 0.99 1.00 1.02 0.79 1.31 -- -- 

Polypay A only 1.01 (0.93, 1.10) -- 0.97 (0.89, 1.06) 0.99 (0.89, 1.07) 1.06 (0.97, 1.15) 4.03 0.25 -- -- 

 A + D 1.00 (0.92, 1.09) 1.01 (0.92, 1.09) 0.98 (0.90, 1.07) 0.98 (0.91, 1.08) 1.05 (0.95, 1.14) 5.02 0.19 0.40 2.11 

 Ratio 1.01 -- 0.98 1.01 1.00 0.81 1.25 -- -- 

Rambouillet A only 1.01 (0.93, 1.10) -- 0.96 (0.88, 1.05) 0.99 (0.91, 1.08) 1.06 (0.97, 1.16) 4.02 0.25 -- -- 

 A + D 1.00 (0.92, 1.09) 1.03 (0.94, 1.11) 0.97 (0.88, 1.05) 0.99 (0.91, 1.08) 1.03 (0.94, 1.12) 5.02 0.19 0.40 2.11 

 Ratio 1.01 -- 0.99 1.00 1.03 0.80 1.33 -- -- 

Targhee A only 1.00 (0.91, 1.09) -- 0.99 (0.89, 1.08) 0.98 (0.91, 1.07) 1.05 (0.96, 1.15) 4.02 0.25 -- -- 

 A + D 0.99 (0.91, 1.09) 1.02 (0.93, 1.11) 0.99 (0.92, 1.08) 0.98 (0.91, 1.07) 1.02 (0.94, 1.11) 5.00 0.20 0.40 2.00 

 Ratio 1.01 -- 1.00 1.00 1.03 0.80 1.25 -- -- 
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Genetic correlation 

The genetic correlation values reported (Table 6.6) are similar to the findings of Hudson 

and Van Vleck (1981). Estimates of genetic correlation for stayability to age two (2) to stayability 

to age seven (7) ranged from 0.004 to 0.16 for Columbia, -0.003 to 0.32 for Polypay, -0.03 to 0.21 

for Rambouillet, -0.09 to 0.19 for Targhee, and 0.37 to 0.59 for Across breed, for additive 

multivariate model. Our study suggests that selection of ewes on a stayability basis will have a 

positive response in improvement for stayability because moderate genetic correlation with 

stayability to ages 6 and 7 was observed for Columbia (0.19 to 0.24), Polypay (0.18 to 0.30), 

Rambouillet (0.13 to 0.31), Targhee (0.11 to 0.21) and for across breeds (0.60 to 0.64) for additive 

models. This means that selecting either of these breeds will result in selecting improvements in 

stayability despite how long it takes to achieve genetic progress because it takes a longer time to 

achieve due to the low heritability estimates associated with stayability (Table 6.5) our research is 

novel because there is a dearth in the sheep literature on stayability studies for comparison.  
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Table 6.6: Genetic correlation for stayability to age for within breeds for additive (A) 

multivariate models 

  Stayability to age 

Breed  2 3 4 5 6 7 Model 

Columbia 2 - 0.16 0.06 0.08 0.15 0.04 A 

 3 0.16 - 0.21 0.09 0.08 0.06  

 4 0.06 0.21 - 0.24 0.08 0.11  

 5 0.08 0.09 0.24 - 0.25 0.19  

 6 0.15 0.08 0.08 0.25 - 0.24  

 7 0.004 0.06 0.11 0.19 0.24 -  

Polypay 2 - 0.32 0.15 0.06 -0.04 -0.03 A 

 3 0.32 - 0.27 0.09 0.05 0.06  

 4 0.15 0.27 - 0.20 0.13 0.15  

 5 0.06 0.09 0.20 - 0.27 0.18  

 6 -0.04 0.05 0.13 0.27 - 0.30  

 7 -0.03 0.06 0.15 0.18 0.30 -  

Rambouillet 2 - 0.21 0.09 0.02 0.01 -0.03 A 

 3 0.21 - 0.27 0.07 0.07 0.06  

 4 0.09 0.27 - 0.16 0.08 0.04  

 5 0.02 0.07 0.16 - 0.29 0.13  

 6 0.01 0.07 0.08 0.29 - 0.31  

 7 -0.03 0.06 0.04 0.13 0.31 -  

Targhee 2 - 0.19 0.09 0.04 -0.05 -0.09 A 

 3 0.19 - 0.22 0.12 -0.009 -0.011  

 4 0.09 0.22 - 0.20 0.09 -0.03  

 5 0.04 0.12 0.20 - 0.17 0.11  

 6 -0.05 -0.009 0.09 0.17 - 0.21  

 7 -0.09 -0.011 -0.03 0.11 0.21 -  
1Across 2 - 0.59 0.52 0.47 0.43 0.37 A 

 3 0.59 - 0.66 0.58 0.54 0.49  

 4 0.52 0.66 - 0.67 0.60 0.55  

 5 0.47 0.58 0.67 - 0.68 0.60  

 6 0.43 0.54 0.60 0.68 - 0.64  

 7 0.37 0.49 0.55 0.60 0.64 -  
1Across population consisted of purebreds from Columbia, Polypay, Rambouillet, and Targhee 

and related crossbreds of Friesian, Dorper, Texel, Finnsheep, Dorset, Romanov, and a 

USMARC-Composite developed in the 1970s.  
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Estimated marginal means 

The estimated marginal means presented in Tables 6.7 and 6.8 are on a per breed basis and 

none from the across breed analysis. The estimated marginal means obtained for the univariate 

stayability to age seven (7) were log-transformed using the “logit” function of the emmeans R 

package (Lenth, 2016) (Appendix E). The highest posterior density (HPD) is used to determine 

significant differences between two comparison groups as obtained in the longevity model 

(Hespanhol et al., 2019). Furthermore, the inclusion of additive only or additive and dominance 

genetic effects did not impact differences found among fixed effects. Based on this, no estimated 

marginal means were different from each other for birth type in any breed (Tables 6.7 and 6.8). It 

is evident that breeds often had very different estimated marginal means per effect, even though 

across breed effects are not reported. Therefore, other significant effects are broken down by breed. 

Columbia 

Only age of dam was significant to stayability at age seven for Columbia ewes; noticeably, 

ewes that were lambed by first time dams recorded lower stayability to age seven value from the 

rest of the group. There was an observable increasing trend of stayability values as we move from 

dams that lambed for the first time to those that lambed for the seventh time. 

Polypay 

Ewes’ dams’ type of rearing affected stayability to age seven in Polypay ewes. Ewes’ 

dams’ that were born as triplets and raised as triplets were significantly different from those born 

as triplets and raised as twins. Ewes’ dams’ that were born as triplets and raised as orphans had 

the lowest value for stayability to age seven.  Dams that lambed for the fourth and sixth times had 

the highest value for stayability to age seven and were significantly different from the rest of the 

group. 
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Rambouillet 

Only ewes’ dams’ type of rearing impacted stayability to age seven in Rambouillet ewes; 

ewes’ dams’ that were born as triplets and raised as singles had the highest value for stayability to 

age seven and were highly significant to the rest of the rearing groups. 

Targhee 

Ewes’ dams’ type of rearing and age of dam impacted stayability to age seven in Targhee 

ewes; ewes’ dams’ that were born as triplets and raised as singles had the highest value for 

stayability to age seven and were highly significant to the rest of the rearing groups and ewes that 

were lambed by first time dams recorded the lowest value for stayability to age seven (7). 

Conclusively, stayability to age seven is impacted by age of the dam at lambing, ewes’ 

dams’ type of birth, and ewe’s dams’ type of rearing in Columbia, Polypay, Rambouillet and 

Targhee ewes which suggests that proper record keeping should be maintained by the producers.  

There is not a lot of research done on estimating the impact of ewe’s type of birth, ewe’s type of 

rearing, ewes’ dams’ type of birth, ewes’ dams’ type of rearing and age of dam on stayability to 

age seven (7) in Columbia, Polypay, Rambouillet and Targhee ewes so we could not compare our 

research work to other research works.
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Table 6.7: Estimated marginal means mean estimates for all breeds and their highest posterior densities (HPD) for univariate additive 

(A) models for stayability to age seven (7). 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

   Breeds 

Effect  Level Columbia Polypay Rambouillet Targhee 

TB  1 0.11 (0.07, 0.16) 0.14 (0.08, 0.21) 0.14 (0.09, 0.20) 0.11 (0.07, 0.15)  
 2 0.10 (0.06, 0.15) 0.12 (0.08, 0.17) 0.15 (0.09, 0.21) 0.09 (0.06, 0.13)  
 3 0.08 (0.05, 0.13) 0.10 (0.06, 0.16) 0.15 (0.09, 0.22) 0.10 (0.05, 0.15) 

TR  1 0.11 (0.07, 0.16) 0.14 (0.09, 0.21) 0.14 (0.09, 0.20) 0.11 (0.07, 0.15)  
 3 0.12 (0.06, 0.17) 0.09 (0.05, 0.14) 0.14 (0.08, 0.21) 0.09 (0.05, 0.13)  
 5 0.09 (0.06, 0.14) 0.14 (0.09, 0.19) 0.15 (0.11, 0.21) 0.10 (0.06, 0.14)  
 7 0.07 (0.03, 0.12) 0.12 (0.07, 0.20) 0.16 (0.09, 0.26) 0.09 (0.03, 0.16)  
 8  0.09 (0.05, 0.15) 0.12 (0.07, 0.18) 0.14 (0.09, 0.22) 0.09 (0.05, 0.16) 

  9 NA 0.08 (0.04, 0.16) NA NA 

DTB  1 0.09 (0.05, 0.14) 0.13 (0.07, 0.19) 0.13 (0.08, 0.19) 0.11 (0.07, 0.16)  
 2 0.10 (0.06, 0.16) 0.13 (0.07, 0.19) 0.13 (0.08, 0.19) 0.10 (0.07, 0.15)  
 3 0.12 (0.06, 0.18) 0.17 (0.09, 0.25) 0.15 (0.09, 0.23) 0.12 (0.05, 0.18) 

DTR  1 0.09 (0.05, 0.13) 0.11 (0.07, 0.16)b,c 0.14 (0.08, 0.19)b 0.09 (0.07, 0.15)b  
 3 0.11 (0.06, 0.16) 0.14 (0.08, 0.21)b 0.13 (0.08, 0.19)b 0.09 (0.06, 0.14)b  
 5 0.08 (0.05, 0.13) 0.08 (0.06, 0.13)c 0.15 (0.09, 0.21)b 0.09 (0.05, 0.12)b  
 7 0.11 (0.04, 0.21) 0.15 (0.07, 0.23)a,b 0.19 (0.08, 0.30)a 0.13 (0.05, 0.23)a  
 8 0.11 (0.06, 0.16) 0.11 (0.07, 0.16)b,c 0.14 (0.08, 0.20)b 0.09 (0.04, 0.15)b 

  9 NA 0.19 (0.08, 0.31)a NA NA 

AGE  1 0.04 (0.014, 0.06)b 0.14 (0.08, 0.21) 0.14 (0.08, 0.21) 0.06 (0.04, 0.10)b 

  2 0.09 (0.05, 0.15)a 0.15 (0.09, 0.21) 0.12 (0.07, 0.18) 0.11 (0.06, 0.16)a 

  3 0.12 (0.07, 0.17)a 0.15 (0.08, 0.22) 0.13 (0.08, 0.20) 0.11 (0.07, 0.17) a 

  4 0.10 (0.05, 0.16)a 0.16 (0.09, 0.25) 0.15 (0.09, 0.22) 0.11 (0.07, 0.16) a 

  5 0.15 (0.08, 0.22)a 0.11 (0.06, 0.17) 0.16 (0.09, 0.23) 0.11 (0.07, 0.18) a 

  6 0.14 (0.07, 0.22)a 0.17 (0.09, 0.25) 0.13 (0.08, 0.21) 0.13 (0.07, 0.20) a 
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Table 6.7: Estimated marginal means mean estimates for all breeds and their highest posterior densities (HPD) for univariate additive 

(A) models for stayability to age seven (7) (continued). 

  Breeds 

Effect Level Columbia Polypay Rambouillet Targhee 

AGE 7   0.15 (0.08, 0.25)a 0.12 (0.06, 0.21)    0.12 (0.06, 0.20)   0.14 (0.08, 0.22) a 
1Levels: TB and DTB represent ewe’s or ewe’s dams being born a single (1), twin (2), triplets (3), and quadruplets or higher (4). TR 

and DTR represent ewes or ewe’s dam’s born a quadruplet or quintuplet and weaned as any number (0), born single, weaned as single 

(1), born single and raised as an orphan (2), born as twin raised single (major) or born single and raised as a twin (minor) (3), born 

twin, raised orphan (4), born twin, raised twin (5), born triplet raised orphan (6), born triplet raised single (7), born triplet raised twin 

(8) and born triplet raised triplet (9). 

NA: Not available. 
a,b,cMeans with different superscripts have evidence based on HPD that they differ (P < 0.05) 
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Table 6.8: Estimated marginal means mean estimates for all breeds and their highest posterior densities (HPD) for univariate additive 

and dominance (A+D) models for stayability to age seven (7).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Breeds 

Effect Level Columbia Polypay Rambouillet Targhee 

TB 1 0.08 (0.05, 0.13) 0.12 (0.06, 0.17) 0.11 (0.06, 0.16) 0.08 (0.05, 0.12)  
2 0.08 (0.06, 0.13) 0.09 (0.05, 0.13) 0.11 (0.07, 0.16) 0.07 (0.04, 0.01)  
3 0.06 (0.04, 0.10) 0.08 (0.05, 0.13) 0.12 (0.07, 0.18) 0.07 (0.03, 0.11) 

TR 1 0.08 (0.05, 0.13) 0.12 (0.06, 0.17) 0.11 (0.06, 0.16) 0.08 (0.05, 0.12)  
3 0.09 (0.05, 0.15) 0.07 (0.03, 0.12) 0.11 (0.06, 0.16) 0.06 (0.03, 0.01)  
5 0.07 (0.04, 0.11) 0.11 (0.07, 0.16) 0.12 (0.07, 0.17) 0.07 (0.04, 0.10)  
7 0.05 (0.02, 0.09) 0.01 (0.05, 0.17) 0.13 (0.06, 0.22) 0.06 (0.03, 0.13)  
8  0.08 (0.04, 0.13) 0.01 (0.06, 0.15) 0.11 (0.06, 0.17) 0.07 (0.03, 0.11) 

 9 NA 0.06 (0.02, 0.13) NA NA 

DTB 1 0.07 (0.04, 0.11) 0.10 (0.06, 0.17) 0.01 (0.06, 0.15) 0.08 (0.05, 0.12)  
2 0.08 (0.05, 0.12) 0.11 (0.06, 0.16) 0.01 (0.06, 0.15) 0.07 (0.04, 0.10)  
3 0.09 (0.04, 0.16) 0.14 (0.08, 0.22) 0.12 (0.06, 0.19)a 0.09 (0.03, 0.14) 

DTR 1 0.06 (0.04, 0.01) 0.08 (0.05, 0.14)b 0.10 (0.07, 0.16)b 0.07 (0.04, 0.11)  
3 0.09 (0.05, 0.14) 0.11 (0.06, 0.17)b 0.01 (0.05, 0.15) 0.06 (0.04, 0.10)  
5 0.07 (0.04, 0.01) 0.07 (0.04, 0.10) 0.12 (0.08, 0.17)b 0.06 (0.04, 0.09)  
7 0.09 (0.03, 0.18) 0.12 (0.06, 0.21)b 0.16 (0.08, 0.28)a 0.09 (0.03, 0.18)  
8 0.08 (0.04, 0.14) 0.09 (0.05, 0.13) 0.10 (0.05, 0.16)b 0.07 (0.03, 0.12) 

 9 NA 0.16 (0.07, 0.30)a NA NA 

AGE 1 0.02 (0.009, 0.05) 0.12 (0.06, 0.18)b 0.11 (0.06, 0.17)b 0.04 (0.02, 0.07) 

 2 0.07 (0.04, 0.12) 0.12 (0.07, 0.19)b 0.09 (0.05, 0.14) 0.08 (0.05, 0.12) 

 3 0.09 (0.05, 0.14) 0.12 (0.07, 0.20)b 0.10 (0.06, 0.16)b 0.09 (0.05, 0.13) 

 4 0.08 (0.04, 0.13) 0.14 (0.07, 0.22)b,a 0.11 (0.06, 0.17)b 0.08 (0.04, 0.13) 

 5 0.12 (0.06, 0.19)a 0.08 (0.04, 0.14)c 0.12 (0.07, 0.20)a 0.08 (0.04, 0.13) 

 6  0.11 (0.06, 0.18)a,b   0.14 (0.06, 0.22)a 0.10 (0.05, 0.16)b 0.09 (0.05, 0.15) 

 7  0.12 (0.06, 0.21)a   0.01 (0.04, 0.17)c 0.09 (0.05, 0.16) 0.11 (0.06, 0.19)a 



 

 

8
2
 

1Levels: TB and DTB represent ewe’s or ewe’s dams being born a single (1), twin (2), triplets (3), and quadruplets or higher (4). TR 

and DTR represent ewes or ewe’s dam’s born a quadruplet or quintuplet and weaned as any number (0), born single, weaned as single 

(1), born single and raised as an orphan (2), born as twin raised single (major) or born single and raised as a twin (minor) (3), born 

twin, raised orphan (4), born twin, raised twin (5), born triplet raised orphan (6), born triplet raised single (7), born triplet raised twin 

(8) and born triplet raised triplet (9). 

NA: Not available. 
a,b,cMeans with different superscripts have evidence based on HPD that they differ (P < 0.05).
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Limitations to running stayability models 

In analyzing multivariate non-additive models, it is computationally demanding to fit 

non-additive multivariate Bayesian models as the models take time to analyze and a majority 

of the time, the computer crashes while analyzing these models. The limitation is that the 

computational requirements for both models with both additive and non-additive genetic effects 

are always high since both additive and non-additive relationship matrices are most dense. 

This requires more powerful computers and more efficient algorithms.   

Furthermore, running multivariate analyzes might not be that important for stayability to 

producers if the end-goal is to select for stayability to age seven (7).



 

84 

CHAPTER 7: CONCLUSION 

The main goal of genetic selection in breeding programs is to improve economically 

important traits in the next generation; longevity and stayability are of utmost economic 

importance to the sheep industry. The current study was based on data from the USDA, ARS, 

Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station located near 

Dubois, ID. including Columbia, Polypay, Rambouillet, Targhee, and a combined pool of those 

breeds. 

Recently, scientists have suggested the importance of estimating non-additive genetic 

effects for complex traits; if additive and non-additive genetic effects are considered together, 

results obtained tends to yield a higher ability to efficiently partition components of variance for 

economically important traits in animal breeding (Su et al. 2012; Bolormaa et al. 2015; Lopes et 

al. 2015). Estimating non-additive genetic effects in breeding models has been shown to reduce 

bias and overestimation of additive genetic effects (Su et al. 2012). This is why this thesis set out 

to determine how important non-additive genetic effects are really in estimating longevity and 

stayability in Columbia, Polypay, Rambouillet, and Targhee breeds as well as if the inclusion of 

non-additive genetic effects in variance component estimation will improve our understanding of 

longevity and stayability. 

Chapter 4 focused on family statistics where we developed an R package, ‘Sibs’ that could 

be used to organize pedigrees, assign and count generations of individuals in the pedigree, assign 

siblings to individuals in the pedigree, and output the summary statistics of the inputted pedigree. 

Chapter 4 is important to our study as it has been suggested in the literature by Van Tassell et al. 

(2003) that a minimum of 20% full-sibling relationships must be established in the pedigree before 
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we can estimate non-additive genetic effects which were established for every pedigree used for 

this analyses.  

Chapter 5 investigated the role of including non-additive genetic effects in estimating 

longevity using a univariate Bayesian model. We discovered that the proportion of phenotypic 

variance due to dominance models was higher than the proportion of variance due to additive 

models only across all breeds; we also discovered that incorporating non-additive genetic effects 

within breeds reduced the proportion of phenotypic variance due to additive genetic effects for 

longevity in all cases. The heritability estimates observed for dominance models were also higher 

than that observed for just additive models only which suggests that the inclusion of dominance 

effects in our models will improve selection for longevity. 

In chapter 6, we investigated the role of including non-additive genetic effects in estimating 

stayability using both univariate and multivariate Bayesian models, we discovered that including 

dominance effects in univariate models helped to increase our phenotypic variance-ratio and 

including dominance effects will help to improve selection and increase heritability estimates.  

Selecting for longevity and stayability will have a direct impact on the future design and 

proper planning and implementation of breeding strategies in the sheep industry, which is why 

including non-additive genetic effects in animal models will help to estimate heritability well and 

help selection programs in the near future. 

In conclusion, it was possible to unravel the estimates of heritability and genetic correlation 

for additive and non-additive genetic effects for longevity and stayability in the U.S. Western 

sheep. Bayesian estimates of additive and non-additive genetic variance components were 

obtained, which can be used as a baseline for defining the type of epistasis that is involved in the 

longevity and stayability traits in the U.S. Western sheep. Thus, this research emphasizes the need 
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for a re-examination of our modeling to help understand these methods which will be inevitably 

incorporated into selection indices in the near future. 
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APPENDIX A: DATA PROCESSING AND FILTERING R SCRIPT 

Script to combine .dbf files 

library(foreign) 

 

#BIRTH WEIGHT DATA 

setwd("PATH TO FILES HERE") 

temp<- list.files(pattern = ".DBF") 

 

for(i in 1:length(temp)){ 

  assign(temp[i], read.dbf(temp[i],as.is=TRUE)) 

  A = 

eval(parse(text=paste0(temp[i],"[,c('YR','DAM','DBRD','SIRE','SBRD','AGE','TB','SEX','BRWT'

,'LAMB','LBRD','STM','DISP')]"))) 

  if(i == 1){ 

    write.table(A,paste0(getwd(),"/EDLAMB.csv"),quote = FALSE,row.names = FALSE,sep = 

",") 

  }else{ 

    write.table(A,paste0(getwd(),"/EDLAMB.csv"),quote = FALSE,row.names = FALSE,sep = 

",",col.names=FALSE,append=TRUE) 

  } 

  print(paste0(i," ",temp[i])) 

} 

 

#WEAN DATA 

setwd("PATH TO FILES HERE ") 

temp<- list.files(pattern = ".DBF") 

 

for(i in 1:length(temp)){ 

  assign(temp[i], read.dbf(temp[i],as.is=TRUE)) 

  A = 

eval(parse(text=paste0(temp[i],"[,c('YR','ETAG','LBRD','DAM','DBRD','TBRE','SEX','WNWT','

ADG')]"))) 

  if(i == 1){ 

    write.table(A,paste0(getwd(),"/EDWEAN.csv"),quote = FALSE,row.names = FALSE,sep = 

",") 

  }else{ 

    write.table(A,paste0(getwd(),"/EDWEAN.csv"),quote = FALSE,row.names = FALSE,sep = 

",",col.names=FALSE,append=TRUE) 

  } 

  print(paste0(i," ",temp[i])) 

} 

 

##EWE PRODUCTIVITY 

setwd("PATH TO FILES HERE ") 
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temp<- list.files(pattern = ".DBF") 

 

for(i in 1:length(temp)){ 

  assign(temp[i], read.dbf(temp[i],as.is=TRUE)) 

  A = 

eval(parse(text=paste0(temp[i],"[,c('YR','DAM','DBRD','AGE','STM','LY2','LY3','LY4','LY5','Y

OR')]"))) 

  if(i == 1){ 

    write.table(A,paste0(getwd(),"/EDEWEPROD.csv"),quote = FALSE,row.names = FALSE,sep 

= ",") 

  }else{ 

    write.table(A,paste0(getwd(),"/EDEWEPROD.csv"),quote = FALSE,row.names = FALSE,sep 

= ",",col.names=FALSE,append=TRUE) 

  } 

  print(paste0(i," ",temp[i])) 

} 

 

##INVENTORY 

setwd("PATH TO FILES HERE ") 

temp<- list.files(pattern = ".DBF") 

 

for(i in 1:length(temp)){ 

  assign(temp[i], read.dbf(temp[i],as.is=TRUE)) 

  A = eval(parse(text=paste0(temp[i],"[,c('YR','ETAG','BRD','SEX','DISP','YRREC')]"))) 

  if(i == 1){ 

    write.table(A,paste0(getwd(),"/EDINVENTORY.csv"),quote = FALSE,row.names = 

FALSE,sep = ",") 

  }else{ 

    write.table(A,paste0(getwd(),"/EDINVENTORY.csv"),quote = FALSE,row.names = 

FALSE,sep = ",",col.names=FALSE,append=TRUE) 

  } 

  print(paste0(i," ",temp[i])) 

} 

 

Script to process and edit ewe data for analyses 

library(dplyr) 

library(foreign) 

 

setwd("PATH TO FILE HERE") 

Ped = read.dbf("PEDIGREE.dbf",as.is=TRUE) 

#0 is missing, replace as NA 

Ped[which(Ped$SIREID==0),"SIREID"]=NA 

Ped[which(Ped$DAMID==0),"DAMID"]=NA 

 

lamb = read.table(paste0(getwd(),"/Lamb/EDLAMB.csv"),sep=",",header=TRUE) 
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wean = read.table(paste0(getwd(),"/Wean/EDWEAN.csv"),sep=",",header=TRUE) 

 

sort(unique(lamb$YR)) 

lamb[which(lamb$YR=="e"),"YR"]="07" #based on dam records in lambing 

lamb[which(lamb$YR=="\\"),"YR"]="12" #found in weaning records 

 

##Correcting birth year format in records 

lamb[which(as.numeric(lamb$YR)>20),"YR"]=paste0("19",lamb[which(as.numeric(lamb$YR)>

20),"YR"]) 

lamb[which(as.numeric(lamb$YR)<20),"YR"]=paste0("20",lamb[which(as.numeric(lamb$YR)<

20),"YR"]) 

 

#remove lambs missing ear tags 

lamb[which(lamb$LAMB=="." | lamb$LAMB==0),"LAMB"]=NA 

lamb = lamb[which(!is.na(lamb$LAMB)),]  

lamb = lamb[which(!is.na(lamb$LBRD)),]  

 

sort(unique(wean$YR)) 

##Correcting birth year format in records 

wean[which(as.numeric(wean$YR)>20),"YR"]=paste0("19",wean[which(as.numeric(wean$YR)

>20),"YR"]) 

wean[which(as.numeric(wean$YR)<20 and 

as.numeric(wean$YR)>9),"YR"]=paste0("20",wean[which(as.numeric(wean$YR)<20and 

as.numeric(wean$YR)>9),"YR"]) 

wean[which(as.numeric(wean$YR)<10),"YR"]=paste0("200",wean[which(as.numeric(wean$YR

)<10),"YR"]) 

 

 

#Making lambid in lambing data (nchar is between 4 and 5 for lamb tag, need 4) 

lamb[which(nchar(lamb$LAMB)==5),"LAMB"]=substr(lamb[which(nchar(lamb$LAMB)==5),"

LAMB"],2,5) 

lamb$LAMB=paste0(lamb$YR,lamb$LBRD,lamb$LAMB) 

 

#making lambid in weaning data 

wean[which(nchar(wean$LBRD)==1),"LBRD"]=paste0("0",wean[which(nchar(wean$LBRD)==

1),"LBRD"]) 

wean[which(nchar(wean$ETAG)==5),"ETAG"]=substr(wean[which(nchar(wean$ETAG)==5),"

ETAG"],2,5) 

wean$LAMBID = paste0(wean$YR,wean$LBRD,wean$ETAG) 

 

#Checking for duplication 

lambdup = lamb[which(duplicated(lamb)),]  

weandup = wean[which(duplicated(wean)),]  

 

#getting rid of duplications 

lamb = lamb[which(!duplicated(lamb)),]  
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wean = wean[which(!duplicated(wean)),]  

 

lambcomb = merge(lamb,wean,by="LAMBID",all.x = TRUE) 

 

#cleaning up: 

lambcomb = 

lambcomb[,c("LAMBID","YR.x","DAM.x","DBRD.x","SIRE","SBRD","AGE","SEX.x","STM

","BRWT","WNWT","ADG","TB","TBRE","DISP")] 

colnames(lambcomb) = 

c("LAMBID","BYR","DAM","DBRD","SIRE","SBRD","AGE","SEX","STM","BRWT","WN

WT","ADG","TB","TBRE","DISP") 

write.table(lambcomb,paste0(getwd(),"/lambcomb.txt"),row.names=FALSE,quote=FALSE) 

 

remove(lamb,wean,lambdup,weandup) 

 

justewes = lambcomb[which(lambcomb$SEX==2 and lambcomb$BYR<=2008),] 

 

#cleaning up sires and dams labeled as "." and "0" to be missing (NA) 

justewes[which(justewes$SIRE=="." | justewes$SIRE==0),"SIRE"]=NA 

justewes[which(justewes$DAM=="." | justewes$DAM==0),"DAM"]=NA 

 

#Making sure format is consistent 

#SIRE 

justewes[which(nchar(justewes$SIRE,keepNA=TRUE)==1),"SIRE"]=paste0("000",justewes[wh

ich(nchar(justewes$SIRE,keepNA=TRUE)==1),"SIRE"]) 

justewes[which(nchar(justewes$SIRE,keepNA=TRUE)==2),"SIRE"]=paste0("00",justewes[whi

ch(nchar(justewes$SIRE,keepNA=TRUE)==2),"SIRE"]) 

justewes[which(nchar(justewes$SIRE,keepNA=TRUE)==3),"SIRE"]=paste0("0",justewes[whic

h(nchar(justewes$SIRE,keepNA=TRUE)==3),"SIRE"]) 

justewes[which(nchar(justewes$SIRE,keepNA=TRUE)==5),"SIRE"]=substr(justewes[which(nc

har(justewes$SIRE,keepNA=TRUE)==5),"SIRE"],2,5) 

justewes[which(nchar(justewes$SBRD,keepNA=TRUE)==1),"SBRD"]=paste0("0",justewes[wh

ich(nchar(justewes$SBRD,keepNA=TRUE)==1),"SBRD"]) 

 

#DAM 

justewes[which(nchar(justewes$DAM,keepNA=TRUE)==1),"DAM"]=paste0("000",justewes[w

hich(nchar(justewes$DAM,keepNA=TRUE)==1),"DAM"]) 

justewes[which(nchar(justewes$DAM,keepNA=TRUE)==2),"DAM"]=paste0("00",justewes[whi

ch(nchar(justewes$DAM,keepNA=TRUE)==2),"DAM"]) 

justewes[which(nchar(justewes$DAM,keepNA=TRUE)==3),"DAM"]=paste0("0",justewes[whic

h(nchar(justewes$DAM,keepNA=TRUE)==3),"DAM"]) 

justewes[which(nchar(justewes$DAM,keepNA=TRUE)==5),"DAM"]=substr(justewes[which(nc

har(justewes$DAM,keepNA=TRUE)==5),"DAM"],2,5) 

justewes[which(nchar(justewes$DBRD,keepNA=TRUE)==1),"DBRD"]=paste0("0",justewes[w

hich(nchar(justewes$DBRD,keepNA=TRUE)==1),"DBRD"]) 
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#Add Full ID 

JEPed = Ped[which(Ped$LAMBID%in%justewes$LAMBID),] 

justewes2 = merge(justewes,JEPed,by="LAMBID",all.x=TRUE) 

justewes2$dam = paste0(justewes2$DBRD,justewes2$DAM) 

justewes2$sire = paste0(justewes2$SBRD,justewes2$SIRE) 

 

#Fixing remaining ped issues: 

dam = unique(justewes2[which(is.na(justewes2$DAMID) and !is.na(justewes2$DAM) and 

!is.na(justewes2$DBRD)),"dam"]) 

dams = 

data.frame(DAMID=sort(unique(Ped[which(substr(Ped$DAMID,5,10)%in%dam),"DAMID"]))) 

dams = cbind(dam=substr(dams$DAMID,5,10),dams) 

justewes2[which(is.na(justewes2$DAMID) and 

!is.na(justewes2$DAM)),"DAMID"]=with(dams,DAMID[match(justewes2[which(is.na(justewes

2$DAMID) and !is.na(justewes2$DAM)),"dam"],dam)]) 

 

sire = unique(justewes2[which(is.na(justewes2$SIREID) and !is.na(justewes2$SIRE) and 

!is.na(justewes2$SBRD)),"sire"]) 

sires = 

data.frame(SIREID=sort(unique(Ped[which(substr(Ped$SIREID,5,10)%in%sire),"SIREID"]))) 

sires = cbind(sire=substr(sires$SIREID,5,10),sires) 

justewes2[which(is.na(justewes2$SIREID) and 

!is.na(justewes2$SIRE)),"SIREID"]=with(sires,SIREID[match(justewes2[which(is.na(justewes2

$SIREID) and !is.na(justewes2$SIRE)),"sire"],sire)]) 

 

#Reorganize 

justewes2 = 

justewes2[,c("LAMBID","SIREID","DAMID","STM.x","BYR","AGE","SEX","BRWT","WN

WT","ADG","TB","TBRE","DISP")] 

 

remove(dam,dams,sire,sires,justewes,lambcomb,JEPed) 

 

#TBrecode 

justewes2[which(justewes2$TB==0 | justewes2$TB==1 | justewes2$TB==5),"TB_recode"]=1 

justewes2[which(justewes2$TB==2 | justewes2$TB==4 | justewes2$TB==6 | justewes2$TB==7 

| justewes2$TB==8),"TB_recode"]=2 

justewes2[which(justewes2$TB==9),"TB_recode"]=3 

justewes2[which(justewes2$TB==3),"TB_recode"]=4 

 

#Identify if any ewes are duplicated 

justewes2[which(duplicated(justewes2$LAMBID)==TRUE),] 

#None found 

 

#Add DTB and DTR 
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dams = 

justewes2[which(justewes2$LAMBID%in%array(justewes2$DAMID)),c("LAMBID","TB_reco

de","TBRE"),drop=FALSE] 

colnames(dams) = c("DAMID","DTB","DTR") 

justewes2 = merge(justewes2,dams,by="DAMID",all.x=TRUE) 

 

#Reorganize 

justewes2 = 

justewes2[,c("LAMBID","SIREID","DAMID","STM.x","BYR","AGE","SEX","BRWT","WN

WT","ADG","TB","TB_recode","TBRE","DTB","DTR","DISP")] 

colnames(justewes2) 

=c("LAMBID","SIREID","DAMID","STM","BYR","AGE","SEX","BRWT","WNWT","ADG",

"TB_USSES","TB_recode","TBRE","DTB","DTR","WNDISP") 

#Tidy up environment 

remove(dams) 

 

#Work with ewe productivity 

eweprod = read.table(paste0(getwd(),"/EDEWEPROD.csv"),head=TRUE,sep=",") 

#Create ID like lamb ID 

eweprod[which(nchar(eweprod$DAM,keepNA=TRUE)==1),"DAM"]=paste0("000",eweprod[w

hich(nchar(eweprod$DAM,keepNA=TRUE)==1),"DAM"]) 

eweprod[which(nchar(eweprod$DAM,keepNA=TRUE)==2),"DAM"]=paste0("00",eweprod[whi

ch(nchar(eweprod$DAM,keepNA=TRUE)==2),"DAM"]) 

eweprod[which(nchar(eweprod$DAM,keepNA=TRUE)==3),"DAM"]=paste0("0",eweprod[whic

h(nchar(eweprod$DAM,keepNA=TRUE)==3),"DAM"]) 

eweprod[which(nchar(eweprod$DAM,keepNA=TRUE)==5),"DAM"]=substr(eweprod[which(nc

har(eweprod$DAM,keepNA=TRUE)==5),"DAM"],2,5) 

eweprod[which(nchar(eweprod$DBRD,keepNA=TRUE)==1),"DBRD"]=paste0("0",eweprod[w

hich(nchar(eweprod$DBRD,keepNA=TRUE)==1),"DBRD"]) 

 

eweprod[,"DAMID"]=paste0(eweprod[,"BYR"],eweprod[,"DBRD"],eweprod[,"DAM"]) #no NA 

here 

 

eweprodsummary = eweprod %>% 

  group_by(DAMID) %>% 

    

summarize(minLY2=min(LY2),maxLY2=max(LY2),minLY3=min(LY3),maxLY3=max(LY3),

minLY4=min(LY4),maxLY4=max(LY4),minLY5=min(LY5),maxLY5=max(LY5),minYOR=mi

n(YOR),maxYOR=max(YOR)) 

 

#merging 

justewes3 = merge(justewes2,eweprodsummary,by.x="LAMBID",by.y="DAMID",all.x=TRUE) 

 

#Tidy up environment 

remove(justewes2,eweprod,eweprodsummary) 
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#Work with inventory 

invent = read.table(paste0(getwd(),"/EDINVENTORY.csv"),head=TRUE,sep=",") 

#just females 

invent = invent[which(invent$SEX==2),] 

invent = invent[which(!is.na(invent$BRD)),] 

#create ID to match lamb data 

invent[which(nchar(invent$ETAG,keepNA=TRUE)==1),"ETAG"]=paste0("000",invent[which(

nchar(invent$ETAG,keepNA=TRUE)==1),"ETAG"]) 

invent[which(nchar(invent$ETAG,keepNA=TRUE)==2),"ETAG"]=paste0("00",invent[which(n

char(invent$ETAG,keepNA=TRUE)==2),"ETAG"]) 

invent[which(nchar(invent$ETAG,keepNA=TRUE)==3),"ETAG"]=paste0("0",invent[which(nc

har(invent$ETAG,keepNA=TRUE)==3),"ETAG"]) 

invent[which(nchar(invent$ETAG,keepNA=TRUE)==5),"ETAG"]=substr(invent[which(nchar(i

nvent$ETAG,keepNA=TRUE)==5),"ETAG"],2,5) 

invent[which(nchar(invent$BRD,keepNA=TRUE)==1),"BRD"]=paste0("0",invent[which(nchar(

invent$BRD,keepNA=TRUE)==1),"BRD"]) 

 

invent[,"ETAGID"]=paste0(invent[,"BYR"],invent[,"BRD"],invent[,"ETAG"]) #no NA here 

 

inventsummary = invent %>% 

  group_by(ETAGID) %>% 

  summarize(minYYREC=min(YRREC),maxYYREC=max(YRREC)) 

 

DISP = unique(invent[,c("ETAGID","DISP")]) 

inventsummary$DISP=with(DISP,DISP[match(inventsummary$ETAGID,ETAGID)]) 

 

#merging 

justewes4 = merge(justewes3,inventsummary,by.x="LAMBID",by.y="ETAGID",all.x=TRUE) 

 

#Tidy up environment 

remove(justewes3,invent,inventsummary,DISP) 

 

write.table(justewes4,paste0(getwd(),"/JustEwes.txt"),row.names=FALSE,quote=FALSE) 

 

#Separating out breeds 

COLUMBIA = justewes4[which(justewes4$STM=="06"),] #17622 records # 

POLYPAY = justewes4[which(justewes4$STM=="30"),] #12380 records # 

RAMBOUILLET = justewes4[which(justewes4$STM=="07"),] #26018 records # 

TARGHEE = justewes4[which(justewes4$STM=="02"),] #23597 records # 

 

#Using maxLY2 as longevity record 

 

###COLUMBIA### 

#COLUMBIA -> LY2 = 0 has no meaning (they were never allowed to be productive) - affects 

570 records 

COLUMBIA$Longevity=COLUMBIA$maxLY2 
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COLUMBIA[which(COLUMBIA$maxLY2==0),"Longevity"]=NA 

COLUMBIA[which(COLUMBIA$Longevity > 7),"Longevity"]=7 

 

#Getting rid of missing data at important points 

COLUMBIA = COLUMBIA[which(!(is.na(COLUMBIA$Longevity))),]  

COLUMBIA = COLUMBIA[which(!(is.na(COLUMBIA$DTR))),]  

COLUMBIA = COLUMBIA[which(!(is.na(COLUMBIA$DTB))),]  

COLUMBIA = COLUMBIA[which(!(is.na(COLUMBIA$TBRE))),]  

COLUMBIA = COLUMBIA[which(!(is.na(COLUMBIA$TB_recode))),]  COLUMBIA = 

COLUMBIA[which(!(COLUMBIA$BRWT==0.0)),]  

COLUMBIA = COLUMBIA[which(!(COLUMBIA$AGE>7)),]  

 

#Adding Stayability code 

COLUMBIA[,"STAY2"]=ifelse(COLUMBIA$Longevity>=2,1,0) 

COLUMBIA[,"STAY3"]=ifelse(COLUMBIA$Longevity>=3,1,0) 

COLUMBIA[,"STAY4"]=ifelse(COLUMBIA$Longevity>=4,1,0) 

COLUMBIA[,"STAY5"]=ifelse(COLUMBIA$Longevity>=5,1,0) 

COLUMBIA[,"STAY6"]=ifelse(COLUMBIA$Longevity>=6,1,0) 

COLUMBIA[,"STAYABILITY TO AGE SEVEN (7)"]=ifelse(COLUMBIA$Longevity>=7,1,0) 

 

###POLYPAY### 

#Same approach as Columbia, LY2 = 0 dropped 

POLYPAY[,"Longevity"]=POLYPAY$maxLY2 

POLYPAY[which(POLYPAY$maxLY2==0),"Longevity"]=NA 

POLYPAY[which(POLYPAY$Longevity > 7),"Longevity"]=7 

POLYPAY = POLYPAY[which(!(is.na(POLYPAY$Longevity))),]  

POLYPAY = POLYPAY[which(!(is.na(POLYPAY$DTR))),]  

POLYPAY = POLYPAY[which(!(is.na(POLYPAY$DTB))),]  

POLYPAY = POLYPAY[which(!(is.na(POLYPAY$TBRE))),]  

POLYPAY = POLYPAY[which(!(is.na(POLYPAY$TB_recode))),]  

POLYPAY = POLYPAY[which(!(POLYPAY$BRWT == 0.0)),]  

POLYPAY = POLYPAY[which(!(POLYPAY$AGE>7)),]  

POLYPAY[,"STAY2"]=ifelse(POLYPAY$Longevity>=2,1,0) 

POLYPAY[,"STAY3"]=ifelse(POLYPAY$Longevity>=3,1,0) 

POLYPAY[,"STAY4"]=ifelse(POLYPAY$Longevity>=4,1,0) 

POLYPAY[,"STAY5"]=ifelse(POLYPAY$Longevity>=5,1,0) 

POLYPAY[,"STAY6"]=ifelse(POLYPAY$Longevity>=6,1,0) 

POLYPAY[,"STAYABILITY TO AGE SEVEN (7)"]=ifelse(POLYPAY$Longevity>=7,1,0) 

 

###RAMBOUILLET### 

#Same approach as Columbia, maxLY2 = 0 dropped 

RAMBOUILLET[,"Longevity"]=RAMBOUILLET$maxLY2 

RAMBOUILLET[which(RAMBOUILLET$maxLY2==0),"Longevity"]=NA 

RAMBOUILLET[which(RAMBOUILLET$Longevity > 7),"Longevity"]=7 

RAMBOUILLET = RAMBOUILLET[which(!(is.na(RAMBOUILLET$Longevity))),]  

RAMBOUILLET = RAMBOUILLET[which(!(is.na(RAMBOUILLET$DTR))),]  
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RAMBOUILLET = RAMBOUILLET[which(!(is.na(RAMBOUILLET$DTB))),]  

RAMBOUILLET = RAMBOUILLET[which(!(is.na(RAMBOUILLET$TBRE))),]  

RAMBOUILLET = RAMBOUILLET[which(!(is.na(RAMBOUILLET$TB_recode))),]  

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$BRWT == 0.0)),]  

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$AGE>7)),]  

RAMBOUILLET[,"STAY2"]=ifelse(RAMBOUILLET$Longevity>=2,1,0) 

RAMBOUILLET[,"STAY3"]=ifelse(RAMBOUILLET$Longevity>=3,1,0) 

RAMBOUILLET[,"STAY4"]=ifelse(RAMBOUILLET$Longevity>=4,1,0) 

RAMBOUILLET[,"STAY5"]=ifelse(RAMBOUILLET$Longevity>=5,1,0) 

RAMBOUILLET[,"STAY6"]=ifelse(RAMBOUILLET$Longevity>=6,1,0) 

RAMBOUILLET[,"STAYABILITY TO AGE SEVEN 

(7)"]=ifelse(RAMBOUILLET$Longevity>=7,1,0) 

 

###TARGHEE### 

#Same approach as Columbia, LY2 = 0 dropped 

TARGHEE[,"Longevity"]=TARGHEE$maxLY2 

TARGHEE[which(TARGHEE$maxLY2==0),"Longevity"]=NA 

TARGHEE[which(TARGHEE$Longevity > 7),"Longevity"]=7 

TARGHEE = TARGHEE[which(!(is.na(TARGHEE$Longevity))),]  

TARGHEE = TARGHEE[which(!(is.na(TARGHEE$DTR))),]  

TARGHEE = TARGHEE[which(!(is.na(TARGHEE$DTB))),]  

TARGHEE = TARGHEE[which(!(is.na(TARGHEE$TBRE))),]  

TARGHEE = TARGHEE[which(!(is.na(TARGHEE$TB_recode))),]  

TARGHEE = TARGHEE[which(!(TARGHEE$BRWT == 0.0)),] 

TARGHEE = TARGHEE[which(!(TARGHEE$AGE > 7)),] 

TARGHEE[,"STAY2"]=ifelse(TARGHEE$Longevity>=2,1,0) 

TARGHEE[,"STAY3"]=ifelse(TARGHEE$Longevity>=3,1,0) 

TARGHEE[,"STAY4"]=ifelse(TARGHEE$Longevity>=4,1,0) 

TARGHEE[,"STAY5"]=ifelse(TARGHEE$Longevity>=5,1,0) 

TARGHEE[,"STAY6"]=ifelse(TARGHEE$Longevity>=6,1,0) 

TARGHEE[,"STAYABILITY TO AGE SEVEN (7)"]=ifelse(TARGHEE$Longevity>=7,1,0) 

 

####FIXING TB/DTB#### 

#COLUMBIA  

#Cleaning up the data 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$TB_recode==4)),] 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$DTB==4)),]  

 

#RAMOUILLET 

#Cleaning up the data 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$TB_recode==4)),] 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$DTB==4)),]  

 

#TARGHEE 

#Removing Quad+, like other breeds 

TARGHEE = TARGHEE[which(!(TARGHEE$TB_recode==4)),] 



 

104 

TARGHEE = TARGHEE[which(!(TARGHEE$DTB==4)),]  

 

####FIXING TR/DTR##### 

#COLUMBIA: 

#Removing levels 2, 4, 6, and 9 

#Level 0 gone after TB fix 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$TBRE==2)),] 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$TBRE==4)),] 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$TBRE==6)),] 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$TBRE==9)),] 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$DTR==2)),] 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$DTR==4)),] 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$DTR==6)),] 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$DTR==9)),]  

 

#Split level 3 so that "singles raised as twins" goes in category 2 

COLUMBIA[which(COLUMBIA$TB_recode==1 and COLUMBIA$TBRE==3),"TBRE"]=2 

COLUMBIA[which(COLUMBIA$DTB==1 and COLUMBIA$DTR==3),"DTR"]=2 

 

##RERUN COUNTS FOR TB and TR with revised data 

#Ewes born single and raised a twin only accounted for 43 records (2.3% of data). 

#Twins were never raised as triplets, so this group does not make  

#sense to keep. Dropping those records. 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$TBRE==2)),] 

COLUMBIA = COLUMBIA[which(!(COLUMBIA$DTR==2)),]  

 

##Reduce years 

COLUMBIA = COLUMBIA[which(COLUMBIA$BYR>=1985),]  

 

#POLYPAY: 

#Removing levels 2, 4, and 6 

POLYPAY = POLYPAY[which(!(POLYPAY$TBRE==2)),] 

POLYPAY = POLYPAY[which(!(POLYPAY$TBRE==4)),] 

POLYPAY = POLYPAY[which(!(POLYPAY$TBRE==6)),] 

POLYPAY = POLYPAY[which(!(POLYPAY$DTR==2)),] 

POLYPAY = POLYPAY[which(!(POLYPAY$DTR==4)),] 

POLYPAY = POLYPAY[which(!(POLYPAY$DTR==6)),]  

 

#Split level 3 so that "singles raised as twins" goes in category 2 

POLYPAY[which(POLYPAY$TB_recode==1 and POLYPAY$TBRE==3),"TBRE"]=2 

POLYPAY[which(POLYPAY$DTB==1 and POLYPAY$DTR==3),"DTR"]=2 

#Same issue with category 2, dropping records 

POLYPAY = POLYPAY[which(!(POLYPAY$TBRE==2)),] 

POLYPAY = POLYPAY[which(!(POLYPAY$DTR==2)),]  
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POLYPAY_ISSUES = POLYPAY[which((POLYPAY$TB_recode==3 and 

POLYPAY$TBRE==1) | (POLYPAY$TB_recode==4 and POLYPAY$TBRE==7) | 

(POLYPAY$TB_recode==4 and POLYPAY$TBRE==8) | (POLYPAY$TB_recode==4 and 

POLYPAY$TBRE==9) | (POLYPAY$DTB==4 and POLYPAY$DTR==7) | 

(POLYPAY$DTB==4 and POLYPAY$DTR==8) | (POLYPAY$DTB==4 and 

POLYPAY$DTR==9)),] 

write.table(POLYPAY_ISSUES,paste0(getwd(),"/Polypay_Issues.txt"),row.names=FALSE,quot

e=FALSE) 

 

#get rid of problem animals 

POLYPAY = 

POLYPAY[which(!(POLYPAY$LAMBID%in%POLYPAY_ISSUES$LAMBID)),]  

 

#removing remaining Quad+ 

POLYPAY = POLYPAY[which(!(POLYPAY$TB_recode==4 | POLYPAY$DTB==4)),]  

 

##Reduce years 

POLYPAY = POLYPAY[which(POLYPAY$BYR>=1985),]  

#no more issues 

 

#RAMBOUILLET 

#Need to clean up levels 0, 2, 4, 6, and 9 

#No more level 0 after TB cleanup 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$TBRE==2)),] 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$TBRE==4)),] 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$TBRE==6)),] 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$TBRE==9)),] 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$DTR==2)),]  

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$DTR==4)),] 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$DTR==6)),] 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$DTR==9)),]  

 

#Split level 3 so that "singles raised as twins" goes in category 2 

RAMBOUILLET[which(RAMBOUILLET$TB_recode==1 and 

RAMBOUILLET$TBRE==3),"TBRE"]=2 

RAMBOUILLET[which(RAMBOUILLET$DTB==1 and 

RAMBOUILLET$DTR==3),"DTR"]=2 

#Dropping category 2 for same reason as Columbia and Polypay 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$TBRE==2)),] 

RAMBOUILLET = RAMBOUILLET[which(!(RAMBOUILLET$DTR==2)),]  

 

##Reduce years 

RAMBOUILLET = RAMBOUILLET[which(RAMBOUILLET$BYR>=1985),]  

 

#TARGHEE 

#No more level 0 after TB cleanup 
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#Need to clean up levels 2, 4, 6, and 9 

TARGHEE = TARGHEE[which(!(TARGHEE$TBRE==2)),] 

TARGHEE = TARGHEE[which(!(TARGHEE$TBRE==4)),] 

TARGHEE = TARGHEE[which(!(TARGHEE$TBRE==6)),] 

TARGHEE = TARGHEE[which(!(TARGHEE$TBRE==9)),] 

TARGHEE = TARGHEE[which(!(TARGHEE$DTR==2)),] 

TARGHEE = TARGHEE[which(!(TARGHEE$DTR==4)),] 

TARGHEE = TARGHEE[which(!(TARGHEE$DTR==6)),] 

TARGHEE = TARGHEE[which(!(TARGHEE$DTR==9)),]  

 

#Split level 3 so that "singles raised as twins" goes in category 2 

TARGHEE[which(TARGHEE$TB_recode==1 and TARGHEE$TBRE==3),"TBRE"]=2 

TARGHEE[which(TARGHEE$DTB==1 and TARGHEE$DTR==3),"DTR"]=2 

#Dropping category 2 for same reason as other breeds 

TARGHEE = TARGHEE[which(!(TARGHEE$TBRE==2)),] 

TARGHEE = TARGHEE[which(!(TARGHEE$DTR==2)),]  

 

##Reduce years 

TARGHEE = TARGHEE[which(TARGHEE$BYR>=1985),] #2950 remain 

 

######Counting Work##### 

red = XXXX #replace XXXX for each breed 

 

TBlevels = array(c(1:4)) 

LevelCount = matrix(0,nrow = dim(TBlevels),ncol=3,dimnames = 

list(c(1:dim(TBlevels)),c("Level","TB","DTB"))) 

LevelCount[,"Level"] = TBlevels 

 

for(i in 1:dim(TBlevels)){ 

  LevelCount[i,"TB"] = dim(red[which(red$TB_recode == TBlevels[i]),,drop=FALSE])[1] 

  LevelCount[i,"DTB"] = dim(red[which(red$DTB == TBlevels[i]),,drop=FALSE])[1] 

} 

LevelCount 

 

TRlevels = array(c(0:9)) 

LevelCount = matrix(0,nrow = dim(TRlevels),ncol=3,dimnames = 

list(c(1:dim(TRlevels)),c("Level","TR","DTR"))) 

LevelCount[,"Level"] = TRlevels 

for(i in 1:dim(TRlevels)){ 

  LevelCount[i,"TR"] = dim(red[which(red$TBRE == TRlevels[i]),,drop=FALSE])[1] 

  LevelCount[i,"DTR"] = dim(red[which(red$DTR == TRlevels[i]),,drop=FALSE])[1] 

} 

LevelCount 

 

BYRlevels = array(sort(unique(red$BYR))) 
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LevelCount = matrix(0,nrow = dim(BYRlevels),ncol=2,dimnames = 

list(c(1:dim(BYRlevels)),c("Level","Count"))) 

LevelCount[,"Level"] = BYRlevels 

for(i in 1:dim(BYRlevels)){ 

  LevelCount[i,"Count"] = dim(red[which(red$BYR == BYRlevels[i]),,drop=FALSE])[1] 

} 

LevelCount 

 

#Columbia: 

#All data present and read for Columbia, outputting data: 

write.table(COLUMBIA,paste0(getwd(),"/Columbia.txt"),sep="\t",row.names=FALSE,quote=F

ALSE) 

 

#Polypay: 

 

##All data present and read for Polypay, outputting current dataset: 

write.table(POLYPAY,paste0(getwd(),"/Polypay.txt"),sep="\t",row.names=FALSE,quote=FALS

E) 

 

#RAMBOUILLET: 

write.table(RAMBOUILLET,paste0(getwd(),"/Rambouillet.txt"),sep="\t",row.names=FALSE,qu

ote=FALSE) 

 

#TARGHEE 

#No issues with BYR found, distributed adequately across years of 1986 to 2008 

write.table(TARGHEE,paste0(getwd(),"/Targhee.txt"),sep="\t",row.names=FALSE,quote=FALS

E) 

 

Script to extract pedigree from final datasets 

#Function 

PedExtract = function(Ped,extractlist,keep=TRUE){ 

  if(missing(Ped)){ 

    stop("Pedigree was not provided.") 

  } 

  if(missing(extractlist)){ 

    stop("List of individuals to extract pedigree for was not provided.") 

  } 

  NewPed = Ped[which(Ped[,1]%in%extractlist),] 

  sires = array(na.omit(unique(NewPed[,2]))) 

  sires = sires[which(!(sires %in% NewPed[,1]))] 

  dams = array(na.omit(unique(NewPed[,3]))) 

  dams = dams[which(!(dams %in% NewPed[,1]))] 

  newparents = array(c(sires,dams)) 

  while(dim(newparents)>0){ 
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    PedAdd = Ped[which(Ped[,1]%in%c(newparents)),] 

    if(dim(PedAdd)[1] < dim(newparents)){ 

      miss = array(c(newparents[which(!(newparents%in%array(PedAdd[,1])))])) 

      PedAdd = 

rbind(PedAdd,data.frame(LAMBID=miss,SIREID=NA,DAMID=NA,ID10=NA,STM=NA,SIR

E4=NA,DAM4=NA)) 

    } 

    NewPed = rbind(PedAdd,NewPed) 

    sires = array(na.omit(unique(PedAdd[,2]))) 

    sires = sires[which(!(sires %in% NewPed[,1]))] 

    dams = array(na.omit(unique(PedAdd[,3]))) 

    dams = dams[which(!(dams %in% NewPed[,1]))] 

    newparents = array(c(sires,dams)) 

  } 

  if(keep==FALSE){ 

    NewPed = NewPed[,1:3] 

  } 

  return(NewPed) 

} 

 

#processing data 

library(foreign) 

Ped = read.dbf("PEDIGREE.dbf",as.is=TRUE) 

Ped[which(Ped$SIREID==0),"SIREID"]=NA 

Ped[which(Ped$DAMID==0),"DAMID"]=NA 

 

#SireIssues = array(c("200500 595","200600 629","200400 426","200600 661")) 

Ped[which(substr(Ped$SIREID,7,7)==" 

"),"SIREID"]=paste0(substr(Ped[which(substr(Ped$SIREID,7,7)==" 

"),"SIREID"],1,6),"0",substr(Ped[which(substr(Ped$SIREID,7,7)==" "),"SIREID"],8,10)) 

write.table(Ped,paste0(getwd(),"/PedUpdated.txt"),sep="\t",row.names=FALSE,quote=FALSE)   

   

Columbia = read.table("Columbia.txt",header=TRUE,sep="\t") 

extractlist = array(Columbia$LAMBID) 

 

PedC = PedExtract(Ped,extractlist,keep=FALSE) 

PedC = PedC[order(PedC$LAMBID),] 

write.table(PedC,paste0(getwd(),"/PedC.txt"),sep="\t",row.names=FALSE,quote=FALSE) 

 

remove(Columbia,PedC,extractlist) 

 

Polypay = read.table("Polypay.txt",header=TRUE,sep="\t") 

extractlist = array(Polypay$LAMBID) 

PedP = PedExtract(Ped,extractlist,keep=FALSE) 

PedP = PedP[order(PedP$LAMBID),] 

write.table(PedP,paste0(getwd(),"/PedP.txt"),sep="\t",row.names=FALSE,quote=FALSE) 
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remove(Polypay,PedP,extractlist) 

 

Rambouillet = read.table("Rambouillet.txt",header=TRUE,sep="\t") 

extractlist = array(Rambouillet$LAMBID) 

PedR = PedExtract(Ped,extractlist,keep=FALSE) 

PedR = PedR[order(PedR$LAMBID),] 

write.table(PedR,paste0(getwd(),"/PedR.txt"),sep="\t",row.names=FALSE,quote=FALSE) 

 

remove(Rambouillet,PedR,extractlist) 

 

Targhee = read.table("Targhee.txt",header=TRUE,sep="\t") 

extractlist = array(Targhee$LAMBID) 

PedT = PedExtract(Ped,extractlist,keep=FALSE) 

PedT = PedT[order(PedT$LAMBID),] 

write.table(PedT,paste0(getwd(),"/PedT.txt"),sep="\t",row.names=FALSE,quote=FALSE) 

 

remove(Targhee,PedT,extractlist) 

 

Columbia = read.table("Columbia.txt",header=TRUE,sep="\t") 

Polypay = read.table("Polypay.txt",header=TRUE,sep="\t") 

Rambouillet = read.table("Rambouillet.txt",header=TRUE,sep="\t") 

Targhee = read.table("Targhee.txt",header=TRUE,sep="\t") 

Across = rbind(Columbia,Polypay,Rambouillet,Targhee) 

 

extractlist = array(Across$LAMBID) 

PedA = PedExtract(Ped,extractlist,keep=FALSE) 

PedA = PedA[order(PedA$LAMBID),] 

write.table(PedA,paste0(getwd(),"/PedA.txt"),sep="\t",row.names=FALSE,quote=FALSE) 

write.table(Across,paste0(getwd(),"/Across.txt"),sep="\t",row.names=FALSE,quote=FALSE) 
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APPENDIX B: SIBS PACKAGE R CODE BY FUNCTION 

Generation assignment 

GENAssign = function(Ped, ID=1, Sire=2, Dam=3,st = TRUE, header=TRUE){Ped =  

cbind(Ped,matrix(0,nrow=dim(Ped)[1],ncol=1)) 

colnames(Ped)=array(c("ID", "Sire", "Dam", "GEN")) 

   Ped[which(Ped[,2]==0 and Ped[,3]==0),4]=1 

   fpl=array(c(unique(Ped[which(Ped[,2]>0),2]),unique(Ped[which(Ped[,3]>0),3]))) 

   i=1 

   while(dim(fpl)>0){ 

     pl = array(Ped[which(Ped[,4]==i),1]) 

     fpl=array(subset(fpl,!(fpl%in%pl))) 

     Ped[which((Ped[,2]%in%pl and Ped[,3]%in%pl) | (Ped[,2]%in%pl and 

!(Ped[,3]%in%pl) and   !(Ped[,3]%in%fpl)) | (Ped[,3]%in%pl and !(Ped[,2]%in%pl) and 

!(Ped[,2]%in%fpl))),4]=i+1 

     i=i+1 

   } 

   if (st == TRUE) { 

     Ped = Ped[order(Ped[,4],Ped[,2],Ped[,3]),] 

   } 

   return(Ped) 

} 

Sibling assignment 

AssignSibs = function(Ped,colnames = c("ID","Sire","Dam"),st = TRUE,savefiles = TRUE){ 

  library(data.table) 

   Ped <- data.table(Ped) 

   sibDT = Ped[!is.na(Sire) and !is.na(Dam),  

             CJ(ID = ID, fullsibs = ID)[ID != fullsibs], by=.(Sire, Dam)] 

hsibDT = melt(Ped, id.vars  = "ID")[!is.na(value), CJ(ID = ID, hsid = ID)[ID != 

hsid],by=.(ptype = variable, pid = value)][!sibDT, on=.(ID, hsid = fullsibs)] 

Ped[sibDT[, .(fullsibs = toString(fullsibs)), by=ID], on=.(ID), fullsibs := i.fullsibs, 

by=.EACHI ] 

   Ped[hsibDT[, .(hsibs = toString(hsid)), by=ID], on=.(ID), hsibs := i.hsibs, by=.EACHI ] 

   Ped[rbind(sibDT[, .(ID, oid = fullsibs)], hsibDT[, .(ID, oid = hsid)])[,.(fams = 

toString(oid)), by=.(ID)],on = .(ID), fams := i.fams, by = .EACHI] 

message(paste0('Total number of half-sibs in this pedigree = ', 

length(table(Ped[,"hsibs"])), sep="")) 

message(paste0('Total number of full-sibs in this pedigree = ', 

length(table(Ped[,"fullsibs"])), sep="")) 
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message(paste0('Total number of DFC in this pedigree = ', length(table(Ped[,"fams"])), 

sep="")) 

   return(Ped) 

} 

 

Sibling count 

SibCount = function(Ped,coln = c("ID","Sire","Dam"),st = TRUE,savefiles = TRUE){ 

Stats = matrix(0,nrow=3,ncol=5,byrow=TRUE,dimnames = 

list(c("FullSib","PaternalHalfSib","MaternalHalfSib"),c("Count","Average","SD","Min",

"Max"))) 

FSCount = cbind(unique(Ped[,c("Sire","Dam")]),data.frame(0)) 

   colnames(FSCount) = c("Sire","Dam","NuFullSib") 

   FSCount = FSCount[!rowSums(is.na(FSCount[,c("Sire","Dam")])),] 

for(i in 1:dim(FSCount)[1]){ 

FSCount[i,"NuFullSib"]=nrow(Ped[which(Ped[,"Sire"]==FSCount[i,"Sire"] and 

Ped[,"Dam"]==FSCount[i,"Dam"]),])} 

   FullSibs = FSCount[which(FSCount[,"NuFullSib"]>=2),] 

Stats[1,] = 

c(nrow(FullSibs),round(mean(FullSibs[,"NuFullSib"]),3),round(sd(FullSibs[,"NuFullSib"

]),3),min(FullSibs[,"NuFullSib"]),max(FullSibs[,"NuFullSib"])) 

   PHSCount = cbind(unique(Ped[,"Sire"]),data.frame(0)) 

   colnames(PHSCount) = c("Sire","NuPHalfSib") 

   PHSCount = PHSCount[!is.na(PHSCount[,"Sire"]),] 

   for(i in 1:dim(PHSCount)[1]){ 

     PHSCount[i,"NuPHalfSib"]=nrow(Ped[which(Ped[,"Sire"]==PHSCount[i,"Sire"]),])} 

   PHSCount = PHSCount[which(PHSCount[,"NuPHalfSib"]>=2),] 

   Stats[2,] = 

c(nrow(PHSCount),round(mean(PHSCount[,"NuPHalfSib"]),3),round(sd(PHSCount[,"N

uPHalfSib"]),3),min(PHSCount[,"NuPHalfSib"]),max(PHSCount[,"NuPHalfSib"])) 

   MHSCount = cbind(unique(Ped[,"Dam"]),data.frame(0)) 

   colnames(MHSCount) = c("Dam","NuMHalfSib") 

   MHSCount = MHSCount[!is.na(MHSCount[,"Dam"]),] 

   for(i in 1:dim(MHSCount)[1]){ 

 MHSCount[i,"NuMHalfSib"]=nrow(Ped[which(Ped[,"Dam"]==MHSCount[i,"Da

m"]),])} 

   MHSCount = MHSCount[which(MHSCount[,"NuMHalfSib"]>=2),] 

Stats[3,] = 

c(nrow(MHSCount),round(mean(MHSCount[,"NuMHalfSib"]),3),round(sd(MHSCount[,

"NuMHalfSib"]),3),min(MHSCount[,"NuMHalfSib"]),max(MHSCount[,"NuMHalfSib"]

)) 
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message(paste0('Total number of maternal half-sibs in this pedigree = ', 

length(table(MHSCount)), sep="")) 

message(paste0('Total number of paternal half-sibs in this pedigree = ', 

length(table(PHSCount)), sep="")) 

message(paste0('Total number of full-sibs in this pedigree = ', length(table(FSCount)), 

sep="")) 

li = list(FSCount=as.data.frame(FSCount),PHSCount=as.data.frame(PHSCount), 

MHSCount= as.data.frame(MHSCount), Stats=as.data.frame(Stats)) 

   return(li) 

} 

Building pedigree 

makePed <- function (pedigree, ID=1, Sire=2, Dam=3, rmsingle = FALSE, verbose = TRUE) { 

   

  anim = unique(as.character(pedigree[,ID])) 

  Sires = unique(as.character(pedigree[,Sire])) 

  Dams = unique(as.character(pedigree[,Dam])) 

   

#check for duplicated IDs 

  if(anyDuplicated(pedigree[,ID])) 

    { 

    message("Duplicated IDs were  detected and removed.\n") 

    ord   <- order(!is.na(pedigree[,2])+!is.na(pedigree[,3])) 

    pedigree <- pedigree[ord,] 

    message("This includes: \n") 

    print(head(pedigree[duplicated(pedigree[,1]),]))       

    pedigree <- pedigree[!duplicated(pedigree[,1]),] 

  } 

  rownames(pedigree)<-pedigree[,1] 

   

  Sireclean = Sires[Sires!="0"] 

  Damclean = Dams[Dams!="0"] 

  wrongsex = Sireclean %in% Damclean 

   

  if(TRUE %in% wrongsex) { 

    warning (" looks like some Sires appear as Dams, assumed selfing") 

  } 

   

  # remove singleton animals (no parents or progeny in the pedigree) 

  if(rmsingle == TRUE){ 

    singleton.vec <- pedigree[,1][pedigree[,2] == 0 and pedigree[,3]== 0 and !(pedigree[,1] %in% 

c(pedigree[,2], pedigree[,3]))] 

     

    if(length(singleton.vec) > 0) { 

      pedigree = pedigree[-(pedigree[,1] %in% singleton.vec),] 
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      if (verbose == TRUE) message("A total of", length(singleton.vec), "found and removed. \n") 

    } 

  } 

   

  #Run check for individuals in Sire/Dam that are not in ID and add them as founders 

  if(any(!pedigree[,2] %in% pedigree[,1])) 

    Sirenew <- data.frame(ID = pedigree[which(!pedigree[,2] %in% pedigree[,1]), 2], 

                          Sire = 0, Dam = 0) 

  if(any(!pedigree[,3] %in% pedigree[,1])) 

    Damnew <- data.frame(ID = pedigree[which(!pedigree[,3] %in% pedigree[,1]), 3], 

                         Sire = 0, Dam = 0) 

  Sirenew <- unique(subset(Sirenew, ID != 0)) 

  Damnew <- unique(subset(Damnew, ID != 0)) 

   

  newPed <- as.data.frame(rbind(Sirenew, Damnew, pedigree)) 

   

  addFounders = TRUE 

   

  if(length(newPed) > length(pedigree)) { 

    addFounders == TRUE 

    message("individuals appearing as Sire/Dam but not as individuals were added as founders. 

\n") 

  } 

   

  # wraps up pedigree stats and output information 

  message(paste0('Total number of animals counted in this pedigree = ', length(anim),sep=''),'\n') 

  message(paste0('Total number of Sires counted in this pedigree = ', 

length(Sireclean),sep=''),'\n') 

  message(paste0('Total number of Dams counted in this pedigree = ', 

length(Damclean),sep=''),'\n') 

  message("New individuals added = ", length(addFounders),'\n') 

  message('Pedigree is now sorted and ordered! \n') 

  if (addFounders == TRUE) { 

    return(newPed) 

  } 

  else return(pedigree) 

} 
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APPENDIX C: BAYESIAN ANALYSIS MCMCglmm R CODES 

Longevity additive MCMCglmm models R codes 

prior<-

list(R=list(V=1,nu=1),G=list(G1=list(V=1,nu=1,alpha.mu=0,alpha.V=1000),G2=list(V=1,nu=1,a

lpha.mu=0,alpha.V=1000), G3=list(V=1,nu=1,alpha.mu=0,alpha.V=1000))) 

 

Phen$ID2 = Phen$ID 

Phen$Dam = as.character(Phen$Dam) 

 

M1dim = dim(array(na.omit(unique(Phen$Dam)))) 

M1 = matrix(0,nrow=M1dim,ncol=M1dim, 

            dimnames=list(array(na.omit(unique(Phen$Dam))),array(na.omit(unique(Phen$Dam))))) 

diag(M1) = 1 

M1 = as(M1, "dgCMatrix") 

 

Phen$BYR = as.character(Phen$BYR) 

BYdim = dim(array(na.omit(unique(Phen$BYR)))) 

BY = 

matrix(0,nrow=BYdim,ncol=BYdim,dimnames=list(array(na.omit(unique(Phen$BYR))),array(n

a.omit(unique(Phen$BYR))))) 

diag(BY) = 1 

BY = as(BY, "dgCMatrix") 

 

Ainv1 = inverseA(Ped)$Ainv 

 

Model 1<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~AGE,random=~ID+Dam+BY,data=Phen,ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR),prior=prior, nitt=10000, burnin=1000, 

thin=90, pr=T, family="gaussian", verbose=T, slice=T, singular.ok = T) }, 

mc.cores=10) 

 

Model 2<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~AGE+TB,random=~ID+Dam+BY,data=Phen,ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR),prior=prior, nitt=10000, burnin=1000, 

thin=90, pr=T, family="gaussian", verbose=T, slice=T, singular.ok = T) }, 

mc.cores=10) 

 

 

Model 3<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~AGE+TB+TR,random=~ID+Dam+BY,data=Phen,ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR),prior=prior, nitt=10000, burnin=1000, 

thin=90, pr=T, family="gaussian", verbose=T, slice=T, singular.ok = T) }, 

mc.cores=10) 
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Model 4<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~AGE+TB+TR+DTB,random=~ID+Dam+BY,data=Phen,ginverse=lis

t(ID= 

Ainv1,Dam=M1, BY=BYR),prior=prior, nitt=10000, burnin=1000, 

thin=90, pr=T, family="gaussian", verbose=T, slice=T, singular.ok = T) }, 

mc.cores=10) 

 

 

Model 5<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~AGE+TB+TR+DTB+DTR,random=~ID+Dam+BY,data=Phen,ginver

se=list(ID= 

Ainv1,Dam=M1, BY=BYR),prior=prior, nitt=10000, burnin=1000, 

thin=90, pr=T, family="gaussian", verbose=T, slice=T, singular.ok = T) }, 

mc.cores=10) 

 

 

Model 6<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~factor(AGE),random=~ID+Dam+BY,data=Phen,ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR),prior=prior, nitt=10000, burnin=1000, 

thin=90, pr=T, family="gaussian", verbose=T, slice=T, singular.ok = T) }, 

mc.cores=10) 

 

 

Model 7<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~factor(AGE)+factor(TB),random=~ID+Dam+BY,data=Phen,ginverse

=list(ID= 

Ainv1,Dam=M1, BY=BYR),prior=prior, nitt=10000, burnin=1000, 

thin=90, pr=T, family="gaussian", verbose=T, slice=T, singular.ok = T) }, 

mc.cores=10) 

 

Model 8<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~factor(AGE)+factor(TB)+factor(DTB),random=~ID+Dam+BY,data=

Phen,ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR),prior=prior, nitt=10000, burnin=1000, 

thin=90, pr=T, family="gaussian", verbose=T, slice=T, singular.ok = T) }, 

mc.cores=10) 

 

 

Model 9<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~factor(AGE)+factor(TB)+factor(DTB)+factor(DTR),random=~ID+D

am+BY,data=Phen,ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR),prior=prior, nitt=10000, burnin=1000, 

thin=90, pr=T, family="gaussian", verbose=T, slice=T, singular.ok = T) }, 

mc.cores=10) 
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Dominance longevity models MCMCglmm R codes 

prior2<- 

list(R=list(V=1,nu=1),G=list(G1=list(V=1,nu=1,alpha.mu=0,alpha.V=1000),G2=list(V=1,nu=1,a

lpha.mu=0,alpha.V=1000), G3=list(V=1,nu=1,alpha.mu=0,alpha.V=1000), 

G4=list(V=1,nu=1,alpha.mu=0,alpha.V=1000))) 

 

Phen$ID2 = Phen$ID 

Phen$Dam = as.character(Phen$Dam) 

 

M1dim = dim(array(na.omit(unique(Phen$Dam)))) 

M1 = matrix(0,nrow=M1dim,ncol=M1dim, 

            dimnames=list(array(na.omit(unique(Phen$Dam))),array(na.omit(unique(Phen$Dam))))) 

diag(M1) = 1 

M1 = as(M1, "dgCMatrix") 

 

Phen$BYR = as.character(Phen$BYR) 

BYdim = dim(array(na.omit(unique(Phen$BYR)))) 

BY = 

matrix(0,nrow=BYdim,ncol=BYdim,dimnames=list(array(na.omit(unique(Phen$BYR))),array(n

a.omit(unique(Phen$BYR))))) 

diag(BY) = 1 

BY = as(BY, "dgCMatrix") 

 

Ainv1 = inverseA(Ped)$Ainv 

Dinv1 = nadiv::makeD(Ped)$Dinv 

 

Model 1dom<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~AGE,random=~ID+Dam+BY+ID2,data=Phen,ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR, ID2=Dinv1),prior=prior2, nitt=20000, 

burnin=11000, thin=90, pr=T, family="gaussian", verbose=T, slice=T, 

singular.ok = T) }, mc.cores=10) 

 

Model 2dom<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~AGE+TB,random=~ID+Dam+BY+ID2,data=Phen,ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR, ID2=Dinv1),prior=prior2, nitt=20000, 

burnin=11000, thin=90, pr=T, family="gaussian", verbose=T, slice=T, 

singular.ok = T) }, mc.cores=10) 

 

 

Model 3dom<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~AGE+TB+TR,random=~ID+Dam+BY+ID2,data=Phen,ginverse=list(

ID= 

Ainv1,Dam=M1, BY=BYR, ID2=Dinv1),prior=prior2, nitt=20000, 

burnin=11000, thin=90, pr=T, family="gaussian", verbose=T, slice=T, 

singular.ok = T) }, mc.cores=10) 
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Model 4dom<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~AGE+TB+TR+DTB,random=~ID+Dam+BY+ID2,data=Phen,ginvers

e=list(ID= 

Ainv1,Dam=M1, BY=BYR, ID2=Dinv1),prior=prior2, nitt=20000, 

burnin=11000, thin=90, pr=T, family="gaussian", verbose=T, slice=T, 

singular.ok = T) }, mc.cores=10) 

 

Model 5dom<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~AGE+TB+TR+DTB+DTR,random=~ID+Dam+BY+ID2,data=Phen,

ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR, ID2=Dinv1),prior=prior2, nitt=20000, 

burnin=11000, thin=90, pr=T, family="gaussian", verbose=T, slice=T, 

singular.ok = T) }, mc.cores=10) 

 

 

Model 6dom<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~factor(AGE)+factor(TB),random=~ID+Dam+BY+ID2,data=Phen,gin

verse=list(ID= 

Ainv1,Dam=M1, BY=BYR, ID2=Dinv1),prior=prior2, nitt=20000, 

burnin=11000, thin=90, pr=T, family="gaussian", verbose=T, slice=T, 

singular.ok = T) }, mc.cores=10) 

 

 

Model 7dom<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~factor(AGE)+factor(TB)+factor(TR),random=~ID+Dam+BY+ID2,da

ta=Phen,ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR, ID2=Dinv1),prior=prior2, nitt=20000, 

burnin=11000, thin=90, pr=T, family="gaussian", verbose=T, slice=T, 

singular.ok = T) }, mc.cores=10) 

 

 

Model 8dom<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~factor(AGE)+factor(TB)+factor(TR)+factor(DTB),random=~ID+Da

m+BY+ID2,data=Phen,ginverse=list(ID= 

Ainv1,Dam=M1, BY=BYR, ID2=Dinv1),prior=prior2, nitt=20000, 

burnin=11000, thin=90, pr=T, family="gaussian", verbose=T, slice=T, 

singular.ok = T) }, mc.cores=10) 

 

 

Model 9dom<- mclapply(1:10, function(i) 

{MCMCglmm(Longevity~factor(AGE)+factor(TB)+factor(TR)+factor(DTB)+factor(DTR),rand

om=~ID+Dam+BY+ID2,data=Phen,ginverse=list(ID= 
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Ainv1,Dam=M1, BY=BYR, ID2=Dinv1),prior=prior2, nitt=20000, 

burnin=11000, thin=90, pr=T, family="gaussian", verbose=T, slice=T, 

singular.ok = T) }, mc.cores=10) 

 

An example of parallel in windows operating system 

library(parallel) 

setCores<-round(detectCores()*0.8) #80% of cores 

cl <- makeCluster(getOption("cl.cores",setCores)) 

cl.pkg <- clusterEvalQ(cl,library(MCMCglmm))  

 

clusterExport(cl,"prior2") 

clusterExport(cl,"Phen") 

clusterExport(cl,"Ainv1") 

clusterExport(cl,"Dinv1") 

clusterExport(cl,"M1") 

clusterExport(cl,"BYR") 

 

test8<-parLapply(cl=cl,1:5, function(i) { 

MCMCglmm(Longevity~factor(AGE)+factor(TB)+factor(TR)+factor(DTB)+factor(DTR

), random=~ID+Dam+BY+ID2, ginverse=list(ID=Ainv1, Dam=M1, BY=BYR, 

ID2=Dinv1), data=Phen, prior=prior2, verbose=T,nitt=20000, burnin=11000, thin=90, 

pr=T, family="gaussian", slice=T, singular.ok = T) 

}) 

stopCluster(cl) 

 

Stayability multivariate additive models 

priorb<- list(R=list(V=diag(6),nu=6, fix=0),G=list(G1=list(V=diag(6), nu=6), 

G2=list(V=diag(6), nu=6), G3=list(V=diag(6), nu=6))) 

stay1<- mclapply(1:10, 

function(i){MCMCglmm(cbind(STAY2,STAY3,STAY4,STAY5,STAY6,STAY7)~trait+1+trait

:AGE,random= ~us(trait):ID+us(trait):Dam+us(trait):BYR, ginverse=list(ID=Ainv1, Dam=M1, 

BYR= BY),family=rep("threshold", 6),pr=T, prior=priorb, data=Phen,nitt=10000, burnin=1000, 

thin=90, rcov=~us(trait):units, verbose=T, slice=T, singular.ok = T, scale=T)}, mc.cores=10) 

stay2<- mclapply(1:10, 

function(i){MCMCglmm(cbind(STAY2,STAY3,STAY4,STAY5,STAY6,STAY7)~trait+1+trait

:AGE+trait:TB,random= ~us(trait):ID+us(trait):Dam+us(trait):BYR, ginverse=list(ID=Ainv1, 

Dam=M1, BYR= BY),family=rep("threshold", 6),pr=T, prior=priorb, data=Phen,nitt=10000, 

burnin=1000, thin=90, rcov=~us(trait):units, verbose=T, slice=T, singular.ok = T, scale=T)}, 

mc.cores=10) 

stay3<- mclapply(1:10, 

function(i){MCMCglmm(cbind(STAY2,STAY3,STAY4,STAY5,STAY6,STAY7)~trait+1+trait

:AGE+trait:TB+trait:TR,random= ~us(trait):ID+us(trait):Dam+us(trait):BYR, 
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ginverse=list(ID=Ainv1, Dam=M1, BYR= BY),family=rep("threshold", 6),pr=T, prior=priorb, 

data=Phen,nitt=10000, burnin=1000, thin=90, rcov=~us(trait):units, verbose=T, slice=T, 

singular.ok = T, scale=T)}, mc.cores=10) 

stay4<- mclapply(1:10, 

function(i){MCMCglmm(cbind(STAY2,STAY3,STAY4,STAY5,STAY6,STAY7)~trait+1+trait

:AGE+trait:TB_recode+trait:TBRE+trait:DTB,random= 

~us(trait):ID+us(trait):Dam+us(trait):BYR, ginverse=list(ID=Ainv1, Dam=M1, BYR= 

BY),family=rep("threshold", 6),pr=T, prior=priorb, data=Phen,nitt=10000, burnin=1000, 

thin=90, rcov=~us(trait):units, verbose=T, slice=T, singular.ok = T, scale=T)}, mc.cores=10) 

stay5<- mclapply(1:10, 

function(i){MCMCglmm(cbind(STAY2,STAY3,STAY4,STAY5,STAY6,STAY7)~trait+1+trait

:AGE+trait:TB_recode+trait:TBRE+trait:DTB+trait:DTR,random= 

~us(trait):ID+us(trait):Dam+us(trait):BYR, ginverse=list(ID=Ainv1, Dam=M1, BYR= 

BY),family=rep("threshold", 6),pr=T, prior=priorb, data=Phen,nitt=10000, burnin=1000, 

thin=90, rcov=~us(trait):units, verbose=T, slice=T, singular.ok = T, scale=T)}, mc.cores=10) 

Stayability dominance models 

priora<- list(R=list(V=diag(6),nu=6, fix=0),G=list(G1=list(V=diag(6), nu=6), 

G2=list(V=diag(6), nu=6), G3=list(V=diag(6), nu=6), G4=list(V=diag(6), nu=6))) 

stay1d<- mclapply(1:10, 

function(i){MCMCglmm(cbind(STAY2,STAY3,STAY4,STAY5,STAY6,STAY7)~trait+1+trait

:AGE,random= ~us(trait):ID+us(trait):Dam+us(trait):BYR+us(trait):ID2, 

ginverse=list(ID=Ainv1, Dam=M1, BYR= BY, ID2=Dinv1),family=rep("threshold", 6),pr=T, 

prior=priora, data=Phen,nitt=20000, burnin=11000, thin=90, rcov=~us(trait):units, verbose=T, 

slice=T, singular.ok = T, scale=T)}, mc.cores=10) 

stay2d<- mclapply(1:10, 

function(i){MCMCglmm(cbind(STAY2,STAY3,STAY4,STAY5,STAY6,STAY7)~trait+1+trait

:AGE+trait:TB,random= ~us(trait):ID+us(trait):Dam+us(trait):BYR+us(trait):ID2, 

ginverse=list(ID=Ainv1, Dam=M1, BYR= BY, ID2=Dinv1),family=rep("threshold", 6),pr=T, 

prior=priora, data=Phen,nitt=20000, burnin=11000, thin=90, rcov=~us(trait):units, verbose=T, 

slice=T, singular.ok = T,  

scale=T)}, mc.cores=10) 

stay3d<- mclapply(1:10, 

function(i){MCMCglmm(cbind(STAY2,STAY3,STAY4,STAY5,STAY6,STAY7)~trait+1+trait

:AGE+trait:TB+trait:TR,random= ~us(trait):ID+us(trait):Dam+us(trait):BYR+us(trait):ID2, 

ginverse=list(ID=Ainv1, Dam=M1, BYR= BY, ID2=Dinv1),family=rep("threshold", 6),pr=T, 

prior=priora, data=Phen,nitt=20000, burnin=11000, thin=90, rcov=~us(trait):units, verbose=T, 

slice=T, singular.ok = T,  

scale=T)}, mc.cores=10) 



 

120 

stay4d<- mclapply(1:10, 

function(i){MCMCglmm(cbind(STAY2,STAY3,STAY4,STAY5,STAY6,STAY7)~trait+1+trait

:AGE+trait:TB+trait:TR+trait:DTB,random= 

~us(trait):ID+us(trait):Dam+us(trait):BYR+us(trait):ID2, ginverse=list(ID=Ainv1, Dam=M1, 

BYR= BY, ID2=Dinv1),family=rep("threshold", 6),pr=T, prior=priora, data=Phen,nitt=20000, 

burnin=11000, thin=90, rcov=~us(trait):units, verbose=T, slice=T, singular.ok = T,  

scale=T)}, mc.cores=10) 

stay5d<- mclapply(1:10, 

function(i){MCMCglmm(cbind(STAY2,STAY3,STAY4,STAY5,STAY6,STAY7)~trait+1+trait

:AGE+trait:TB+trait:TR+trait:DTB+trait:DTR,random= 

~us(trait):ID+us(trait):Dam+us(trait):BYR+us(trait):ID2, ginverse=list(ID=Ainv1, Dam=M1, 

BYR= BY, ID2=Dinv1),family=rep("threshold", 6),pr=T, prior=priora, data=Phen,nitt=20000, 

burnin=11000, thin=90, rcov=~us(trait):units, verbose=T, slice=T, singular.ok = T,  

scale=T)}, mc.cores=10) 

Stayability univariate additive model 

prior.reml<-list(G=list(G1=list(V=1,nu=1000), G3=list(V=1,nu=1000), 

G3=list(V=1,nu=1000)),R = list(V =1, nu =1000)) 

model9 <- mclapply(1:10, function(i) {MCMCglmm(STAY7~factor(TB) +factor(TR) + 

factor(DTB) + factor(DTR) + factor(AGE), random=~ID+Dam+BYR, data=Phen, 

family="threshold",ginverse=list(ID=Ainv1, Dam=M1, BYR=BY), prior=prior.reml, pr = T, 

slice = T, singular.ok = T, scale=T, nitt=10000, burnin=1000, thin=90, verbose=T)}, 

mc.cores=10) 

Stayability univariate dominance model 

prior.rem<-list(G=list(G1=list(V=1,nu=1000), G3=list(V=1,nu=1000), G3=list(V=1,nu=1000), 

G4=list(V=1,nu=1000)),R = list(V =1, nu =1000)) 

model9 <- mclapply(1:10, function(i) {MCMCglmm(STAY7~factor(TB) + factor(TR) + 

factor(DTB) + factor(DTR) + factor(AGE), random=~ID+Dam+BYR+ID2, data=Phen, 

family="threshold",ginverse=list(ID=Ainv1, Dam=M1, BYR=BY, ID2=Dinv1), prior=prior.rem, 

pr = T, slice = T, singular.ok = T, scale=T, nitt=20000, burnin=11000, thin=90, verbose=T)}, 

mc.cores=10) 
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Parallel chains combination codes 

testSol <- lapply(model9, function(m) m$Sol[,1:19]) 

testSol <- do.call(mcmc.list, testSol) 

testVCV = lapply(model9, function(m) m$VCV) 

testVCV = do.call(mcmc.list, testVCV) 

aSOL = autocorr.diag(testSol) #average across chains 

aVCV = autocorr.diag(testVCV) #average across chains 

#Effective sample sizes across chains 

keptchains = attributes(model9[[1]]$VCV)$dim[1]*10 

effratioSOL = round(effectiveSize(testSol)/keptchains,2) 

effratioVCV = round(effectiveSize(testVCV)/keptchains,2) 

SOL = summary(testSol) 

VCV = summary(testVCV) 

Summary = 

matrix(c(round(effectiveSize(testSol),2),round(effectiveSize(testVCV),2),effratioSOL,effratioV

CV,t(round(aSOL[2,],4)),t(round(aVCV[2,],4)),round(SOL$statistics,3),round(VCV$statistics,3)

),byrow=FALSE,ncol=7) 

rownames(Summary)=names(c(effratioSOL,effratioVCV)) 

colnames(Summary)=c("ESS","Ratio","Autocorrelation","Mean","SD","NaiveSE","Time-

SeriesSE") 

DIC=c(round(model9[[1]]$DIC,2),round(model9[[2]]$DIC,2),round(model9[[3]]$DIC,2),round(

model9[[4]]$DIC,2),round(model9[[5]]$DIC,2),round(model9[[6]]$DIC,2),round(model9[[7]]$

DIC,2),round(model9[[8]]$DIC,2),round(model9[[9]]$DIC,2),round(model9[[10]]$DIC,2)) 

paste("Sample size = ",keptchains) 

Summary 

paste("DIC per 

chain:",DIC[1],DIC[2],DIC[3],DIC[4],DIC[5],DIC[6],DIC[7],DIC[8],DIC[9],DIC[10],". 

Average DIC is:",round(mean(DIC),2)) 

test_1CSol = 

as.mcmc(rbind(model9[[1]]$Sol,model9[[2]]$Sol,model9[[3]]$Sol,model9[[4]]$Sol,model9[[5]]

$Sol,model9[[6]]$Sol,model9[[7]]$Sol,model9[[8]]$Sol,model9[[9]]$Sol,model9[[10]]$Sol)) 

test_1CVCV = 

as.mcmc(rbind(model9[[1]]$VCV,model9[[2]]$VCV,model9[[3]]$VCV,model9[[4]]$VCV,mod

el9[[5]]$VCV,model9[[6]]$VCV,model9[[7]]$VCV,model9[[8]]$VCV,model9[[9]]$VCV,mode

l9[[10]]$VCV)) 

combMod = list(Sol = test_1CSol, Lambda = NULL, VCV = test_1CVCV, CP = NULL, Liab = 

NULL, Fixed = model9[[1]]$Fixed, Random = model9[[1]]$Random, Residual = 

model9[[1]]$Residual, Deviance = 

as.mcmc(c(model9[[1]]$Deviance,model9[[2]]$Deviance,model9[[3]]$Deviance,model9[[4]]$D

eviance,model9[[5]]$Deviance,model9[[6]]$Deviance,model9[[7]]$Deviance,model9[[8]]$Devi

ance,model9[[9]]$Deviance,model9[[10]]$Deviance)),DIC = round(mean(DIC),2), X = 

model9[[1]]$X, Z = model9[[1]]$Z, ZR = model9[[1]]$ZR, XL = NULL, ginverse = 

model9[[1]]$ginverse, 

 error.term = model9[[1]]$error.term, family = model9[[1]]$family, Tune = model9[[1]]$Tune,  

                 meta = model9[[1]]$meta, y.additional = model9[[1]]$y.additional) 



 

122 

class(combMod) = "MCMCglmm" 
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APPENDIX D: SUMMARY STATISTICS R CODES 

Longevity summary statistics codes 

longs <- Phen %>% group_by(TB_recode) %>%  

    summarise(mean = mean(Longevity), sd=sd(Longevity)) 

longs <- Phen %>% group_by(TBRE) %>%  

    summarise(mean = mean(Longevity), sd=sd(Longevity)) 

longs <- Phen %>% group_by(DTB) %>%  

    summarise(mean = mean(Longevity), sd=sd(Longevity)) 

longs <- Phen %>% group_by(DTR) %>%  

    summarise(mean = mean(Longevity), sd=sd(Longevity)) 

Stayability summary statistics codes 

stats <- Phen %>% group_by(TB_recode) %>% 

summarise(mean = mean(STAY2), sd=sd(STAY2)) 

stats <- Phen %>% group_by(TB_recode) %>% 

summarise(mean = mean(STAY3), sd=sd(STAY3)) 

stats <- Phen %>% group_by(TB_recode) %>% 

summarise(mean = mean(STAY4), sd=sd(STAY4)) 

stats <- Phen %>% group_by(TB_recode) %>% 

summarise(mean = mean(STAY5), sd=sd(STAY5)) 

stats <- Phen %>% group_by(TB_recode) %>% 

summarise(mean = mean(STAY6), sd=sd(STAY6)) 

stats <- Phen %>% group_by(TB_recode) %>% 

summarise(mean = mean(STAY7), sd=sd(STAY7)) 

stats <- Phen %>% group_by(TBRE) %>% 
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summarise(mean = mean(STAY2), sd=sd(STAY2)) 

stats <- Phen %>% group_by(TBRE) %>% 

summarise(mean = mean(STAY3), sd=sd(STAY3)) 

stats <- Phen %>% group_by(TBRE) %>% 

summarise(mean = mean(STAY4), sd=sd(STAY4)) 

stats <- Phen %>% group_by(TBRE) %>% 

summarise(mean = mean(STAY5), sd=sd(STAY5)) 

stats <- Phen %>% group_by(TBRE) %>% 

summarise(mean = mean(STAY6), sd=sd(STAY6)) 

stats <- Phen %>% group_by(TBRE) %>% 

summarise(mean = mean(STAY7), sd=sd(STAY7)) 

stats <- Phen %>% group_by(DTB) %>% 

summarise(mean = mean(STAY2), sd=sd(STAY2)) 

stats <- Phen %>% group_by(DTB) %>% 

summarise(mean = mean(STAY3), sd=sd(STAY3)) 

stats <- Phen %>% group_by(DTB) %>% 

summarise(mean = mean(STAY4), sd=sd(STAY4)) 

stats <- Phen %>% group_by(DTB) %>% 

summarise(mean = mean(STAY5), sd=sd(STAY5)) 

stats <- Phen %>% group_by(DTB) %>% 

summarise(mean = mean(STAY6), sd=sd(STAY6)) 

stats <- Phen %>% group_by(DTB) %>% 

summarise(mean = mean(STAY7), sd=sd(STAY7)) 

stats <- Phen %>% group_by(DTR) %>% 

summarise(mean = mean(STAY2), sd=sd(STAY2)) 
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stats <- Phen %>% group_by(DTR) %>% 

summarise(mean = mean(STAY3), sd=sd(STAY3)) 

stats <- Phen %>% group_by(DTR) %>% 

summarise(mean = mean(STAY4), sd=sd(STAY4)) 

stats <- Phen %>% group_by(DTR) %>% 

summarise(mean = mean(STAY5), sd=sd(STAY5)) 

stats <- Phen %>% group_by(DTR) %>% 

summarise(mean = mean(STAY6), sd=sd(STAY6)) 

stats <- Phen %>% group_by(DTR) %>% 

summarise(mean = mean(STAY7), sd=sd(STAY7)) 
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APPENDIX E: HERITABILITY R CODES 

Longevity additive model heritability codes 

library(MCMCglmm) 

Model8 = function(Model81){Model81= mcmc(data =cbind( 

ID_variance = Model81$VCV[,1], 

MPE_variance = Model81$VCV[,2],  

BYR_variance = Model81$VCV[,3], 

unit_variance = Model81$VCV[,4],  

phen_variance = (Model81$VCV[,1] +Model81$VCV[,2] + Model81$VCV[,3] + 

Model81$VCV[,4]))) 

Model81 = mcmc(data =cbind(Model81, heritability = 

Model81[,"ID_variance"]/Model81[,"phen_variance"]))  

return(Model81)} 

heri = summary(Model8(mcmcmodel)) $statistics 

heri = round(heri, 4) 

print(heri) 

 

Longevity additive + dominance model heritability codes 

library(MCMCglmm) 

Model8 = function(Model81){Model81= mcmc(data =cbind(ID_variance = Model81$VCV[,1], 

ID2_variance = Model81$VCV[,2], 

MPE_variance = Model81$VCV[,3],  

BYR_variance = Model81$VCV[,4],  

unit_variance = Model81$VCV[,5],  

phen_variance = (Model81$VCV[,1] + Model81$VCV[,2]+Model81$VCV[,3] + 

Model81$VCV[,4] + Model81$VCV[,5]))) 

Model81 = mcmc(data =cbind(Model81, heritability = Model81[,"ID_variance"] 

+Model81[,"ID2_variance"])/Model81[,"phen_variance"]))  

return(Model81)} 

domheri = summary(Model8(mcmcmodel)) $statistics 

domheri = round(heri, 4) 

print(domheri) 

Genetic correlation codes 

corr23 <- round((multivariatestaymodel$VCV[, 'traitSTAY3:traitSTAY2.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY2:traitSTAY2.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY3:traitSTAY3.ID'])), 4) 

summary(corr23) 

 

corr24 <- round((multivariatestaymodel$VCV[, 'traitSTAY4:traitSTAY2.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY2:traitSTAY2.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY4:traitSTAY4.ID'])), 4) 

summary(corr24) 
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corr25 <- round((multivariatestaymodel$VCV[, 'traitSTAY5:traitSTAY2.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY2:traitSTAY2.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY5:traitSTAY5.ID'])), 4) 

summary(corr25) 

 

corr26 <- round((multivariatestaymodel$VCV[, 'traitSTAY6:traitSTAY2.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY2:traitSTAY2.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY6:traitSTAY6.ID'])), 4) 

summary(corr26) 

 

corr27 <- round((multivariatestaymodel$VCV[, 'traitSTAY7:traitSTAY2.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY2:traitSTAY2.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY7:traitSTAY7.ID'])), 4) 

summary(corr27) 

 

corr34 <- round((multivariatestaymodel$VCV[, 'traitSTAY4:traitSTAY3.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY3:traitSTAY3.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY4:traitSTAY4.ID'])), 4) 

summary(corr34) 

 

corr35 <- round((multivariatestaymodel$VCV[, 'traitSTAY5:traitSTAY3.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY3:traitSTAY3.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY5:traitSTAY5.ID'])), 4) 

summary(corr35) 

 

corr36 <- round((multivariatestaymodel$VCV[, 'traitSTAY6:traitSTAY3.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY3:traitSTAY3.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY6:traitSTAY6.ID'])), 4) 

summary(corr36) 

 

corr37 <- round((multivariatestaymodel$VCV[, 'traitSTAY7:traitSTAY3.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY3:traitSTAY3.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY7:traitSTAY7.ID'])), 4) 

summary(corr37) 

 

corr45 <- round((multivariatestaymodel$VCV[, 'traitSTAY5:traitSTAY4.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY4:traitSTAY4.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY5:traitSTAY5.ID'])), 4) 

summary(corr45) 

 

corr46 <- round((multivariatestaymodel$VCV[, 'traitSTAY6:traitSTAY4.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY4:traitSTAY4.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY6:traitSTAY6.ID'])), 4) 

summary(corr46) 
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corr47 <- round((multivariatestaymodel$VCV[, 'traitSTAY7:traitSTAY4.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY4:traitSTAY4.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY7:traitSTAY7.ID'])), 4) 

summary(corr47) 

 

corr56 <- round((multivariatestaymodel$VCV[, 'traitSTAY6:traitSTAY5.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY5:traitSTAY5.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY6:traitSTAY6.ID'])), 4) 

summary(corr56) 

 

corr57 <- round((multivariatestaymodel$VCV[, 'traitSTAY7:traitSTAY5.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY5:traitSTAY5.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY7:traitSTAY7.ID'])), 4) 

summary(corr57) 

 

corr67 <- round((multivariatestaymodel$VCV[, 'traitSTAY7:traitSTAY6.ID'] )/ 

sqrt((multivariatestaymodel$VCV[, 'traitSTAY6:traitSTAY6.ID']) * 

(multivariatestaymodel$VCV[, 'traitSTAY7:traitSTAY7.ID'])), 4) 

summary(corr67) 

 

Estimated marginal means codes 

pol = readRDS(“read in MCMCglmm model”) 

Phen = read.delim2(“read in phenotype data”) 

library(dplyr) 

library(foreach) 

library(emmeans) 

Phen$ID2 = Phen$ID 

Phen$Longevity[Phen$Longevity > 7] <- 7 

Phen=Phen %>% filter(AGE <= 7) 

Phen= Phen %>%filter(BRWT > 0) 

Phen$Dam = as.character(Phen$Dam) 

gridemm <- update(ref_grid(pol, data = Phen, type = "response"), tran = "logit") #log-

transformed line for stayability to age seven models 

emmeans(gridemm, "TB_recode") 

gridemm1 <- ref_grid(pol, data = Phen) #longevity models 

emmeans(gridemm1, "TB_recode")
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Table E.1: Summary statistics for Additive + Dominance (A+D) models 
  Breeds 

Statistics1  Across2 Columbia Polypay Rambouillet Targhee 

Effective sample size  

 Intercept 1,000 1,000 1,000 903.7 1,000 

 STM 912.6 -- -- -- -- 

 AGE 1,000 1,000 1,184.1 1,114.3 1,177 

 TB 1,000 1,000 1,000 1,000 1,000 

 TR 1,142.2 1,000 1,000 1,000 1,000 

 DTB 1,000 1,000 1,000 1,000 1,000 

 DTR 1,000 1,000 1,000 1,000 1,000 

 ID 1,000 1,000 614.3 684.4 819.5 

 ID2 79.62 314.6 137.2 140.4 102.9 

 MPE 817.4 750.4 1,000 770.9 912 

 BYR 861.1 1,106 1,000 913.3 911.2 

       

 R 89.75 304 140.7 127.7 101.3 

Autocorrelation  

 Intercept -0.0106 -0.0343 0.0316 0.0501 -0.0306 

 STM 0.0451 -- -- -- -- 

 AGE -0.0109 -0.0146 0.0452 0.0014 -0.0174 

 TB 0.0333 0.0040 0.0288 -0.0383 0.0277 

 TR -0.0145 0.0040 0.0629 0.0280 0.0027 

 DTB -0.0600 0.0095 0.0293 -0.0056 -0.0609 

 DTR 0.0702 -0.0157 0.0658 0.0237 0.0286 

 ID -0.0018 0.0327 0.2384 0.1868 0.0986 

 ID2 0.8381 0.5209 0.7584 0.7534 0.7957 

 MPE 0.0999 0.0558 -0.0036 0.0823 0.0455 

 BYR 0.0741 -0.0508 -0.0003 0.0447 0.0459 

 R 0.8153 0.4921 0.7276 0.7409 0.7980 

DIC  43,913.82 9,187.47 10,798.83 11,702.46 11,452.04 

Variance Estimate  

 ID 0.32 0.15 0.16 0.17 0.07 

 ID2 0.33 0.64 0.82 0.90 1.44 

 MPE 0.01 0.13 0.03 0.03 0.03 

 BYR 0.11 0.06 0.17 0.22 0.14 

 R 3.22 2.86 3.06 3.07 2.26 

 P 3.99 3.84 4.24 4.39 3.94 

Prior E was coded as list(R = list(V=1,nu=1), G = list(G1=list(V=1,nu=1,alpha.mu=0,alpha.V=1000), G2 = list(V1,nu=1,alpha.mu=0,alpha.V=1000) , G3 = 

list(V1,nu=1,alpha.mu=0,alpha.V=1000) , G4 = list(V1,nu=1,alpha.mu=0,alpha.V=1000))) using Gaussian family distribution with 20,000 iterations, burn-in of 
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11,000, thinning interval of 90, resulting in an expected effective sample size of 1,000 per breed parameter. 1Model effects could include fixed effects of intercept 

(mean), Age of ewe (AGE), ewe birth type (TB), ewe rear type (TR), ewe’s dam’s birth type (DTB), ewe’s dam’s rear type (DTR) and random effects of 

individual ewe (ID) with relationship matrix (additive genetic variance), ewe’s dam ID without pedigree (maternal permanent environmental variance), 

individual ewe’s (ID2) with relationship matrix (dominance genetic variance), birth year (BYR), residual (R) variance, and phenotypic variance (P). The DIC is 

the deviance information criterion. 
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Figure E.1: Density plots of posterior estimates for fixed effects using Columbia longevity dataset when modeling additive genetic 

variance and dominance genetic variance. Density distributions should appear normal or bell-shaped to indicate proper mixing and 

convergence in the analysis was met. 

 

 

 


