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ABSTRACT 

Computer vision (CV)-based approaches have gained a lot of attention in recent years for 

objective identification of damages both at structural and material scales. In this dissertation, the 

metallurgical phases and the two important modes of damage in structural steel, namely fracture 

and corrosion, are considered. Use of CV techniques for metallurgical phase identification and 

fracture type identification in steel microstructure is minimal and rely on pixel intensity 

information. When distinct phases or fracture types possess similar pixel intensities, predictions 

may be erroneous. In this dissertation, various texture recognition algorithms based on an 

ensemble of machine learning algorithms are proposed to identify the distinct metallurgical 

phases and fracture types in structural steels. 

The existing CV-based corrosion detection techniques are efficient for the images 

acquired under natural daylight illumination and ignore the inherent variations in ambient 

lighting conditions. Further, corrosion-like hues such as bricks, surrounding vegetation, etc., 

present in the images yields corrosion misclassification. Furthermore, there are currently no 

techniques available to identify the source of corrosion (HCl, NaCl, and Na2SO4). In this 

dissertation, various color spaces are employed in conjunction with neural networks to identify 

the corrosion in real-world scenarios such as varying natural daylight illuminations, shadows, 

water wetting, and oil wetting. For eliminating the visual ambiguity and identifying the source of 

corrosion, the visible and near-infrared (VNIR) spectra are extracted to train support vector 

machines.  

Deep neural networks (DNN’s) popularly used in the field of CV are often regarded as 

the black box models. Sensitivity analysis (SA) is a model-agnostic explainable artificial 

intelligence (XAI) approach commonly employed to explain the outcome of a mathematical 
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model. SA quantifies the variation in the model's output to the change in the input of the model. 

In this dissertation, a novel sensitivity analysis referred to as Complex-Step Sensitivity Analysis 

is developed for interpreting the DNN’s prediction. Numerical experiments are performed to 

demonstrate the efficacy of the proposed method in evaluating the derivatives of DNN 

predictions and identifying the important features. Using this newly developed method, the key 

wavelengths in the VNIR spectra contributing to the prediction of corrosion source corrosion are 

identified. 
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1. INTRODUCTION 

1.1. Motivation 

The U.S. economy relies on a vast network of infrastructure that includes roads, bridges, 

dams, rail, ports, energy plants, aviation, etc. [1]. Today, the average age of most of these 

structures in the US falls in the range of 40 to 50 years (see Table 1.1). Although these structures 

are still under service, according to the 2021 Report Card for America’s Infrastructure issued by 

the American Society of Civil Engineers (ASCE), the current US infrastructure system holds a D 

grade [2]. This implies that most of the structures are in poor to fair condition and below the 

standards, with many elements approaching the end of their service life. The deterioration and 

structural deficiency reported for inspected structures also indicate that there may be a high risk 

of structural failure (see Figure 1.1). However, with the deployment of appropriate resources and 

necessary maintenance strategies for rehabilitation, repair, or replacement, the life of these 

structures can be prolonged.  The catastrophic failures can be avoided, and the safety, durability, 

and resilience of a structure can be improved to a greater extent. However, this complete 

procedure demands a detailed inspection of each component of a structure which is not only time 

consuming and labor-intensive process but also involves significant challenges for the inspectors 

at the site [3, 4]. With the integration of state-of-art computer vision (digital images) and 

artificial intelligence techniques, automatic inspection can be carried out that will aid in 

deploying appropriate and reasonable timely maintenance measures to prolong the life of the 

structure.  
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Table 1.1. Different types of structure in US [2]. 

Structure Number Average age 

Bridges 614,387 50 

Dams 90580 56 

Roads (miles) 4 million  30 

Ports 926 - 

Energy (miles of 

transmission lines) 

640,000  - 

 

 

Figure 1.1. Some typical damages observed in civil infrastructure (1Anna Frodesiak 

https://en.wikipedia.org/wiki/Pitting_corrosion; 2Mary Wisneiwski and Liam Ford, Chicago 

Tribune;3Ripon Chandra Malo, https://www.howtocivil.com/spalling-concrete-causes-

prevention-and-repair/;). 

In recent years, with the advent of high-resolution imaging cameras and Unmanned 

Aerial Vehicles (UAS/UAVs) the scope of automated visual inspection has expanded. The 

condition/deterioration of the surface of the structure could be assessed with the least human 

intervention. Employing an automated visual inspection system has the following advantages: (1) 

rapid inspection and assessment, (2) economical, (3) less labor, (4) access to those components 
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of the structure that are difficult to reach manually, and (5) more detailed data at hand for 

assessment. An automated visual inspection technique involves four stages (see Figure 1.2): (1) 

navigation of UAVs/drones over the various locations of the structure to acquire the images for 

training of artificial intelligence-based algorithms, (2) processing the image and extraction of 

descriptive features of the damage, (3) building and training an artificial intelligence-based 

algorithm that maps the descriptive features to the corresponding damage and (4) deploying the 

trained algorithm to identify and assess the damage of other structures in the field. Note that 

tasks 2 to 4 mainly constitute the integration of two fields, namely, computer vision and 

Artificial Intelligence (AI)/Machine learning (ML). Computer vision is an interdisciplinary 

scientific field that deals with how computers can gain high-level understanding from digital 

images or videos. In computer vision, the descriptive features of damage play a vital role in 

determining the accuracy of the prediction. The more distinct and relevant the features are, the 

better is the accuracy. Examples of image features include shape, color, the texture of the object, 

etc. Note that there are various algorithms available in the literature for extracting the features 

from the image [5]. 
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Figure 1.2. Stages involved in automated visual inspection. 

Artificial Intelligence is a field that enables computers to mimic various aspects of human 

intelligence, including – pattern recognition, data-driven learning, knowledge-based reasoning, 

natural language understanding, and planning and control. While artificial intelligence is a vast 

field, generally, its subdomains, machine learning, and deep learning are employed in practice 

with computer vision tasks [6]. On the one hand, Machine learning (ML) includes the 

algorithms/statistical models that computer systems use in order to perform a specific task 

without using explicit instructions effectively, and on the other hand, Deep Learning (DL) (e.g., 

deep neural networks, convolutional neural networks, etc.) includes computational models that 

are composed of multiple processing layers to learn representations of data with multiple levels 

of abstraction. ML is further classified into three categories, namely supervised (e.g., Naïve 

Bayes, K-Nearest Neighbor (k-NN), Decision Tree, Support Vector Machines (SVM), Neural 

Networks, etc.), unsupervised (e.g., autoencoders, clustering, association rules, etc.) and 

reinforcement learning (Q-learning, State-Action-Reward-State-Action (SARSA), etc.). 
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Supervised learning involves a labeled dataset wherein the mapping between the descriptive 

features and the associated target variable is learned (see Chapter 2), and unsupervised learning 

involves an unlabeled dataset wherein the relationship between the instances within the dataset is 

determined. However, in reinforcement learning, the goal is to find a suitable action model that 

would maximize the total cumulative reward of the agent.  

In this dissertation, the research is carried out in two phases, namely Research phase I 

and Research phase II. While Research phase I deals with the research gaps identified in 

computer vision tasks applied to specific structural problems (see Section 1.2), Research phase II 

deals with the interpretations of the deep neural networks (see Section 1.3). In what follows, a 

brief background on these two research phases is provided. 

1.2. Computer Vision for Structural Material Characterization and Damage Detection in 

Infrastructure 

Computer vision and AI/ML algorithms have gained a lot of attention in the recent 

decade for identifying the damages and characterizing the materials in infrastructure. While 

some of the damages typically observed in structures are evident at the macroscopic scale (e.g., 

cracking, concrete spalling, corrosion, etc.), the other damages are evident in the form of 

microstructural changes at microscopic scale (e.g., change of metallurgical phase, brittle/ductile 

fracture etc.) (see Figure 1.3). In this dissertation, only damages associated with steel structures 

are considered. Specifically, metallurgical phase and fracture type identification at the 

microscopic scale and corrosion damage at the macroscopic scale. Metallurgical phase 

identification is important in the structures that are prone to fire accidents since the rise in 

temperature influences the composition and change of metallurgical phases (see Chapter 2). 

Similarly, fracture identification will aid in deploying appropriate damage models for 
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simulations (see Chapter 3). Corrosion damage is found to play a vital role in the overall 

maintenance cost of the steel structures (see Figure 1.4) [7-9]. In the United States, the average 

annual cost of corrosion damage for steel bridges is estimated to be ~$10.15 billion [9]. 

Detection of corrosion in its early stages not only results in the reduction of maintenance costs 

but also increases the life of the structures [10]. In this dissertation, the focus is limited to the 

identification of metallurgical phases and fracture type and corrosion detection (see Figure 1.3). 

A brief overview of each of the above topics is provided, and the research gaps are identified.  
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Figure 1.3. Types of damages in steel structures. 
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Figure 1.4. Fraction of damages observed in steel structures [11]. 

1.2.1. Identification of Metallurgical Phases 

Engineering metallic alloys like dual-phase steels, α-β brass, α-β titanium, etc., possess 

multi-phase polycrystalline microstructures [12] that are characterized by the grain sizes, distinct 

phases, and their volume and morphology [13], also referred to as microstructural features. 

Microstructural information aids in determining the bulk material properties that will guide 

engineers design components for specialized applications (ex: Hall-Petch relation [14, 15]). 

Often light optical microscopy is employed in conjunction with digital image processing 

techniques for performing tasks such as metallurgical phase identification and evaluation of grain 

sizes. Among various image processing techniques, histogram-based thresholding or Otsu’s 

method [16] is extensively used for image analysis or segmentation of microstructure [17]. A 

detailed review of other methods available in the literature is provided in Chapter 2. In Otsu’s 

technique, a threshold-based criterion is established from the multimodal histogram of pixel 

intensities which is used for the segmentation of distinct phases. Implementation of such a 

technique results in an accurate segmentation of metallurgical phases whose pixel intensity 

distribution are distinct (multimodal) and do not overlap significantly (see Figure 1.5(a)). 

However, when there are multiple metallurgical phases whose pixel intensity distribution 
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overlaps with each other (see Figure 1.5(b)), employing histogram-based thresholding may lead 

to misclassification of phases. 

 

Figure 1.5. Probability density function of pixel intensities of metallurgical phases (a) well-

discriminated ferrite and pearlite phase and (b) overlapped ferrite, pearlite, and martensite 

phases. 

1.2.2. Identification of Fracture Type 

Fracture in metals has led to catastrophic failures in steel buildings [18] and bridges [19], 

oil and gas pipelines [20], automobiles [21], and aerospace structures [22]. Commonly identified 

types of fracture in metals under monotonic loading conditions are ductile fracture, cleavage/ 

transgranular fracture, and intergranular fracture [23]. A decision about the choice of a suitable 

damage model to simulate the failure depends on the type of fracture as the basic microscopic 

damage mechanisms leading to the fracture vary from one fracture type to another. Often visual 

inspection of fractographic images is conducted in practice to identify the fracture type of metal. 

However, the visual inspection is not only slow and prone to confirmation bias but also cannot 

be used for quantitative analysis of fracture surfaces. Currently, there are only a few techniques 

available in the literature to perform the automatic segmentation of fractographic images in steel 

[24]. These techniques employ pixel intensities and textural features for fracture type 

identification.  An object is considered to possess a texture if its appearance is composed of 
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repetitive visual patterns defined by variations in brightness and/ or color [25]. Examples of 

texture possessing objects include wood, grass, soil, concrete, etc. Since the brittle and ductile 

fracture exhibit distinct textural characteristics, the textural features are considered in the 

literature.  However, the textural feature extraction methods employed in literature are 

illumination/ grayscale and rotation variant, i.e., the extracted textural features may change with 

the change in the illumination and rotation of an image [26]. In reality, the fracture surfaces are 

quite uneven at microscales. Hence, the fractographic images obtained from scanning electron 

microscopy (SEM) consists of varying illumination levels across the image. Therefore, an 

illumination/ grayscale and rotation invariant method is required to extract textural features 

which may result in more accurate prediction when compared to other textural feature extraction 

methods. 

 

Figure 1.6. Fracture surface of 316L stainless steel illustrating varying illuminations. 

1.2.3. Detection of Corrosion 

Currently, either human inspection or non-destructive techniques like eddy current 

technique [27], ultrasonic inspection [28, 29], acoustic emission technique [30, 31], vibration 
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analysis [32], radiography [33], thermography [34], optical inspection [35], etc. are employed to 

monitor and identify the corrosion damage in the steel structures. Although each of the above-

mentioned techniques has its advantages, the optical inspection technique is most commonly 

preferred owing to its simplicity and ease of interpretation. In recent times, various approaches 

have been proposed by researchers to detect corrosion in steel structures using digital images 

[36]. Most of these approaches included either acquisition of grayscale images or a color image 

of the corroded steel structure under uniform illumination conditions (i.e., same time of the day, 

without shadows). Color is defined as a small portion of the electromagnetic spectrum that is 

visible to the human eye and covers wavelength in the range of 380nm to 740nm [37]. When 

compared to grayscale images, color images have more information i.e. chromaticity and 

luminosity [38]. Chromaticity refers to the combination of the dominant wavelength of the 

visible light (called hue) reflected from the material surface and the purity (saturation) associated 

with it, and luminosity refers to the intensity of light per unit area of the light source. From a 

practical perspective, there is a need to develop a more robust technique that can be used to 

identify the corrosion in steel structures using images taken under varying illuminations, dark 

shadows, water, and oil wetting.  

Furthermore, it is also important to note that the employment of color features alone may 

have some limitations. One case where this technique is not applicable is when the objects in the 

acquired images possess hue values similar to that of a corroded surface. For instance, coatings, 

dirt, or some vegetation in the background may be misclassified as corrosion. This optical 

confusion is regarded as visual ambiguity (see Figure 1.7). The other case where color features 

may have limitations is the identification of corrosion source, i.e., the corrosive media (see 

Figure 1.8). Different corrosive media yields different corroded surfaces that are chemically 
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distinct. The chemical distinctiveness is generally characterized in terms of corrosion products 

which governs the acceleration or deceleration of the corrosion. Identifying the source of 

corrosion will aid in deploying an appropriate corrosion mitigation strategy [19–21]. 

 

Figure 1.7. Corrosion misclassification due to visual ambiguity: (a) dry leaves misclassified as 

corrosion surface, (b) brick wall misclassified as corroded surface, and c) coating misclassified 

as corrosion surface. Note that the corrosion predictions provided in the above images are 

obtained using the trained multi-layer perceptron configuration described by the authors in [18].   
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Figure 1.8. Graphical illustration of the corrosion commonly observed in civil infrastructure: 1 – 

power plants and oil refineries where acidic corrosion is initiated by the impurities transported by 

crude oil, 2 – bridges and other steel structures exposed to deicing salts and acidic rains, and 3 – 

underground pipelines exposed to various salts leaching through the soil. 

1.3. Explainable Artificial Intelligence (XAI) 

The emergence of sophisticated machine learning (ML) models and their proven ability 

to make accurate predictions by learning complex patterns from the data has gained a lot of 

attention in various domains in the past decade [39]. For example, tasks such as image 

recognition, biometrics, text mining, business analytics, etc. [39, 40]. However, such ML models 

are complicated in their structure and are difficult to comprehend, i.e., they act as a black box 

(BB), and their functioning is not easily understood. As shown in Figure 1.9, the transparency 

(ability to interpret) of the ML model is compromised as the model accuracy increases [41]. 

Trusting the decisions or predictions of the ML models may not be justifiable in the fields such 

as medicine, law, defense, etc., if the complete explanations are not provided [41]. To 
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circumvent the opaqueness of the ML models and obtain the information accountable for the 

model outcome, human-understandable knowledge extracting algorithms are necessary. Such 

algorithms or models are referred to as interpretable or explainable machine learning models 

(XAI) [41-43]. The aim of the XAI models is to deliver the rules or the output symbols along 

with the predictions such that the rationale behind the mappings of the BB model is revealed [41, 

44]. More precisely, the representations of interpretations can be delivered in the form of feature 

summary, model parameters such as weights or coefficients, counterfactual explanations, etc. 

Note that the goal of XAI is only to provide an answer for the question “why a certain prediction 

is made?” and not verifying the correctness of the prediction. According to [45], the interpretable 

or XAI models are the one that enables human users to understand, trust and effectively manage 

the emerging generation of artificially intelligent partners. Another definition for XAI is 

provided by Arrieta et al. [41], which takes the expertise of an audience into consideration and is 

quoted as  

“Given an audience, explainable AI is one that produces details or reasons to make its 

functioning clear or easy to understand.”  
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Figure 1.9. The trade-off between model transparency and model performance [46]. 

Interpretability of predictions from trained BB models can be achieved by either 

employing a set of algorithms that are intrinsically interpretable (e.g., linear regression, decision 

trees, rule fit, etc.) or using techniques such as visualization, local explanations, explanation by 

example, feature relevance, etc. (see Figure 1.10)  [41, 47]. For example, the weights in the 

linear regression model and the split of the features in the decision tree model aids in inferring 

how the features are associated with the decision-making process. When the input features and 

their respective predictions obtained from the trained BB model are mapped to the whole training 

dataset by employing an intrinsically interpretable algorithm, then such models are referred to as 

global or surrogate models [48]. On the contrary, when the input features and their respective 

predictions obtained from the trained BB model are mapped to a single instance in the small 

region of interest (local neighborhood), then such models are referred to as local models [48]. 

For locally interpretability models, it is assumed that the predictions are linearly dependent on a 

subset of features in the local neighborhood rather than having complex dependencies among all 

the features and serves as a good approximation. According to Robnik-Sikonja et al. [49] a good 
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interpretable model should possess the following properties, namely, expressive power, 

translucency, portability, and algorithmic complexity; and an explanation by the model should 

possess properties such as accuracy, fidelity, consistency, stability, comprehensibility, certainty, 

importance, novelty, representativeness [48]. 

 

Figure 1.10. Interpretability pipeline for black-box models [41]. 

1.3.1. Significance of Interpretable Machine Learning 

Integration of interpretable or explainable models with black-box models has the 

following significance [41, 42, 47] 

1. Incorporating interpretability with BB models will aid in degubbaility and rectification of 

the deficiencies in the model i.e., it will allow finding a direction to fix the model such 

that misleading predictions can be avoided.  
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2. Interpretability will improve the robustness of the model by highlighting the adversarial 

perturbations that could impact the predictions.  

3. While the current development of ML models focuses on performance, the search for 

understanding or acquiring new knowledge in the field of science through interpretability 

will be of practical importance i.e., they will act as a pre-requisite for new insights. 

4. Providing explanation through interpretability models will result in gaining human trust, 

which will subsequently encourage the social acceptance and integration of the AI 

systems into daily lives.  

5. Interpretability provides the means to verify the fairness of the model. In other words, 

bias in the model due to wrong parameterization or incompleteness of the problem can be 

detected. An explanation is complete when it allows the behavior of the system to be 

anticipated in diverse situations. 

1.3.2. Sensitivity Analysis of Deep Neural Networks 

Multilayer feedforward deep neural networks (FFDNN) are parameterized nonlinear 

models that approximate a mathematical mapping between the input features and the output 

target variables [50]. FFDNN are often treated as a black-box model due to their complex nature. 

In other words, it is difficult to interpret the predictions of FFDNN since the closed-form 

function is unknown. Nevertheless, the sensitivity analysis could be performed to understand the 

influence of each input feature on the target output [51]. Sensitivity analysis involves the 

examination of the change in the target output of the model when the input features are varied. 

According to Saltelli [52] the sensitivity analysis can either be local or global. While local 

sensitivity analysis assesses a particular point in input feature space, varying features one at a 

time to obtain a local response of the model to each feature, the global sensitivity analysis tries to 
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capture the entire feature space all at once, allowing multiple feature values to be explored 

simultaneously [53].  In general, local sensitivity analysis is preferred in practice since they 

provide elementary effects of input features on the model output. However, global sensitivity 

analysis may be required if the influence of feature interaction on the model output has to be 

determined [54]. Local sensitivity analysis involves the computation of the partial derivative of 

the target output with respect to the perturbed input feature [55]. Nevertheless, other measures 

such as range, variance, and average absolute deviation may also be employed [56].  Keeping in 

view that partial derivatives are the most commonly employed measure for performing 

sensitivity analysis in practice, this dissertation focuses on the pitfalls of the existing techniques, 

and a novel approach is developed.  

1.4. Research Gaps 

The research gaps identified for Research Phase I and Research Phase II are as follows.  

Research Phase I 

1. Pixel intensity alone may be insufficient for phase identification when there are more 

than two metallurgical phases in the microstructure. 

2. Currently, there are no automatic methods that detect and quantify fracture types in 

structural steels. 

3. Corrosion detection under ambient lighting conditions such as shadows, water wetting, 

and oil wetting have not been addressed yet. 

4. The current corrosion detection techniques cannot eliminate the visual ambiguity and 

identify the corrosion source. 
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Research Phase II 

5. Novel sensitivity methods are required to explain the predictions of deep neural 

networks.   

1.5. Research Objectives 

The objectives of Research Phase I and Research Phase II are as follows. 

Research phase I 

1. To identify the distinct metallurgical phases and evaluate their volume fractions in 

structural steels. 

2.  To identify the brittle and ductile fracture in structural steels and evaluate their area 

fractions. 

3. To detect the corrosion in structural steels under varying illuminations, cast shadows, 

water wetting, and oil wetting conditions.  

4. To identify the source of corrosion and eliminate the visual ambiguity during corrosion 

detection.  

Research phase II 

5. To evaluate numerical derivatives of the output in deep neural networks with respect to 

input features. 

6. To formulate a feature attribution algorithm for identifying the features that are important 

in determining the output of the deep neural network. 

1.6. Dissertation Organization 

This dissertation is organized into nine chapters. Chapter 1 provides a brief overview of 

the background required for the current research and lists the specific research objectives. 

Chapter 2 describes the concept of image texture and demonstrates its efficacy in the 
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identification of the metallurgical phases in heat-treated ASTM A36 steel using ML algorithms. 

Chapter 3 highlights the need for rotational and gray-scale invariant textural features and extends 

the concept to the fractographic images wherein brittle and ductile type fractures are identified. 

Chapter 4 explores the various combinations of color spaces and configurations of multi-layer 

perceptron for corrosion detection in ambient lighting conditions. Chapter 5 describes the 

principle of the hyperspectral imaging system and reveals the efficacy of spectral features in the 

elimination of visual ambiguity and detection of various corrosion sources. Chapter 6 provides 

the review of explainable AI algorithms available in XAI literature. Chapter 7 proposes novel 

algorithms referred to as Complex-step derivative approximation (CSDA) and Complex-step 

feature attribution (CS-FA) for evaluating the first-order derivatives of the output of the neural 

network and performing sensitivity analysis, respectively. Chapter 8 demonstrates the efficacy of 

the proposed algorithms by employing real-world datasets and the hyperspectral imaging dataset. 

Note that while Chapter 2 to Chapter 5 are associated with the objectives of Research Phase I, 

Chapter 6 to Chapter 8 are associated with Research Phase II. Chapter 9 provides the conclusions 

of the current research and the possible future research directions. 
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2. IDENTIFICATION OF METALLURGICAL PHASES IN STRUCTURAL STEEL 

USING GLCM TEXTURAL FEATURES 1 

2.1. Introduction 

It is well known that the macroscopic mechanical properties of any material are governed 

by its underlying microstructure [1]. Most of the engineering metallic alloys like dual-phase 

steels, α-β brass, α-β titanium, etc., possess multi-phase polycrystalline microstructures [2]. Such 

microstructures are characterized by determination of the grain sizes, distinct phases, and their 

volume and morphology [3]. Under different mechanical and thermal manufacturing and 

operating conditions, these microstructural features undergo changes resulting in modified bulk 

properties of the metal [4]. Analysis of such information results in the establishment of a 

relationship between microstructural features and the bulk material properties that will guide 

engineers design components for specialized applications (ex: Hall-Petch relation [5, 6]). In 

general, material characterization techniques such as X-ray, neutron and electron diffraction, 

light optical microscopy, and electron and ion beam microscopy are employed to investigate and 

quantify the microstructural features of metals at various length scales [1]. Some of these 

techniques are time-consuming and expensive, and hence researchers often resort to light optical 

microscopy for performing tasks such as metallurgical phase identification and evaluation of 

grain sizes. The images obtained from the light-optical microscope are then analyzed manually 

following the standard protocols provided by the ASTM standards E114 [7] and E562 [8].  

 
1 This chapter is based on the paper “Texture-Based Metallurgical Phase Identification in Structural Steels: A 

Supervised Machine Learning Approach”. Metals. 2019; 9(5):546. https://doi.org/10.3390/met9050546. The material 

in this chapter was co-authored by Dayakar Naik Lavadiya (DNL), Ravi Kiran Yellavajjala (RK) and Hizb Ullah Sajid 

(HUS). Contributions of authors are as follows: Conceptualization, D.L.N. and R.K.; Formal analysis, D.L.N.; 

Funding acquisition, R.K.; Investigation, R.K.; Methodology, D.L.N., H.U.S. and R.K.; Project administration, R.K.; 

Resources, H.U.S. and R.K.; Software, D.L.N.; Supervision, R.K.; Validation, D.L.N.; Writing—original draft, 

D.L.N.; Writing—review & editing, D.L.N. and R.K. 



 

30 

However, this process is labor intensive and a subjective process prone to poor repeatability and 

interpretation of results [9]. Therefore, automated digital image processing-based techniques are 

developed in recent years to overcome these issues and accurately quantify the microstructural 

features for better design of engineering components. 

Image segmentation is a digital image processing technique that is widely used in the 

fields of engineering, medicine, food science, remote sensing etc. to identify the distinct 

regions/objects in an image that possess distinguishable visual characteristics or features [10]. 

Grayscale level, color, contrast, spectral values or textural features are some examples of such 

distinguishing features [11]. In general, two types of approaches are employed for segmentation 

of images namely discontinuity approach and similarity approach [12]. While discontinuity 

approach involves computation of abrupt changes or discontinuity of some object (ex. edges) in 

the image to identify distinct regions, similarity approach involves extraction and a one-to-one 

comparison of similar features (ex. pixel intensity) for identification of distinct regions. 

Techniques of discontinuity approach include – Sobel operator [13], Laplacian of Gaussian 

(LoG) operator [14], Laplacian operator [15] and canny operator [15] and techniques of 

similarity approach include – histogram based thresholding [16], region splitting and merging 

[17], level-set [18], clustering, and water shedding [11]. Among these techniques, histogram-

based thresholding or Otsu’s method [16] is extensively used for image analysis or segmentation 

of microstructure [19]. In this technique, a threshold-based criterion is established from the 

multimodal histogram of pixel intensities which is used for the segmentation of distinct phases. 

Implementation of such a technique results in an accurate segmentation of metallurgical phases 

whose pixel intensity distribution are distinct (multimodal) and do not overlap significantly (see 

Figure 1.5). However, when there are multiple metallurgical phases whose pixel intensity 
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distribution overlaps with each other (see Figure 1.5), employing histogram-based thresholding 

may lead to misclassification of phases.  

Automated image segmentation procedures have been proposed and developed in recent 

years by numerous researchers to identify and quantify microstructural features [20]. Zhang and 

Liu [21] implemented canny edge algorithm for identification of phases in Ti-6Al-4V titanium 

alloy which involved a series of preprocessing steps such as noise removal and uneven 

illumination. Campbell et al. [9] developed a watershed algorithm based technique with pre- and 

post-processing steps to segment the touching grains in titanium (Ti-6Al-4V) microstructure. An 

automated microstructural characterization software MiPAR® was developed by Sosa et al. [19] 

that includes a segmentation module built based on the thresholding methods. Other notable 

works which employed threshold-based technique include segmentation of ferritic-martensitic 

dual phase steel by Burikova et al. [22] and identification of bainite in Fe-C-Mo steel by Ontman 

et al [23]. In addition to these studies, artificial intelligence based image segmentation is also 

found in literature which includes clustering [24], neural networks [25], fuzzy logic [26] and 

support vector machines (SVM) [27] methods for identification of microstructures in various 

metals. A sophisticated image processing technique that accounts for additional distinguishing 

features is required for accurate phase identification in a microstructure with phases that have 

overlapping pixel intensities. 

In this chapter the distinct metallurgical phases of heat treated ASTM A36 steels is 

identified based on the textural features and pixel intensities of individual phases. To this end, 

the microstructural images of metallographic specimens are acquired using an optical 

microscope and the textural features and pixel intensities of distinct metallurgical phases are 

extracted from gray level co-occurrence matrix (GLCM) of each phase. Supervised machine 
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learning classifiers are employed for identification of metallurgical phases and following four 

classifiers are employed for this purpose: (1) Naïve Bayes, (2) K-Nearest Neighbor, (3) Linear 

Discriminant Analysis, and (4) Decision Tree. All four classifiers are trained with the extracted 

textural features and pixel intensities (of distinct metallurgical phases) and then deployed to 

identify the unknown phases in the microstructure. The rest of the chapter is organized as 

follows: textural feature extraction method is explained in Section 2.2, brief overview of 

supervised machine learning classifiers is provided in Section 2.3, materials and methodology 

adopted in this study is described in Section 2.4, feature selection method is explained in Section 

2.5 and the validation of results are discussed in Section 2.6, and a summary of the study is 

provided in Section 2.7. 

2.2. Texture 

An object is considered to possess texture if its appearance is composed of patterns 

defined by variations in brightness and color. Objects can either have natural or manmade 

textures or a combination of both. While wood, soil, grass, etc. are some examples of natural 

texture possessing objects, carpet, brick walls, concrete, etc. are some examples of humanmade 

objects with distinctive textures. Human vision perceives the texture of different objects by 

sensing the variations in brightness and color and hence can use this information to discriminate 

one object from the other. However, in computer vision, a set of metrics are required to quantify 

the texture of an object. These set of metrics are often referred to as image-textural features and 

are extracted from a given digital image through image processing techniques. Image textural 

features are widely used for segmentation of different objects in an image for object/image 

identification and/ or classification purposes. 
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Two methods are commonly employed for quantifying the image texture: 1) structural 

approach and 2) statistical approach. While the primitives or repetitive elements and their 

placement rules are obtained in structural approach to describe the texture, non-deterministic 

properties obtained from the distribution of grayscale levels of a region of an image is used in 

statistical approach [28]. These non-deterministic properties are referred to as textural features. 

The structural approach is more suitable for regular textural patterns (for example checkerboard 

patterns, carpet textures, etc.) as it considers the hierarchy of spatial arrangement of primitives 

and statistical approach is more suitable for arbitrary textures (for example sand, concrete, etc.). 

In the context of this study, a statistical approach is adopted owing to the unstructured visual 

pattern (non-repetitive pattern) exhibited by the steel microstructure to identify the constituent 

metallurgical phases. In this study, the metallurgical phases of ASTM A36 steel, namely ferrite, 

pearlite, and martensite are assumed to possess unique textures. The statistical features 

quantifying the textures of each metallurgical phase are determined in this study by employing 

the gray-level co-occurrence matrix [29]. A detailed description of the GLCM method and 

extraction of textural features is provided next. 

2.2.1. Gray Level Co-occurrence Matrix (GLCM) and Textural Features 

Let us consider an image domain (𝛀) that consists of 𝑁𝑥 and 𝑁𝑦 number of pixels in 𝑥 

and 𝑦 directions, respectively. Pixel (short form for “picture element”) is the basic logic unit in a 

digital image which has a rectangular or a square shape and has a unique location attached to it. 

Location of a pixel in the domain 𝛀 is denoted by 𝜔𝑖𝑗, where 𝑖 = 1 … 𝑁𝑦 and 𝑗 = 1 … . 𝑁𝑥 

represents the corresponding row and column numbers of the pixel image grid respectively. Each 

pixel in an image is associated with an intensity 𝐼(𝜔𝑖𝑗) = 𝐼𝑖𝑗 where 𝐼𝑖𝑗 ∈ ℤ+

𝑁𝑦×𝑁𝑥
. In an 8-bit 

grayscale image, which is the case in the current study, any pixel can have 28 = 256 intensity 
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levels (𝑁𝑔 = 256). In fact, for the problem at hand, it is not necessary to consider 256 intensity 

levels. Instead, 8 intensity levels or grayscale levels are sufficient. The process of converting 256 

grayscale levels to 8 grayscale levels is referred to as quantization and in this study this operation 

is accomplished through an in-built command  ‘imquantize’ available in MATLAB®. The 

original (𝑁𝑔 = 256) and modified/ quantized images (𝑁𝑔 = 8) of microstructure are presented 

in Figure 2.1. Using 𝑁𝑔 = 8, instead of 𝑁𝑔 = 256 will lead to substantial savings in 

computational time without loss of visual information as demonstrated in Figure 2.1.  

 

Figure 2.1. Illustration of (a) original image with 256 grey scale levels and (b) quantized image 

with 8 gray scale levels. 

GLCM (𝑮) is a square matrix whose size is determined by the number of grayscales 

present in an image (𝑮 ∈ ℤ+

𝑁𝑔×𝑁𝑔; 𝑁𝑔 = 8) and is independent of the number of pixels in the 𝑥 

and 𝑦 directions in the image domain (𝛀). Each element of the GLCM (𝐺𝑚𝑛) represents the 

count of pixel pairs that are separated by 𝑑 number of pixels in the 𝜃 direction wherein one pixel 

has an intensity 𝑚 and the other pixel has an intensity 𝑛. The mathematical definition of a typical 

element 𝐺𝑚𝑛 in a GLCM (𝑮) for 𝜃 = 0° or 180° is given as follows     

(a) (b) 
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𝐺𝑚𝑛 = #(𝜔𝑎𝑏, 𝜔𝑒𝑓 ∈ Ω| 𝑎 − 𝑒 = 0, |𝑏 − 𝑓| = 𝑑, (𝐼(𝜔𝑎𝑏), 𝐼(𝜔𝑒𝑓))

= (𝑚, 𝑛) 𝑜𝑟 (𝑛, 𝑚)) 
(2.1) 

where, 𝑎, 𝑒 ∈ {1,2,3 … . 𝑁𝑦}, 𝑏, 𝑓 ∈ {1,2,3 … . 𝑁𝑥}, 𝑚, 𝑛 ∈ {1,2,3, … 𝑁𝑔}, the condition 𝑎 − 𝑒 = 0 

signifies the fact that pixels 𝜔𝑎𝑏 and 𝜔𝑒𝑓 are in the same row, i.e. 𝜃 = 0° or 180° and the 

condition |𝑏 − 𝑓| = 𝑑  has two consequences, 1) the pixels 𝜔𝑎𝑏 and 𝜔𝑒𝑓 are separated by 𝑑 

number of pixels and 2) the order of the pixels (bidirectional) do not have any impact on the 

value of 𝐺𝑚𝑛  (𝜃 = 0° or 180°). The definitions of GLCM for 𝜃 = 45°, 90°, 135°, 225°, 270° 

and 315° can be found elsewhere [29]. In the current study, the value of 𝑑 and 𝜃 are fixed to be 1 

and 0°/1800  respectively in order to estimate the GLCM for various metallurgical phases 

present in the microstructural image (ASTM A36 steel).   

The GLCM (𝑮) evaluated using the Eq. (2.1) is referred to as unnormalized GLCM and a 

typical element 𝐺𝑖𝑗
𝑁 in the normalized GLCM (𝑮𝑁) is defined as follows 

𝐺𝑖𝑗
𝑁(𝜃, 𝑑) =

𝐺𝑖𝑗(𝜃, 𝑑)

∑ ∑ 𝐺𝑖𝑗(𝜃, 𝑑)8
𝑗=1

8
𝑖=1

 
(2.2) 

Each element (𝐺𝑖𝑗
𝑁) of the normalized GLCM is a measure of the joint probability 

occurrence of pixel pairs that are separated by distance 𝑑 in the 𝜃 direction such that the 

grayscale levels of the first and second pixel match with row and column numbers of GLCM, 

respectively. Detailed examples for the evaluation of normalized and unnormalized GLCM is 

provided elsewhere [29].  

As previously mentioned, the image texture is quantified by the textural features. In the 

statistical approach, textural features are the second order statistics extracted from the 

normalized GLCM  (𝑮𝑁). In total, there are 19 textural features that can be extracted from the 
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GLCM which were proposed by various researchers in the past. Among the 19 textural features, 

14 were proposed by Haralick et. al. [29] and 5 other textural features were proposed by Soh et. 

al. [30]. The mathematical definitions of these textural features are summarized in Table 2.1. 

While some of these textural features are easy to interpret (for example homogeneity, entropy, 

contrast, correlation), the rest of them are purely mathematical in nature and are difficult to 

interpret. In this study, for a given digital image domain 𝛀, textural features are evaluated at 

every pixel. In fact, a pixel does not possess texture. Hence, a window of 𝑆 × 𝑆 pixels, where 𝑆 is 

the number of pixels (𝑆 ≤ 𝑁𝑥 and 𝑁𝑦) is used to evaluate the textural features and these textural 

features are assigned to the pixel located at the center of this window. The calculated textural 

features are then used to classify a pixel in to one of the metallurgical phases. This classification 

is performed using machine learning algorithms which are discussed next. 
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Table 2.1. Textural features from Gray Level Co-occurrence Matrix (GLCM) [31]. 

Notation Texture Feature Equation 

T1 Auto correlation ∑ ∑ (𝑖. 𝑗)𝑝(𝑖, 𝑗)𝑗𝑖   

T2 Contrast ∑ ∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)𝑗𝑖   

T3 Cluster prominence ∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
4

𝑝(𝑖, 𝑗)𝑗𝑖   

T4 Cluster shade ∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
3

𝑝(𝑖, 𝑗) 𝑗𝑖   

T5 Dissimilarity ∑ ∑ |(𝑖 − 𝑗)|𝑝(𝑖, 𝑗)𝑗𝑖   

T6 Energy ∑ ∑ 𝑝(𝑖, 𝑗)2
𝑗𝑖   

T7 Entropy − ∑ ∑ 𝑝(𝑖, 𝑗). log (𝑝(𝑖, 𝑗))𝑗𝑖   

T8 Homogeneity ∑ ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|𝑗𝑖   

T9 Maximum probability max 𝑝(𝑖, 𝑗)  

T10 Sum of squares ∑ ∑ (1 − 𝑣)2𝑝(𝑖, 𝑗)𝑗𝑖   

T11 Sum average ∑ 𝑖. 𝑝𝑥+𝑦(𝑖)2𝐿
𝑖=2   

T12 Sum entropy − ∑ 𝑝𝑥+𝑦(𝑖). log (𝑝𝑥+𝑦(𝑖))2𝐿
𝑖=2   

T13 Sum variance ∑ (𝑖 − T12)2. 𝑝𝑥+𝑦(𝑖)2𝐿
𝑖=2   

T14 Difference variance ∑ 𝑖2. 𝑝𝑥−𝑦(𝑖)𝐿−1
𝑖=0   

T15 Difference entropy − ∑ 𝑝𝑥−𝑦(𝑖). log (𝑝𝑥−𝑦(𝑖))𝐿−1
𝑖=0   

T16 Information measure of correlation I 
𝐻𝑋𝑌−𝐻𝑋𝑌1

max (𝐻𝑋,𝐻𝑌)
  

T17 Inverse difference normalized ∑ ∑
𝑝(𝑖,𝑗)

1+
|𝑖−𝑗|

𝐿

𝑗𝑖   

T18 Inverse difference moment normalized ∑ ∑
𝑝(𝑖,𝑗)

1+
|𝑖−𝑗| 2

𝐿2

𝑗𝑖   

Note: 𝐿 denotes quantization levels of gray scale; 𝑝(𝑖, 𝑗) denotes the (𝑖, 𝑗)th entry of co-

occurrence probability matrix; ∑ (.) and 𝑖 ∑ (.) are ∑ (.) and ∑ (.) respectively𝐿
𝑗=1

𝐿
𝑖=1𝑗 ; 𝜇𝑥 =

∑ ∑ 𝑖. 𝑝(𝑖, 𝑗)𝐿
𝑗=1

𝐿
𝑖=1 ; 𝜇𝑦 = ∑ ∑ 𝑗. 𝑝(𝑖, 𝑗)𝐿

𝑗=1
𝐿
𝑖=1 ; 𝑣 = mean value of 𝑝(𝑖, 𝑗).   𝑝𝑥+𝑦 =

∑ ∑ 𝑝(𝑖, 𝑗)𝐿
𝑗=1

𝐿
𝑖=1  for 𝑖 + 𝑗 = 𝑘; 𝑝𝑥−𝑦 = ∑ ∑ 𝑝(𝑖, 𝑗)𝐿

𝑗=1
𝐿
𝑖=1  for |𝑖 − 𝑗| = 𝑘; 𝑝𝑥(𝑖) = ∑ 𝑝(𝑖, 𝑗)𝐿

𝑗=1  ;  

𝑝𝑦(𝑗) = ∑ 𝑝(𝑖, 𝑗)𝐿
𝑖=1  ; 𝐻𝑋 = Entropy of 𝑝𝑥; 𝐻𝑌 = Entropy of 𝑝𝑦; 𝐻𝑋𝑌 = Entropy of 𝑝(𝑖, 𝑗) ; 

𝐻𝑋𝑌1 = ∑ ∑ 𝑝(𝑖, 𝑗). log (𝑝𝑥(𝑖)𝑝𝑦(𝑗)𝐿
𝑗=1

𝐿
𝑖=1 . 

2.3. Supervised Machine Learning 

Supervised machine learning is a branch of machine learning (ML) that is used for 

performing classification and regression tasks on labeled data [32]. Labeled data is the data 

gathered from experiments or observations whose outcomes are known. The factors that govern 

the outcome of an observation or an experiment are referred to as descriptive features and the 

variable(s) that quantify the outcome is/ are referred to as response/target variable(s). The values 
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of descriptive features and response/target variables in a dataset can be either categorical 

(nominal/ ordinal) or numerical (discrete/ continuous). Supervised machine learning involves 

three important steps: 1) gathering the data; 2) training the machine learning algorithm, and 3) 

testing and deployment of the machine learning algorithm for the intended purpose. Data are the 

workhorses of machine learning algorithms and gathering of high quality and quantity of labeled 

data is the first step in supervised machine learning. The quality and quantity of labelled data are 

very crucial for improving the predictive power of ML algorithms. An elaborate discussion on 

the influence of the quality and quantity of data on the predictive power of ML algorithms can be 

found elsewhere [33]. The gathered data is partitioned into two datasets, namely training dataset 

and test dataset, at the beginning of the second step. Choosing a partition ratio of 80:20 is very 

common, where the numbers 80 and 20 represents the percentage of gathered data used for 

training and testing purposes, respectively. The other methods of partitioning the data and 

associated issues are discussed in reference [34]. Followed by the data partition, a machine 

learning algorithm is employed to learn the patterns, relationships and/ or dependencies from the 

obtained training dataset in the second step. The efficacy of the trained algorithm is then tested 

on the testing data (also called as validation dataset) in the third step. If the prediction accuracy is 

satisfactory, then the trained algorithm will be deployed for performing classification or 

regression tasks on the new data. From this point of discussion in this chapter, the term 

supervised machine learning will be replaced by machine learning for the sake of brevity. In the 

context of this study, machine learning based classification algorithms will be used to learn the 

textures of metallurgical phases of ASTM A36 steel and then will be deployed to classify them 

accurately into different phases. To this end, four machine learning algorithms are employed: (1) 

Naïve Bayes (NB) classifier, (2) K-Nearest Neighbors (K-NN) algorithm, (3) Linear 
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Discriminant Analysis (LDA) and (4) Decision Tree (DT) classifier. The coding of these 

algorithms is carried out in an in-house MATLAB® based machine learning software. The basic 

nomenclature employed for describing the data is provided next.           

The master dataset is denoted by 𝑫 ∈ ℝ𝑝×𝑟, where 𝑝 is the number of observations or in 

this context the number of gathered image domains of metallurgical phases and 𝑟 = 𝑞 + 1, 

where, 𝑞 is the number of descriptive textural features (𝑞 = 20 −

pixel intensity along with 19 textural features); for definitions of textural features see Table 2.1. 

The last (𝑟𝑡ℎ) column of 𝑫 has the outcome of the experiment or the target variable which in this 

case is the metallurgical phase (ferrite, pearlite or martensite). Each of the 𝑝𝑡ℎ row of 𝑫 is 

denoted by an instance vector 𝒙𝑗 = (𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑞 , 𝑥𝑗𝑟), where 𝑗 takes the values from 1 to 𝑝, 

and  𝑝 = 735 in this study. Here 𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑞 are the descriptive textural features 

corresponding to the metallurgical phase identified by 𝑥𝑗𝑟 . In this study, 80% of the 𝑝 = 735 

number of observations are randomly chosen for training purposes and 20% are chosen for 

testing purposes. The instance vectors used for training purposes will be designated as 𝒙𝑗
∗ and the 

vectors used for testing (validation) purposes will be designated as 𝒙𝑗
#. Note that the range of 𝑗 in 

the training and testing set is not same as that of the master dataset 𝑫 and depends on the 

fractions of data used for training and testing purposes. 

2.3.1. Naïve Bayes  

Naïve Bayes is a probabilistic classifier that is derived from Bayes’ theorem [35]. Bayes’ 

theorem defines the conditional probability of an event 𝐴 given event 𝐵 as follows  

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) × 𝑃(𝐴)

𝑃(𝐵)
 (2.3) 
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where, 𝑃(𝐴|𝐵) and 𝑃(𝐵|𝐴) are conditional or posterior probabilities, 𝑃(𝐴) and 𝑃(𝐵) are prior 

probabilities. Using this definition, for any given 𝑖𝑡ℎ observation in the training dataset 

𝑃(𝑥𝑖𝑟 = 𝐶𝑗|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞) =
𝑃(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞|𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖𝑟 = 𝐶𝑗)

𝑃(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞)
 (2.4) 

where, 𝐶𝑗=1,2,3 is the class label for the given descriptive textural features, where 𝐶1, 𝐶2 and 𝐶3 

are ferrite, pearlite and martensite, respectively. The joint conditional probability term in the 

numerator of Eq. (2.4) can be rewritten using the chain rule of probability [36, 37] as follows  

𝑃(𝑥𝑖1, … , 𝑥𝑖𝑞|𝑥𝑖𝑟 = 𝐶𝑗)

= 𝑃(𝑥𝑖1|𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖2|𝑥𝑖1, 𝑥𝑖𝑟 = 𝐶𝑗) × … .

× 𝑃(𝑥𝑖𝑞|𝑥𝑖1, … , 𝑥𝑖𝑞 , 𝑥𝑖𝑟 = 𝐶𝑗) 

(2.5) 

Similarly, the denominator can also be written as 

𝑃(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞) = 𝑃(𝑥𝑖1) × 𝑃(𝑥𝑖2|𝑥𝑖1) × … .× 𝑃(𝑥𝑖𝑞|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞−1) (2.6) 

Substituting Eq. (2.5) and Eq. (2.6)in Eq. (2.4), the following expression is obtained. 

𝑃(𝑥𝑖𝑟 = 𝐶𝑗|𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑞)

=
𝑃(𝑥𝑖1|𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖2|𝑥𝑖1, 𝑥𝑖𝑟 = 𝐶𝑗) × … .× 𝑃(𝑥𝑖𝑞|𝑥𝑖1 , … , 𝑥𝑖𝑞 , 𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖𝑟 = 𝐶𝑗)

𝑃(𝑥𝑖1) × 𝑃(𝑥𝑖2|𝑥𝑖1) × … .× 𝑃(𝑥𝑖𝑞|𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑞−1)
 

(2.7) 

Here, it is important to note that the denominator is independent of the class label (𝐶𝑗) 

and will only serve as a normalizing constant. Hence, the denominator can be dropped without 

loss of any classification information. Now the left hand side of Eq. (2.7) represents a measure of 

conditional probability and hence denoted by 𝑀(𝑥𝑖𝑟 = 𝐶𝑗|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞) 
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𝑀(𝑥𝑖𝑟 = 𝐶𝑗|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞)

= 𝑃(𝑥𝑖1|𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖2|𝑥𝑖1, 𝑥𝑖𝑟 = 𝐶𝑗) × … .

× 𝑃(𝑥𝑖𝑞|𝑥𝑖1, … , 𝑥𝑖𝑞−1, 𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖𝑟 = 𝐶𝑗) 

(2.8) 

With an increase in the number of descriptive features, the evaluation of conditional 

probabilities in Eq. (2.8) becomes computationally expensive. To circumvent this computational 

issue, the Naïve Bayes algorithm assumes that the descriptive features are conditionally 

independent. As a consequence of conditional independence, Eq. (2.8) can be rewritten as 

follows 

𝑀(𝑥𝑖𝑟 = 𝐶𝑗|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞)

= 𝑃(𝑥𝑖1|𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖2|𝑥𝑖𝑟 = 𝐶𝑗) × … .× 𝑃(𝑥𝑖𝑞|𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖𝑟

= 𝐶𝑗) 

(2.9) 

The output class label (𝐶𝑗=1,2,3) for a given instance (𝑥𝑖1
# , 𝑥𝑖2

# , … , 𝑥𝑖𝑞
# ) belongs to the class 

which maximizes the value of 𝑀. The posterior probabilities and the prior probability of a class 

will be evaluated from the training dataset and will be used directly in the above equation to find 

the class label (metallurgical phase) when the textural features for an unknown metallurgical 

phase are provided. It is important to note that the textural features of the metallurgical phases 

extracted in this study are continuous variables. Therefore, to evaluate the conditional 

probabilities of these textural features conditional probability density functions are used as proxy 

measures in the place of actual conditional probabilities in Eq. (2.9). The probability density 

functions that are considered in this study are normal distribution and Weibull distribution. 

2.3.2. K-Nearest Neighbor  

K-nearest neighbor (K-NN) classifier is a non-parametric, instance-based classifier which 

determines the class label of  𝒙# based on the assumption that the instances belonging to the 
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same class are found in the close proximity to each other when a consistent measure of proximity 

is employed. In other words, the class label of  𝒙# will be the same as that of the class label 

shared by its nearest neighboring instances/observations 𝒙𝑗
∗. In order to quantify the proximity 

between the training instance 𝒙𝑗
∗ and test instance  𝒙# and identify the nearest neighbor instances, 

generally a distance metric 𝒹 is employed. Note that this distance 𝒹 is different from the one that 

is used to represent the pixel distance in GLCM matrix evaluation. Although there are numerous 

distance metrics available (see [38]), Euclidean distance 𝒹 is used in this study as it is most 

commonly used distance metric for continuous descriptive features which is defined as follows 

𝒹(𝒙𝑗
∗, 𝒙#) =∥ 𝒙𝑗

∗ − 𝒙# ∥2 , ∀ j = 1,2, … , p (2.10) 

where ‖ . ‖2 is the 𝑙2 norm and  p is the number of instances in the training set.  

The class label 𝑥𝑖𝑟
#  corresponding to an instance 𝒙# is then determined as the most 

frequent class label among the 𝐾 nearest neighboring instances. In this study, a general rule of 

thumb, 𝐾 = ⌈√p ⌉ is used to estimate the value of 𝐾, where p is the number of training instances 

and the ceil operator ⌈ . ⌉ rounds any positive number to the nearest integer which is greater than 

equal to the number on which the operator is used. 

2.3.3. Linear Discriminant Analysis 

Linear discriminant analysis (LDA) classifier employs a discriminant score function 

𝐿𝑗(𝒙#) to predict the class labels of a given instance 𝒙#. The discriminant score for each class is 

derived based on the Bayes’ theorem provided in Eq. (2.3) and Eq. (2.4). Ignoring the 

denominator in the Eq. (2.4) as it is independent of the class label we get a measure of 

conditional probability which can be written as    
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𝑀(𝑥𝑖𝑟 = 𝐶𝑗|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞) = 𝑃(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞|𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖𝑟 = 𝐶𝑗) (2.11) 

In fact, the class that maximizes the value of 𝑀 for a given 𝒙 is the class of 𝒙 and the 

above equation is referred to as Bayes’ classifier. However, evaluating the conditional 

probability in Bayes’ classifier is challenging. In the case of linear discriminant analysis, all the 

instances that belong to a class 𝐶𝑗 are assumed to be sampled from a multivariate normal 

distribution 𝒩(𝚺, 𝝁𝑗), where, 𝚺 and 𝝁𝑗 are the covariance matrix and mean vector of all features 

in the instances that belong to class 𝐶𝑗. The probability density function is given as 

𝑓(𝒙|𝐶𝑗) =
1

√(2𝜋)𝑞|𝚺|
exp (−

1

2
(𝒙 − 𝝁𝑗)

′
𝚺−1(𝒙 − 𝝁𝑗)) 

By substituting 𝑓(𝒙|𝐶𝑗) in the place of 𝑃(𝒙|𝐶𝑗) as a proxy measure, we get 

𝑀(𝑥𝑖𝑟 = 𝐶𝑗|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞)

=
1

√(2𝜋)𝑞|𝚺|
exp (−

1

2
(𝒙 − 𝝁𝑗)

′
𝚺−1(𝒙 − 𝝁𝑗)) × 𝑃(𝑥𝑖𝑟 = 𝐶𝑗) 

(2.12) 

Note that 𝑃(𝒙|𝐶𝑗) can be replaced by its proxy value 𝑓(𝒙|𝐶𝑗) as we are interested in 

discrimination of instances in to classes and are not interested in evaluating the actual 

probabilities. By applying logarithm on both sides we get the discriminant score function for 

class 𝐶𝑗 as 

𝐿𝑗(𝒙) = −
1

2
log((2𝜋)𝑞|𝚺|) −

1

2
(𝒙 − 𝝁𝑗)

′
𝚺−1(𝒙 − 𝝁𝑗) + log 𝑃(𝐶𝑗) (2.13) 

Noting that 𝚺−1 is symmetric, i.e., 𝒙′𝚺−1𝝁𝑗 = 𝝁𝑗
′ 𝚺−1𝒙, we can simplify the discriminant 

score function as follows 

𝐿𝑗(𝒙) = −
1

2
log((2𝜋)𝑞|𝚺|) −

1

2
𝝁𝑗

′ 𝚺−1𝝁𝑗 −
1

2
𝒙′𝚺−1𝒙 + 𝝁𝑗

′ 𝚺−1𝒙 + log 𝑃(𝐶𝑗) 
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By ignoring the terms that are independent of the class (as they do not improve the 

discriminative power of the algorithm), we obtain the discriminant score function for a class as 

𝐿𝑗(𝒙) = −
1

2
𝝁𝑗

′ 𝚺−1𝝁𝑗 + 𝝁𝑗
′ 𝚺−1𝒙 + log 𝑃(𝐶𝑗) (2.14) 

In the case of linear discriminant analysis, the covariance matrices (𝚺1, 𝚺2 and 𝚺3) for all 

classes are assumed to be equal. In order to better capture the variances in the available dataset, a 

pooled covariance matrix defined as  

𝚺𝑝𝑙 =
1

p − 𝑚
∑(p

𝑖
− 1)𝚺𝑖

𝑚

𝑖=1

 

is used in the place of 𝚺 modifying the discriminant score function as follows 

𝐿𝑗(𝒙) = −
1

2
𝝁𝑗

′ 𝚺𝑝𝑙
−1𝝁𝑗 + 𝝁𝑗

′ 𝚺𝑝𝑙
−1𝒙 + log 𝑃(𝐶𝑗) (2.15) 

To predict the class label 𝑥𝑗𝑟
#  of a given test instance 𝒙#, the discriminant scores 

𝐿𝑗=1:𝑚(𝒙#) are first evaluated for all the 𝑚 class labels and then the index of the class label 𝑗 that 

yields maximum 𝐿𝑗  value is assigned as the class label for the test instance 𝒙#. In the context of 

this study, the class label 𝑗 ∈ {𝐶1, 𝐶2, 𝐶3}. 

2.3.4. Decision Tree 

Decision tree classifier is a non-parametric classifier that employs a hierarchical tree 

structure to predict the class label of an instance 𝒙#. This tree structure is obtained as a result of 

recursive partitioning of the training dataset which yields a class label as an outcome at the end 

[36]. Basic decision tree architecture consists of a root node at the top, intermediate nodes in 

between and leaf nodes at the bottom. Each node (root and intermediate) in a tree represents a 

feature, each descending branch represents a criterion or a decision rule and the leaf nodes at the 

bottom represent the final outcomes or the classification labels. In this study, an ID3 (Iterative 
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Dichotomiser 3) decision tree algorithm [39] is used and the continuous textural features are 

treated according to the procedure employed in C4.5 algorithm [40] to create a decision tree. 

This algorithm employs entropy and information gain measures for partitioning the data in to a 

decision tree. Entropy is an information measure that characterizes the (im)purity or uncertainty 

of collected observations. Given a column vector of class labels 𝒔 i.e. 𝑟𝑡ℎcolumn of training 

dataset, the entropy of the distribution of class labels denoted by 𝐻(𝒔) is evaluated as   

𝐻(𝒔) = − ∑ 𝑃𝑖 log2 𝑃𝑖

𝑚

𝑖=1

 (2.16) 

where, 𝑃𝑖 is the probability that an observation belongs to a class label 𝐶𝑖. Entropy is zero when 

all the classification labels belong to same class and is 1 when the classification labels are 

equally proportioned in to all classes. In order to evaluate the root node, the unique values of all 

textural features are sorted in to ascending order. The entropy reduction is calculated for every 

feature choosing each of its unique values. The feature (𝒙𝑗 = (𝑥1𝑗, 𝑥2𝑗 , … 𝑥𝑘𝑗 , … , 𝑥𝑝𝑗), 𝑝 is the 

number of observations) and the unique value of that feature (𝑥𝑘𝑗) about which the partition is 

made that maximizes the information gain are taken as the root node and determining the 

corresponding decision rules for the first two branches of the decision tree. The information gain 

is defined as the expected reduction in entropy caused by partitioning the class label vector 𝒔 

with respect to the given 𝑗𝑡ℎ attribute vector 𝒙𝑗 = (𝑥1𝑗, 𝑥2𝑗 , … 𝑥𝑘𝑗 , … , 𝑥𝑝𝑗) whose unique values 

are already sorted in to ascending order, where 𝑥𝑘𝑗 is the partition value. The information gain is 

defined as 

𝑈(𝒔, 𝒙𝑗 , 𝑥𝑘𝑗)  = 𝐻(𝒔) −
|𝒔𝑙|

|𝒔|
𝐻(𝒔𝑙) −

|𝒔ℎ|

|𝒔|
𝐻(𝒔ℎ) (2.17) 
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where, 𝒔𝑙 and 𝒔ℎ are subsets of 𝒔 given as 𝒔𝑙 = {𝑥1𝑗, 𝑥2𝑗 , … 𝑥𝑘𝑗} and 𝒔ℎ = {𝑥𝑘+1𝑗, 𝑥𝑘+2𝑗 , … 𝑥𝑝𝑗} 

and |∗| in this context is the cardinality of the subsets. While the first term on right hand side of 

the above equation represents the entropy of distribution of class labels before data partition, the 

second and the third terms represent the expected decrease in entropy after partitioning the data 

using attribute 𝒙𝑗 about 𝑥𝑘𝑗 value. The intermediate nodes and their branches are generated 

similarly but by excluding the features that were already assigned to nodes previously. This 

procedure is carried out until each of the branches result in a class label as the output. Decision 

trees are prone to overfitting and hence tree pruning is recommended [41]. This is specifically 

true when there is large number of irrelevant and dependent features. As a feature selection 

algorithm is used in a pre-processing step, tree pruning is not performed in this study. The ID3 

algorithm based on the training data provides a set of decision rules and a given instance 𝒙# from 

the test, dataset is taken through these decision rules to obtain its unknown class label 𝑥𝑖𝑟
# .  

2.4. Methodology 

The main objective of this study is to identify the distinct metallurgical phases present in 

the ASTM A36 steel using supervised machine learning classifiers. Following step-by-step 

procedure is adapted in the current study to accomplish this objective (see Figure 2.2): (1) 

acquisition of microstructural images of heat treated ASTM A36 steel metallurgical specimens, 

(2) splitting of the acquired images into training image set and test image set, (3) extraction of 

textural features for known metallurgical phases from training images and (4) extraction of 

textural features for unknown metallurgical phases from test images, (5) application of feature 

selection algorithm to select the most relevant textural features, (6) training the classifier with the 

selected relevant textural features, and (7) predicting the metallurgical phases in test image using 

a trained classifier. In this section, a detailed description of each step is provided.  
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Figure 2.2. Flowchart of methodology for metallurgical phase identification in ASTM A36 steel 

using supervised machine learning. 

Nine ASTM A36 metallographic specimens cooled from different elevated temperatures 

are chosen in this study. Of these nine specimens, six were heated to temperatures 500°C, 600°C, 

700°C, 800°C, 900°C and 1000°C followed by air cooling, 2 specimens were heated to 

temperatures of 900°C and 1000°C followed by water cooling, and one specimen was extracted 

from as-received steel.  Further details about the heat treatment of these specimens can be found 

elsewhere [42]. It is important to note that the heat treatment temperatures considered in this 

study are chosen to obtain various phase compositions in ASTM A36 steel. The air-cooled 

specimens have a ferrite-pearlite microstructure and the water-cooled specimens possess 

martensite ferrite microstructure. All the nine metallographic specimens are then examined under 

the Amscope® optical microscope at 50× magnification to acquire the microstructural images. In 

total, 45 images are acquired which includes five images each from all nine different 

metallographic specimens. Note that to obtain these five images from each metallographic 

specimen five different locations are chosen on the specimen. 
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In the second step, the images acquired for each specimen are divided into two sets of 

images, training image set and test image set. Out of the five images acquired for every 

metallographic specimen, three images are allocated to the training image set and the other two 

images are allocated to the test image set and this assignment was done randomly. By repeating 

this exercise for all 9 specimens, 27 images in total are generated for the training image set, and 

18 images are generated for the test image set. In the third step, the textural features of each 

metallurgical phase are extracted from the images available in the training image set and a 

dataset 𝑫 is generated. The generated dataset 𝑫 consists of 735 number of data points in total, 

which includes 315 number of data points corresponding to ferrite, 270 number of data points 

corresponding to pearlite and 150 number of data points corresponding to martensite. Lower 

number of data points for pearlite and martensite can be attributed to the lesser number of images 

available for water cooled specimens. To extract the textural features of a metallurgical phase 

from an image, an in-house MATLAB® code is built in this study. This code allows the user to 

choose pixels randomly from an image that may correspond to any of the metallurgical phases. A 

schematic of pixel selection locations adopted in this study is shown in Figure 2.3. The textural 

features for each of these selected pixels are then extracted using GLCM explained in Section 

2.2. To generate dataset 𝑫 consisting of 735 number of data points, this exercise is repeated for 

all the 27 images present in the training image set. As mentioned in Section 2.2, a pixel does not 

possess a texture and hence a window size of 𝑆 × 𝑆 pixels is used to evaluate the textural features 

which are then assigned to the pixel located at the center of this window. As the ideal window 

size is not known a priori, following five window sizes are considered in this study:61 × 61, 

81 × 81, 101 × 101, 121 × 121 and 161 × 161 pixels. The textural features are computed for 

all the five window sizes. 
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Figure 2.3. Schematic of pixel locations selected for extraction of textural features. 

In the fourth step, the textural features of unknown metallurgical phases in the test 

images are evaluated using the same procedure described in the third step. These test images are 

selected from the 18 images that are present in the testing image set and not used for training 

purpose. However, in this step, every pixel of the test image is selected automatically by the 

MATLAB® code, because the metallurgical phases of these pixels are unknown and should be 

classified into one of the known phases. The dataset generated in this step is called as the test 

dataset. In the fifth step, feature selection is performed on the dataset 𝑫 to obtain the subset of 

most relevant textural features. In the sixth step, the dataset 𝑫 consisting of only most relevant 

textural features is provided as input to the classifier chosen in this study and the machine 

learning algorithm is trained. In the seventh and final step, the test dataset is given as input to the 

trained algorithm and unknown phase labels are identified. The flowchart of this methodology is 

illustrated in Figure 2.2. 
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Figure 2.4. Numerical example illustrating the importance of selection of most relevant textural 

features (a) original image (b) only ‘pixel intensity’ (c) ‘pixel intensity’ and top 3 textural 

features (d) ‘pixel intensity’ and top 4 textural features and (e) segmentation in imageJ. It is 

observed from subfigure (d) that the accuracy of classifying metallurgical phases has increased 

with addition of more number of relevant textural features. 

2.5. Feature Selection  

Feature selection is the process of choosing a subset of features from the entire 20 

textural features that are ideally necessary and sufficient for predicting the target variable 

(metallurgical phase) [43]. Feature selection eliminates the redundant and irrelevant features 

from the evaluated 20 textural features which otherwise will adversely impact the performance 

of a given machine learning classifier. In this study, feature selection is carried out using a filter 

approach that primarily involves two steps: (1) ranking of features and (2) selecting a subset of 

top-ranked relevant features. A brief description of these two steps is provided below. 
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2.5.1. Feature Ranking  

Feature ranking is the process of assigning ranks to the descriptive features based on the 

scores that are estimated from one of the following: information measure, distance, similarity, 

consistency, statistical measures etc. [44]. These estimated scores represent the 

correlation/association/relevance between the feature and a target variable or class label. Higher 

the score, higher is the rank and stronger is the correlation. In this study, ReliefF algorithm [43, 

45] is employed to estimate the ranking of textural features. This algorithm calculates a proxy 

statistic for each textural feature, called feature weight (𝑊𝑖=1:𝑞), which is used to estimate the 

relevance of the textural feature to the target variable or metallurgical phase [44]. To determine 

the feature weight 𝑊𝑖, ReliefF algorithm employs an iterative updating scheme for weights 

which is executed 𝑧 number of times (𝑧 is the user defined parameter, 𝑧 ∈ ℤ+) in the following 

three steps: (1) an instance 𝒙𝑡=1:𝑝 is sampled at random from the dataset 𝑫 without replacement 

in the first step; (2) 𝑘 (is a user defined parameter, 𝑘 ∈ ℤ+) number of nearest instances of 𝒙𝑡 are 

determined from each class in the second step and; (3) weights of each textural feature is 

estimated and updated using Eq. (2.18) in the third step. The set of 𝑘 nearest instances that are 

identified in the second step are referred as nearest-hit instances 𝒉𝑗, if the class label of  𝑘 

instances are same as that of the class label of 𝒙𝑡, and are referred as nearest-miss instances 𝒎𝑗 if 

the class label of the 𝑘 instances differ from that of the class label of 𝒙𝑡, where 

𝑗 takes the values from 1 to 𝑘. Based on the nearest-hit and nearest-miss instances identified in 

the second step, this algorithm rewards or penalizes the textural features by updating their 

weights using Eq. (2.18) which assigns higher weights to the features that are strongly correlated 

to the target variable when compared to the irrelevant features. The number of iterations 𝑧 is an 
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arbitrary integer and is generally chosen to be ⌈√𝑝 ⌉. The equation to evaluate the weights of the 

feature is expressed as 

𝑊𝑖 = 𝑊𝑖
𝑜𝑙𝑑 − ∑

diff(𝑖, 𝑥𝑡𝑖 , ℎ𝑗𝑖)

𝑧𝑘

𝑘

𝑗=1

+ ∑
P(𝐶𝑜)

1 − P(class of 𝒙𝑡 )
∑

diff (𝑖, 𝑥𝑡𝑖, 𝑚𝑗𝑖(𝐶𝑜))

𝑧𝑘

𝑘

𝑗=1𝐶𝑜≠class of 𝒙𝑡 

 

(2.18) 

where, 𝑊𝑖 on the left hand side is the updated weight of the textural feature 𝑖, 𝑊𝑖 
𝑜𝑙𝑑on right hand 

side is the initial or previous weight of the textural feature 𝑖, 𝑧 is the number of iterations, 

𝑥𝑡𝑖 , ℎ𝑗𝑖 , 𝑚𝑗𝑖 are the values of textural feature 𝑖 corresponding to the instance 𝒙𝑡, near-hit instance 

𝒉𝑗, near-miss instance 𝒎𝑗   respectively, 𝐶𝑜 is the class label of an instance 𝒎𝑗 which is not the 

same as that of class label of 𝒙𝑡 , P(𝐶𝑜) is the prior probability of the class 𝐶𝑜 and both 

diff(𝑖, 𝑥𝑡𝑖 , ℎ𝑗𝑖) and diff(𝑖, 𝑥𝑡𝑖 , 𝑚𝑗𝑖) evaluates the difference between the normalized values of 𝑖𝑡ℎ 

feature expressed as 

diff(𝑖, 𝑥𝑡𝑖 , ℎ𝑗𝑖) =
|𝑥𝑡𝑖 − ℎ𝑗𝑖|

max(𝑖) − min (𝑖)
 and, diff(𝑖, 𝑥𝑡𝑖 , 𝑚𝑗𝑖) =

|𝑥𝑡𝑖 − 𝑚𝑗𝑖|

max(𝑖) − min (𝑖)
 

A more detailed description of the algorithm can be found elsewhere [43, 45]. The dataset 

𝑫 generated in Section 2.4 is given as an input to the ReliefF algorithm and the rank of the 

descriptive features are obtained (see Table 2.2). This procedure is repeated for all five different 

window sizes that are considered in this study. 
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Table 2.2. Feature ranking based on ReliefF algorithm. 

Rank 61x61 81x81 101x101 121x121 161x161 

1 Intensity Intensity Intensity Intensity Intensity 

2 
Maximum 

probability 

Maximum 

probability 

Maximum 

probability 

Maximum 

probability 

Maximum 

probability 

3 Auto-correlation Sum of squares Sum of squares Cluster shade Sum of squares 

4 Sum of squares 
Auto-

correlation 
Auto-correlation Inverse correlation Auto-correlation 

5 Entropy Sum variance Sum variance Sum of squares Cluster shade 

6 Sum variance Energy  Inverse correlation Auto-correlation Sum variance 

7 Cluster shade Cluster shade Cluster shade Energy  Sum average 

8 Sum average Sum average Energy Sum variance Inverse correlation 

9 
Inverse difference 

moment  
Sum entropy Sum average 

Inverse difference 

normalized 

Inverse difference 

normalized 

10 Sum entropy Entropy 
Inverse difference 

normalized 
Sum average Energy 

 

2.5.2. Selection of Feature Subset  

Followed by a ranking of textural features, a subset of relevant textural features is 

selected in the second step of the feature selection process. In this study, as the number of 

relevant features is not known a priori, a trial and error approach is used. In this approach, a 

particular combination of relevant textural features is chosen in each trial and the resulting 

misclassification error for each classifier (from the selected combination) is evaluated. The 

combination of relevant textural features that minimized the misclassification error is then 

selected as the most relevant subset of textural features in this study. To select a combination of 

relevant textural features during each trail, following procedure is adapted: in the first trial only 

one relevant descriptive feature is selected that has the highest relevance index or rank of 1 (see 

Table 2.4); in the second trial the next relevant descriptive feature with rank 2 is included along 

with the previous one; in the third trail the third relevant feature is included with the previous 

two descriptive features and this procedure is repeated for each trial. In other words, for each 

trial, the next most relevant descriptive feature is added successively. Note that these 

combinations are found to differ for different window sizes.  
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2.5.3. Performance Assessment of Classifier 

To evaluate the misclassification error or assess the performance of the classifier, dataset  

𝑫 is split into two subsets – one subset (𝑺1) containing 80% of the observations and the other 

subset (𝑺2) containing rest 20% of the observations. To obtain the subset 𝑺1, the observations 

available in the dataset 𝑫 are randomly sampled without replacement using the ‘datasample’ 

function available in MATLAB®. To avoid the bias between class labels, the sampling was 

carried out such that 80% of observations from each metallurgical phase was chosen from dataset 

𝑫. The rest of the observations are grouped in to subset 𝑺2. Here, the subset 𝑺1 is referred to as 

training dataset (for the classifier) and the subset 𝑺2 is referred to as validation dataset. In other 

words, the classifier is first trained using the subset 𝑺1 and then deployed to predict the class 

labels on subset 𝑺2. As the class labels in subset 𝑺2 are already known, the performance of 

classifier on a subset 𝑺2 can be assessed by cross validating with the known class labels. For this, 

the count of both correctly and incorrectly classified class labels are obtained and summarized in 

the form of a matrix called confusion matrix (see Table 2.3).  

Table 2.3. Confusion matrix (𝑪).  

 
A confusion matrix (𝑪) is a square matrix of size 𝑚 × 𝑚, where 𝑚 is the number of class 

labels or metallurgical phases and each element 𝑐𝑖𝑗 of the matrix represents the frequency of 

instances from the validation dataset that are assigned class 𝑗 by the classifier which in reality 

belongs to class 𝑖 [46]. In other words, a confusion matrix provides the summary of correct and 
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incorrect classifications predicted by the classifier. Here 𝑖, 𝑗 ∈ {𝐶1, 𝐶2, 𝐶3} where 

𝐶1, 𝐶2 and 𝐶3denotes ferrite, pearlite and martensite respectively. While the summation of each 

row of the confusion matrix (see Table 2.3) represents the number of instances actually 

belonging to class 𝑖 in the validation dataset, the summation of each column of the confusion 

matrix (see Table 2.3) represents the number of instances that are assigned to class 𝑖 by the 

classifier.  

Accuracy (𝐴) is often used to quantify the predictive power of classifiers. It is the ratio of 

a total number of observations whose class labels are correctly predicted to the total number of 

observations present in the validation dataset. Mathematically, 𝐴 is defined as 

𝐴 =
∑ 𝑐𝑖𝑖

𝑚
𝑖=1

∑ ∑ 𝑐𝑖𝑗
𝑚
𝑗=1

𝑚
𝑖=1

× 100% (2.19) 

However, the accuracy estimated from the above equation may be misleading when the 

dataset is imbalanced, i.e., the number of data points corresponding to each class label is not the 

same [47]. The training dataset 𝑫 consists of 43.7% of data points corresponding to ferrite, 

37.5% of data points corresponding to pearlite and 20.8% of data points corresponding to 

martensite. To assess the performance of such imbalanced datasets often F-measure (F𝑚) is used 

instead of accuracy (𝐴). F-measure (F𝑚) is the harmonic mean of two other accuracy measures, 

namely precision (O) and recall (R). Precision is defined as the ratio of the number of 

observations whose class label 𝑖 is correctly predicted by the classifier to the total number of 

observations that are assigned to the class 𝑖 by the classifier and recall is defined as the 

proportion of observations of class 𝑖 (in the validation dataset) that are correctly predicted as 

class 𝑖 by the classifier [48] . Provided a confusion matrix 𝑪, the precision with which a class 

𝑖 instance is classified is the ratio of number of correctly classified class 𝑖 instances to the total 
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number of instances that are assigned to class 𝑖 (i.e., the summation of corresponding column 

elements ∑ 𝑐𝑗𝑖
𝑚
𝑗=1 ) by the classifier. The recall of a class 𝑖 is evaluated as the ratio of correctly 

classified number of instances with class label 𝑖 to the total number of instances that actually 

belong to class 𝑖 (i.e., the summation of corresponding row elements ∑ 𝑐𝑖𝑗
𝑚
𝑗=1 ). The overall 

precision (O) and overall recall (R) are then computed as the average of the precision and recall 

of all classes, respectively and are given as follows [48]  

O =
1

𝑚
∑

𝑐𝑖𝑖

∑ 𝑐𝑗𝑖
𝑚
𝑗=1

𝑚

𝑖=1

 and R =
1

𝑚
∑

𝑐𝑖𝑖

∑ 𝑐𝑖𝑗
𝑚
𝑗=1

𝑚

𝑖=1

 

Here, 𝑚 represents the number of class labels. While overall precision and overall recall 

are also used as the measures of performance assessment for classifiers, F-measure (𝐹𝑚) 

combines the trade-off between both overall precision and overall recall [47] and is evaluated as 

follows 

F𝑚 =
2 × O × R

O + R
× 100% (2.20) 

2.6. Results 

The results of textural feature ranking and the subsets of most relevant textural features 

for all classifiers is presented in this section. In addition to this, the performance assessment of 

all four classifiers for the selected subset of relevant textural features is summarized. A 

numerical example to demonstrate the importance of choosing relevant textural features is also 

provided in this section. Finally, the unknown metallurgical phases are identified in test images 

of ASTM A36-500AC, ASTM A36-900AC and ASTM A36-900WC for the sake of visual 

validation.   
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2.6.1. Feature Ranking 

The textural features of the dataset 𝑫 obtained in Section 2.4 are ranked using ReliefF 

algorithm and the top 10 relevant features are provided in Table 2.2. From Table 2.2, it is clear 

that the rank of the textural features depend on the choice of window size i.e. rank of the textural 

features changes with the change in window size. The change in the order of the feature rank can 

be attributed to the fact that the image texture is not similar to the one that is obtained when the 

window size is increased. While employing smaller window sizes fails to capture the texture of 

the metallurgical phase at the given magnification, larger windows will include too much 

redundant information that will result in a texture which might not be the true representation of a 

metallurgical phase. However, it is interesting to note that the ‘pixel intensity’ and ‘maximum 

probability’ remained as the top relevant features for all five window sizes considered in this 

study. While the pixel intensity is perceivable to the human eye as the relative brightness/ 

grayscale, ‘maximum probability’ is a statistical measure evaluated from GLCM matrix and has 

no physical meaning. Mathematically, ‘maximum probability’ texture feature is the maximum 

value of the joint probability of quantized grayscale level values for the pair of pixels that are 

separated by distance ‘𝑑’ and are oriented at an angle ‘𝜃’. Pixel intensity is undoubtedly a very 

important feature to identify the metallurgical phase. Indeed, many commercial thresholding 

methods solely rely on pixel intensity. The robustness of the method proposed in this study relies 

on adding textural features which may not be perceivable by an ordinary human eye but can be 

measured mathematically and can be used by a ML algorithm to classify/ identify unknown 

metallurgical phases. In addition to the above mentioned features, ‘auto-correlation’ and ‘sum of 

squares’ are found to be the next two relevant textural features for all window sizes except for 

the window size 121×121.  A careful observation of next 6 relevant textural features reveals that 
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‘cluster shade’, ‘sum variance’, ‘sum average’ and ‘energy’ are among the top 10 textural 

features for all window sizes. Note that most of these textural features are purely mathematical in 

nature and hard to interpret visually. 

2.6.2. Feature Subset Selection 

The subset of the most relevant textural features obtained by adapting the procedure 

explained in the previous section is provided in Table 2.4. From Table 2.4, it is observed that the 

combinations of textural features differed for all five window sizes (see Table 2.2). This can be 

attributed to the fact that order of the ranks of the textural features change with the change in 

window size as explained in previous section. In this study, an ideal window size and the subset 

of relevant textural features (see Table 2.4) that will maximize the performance of each classifier 

is determined. Accuracy and F-measure are evaluated to assess the performance of each classifier 

and the results are provided in Table 2.5 to Table 2.8. From Table 2.5 to Table 2.8, it is clear that 

the window size of 161×161 yielded higher accuracy (>97%) and F-measure (>97%) for all four 

classifiers – Naïve Bayes, K-NN, LDA, and decision tree. Besides the accuracy and F-measure, 

Table 2.5 to Table 2.8 also provides the confusion matrices. Note that the window sizes larger 

than 161×161 are not considered in this study for two reasons that are already mentioned in 

previous section i.e. (1) larger window sizes will include too much redundant information and, 

(2) will increase the computational time and cost. From the confusion matrices provided in Table 

2.5 to Table 2.8, following two insights can be drawn: (1) martensite phase was often 

misclassified into ferrite when only ‘pixel intensity’ was considered and (2) misclassification 

was reduced when relevant textural features are also considered along with the pixel intensity. It 

is clearly evident from the pixel intensity histogram provided in Figure 1.5 that the majority of 

pixel intensities belonging to ferrite and martensite phase are overlapped when compared to 
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pearlite phase alone. For this reason, the ferrite and martensite phases were observed to be often 

misclassified. However, with addition of textural features to the pixel intensity, the 

misclassification is observed to reduce for all the classifiers because the textural features are 

distinct for each metallurgical phase and do not overlap. Among all the four classifiers that are 

considered in this study, Naïve Bayes, LDA and decision tree classifiers are observed to exhibit 

more or less the same robustness with respect to the misclassifications i.e. they exhibited more or 

less same confusion matrices with various subset of textural features that were considered. 

However, K-NN classifier was observed to misclassify more number of martensitic phase pixels 

in to ferrite phase when compared to other classifiers. With addition of relevant textural features, 

the misclassification was observed to be reduced for K-NN classifier. 

In conjunction with the ideal window size, a combination of textural features that resulted 

in higher F-measure for all four classifiers are also determined and provided in Table 2.9. The 

ideal window size and the combination of textural features determined for Naïve Bayes classifier 

is – 161×161 and ρ3; for K-NN classifier is – 161×161 and 𝜌5 ; for LDA classifier is – 101×101 

and 𝜌6 and; for decision tree classifier is – 161×161 and ‘All features’. Although LDA classifier 

was observed to yield a higher accuracy for 161×161 window size, it is observed that there are 

other combinations of window sizes and textural features which yielded similar accuracy. 

Considering the confusion matrices provided in Table 2.7, a window size of 101×101 is chosen 

in this study as it is observed to produce a more reliable classification of metallurgical phases 

along with the feature combination 𝜌6 (see 3rd row of Table 2.4). Unlike Naïve Bayes, K-NN and 

LDA classifier, no specific feature selection is carried out for decision tree classifier in the 

current study. Decision tree classifier is a low bias-high variance classifier and is sensitive to the 

small fluctuations in the training dataset. While the inclusion of redundant and irrelevant features 
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will decrease the performance of a high bias-low variance classifier (e.g. Naïve Bayes and LDA), 

it will only decrease the performance of a decision tree classifier when there is significant 

amount of noise in the training and test data [49], which is not the case in the current study i.e. 

training and test data did not have significant amount of noise.  Therefore, no feature selection 

was performed for decision tree classifier. Here bias represents the error resulting from the 

erroneous assumptions made in building a machine learning classifier and variance represents the 

sensitivity to small fluctuations in the training dataset.  

Table 2.4. Combinations of features for each window size. 

Window size 
Combination 

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 

161X161 Intensity ρ1+T9 ρ1+ T10 ρ2+ T1 ρ3+ T4 ρ4+ T13 

121X121 Intensity ρ1+T9 ρ1+ T4 ρ2+ T16 ρ3+ T10 ρ4+ T1 

101X101 Intensity ρ1+T9 ρ1+ T10 ρ2+ T1 ρ3+ T13 ρ4+ T16 

81X81 Intensity ρ1+T9 ρ1+ T10 ρ2+ T1 ρ3+ T13 ρ4+ T6 

61X61 Intensity ρ1+T9 ρ1+ T1 ρ2+ T10 ρ3+ T7 ρ4+ T13 

 



 

 

6
1
 

Table 2.5. Performance of Naïve Bayes classifier for different combinations of textural features. 

Note: The term “window size” is replaced by Size whose dimensions are denoted by 𝑆 instead of 𝑆 × 𝑆 pixels; Acc. here denotes the 

accuracy. 

  

Size 𝑪 for  ρ2 Fm 𝑪 for  ρ3 Fm 𝑪 for  ρ4 Fm 𝑪 for  ρ5 Fm 𝑪 for  ρ6 Fm 

161 0.976 0.000 0.024 

95.22 

0.992 0.000 0.008 

97.70 

0.968 0.016 0.016 

95.62 

0.810 0.016 0.175 

91.55 

0.849 0.016 0.135 

90.32 0.009 0.954 0.037 0.000 1.000 0.000 0.000 0.991 0.009 0.000 1.000 0.000 0.009 0.991 0.000 
0.067 0.000 0.933 0.067 0.033 0.900 0.033 0.067 0.900 0.000 0.017 0.983 0.050 0.050 0.900 

Acc.  95.91    97.62    96.26    91.50    91.16   

121 0.976 0.008 0.016 
94.69 

0.849 0.016 0.135 
93.00 

0.881 0.000 0.119 
92.61 

0.913 0.000 0.087 
94.29 

0.929 0.008 0.063 
95.79 0.000 0.991 0.009 0.000 1.000 0.000 0.009 0.981 0.009 0.009 0.991 0.000 0.000 1.000 0.000 

0.133 0.017 0.850 0.017 0.000 0.983 0.033 0.017 0.950 0.050 0.000 0.950 0.033 0.000 0.967 

Acc.  95.58  
 

 93.19  
 

 93.19  
 

 94.89  
 

 96.26  
 

101 0.968 0.000 0.032 
95.05 

0.952 0.000 0.048 
94.69 

0.944 0.008 0.048 
92.59 

0.913 0.000 0.087 
94.10 

0.944 0.000 0.056 
95.99 0.000 0.972 0.028 0.000 0.981 0.019 0.000 0.991 0.009 0.000 1.000 0.000 0.000 1.000 0.000 

0.067 0.017 0.917 0.067 0.017 0.917 0.133 0.033 0.833 0.033 0.033 0.933 0.033 0.017 0.950 

Acc.  95.92  
 

 95.60  
 

 93.88  
 

 94.89  
 

 96.59  
 

81 0.960 0.000 0.040 
95.18 

0.968 0.000 0.032 
94.99 

0.952 0.008 0.040 
94.71 

0.881 0.008 0.111 
90.24 

0.849 0.000 0.151 
91.21 0.000 0.963 0.037 0.000 0.981 0.019 0.000 1.000 0.000 0.000 0.981 0.019 0.000 0.991 0.009 

0.033 0.017 0.950 0.067 0.033 0.900 0.083 0.033 0.883 0.100 0.033 0.867 0.017 0.050 0.933 
Acc.  95.92  

 
 95.92  

 
 95.58  

 
 91.49  

 
 91.84  

 

61 0.984 0.000 0.016 
94.09 

0.952 0.000 0.048 
93.85 

0.921 0.000 0.079 
92.61 

0.865 0.000 0.135 
92.46 

0.889 0.000 0.111 
92.75 0.000 0.963 0.037 0.000 0.981 0.019 0.000 1.000 0.000 0.000 0.981 0.019 0.000 0.991 0.009 

0.100 0.033 0.867 0.117 0.000 0.883 0.017 0.117 0.867 0.033 0.000 0.967 0.017 0.050 0.933 

Acc.  95.24    94.89    93.88    92.86    93.54   
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Table 2.6. Performance of K-NN classifier for different combinations of textural features. 

Note: The term “window size” is replaced by Size whose dimensions are denoted by 𝑆 instead of 𝑆 × 𝑆 pixels; Acc. here denotes the 

accuracy. 

 

  

Size 𝑪 for  ρ2 Fm 𝑪 for  ρ3 Fm 𝑪 for  ρ4 Fm 𝑪 for  ρ5 Fm 𝑪 for  ρ6 Fm 

161 0.944 0.000 0.056 
91.05 

0.968 0.000 0.032 
93.83 

0.976 0.000 0.024 
94.57 

0.992 0.000 0.008 
97.23 

0.960 0.000 0.040 
94.71 0.000 0.944 0.056 0.000 0.954 0.046 0.000 0.972 0.028 0.009 0.981 0.009 0.000 0.972 0.028 

0.133 0.017 0.850 0.083 0.017 0.900 0.100 0.017 0.883 0.067 0.000 0.933 0.083 0.000 0.917 

Acc.  92.52    94.89    95.58    97.62    95.58   

121 0.968 0.000 0.032 
93.35 

0.968 0.000 0.032 
94.21 

0.984 0.000 0.016 
93.79 

0.960 0.000 0.040 
94.36 

0.968 0.000 0.032 
92.95 0.000 0.972 0.028 0.000 0.972 0.028 0.000 0.944 0.056 0.009 0.981 0.009 0.000 0.963 0.037 

0.150 0.000 0.850 0.117 0.000 0.883 0.117 0.000 0.883 0.117 0.000 0.883 0.150 0.000 0.850 

Acc.  94.56  
 

 95.24  
 

 94.89  
 

 95.24  
 

 94.22  
 

101 0.944 0.000 0.056 

90.94 

0.968 0.000 0.032 

93.78 

0.976 0.000 0.024 

91.18 

0.952 0.000 0.048 

92.31 

0.976 0.000 0.024 

93.75 0.000 0.963 0.037 0.000 0.963 0.037 0.000 0.963 0.037 0.009 0.963 0.028 0.000 0.972 0.028 

0.183 0.000 0.817 0.100 0.017 0.883 0.233 0.000 0.767 0.150 0.000 0.850 0.150 0.000 0.850 
Acc.  92.52  

 
 94.89  

 
 92.86  

 
 93.54  

 
 94.89  

 

81 0.952 0.000 0.048 
92.22 

0.968 0.000 0.032 
93.30 

0.976 0.000 0.024 
92.85 

0.976 0.000 0.024 
92.07 

0.944 0.000 0.056 
92.72 0.000 0.954 0.046 0.000 0.981 0.019 0.000 0.972 0.028 0.000 0.954 0.046 0.000 0.963 0.037 

0.117 0.017 0.867 0.150 0.017 0.833 0.167 0.017 0.817 0.183 0.000 0.817 0.117 0.000 0.883 

Acc.  93.54  
 

 94.56  
 

 94.22  
 

 93.54  
 

 93.88  
 

61 0.968 0.000 0.032 

90.90 

0.960 0.000 0.040 

90.41 

0.976 0.000 0.024 

93.71 

0.976 0.000 0.024 

93.75 

0.976 0.000 0.024 

96.42 0.000 0.935 0.065 0.000 0.954 0.046 0.000 0.972 0.028 0.000 0.972 0.028 0.009 0.981 0.009 

0.183 0.000 0.817 0.217 0.000 0.783 0.133 0.017 0.850 0.150 0.000 0.850 0.067 0.000 0.933 
Acc.  92.52    92.18    94.89    94.89    96.94   
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Table 2.7. Performance of LDA classifier for different combinations of textural features. 

Note: The term “window size” is replaced by Size whose dimensions are denoted by 𝑆 instead of 𝑆 × 𝑆 pixels; Acc. here denotes the 

accuracy. 

 

Size 𝑪 for  ρ2 Fm 𝑪 for  ρ3 Fm 𝑪 for  ρ4 Fm 𝑪 for  ρ5 Fm 𝑪 for  ρ6 Fm 

161 0.952 0.000 0.048 
95.04 

0.984 0.000 0.016 
96.73 

0.897 0.000 0.103 
92.89 

0.992 0.000 0.008 
97.79 

0.968 0.000 0.032 
96.49 0.000 0.944 0.056 0.000 0.963 0.037 0.000 0.972 0.028 0.019 0.981 0.000 0.009 0.972 0.019 

0.017 0.000 0.983 0.033 0.000 0.967 0.050 0.000 0.950 0.050 0.000 0.950 0.033 0.000 0.967 

Acc.  95.58    97.28    93.54    97.96    96.94   

121 0.921 0.000 0.079 

93.51 

0.944 0.000 0.056 

94.96 

0.960 0.000 0.040 

96.46 

0.960 0.000 0.040 

97.33 

0.968 0.000 0.032 

97.17 0.000 0.963 0.037 0.000 0.963 0.037 0.000 0.972 0.028 0.009 0.991 0.000 0.000 0.991 0.009 

0.050 0.000 0.950 0.033 0.000 0.967 0.017 0.000 0.983 0.017 0.000 0.983 0.033 0.000 0.967 
Acc.  94.22  

 
 95.58  

 
 96.94  

 
 97.62  

 
 97.62  

 

101 0.952 0.000 0.048 

94.05 

0.897 0.000 0.103 

93.03 

0.976 0.000 0.024 

95.49 

0.944 0.000 0.056 

95.93 

0.960 0.000 0.040 

97.23 0.000 0.954 0.046 0.000 0.963 0.037 0.000 0.963 0.037 0.009 0.963 0.028 0.000 0.991 0.009 

0.067 0.000 0.933 0.033 0.000 0.967 0.067 0.000 0.933 0.000 0.000 1.000 0.017 0.000 0.983 
Acc.  94.89  

 
 93.54  

 
 96.26  

 
 96.26  

 
 97.62  

 

81 0.944 0.000 0.056 

94.71 

0.968 0.000 0.032 

97.21 

0.960 0.000 0.040 

97.28 

0.984 0.000 0.016 

96.78 

0.944 0.000 0.056 

95.69 0.000 0.944 0.056 0.000 0.981 0.019 0.000 0.981 0.019 0.000 0.954 0.046 0.000 0.981 0.019 

0.017 0.000 0.983 0.017 0.000 0.983 0.000 0.000 1.000 0.017 0.000 0.983 0.033 0.000 0.967 
Acc.  95.24  

 
 97.62  

 
 97.62  

 
 97.28  

 
 96.26  

 

61 0.952 0.000 0.048 

93.89 

0.944 0.000 0.056 

94.61 

0.921 0.000 0.079 

94.66 

0.944 0.000 0.056 

96.14 

0.913 0.000 0.087 

95.30 0.000 0.926 0.074 0.000 0.954 0.046 0.000 0.981 0.019 0.000 0.981 0.019 0.009 0.981 0.009 

0.033 0.000 0.967 0.033 0.000 0.967 0.033 0.000 0.967 0.017 0.000 0.983 0.000 0.000 1.000 
Acc.  94.56    95.24    95.24    96.60    95.58   
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Table 2.8. Performance of decision tree classifier. 

Size 𝑪 for all features Fm 

161 0.976 0.000 0.024 

97.39 0.009 0.954 0.037 

0.067 0.000 0.933 

Acc.  97.39   

121 0.976 0.008 0.016 

91.11 0.000 0.991 0.009 

0.133 0.017 0.850 

Acc.  91.02   

101 0.968 0.000 0.032 

96.07 0.000 0.972 0.028 

0.067 0.017 0.917 

Acc.  96.02   

81 0.960 0.000 0.040 

93.49 0.000 0.963 0.037 

0.033 0.017 0.950 

Acc.  93.20   

61 0.984 0.000 0.016 

92.92 0.000 0.963 0.037 

0.100 0.033 0.867 

Acc.  92.82   

Note: The term “window size” is replaced by Size whose dimensions are denoted by 𝑆 instead of 

𝑆 × 𝑆 pixels; Acc. here denotes the accuracy. 

Table 2.9. Window size and subset of features. 

Classifier Window size Feature combination 

Naïve Bayes 161×161 ρ3 

K-NN 161×161 ρ5 

LDA 101×101 ρ6 

DT 161×161 All 

 

2.6.3. Example Problem 

A numerical example (microstructure) is provided in this section to demonstrate the 

importance of choosing most relevant textural features for the prediction of metallurgical phases. 

This microstructure (see Figure 2.4(a)) consists of two distinct metallurgical phases namely, 

ferrite and pearlite. K-NN classifier with an ideal window size of 161×161 pixels (see Table 2.9) 
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is chosen and classification is performed with the following textural features: (a) ‘pixel 

intensity’, (b) ‘pixel intensity’ and top 3 textural features, 𝜌4 (see Table 2.4) and (c) ‘pixel 

intensity’ and top 4 textural features, 𝜌5 (see Table 2.4). The results obtained for each of the 

selected set of relevant features is shown in Figure 2.4(b)-(d). From Figure 2.4 (b), it can be 

inferred that K-NN classifier predicts significant portion of martensite in the microstructure 

when only ‘pixel intensity’ is considered. This prediction is not true and this can be attributed to 

the fact that considerable portion of martensite pixel intensities overlapped with ferrite and 

pearlite which resulted in such a prediction (see Figure 1.5(b)). However, considering top three 

relevant textural features in addition to the ‘pixel intensity’ (i.e. 𝜌4) resulted in reduction of 

martensite (see Figure 2.4(c)). Further addition of one more textural feature to 𝜌4 resulted in 

elimination of martensite misclassification and grain boundaries from the microstructure (see 

Figure 2.4 (d)). The slight amount of martensite and grain boundaries observed in the final 

microstructure can be attributed to the error from the classifier. With this, it can be concluded 

that the addition of relevant textural features to ‘pixel intensity’ improves the prediction accuracy 

of the K-NN classifier. This can also be proved for other classifiers but is omitted to avoid 

repetition. In other words, ‘pixel intensity’ alone is inadequate for phase identification, especially 

when pixel intensity of different metallurgical phases overlap. Note that the further addition of 

features degrades the prediction accuracy of classifier as the features might be redundant or 

irrelevant [50]. In this study, ReleifF algorithm was employed to rank the features in the 

decreasing order of relevance. Hence, when more than first few relevant features are chosen, the 

prediction accuracies are observed to decrease as the low ranked features may be irrelevant. 

For comparison purpose, the same microstructure is also processed in an image 

processing software ImageJ to identify the phases and segmented image as shown in Figure 2.4 
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(e). From Figure 2.4 (e) it is observed that two distinct phases are present in the segmented 

image of the microstructure. At this juncture it is important to note that this segmentation process 

requires the end-user to input the number of phases present in the microstructure which is not 

necessary for the procedure proposed in the manuscript. Based on the provided input and single 

threshold level, the distinct metallurgical phases are identified when ImageJ is used. Unlike the 

proposed method, this segmentation process fails to identify the grain boundary and categorizes 

it into pearlite i.e. comparatively less volume fraction of pearlite pixels are predicted by the 

trained classifier reducing the misclassification of grain boundaries into pearlite. This can be 

attributed to the similar pixel intensity exhibited by both grain boundary and pearlite.  

2.6.4. Validation 

In this study, three different microstructural images are randomly chosen from the test 

image set to validate the proposed texture based phase identification in a microstructure. These 

microstructural images correspond to ASTM A36-500 air cooled (500AC), ASTM A36-900 air 

cooled (900AC) and ASTM A36-900 water cooled (900WC) specimens which are shown in 

Figure 2.5 to Figure 2.7. The textural features were extracted using the procedure explained in 

Section 2.4 which served as the test data. Based on the combinations of textural features and 

ideal window sizes provided in Table 2.9, the metallurgical phases of all the three test images are 

identified and are shown in Figure 2.5 to Figure 2.7. From Figure 2.5 to Figure 2.7 it is observed 

that all the four classifiers were able to predict the metallurgical phases accurately for both air 

cooled (ferrite-pearlite) (Figure 2.5 and Figure 2.6) and water cooled (martensite and ferrite) 

microstructures (Figure 2.7). Besides the identification of metallurgical phases, the volume 

fractions of the phases are also evaluated for all four classifiers and are summarized in Table 

2.10. The volume fraction of ferrite and pearlite predicted for (1) ASTM A36-500AC is 81.6% 
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and 17.7%, respectively, and (2) ASTM A36-900AC is 78.8% and 19.8%, respectively. For 

ASTM A36-900WC specimen the volume fractions of ferrite and martensite are predicted to be 

36% and 64%, respectively. 

Table 2.10. Volume fractions (%) of distinct metallurgical phases. 

Classifier 

Microstructure 

500-AC 900-AC 900-WC 

Ferrite Pearlite Martensite Ferrite Pearlite Martensite Ferrite Pearlite Martensite 

NB 79.2 20.8 0 77 23 0 39 0 61 

K-NN 81.2 18.2 0.6 76.9 20.6 2.5 37 0 63 

LDA 81 16.8 2.2 80.2 18.8 1 33 0 67 

DT 85 15 0 81.1 17.5 1.4 31 1.5 67.5 

 

 

Figure 2.5. Microstructure of ASTM A36-500AC and machine learning based metallurgical 

phase identification. It is observed that all four classifiers predicted the phases accurately. 

Naïve Bayes  
F/P=78.7/20.6 

K-Nearest Neighbor  
F/P-81.2/18.2 

Linear Discriminant Analysis 
F/P-81/16.8 
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F/P-85/15 

Test Image (500X500) 
(From Original Image) 

F-Ferrite 
P-Pearlite 
M-Martensite 

 

Ferrite 

Pearlite 
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Figure 2.6. Microstructure of ASTM A36-900AC and machine learning based metallurgical 

phase identification. It is observed that all four classifiers predicted the phases accurately. 

Naïve Bayes  
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Figure 2.7. Microstructure of ASTM A36-900WC and machine learning based metallurgical 

phase identification. It is observed that all four classifiers predicted the phases accurately. 

2.7. Summary and Recommendations 

In this study, a supervised machine learning approach is proposed to identify the 

metallurgical phases in ASTM A36 heat treated steel, namely ferrite, pearlite and martensite. To 

identify or classify the metallurgical phases in the microscopic images, both the pixel intensities 

and textural features are extracted from the images for individual phases which are then used as 

the descriptive features for machine learning classifiers. To extract the textural features, GLCM 

of each metallurgical phase is evaluated and to perform the classification Naïve Bayes, K-NN, 

LDA and Decision Tree classifiers are employed. Microstructural images corresponding to nine 

different heat-treated metallographic specimens are acquired using optical microscope and 

Naïve Bayes 
F/M=39/61 

K-Nearest Neighbor 
F/M-37/63 

Linear Discriminant Analysis 
F/M-33/67 

Decision Tree 
F/M-31/67.5 

Test Image (500X500) 
(From Original Image) 

F-Ferrite 
P-Pearlite 
M-Martensite 
  

Ferrite 

Martensite 
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descriptive (textural) features are generated for all three metallurgical phases and stored in a 

dataset 𝑫. As the ideal window size for extraction of textural features is not known a priori, 

window sizes of 61 × 61, 81 × 81, 101 × 101, 121 × 121 and 161 × 161 pixels are 

considered to extract the textural features which are allocated to the center pixel of each window. 

Feature selection is performed on dataset 𝑫 using ReliefF algorithm and the most relevant 

features are obtained. Among the 20 descriptive features, ‘pixel intensity’, ‘maximum 

probability’, ‘auto-correlation’, ‘sum of squares’ ‘cluster shade’, ‘sum variance’, ‘sum average’ 

and ‘energy’ are found to be most relevant features for all five window sizes. The performance 

of all four classifiers are assessed and the ideal window size and a combination of most relevant 

features that minimized the classification error are determined. A numerical example is provided 

to demonstrate the importance of choosing the most relevant features and the validation of the 

proposed approach is carried out on three different microstructural images that are not the part of 

training data. Unlike the threshold based segmentation approach, the proposed approach avoids 

the misclassification of grain boundaries in to pearlite. Further, the proposed approach does not 

require the end-user to input the number of metallurgical phases present in the microstructure 

which is advantageous when investigating new microstructures. 

Based on the current study, following two recommendations are provided: (1) sufficient 

number of data points must be acquired (under similar conditions) to train the classifier and (2) 

an optimal window size must be determined in conjunction with the subset of relevant features 

for accurate prediction of metallurgical phases.  
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3. IDENTIFICATION OF FRACTURE IN METALS USING LBP TEXTURAL 

FEATURES2 

3.1. Introduction 

Fracture in metals is one of the most important reasons behind the failure of engineering 

components and structures. Fracture in metals has led to catastrophic failures in steel buildings 

[1] and bridges [2], oil, and gas pipelines [3], automobiles [4] and aerospace structures [5]. 

Ductile fracture, brittle (cleavage/ transgranular) fracture and intergranular fracture are the most 

common types of fracture in metals under monotonic loading conditions [6]. A decision about 

the choice of a suitable damage model to simulate the failure depends on the type of fracture as 

the basic microscopic damage mechanisms leading to the fracture varies from one fracture type 

to another. Both ductile and brittle fracture zones are observed in structural steels [7-10], dual- 

and multiphase steels [11-13], aluminum [14, 15], and titanium [16]. The choice of damage 

model in the case where multiple fracture mechanisms are involved depends on 1) fracture 

initiation mechanism, 2) the dominant fracture mechanism and/ or 3) the conditions under which 

the fracture transitions from one type to another type. Although the fracture type can be 

determined based on the mechanical and microstructural properties of a metal and state of stress 

and strain, a visual inspection of fractographic images is often conducted to identify the fracture 

type of metal. Although simple, visual inspection is slow, prone to confirmation bias and cannot 

be used for quantitative analysis of fracture surfaces. For instance, the evaluation of dominant 

 
2 This chapter is based on the paper "Identification and characterization of fracture in metals using machine learning 

based texture recognition algorithms." Engineering Fracture Mechanics 219 (2019): 106618. 

https://doi.org/10.1016/j.engfracmech.2019.106618. The material in this chapter was co-authored by Dayakar Naik 

Lavadiya (DNL) and Ravi Kiran Yellavajjala (RK) .Contributions of authors are as follows: Conceptualization, 

D.L.N. and R.K.; Formal analysis, D.L.N.; Funding acquisition, R.K.; Investigation, R.K.; Methodology, D.L.N., 

and R.K.; Project administration, R.K.; Resources, R.K.; Software, D.L.N.; Supervision, R.K.; Validation, D.L.N.; 

Writing—original draft, D.L.N.; Writing—review & editing, D.L.N. and R.K.. 

https://doi.org/10.1016/j.engfracmech.2019.106618
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fracture type and description of the visual characteristics of fracture surfaces is not possible 

through visual inspection. In this study, digital image processing using an illumination and 

rotation invariant texture measure in conjunction with a supervised machine learning algorithm is 

used for the quantitative analysis of fracture surfaces. 

With the advent of new technology and an increase in computational resources, digital 

image processing is frequently being used in various disciplines. Specifically, it is used for 

automatic identification of the objects in an image to quantify aspects such as shape, dimensions, 

the spatial position of the target objects, etc. [17]. Digital image processing involves the use of 

algorithms or mathematical operations on the digital images to enhance the visual quality of the 

image or to extract useful visual information from the image [18]. When the extracted 

information corresponds to a specific object or a region in an image, the extracted information is 

referred to as features of the object, and the process of extracting such information is referred to 

as feature extraction. Features of the objects are also called as the descriptors which are used for 

the segmentation or classification of an image, i.e. identification of an object in a given image 

and categorization of the object into one of the known finite classes. Examples of some features 

that are used in identifying the objects include pixel intensity, shape, edges, color, texture, etc. 

Among these features, pixel intensity is more commonly used to perform the task of image 

segmentation. Pixel intensity is a measure of  magnitude of the grayscale level of a pixel in a 

digital image. In the study performed by Kosarevych et al. [19], pixel intensity based multilevel 

thresholding technique was employed to perform the automatic segmentation of fractographic 

images of steel. A subset of histogram bins of pixel intensities corresponding to specific element 

or heterogeneity was extracted and was used as features to identify the elements of interest in the 

fractographic image.  
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The texture is another commonly used feature that possesses information about an object 

in an image. Unlike pixel intensity, which is associated with an individual pixel, the texture is 

associated with a region (a group of pixels) of the image. It aids in identifying the objects in a 

digital image that possess unique textures. An object is considered to possess a texture if its 

appearance is composed of repetitive visual patterns defined by variations in brightness and/ or 

color [20]. Examples of texture possessing objects include wood, grass, soil, concrete, etc.  In the 

study conducted by Rodriguez et al. [21], textural features are employed to identify the type of 

failure from the fractographic images of metallic materials. Three types of failure were 

considered in their study, namely brittle, ductile, and fatigue. To extract the textural features of 

each failure type, gray level co-occurrence matrix (GLCM), fractal analysis, and texture energy 

laws were employed in their study. Similar studies were conducted by Dutta et al. [22] in which 

the fractographic images of AISI stainless steel were considered, and automatic characterization 

of the fracture surfaces was carried out. However, in their study, gray level run length matrix 

(GLRLM) was employed in addition to GLCM and fractal analysis to extract textural features. 

GLRLM was reported to be the most suitable method for predicting the failure type among the 

considered two methods. Textural feature extraction methods that are mentioned above are 

illumination/ grayscale and rotation variant, i.e., the extracted textural features may change with 

the change in the illumination and rotation of an image [23]. In reality, the fracture surfaces are 

quite uneven at microscales. Hence, the fractographic images obtained from scanning electron 

microscopy (SEM) consists of varying illumination levels across the image. Therefore, adopting 

an illumination/ grayscale and rotation invariant method to extract textural features may result in 

more accurate prediction when compared to other methods.   
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Local binary patterns (LBP) is a texture quantification algorithm which was proposed by 

Ojala et al. [24] and is a grayscale and rotation invariant method. Keeping in view the variations 

in the grayscale levels of the regions in the fractographic images, LBP textural feature extraction 

algorithm is implemented in this chapter to extract the textural features. These textural features 

are then used in conjunction with a supervised machine learning classifier to perform automatic 

identification of the fracture type in structural steel. The main contribution of this study is to 

propose a robust methodology that can fully automate the identification of the fracture type in 

metals by performing quantitative analysis of fractographs. The rest of the chapter is organized 

as follows: a brief overview of LBP is provided in Section 3.2, description of supervised 

machine learning and LDA algorithm is provided in Section 3.3, the methodology is described in 

Section 3.4, results are provided in Section 3.5, and summary of the study is provided in Section 

3.6. 

3.2. Local Binary Pattern (LBP) as Texture Descriptors 

Consider a digital image of an object that is said to possess a certain texture. Let the 

domain of this image be denoted by 𝛀 ∈ ℤ+

𝑁𝑦×𝑁𝑥
, where 𝑁𝑥 and 𝑁𝑦 represent the number of 

pixels in the 𝑥 and 𝑦 directions, respectively and ℤ+ is a set of positive integers (see Figure 3.1) 

[20]. Let 𝝎 ∈ ℤ+
𝑛×𝑛 represent a subdomain of the domain 𝛀 (also called as local image) whose 

size is 𝑛 × 𝑛 pixels, where 𝑛 ≥ 3 is an odd number (see Figure 3.1). Note that 𝝎 is obtained by 

partitioning 𝛀 into overlapping blocks of size 𝑛 × 𝑛 pixels such that center pixel of each 𝝎 

represents each pixel of the image 𝛀. Let 𝑅 be the radius of the circle drawn on the local image 

𝝎 such that the center of the circle coincides with the center pixel of the local image 𝝎 and let 𝑃 

be the number of pixels (also referred to as neighboring pixels) that lie on the perimeter of this 

circle (see Figure 3.1). If 𝑔0, 𝑔1,..., 𝑔𝑃−1 represents the grayscale value of 1,2, … , 𝑃 neighboring 
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pixels that lie on the perimeter of the circle, respectively and, 0’s/ 1’s represent their respective 

encoded binary values, then the pattern of 𝑃-digit binary numbers (example, 11000110 for 𝑃=8) 

obtained in a specific sequence around the center pixel is referred to as the Local Binary Pattern 

(LBP) of 𝝎. Attributed to the fact that the interpretation of a 𝑃-digit binary number becomes 

difficult when 𝑃 assumes a large value, an integer 𝐼 is introduced in the place of a 𝑃-digit binary 

number. For instance if a 8-digit binary pattern is considered, then  28 combinations of binary 

values are possible and each combination corresponds to a specific integer 𝐼. In practice, LBP is 

replaced by an integer 𝐼 (1 ≤ 𝐼 ≤ 2𝑃), which is referred to as LBP value and is unique for a 

specific 𝑃-digit binary pattern. To evaluate  𝐼, each binary digit of LBP or 𝑃-digit pattern is 

multiplied with a fixed weight 𝑤𝑖 = 2𝑖−1 (see Figure 3.1) and the resulting values are added. 

Here 𝑖 denotes the pixel position in the 𝑃-digit pattern and takes the values from 1 to 𝑃. To 

quantify the texture of an image 𝛀, the LBP values of all local images are first evaluated. These 

LBP values are then summarized in the form of a histogram, which is used to represent the 

texture of an image 𝛀. In what follows, a detailed derivation of LBP is provided to demonstrate 

its rotation and grayscale invariance [24]. 
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Figure 3.1. Illustration of local binary pattern (LBP) estimation and uniformity measures: (a) a 

schematic of local image 𝛚 with radius R=1 and neighboring pixels P=8 is shown and the order 

in which binary pattern is evaluated is also provided i.e. same as the order of g0, g1, … , g7 and, 

(b) rotation invariant uniform/non-uniform patterns with #0 representing bright spot, #4 

representing edge and #8 representing dark spot/flat areas. (Note: black circles corresponds to 0’s 

and white circles corresponds to 1’s. Other non-uniform patterns can be found elsewhere [24]). 

Let 𝑇 represent the texture of the image 𝛀 and 𝑔𝑐 denote the grayscale value of the center 

pixel of any local image 𝝎. 𝑇 is then defined as the joint distribution of grayscale values 

𝑔𝑝=0,1,…,𝑃−1 of 𝑃 neighboring pixels around the center pixel 𝑔𝑐, which is expressed as  

𝑇 = 𝑡(𝑔𝑐, 𝑔0, 𝑔1, … , 𝑔𝑃−1) (3.1) 

For achieving grayscale invariant texture measure, first 𝑔𝑐 is subtracted from the 

grayscale values of its neighborhood pixels 𝑔𝑝 and the following equation is obtained 

𝑇 = 𝑡(𝑔𝑐, (𝑔0 − 𝑔𝑐), (𝑔1 − 𝑔𝑐), … , (𝑔𝑃−1 − 𝑔𝑐)) (3.2) 
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Assuming that the difference (𝑔𝑝 − 𝑔𝑐) is independent of the grayscale value of the 

center pixel 𝑔𝑐, Eq. (3.2) can be factorized as follows 

𝑇 ≈ 𝑡(𝑔𝑐)𝑡((𝑔0 − 𝑔𝑐), (𝑔1 − 𝑔𝑐), … , (𝑔𝑃−1 − 𝑔𝑐)) (3.3) 

Note that the exact independence is not guaranteed and factorized distribution in Eq. (3.3) 

is only an approximation [24]. With this, the texture of the image 𝛀 can be quantified by 

employing the joint difference distribution of grayscale levels and ignoring the distribution of 

grayscales of the central pixels which is expressed as follows 

𝑇 ≈ 𝑡((𝑔0 − 𝑔𝑐), (𝑔1 − 𝑔𝑐), … , (𝑔𝑃−1 − 𝑔𝑐)) (3.4) 

Attributed to the fact that the signed difference (𝑔𝑝 − 𝑔𝑐) is not affected by the change in 

illuminance of the image, the above joint difference distribution is said to be invariant against 

grayscale level shifts. Further, to achieve the invariance with respect to the scaling or 

quantization of grayscale value, only signs of difference (𝑔𝑝 − 𝑔𝑐) is considered instead of their 

exact values. Mathematically this is expressed as  

𝑇 ≈ 𝑡(𝑠(𝑔0 − 𝑔𝑐), 𝑠(𝑔1 − 𝑔𝑐), … , 𝑠(𝑔𝑃−1 − 𝑔𝑐)) (3.5) 

where, 𝑠(𝑔𝑝 − 𝑔𝑐) represents the sign of the difference (𝑔𝑝 − 𝑔𝑐) and takes the value of 1 if 

difference of (𝑔𝑝 − 𝑔𝑐) is ≥ 0 and takes the value of 0 if difference (𝑔𝑝 − 𝑔𝑐) is < 0. This 

operation 𝑠(𝑔𝑝 − 𝑔𝑐) encodes the grayscale values of 𝑃-neighboring pixels into binary values 0/ 

1. 

Assigning a factor 2𝑝 as the weight to 𝑠(𝑔𝑝 − 𝑔𝑐), Eq. (3.5) is transformed into unique 

LBP value that characterizes local image texture for the chosen 𝑃 number of neighboring pixels 
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𝐿𝐵𝑃 = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2𝑝

𝑃−1

𝑝=0

 (3.6) 

Note that the 𝐿𝐵𝑃 value in Eq. (3.6) is the same as integer 𝐼 that is mentioned before. At 

this juncture, it is important to note that the 𝑃 neighboring pixels found on the perimeter of the 

circle around 𝑔𝑐 may not fall exactly on the center of their respective pixels. In such cases the 

interpolated value of 𝑔𝑝 is used. Details on performing interpolation can be found in the 

reference [24]. 

The LBP derived in Eq. (3.6) is not rotation invariant, i.e. the values of LBP change when 

the images are rotated. In other words, when the image is rotated, the position of grayscale 

values changes with rotation, however the weight 𝑤𝑖 associated with each position remains the 

same. Therefore, to make this operator rotationally invariant, a uniformity measure 𝑈 was 

introduced by Ojala et al [24]. This uniformity measure quantifies the number of spatial 

transitions of binary numbers observed in a 𝑃-digit binary pattern. These spatial transitions are 

the fundamental properties of a texture (see Figure 3.1(b)) and are invariant to rotation. The 

spatial transitions may quantify visual patterns such as bright spots, dark spots, edges of varying 

curvature, etc. For instance, if grayscale value of the center pixel is less than all its neighboring 

pixels, then 𝑠(𝑔𝑝 − 𝑔𝑐) yields a value of one for all its neighboring pixels which is represented 

by a dark spot and/ or flat areas (no change in grayscale levels) [24]. A 𝑃-digit binary pattern is 

said to be uniform if it has at most two 0 to 1 or 1 to 0 transitions, and is said to be non-uniform 

if it has more than two transitions. For instance, 00000000, 00000001 and 00001000 are referred 

as uniform patterns as they have zero and two transitions (0-1 and 1-0) of binary numbers, 

respectively, and 01010010 is referred as the non-uniform pattern as it has six transitions.  Based 

on the uniformity measure 𝑈, the LBP operator provided in Eq. (3.6) is modified as follows 
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𝐿𝐵𝑃𝑟𝑖𝑢 = {
∑ 𝑠(𝑔𝑝 − 𝑔𝑐)  if 𝑈(𝐿𝐵𝑃) ≤ 2

𝑃−1

𝑝=0

𝑃 + 1 otherwise

 (3.7) 

where, the superscript 𝑟𝑖𝑢 denotes the rotational invariant uniform measure and  

𝑈(𝐿𝐵𝑃) = |𝑠(𝑔𝑃−1 − 𝑔𝑐) − 𝑠(𝑔0 − 𝑔𝑐)| + ∑|𝑠(𝑔𝑃 − 𝑔𝑐) − 𝑠(𝑔𝑝−1 − 𝑔𝑐)|

𝑃−1

𝑝=1

 

In the above equation, while 𝐿𝐵𝑃𝑟𝑖𝑢 takes values from 0 to 8 for uniform patterns, it 

assumes the value of 9 for all non-uniform patterns (see Figure 3.1(b)).  

In this study, the image texture of two different types of metal fractures is considered 

namely, brittle and ductile fractures (see Figure 3.2). From Figure 3.2, it can be deduced that the 

image textures of both brittle and ductile fracture are distinct and unique. If 𝛀  denotes the 

domain of an image with an unique texture, i.e. brittle/ductile fracture, then the histogram of 

LBPriu values obtained from all the local images represents the texture of 𝛀. Unlike the LBP 

operator (see Eq. (3.6)) which results in the values ranging from 0 to 2p, LBPriu results in the 

values ranging from 0 to 9 (see Eq. (3.7)). Therefore, the histogram generated for brittle/ductile 

fracture consists of only ten bins. Each bin represents the uniformity measure 𝑈 and are 

considered as the textural features or texture descriptors of the brittle and ductile fracture. More 

detailed discussion on the uniformity measures of brittle and ductile type fracture is provided in 

the results Section 3.5. To identify if the given image texture corresponds to the brittle or ductile 

type of texture based on the uniformity measure, a supervised machine learning algorithm is 

employed in this study. A brief description of supervised machine learning and the 

corresponding algorithm used for classification is provided next. 
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Figure 3.2. (a) Image texture of brittle and ductile fracture observed in fractographs of ASTM 

A992 and, (b) the histogram of uniform/non-uniform patterns for brittle and ductile fracture, 

where each bin is a textural feature. 

3.3. Supervised Machine Learning Based Classification 

Supervised machine learning is a branch of machine learning that is used to perform 

classification or regression by learning from a labeled dataset. A dataset is referred to as a 

labeled dataset when information about the outcome of an experiment, and the factors that 

govern the outcome is known. In machine learning terminology, the factors that govern the 

outcome are referred to as descriptive features, and the outcomes of an experiment/ observation 

are referred to as target variables. In the task of classification, the target variables are also 

referred to as class labels. Supervised machine learning is executed in three steps: (1) training the 

machine learning algorithm on the available (labeled) dataset, (2) testing the efficacy of the 

trained algorithm, and (3) deployment of the trained algorithm for the intended purpose. In the 

first step, the available dataset is partitioned into two datasets namely the training dataset and the 

test dataset, such that the training dataset consists of 80% of data points and the test dataset 

consists of the other 20% of the data points. Followed by the partitioning of available data, an 

algorithm is employed to learn the patterns, relationships, and/ or dependencies from the training 

dataset, and this step is referred to as the training step. Next, the efficacy of the trained algorithm 
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is verified on the test dataset. In other words, the class labels of the test dataset are predicted by 

the trained algorithms and then cross-validated with the available original labels. If the prediction 

accuracy is satisfactory, then the trained algorithm is deployed for performing classification task 

on new data in the third and final step.  

The following mathematical notation is employed in the ensuing discussion about 

supervised machine learning algorithms [20]. Let 𝑫 ∈ ℝ𝑁×𝑟 represent the master dataset 

consisting of 𝑁 number of row vectors and  𝑟 = 𝑞 + 1 number of column vectors. While 

𝑞 represents the number of descriptive features and 𝑟𝑡ℎ column represents the vector of class 

labels, 𝑁 represents the number of experimental observations. Further, if 𝑚 denotes the number 

of distinct class labels in the 𝑟𝑡ℎ column vector, then 𝑁𝑖 represents the number of observations 

with class label 𝑖 such that ∑ 𝑁𝑖
𝑚
𝑖=1 = 𝑁. Let each row of the 𝑁 observations, also called as an 

instance, be denoted by a vector 𝒙𝑗 = (𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑞 , 𝑥𝑗𝑟), where 𝑗 = 1 to 𝑁 and 𝑥𝑗𝑟 is the class 

label of 𝑗𝑡ℎ observation. Let 𝒙𝑗
∗ represent the 𝑗𝑡ℎ row vector of test dataset whose feature values 

𝑥𝑗1
∗ , 𝑥𝑗2

∗ , … , 𝑥𝑗𝑞
∗  are known but class label 𝑥𝑗𝑟

∗  is unknown. Here it is important to note that the 

range of 𝑗 in test dataset is different from the one used in the master dataset. With this, the 

implication of above notations in the context of current study is provided as follows: 𝑞 = 10 

refers to the number of uniform/non-uniform patterns extracted using local binary pattern 

(𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢), 𝑚=2 refers to the number of fracture classes (brittle-1 and ductile-2), 𝑁 = 100  refers 

to the number of brittle and ductile fracture images used for generating the master dataset 𝑫, 𝒙𝑗 

refers to the vector of uniform patterns (along with class label) corresponding to 𝑗𝑡ℎ image, and 

𝒙𝑗
∗ corresponds to the vector of uniform/ non-uniform patterns of test image whose fracture type 

has to be classified. 
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3.3.1. Linear Discriminant Analysis (LDA) Classifier 

In this study, the linear discriminant analysis (LDA) classifier is employed to perform the 

task of classification. LDA is a linear classifier that employs a discriminant score function 𝐿𝑗(𝒙∗)  

to identify or predict the class label of an instance 𝒙∗ [25]. Here the subscript 𝑗 indicates the label 

of the class 𝐶𝑗 and the quantity 𝐿𝑗  indicates the discriminant score corresponding to class 𝐶𝑗 . This 

implies that the 𝑚 number of class labels result in 𝑚 number of discriminant scores designated 

as  𝐿1, 𝐿2, … , 𝐿𝑚 . The class label that yields a maximum discriminant score is then assigned as 

the class label for the instance 𝒙∗. In what follows, this section provides a detailed derivation of 

the discriminant score function 𝐿𝑗. 

According to Bayes’ theorem, if 𝐴 and 𝐵 are two events, then the likelihood of the event 

A occurring given that event 𝐵 has already occurred is expressed as [26] 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) × 𝑃(𝐴)

𝑃(𝐵)
 (3.8) 

where, 𝑃(𝐴|𝐵) and 𝑃(𝐵|𝐴) are conditional or posterior probabilities, 𝑃(𝐴) and 𝑃(𝐵) are prior 

probabilities. For any given 𝑖𝑡ℎ observation in the training dataset, 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞 , 𝑥𝑖𝑟), the 

Eq. (3.8) can be rewritten as 

𝑃(𝑥𝑖𝑟 = 𝐶𝑗|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞) =
𝑃(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞|𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖𝑟 = 𝐶𝑗)

𝑃(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞)
 (3.9) 

where, 𝐶𝑗=1,2 denotes the class label of the given textural features i.e. 𝐶1 and 𝐶2 are brittle 

fracture and ductile fracture, respectively. 

Ignoring the denominator in the Eq. (3.9), as it is independent of the class label, we get a 

measure of conditional probability which can be written as    

𝑀(𝑥𝑖𝑟 = 𝐶𝑗|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞) = 𝑃(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞|𝑥𝑖𝑟 = 𝐶𝑗) × 𝑃(𝑥𝑖𝑟 = 𝐶𝑗) (3.10) 
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In fact, the class that maximizes the value of 𝑀 for a given 𝒙 is assigned as the class of 𝒙 

and the above equation is referred to as Bayes’ classifier. However, evaluating the conditional 

probability in  the right hand side of Eq. (3.10) is challenging. Therefore, in linear discriminant 

analysis, all the instances that belong to a class 𝐶𝑗 are assumed to be sampled from a population 

with multivariate normal distribution 𝒩(𝚺, 𝝁𝑗), where, 𝚺 ∈ ℝ𝑞×𝑞 and 𝝁𝑗 ∈ ℝ1×𝑞 are the 

population covariance matrix and population mean vector of all the features in the instances that 

belong to class 𝐶𝑗. This simplifies the evaluation of conditional probabilities shown in Eq. (3.10). 

Here it is important to note that the LDA classifier assumes the covariance matrix of all 

observations that belong to different class labels to be equal i.e. 𝚺1 = 𝚺2 = ⋯ = 𝚺𝑚 = 𝚺.  

For a multivariate normal distribution, the probability density function is given as 

𝑓(𝒙|𝐶𝑗) =
1

√(2𝜋)𝑞|𝚺|
exp (−

1

2
(𝒙 − 𝝁𝑗)

′
𝚺−1(𝒙 − 𝝁𝑗)) 

By substituting 𝑓(𝒙|𝐶𝑗) in the place of 𝑃(𝒙|𝐶𝑗) as a proxy measure, we get 

𝑀(𝑥𝑖𝑟 = 𝐶𝑗|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞)

=
1

√(2𝜋)𝑞|𝚺|
exp (−

1

2
(𝒙 − 𝝁𝑗)

′
𝚺−1(𝒙 − 𝝁𝑗)) × 𝑃(𝑥𝑖𝑟 = 𝐶𝑗) 

(3.11) 

Note that 𝑃(𝒙|𝐶𝑗) can be replaced by its proxy value 𝑓(𝒙|𝐶𝑗) as we are interested in 

discrimination of instances in to classes and are not interested in evaluating the actual 

probabilities. By applying logarithm on both sides we get the discriminant score function for 

class 𝐶𝑗 as 

𝐿𝑗(𝒙) = −
1

2
log((2𝜋)𝑞|𝚺|) −

1

2
(𝒙 − 𝝁𝑗)

′
𝚺−1(𝒙 − 𝝁𝑗) + log 𝑃(𝐶𝑗) (3.12) 

Noting that 𝚺−1 is symmetric, i.e., 𝒙′𝚺−1𝝁𝑗 = 𝝁𝑗
′ 𝚺−1𝒙, we can simplify the discriminant 

score function as follows 
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𝐿𝑗(𝒙) = −
1

2
log((2𝜋)𝑞|𝚺|) −

1

2
𝝁𝑗

′ 𝚺−1𝝁𝑗 −
1

2
𝒙′𝚺−1𝒙 + 𝝁𝑗

′ 𝚺−1𝒙 + log 𝑃(𝐶𝑗) 

By ignoring the terms that are independent of the class (as they do not improve the 

discriminative power of the algorithm), we obtain the discriminant score function for the 𝑗𝑡ℎ 

class as 

𝐿𝑗(𝒙) = −
1

2
𝝁𝑗

′ 𝚺−1𝝁𝑗 + 𝝁𝑗
′ 𝚺−1𝒙 + log 𝑃(𝐶𝑗) (3.13) 

To better capture the variances in the available dataset, a pooled covariance matrix 

defined as  

𝚺𝑝𝑙 =
1

N − 𝑚
∑(N𝑖 − 1)𝚺𝑖

𝑚

𝑖=1

 

is used in the place of 𝚺 modifying the discriminant score function as follows 

𝐿𝑗(𝒙) = −
1

2
𝝁𝑗

′ 𝚺𝑝𝑙
−1𝝁𝑗 + 𝝁𝑗

′ 𝚺𝑝𝑙
−1𝒙 + log 𝑃(𝐶𝑗) (3.14) 

In reality, the population covariance matrix (𝚺) and population mean vector (𝝁𝑗) are not 

known [27]. Therefore, the sample covariance matrix and sample mean vector are evaluated 

from the experimental observations that belong to each class and are used instead, as shown in 

Eq. (3.14). To predict the class label 𝑥𝑗𝑟
∗  of a given test instance 𝒙∗, the discriminant scores 

𝐿𝑗=1:𝑚(𝒙∗) are evaluated for all the 𝑚 class labels and the index of the class label 𝑗 that yields 

maximum 𝐿𝑗  value is then assigned as the class label for the test instance 𝒙∗. In the context of 

this study, the class label𝑠 are {𝐶1, 𝐶2}, where 𝐶1 and 𝐶2 are brittle and ductile fractures, 

respectively. 

3.4. Methodology 

The methodology adopted in the current study to identify the type of fracture in 

fractographic images of structural steels essentially consists of following four tasks: (1) 
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acquisition of brittle and ductile fracture images, (2) extraction of the histogram of uniform/non-

uniform patterns from brittle and ductile fracture images (building master dataset 𝑫), (3) training 

of LDA classifier and, (4) deployment of the trained LDA classifier to identify the type of 

fracture in test images. Details of each of these tasks are described below. 

To acquire a set of brittle and ductile fracture images, scanning electron microscope 

(SEM) images of fractured ASTM A992 structural steel surfaces (fractographs) are obtained in 

the first task. An image processing software ImageJ is then employed, and the regions of brittle 

and ductile regions are manually cropped from the SEM images. In total, one hundred cropped 

images (81 × 81 pixels) are obtained in this exercise, among which 50 images belong to brittle 

fracture, and the other 50 images belong to ductile fracture. Details of the SEM images that are 

used in the current study can be found elsewhere [28-31]. To extract the histogram of 

uniform/non-uniform patterns from all the brittle and ductile fracture images (master dataset 𝑫), 

an in-built MATLAB® function ‘extractLBPFeatures’ is employed in the second task. In this 

study, a radius of 𝑅=1 and number of neighboring pixels 𝑃=8 (or sub-domain size, 𝑛 = 3) is 

considered for extraction of the linear binary patterns i.e., uniformity measures. The extracted 

linear binary patterns are then used to train the LDA classifier in the third task. For this purpose, 

an in-house code is written in MATLAB®. In the fourth and final task, the trained LDA classifier 

is deployed to identify the brittle and ductile fracture regions in the test images that are not used 

for training purposes (see Figure 3.3). Test images are the fractographic images of fractured steel 

surface that were not considered for training the classifier. At this juncture, it is important to note 

that, unlike the training images, the test images have interspersed brittle and ductile fracture 

regions (see  Figure 3.3). To perform the classification of the regions in the test images as ductile 

or brittle fracture, two approaches are employed in this study: (1) computationally inexpensive 
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block-wise approach, and (2) computationally intensive but accurate pixel-wise approach. Steps 

involved in both these approaches is described next. 

 

Figure 3.3. Fractographs of ASTM A992 steels on which trained linear discriminant analysis 

classifier is employed to identify the regions of brittle and ductile fractures. 

Block- and pixel-wise approach are the two different approaches that are commonly 

employed to identify the distinct textured regions of an image consisting of more than one 

texture [32]. In the block-wise approach, an image is partitioned into several non-overlapping 

blocks of fixed size (81 × 81 pixels – same size as that of training images) and the textural 

features are extracted for each block. The class label of each block is then identified by providing 

their respective textural features as an input to the trained classifier. Note that the block sizes 

smaller and greater than 81 × 81 pixels are not considered in this study as they fail to capture the 

richness of the texture of the fracture type and include too much redundant information from 

neighboring regions of other fracture type, respectively [20]. Similar to the block-wise approach, 

Test image 1 Test image 2 Test image 3 

Test image 4 Test image 5 
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the pixel-wise approach also involves partitioning of an image into several blocks of fixed size 

(81 × 81  pixels). However, the difference between two approaches is that the partitioned blocks 

are overlapped with each other in the case of pixel-wise approach, i.e. the center pixel of two 

overlapping blocks are the adjacent pixels of the image that is being partitioned. After 

partitioning the image into overlapping blocks, the textural features are extracted for each block, 

and the trained classifier is deployed to identify the class label of each block. Note that the class 

label obtained for each block in the case of pixel-wise approach is assigned to the central pixel of 

the block. In this study, both block and pixel-wise approaches are implemented to identify the 

brittle and ductile fracture regions in the fractographic images, and the results are summarized in 

the next section. 

3.5. Results 

3.5.1. LBP Histogram of Brittle and Ductile Fracture Texture 

In this section, the LBP histograms of both brittle and ductile fracture images are 

obtained and are compared to identify the most discriminating uniform/non-uniform circular 

patterns. In other words, a bin to bin comparison of the histogram is performed. For this purpose, 

two images – one image corresponding to brittle fracture and the other corresponding to ductile 

fracture, are arbitrarily selected from the dataset of brittle and ductile images (see Figure 3.2). 

The LBP histogram obtained for both these images using Eq.7 are shown in Figure 3.2(b). From 

Figure 3.2(b), it is clear that the occurrence of uniform patterns 3, 4, 5, and 6 are 27%, 45%, 44% 

and, 22% respectively higher for ductile fracture image texture when compared to the occurrence 

of same uniform patterns for brittle fracture image texture, and the occurrence of uniform pattern 

8 and non-uniform pattern 9 are 15% and 10% higher for the brittle fracture image texture when 

compared to the occurrence of same patterns in the ductile fracture image texture. While the 
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uniform patterns 3, 4, 5 and, 6 represents the circular pattern of binary numbers in which digit 1 

occurs consecutively 3, 4, 5 and, 6 times, respectively (i.e. for example 01110000, 01111000, 

01111100 and 01111110), the uniform pattern 8 represents a circular pattern of binary numbers 

in which all encoded digits are 0’s.  Visually, pattern 3 represents an edge, patterns 4, 5 and 6 

represents an edge with varying curvature and, pattern 8 represents a dark spot and flat areas 

with no change in grayscale values [24]. From the histogram of uniform and non-uniform 

patterns and, their visual interpretations provided above it can be deduced that ductile image 

texture has higher number of edges with varying texture (microscopic cup and cones) and brittle 

image texture has higher number of dark spots and non-uniform patterns (river like patterns), 

which is visually evident from Figure 3.2(a), and hence governs the identification of fracture 

type. 

3.5.2. Performance Assessment of LDA 

In this section, the performance of LDA classifier is assessed, i.e. the capability of a 

classifier to predict the class labels accurately is evaluated. For this purpose, the master dataset is 

partitioned into two subsets namely, training dataset (𝑺1) and test dataset (validation dataset) 

(𝑺2) [20]. As mentioned in Section 3.3, a partition ratio of 80:20 is used in this study. While the 

number 80 represents the percentage of observations randomly sampled from the master dataset 

to obtain training dataset (𝑺1), the number 20 represents the remaining percentage of 

observations used as the validation dataset (𝑺2). Followed by the partitioning of the master 

dataset, LDA classifier is trained on the training dataset (𝑺1) and is later deployed to predict the 

class labels of the validation dataset (𝑺2). The predicted class labels are cross-validated with the 

known class labels of the validation dataset and the summary of correct and incorrect 

classifications are provided in the form of a matrix referred to as confusion matrix (𝑪). 
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Confusion matrix is a 𝑚 × 𝑚 square matrix, where 𝑚 represents the number of class labels and 

each element 𝑐𝑖𝑗 of 𝑪 represents the frequency of instances from validation dataset that are 

assigned class label 𝑗 by the classifier which in reality belongs to class label 𝑖 [11]. With this, the 

performance of the classifier is then assessed by evaluating the prediction accuracy, which is 

defined as the ratio of total number of observations whose class labels are correctly identified to 

the total number of observations present in the validation dataset (𝑺2). Mathematically it is 

expressed as 

𝐴𝑐 =
∑ 𝑐𝑖𝑖

𝑚
𝑖=1

∑ ∑ 𝑐𝑖𝑗
𝑚
𝑗=1

𝑚
𝑖=1

× 100% 

Table 3.1. Confusion matrix for LDA. 

 Predicted class label 

Class Label Brittle Ductile 

A
ct

u
a
l 

cl
a
ss

 l
a
b

el
 

Brittle 0.94 0.06 

Ductile 0.07 0.93 

 

In this study, the LDA classifier is observed to provide an accuracy of 94%, i.e. 94% 

observations of the test data are correctly classified. The confusion matrix summarizing the 

correct and incorrect misclassifications is provided in Table 3.1. From Table 3.1, it can be 

deduced that 6% of brittle fracture images are misclassified as ductile fracture images and 8% of 

ductile fracture images are misclassified as brittle fracture images. 

3.5.3. Validation 

In this section, the efficacy of the LBP technique to identify the type of fracture in 

fractographic images of structural steels with interspersed ductile and brittle fracture regions is 

demonstrated. For this purpose, five different fractographic images, also referred to as validation 
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images, are employed in this study (see Figure 3.3), and the histogram of uniform/non-uniform 

patterns are obtained. These images are acquired from [28-31] and are not used in the training of 

LDA. LDA classifier trained on the textural features extracted from 50 images of brittle fracture 

and 50 images of ductile fracture is then deployed, and the brittle and ductile fracture regions in 

the validation images are identified. To this end, both block- and pixel-wise approaches are 

employed for classification. The results obtained after classification are shown in Figure 3.4 to 

Figure 3.8. From Figure 3.4 to Figure 3.8, it can be observed that the prediction obtained through 

pixel-wise approach is more accurate when compared to the one that is obtained from block-wise 

approach. When the test images are partitioned into blocks in the block-wise approach, the 

blocks may either be completely occupied with individual brittle or ductile fracture texture or 

only a fraction of block may be occupied with brittle and ductile fracture texture. However, 

during the classification, if the chosen block consists of both brittle and ductile regions, then the 

trained classifier either assigns it as a brittle fracture or a ductile fracture depending on the 

visually dominant fracture type present in the block. With this, while a fraction of the pixels in 

the block is correctly classified, the rest of the pixels are misclassified. The area fraction of 

brittle and ductile fracture regions for all five images are evaluated and are provided in Table 3.2. 

The area fractions of brittle and ductile fracture regions predicted through block-wise approach 

are within 5% of the area fractions predicted by pixel-wise approach. This can be attributed to 

the relatively small size of the block and compensating misclassification errors in the case of the 

block-wise approach. 
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Figure 3.4. Brittle and ductile classification of test image 1: (a) block-wise classification, and (b) 

pixel-wise classification. 

 

Figure 3.5. Brittle and ductile classification of test image 2: (a) block-wise classification, and (b) 

pixel-wise classification. 

(a) (b) 

(a) (b) 
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Figure 3.6. Brittle and ductile classification of test image 3: (a) block-wise classification, and (b) 

pixel-wise classification. 

 

Figure 3.7.  Brittle and ductile classification of test image 4: (a) block-wise classification, and (b) 

pixel-wise classification. 

(a) (b) 

(a) (b) 
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Figure 3.8. Brittle and ductile classification of test image 5: (a) block-wise classification, and (b) 

pixel-wise classification. 

Table 3.2. Area fraction (%) of brittle and ductile fracture evaluated from block- and pixel-wise 

approaches. 

Image No 
Block-wise Pixel-wise 

Brittle Ductile Brittle Ductile 

1 33.4 66.6 35 65 

2 57.1 42.9 58 42 

3 90.4 9.6 89 11 

4 53.8 46.2 52 48 

5 71.6 28.4 70 30 

 

3.6. Summary 

The goal of this chapter is to automate the identification of the brittle and ductile fracture 

regions in fractographic images with varying grayscale. For this purpose, a textural feature 

extraction algorithm, LBP is employed, and a supervised machine learning classifier, LDA is 

employed. A set of brittle and ductile fracture images of structural steels are acquired, and their 

textural features are extracted. A master dataset 𝑫 comprising of 50 observations of textural 

features for each fracture type is generated and provided as an input to train the LDA classifier. 

The performance of a trained LDA classifier is assessed prior to its deployment and an accuracy 

of 94% was observed. Five different fractographic images of structural steels, that are not a part 

(a) (b) 
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of the training data, are chosen and the efficacy of the proposed technique is demonstrated. To 

classify the type of fracture regions in a given test image, two types of approaches are used in 

this study, namely, block-wise classification and pixel-wise classification. Pixel-wise 

classification resulted in more accurate classification when compared to the block wise 

classification. However, block-wise classification is computationally inexpensive, and the area 

fractions obtained from both the methods are more or less the same. Note that this methodology 

can also be extended to identify fatigue fracture from fractographic images. Fatigue fractures are 

characterized by the presence of striations (high-cycle fatigue) [6] or elongated cup and cones 

(ultra-low cycle fatigue) [33] at microscale exhibiting a distinct texture. However, sufficient 

number of fatigue fracture training images are required to train ML algorithms to identify fatigue 

fracture in addition to the brittle and ductile fracture in fractographic images. 
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4. DETECTION OF CORROSION-INDICATING OXIDATION PRODUCT COLORS IN 

STEEL BRIDGES UNDER VARYING ILLUMINATIONS, SHADOWS, AND WETTING 

CONDITIONS3 

4.1. Introduction 

Corrosion damage is found to play a vital role in the overall maintenance cost of the steel 

structures [1-3]. In the United States, the average annual cost of corrosion damage for steel 

bridges is estimated to be ~$10.15 billion [3]. Detection of corrosion in its early stages not only 

results in the reduction of maintenance costs but also increases the life of the structures [4]. 

Currently, either human inspection or non-destructive techniques like eddy current technique [5], 

ultrasonic inspection [6, 7], acoustic emission technique [8, 9], vibration analysis [10], 

radiography [11], thermography [12], optical inspection [13], etc. are employed to monitor and 

identify the corrosion damage in the steel structures. Although each of the above-mentioned 

techniques have their own advantages, the optical inspection technique is most commonly 

preferred owing to its simplicity and ease of interpretation.  

In optical inspection, digital images of structures are first acquired on-site and are then 

analyzed using image processing techniques off-site to detect the corrosion. In recent times, 

various approaches have been proposed by researchers to detect the corrosion in steel structures 

using digital images [14-16]. Most of these approaches included either acquisition of grayscale 

images or a color image of the corroded steel structure under uniform illumination conditions 

 
3 This chapter is based on the paper "Detection of Corrosion-Indicating Oxidation Product Colors in Steel Bridges 

under Varying Illuminations, Shadows, and Wetting Conditions." Metals 10 (11) (2020): 1439. 

https://doi.org/10.3390/met10111439. The material in this chapter was co-authored by Dayakar Naik Lavadiya 

(DNL), Ravi Kiran Yellavajjala (RK), Genda Chen (GC) and Hizb Ullah Sajid (HUS). Conceptualization, R.K. and 

D.L.N.; formal analysis, D.L.N.; funding acquisition, R.K.; investigation, R.K., G.C.; methodology, D.L.N., H.U.S., 

R.K., and G.C.; project administration, R.K.; resources, R.K., and G.C.; software, D.L.N.; supervision, R.K., and 

G.C.; validation, D.L.N. and R.K.; writing—original draft, D.L.N.; writing—review & editing, D.L.N., R.K., and 

G.C.  

https://doi.org/10.3390/met10111439
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(i.e., same time of the day, without shadows). Color is defined as a small portion of the 

electromagnetic spectrum that is visible to the human eye and covers wavelength in the range of 

380nm to 740nm [17]. When compared to grayscale images, color images have more 

information i.e. chromaticity and luminosity [18]. Chromaticity refers to the combination of the 

dominant wavelength of the visible light (called as hue) reflected from the material surface and 

the purity (saturation) associated with it, and luminosity refers to the intensity of light per unit 

area of the light source. For identifying corroded portions in the color images the distinguishable 

features such as color [19], texture [20], and edge are extracted from the images. For instance, in 

the study conducted by Shen et al. [16] color components extracted from 19 different color 

spaces were considered. ‘CIE La*b*’ color space was reported to yield a satisfactory result. In 

another study conducted by Medeiros et al. [21], both color and textural features were included 

and linear discriminant analysis (LDA) classifier was employed to identify corrosion. Ranjan et. 

al. [22] proposed an edge-based corrosion identification wherein various edge filters were 

employed to detect boundaries between corroded and non-corroded regions in the images. Lee et 

al [23] performed a multivariate statistical analysis of three color channels Red (R), Green (G) 

and Blue (B) to identify the corrosion in steel bridges coated in blue paint.  

Further Chen et. al. [14-16, 24] investigated the effect of artificially generated non-

uniform illumination on corrosion detection. Three different approaches were proposed by the 

authors. In the first approach, a neuro-fuzzy recognition algorithm (NFRA) was implemented 

which automatically generates three optimal threshold values for later image thresholding 

artificial neural network (ANN) and a fuzzy adjustment system. In the second approach, the 

authors have investigated the use of 14 different color spaces for corrosion detection and 

proposed an adaptive ellipse to segment background coating and corrosion rust. ‘CIE La*b*’ was 
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identified as the best color space. In the third approach, the authors have integrated color image 

processing, Fourier transforms and Support Vector Machines (SVM) to identify the corrosion in 

the bridges with a red and brown color background. In another set of studies, both Ghanta et. al. 

[25] and Nelson et. al. [26] implemented a wavelet transforms based approach to identify 

corrosion in steel bridges and shipboard ballast tanks, respectively. Son et. al. [27] used ‘HSV’ 

color space and C4.5 decision tree algorithm to identify corrosion. It is important to note that, in 

reality, the illumination of natural daylight does not remain the same for the entire day. 

Moreover, the steel structures have self-shadows (shadows from the structural components) and 

oil/ water wetted spots (for example, bridges). In the recent study carried out by Liao et al. [28], 

both ‘RGB’ and ‘HSV’ color spaces were adopted in conjunction with the least squares-support 

vector machine (LS-SVM) based technique to identify corrosion under shaded area generated by 

natural light. However, the proposed approach had few limitations as reported by the authors: (1) 

the inefficiency of the approach to predict dark corroded areas and (2) the proposed threshold 

values may vary for other images that are not considered in their study. From a practical 

perspective, there is a need to develop a more robust technique that can be used to identify the 

corrosion in steel structures using images taken under varying illuminations, dark shadows, 

water, and oil wetting. 

The aim of the current chapter is to detect corrosion in steel structures under ambient 

lighting conditions such as varying illuminations, shadows, and water and oil wetting. To this 

end, four different color spaces are employed, and a multi-layer perceptron (MLP) is configured 

and trained with the color features extracted from the lab generated corrosion images. 

Subsequently, the trained MLP is deployed on the field generated images (i.e. a steel bridge) and 

the corrosion is detected. Note that the scope of this study is only limited to the corrosion 
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identification on the surface of the steel and not the cross-section. The main emphasis of the 

current study is to determine the most suitable combination of color space and an MLP 

configuration from the laboratory-generated image dataset which can yield correct predictions in 

the case of images acquired in a real-world scenario. Rest of the manuscript is organized as 

follows: materials and methods used to generate images of corroded plates in the laboratory is 

described in Section 4.2, extracting the color features of corroded/non-corroded pixels and 

building a training, validation and test dataset is described in Section 4.3, details of MLP 

configuration is provided in Section 4.4, performance assessment and efficacy of the trained 

model is discussed in Section 4.5, and conclusions are provided in Section 4.6. 

4.2. Laboratory Generated Corrosion Images 

In this section, the procedure adopted for acquiring the lab generated corrosion images is 

described.  

4.2.1. Accelerated Corrosion Tests and Image Acquisition 

Six ASTM A36 structural steel plates (see Table 4.1 [29]) with dimensions 7.6 cm × 7.6 

cm × 0.4 cm are subjected to accelerated corrosion. To this end, ASTM A36 structural steel 

plates are placed inside a salt spray chamber at an angle of 20° to the vertical and are 

continuously exposed to 3.5 wt. % sodium chloride (NaCl) solution mist for 12 hours. The 

corroded steel plates are then removed from the salt spray chamber and are gently cleaned with 

warm water to remove the excess salt traces and then air-dried. The detailed description of the 

accelerated corrosion protocol can be found elsewhere [30]. While the surfaces of two of the 

plates are completely exposed to corrosion  (see Figure 4.1), the surfaces of rest of the plates are 

only partially exposed to corroded (Figure 4.2) i.e. random patches of corrosion are induced on 

the plate by preventing the interaction between the corrosive media and the surface with the help 
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of adhesive tapes. At this juncture, it is important to note that the plate surfaces completely 

exposed to corrosion are used for generating training and validation datasets and the plate 

surfaces partially exposed to corrosion are reserved for generating a test image database (see 

Section 4.3.4). Here on the plate surfaces completely exposed to corrosion will be referred to as 

fully corroded plates and the plate surfaces partially exposed to corrosion will be referred to as 

partially corroded plates. Details of generating training and test dataset are provided in Section 

4.3. 

A mobile camera with a digital resolution of 12MP (4032×3024) is employed to acquire 

the images of the lab corroded steel plates. Note that the images were acquired outdoors while 

the corroded plates are directly exposed to sunlight. As per the manufacturer specifications, the 

size of the sensor and the size of the image pixel are 1/3.6" and 1.0µm, respectively and the 

camera’s angular field of view (FOV) is 45°. For image acquisition, the camera is mounted on a 

small tripod and is placed parallel to the target surface (corroded plate) at a fixed distance of 8.0 

inches. The camera was then operated with a fixed setting of ISO 400 and a shutter speed of 

1/350th of a second. In addition to this, the color tone was set to a standard color tone and white 

balance was set to 5500K (daylight). The images of the corroded steel plates are then acquired at 

different time intervals during the day i.e. 5:00 AM, 9:00 AM, 12:00 PM, 3:00 PM and 6:00 PM 

such that varying illuminations of daylight are captured in the images (see Figure 4.1 (a)-(b)).  

Furthermore, the images of fully and partially corroded plates under shadows, water wetting, and 

oil wetting are also acquired. Shadows, water wetting, and oil wetting are commonly observed in 

steel structures such as bridges, water tanks, bunkers, and silos. Shadows are formed by blocking 

the light falling on the structure by surrounding vegetation, constructions or the structural 

components that are being monitored. The water and oil wetting may occur due to rainfall and oil 
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leak from cargo, respectively. The images of fully and partially corroded plates with shadows are 

acquired by blocking the light falling on the plate with an opaque object (see Figure 4.1 (c)).  

Table 4.1. ASTM A36 composition. 

Composition Symbol Wt. % 

Carbon C 0.25-0.29 

Iron Fe 98 

Copper Cu 0.2 

Manganese Mn 1.03 

Phosphorous P 0.04 

Silicon Si 0.28 

Sulfur S 0.05 

 

For acquiring the images of the fully and partially corroded plates wetted with water, the 

corroded steel plates are sprayed with the water using a spray jug. Enough distance between 

corroded plates and spray jug is maintained such that only a drizzle of fine droplets of water is 

sprayed on the plate and sufficient care is exercised to avoid the formation of bigger water 

droplets on the surface of the plate. A similar procedure is then adopted for acquiring the images 

of fully and partially corroded plates under oil wetting except that oil is used in the place of 

water as a wetting agent. The images of all the corroded steel plates acquired using the mobile 

camera are shown in Figure 4.1 and Figure 4.2. Note that the images are not directly used as the 

input to the MLP in this study i.e. the images are not directly considered as the training and 

validation datasets. Instead, color features of corroded and non-corroded pixels of the plate are 

extracted from the images to generate a training dataset and then used to train various MLP 

configurations. For instance, if the color features of 1000 corroded pixels are chosen from one 

image, then the training dataset is said to have 1000 observations. The color feature extraction 

process is described next. 
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Figure 4.1. Non-corroded and corroded steel plates used for training purposes. (a) top row (left to 

right) includes images of non-corroded plates acquired at varying illuminations under natural 

daylight, (b) second row (left to right) includes images of corroded plates acquired under 

illuminations similar to that of non-corroded plates and, (c) third row (left to right) includes 

images of both corroded and non-corroded plates acquired under casted shadows. 

(a) 

(b) 

(c) 

2.5 cm 
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Figure 4.2. Images of partially corroded steel plates used for testing: (a) acquired at different 

illuminations of natural daylight, (b) shadows, (c) water wetting, and (d) oil wetting.   

4.3. Color Feature Extraction and Dataset Generation 

In this study, we hypothesize that the color features alone can be used to identify 

corrosion in steel bridges. Hence color features are extracted from the lab generated images to 

generate training, validation and test datasets that will be used to train, validate and demonstrate 

the performance of MLP, respectively.  In this section, a brief overview of color spaces used in 

this study is provided and the process of generating training, validation and test datasets is 

described. 

(a) 

(b) 

(c) 

(d) 

2.5 cm 
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4.3.1. Color Spaces and Color Features 

Color space is a mathematical abstraction introduced by Commission Internationale de 

l'éclairage (CIE) [31] to numerically express color as a tuple of numbers. It is regarded as the 

color coordinate system wherein each color feature is plotted along a coordinate axis. In this 

study, four-color spaces namely ‘RGB’ (also called as primary color space), ‘rgb’ (also called as 

normalized color space), ‘HSV’ (also called as perceptual color space) and ‘CIE La*b*’ (also 

called as uniform color space) are considered. A brief description of these four-color spaces is 

provided next. 

‘RGB’ color space 

In ‘RGB’ color space, the primary colors Red (R), Green (G) and Blue (B) are considered 

as the color features whose intensities range from 0 to 255. These three-color intensities when 

plotted in a three-dimensional Cartesian coordinate system with primary colors (𝑅, 𝐺, 𝐵) as the 

𝑥, 𝑦 and 𝑧 axis, respectively, forms the ‘RGB’ color space. In the ‘RGB’ color space, all possible 

colors are encompassed in a cube with dimensions (255 × 255 × 255) in the first positive 

octant of the coordinate system (see Figure 4.3 (a)). Each point enclosed in this cube represents a 

unique color. While the point (0,0,0) represents the black color, the point (255, 255, 255) 

represents the white color. The points that fall on the line that joins origin (0, 0, 0) and its 

diagonally opposite point (255, 255, 255) represent different gray shades. Note that the color 

images obtained from the mobile or Digital Single-Lens Reflex (DSLR) cameras generally have 

intensities of R, G, and B as the pixel values. In the ‘RGB’ color space the chromaticity is 

coupled with the luminosity in the R, G, and B features and are sensitive to non-uniform 

illuminations. 
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‘rgb’ color space 

Unlike ‘RGB’ color space, in ‘rgb’ color space the normalized intensities of primary 

colors Red, Green and Blue are considered as the color features. The magnitude of their 

intensities range from 0 to 1 and when plotted in a three-dimensional Cartesian coordinate 

system in which the normalized primary colors (𝑟, 𝑔, 𝑏) are the 𝑥, 𝑦 and 𝑧 axis, respectively, 

each point represents a single unique color. In the ‘rgb’ color space, all possible colors are 

encompassed with-in the surface of a sphere in the first octant of the coordinate system where the 

radius of a sphere is 1 (see Figure 4.3 (b)). To determine the values of ‘r’, ‘g’ and ‘b’, from ‘R’, 

‘G’, and ‘B’ Eq. 4.1is used. In ‘rgb’ color space the chromaticity and luminosity are decoupled 

from the r, g, and b features and, unlike ‘RGB’ color space the ‘rgb’ color space is insensitive to 

non-uniform illuminations [32]. 

𝑟 =
𝑅

√𝑅2 + 𝐺2 + 𝐵2
; 𝑔 =

𝐺

√𝑅2 + 𝐺2 + 𝐵2
; 𝑏 =

𝐵

√𝑅2 + 𝐺2 + 𝐵2
  (4.1) 

‘HSV’ color space 

In ‘HSV’ color space, hue (H), Saturation (S) and Value (V) are considered as the color 

features. Hue is defined as the pure color, and its magnitude ranges from 0 to 1. Saturation is 

defined as the amount of impurity or white color added to hue and its magnitude also ranges 

from 0 to 1. Value is defined as the brightness or intensity of light, and its magnitude ranges 

from 0 to 255. On a cylindrical coordinate system these color features i.e. Hue, Saturation and 

Value, represents the angle  (𝜃),   radius (𝑟) and vertical height  (𝑧), respectively. All the colors 

in the HSV color space fit in an inverted cone (see Figure 4.3(c)) [33]. Given, the intensities of 

R, G, and B, the magnitude of H, S, and V can be evaluated using Eq. 4.2 – 4.5. Similar to ‘rgb’ 

color space, the chromaticity and luminosity are decoupled in the ‘HSV’ color space and is 

robust to non-uniform illuminations. However, in ‘HSV’ color space the chromaticity is 
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represented as two separate features ‘Hue’ and ‘Saturation’. Moreover, ‘Hue’ is undefined when 

the intensities of R, G and, B are same. 

 

Figure 4.3. Color spaces in three-dimensional coordinate systems: (a) ‘RGB’, (b) ‘rgb’, (c) 

‘HSV’ and (d) ‘CIE La*b*’. 

Let 𝛼𝑚𝑎𝑥 = max(𝑅, 𝐺, 𝐵) ; 𝛼𝑚𝑖𝑛 = min(𝑅, 𝐺, 𝐵) ;  𝛿 = 𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛  

Then 

𝑉 = 𝛼𝑚𝑎𝑥 (4.2) 
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𝑆 = {

0, 𝛿 = 0

 
𝛿

𝛼𝑚𝑎𝑥
, 𝛿 ≠ 0

 (4.3) 

 

𝐻′ =

5 +
(𝛼𝑚𝑎𝑥 − 𝐵)

𝛿
𝑖𝑓 𝛼𝑚𝑖𝑛 = 𝐺

1 −
(𝛼𝑚𝑎𝑥 − 𝐺)

𝛿

} 𝛼𝑚𝑎𝑥 = 𝑅

1 +
(𝛼𝑚𝑎𝑥 − 𝑅)

𝛿
𝑖𝑓 𝛼𝑚𝑖𝑛 = 𝐵

3 −
(𝛼𝑚𝑎𝑥 − 𝐵)

𝛿

} 𝛼𝑚𝑎𝑥 = 𝐺

3 +
(𝛼𝑚𝑎𝑥 − 𝐺)

𝛿
𝑖𝑓 𝛼𝑚𝑖𝑛 = 𝑅

5 −
(𝛼𝑚𝑎𝑥 − 𝑅)

𝛿

} 𝛼𝑚𝑎𝑥 = 𝐵

 (4.4) 

𝐻 =
𝐻′

6
 

(4.5) 

‘CIE La*b*’ color space 

In ‘CIE La*b*’ color space, Lightness (L), and opponent colors (a* and b*) are 

considered as the color features. While L represents the intensity of light and its magnitude 

ranges from 0 (white) to 100 (black), a* and b* represents the opponent colors red-green and 

blue-yellow respectively and its magnitude ranges from -128 to +128. The negative most value 

of a*, i.e. -128, represents the red color and positive most value of a*, i.e. 128, represents the 

green color. Similarly, the negative most value of b*, i.e. -128, represents the blue color and 

positive most value of b*, i.e. 128, represents the yellow color. These three-color features when 

plotted in a three-dimensional Cartesian coordinate system with (𝑎∗, 𝑏∗, 𝐿) as the 𝑥, 𝑦 and 𝑧 axis, 

respectively, forms the ‘La*b*’ color space. In the ‘CIE La*b*’ color space, all possible colors 

are encompassed in an ellipsoid (see Figure 4.3 (d)) [34]. Each point enclosed in the ellipsoid 

represents a unique color. Given, the intensities of R, G, and B, the magnitude of L, a* and b*can 
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be evaluated using Eq. 4.6. Similar to ‘rgb’ and ‘HSV’ color space, the chromaticity and 

luminosity are decoupled in ‘CIE La*b*’ color space and are insensitive to non-uniform 

illuminations. In addition to this, note that the ‘CIE La*b*’ color space is device independent 

and mimics the way humans perceive the colors [32]. 

𝐿 = 116𝑓 (
𝑌

𝑌𝑛
) − 16; 𝑎∗ = 500 (𝑓 (

𝑋

𝑋𝑛
) − 𝑓 (

𝑌

𝑌𝑛
)) ; 𝑏∗ = 200 (𝑓 (

𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
)) (4.6) 

where, 

if 
𝑋

𝑋𝑛
,

𝑌

𝑌𝑛
,

𝑍

𝑍𝑛
 are replaced by ′𝑡′ then 

𝑓(𝑡) = {
√𝑡
3

 if 𝑡 > 0.00856

7.787𝑡 +
16

116
 otherwise

 

[
𝑋
𝑌
𝑍

] = [
0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

] [
𝑅′
𝐺′
𝐵′

] 

The definitions for 𝑋𝑛, 𝑌𝑛 , 𝑍𝑛, 𝑅′, 𝐺′and 𝐵′ can be found in the cited reference [17, 47, 

48].  

4.3.2. Training Dataset 

To obtain the training dataset the color features of corroded and non-corroded pixels are 

extracted from the lab generated images. Specifically, fully corroded steel plate images acquired 

under varying illuminations are considered for this purpose (see Section 4.2). For the extraction 

of color features the pixel information i.e. the intensity of primary colors R, G and B of the 

image is obtained in the MATLAB® and the Eq. (4.1) - (4.6) provided in previous section is used 

to determine the color features in the other color spaces. A total of 5000 instances are generated 

for the training dataset among which 50% of the instances belonged to the ‘corrosion’ class and 

the rest of them belonged to the ‘non-corrosion’ class. Labelling of the instances as corrosion/ 

non-corrosion is solely based on visual observation and judgement of the authors. As both ‘Non-
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corrosion’ and ‘Corrosion’ exhibit distinguishable color for trained human vision, the 

reproducibility of labeling can be assured. However, a slight chance for subjectivity cannot be 

ruled out. The overall goal of this body of research is to automate the optical corrosion detection 

by addressing the challenges associated with identifying corrosion under ambient lighting 

conditions. Hence, no corrosion characterization tests were performed to cross-validate the 

corrosion/ non-corrosion pixels. 

4.3.3. Validation Dataset 

The validation dataset is used to validate a multi-layer perceptron that is trained using the 

color features extracted from lab acquired images of corroded plates under different 

illuminations (training dataset). The validation dataset is generated by extracting the color 

features of corroded and non-corroded pixels from the lab acquired images of corroded plates 

under shadows i.e. fully corroded steel plate images acquired under the shadow (see Figure 4.1 

(c)). Evaluation of the performance of the trained MLP on the validation dataset is seen as the 

first line of validation in this study and is used to identify an appropriate combination of MLP 

configuration and color features that can be ultimately used to detect corrosion in more 

challenging real-world scenarios. Note that none of the data instances in the validation dataset 

are used for training purposes. A total of 2064 instances are generated for the validation dataset, 

among which 50% of instances belong to ‘corrosion’ class and the rest of them belong to ‘non-

corrosion’ class.  

4.3.4. Test Image Database 

The test image database will be used to test and demonstrate the efficacy of the trained 

and validated MLP to detect corrosion in digital images that have dark shadows and are acquired 

by a different imaging sensor. In other words, the generalization capability of the trained MLP to 
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predict corrosion will be verified. The test image database generated herein includes the lab 

acquired images of partially corroded steel plates exposed to natural daylight illuminations 

(different from the ones used for training dataset), shadows and, water and oil wetting conditions 

and the images of a steel girder bridge located in Fargo-Moorhead (Minnesota) area acquired on-

site. Note that the sensor employed for acquiring images in the laboratory and on-site bridge 

images are not the same. A Digital Single-Lens Reflex (DSLR) camera is used for acquiring the 

on-site bridge images. The DSLR camera has a resolution of 18MP (5184×3456) with a pixel 

size of 4.3µm and a 22.3mm x 14.9mm sensor size, and a sensor ratio of 3:2. The bridge images 

acquired on-site consist of the steel plate girders with naturally varying illumination and self-

shadows. Especially, the images of the bottom side of the deck of the bridge had dark self-

shadows. Note that in order to detect corrosion portions in the test images, the color features of 

each pixel in the test image have to be extracted first and then labeled by the trained MLP. 

4.4. Multi-Layer Perceptron 

A multi-layer feed-forward neural network, also referred to as multi-layer perceptron 

(MLP), is programmed in MATLAB® and is trained, validated and tested in this study. The 

mathematical underpinnings and detailed description of multi-layer feed-forward neural network 

can be found elsewhere [35-38]. The MLP employed herein receives the color features of a pixel 

(see Section 4.3.1) as an input and delivers its class label (corrosion/non-corrosion) as an output 

(see Figure 4.4). Since the suitable configuration of MLP is not known apriori, four different 

configurations are explored: (1) one hidden layer (HL) with 2 neurons (1st HL(2N)), (2) one 

hidden layer with 4 neurons (1st HL(4N)), (3) two hidden layers with 2 neurons in each layer (1st 

HL(2N)-2nd HL(2N)) and (4) three hidden layers with 50 neurons in first layer, 10 neurons in 

second layer and 4 neurons in third layer (1st HL(50N)-2nd HL(10N)-3rd HL(4N)). Note that the 
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selection of these configurations is based on thumb rules provided in the following references 

[39, 40]. Sigmoid function is chosen as an activation function for all the neurons in the MLP 

except the output layer wherein SoftMax function is used and the maximum number of epochs is 

fixed to 1000. The maximum number of epochs is not exceeded in any case during the training 

phase. Furthermore, the MLP is trained only once (until the weights converged), and no re-

training is required when used on in-house generated validation dataset or test image database. 

The back-propagation algorithm is used for determining the weights of the MLP.  

 

Figure 4.4. Schematic of a multi-layer perceptron configuration for the classification of the 

labeled data. Note that the input features 𝑥1, 𝑥2 and 𝑥3 represent three color features associated 

with ‘RGB’, ‘rgb’, ‘HSV’ and ‘La*b*’ color spaces respectively. 

4.5. Results 

In this section, the best combination of the color space and an MLP configuration that can 

detect corrosion accurately under ambient lighting conditions is determined, and its efficacy in 
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the real-world scenario is demonstrated. Test images described in Section 4.3.4 are employed for 

the purpose of demonstrating the efficacy i.e., the corroded portions in the lab generated images 

and steel bridge images are detected and provided. 

4.5.1. Determining the Best Combination of Color Space and MLP 

Sixteen combinations of MLP configurations and color spaces are assessed for 

determining the best combination i.e. the capability of each combination to predict the class 

labels (corrosion/ non-corrosion) accurately is evaluated. All the combinations are first trained 

with the training dataset (see Section 4.3.2) and then simultaneously deployed to predict the class 

labels in the validation dataset. The predicted class labels are cross-validated with the actual 

known class labels in the validation dataset and the summary of correct and incorrect 

classifications are provided in the form of a confusion matrix (𝑪). The confusion matrix is a 

square matrix of size 𝑚 × 𝑚, where 𝑚 (=2) represents the number of class labels and the 

elements 𝐶𝑖𝑗 represents the frequency of instances from the validation dataset that are assigned 

class label 𝑗 by the classifier which in reality they belong to class label 𝑖. Given the confusion 

matrix 𝑪, the performance of each combination is assessed by evaluating the four metrics namely 

‘Accuracy’, ‘Precision’, ‘Recall’ and ‘F Measure’. ‘Accuracy’ is defined as the ratio of the total 

number of instances whose class labels are correctly identified to the total number of instances 

present in the validation dataset and is expressed as [20, 41, 42]. 

𝐴 =
∑ 𝐶𝑖𝑖

𝑚
𝑖=1

∑ ∑ 𝐶𝑖𝑗
𝑚
𝑗=1

𝑚
𝑖=1

× 100%  (4.7) 

‘Precision (O)’ is defined as the ratio of the number of observations whose class label 𝑖 is 

correctly predicted by the classifier to the total number of observations that are assigned to the 

class 𝑖 by the classifier, and ‘Recall (R)’ is defined as the proportion of observations of class 𝑖 

that are correctly predicted as class 𝑖 by the classifier [41].  
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O =
1

𝑚
∑

𝐶𝑖𝑖

∑ 𝐶𝑗𝑖
𝑚
𝑗=1

𝑚

𝑖=1

× 100%     R =
1

𝑚
∑

𝐶𝑖𝑖

∑ 𝐶𝑖𝑗
𝑚
𝑗=1

𝑚

𝑖=1

× 100% (4.8) 

Here, 𝑚 represents the number of class labels. While overall precision and overall recall 

are also used as the measures of performance assessment for classifiers, F-measure (𝐹) combines 

the trade-off between both overall precision and overall recall and is evaluated as  

F =
2 × 𝑂 × 𝑅

𝑂 + 𝑅
× 100% (4.9) 

Table 4.2. Confusion matrix of the results predicted by various MLP configurations. 

Color space 

Confusion matrix 

2N 4N 2N-2N 50N-10N-

4N 

RGB 
0.33 0.67 0.35 0.65 0.36 0.64 0.61 0.39 

0 1 0 1 0 1 0 1 

Acc. 66.50 67.50 68 80.50 

rgb 
0.79 0.21 0.81 0.19 0.81 0.19 0.82 0.18 

0 1 0 1 0 1 0.03 0.97 

Acc. 89.50 90.50 90.50 89.50 

HSV 
0.66 0.34 0.68 0.32 0.70 0.30 0.60 0.40 

0.38 0.62 0.28 0.72 0 1 0.04 0.96 

Acc. 64 70 85 78 

La*b* 
0.39 0.61 0.51 0.49 0.54 0.46 0.31 0.69 

0 1 0 1 0 1 0 1 

Acc. 69.50 75.50 77 65.50 

Note: Acc. – Accuracy; Confusion matrix [
𝑐11 𝑐12

𝑐21 𝑐22
] where 𝑐11 𝑎𝑛𝑑 𝑐22 represents the correct 

predictions corresponding to class labels corrosion and non-corrosion respectively, 𝑐12 𝑎𝑛𝑑 𝑐21 

represents the incorrect predictions corresponding to class labels corrosion and non-corrosion 

respectively. 

The confusion matrix and ‘Accuracy’ evaluated for each combination of MLP 

configuration and color space are summarized in Table 4.2. From Table 4.2, it can be inferred 

that the color spaces ‘RGB’ and ‘CIE La*b*’ resulted in a higher fraction of misclassification of 

‘corrosion’ class label when compared to ‘rgb’ and ‘HSV’ color space i.e. on an average 65% of 

the instances in the training dataset belonging to ‘corrosion’ class are misclassified as ‘non-
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corrosion’ in the case of ‘RGB’ and ‘CIE La*b*’ color space (see also Figure 4.5). However, it is 

interesting to note that in the case of ‘RGB’ color space the accuracy improved when an 

additional hidden layer is added to the two-layer MLP configuration (see also Figure 4.5). The 

improvement in the accuracy of the ‘RGB’ color space may be attributed to the increased non-

linearity or complexity in the decision boundary resulting from the addition of a hidden layer 

[43]. In other words, the decision boundary of a three-layer MLP maybe partitioning the training 

instances such that more fraction of the instances belonging to ‘corrosion’ class are on the same 

side of the boundary. Among the four-color spaces, the ‘rgb’ color space is found to yield a 

maximum prediction accuracy (91%). Despite the increase in the number of hidden layers the 

accuracy for the ‘rgb’ color space did not vary significantly (see Figure 4.5). To understand why 

the ‘rgb’ color space resulted in higher accuracy even without the addition of hidden layers, the 

color feature data is plotted as 2D scatter plots after dimensional reduction is performed on the 

training and validation datasets. 
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Figure 4.5. Prediction of corrosion in a test image (with shadow) using four different color 

spaces and four different ANN configurations. Markers for ‘RGB’ – accuracy improved for 

three-layer MLP; Markers for ‘rgb’ – accuracy remained almost same; Markers for ‘HSV’ – 

accuracy is poor for 2 and 4 neurons MLP configuration; Markers for ‘CIE La*b*’ – accuracy is 

poor for three-layer MLP configuration. Note HL – hidden layer. 

In the context of the current study, the dimensional reduction will facilitate visualizing a 

three-dimensional data (color features) in a two-dimensional space. Visualizing data in two-
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dimensional space will not only reveal the spatial distribution of instances belonging to 

‘corrosion’ and ‘non-corrosion’ class but also aids in understanding the decision boundaries that 

can partition the instances with different class labels. Linear discriminant analysis (LDA) 

technique is used to perform dimensional reduction [44, 45]. The results obtained after 

dimensional reduction for all four-color spaces are shown in Figure 4.6. Figure 4.6 consists of a 

scatterplot of four isolated groups that are labeled as ‘Tr_Corrosion’, ‘Tr_Non-corrosion’, 

‘Sh_Corrosion’ and ‘Sh_Non-corrosion’. Note that the groups labeled as ‘Tr_Corrosion’ and 

‘Tr_Non-corrosion’ correspond to the instances with class labels ‘corrosion’ and ‘non-

corrosion’, respectively that are obtained from the training dataset and the groups 

‘Sh_Corrosion’ and ‘Sh_Non-corrosion’ correspond to the instances with class labels ‘corrosion’ 

and ‘non-corrosion’, respectively obtained from the validation dataset. A trained MLP is 

anticipated to predict the class labels correctly when the instances of the ‘Tr_Corrosion’ and 

‘Sh_Corrosion’ group remain on the same side of the decision boundary. In other words, the 

color features of the corroded pixels obtained from shaded regions (validation dataset) and 

varying illuminations (training dataset) should be on the same side of the decision boundary. In 

the case of ‘rgb’ color space, it may be true that the higher number of instances from 

‘Tr_Corrosion’ and ‘Sh_Corrosion’ always remained on the same side of decision boundary 

irrespective of change in the shape of the boundary. For the sake of illustrating this point, the 

pseudo decision boundaries that may be resulting from two different MLP configurations are 

plotted in Figure 4.6 (b). From Figure 4.6 (b) it can be understood that the instances partitioned 

by both the pseudo decision boundaries remains more or less similar.  
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Figure 4.6. Dimensional reduction using LDA. Training dataset encompassing 4 class labels 

namely corrosion (Tr-Cor), non-corrosion (Tr-Non-Cor), corrosion in shadow (Sh-Cor) and non-

corrosion (Sh-Non-Cor) in shadow are visualized in a 2-dimensional space. (a) RGB, (b) rgb, (c) 

HSV and (d) La*b*. 

Besides ‘Accuracy’, the other performance metrics ‘Precision’, ‘Recall’ and ‘F-measure’ 

are also evaluated and provided in Table 4.3. For most of the combinations of MLP and color 

spaces the ‘Precision’ value is 100%. This can be attributed to the zero false positive value of the 

RGB rgb 

(a) (b) 

(c) (d) 
HSV La*b* 
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‘Corrosion’ class label i.e. no ‘Non-corrosion’ class labels are incorrectly predicted as 

‘Corrosion’. However, the ‘Recall’ and ‘F-measure’ value varied for different combinations. 

Note that the ‘Recall’ with a higher magnitude is preferred instead of ‘Accuracy’ for choosing 

the best combination of MLP and color space. ‘Recall’ measures the ability of a model to predict 

the actual ‘Corrosion’ class label as ‘Corrosion’ which is highly desired. Based on the 

assessment of ‘Recall’ values for all the combinations i.e., a single hidden layer with 4 neurons 

(1st HL (4N)) MLP configuration with ‘rgb’ color space is chosen as the best combination in this 

study. 

Table 4.3. Performance metrics of various MLP configurations. 

Color space 
Performance Metrics (%) 

Accuracy Recall Precision F-Measure 

‘RGB’ 

2N 66.5 33 100 49.62 

4N 67.5 35 100 51.85 

2N-2N 68 36 100 52.94 

50N-10N-4N 80.5 61 100 75.78 

‘rgb’ 

2N 89.5 79 100 88.27 

4N 90.5 81 100 89.50 

2N-2N 90.5 81 100 89.50 

50N-10N-4N 89.5 81 100 90.11 

‘HSV’ 

2N 64 66 63 64.47 

4N 70 68 70 68.99 

2N-2N 85 70 100 82.35 

50N-10N-4N 78 60 100 75.00 

‘La*b*’ 

2N 69.5 39 100 56.12 

4N 75.5 51 100 67.55 

2N-2N 77 54 100 70.13 

50N-10N-4N 65.5 31 100 47.33 

 

4.5.2. Detection of Corrosion in Lab Generated Test Images 

An MLP configuration consisting of single hidden layer with 4 neurons (1st HL (4N)) 

trained on ‘rgb’ color features and is deployed to detect corroded portions in the lab generated 

test images and the results obtained are shown in Figure 4.7 to Figure 4.10. Note the corroded 



 

126 

portions are represented as a bright mask in the Figure 4.7(b), Figure 4.8(b), Figure 4.9(b) and 

Figure 4.10 (b). For qualitative comparison, the ground truth images are also provided along with 

the corrosion detected images (see Figure 4.7(a), Figure 4.8(a), Figure 4.9(a) and Figure 4.10(a)). 

While Figure 4.7 and Figure 4.8 consists of test images acquired under varying illuminations and 

cast shadows, respectively, Figure 4.9 and Figure 4.10 consists of test images acquired under 

water and oil wetting, respectively. From Figure 4.7 to Figure 4.10, it is evident that the trained 

MLP detects corrosion accurately in the test images that are acquired under varying 

illuminations, shadows, water wetting, and oil wetting conditions. Despite the presence of light 

shadows and dark shadows found in Figure 4.8 and the wetting conditions found in Figure 4.9 

and Figure 4.10, the single hidden with 4 neurons (4N) MLP trained with ‘rgb’ color features 

predicted corrosion accurately. However, in the case of water and oil wetted test images some 

specular reflections are observed and it is highly unlikely to detect corrosion under such a 

scenario. Specular reflections are the mirror-like reflections commonly observed on smooth 

surfaces of bodies where the angle of incidence of light is equal to the angle of reflection [46]. 

 

Figure 4.7. Test images of partially corroded steel plates acquired at different illuminations of 

natural daylight. (a) ground truth images, (b) MLP-based corrosion prediction.   

(a) 

(b) 

2.5 cm 
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Figure 4.8. Test images of partially corroded steel plates with shadows cast in natural daylight. 

(a) ground truth images, (b) MLP-based corrosion prediction. 

 

Figure 4.9. Test images of partially corroded steel plates wetted in water and acquired in natural 

daylight. (a) ground truth images, (b) MLP-based corrosion prediction. 

 

(a) 

(b) 

2.5 cm 

(a) 

(b) 

2.5 cm 



 

128 

 

Figure 4.10. Test images of partially corroded steel plates wetted in oil and acquired in natural 

daylight. (a) ground truth images, (b) MLP-based corrosion prediction. 

4.5.3. Detection of Corrosion in Steel Bridge 

An MLP configuration consisting of single hidden layer with 4 neurons (1st HL (4N)) 

trained on ‘rgb’ color features is finally deployed to detect corroded portions in the steel bridge 

images and the results obtained are shown in Figure 4.11. Similar to Figure 4.7-Figure 4.10, the 

corroded portions of the bridge are highlighted as a bright mask in Figure 4.11 and the ground 

truth images are provided for a qualitative comparison. From Figure 4.11, it can be observed that 

the trained MLP detects corrosion accurately in the steel girder bridges under naturally varying 

illuminations and self-shadows. While ‘Marker 1’ and ‘Marker 2’ shown in Figure 4.11 (a) 

reveals the ability of the trained MLP to detect corrosion under brighter illumination, ‘Marker 3’ 

indicates the ability of the trained MLP to detect corrosion under comparatively darker 

illuminations and self-shadows. Further from Figure 4.11(b) it is also evident that the trained 

MLP configuration of single hidden layer with 4 neurons (1st HL (4N)) is able to predict 

corrosion in the bottom side of the deck of the bridge that has a dark shadow. At this juncture, it 

is important to emphasize the fact that it is highly unlikely for a human vision to detect corrosion 

(a) 

(b) 

2.5 cm 
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under dark shadows. Keeping in view that a greater portion of corrosion is found in the bottom 

side of the deck of the bridge, the proposed method will be very useful.    

 

Figure 4.11. Identification of corrosion in the steel bridges using the single hidden layer with 4 

neurons (1st HL(4N)) MLP Configuration. (a) steel plate girders with naturally varying 

illumination and self-shadows, (b) bottom side of the deck of the bridge with dark self-shadows.  
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4.6. Conclusions and Limitations 

Color spaces in conjunction with different MLP configurations are explored to detect 

corrosion initiation in steel structures under ambient lighting conditions. To this end, sixteen 

different combinations of color spaces and MLP configurations are explored. The performance 

of each combination is then assessed through the validation dataset obtained from lab generated 

images and the best combination is determined. Subsequently, the obtained combination is 

deployed on the test image database and the efficacy of trained MLP to detect corrosion in real-

world scenarios is demonstrated.  

From the current study following conclusions can be drawn. 

1. Among all sixteen combinations of color space and an MLP configuration, the 

combination of ‘rgb’ color space and an MLP configuration of a single hidden layer with 

4 neurons (1st HL (4N)) yielded the highest ‘Recall’ of 81% and hence chosen as the best 

combination. 

2. While the accuracy (up to 91%) of ‘rgb’ color space is found to be more or less similar 

for all the MLP configurations, the accuracy of ‘RGB’ color space is observed to increase 

from 68% to 81% with the addition of third hidden layer. Improved accuracy in the case 

of ‘RGB’ color space can be attributed to the increased non-linearity of the decision 

boundary generated by the MLP which will ultimately lead to overfitting issues. 

3. Under shadows and wetting conditions, the trained MLP is still found to yield correct 

predictions when ‘rgb’ color features are used. Especially, the detection of corrosion in 

the bottom side of the deck of a bridge under dark shadows is noteworthy. 
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4. The proposed method is insensitive to the camera sensor employed for the image 

acquisition i.e., irrespective of images being acquired from a mobile camera or a DSLR 

camera the efficacy of trained MLP to detect corrosion was not affected.  

5. MLP trained on varying illumination dataset alone is sufficient for detecting the corrosion 

under shadows and wetting conditions. 

Although the efficacy of color spaces for corrosion detection is demonstrated in this 

study, it is important to note that the employment of color features alone may have some 

limitations. One case where this technique is not applicable is when the objects in the acquired 

images possess hue values similar to that of a corroded surface. For instance, coatings, dirt, or 

some vegetation in the background may be misclassified as corrosion. This limitation will be 

addressed in Chapter 5.  
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5. HYPERSPECTRAL IMAGING FOR THE ELIMINATION OF VISUAL AMBIGUITY 

IN CORROSION DETECTION AND IDENTIFICATION OF CORROSION SOURCES4 

5.1. Introduction 

In recent years, various image processing techniques have been developed for the 

identification of corrosion in different sectors of infrastructure such as bridges, oil, and gas 

refinery, power plants, underground pipelines, etc. (see Figure 1.8) [1–3]. In this technique, the 

digital images of the steel surface are first acquired on-site and are then analyzed using image 

processing methods off-site. While some of the available approaches in the literature are limited 

to grayscale images [4–8], the other approaches employ color images [9–11]. Image features 

such as edges, texture [12], pixel intensity, hue, etc., were considered in these approaches in 

conjunction with machine learning (ML) algorithms [13–17] for the detection of corrosion. In a 

recent study, the authors have explored various color spaces in conjunction with a multi-layer 

perceptron to address the misclassification associated with varying illumination of sunlight, dark 

shadows, water wetting, and oil wetting [18]. Nevertheless, all the available approaches still lack 

the ability to distinguish a corroded surface from a similar hue possessing object in the image, 

i.e., the object which has the hue similar to that of the corroded surface may always be 

misidentified as a corroded surface in a given image. For instance, coatings, brick walls, dirt, or 

some vegetation is often noticed in the background of a structure when the images are acquired 

(see Figure 1.7) and can be misclassified as corrosion. This optical confusion between the 

 
4 This chapter is based on the paper “Hyperspectral Imaging for the Elimination of Visual Ambiguity in Corrosion 

Detection and Identification of Corrosion Sources”. Structural Health Monitoring. The material in this chapter was 

co-authored by Dayakar Naik Lavadiya (DNL), Ravi Kiran Yellavajjala (RK) and Hizb Ullah Sajid (HUS). 

Contributions of authors are as follows: Conceptualization, D.L.N. and R.K.; Formal analysis, D.L.N.; Funding 

acquisition, R.K.; Investigation, R.K.; Methodology, D.L.N., and R.K.; Project administration, R.K.; Resources, 

H.U.S. and R.K.; Software, D.L.N.; Supervision, R.K.; Validation, D.L.N.; Writing—original draft, D.L.N.; 

Writing—review & editing, D.L.N. and R.K.  
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corroded surfaces and other objects with similar hue is referred to as visual ambiguity in the rest 

of this paper. 

In addition to addressing the visual ambiguity, it is also important to distinguish the 

corroded surfaces that are chemically distinct and then use this information to identify the source 

of corrosion, i.e., the corrosive media. Identifying the source of corrosion will aid in deploying 

an appropriate corrosion mitigation strategy [19–21]. Note that the chemical distinctiveness of 

corroded surface is often expressed qualitatively in terms of corrosion products, which is also 

known to govern the corrosion rate [22,23]. Corrosion products are the minerals of iron oxide 

and oxyhydroxides resulting from the reaction between the steel metal substrate and the 

corrosive media [24]. While an acidic media such as hydrochloric acid (HCl) is found to produce 

Magnetite (Fe3O4), Ferrous Chloride (FeCl2), and FeOOH as corrosion products in steel, the salts 

such as NaCl and Na2SO4 are found to produce Akageneite (β-FeOOH) [25] and Goethite 

(α-FeOOH) [25], respectively as corrosion products in steel. The redox reactions of steel and all 

three different corrosive media (HCl, NaCl and Na2SO4) are mentioned elsewhere [26–31]. As 

reported in the literature, HCl exhibits a corrosion rate of 49.96 mm/year [32] which is more 

aggressive when compared to the corrosion rate exhibited by the salts NaCl and Na2SO4 i.e., 2.45 

mm/year [33] and 1.27 mm/year [34], respectively. Note that Goethite was found to decelerate 

the corrosion rate [35], and Akageneite was found to increase the corrosion rate [36]. 

The shortcomings of the existing image processing techniques in the literature can be 

attributed to the limited spectral information acquired in the images, i.e., broadband spectra of 

Red, Green, and Blue color (RGB). The current study is based on the premise that the acquisition 

of multiple narrow-band spectra of the corroded surface in the visible and near infra-red (VNIR) 

region of Electromagnetic (EM) radiation will aid in providing more information that can 
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distinguish corrosion from visually ambiguous objects and identify the chemically distinct 

corroded surface. Hyperspectral imaging (see Figure 5.1) is an emerging technology that 

integrates conventional imaging and spectroscopy to simultaneously collect spatial and spectral 

information from the surface of an object [37–39]. The images obtained from hyperspectral 

imaging sensor are referred to as data cubes since they are composed of spatially arranged pixels 

in a two-dimensional space and a set of spectral reflectance intensities (for each pixel) in the 

third dimension. In comparison with conventional photos, which have a few spectral broadbands, 

for example, RGB and multispectral image (MSI), the hyperspectral images have several 

hundreds of narrow spectral bands of the same scene [40]. While the use of hyperspectral 

imaging technique for object recognition and characterization in the fields of 

pharmaceuticals [41,42], agriculture [43–45], food quality control [46–49], material 

identification, and mapping of the artworks [50–52] is evident from the literature, its importance 

in the field of structural health monitoring, especially corrosion damage detection in civil 

infrastructure is found to be very limited to the best of our knowledge [53].  

This chapter aims to identify the chemically distinctive and visually ambiguous corroded 

surface (i.e., corrosive media) using the support vector machine (SVM) classifier. For training 

the SVM classifier the reflectance magnitude of the VNIR spectral bands of corroded/coated 

surface are employed as the descriptive features. Furthermore, the key wavelengths of the VNIR 

spectra that capture the distinguishability of visually ambiguous corroded surfaces are also 

determined, which may aid in building a customized multispectral camera for on-field 

applications [54]. The rest of the paper is organized as follows: protocol for the acquisition of 

hyperspectral data is described in Section 5.2, generating training, test, and validation datasets 

are explained in Section 5.3, the methodology adopted for this study is detailed in Section 5.4, 
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results are discussed in Section 5.5, and the conclusions and applications are provided in Section 

5.6. 

5.2. Acquisition of Hyperspectral Data 

Hyperspectral data of the corroded (HCl, NaCl, Na2SO4), non-corroded, and paint coated 

ASTM A572 structural steel plates are acquired in this study to train an SVM classifier. In this 

section, the process of inducing corrosion onto the ASTM A572 structural steel plates is 

described, and the procedure followed for acquiring the spectral data using a hyperspectral 

imaging system (HIS) is provided. 

5.2.1. Lab Generated Coated and Corroded Steel Plates 

ASTM A572 plates (3"×3"×5/16") are acquired from a commercial supplier and are 

coated with the acrylic/vinyl paint that has R, G, and B values 124, 0, and 32, respectively. The 

paint material chosen here has the visual appearance of the protective coatings used in real-world 

scenarios. Furthermore, the choice of RGB color ensures that the visual ambiguity with the 

corroded surface is achieved (see Figure 1.7(c)) for fulfilling the objective of the study.  The 

chemical composition of the ASTM A572 plates as supplied by the manufacturer is provided in 

Table 5.1. A total of five steel plates are coated in this study. While two plates are completely 

surface coated, the rest of the steel plates are only partially coated (see Figure 5.2 and Figure 

5.3). Completely coated plates are used to generate the training and test datasets (see Section 

5.3.1) consisting of spectral information extracted from numerous pixels randomly chosen from 

the hyperspectral image and, partially coated plates are used to create the validation dataset (see 

Section 5.3.2) that consist of spectral information extracted from each coated pixel of the 

hyperspectral image.  
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Table 5.1. Chemical composition of ASTM A572 structural steel. 

Chemical composition (%) ASTM A572 Gr. 50 

Carbon (C) 0.05 

Manganese (Mn) 1.34 

Phosphorous (P) 0.011 

Sulphur (S) 0.004 

Silicon (Si) 0.15 

Copper (Cu) 0.28 

Chromium (Cr) 0.19 

Nickle (Ni) 0.13 

Molybdenum (Mo) 0.04 

Vanadium (V) 0.083 

Titanium (Ti) 0.001 

Niobium (Nb) 0.003 

Iron (Fe) 97.718 

For corroding ASTM A572 plates, three different corrosive media, namely ‘Acid’ – 1M 

hydrochloric acid (HCl), ‘Salt’ – 3.5 wt.% sodium chloride (NaCl), and ‘Sulfate’ – 3 wt.% 

sodium sulfate (Na2SO4) are employed. The purpose of using three different corrosive media is 

to achieve chemically distinctive corroded ASTM A572 plate surfaces, i.e., different corrosion 

products (see Section 5.1). For achieving the NaCl corrosion and Na2SO4 corrosion the steel 

plates are placed inside an environmental chamber that is operated at a constant temperature of 

30°C and a relative humidity of 60%. In the case of NaCl corrosion, 3.5 wt.% NaCl solution is 

periodically sprayed (every ~7 hours) on the steel plate surfaces for three days. Similarly, in the 

case of Na2SO4 corrosion, 3 wt.% Na2SO4 solution is periodically sprayed (every 7 hours) on the 

surfaces of the steel plates for three days. For HCl corrosion, steel plates are kept immersed in a 

1M HCl solution for 1 hr. and are then removed and placed in a humid environment for three 

days to achieve complete corrosion in the immersed areas of the steel plates. Note that the above-

mentioned procedure is not a standard protocol and is only followed for the sake of achieving 

visually identifiable corrosion on the steel surfaces. One set of four plates each are corroded 

using each of the three corrosive media. While the surfaces of three of the plates in each set are 

exposed completely to a corrosive media, one of the four plates in each set, specifically, the 
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partially paint coated plate, is exposed partially to the corrosive media. In the process of 

corroding the partially paint coated plate, the painted region and some portion of the non-

corroded region are masked with the acid-resistant tape such that only two small square slots of 

dimensions 0.5×0.5 inch are exposed for corrosion (see Figure 5.3).  

5.2.2. Data Acquisition and Calibration 

Specim FX10® (Spectral Imaging Ltd., Oulu, Finland) benchtop hyperspectral imaging 

system (HIS) is employed to acquire the hyperspectral data of corroded (#4 HCl, #4 NaCl, #4 

Na2SO4), non-corroded (#2) and coated plates (#2). The schematic of the HIS used in this study 

is shown in Figure 5.1, which consists of a two-column frame that holds the hyperspectral 

camera and the illumination source on the top and a movable scanning platform perpendicular to 

the camera lens on the bottom. The hyperspectral camera employed herein is capable of 

capturing 448 narrow spectral bands of the reflected light with wavelengths ranging from 397 nm 

- 1004 nm (a.k.a Visible and Near Infra-Red (VNIR) spectra). Two 150-Watt halogen lamps 

(provided by the manufacturer) are employed as an illumination source. Halogen lamps are a 

source of incandescent light that emits energy in the VNIR range of the electromagnetic 

spectrum [55]. For obtaining the hyperspectral data, the plates are placed on the scanning 

platform that is allowed to move in a horizontal direction at a speed of 13.7 mm/s. The vertical 

distance between the camera lens and the scanning platform is maintained at 30 cm, and the 

exposure time of the camera is set to 29.22 ms. Note that the image acquisition of the surface of 

the object is carried out in a strip-by-strip fashion as the scanning platform moves (scanning 

principle) i.e., the spectral information along the line strip of the object is acquired one-at-a-time 

and not the entire surface (see Figure 5.1). This type of image acquisition is referred to as a push-

broom or line scan technique. The spatial sampling comprises 1024 pixels in a one-line strip. The 



 

143 

data acquired from scanning is then stored in a raw data format by the Lumo® Recorder software 

interface connected to the HIS.   

 

Figure 5.1. Schematic of the line-scan/push-broom Hyperspectral Imaging System (HIS). 

The raw spectral data in the form of a data cube (the third dimension of the cube has the 

spectral reflectances) obtained from the HIS consists of noise from (1) the light reflected by the 

instrument and the illumination in the background and (2) the ‘dark current’ inherently generated 

by the sensor itself when no light/photon is incident on the sensor (i.e., when the camera shutters 

are closed). Dark current is a thermal phenomenon in which electrons are generated 

spontaneously within the sensor when they are thermally excited, and this phenomenon does not 

depend on the intensity of light reflected from the object [55]. The raw spectral data is calibrated 

beforehand using the white and dark reference spectra that are acquired along with the spectra of 

the plate specimens to eliminate the above-mentioned noises. The white reference spectra are 

obtained by scanning a white reference tile made from Spectralon whose spectral reflectance 
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ranges from 250 nm to 2500 nm [55], and the dark reference spectra were captured by fully 

obscuring the camera objective lens using an opaque black cap. The calibrated data are obtained 

using  

I =
Io − Id

Iw − Id
 (5.1) 

where, I is the magnitude of calibrated spectral reflectance, Io is the magnitude of raw spectral 

reflectance,  Id is the magnitude of dark spectral reference and Iw is the magnitude of white 

spectral reference. In the current study, Prediktera® Evince software is employed to calibrate the 

data cube. 

5.3. Datasets 

The calibrated spectral reflectance data of the corroded (HCl, NaCl, Na2SO4), non-

corroded, and coated pixels are extracted from the spatial dimensions of the hyperspectral cube 

of corroded, non-corroded, and paint coated steel plates, respectively, and a master dataset is 

generated. A master dataset D herein is referred to as a matrix of N rows, and r = q + 1 columns 

such that each row represents the spectral information of the corroded, non-corroded, or paint 

coated pixel; each of the q columns (descriptive features) represents the reflectance magnitude of 

VNIR spectral wavelength or spectral dimension λi=1,2,…q associated with each pixel and; the 

(q + 1)th column has the class labels that belong to the set {C1, C2, … , Cm} associated with each 

pixel (spectral information). In the context of the current study, the total number of data points, 

N = 50,000, number of spectral bands, q = 448, and the number of classes, m = 5; wherein the 

class labels C1, C2, C3, C4 and C5 are associated with ‘Non-corrosion’, ‘Coating’, ‘Acid’ (HCl 

corrosion), ‘Salt’ (NaCl corrosion), and ‘Sulfate’ (Na2SO4 corrosion), respectively.    
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5.3.1. Training and Test Dataset 

The training and test dataset required to train and test the machine learning classifier is 

generated by partitioning the master dataset D. Note that the master dataset generated in this 

study is a balanced dataset, i.e., each of the five classes has the same number of observations 

(10,000 each). A partitioning ratio of 70:30 is adopted to obtain training and test datasets, 

respectively, and the observations in these datasets are randomly chosen from the master dataset. 

After partitioning D, the balanced training dataset consisted of 35,000 observations with 448 

spectral reflectance values such that 7,000 observations belong to each of the class labels C1, C2, 

C3, C4 and C5, and balanced test dataset consisted of 15,000 observations with 448 spectral 

reflectance values such that 3,000 observations belonged to each of the class labels. 
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Figure 5.2. ASTM A572 structural steel plates used for the acquisition of hyperspectral images to 

generate the training dataset. (a) ‘Non-corrosion’, (b) ‘Coating’, (c) ‘Acid’ (1M HCl corroded), 

(d) ‘Salt’ (3.5 wt.% NaCl corroded) and, (e) ‘Sulfate’ (3 wt.% Na2SO4 corroded).  

5.3.2. Validation Dataset 

The calibrated data cubes of partially coated and corroded steel plates (see Figure 5.3) are 

used as the validation datasets that are not used for the purpose of training. Validation datasets 

are employed to verify the generalized prediction ability of the trained machine learning 

classifier. A total of three validation datasets are generated, i.e., the first validation dataset is 

(a) 

(c) 

(d) 

(e) 

(b) 

2.5 cm 
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associated with a partially coated plate exposed to HCl, the second validation dataset is obtained 

from a partially coated plate exposed to NaCl, and the third validation dataset is generated by 

exposing the partially coated plate to Na2SO4. Note that each pixel in the validation datasets 

consists of 448 spectral reflectance values similar to the master dataset (see Figure 5.4).  

 

Figure 5.3. Partially coated ASTM A572 structural steel plates used for the acquisition of 

hyperspectral images to generate the validation dataset. (a) ‘Acid’ (1M HCl corroded), (b) ‘Salt’ 

(3.5 wt.% NaCl corroded) and (c) ‘Sulfate’ (3 wt.% Na2SO4 corroded).  

 

Figure 5.4. Pseudo-schematic of a hyperspectral data cube. 
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5.4. Methodology 

The methodology adopted to identify the ‘Non-corrosion’, ‘Coating’, ‘Acid’, ‘Salt’, and 

‘Sulfate’ using hyperspectral data involves two tasks, (1) dimensional reduction of the 

hyperspectral dataset and, (2) training, testing, and validation of the ML classifier. Hyperspectral 

images generally consist of information from correlated neighboring spectral bands that often 

convey the same information about the object. In practice, a correlation coefficient matrix R is 

evaluated from the training dataset and its off-diagonal elements (ρij, i ≠ j) are examined to 

determine the extent of correlation between the information obtained from the spectral bands.  

ρij =
cov(xi, xj)

√var(xi)var(xj)
 (5.2) 

where xi and xj are any two column vectors of the spectral bands X ∈ RN×q = (x1, x2, … , x448) in 

the training dataset such that subscript i and j indicate the column number ranging from 1 to 448, 

cov(. ) represents the covariance, var(. ) represents the variance and −1 ≤ ρij ≤ 1 represents a 

measure of linear correlation between the reflectance magnitudes of spectral bands  xi and xj. 

While the magnitude of ρij close to +1 indicates a perfectly linear positive correlation, the 

magnitude of ρij close to -1 indicates a perfectly linear negative correlation. In the current study, 

the spectral wavelengths in the range of 600 nm-1004 nm are found to be highly positively 

linearly correlated, and the ones in the range of 397 nm-510 nm are found to be moderately 

negatively linearly correlated (see Figure 5.5). 
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Figure 5.5. Correlation coefficient matrix of wavelengths in VNIR spectra represented as pseudo 

colors. While the larger positive magnitude (+1) on the color bar indicates higher positive linear 

correlation, the larger negative magnitude (-1) indicates higher negative linear correlation. The 

narrow strip in horizontal and vertical directions represents the range of wavelengths that are 

least correlated and are useful in distinguishing coating from corroded surface (eliminating visual 

ambiguity).  

Including highly correlated features may result in the poor performance of the classifier 

and will also lead to higher computational effort [56,57]. Dimensional reduction is performed 

using Principal Component Analysis (PCA) to eliminate the effects of redundant information on 

the performance of classifiers [58]. PCA finds a new set of latent variables called principal 

components (PCs) which are expressed as a linear combination of original features. PC’s are 

uncorrelated and are determined with an aim to capture the maximum variance in the given data. 

A detailed mathematical derivation of PCA can be found elsewhere [59,60]. For further analysis, 

only the top PC’s that account for more than 90% variance within the training data are chosen 

(see Section 5.5.2). Herein, the MATLAB® code developed in house is used for performing PCA 

and determining the principal components. 

The dimensionally reduced training, test, and validation datasets are obtained by 

performing the linear transformation of the respective datasets with the principal components and 

are subsequently used to train, test, and validate a Support Vector Machine (SVM). Support 
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Vector Machine is a discriminant technique that aims at finding an optimal decision surface that 

separates the distinct classes such that the margin between the support vectors is maximized [61]. 

Support vectors are the instances that are closest to the separating decision surface. 

Mathematically, a linear binary SVM optimization problem is written as [62] 

min
w,b

1

2
‖w‖2 subjected to yi(wTx + b) − 1 ≥ 0 (5.3) 

where w ∈ Rd are the weights associated with dimensionally reduced features (reflectance of 

spectral bands), b ∈ R is an intercept, yi=1,2 ∈ {−1, +1} are the binary class labels and, x ∈ Rd is 

a vector of dimensionally reduced features. Note that wTx + b = 0 in Eq. (3) represents a 

hyperplane. In the context of the current study, since the number of class labels are more than 

two, one-against all strategy is implemented to obtain m binary decision functions (hyperplanes) 

to determine the class labels [62]. 

5.5. Results 

In this section, the VNIR spectral profile of the ‘Non-corrosion’, ‘Coating’, ‘Acid’ (HCl 

corrosion), ‘Salt’ (NaCl corrosion), and ‘Sulfate’ (Na2SO4 corrosion) is provided and, the 

dimensionally reduced spectral band reflectances (principal components) of the datasets are 

determined. Further, the performance of the trained SVM classifier is assessed, and its efficacy 

on the validation dataset is verified.  

5.5.1. Spectral Profiles 

A Spectral profile represents the variation in the magnitude of surface reflectance as a 

function of the wavelength of the light. It differs from one object to the other based on the 

physical, chemical, and morphological characteristics of the surface and the illumination source 

[63]. The reflectance of VNIR spectra averaged for 10000 pixels each from the ‘Non-corrosion’, 

‘Coating’, ‘Acid’, ‘Salt’, and ‘Sulfate’ hyperspectral images (VNIR range: 397nm to 1004 nm) is 
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shown in Figure 5.6. From Figure 5.6, it can be deduced that the reflectance intensity of ‘Non-

corrosion’, ‘Coating’, ‘Acid’, ‘Salt’, and ‘Sulfate’ are distinguishable from each other in few 

regions of the spectra. While the difference in the reflectance intensity for ‘Non-corrosion’, 

‘Coating’, ‘Acid’ is clearly noticeable for the wavelength ranging from 523 nm to 580 nm 

(visible region), the difference in the reflectance intensity for ‘Salt’ and ‘Sulfate’ is noticeable 

for the wavelength ranging from 866 nm to 1004 nm (near-infrared region). The difference in the 

reflectance intensity observed between the ‘Coating’ and the rest of the corroded surfaces further 

reveals that the visual ambiguity can be eliminated if the images are acquired with illuminations 

in the range of 523 nm to 580 nm wavelengths. The peak observed at the 750nm for ‘Acid’, 

‘Salt’, ‘Sulfate’ and ‘Coating’ indicates the reflectance associated with the visible ‘red’ color 

whose range lies between 640nm to 780nm. Although the differences in the reflectance 

intensities are noticed for a certain range of wavelengths, this alone may not be sufficient to 

achieve satisfactory classification [64]. The latent variables need to be extracted for improving 

the performance of the SVM classifier, which is described next. 

 

Figure 5.6. Averaged reflectance from VNIR spectra of ‘Non-corrosion’, ‘Coating’, ‘Acid’ (1M 

HCl corroded), ‘Salt’ (3.5 wt.% NaCl corroded), and ‘Sulfate’ (3 wt.% Na2SO4 corroded) pixels. 
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5.5.2. Choosing the Number of Principal Components 

For a given dataset, the maximum number of principal components obtained from PCA is 

equal to the number of features of the dataset. In the context of the current study, the maximum 

number of principal components is 448. Note that only a few PC’s can account for the maximum 

variance within the data and hence are sufficient for classification. The coefficients used in 

obtaining the PC’s are the eigenvectors or loading vectors associated with the higher magnitude 

eigenvalues obtained during PCA. After performing PCA on the training dataset, it was found 

that the first, second, and third PC’s captured 79%, 14%, and 3% of the variance within the 

training data, respectively. That is, the sum of the variance of the first three PC’s accounted for 

96% of the total variance within the data. Since the first two PC’s alone accounted for 93% 

variance, the first two PC’s are considered for the task of classification using SVM. To visualize 

the distinguishability of ‘Non-corrosion’, ‘Coating’, ‘Acid’, ‘Salt’, and ‘Sulfate’ in 

dimensionally reduced space, the observations of the training dataset with the first two PC’s are 

plotted in Figure 5.7. From Figure 5.7, it is evident that ‘Coating’ is distinguishable from 

corroded surface ‘Acid’, ‘Salt’ and ‘Sulfate’, indicating the possible elimination of the visual 

ambiguity. Further, from Figure 5.7, it can also be found that ‘Acid’ is distinguishable from 

‘Salt’ and ‘Sulfate’ classes revealing the identification of chemically distinct corroded surfaces. 

However, in the case of ‘Salt’ and ‘Sulfate’, a significant overlap is observed.  
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Figure 5.7. Biplot of top two principal components revealing clusters of ‘Non-Corrosion’, 

‘Coating’, ‘Acid’, ‘Salt’ and ‘Sulfate’ observations. PC1 and PC2 accounts for 79% and 14% of 

total variance, respectively. 

Furthermore, the coefficients of the first two PC’s along with their first and second 

derivatives are shown in Figure 5.8. The coefficients of PC’s and their derivatives provide 

additional information about the spectral profile such as change in the slope and the curvature. 

This additional information would aid in identifying the key wavelengths that would distinguish 

the coating and all three chemically distinct corroded surfaces [46]. From Figure 5.8 (a), it is 

found that the highest and least magnitude of coefficients for the first PC is associated with 

760nm and 515nm wavelength, respectively, while for the second PC the highest and least 

magnitude of the coefficients is associated with 515nm and 760nm wavelength, respectively. 

Similarly, from Figure 5.8 (b), the wavelengths of 580 nm, 665 nm and 841 nm and, from Figure 

5.8 (c), the wavelengths of 507 nm, 680 nm, and 886 nm are identified as the key wavelengths. 

Comparing all the wavelengths obtained from the coefficients and their derivatives, the 

following four sets of wavelength ranges are identified as key wavelength ranges for identifying 

the ‘Non-corrosion’, ‘Coating’, ‘Acid’, ‘Salt’, and ‘Sulfate’ surface: 500-520 nm, 660-680 nm, 

760-770 nm and 830-850 nm. 
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Figure 5.8. (a) Coefficients of top two principal components; and their derivatives, (b) first 

derivative, and (c) second derivative. 

5.5.3. Performance Assessment of Trained SVM  

The performance of the trained SVM classifier to predict the class labels accurately is 

assessed using the test dataset (see Section 5.3.1), i.e., the known class labels of the test dataset 

and the predicted class labels from the trained SVM classifier are compared. A summary of the 

correct and incorrect classifications is provided as a confusion matrix (C) in Error! Reference s

ource not found.. Confusion matrix is a m × m square matrix, where m represents the number 

of class labels and each element Cij of C represents the frequency of instances from validation 

dataset that are assigned class label j by the classifier which in reality belongs to class label i 

[65]. For assessing the performance of the classifier, a metric referred to as prediction accuracy 
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is used, which is defined as the ratio of the total number of observations whose class labels are 

correctly identified to the total number of observations present in the test dataset. Mathematically 

it is expressed as 

Ac =
∑ Cii

m
i=1

∑ ∑ Cij
m
j=1

m
i=1

× 100% 
(5.4) 

In this study, the SVM classifier resulted in an accuracy of 93.2%, i.e., 93.2% (‘Non-

Cororsion’-100%, ‘Coating’-99%, ‘Acid’-99%, ‘Salt’-82% and ‘Sulfate’-87%) observations of 

the test data are correctly classified. While ‘Non-corrosion’, ‘Coating’, and ‘Acid’ are predicted 

accurately i.e., misclassifications were less than 2%, 18% of ‘Salt’ class labels  are  misclassified 

as ‘Sulfate’ class labels and 13% of ‘Sulfate’ class labels are misclassified as ‘Salt’ class labels. 

Accurate prediction of ‘Coating’ indicates that its visual ambiguity between corroded and coated 

surfaces is eliminated, and accurate prediction of ‘Acid’ corrosion reveals that chemically 

distinct corrosion can be identified using the proposed approach. As mentioned earlier, the 

misclassification in ‘Salt’ and ‘Sulfate’ class labels may be attributed to the overlap of their 

respective spectra in a dimensionally reduced space due to chemical and morphological 

similarities between the corrosion products. 

Table 5.2. Confusion matrix of correctly and incorrectly classified class labels (in percentage 

fraction). 

Class 

Actual Class Label 

Non-

Corrosion 
Coating Acid Salt Sulfate 

P
re

d
ic

te
d

 L
a
b

el
 

Non-

Corrosion 1 0 0 0 0 

Coating 0 0.99 0.03 0 0 

Acid 0 0.01 0.97 0 0 

Salt 0 0 0 0.82 0.13 

Sulfate 0 0 0 0.18 0.87 
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5.5.4. Validation 

Further validation is performed to verify the generalization capability of trained SVM 

classifiers on the validation dataset that was not used for training purposes and is different from 

the test dataset. The validation images used for this purpose are shown in the Figure 5.3. A pixel-

wise approach is employed wherein the spectral data (reflectance) of each pixel of the validation 

hyperspectral cube is chosen one after another for classification. The results obtained after 

classification is shown in Figure 5.9(a)-(c). Note that the ground truth images are also provided 

in Figure 5.9 for qualitative comparison. From Figure 5.9(a), it can be observed that the SVM 

classifier was able to predict the ‘Acid’, ‘Non-corrosion’ and  ‘Coating’ class labels correctly 

with slight misclassifications at the top left corner of the plate where ‘Coating’ is misclassified as 

‘Acid’. However, in the case of ‘Salt’ and ‘Sulfate’ validation images, some portions of ‘Salt’ 

class label are misclassified as ‘Sulfate’ class label, and some portion of ‘Sulfate’ corrosion is 

misclassified as ‘Salt’ corrosion as mentioned in the previous section. The misclassifications in 

the case of ‘Salt’ and ‘Sulfate’ class labels could be attributed to the presence of similar iron 

oxide corrosion products in ‘Salt’ and ‘Sulfate’ corroded specimens. X-ray diffraction (XRD) 

was performed using the Bruker Xray diffractometer equipped with Cu-Kalpha radiation at 40 kV 

and 30 mA to prove the presence of similar corrosion products. A 2θ range of 10° to 85° was 

maintained during data acquisition. The corrosion product identifications were performed by 

comparison to the International Center for Diffraction Database (ICDD) available on Match3® 

software. 
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Figure 5.9. Corrosion source identification: validation for (a) ‘Acid’ (1M HCl), (b) ‘Salt’ (3.5 

wt.% NaCl) and (c) ‘Sulfate’ (3 wt.% Na2SO4). 
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The XRD of ‘Salt’ and ‘Sulfate’ corroded samples are provided in Figure 5.10. While the 

XRD spectra of the ‘Salt’ sample (see Figure 5.10(a)) revealed the presence of Akageneite and 

Goethite iron oxide minerals, the XRD spectra of the ‘Sulfate’ sample (see Figure 5.10(b)) 

revealed the presence of Goethite and Lepidocrocite iron oxide minerals. The corrosion products 

identified in this study through XRD are in good agreement with the results published in the 

literature [23,25,30,31]. The presence of similar iron oxide mineral Goethite in both ‘Salt’ and 

‘Sulfate’ corroded specimen is a possible explanation for the overlap between the reflectance of 

VNIR spectral bands. Interestingly, both ‘Salt’ and ‘Sulfate’ corroded specimens look similar 

also from the hue point of view (i.e., visual ambiguity) despite the difference in the corrosion 

products, namely, Akageneite and Lepidocrocite. A more detailed description of color 

discrimination of various iron oxide minerals is provided elsewhere [63, 66–68]. The 

misclassification between the ‘Salt’ and ‘Sulfate’ corroded samples can hence be attributed to the 

presence of Goethite and similar hue in the visible spectrum. However, the misclassification rate 

is below 20%, which is within the acceptable range in the structural health monitoring 

community [69]. In the future work, the authors would carry out FTIR/Raman spectroscopy 

studies to show the relationship between the corrosion products and the absorbed bands of light. 

 

Figure 5.10. XRD spectra for (a) ‘Salt’ (3.5 wt.% NaCl), and (b) ‘Sulfate’ (3 wt.% Na2SO4) 

surfaces.  
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5.6. Conclusions 

Hyperspectral data of ‘Non-corrosion’, ‘Coating’, ‘Acid’, ‘Salt’ and ‘Sulfate’ labeled 

specimens are acquired in the VNIR range of the EM spectrum and are used to train, test and 

validate the SVM classifier. The conclusions drawn from this study are as follows 

1. The visual ambiguity between the coatings and corroded surfaces with a similar hue can 

be eliminated using the VNIR spectra. In this study, the top two principal components of 

the reflectance of VNIR spectra, along with an SVM, are used to eliminate visual 

ambiguity between the coating and corroded surfaces.  

2. The source of corrosion, i.e., ‘Acid’, ‘Salt’ and ‘Sulfate’ is also identified using the top 

two principal components of the reflectance of VNIR spectra. The trained SVM classifier 

was able to identify the source of corrosion with an overall accuracy of 94%. 

3. The misclassifications in the case of ‘Coating’ and ‘Acid’ data is less than 2%. However, 

the misclassifications observed in the case of ‘Salt’ and ‘Sulfate’ data is 18% and 13%, 

respectively. 

4. Misclassifications of ‘Salt’ and ‘Sulfate’ class labels may be attributed to the presence of 

similar iron oxide corrosion products. For confirmation, XRD characterization tests were 

carried out, and the corrosion product Goethite was found on both ‘Salt’ and ‘Sulfate’ 

corroded surfaces. 

5. Among the 448 spectral bands that were acquired from the hyperspectral images, only a 

few spectral bands were found to play an important role in the identification of corrosion 

sources and elimination of visual ambiguity. The important ranges of the wavelengths of 

the spectral bands identified for the classification of coating and corroded surfaces are 

500-520 nm, 660-680 nm, 760-770 nm, and 830-850 nm.  
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Push broom hyperspectral imaging systems are expensive and are primarily developed 

for benchtop applications limiting their use in field applications. Building a customized 

multispectral imagining sensor with the ability to capture the spectral information in the desired 

range of wavelengths may be a feasible and an economical option. The multispectral sensors are 

portable and hence could be easily mounted on UAVs for easy navigation and maneuvers in the 

field. The key wavelengths identified in this study can be used to build a multispectral imagining 

sensor that can eliminate the visual ambiguity and detect the chemically distinctive corroded 

surfaces in civil, structural, aerospace, and offshore structures. 
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6. LITERATURE REVIEW OF EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) 

In this chapter a brief background on history of XAI is provided. Further the review of 

currently available XAI algorithms are summarized along with their advantages and 

disadvantages. 

6.1. History of XAI 

The history of explanation in intelligent systems can be traced back to 1970’s when the 

expert systems were built to retain the knowledge of a bounded domain problem in the form of 

IF-THEN rules for reasoning the prediction. Since then various explanation systems emerged in 

the field of artificial intelligence which could be categorized into three distinct generations (see 

Figure 6.1) [1]: (1) first generation-expert systems (1970’s), (2) second generation knowledge-

based tutors (mid 1980’s) and (3) third generation systems (after 2010). A brief overview of all 

three generation systems is as follows. 

 

Figure 6.1. Number of publications identified in the field of explainable artificial intelligence 

(XAI) (Redrawn [1]). 

6.1.1. First Generation-Expert System 
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procedures entailing facts and heuristics which would otherwise require human attention. In 

other words, it provides the solutions to the problems in the narrow domains through heuristic 

knowledge fed by an expert into the system and cannot be a general solver. For instance, 

MYCIN [3] was developed for diagnosing only the infectious blood diseases which could be 

considered as a sub-domain of medical field and cannot be generalized to other sub-domains of 

the same field. Expert systems are assistants to decision makers and not the substitutes for them. 

Some of the first generation explanation systems include MYCIN, the Digitalis Therapy Advisor 

[4], XPLAIN [5], BLAH [6] which typically operated in human-computer interaction mode 

where the queries by the users were answered [7].  

The schematic of the architecture used to build an expert system is shown in Figure 6.2 

which consists of four main components [7], (1) knowledge acquisition module (from domain 

experts), (2) knowledge base, (3) inference engine and (4) input/output interface. Knowledge 

base consists of domain specific knowledge elicited from the domain experts, knowledge 

engineers and other sources such as books, manuals etc. The knowledge stored in knowledge 

base is in a representable form such as simple if-then rules, semantic networks, conceptual 

graphs, frame and object oriented schemes and petri nets. The inference engine constitutes 

algorithms that extract the knowledge stored in knowledge base to solve a problem. The 

input/output interface facilitates the interaction of the system with the user through GUI and 

provide a reason why those test results were required for diagnosing. Expert systems developed 

in other areas included the tasks of classification.  
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Figure 6.2. Architecture of first generation-expert system [7]. 
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facilities can offer clarifying explanations to correct misunderstandings [7]. Major developments 

that have differentiated explanation in second generation systems from explanation in first 

generation systems: 1) new architectures have been developed to capture more knowledge that is 

needed for explanation, and 2) more powerful explanation generators have been developed from 

problem-solving point of view. List of various architectures developed in second generation 

systems are as follows [9]: first principles architecture [10], Neomycin and heuristic 

classification architecture [11], multi-levels of abstraction architecture [8], Generic tasks 

architecture [12], explainable expert systems framework [13], Steel’s model-based architecture 

[14] and reconstructive explanation [7].  

First principles architecture is built based on the premise that the reasoning should be 

derived from first principles. Such systems should possess the ability to impose and relax 

assumptions as necessary. Neomycin architecture uses metarules to provide higher-level 

representations for problem-solving strategy that were implicit in MYCIN framework. This was 

achieved by two sub-modules EXPLORE-AND-REFINE and FINDOUT wherein the former one 

was associated with the ruleset and the later was associated with the question-asking [7]. In 

Neomycin, rules in the ruleset were accessed through a control process which involved its 

activation through metarules. Multi-levels of abstraction architecture included more detailed 

pathophysiological knowledge (accurate attribution of findings) and less detailed 

phenomenological knowledge (global view of search space) which were modelled through causal 

networks embodying a link that indicated the relation between attributes of cause and effect. 

Generic tasks architecture is based on compilation of deep knowledge from the task perspective 

i.e. the experiential shallow knowledge representing the patterns of particular task and the deep 

knowledge obtained from the first principles. While experiential knowledge is considered as task 
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dependent and can deal with only routinely occurring instances, the deep knowledge is 

considered as task independent and can deal with reasoning of rare instances.  

Unlike first generation expert systems which lacks the ability to provide good 

justifications, the explainable expert systems captures the design information and enriches the 

explanations by building a system containing the facts about the domain, its terminology and 

general problem-solving strategies.  In Steel’s model-based architecture the reasoning is 

represented as a structure of tasks whose execution is carried out using the control structure. The 

process of carrying out the tasks depends on domain specific knowledge, referred to as problem-

solving methods. The connection between domain model and the problem-solving method is 

initiated by heuristic role annotations. In reconstructive explanations the system constructs the 

post hoc explanations that justifies the prediction by using a separate knowledge base. 

6.1.3. Third Generation Systems  

Between 1990’s and 2010’s, which is referred to as an explainability winter, not much 

progress took place in the field of XAI [1] (see Figure 6.1). More focus was put on developing 

state-of-art AI algorithms which aimed at higher accuracies of prediction and enhanced model 

performance. Examples include, neural networks, deep learning, ensemble learning etc. Detailed 

review of various explainable strategies that was developed during the third generation systems 

is discussed in the next question. 

6.2. Review of Interpretable AI methods 

Methods developed to interpret the black box or opaque machine learning models can be 

broadly classified into two categories namely, model-agnostic and model-specific [15]. While 

model-agnostic methods draws the interpretations of the trained ML model by accessing the 

input features of the model and their respective outcomes (as predicted by the trained BB model) 
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(see Figure 6.3(a)), the model-specific methods draws interpretations based on the analysis of the 

parameters of internal components and their interaction of a specific machine learning model 

(e.g. weights or model coefficients in linear regression, activation of the hidden neurons and how 

they interact with inputs in neural networks etc. Figure 6.3(b)). In other words, model-agnostic 

methods provide interpretations without accessing the structure of the ML model and model-

specific methods provides interpretations through the access of the structure of ML model. List 

of methods available under these two categories are provided in Table 6.1 [15-17]. 

 

Figure 6.3. Illustration of (a) model-agnostic method and (b) model-specific method. 
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Table 6.1. List of interpretable methods for ML models. 

Model-agnostic methods Model-specific methods 

1. Partial dependence plots. 

2. Independent component 

plots. 

3. Accumulated local effects 

plot. 

4. Local Interpretable 

Model-Agnostic 

Explanations (LIME). 

5. Anchor plots. 

6. Kernel-Shapley Additive 

Prediction (SHAP). 

7. Sensitivity analysis. 

8. Global surrogate model. 

9. Local Rule-based 

Explanations (LORE). 

Multi-layer 

perceptron 

1. Decompositional 

(DAATAMINER, KT, 

CRED, DeepRED). 

2. Pedagogical (RxREN). 

3. Ecletic. 

Convolutional 

Neural network 

1. Activation Maximization. 

2. Class activation maximization 

(CAM). 

3. Gradient Class activation 

Maximization (GradCAM). 

4. Deconvolutional neural 

network (Deconvnet). 

5. Guided backpropagation. 

6. Deep LIFT. 

7. Integrated gradients. 

8. Deep Taylor decomposition. 

9. Saliency. 

10. Layerwise relevance 

propagation (LRP). 

11. DeepSHAP. 

Ensemble tree 1. TreeSHAP. 

 

6.2.1. Model-Agnostic Methods 

6.2.1.1. Local Interpretable Model-Agnostic Explanation (LIME) [18] 

LIME generates an intrinsically interpretable model g(x∗) which is locally faithful to the 

trained black box model f(x) i.e. it captures the behavior of the trained black box model f(x) in 

the vicinity of an instance x∗ that is being investigated. LIME model is developed based on the 
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premise that the features which are important in the global context may not be important in the 

local context. For generating a LIME interpretable model, the local behavior of the black box 

model f(x) is learned though a sample of artificially generated instances obtained by perturbing 

the instance that is being investigated (see Figure 6.4) i.e. x∗. In other words, a new sample 

dataset (marked as ‘+’) is generated in the vicinity of an instance x∗, whose labels are 

determined from a trained black box model f(x). Note that the instances of the locally generated 

sample dataset are assigned weights based on their proximity to the instance x∗ i.e. the instances 

that are far from x∗ are assigned less weightage and the instances that are close to x∗ are assigned 

more weightage. An intrinsically interpretable model such as decision tree or additive model is 

then obtained for the weighted sample dataset around x∗.  

 

Figure 6.4. Illustration of LIME approach. The size of the markers (‘+’) representing the 

artificially generated instances vary depending on their distance from  x∗. 

Let g ∈ G be considered as an interpretable model where G is a class/set of interpretable 

models such as linear models, decision tress, rule fit etc. If πx∗(z) denotes the proximity measure 

between x∗ and any instance z in its vicinity (e.g. πx∗(z) = exp(−d(x∗, z)/σ where d is a 

distance function such as cosine or Euclidean and σ is width) and Ω(g) indicates the complexity 
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of the g (e.g. depth of decision tree), then the LIME model is obtained by minimizing the loss 

function expressed as 

arg min
g∈G

L(f, g, πx∗) + Ω(g) (6.1) 

where L(f, g, πx∗) is a measure of how faithful g is in approximating f in the locality defined by 

πx∗. 

Advantages 

1. Can be used for any kind of ML model.  

2. Explanations are short, selective and possibly contrastive.  

3. Facilitates features mapping into more representable or understandable form. For 

instance, the presence or absence of pixels in the image can be represented as ‘1’ and ‘0’ 

respectively. 

Limitations  

1. The definition of the local neighborhood or of vicinity of the observation is not precise.  

2. LIME suffers from the inclusion of unrealistic data instances when features are 

correlated.  

3. The complexity of the explanation model has to be defined in advance.  

4. Explanations can be instable between two very close points. 

5. The main drawback may be related to its basic assumption. LIME, assumes linearity at 

locality level which may not hold true.  

6.2.1.2. Anchor LIME [19] 

Anchor LIME addresses one of the important limitations of LIME i.e. it determines the 

local neighborhood in which the explanations are valid. The explanations are then expressed as 

easy-to-understand IF-THEN rules, called anchors (see  Figure 6.5). Anchors include two 
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notions that needs to be satisfied, (1) precision and (2) coverage. While precision refers to the 

ratio of number of times the label hasn’t changed after perturbations to the number of samples 

satisfying the anchor, coverage refers to the space limited by the anchor (see Figure 6.5). The 

precision directly reflects the quality of the anchor i.e. it shows how stable the anchor is to 

perturbations. Finding anchors involves an exploration of input feature space which can be seen 

as a multi-armed bandit problem in the discipline of reinforcement learning. To this end, 

neighbors, or perturbations, are created and evaluated for every instance that is being explained. 

If multiple anchors satisfy the precision and coverage criteria, then the most global one is 

selected. 

 

Figure 6.5. Illustration of Anchor LIME approach. 

Advantages 

1. Similar to LIME, anchor LIME is applicable to any kind of ML model. 

2. The algorithm’s output is easier to understand, as the rules are easy to interpret. 

3. The anchors approach works when model predictions are non-linear or complex in an 

instance’s neighborhood.  
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Limitations 

1. Threshold for precision needs to be stated.  

2. The process of finding anchors requires multiple calls to ML model. 

3. The notion of coverage is undefined in some domains. For example, there is no obvious 

or universal definition of how superpixels in one image compare to such in other images 

[15]. 

6.2.1.3. Local Rule-Based Explanations (LORE) [20] 

Similar to LIME and anchor LIME, LORE also learns a local interpretable predictor on 

an artificially generated neighborhood. However, these artificial instances are generated using a 

genetic algorithm. From the local interpretable predictor, the meaningful explanations are then 

derived in the form of decision rules. Additionally, LORE also provides a set of counterfactual 

rules, suggesting the changes in the instance’s features that lead to a different outcome. 

Definition of Local explanation: Let x∗ be an instance for which explanation is sought, 

and f(x∗) = y∗ be the decision of the black box model. A local explanation e =  ⟨r, ϕ⟩ is then 

formulated as a pair of decision rule r =  (p →  y) consistent with f(x∗); and a set Φ = {pሾδ1ሿ 

→ ŷ, . . . ,pሾδv ሿ → ŷ} counterfactual rules for p consistent with f(x∗). 

LORE adopts genetic algorithm to generate a balanced dataset z ∈  Z=  ∪  Z≠, by 

maximizing the following two fitness functions:  

fitness=(z) = Ib(x)=b(z) + (1 − d(x, z)) − Ix=z 

fitness≠(z) = Ib(x)≠b(z) + (1 − d(x, z)) − Ix=z 

where d ∶  Xm  →  ሾ0, 1ሿ is a distance function, Itrue  =  1, and Ifalse = 0. The first fitness 

function looks for instances z similar to x (term 1 − d(x, z)), but not equal to x (term Ix=z ) for 
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which the black box f(x) produces the same outcome as x(term Ib(x)=b(z)) . The second one 

leads to the generation of instances z similar to x, but not equal to it, for which f(x) returns a 

different decision.  

Distance Function. Distance function d(x, z) in above equation is expressed as follows.  

d(x, z) =
h

m
.Match(x, z) +

m − h

m
NormEuclid(x, z) 

where h are categorical features. 

Advantages  

1. Produces a high-quality training data in the local neighborhood to learn the local decision 

tree. 

2. A high expressiveness of the local explanations along with counterfactuals suggesting 

what should be different in the vicinity of the data point to reverse the predicted outcome. 

Limitations 

1. LORE is demonstrated only for tabular data.  

2. Extension of LORE to global description of the black box is not provided.  

6.2.2. Shapley Values and SHapely Additive exPlanations (SHAP) [21, 22] 

Shapley values is a concept from cooperative game theory which assigns payout to each 

individual player depending on their contribution towards the total payout. In the context of ML 

explanation, features represent the players and the prediction represents total payout. Shapely 

values indicate the perfect decomposition of the prediction among all the features. Note that the 

term ‘prediction’ here refers to the difference between the prediction of an instance f(x) and the 

average model prediction E(f(X)) i.e. total payout or the prediction is equal to f(x) − E(f(X)). If 

ϕj denotes the Shapley value or contribution of each feature xj, then summation of all Shapley 
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values is expressed as ∑ ϕj
p
j=1 = f(x) − E(f(X)) where p is the number of features.  Shapley 

value is the average contribution of a feature value to the prediction in different coalitions.   

The shapely value for a feature xj is evaluated as 

ϕj = ∑
|S|! (p − |S| − 1)!

p!
S⊆{x1,x2,…,xp}\xj

(f(S⋃{xj}) − f(S)) 
(6.2) 

where S is the subset of the features used in the model except xj and |S| is the number of features 

in the subset that is chosen except xj. The magnitude of ϕj can be interpreted as the weighted 

mean over all subsets of features excluding xj. The first term on the right hand side of the 

equation indicates the weightage from each combination of subset of features and the second 

term indicates the difference in the predicted value when xj is included with subset of features S. 

For the sake of illustration, let p = 3 and the features of an instance be given by x = (x1, x2, x3). 

If the contribution of x3 is to be evaluated, then the total combinations of features excluding x3 

are  23−1 i.e. ∅, {x1}, {x2}, {x1, x2}. Note that when only one feature is chosen in subset S then 

|S| = 1 and when two features are chosen then |S| = 2 and so on. The Shapley value for x3 is 

then computed as 

ϕ3 =
1

3
(f(x1, x2, x3) − f(x1, x2)) +

1

6
(f(x1, x3) − f(x1)) +

1

6
(f(x2, x3) − f(x2))

+
1

3
(f(x3) − f(∅)) 

Shapley values can be both positive and negative. Higher positive Shapley value 

indicates higher positive contribution and higher negative Shapley value indicates higher 

negative contribution to the prediction of an instance when compared to the average prediction 

for the dataset. 
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Limitations 

1. For more than a few features, number of possible coalitions exponentially increases as 

more and requires a lot of computing time.  

2. Explanations created with the Shapley value method always use all the features.  

3. Access to the data is required to calculate the Shapley value for a new data instance.  

4. Similar to other methods, the Shapley value method suffers from inclusion of unrealistic 

data instances when features are correlated. 

6.2.2.1. Kernel SHAP 

Kernel SHAP is an additive feature attribution method which explains the prediction of 

the BB model for an instance x∗ by decomposing the prediction into the respective feature 

contributions. Mathematically this is expressed as   

f(x∗) = ϕ0 + ∑ ϕi
∗

p

i=1

 

(6.3) 

Where ϕ0 = Eሾf(x)ሿ is the global average prediction and ϕi
∗ is the Shapley value for a feature xi 

in x∗. Higher Shapley value of a feature indicates its significance towards the prediction. 

To compute ϕi
∗ Kernel SHAP carries out minimization of weighted least squares formulation  

∑ (f(S) − (ϕ0 + ∑ ϕi

p

i=1

))

2

K(p, S)

S⊆{x1,x2,…,xp}

 (6.4) 

with respect to ϕ0, ϕ1, … . , ϕp, where K(p, S) =
p−1

(
p

|S|) |S|(p−|S|)
 are the Shapley kernel weights. 

Given f(S), the computation of Shapley value vectors ϕ = (ϕ0, ϕ1, … . , ϕp) becomes expensive 

and intractable when the number of features increases resulting in more number of combinations 

of features. Therefore, assuming that we have a proper approximations for f(S) when few of the 
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Shapley kernel weights are ignored due to their little contribution to Shapley values, only a 

subset of features can be chosen instead of all 2p combinations and the computation effort can be 

reduced without compromising the accuracy. The subset of features is chosen such that they 

follow the probability distribution of Shapley weight kernel. Note that |S| = ∅ and |S| = p are 

avoided as they result in infinite kernel weights (i.e. K(p, 0) = K(p, p) = ∞). The magnitude of 

f(S) for all the possible feature subsets is evaluated as 

f(S) = Eሾf(x)|xS = xS
∗ሿ 

i.e. the selected feature subset values  xS
∗ is substituted into the trained model f(x) and the 

expected value is evaluated. However, the model f(x) needs input of all features for valid 

computation i.e. the complement of subset S, denoted by S̅ is missing in the above equation. To 

resolve the missing features issue, the marginalized features are used in the place of S̅ by 

assuming feature independence and is obtained from training data sample as 

f(S) =
1

N
∑ f(xS̅

i , xS
∗)

N

i=1

 

Limitations 

1. Kernel SHAP is computationally slow. 

2. Kernel SHAP ignores the feature dependence. 

6.2.3. Partial Dependence Plots (PDP) [23, 24] 

The partial dependence plot (short PDP or PD plot) reveals the marginal effect of one or 

two features have on the predicted outcome of a machine learning model. A partial dependence 

plot can show whether the relationship between the target and a feature is linear, monotonic, or 

more complex. Mathematically it can be expressed as  

f(xS) = Eሾf(xs̅, xS)ሿ = ∫ p(xs̅)f(xs̅, xS)dxs̅ (6.5) 
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where xS are the set of features for which dependence of prediction is examined,  xs̅ denotes the 

set of features not included in xS, p(xs̅) marginal distribution of xs̅. For a given training data, the 

partial dependence of prediction on subset of features xS is practically evaluated as 

f(xS) =
1

N
∑ f(xs̅

i , xS)

N

i=1

 

Where xs̅
i  denotes the actual feature values of set S̅ from the training dataset containing i =

1,2, … , N samples. 

Advantages and Limitations 

1. Procedure is intuitive and interpretations are clear. 

2. It is easy to implement 

Limitations 

1. Assumes that the features are independent. 

2. Any heterogeneous effects cannot be detected. 

3. Providing visualization for more than two features is difficult. 

6.2.4. Accumulated Local Effects (ALE) [15, 25] 

Similar to partial dependence plots, ALE also evaluates the influence of the feature xj on 

the prediction f(x∗). However, ALE additionally considers the lower-order interaction effects of 

the pair of features i.e. xj vs every other feature in x∗. Lower-order interactions reduces the bias 

of the estimated feature effect and avoids the average predictions of the artificial data instances 

that are unlikely in reality which arises when the pair of features are strongly correlated. For 

instance, consider the plot shown in Figure 6.6(a). Two features x1 and x2 are positively 

correlated. The marginal distribution plot for x2 reveals the inclusion of unlikely combinations of 

x1 and x2. To avoid the inclusion of unlikely data instances a conditional distribution is 
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considered instead of marginal distribution (see Figure 6.6(b)). However, the mixed effect of 

correlated features would still prevail i.e. the dependence of prediction on feature xj alone is not 

completely obtained unless it is decoupled from the other feature it is correlated with.  

 

 

Figure 6.6. (a) marginal distribution and (b) conditional distribution of x2 for positively 

correlated features x1 and x2. 

ALE solves the problem of mixed effects by averaging the differences in predictions of 

f(x∗) obtained in small interval of the feature xj while holding the other feature value constant 

i.e. consider if x1and x2 are the two features and the effect of x1 on f(x1, x2) is to be investigated, 

then the difference of predictions f(x1 + δ, x2) −  f(x1 − δ, x2) is evaluated for all x2 values 

falling in the interval ሾx1 − δ, x1 + δሿ and then averaged. Mathematically this is expressed as 

ALE(x1) = ∫ E [
∂f(x1, x2)

∂x1
│x1 = z1] dz1

x1+δ

x1−δ

− C1 (6.6) 

where 
∂f(x1,x2)

∂x1
 indicated the local effect of x1 on f, integration signifies the accumulation and 

constant C1 is chosen such that the ALE values are independent of the bounds and have zero 
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mean over the distribution of x1 i.e. first term on the right hand side of equation is uncentered 

ALE. The above formulation can also be easily extended to interaction of two features with other 

features. However, the visualization becomes intractable as the number of dimensions increase.  

Advantages 

1. ALE plots are unbiased and works when features are correlated.  

2. ALE plots are faster to compute than PDPs.  

Limitations [33] 

1. ALE plots may appear have noise and non-smooth with a high number of intervals. 

However, reducing the number of intervals smoothens out the complexity of the 

prediction model.  

2. There is no perfect solution for setting the number of intervals. If the number is too small, 

the ALE plots might not be very accurate. If the number is too high, the curve can 

become shaky. 

3. The implementation of ALE plots is much more complex and less intuitive compared to 

partial dependence plots. 

4. Even though ALE plots are not biased in case of correlated features, interpretation 

remains difficult when features are strongly correlated. Because if they have a very strong 

correlation, it only makes sense to analyze the effect of changing both features together 

and not in isolation.  

6.2.5. Individual Conditional Expectational Plot (ICE) [26] 

ICE plots provide the visualization of influence of the features on the prediction i.e. it 

addresses the question of how prediction changes with change in the features. However, the basic 

difference between PDP and ICE plots is that the ICE plots include the display for each and 
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every individual instance instead of averaging them over all the data instances i.e. the average of 

all the lines in ICE plots is equivalent to a PDP plot. To obtain an ICE plot, each instance of the 

dataset is chosen separately, and the input of a particular feature is varied to examine its 

influence on the prediction while holding other features constant. For instance, if there are N data 

instances then an ICE plot for a particular feature xj includes N ICE lines exhibiting the behavior 

of each instance in the dataset. ICE plots help to explore individual differences and interactions 

between model inputs.     

f i(xS) = f(xs̅
i , xS

i ) 

where i = 1,2, … . , N and f i(xS) is plotted against xS
i  while xs̅

i  is fixed. 

Advantages and Limitations 

1. Individual conditional expectation curves are even more intuitive to understand than 

partial dependence plots. One line represents the predictions for one instance if we vary 

the feature of interest. 

2. Unlike partial dependence plots, ICE curves can uncover heterogeneous relationships. 

Limitations 

1. Similar to PDP, ICE curves also suffer from the problem of including unrealistic data in 

the case of strongly correlated features.  

2. In ICE plot the curves become overcrowded when the data instances increase and may be 

difficult to grasp.  

3. In ICE plots it might not be easy to see the average. However, it can be combined with 

PDP. 
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6.2.6. Sensitivity Analysis [27, 28] 

Sensitivity analysis is a method that measures the change in the output of a given model 

when the input is varied through the range of value. Based on the amount of change in the 

output, the input features are assigned ranks. Commonly used sensitivity measures for 

continuous outputs are range (Sr), gradient (Sg), average absolute deviation (Sd ) and variance 

(Sv).  

Sr = max (ŷaj
) − min (ŷaj

) where j ∈ {1,2, . . , l} and l are the levels of an input feature xa. 

Sg = ∑
(│ŷaj

−ŷaj−1
│)

l−1

l
j=2   

Sv = ∑
(ŷaj

−y̅a)
2

l−1

l
j=1  where y̅a is the mean of the response. 

Sd = ∑
(│ŷaj

−ỹa│)

l

l
j=1  where ỹa is the median of the response. 

Higher the measure, higher is the importance of the of the input feature. For the sake of 

convenience relative importance of feature is evaluated and are plotted as bar plots for 

visualization.  

ra =
ςa

∑ ςi
N
i=1

 (6.7) 

where ςa is the sensitivity measure of xa. 

6.2.7. Model-Specific Interpretable Methods (Neural Networks and CNN) 

6.2.7.1. Deconvolutional Neural Network (deconvnet) [29] 

Deconvnet is a visualization technique that provides insight into the function of the 

intermediate feature layers. In other words, they reveal the properties of the input image learned 

by each layer. For this, Deconvnet maps the activations of intermediate feature layers back to the 

input pixel space. It is similar to the convolutional neural network operation which takes place in 



 

190 

reverse order. For instance, in convolution neural networks first the convolution is carried out 

with learned set of filters and then the responses are recorded by passing the convoluted values 

through rectified linear units and then max pooling operation is performed. In deconvent, 

following the reverse order, first unpooling is performed, then the rectification is carried out and 

then finally deconvolution operation is implemented to obtain the reconstructed image. Note that 

unpooling is non-invertible. An approximate inverse of unpooling is obtained by substituting the 

values in the locations from which the maximum values were extracted during pooling operation. 

In other words, unpooling results in a sparse matrix.  

Due to zeroing out of negative gradients during backpropagation, deconvnet fails to 

highlight the inputs that negatively contributes the output. Additionally, the saturation problem 

and zero gradient problem prevails.      

6.2.7.2. Layer-Wise Relevance Propagation (LRP) [30-33] 

LRP explains the prediction of an instance obtained from the trained neural network by 

back tracking its associated relevance score (R) to the input neurons layer-by-layer i.e. it 

identifies the most relevant input features that attributed to the final outcome y∗ = f(x∗). 

Generally, the activation value of the output neuron is chosen as the relevance score. Let Rj 

denote the relevance score of the neuron j in the succeeding layer k and Ri denote the relevance 

score of a neuron i in the preceding layer k − 1 that is connected to neuron j through weight 

parameter wij. If there are n neurons in the k − 1 layer and m neurons in k layer, then the 

relevance score Ri=1..n of each neuron in k − 1 layer is evaluated as  

Ri = ∑
aiwij

∑ aiwiji
Rj

j

 (6.8) 
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where ai is the magnitude of the activation function of neuron i, wij is the weight parameter 

connecting neuron i and j. Here the summation on j indicates the number of neurons in the layer 

k that are connected with neuron i (see Figure 6.7) and the coefficient of Rj determines the 

proportion of weight contribution between neuron i and j. The above equation is also referred to 

as LRP-0 rule. Taking into account the contribution from positive and negative parts of the 

weight parameters, a generic LRP rule called as LRP αβ – rule is also provided in [34]  

Ri = ∑ (α
aiwij

+

∑ aiwij
+

i
− β

aiwij
−

∑ aiwij
−

i
) Rj

j

 (6.9) 

Where α and β are subjected to constraints α − β = 1 and β ≥ 0. 

 

Figure 6.7. Variations of Layer wise Relevance Propagation rules (Adapted from [34]). 

6.2.7.3. Deep Taylor Decomposition (DTD) [34, 35] 

Similar to LRP, deep Taylor decomposition also redistributes the relevance score of the 

prediction to the input features. However, in DTD the redistribution rules for the relevance score 

is determined based on the Taylor series decomposition. If f(x) is a nonlinear function, then the 

Taylor decomposition at well-chosen root point x̃ i.e. f( x̃) = 0 is expressed as 

 

𝑅𝑗 

𝑅𝑖 

𝑅𝑗 

𝑅𝑖 

𝑅𝑗 

𝑅𝑖 

LRP − 𝛼1𝛽0 LRP − 𝛼3𝛽2 LRP − 𝛼2𝛽3 



 

192 

f(x) = f( x̃) + (
∂f

∂x
│x= x̃)

T

. (x −  x̃) + ε  

= 0 + ∑
∂f

∂xi
│xi= xĩ

. (xi −  xĩ)

i

+ ε 

(6.10) 

where i denotes the input features and the summation term indicates the relevance score of f(x). 

Based on the above equation, the relevance score Ri of a neuron i in the preceding layer k − 1  

obtained from the relevance scores Rj of the neuron j the succeeding layer k during back 

propagation is as follows  

Ri = ∑
∂Rj

∂xi
│(xĩ)j . (xi − (xĩ)

j)

j

 

A good root point is the one that does not consist of the information of an object in the 

input features that belong to the prediction class. To determine a root point xĩ at the neuron j, a 

w2-rule is proposed in [35], which is expressed as  

(xĩ)
j = xi −

wij

∑ wij
2

i

(∑ wij

i

+ bj) (6.11) 

The relevance redistributed on to neuron i is then evaluated as 

Ri = ∑
wij

2

∑ wij
2

i

Rj

j

 (6.12) 

6.2.7.4. Saliency Maps [36] 

Saliency map is a visualization technique that aids in interpreting the prediction of the 

neural network model by providing an insight into the salient features that are responsible for the 

prediction. For this, the prediction of the model is mapped back to input feature space where the 

salient features are highlighted i.e. pixels in the case of an image can be displayed as a heatmap.  

Given an image Io and the prediction made by the trained convolutional neural network through 



 

193 

a class score function Sc(I) for an image I, let the score function Sc(I) which is differentiable can 

be approximated in the neighborhood of Io as 

Sc(I) ≈ wTI + b (6.13) 

where w is the derivative of Sc with respect to an image I at Io i.e. w =
∂Sc

∂I
│Io

 and is interpreted 

as the weightage of the pixel in the class prediction. For evaluating weights w backpropagation 

algorithm is implemented. The evaluated weights are then converted into heat map by choosing 

only the absolute value of the weights. Shrikumar et. al. [37] suggested to use gradient × pixel 

value instead of highlighting only the weights alone. Saliency maps are often noisy due to 

saturation and discontinuous gradients on ReLU. 

6.2.7.5. Guided Backpropagation [38] 

While the negative gradient values are taken into consideration in the backward pass of 

the relevant score in the backpropagation technique, they are set to zero in the guided back 

propagation technique. In other words, Guided back propagation technique combines both 

deconvnet and the saliency map when handling ReLU nonlinearity.  

Ri
l = (fi

l > 0). (Ri
l+1 > 0). Ri

l+1 (6.14) 

where Ri
l  and Ri

l+1 are the relevance scores in layer l and (l + 1), and fi
l is the ReLU function of 

neuron i in layer l. 

6.2.7.6. Deep Learning Important FeaTures (Deep LIFT) [37, 39] 

Similar to saliency, deconvnet and guided back propagation techniques, Deep LIFT also 

relies on back propagation approach. However, it employs the difference in activations from the 

chosen reference value instead of using direct gradients. If Δt denotes the difference in the target 

value due to the difference in the input value Δx (can be the neurons from preceding layer), then 

the contributions of the input neurons are assigned to the difference in target value such that 
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∑ CΔxΔt = Δtn
i=1 . Authors of Deep LIFT have also defined a term referred to as ‘multipliers’ 

which indicates change in t due to infinitesimal change in x and is denoted as mΔxΔt =
CΔxΔt

Δx
. 

Applying chain rule to the multipliers that connect neurons in one layer to the other layer, 

backpropagation can be easily carried out. For assigning contribution scores, three different rules 

are proposed namely, linear rule, rescale rule and reveal cancel rule. While linear rule is 

employed for the linear function maps on input to output, the rest of the two rules are employed 

for nonlinear functions. In the case of linear rule the multipliers are directly determined as the 

weights connecting the neurons and in the case of rescale rule the multipliers are the ratios of 

change in the output neuron to the change in the input neuron. To evaluate the contribution of 

each input feature, the multipliers along the network path are multiplied using chain rule and 

then combined with change in the value of the input feature.  

6.2.7.7. Integrated Gradients [40] 

Unlike Deep LIFT technique which considers the direct difference of the target value and 

input value from their respective reference or baseline value for evaluating the contributions of 

input features, integrated gradients technique constructs the difference in step by step manner by 

scaling the input linearly from the reference value. For instance, consider an image classification 

problem and let the reference image be a black image. The difference between the original image 

and reference image is interpolated into series of images such that the pixel intensities vary 

linearly from reference image to original image. The gradients are calculated for all the series of 

the images and then averaged to obtain the integrated gradient image.  

IG(x) = (x − x′) ∫
∂F(x′ + α(x − x′))

∂xi
dα

1

α=0

 (6.15) 
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6.2.7.8. Class Activation Mapping (CAM) [41] 

CAM and Grad-CAM techniques identifies the important features or dominant regions of 

the input image which activates the neuron in the output layer associated with a class label yc. 

For this purpose, first the weights in the output layer are projected back on to each feature map 

of the last convolutional layer. The weighted feature maps are then combined to obtain the heat 

maps referred to as class activation maps. However, CAM and Grad-CAM differ in their 

approach. In CAM, the CNN architecture is tweaked to replace the fully connected layers with 

the Global Averaging Pooling (GAP) layer (see Figure 6.8). GAP layer consists of neurons 

representing the feature maps from the last convolutional layer wherein the magnitude of each 

neuron is obtained by calculating the average of each feature map. In other words, if there are k 

feature maps of size u × v in the last convolution layer, then the GAP layer will also consists of 

k neurons where the magnitude of each neuron is evaluated as 
1

uv
∑ ∑ Aij

kv
j=1

u
i=1  where Ak denotes 

the kth feature map and the subscript ij indicates the (i, j)th pixel in the feature map. The 

tweaked CNN architecture is then retrained to obtain the weights of the synapses connecting the 

GAP layer and the output layer. If w1
c, w2

c , … , wk
c are the weights of the synapses associated with 

the neurons in the output layer, then the score yc of each neuron in output layer is expressed as 

yc = ∑ wi
c 1

uv
∑ ∑ Aij

l

v

j=1

u

i=1

k

l=1

 (6.16) 

Each feature map is then multiplied by the weights associated with the predicted class label yc 

and are combined. CAM is expressed as 

CAM = ∑ wi
cAi

k

i=1

 (6.17) 
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However, the heatmaps obtained through CAM have limitations. Since the fully 

connected layers are removed from the CNN architecture, the model performance is 

compromised. Besides this the model has to be retrained for the determination of weights in the 

GAP layer.   

 

Figure 6.8. The schematic of class activation mapping (CAM). 

6.2.7.9. Gradient-Class Activation Mapping (Grad-CAM) [42, 43] 

Grad-CAM addresses the limitations of CAM by (1) retaining the fully connected layers 

in the CNN architecture and (2) employing the gradients of class score yc with respect to the 

feature map Ak i.e. it incorporates 
∂yc

∂Ak
. Note 

∂yc

∂Ak
 that can be evaluated through backpropagation. 

The schematic of Grad-CAM is shown in Figure 6.9. Unlike CAM, no GAP layers are explicitly 

used in Grad-CAM. However, the global average pooling technique is employed on gradient 

feature maps to obtain the importance weights αc
k i.e. 
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αc
k =

1

uv
∑ ∑

∂yc

∂Aij
k

v

j=1

u

i=1

 (6.18) 

To obtain the final heat map, Grad-CAM evaluates the weighted combination of feature maps 

and passes it through ReLU.  

GradCAM = ReLU(∑ αc
i Ai

k

i=1

) (6.19) 

Drawbacks of Grad-CAM include inability to localize multiple occurrences of an object 

in an image and inaccurate localization of heatmap with reference to coverage of class region 

due to the partial derivatives premise. The continual upsampling and downsampling processes 

may also result in loss of signal. 

 

Figure 6.9.  The schematic of Gradient-class activation mapping (Grad-CAM). 
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6.2.8. Shallow and Deep Neural Networks 

Various rule extraction techniques for shallow neural networks with at most one or two 

hidden layers have been proposed in late 90’s. These rules were either in “IF-THEN” form, or 

“M-OF-N rules” form or a decision tree. Collectively, these techniques could be put into three 

categories namely decompositional algorithms, pedagogical algorithms, and eclectic algorithms 

[44]. Decomposition algorithms work at neuron/layer level of the network and then later 

aggregates the rules from all the neurons/layers to represent the whole network. Pedagogical 

approach extracts the rules by mapping input to its corresponding output rather than working on 

the internals of the network. Eclectic approaches combine both decompositional and pedagogical 

approach. A list of techniques falling under these categories is provided in Table 6.2. Among the 

listed techniques, only Deep RED (extension of CRED) and RxREN are briefed herein as they 

extend to deep neural networks and rest of techniques are restricted to shallow networks.  

Table 6.2. List of rule extraction algorithms for neural networks [44]. 

Algorithm Type Algorithms Type of rule extraction 

Decompositional 

KT [45] IF-THEN 

CRED [46] Decision Tress 

DIFACON-Miner [47] IF-THEN 

Tsukimoto’s Algorithm [48] IF-THEN 

FRENN [49] M-of-N rules 

Deep RED [50] Decision Tree 

Pedagogical 

ANN-DT [51] Binary decision tree 

HYPINV [52] Hyperplane rule 

TREPAN [53] M-of-N split, Decision tree 

BIO-RE [54] 

RxREN [55] 

Binary rule 

Eclectic 

Rx [56] IF-THEN 

Kahramanli and  

Allahverdi’s algorithm [57] 

IF-THEN 
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6.2.8.1. Deep RED 

Deep RED is an extension of CRED algorithm [46] that extracts both continuous and 

discrete rules from the trained neural network using decision tree (C4.5). While CRED included 

rule extraction for a shallow network consisting of one hidden layer, Deep RED extracts rules for 

the deep network consisting of multiple hidden layers. Deep RED involves two phases, (1) 

extracting the rules between each layer in the network and (2) substituting and merging all rules. 

In the first phase, two successively connected layers are chosen iteratively (in the direction of 

output layer to input layer) and the decision tree is built in each iteration such that the hidden 

neurons in preceding layer acts as input features and the neurons in the succeeding layer acts as 

an output unit. Let the rules obtained in each iteration be denoted by Ra→b where a represents the 

preceding layer and b represents the succeeding layer. For instance, if a neural network consists 

of  h1, h2, . . , hk hidden layers and let i be the input layer and o be the output layer, then the rules 

obtained from decision tress between layers hk and o is denoted as Rhk→o. The next set of rules 

are extracted for Rhk−1→hk
 and the process is repeated until Ri→h1

. All the rules from the hidden 

layers are then merged to obtain Ri→o such that redundant rules are omitted.  

Although Deep RED provides comprehensible rules from deep neural networks for 

binary classification, further research is required to gauge its performance for multi class 

classification. Also, the influence of decision tree parameters needs to be thoroughly 

investigated. 

6.2.8.2. Rule Extraction by Reverse Engineering the Neural Networks (RxREN) 

RxREN is a pedagogical algorithm i.e. it maps the input to the output without accessing 

the internals of the neural network architecture. RxREN algorithm constitutes two phases: (1) 

removal of insignificant input neurons from the trained network and obtaining a data range for 
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significant input neurons and, (2) constructing the rules for each class using the data ranges of 

significant input neurons. To identify the insignificant input neurons, the number of misclassified 

instances resulting from the deletion of one input neuron at a time from the trained neural 

network is evaluated. A threshold criterion is then set which indicates the number of 

misclassified instances and the input neurons satisfying this criterion are removed from the 

network. The pruned network with significant neurons is then re-executed to verify the accuracy. 

Upon satisfying the accuracy, the instances of the training dataset are grouped based on their 

class label for each significant input neuron. The minimum and maximum values of each 

significant input neuron are then determined for each class label. For instance, let i2 be a 

significant neuron and let the number of class labels be 3. Then each class will consist of 

minimum i2 value and maximum i2 value which will be obtained (see Figure 6.10). Based on the 

extracted minimum and maximum values for significant input neuron and its associated class 

label, the rules are extracted.  

 

Figure 6.10. Significant neurons in the network and range of values associated with each class. 

቎

(𝐿11, 𝑈11) (𝐿12, 𝑈12) (𝐿13, 𝑈13)

(𝐿31, 𝑈31) (𝐿32, 𝑈32) (𝐿33, 𝑈33)

(𝐿41, 𝑈41) (𝐿42, 𝑈42) (𝐿43, 𝑈43)
቏ 

𝐶1 𝐶2 𝐶3 

𝑖1 

𝑖4 

𝑖3 

Class label 

Significant 

input 

neurons 

𝐿𝑖𝑗 – Minimum value of input feature 𝑖 associated 

with class 𝐶𝑗  

𝑈𝑖𝑗 – Maximum value of input feature 𝑖 

associated with class 𝐶𝑗  



 

201 

6.2.9. Potential Research Gaps in XAI 

Following research gaps are identified in the field of XAI.  

1. Most of the existing approaches in deep learning rely on visualization techniques to 

identify or highlight the important features in the image. However, visualization maps 

alone might be insufficient for the purpose of interpretation or explanation since human 

bias might hinder the proper use of XAI in mission-critical applications. In other words, 

the interpretations obtained from visualization maps needs to be presented in more 

elaborated form rather than qualitatively. 

2. Explanations of models using techniques like Deep LIFT, Integrated gradients and Deep 

Taylor Decomposition rely on the reference point. Choosing a wrong reference point 

might result in misleading explanations. Therefore, a general approach for identifying the 

representative reference point is needed for generating reliable and consistent 

explanations.  

3. Metrics for quantitatively measuring the explanations is unavailable. For instance, the 

performance of ML model can be quantified using ‘accuracy’, ‘precision’, ‘F-measure’ 

etc. 

4. Often the bias terms are ignored during the interpretation of deep learning models e.g. 

saliency. According to Wang et. al.[58] the bias terms may have strong attribution 

towards the outcome.  

5. Debugging of deep neural networks to remove insignificant neurons and improve the 

architecture is not extensively studied. Although RxREN removes the insignificant 

neurons from the neural networks, the approach is relied on training dataset. 
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Incorporating the new instances through perturbation might guide in developing more 

optimal neural network architecture.    

6. Most of the interpretable models does not consider feature interaction. Incorporating 

techniques like Accumulated Local Effects along with the kernel SHAP, LIME may 

provide better explanations. 

7. Finite difference schemes are employed currently for sensitivity analysis. However, finite 

difference schemes prone to subtractive cancellation errors [19,20] (see Chapter 7). 

Subtractive cancellation errors are caused by subtracting two close numbers whose 

difference could be in the order of the precision of the calculations.  

6.3. Scope of the Current Research in XAI 

In this dissertation, the limitation of sensitivity analysis is addressed. A novel algorithm 

is proposed that eliminates the subtractive cancellation errors. Specifically, the proposed method 

is implemented in the framework of deep neural networks.  
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7. NOVEL SENSITIVITY METHOD FOR EVALUATING THE FIRST DERIVATIVE 

OF THE FEED-FORWARD NEURAL NETWORK OUTPUTS AND PERFORMING 

FEATURE SELECTION5 

7.1. Introduction 

Multilayer feedforward neural networks (FFDNN) are parameterized nonlinear models 

that approximate a mathematical mapping between the input features and the output target 

variables [1]. Although FFDNNs are known to possess the potential for approximating various 

functions [2,3], they are often treated as black-box models because of the complexity involved in 

generating the closed-form expression of the learned function. Sensitivity analysis can be 

performed to understand the relationship and influence of each input on the output of a problem 

[4–7]. Sensitivity analysis is performed by examining the change in the target output when one 

of the input features is perturbed. In other words, performing sensitivity analysis involves the 

computation of partial derivatives of the outputs with respect to the inputs. While a larger 

magnitude of partial derivative suggests a drastic change in output with a small variation in the 

input, a smaller magnitude of partial derivative suggests smaller sensitivity of the output to the 

input [4].  

In FFDNNs the first derivative (i.e., 
∂y

∂xk
) of the output y with respect to the kth input xk is 

evaluated employing the backpropagation algorithm, which involves the application of derivative 

chain rule [8–11]. Application of chain rule in this context is similar to the one employed during 

 
5 This chapter is based on the paper “Novel Sensitivity Method for Evaluating the First Derivative of the Feed-Forward 

Neural Network Outputs”. J Big Data 8, 88 (2021). https://doi.org/10.1186/s40537-021-00480-4. The material in this 

chapter was co-authored by Dayakar Naik Lavadiya (DNL), and Ravi Kiran Yellavajjala (RK). Contributions of 

authors are as follows: RK: Conception, design of work, interpretation of results, revising the manuscript, and 

acquiring funding. DLN: execution, data generation, coding, first draft preparation, interpretation of results, and 

revision of manuscript. 
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the training of an FFDNN where 
∂E

∂wij
 is evaluated for backpropagating the error with respect to 

the parametric weights wij of the network [12–15]. The goal of this chapter is to evaluate the 

derivatives of the FFDNN outputs with respect to the inputs without the need for 

backpropagation employing numerical differentiation techniques. 

Finite difference schemes are employed for evaluating numerical derivatives [16–18]. In 

finite difference schemes, the input features are perturbed one at a time (e.g. xk) with a finite step 

size (h) and the change in the output of a trained FFDNN is obtained. Popularly employed finite 

difference schemes include finite difference approximation (FDA) (see Eq. (7.1)) and central 

finite difference approximation (CFDA) (see Eq. (7.2)) methods, which are given as follows   

Finite difference approximation (FDA) 

f ′(x1, x2, … xk, … xq) ≈
(f(x1, x2, … xk + h, … xq) − f(x1, x2, … xk, … xq))

h
 (7.1) 

Central finite difference (CFDA) 

f ′(x1, x2, … xk, … xq) ≈
(f(x1, x2, … xk + h, … xq) − f(x1, x2, … xk − h, … xq))

2h
 (7.2) 

where x = (x1, x2, … xk, … xq)′ ∈ Rq×1 are the inputs, q is the number of inputs, f(. ) is the 

function mapping the inputs to the output variable and, f ′(. ) is the first partial derivative 

approximation of f(. ) with respect to the input xk. However, finite difference schemes are prone 

to subtractive cancellation errors [19,20]. Subtractive cancellation errors are caused by 

subtracting two close numbers whose difference could be in the order of the precision of the 

calculations. This scenario is inevitable in the case of finite difference schemes due to the 

subtractive operation as seen in the numerators of Eq. (7.1) and Eq. (7.2) and the use of very low 

h values to lower the truncation errors [19]. With this, an additional computational step to 
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evaluate the ideal h value to minimize the truncation error without increasing the subtractive 

cancellation error is necessary when finite difference schemes are evaluated. A novel 

differentiation scheme is necessary to avoid this additional step and to achieve analytical quality 

derivatives by minimizing both truncation and subtractive cancellation errors.  

In this chapter, firstly, a novel method for determining the analytical quality first 

derivative of feedforward deep neural network outputs is proposed and then its extension to 

generate explanations of the feed-forward neural networks predictions in terms of feature 

attribution is described. i.e., steps involved in performing sensitivity analysis of the FFDNN are 

provided.  To this end, a brief overview on the concept of complex-step derivative approximation 

(CSDA) is provided, and its ability to circumventing the subtractive cancellation errors 

associated with other numerical differentiation techniques is illustrated in Section 7.2. 

Implementing CSDA in the framework of FFDNN for regression and classification tasks is 

demonstrated in Section 7.3, and steps involved in performing complex-step sensitivity analysis 

to generate explanations are mentioned in Section 7.4 and 7.5. 

7.2. Complex-Step Derivative Approximation (CSDA) 

CSDA is a numerical differentiation technique proposed by Lyness and Moler [21]. 

CSDA was successfully implemented in various fields of engineering, including aerospace [22–

25], computational mechanics [26–28], estimation theory (e.g., second-order Kalman filter) [29], 

etc., for performing sensitivity analysis and evaluating the first-order derivatives. In this section, 

the mathematical description of CSDA to estimate analytical quality first-order derivative of a 

single scalar variable scalar function is provided [30].  

Let f be an analytic function of a complex variable z. Also, assume that f is real on the 

real axis. Then f has a complex Taylor series expansion which is expressed as 
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f(x + ih) = f(x) + ihf ′(x) −
h2

2!
f ′′(x) −

h3

3!
f ′′′(x) + ⋯ (7.3) 

where, h is the step size and i2 = −1. By taking the imaginary component of f(x + ih), dividing 

it by the step size and truncating the higher-order terms in the Taylor series, the CSDA for the 

first derivative can be expressed as 

f ′(x) =
Imag(f(x + ih))

h
+ O(h2) (7.4) 

where Imag (*) denotes the imaginary component and  O(h2) is the second-order truncation 

error. It is interesting to note that there are no subtractive operations in Eq. (7.4), which are 

inevitable in the finite difference approximations (see Eq. (7.1) and Eq. (7.2)). The absence of 

subtractive operations in the numerator ensures that the CSDA is not prone to subtractive 

cancellation errors. Hence, a very small value of h can be chosen in order to eliminate the 

truncation errors without the fear of subtractive cancellation errors. A simple example is 

provided next, which illustrates the accuracy of CSDA over finite difference schemes.   

7.2.1. Illustrative Example 

Consider a smooth function f(x) provided in Eq. (7.5). The exact first-order derivative of 

the function computed at x =
π

4
 is given as 2.65580797029498.  

f(x) =
ex + x3

π + cos (πx)
 (7.5) 

The numerical first-order derivative of the above function is evaluated using all three 

approximation methods, namely, finite difference approximation (Eq. (7.1)), central finite 

difference approximation (Eq. (7.2)), and CSDA (Eq. (7.4)). The step size h employed for the 

purpose of computation ranged from 10−1 to 10−16. The absolute error (ε) for each step size is 

then evaluated using Eq. (7.6), and the results are shown in Figure 7.1.  
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ε = |f ′(x)̂ − f ′(x)| (7.6) 

where f ′(x)̂ is the approximate first derivative at x =
π

4
 for a chosen step size h and, f ′(x) is the 

exact first derivative of function f(x) at x =
π

4
. 

From Figure 7.1, it can be noticed that the absolute error decreased initially for both FDA 

and CFDA with the reduction in the step size. However, for step sizes less than h = 10−8 for 

FDA and h = 10−5 for CFDA, the absolute error was found to increase. The increase in the 

absolute error after a certain step size can be attributed to the subtractive operation in the 

numerator of finite difference schemes. On the contrary, in the case of CSDA, the absolute error 

was not only found to decline with a reduction in step size but approached a double float 

precision (~10−16) with a further decrease in the step size beyond h = 10−7. In other words, no 

subtractive cancellation errors were observed, and hence analytical quality derivatives with 

errors reaching the precision employed were obtained.  

 

Figure 7.1. Illustration of the subtractive cancellation errors in finite difference methods and the 

CSDA. Both FDA and CFDA suffer from subtractive cancellation errors unlike CSDA. The 

truncation errors in CSDA can be minimized by choosing a very low h value. (CSDA – 

Complex-Step Derivative Approximation; FDA – Finite Difference, and CFDA – Central Finite 

Difference Approximation).  
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7.3. Implementation of CSDA in Feed-Forward Deep Neural Networks 

Obtaining a closed-form expression in feedforward deep neural networks (FFDNN) is not 

only challenging but also a tedious task. Nevertheless, CSDA can be implemented in the 

framework of the feedforward deep neural network (FFDNN) for evaluating the variation of the 

output variable y ∈ R with respect to the change in an input xk ∈ R, where the subscript k 

represents the kth input. The extended form of CSDA (see Eq. (7.4)) applied to a multivariate 

function can be expressed as 

f ′(x1, x2, … xk, … xq) =
Imag (f(x1, x2, … xk + ih, … xq))

h
+ O(h2) (7.7) 

where x = (x1, x2, … xk, … xq)′ ∈ Rq×1 are the input features, q is the number of input features, 

f(. ) is the function mapping the input features to the output target variable and, f ′(. ) is the first-

order derivative approximation of f(. ) with respect to the input feature xk. 

Implementation of CSDA in FFDNN involves three steps (see Figure 7.2): (1) configure 

and train the FFDNN for a given dataset, (2) perturb the input feature xk one at a time (see Eq. 

(7.7)) with an imaginary step size of ih (where h ≪ 10−8) and perform the feedforward 

operation on the trained FFDNN and (3) obtain the output neuron's imaginary component with 

respect to the perturbed input and divide this component with the step size (h). Configuring the 

FFDNN is a trial-and-error process that involves finding the appropriate number of neurons and 

hidden layers in a network.  A network is said to be configured when it is capable of learning an 

approximate mathematical mapping between the input features and the associated target variable 

such that it could be generalized to the unseen data instances. Guidelines for choosing trial 

configurations of FFDNN can be found elsewhere [31]. For training the feedforward neural 

network, the backpropagation algorithm, in conjunction with the Levenberg-Marquardt 
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optimization technique, is employed in this study [32]. Note that the code for implementing the 

CSDA in FFDNN was written and executed in the MATLAB® environment.  

 

Figure 7.2. Schematic of steps involved for implementing CSDA in FFDNN framework. 

7.3.1. Illustrative Example 

For illustrating the effectiveness of the CSDA in computing the first order order 

derivative of FFDNN, a single variable function (see Eq. (7.8)) commonly employed in CSDA 

literature is chosen. A single hidden layer with 100 neurons is configured to train the FFDNN 

and the first order derivative is obtained at x =
π

4
 for step size of h = 10−15. Both FDA and 

CFDA are also employed on the same trained FFDNN and first order derivative is obtained for 

same step size. The results along with the exact solution is provided in Table 7.1. From the Table 

7.1 it is evident that the proposed methods result in least error (i.e., 2.9e-5) when compared to 

existing methods FDA (i.e., 0.145) and CFDA (i.e., 2.2e-3).  

f(x) =
ex

(cos x)3 + (sin x)3
 

(7.8) 

Furthermore the derivatives are evalauted for all the x values using CSDA, FDA and 

CFDA and is provided in Figure 7.3. Comparison of exact solution and the first order derivatives 
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evaluated using CSDA, FDA and CFDA.. From Figure 7.3 it can inferred that the proposed 

CSDA method predicts the analytical quality derivative that coincides with the exact solution. 

However in the case of FDA and CFDA the derivatives are found to be inaccurate due to 

subtractive cancellation errors. 

Table 7.1. Comparison of error between CSDA and other existing methods. 

@ x=pi/4 Exact CSDA FDA CFDA 

Output 3.10176 3.10167 3.55271 3.10862 

Error - 2.9e-5 0.1454 2.2e-3 

 

 

Figure 7.3. Comparison of exact solution and the first order derivatives evaluated using CSDA, 

FDA and CFDA. 

In what follows, the implementation of CSDA is demonstrated for regression and 

classification tasks using artificial datasets consisting of more than one variable. 
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7.3.2. Regression 

The process of generating artificial datasets (from a known analytic function) for 

performing regression is described in this subsection. The first-order derivative results are then 

obtained from the CSDA implemented FFDNN (see Eq. (7.7)) and are compared with the exact 

analytical derivatives of the known function.  

7.3.2.1. Datasets and FFDNN Configurations 

Three different single scalar-valued functions are employed in this study to generate 

artificial datasets for the regression task (see Table 7.2). While the first two functions R1, R2 

have 3 input features x1, x2 and x3, the third function R3 is chosen to have 4 input features 

x1, x2, x3 and x4, wherein the feature x4 represents the uniformly distributed random noise added 

to the function R2. Since the added noise x4 has no significant contribution in evaluating the 

output of the function R3, the mean of the first-order derivative with respect to x4 computed 

using CSDA would be expected to be zero. In other words, the purpose of adding noise is to 

verify the proposed method’s ability to identify the least relevant feature. The input features 

employed in the dataset are real-valued and are independent of each other. In total, 2000 

instances are randomly generated for each dataset from a uniform distribution of the feature 

values. The range of the values chosen for each input feature for all three datasets is summarized 

in Table 7.3. These randomly generated input features are then substituted in the respective 

functions R1, R2 and R3 to obtain the associated target variables y for each dataset.  
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Table 7.2. Functions used to generate artificial datasets for regression. 

         Function Exact Derivatives 

R1: y = x1
4 + 2x2

3 + 3√x3  
∂y

∂x1
= 4x1

3;  
∂y

∂x2
= 6x2

2;  
∂y

∂x3
=

3

2√x3
  

R2: y = sin(πx1) + ex2 + x3
2  

∂y

∂x1
= π cos(πx1) ;  

∂y

∂x2
= ex2;  

∂y

∂x3
= 2x3  

R3: y = sin(πx1) + ex2 + x3
2 + 0.00001x4  

∂y

∂x4
= 1e − 5  

 

For obtaining a suitable FFDNN configuration for each dataset, numerous trial 

configurations with varying numbers of neurons and hidden layers were examined beforehand. 

The trial configuration that resulted in a mean squared error (MSE) less than 1e-6 on the 

validation dataset is chosen as the suitable configuration for training the datasets. The final 

configuration of FFDNN that was adapted to train dataset 1 is 1st hidden layer (HL) (8 neurons) – 

2nd HL (5 neurons); dataset 2 is 1st HL (10 neurons) – 2nd HL (5 neurons); and dataset 3 is 1st HL 

(10 neurons) – 2nd HL (5 neurons). Note that a soft plus function (see Figure 7.4(a)) (ln (1 +

exp(Σ)), where, Σ is the net input function of a neuron) is used as an activation function for all 

the neurons in the hidden layers. The MSE of trained FFDNN associated with dataset 1, dataset 

2, and dataset 3 are determined to be 8.2e-7, 5.6e-8, and 4.3e-7, respectively.  

 

Figure 7.4. Activation function (z) employed for training FFDNNs (a) Softplus (for regression) 

and (b) ReLU (for classification). 
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7.3.2.2. Comparison of CSDA-FFDNN Output and the Exact Analytical Derivative 

CSDA is implemented on the trained FFDNNs to evaluate the change in the predicted 

output variable ŷ with respect to the input feature xj where j = 1, 2, and 3 for dataset 1 and 

dataset 2; and j = 1, 2, 3, and 4 for dataset 3. Note that in CSDA implemented FFDNN, the 

predicted output (ŷ) is a complex variable. According to Eq. (7.7), only the imaginary component 

of ŷ is required for obtaining the first-order derivative. More precisely, if g1, g2 and g3 indicates 

the approximate function (mapping x to ŷ) learned by FFDNN for dataset 1,2 and 3, 

respectively, then the first-order derivative of  g1, g2 and g3 with respect to the feature xj are 

computed as  

g1
′ =

Imag (g1(x1, . . , xj + ih, . . xq))

h
; g2

′ =
Imag (g2(x1, . . , xj + ih, . . xq))

h
; g3

′

=
Imag (g3(x1, . . , xj + ih, . . xq))

h
  

where, q = 3 for dataset 1 and dataset 2, and q =  4 for dataset 3. Since there are 2000 instances 

in each dataset, the number of first-order derivatives evaluated with respect to each feature xj is 

also 2000. The comparison between the first-order derivative evaluated (for all 2000 instances) 

using CSDA implemented FFDNN, and the exact analytical derivatives are provided in Figure 

7.5 and Figure 7.6. From Figure 7.5, it is evident that the derivatives of the approximation 

function g1 (for dataset 1) evaluated with respect to features x1, x2 and x3 using CSDA are in 

good agreement with the exact analytical derivatives 
∂R1

∂x1
,

∂R1

∂x2
 and 

∂R1

∂x3
, respectively. Among all 

the data points for features x1, x2 and x3, the maximum absolute error (ε) (see Eq. (7.6)) was 

found to occur at x1 = 1, x2 = 0.006074 and x3 = −1. Similarly, from Figure 7.6(a)-(c), it is 

evident that the derivatives of the approximation function g2 evaluated with respect to 



 

220 

x1, x2, and x3 using CSDA are also in good agreement with the exact analytical derivatives 

∂R2

∂x1
,

∂R2

∂x2
 and 

∂R2

∂x3
. Among all the data points for features x1, x2 and x3, the maximum absolute 

error (ε) was found to occur at x1 = 0.9855, x2 = 1 and x3 = 0.0005  As mentioned earlier, in 

the case of function R3 (see Figure 7.6 (d)) where the input feature x4  is least relevant, the first 

derivative with respect to all values of x4  are found to be scattered above and below the exact 

analytical derivative which is zero.  

 

Figure 7.5. Comparison of the exact analytical solution and the first derivative evaluated using 

CSDA implemented FFDNN for Dataset 1. 
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Figure 7.6. Comparison of the exact analytical solution and the first derivative evaluated using 

CSDA implemented FFDNN for Dataset 2 (a, b, and c) and Dataset 3 (d). 

7.3.3. Classification 

Unlike the regression task, evaluating the derivatives in the case of the classification task 

may not be feasible since the output of the FFDNN is discrete (e.g., SoftMax activation function 

outputs). However, considering the fact that the inputs fed to the SoftMax activation neurons in 

the output layer are not discrete, the first-order derivatives of such inputs could still be evaluated. 

These first-order derivatives will aid in providing information about the importance of the input 

features. In this subsection, the process of generating an artificial dataset for demonstrating the 

implementation of CSDA for classification tasks is described, and its significance in determining 

the top features is illustrated.  
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7.3.3.1. Dataset and CSDA Implementation 

A binary class artificial dataset with input features x1, x2 and x3 is generated such that all 

the instances belonging to class label 1 are enclosed within a cylinder of unit radius, and the rest 

of the instances belonging to class label 2 are outside the cylinder (see Figure 7.7). In total, 1000 

instances are generated for each class label. Note that the feature x3 is randomly chosen from a 

uniformly distributed noise with a zero mean, which has the least relevance in determining the 

class label. The purpose of including feature x3 is to demonstrate that the proposed approach has 

the ability to identify the least significant features. The parametric equations used to generate the 

datasets are  

Class Label 1: x1 = r1 cos(θ1) ; x2 = r1 sin(θ1) ;  x3~ U(0, 0.0001) 

where r1~ U(0, 1) and θ1~U(0, 2π) 

Class Label 2: x1 = r2 cos(θ2) ;  x2 = r2 sin(θ2) ;  x3~ 0.0001 ∗ U(0, 1) 

where r2~ U(1, 2) and θ2~U(0, 2π) 

Table 7.3. Range of input features for generating regression dataset. 

Function Range of input features 

R1 x1~U(0, 1); x2~U(1, 2);  x3~U(0.5, 5)  

R2 x1~U(−1, 1); x2~U(0, 5);  x3~U(0, 3) 

R3 x1~U(−1, 1); x2~U(0, 5); x3~U(0, 3); x4~U(0, 2) 

 

Table 7.4. CSDA of net function in output neuron as a feature score. 

Input feature, 𝐣 = 1 2 3 

∂Σo1

∂xj
 0.5009 0.4935 0.0056 

∂Σo2

∂xj
 -0.5009 -0.4935 -0.0056 
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It is important to note that all three input features are independent of one another. Similar 

to the regression task, numerous trail configurations with a varying number of neurons and 

hidden layers were examined beforehand to obtain a suitable FFDNN configuration, i.e., a 

configuration that has prediction accuracy >98%. The configuration of FFDNN that was chosen 

to train the dataset is 1st HL (8 neurons) – 2nd HL (5 neurons). Note that Rectified Linear Unit 

(ReLU) (see Figure 7.4(b)) (max (0, Σ), where Σ is the net input function for a neuron) is used as 

an activation for all the neurons in the hidden layers and SoftMax function is used as an 

activation function for the neurons in the output layer. 

The first derivative of the two net input functions in the output layer (i.e. Σo1
and Σo2

) in 

FFDNN with respect to input features x1, x2 and x3 are obtained for all the data points using 

CSDA, and the sum of their absolute values (i.e., the sum of all 2000 data points) are provided in 

Table 7.4. Considering that the first derivative (i.e. 
∂Σom

∂xj
) with respect to each input feature xj 

represents the proxy measure of its significance, the least relevant feature can be determined. In 

other words, the input feature that results in the lowest magnitude of the first derivative will be 

considered as the least relevant feature. From Table 7.4, it can be observed that the input feature 

x3 has the lowest magnitude when compared to features x1 and x2. Therefore feature x3 can be 

said to be the least relevant feature. In order to verify if the feature x3 is irrelevant, the FFDNN is 

trained again with the exclusion of feature x3 and the confusion matrix is shown in Table 7.5. 

From the confusion matrix, it is evident that the exclusion of feature x3 does not influence the 

accuracy of classification. Furthermore, the precision and recall were also determined i.e., 0.99 

and 0.98 respectively, and were noticed to be uninfluenced by the exclusion of feature x3.   
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Figure 7.7. Decision boundary learned by FFDNN to classify the binary class artificial dataset. 

Table 7.5. Confusion matrix excluding feature x3. 

 Predicted 

Class Label 1 Class Label 2 

Actual 
Class Label 1 0.99 0.01 

Class Label 2 0.02 0.98 

 

7.4. Feature Attribution Based XAI for Regression Using Complex-Step Sensitivity 

The XAI feature attribution method (CS-FA-R) involving complex-step sensitivity is 

described in this section for the regression task. It consists of four steps (see Figure 7.8). While 

the first three steps lead to evaluation of first-order derivative as described in Section 7.3, the 

fourth step involves determination of features responsible for prediction. Note that step 2 and 

step 3 (see Figure 7.8) are repeated for all instances in the training dataset, and the average 

absolute magnitude of the first-order derivative of the target output with respect to the input 

feature is evaluated. For example, if y is the target output variable and xjk is the kth feature in the 

jth observation that is complex-step perturbed (ih), then the first order derivative of the target 
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output with respect to the input feature averaged over all instances of the training dataset is 

expressed as (see Eq. (7.9)) 

∂y

∂xk
=

1

N
∑ |

∂y

∂xjk
|

N

j=1

 (7.9) 

where, N denotes the number of instances in the dataset, k = 1 … q  indicates the input feature, 

and j represents the observation number in the dataset. In the fourth and final step, the rank of 

each input feature is determined based on the magnitude of the first-order derivatives evaluated, 

as shown in Eq. (7.9). The feature with a higher magnitude of the first-order derivative is 

assigned a higher rank and vice versa. Note that for training the feedforward neural network, a 

backpropagation algorithm, in conjunction with the Levenberg-Marquardt optimization 

technique, is employed in this study [45]. 

 

Figure 7.8. Steps involved in the complex-step sensitivity for regression task. 
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7.5. Feature Attribution Based XAI for Classification Using Complex-Step Sensitivity 

The XAI feature attribution method (CS-FA-C) involving complex-step sensitivity is 

described in this section for the classification task. Unlike regression, a modification to step 3 

(see Figure 7.8) is needed in the proposed method when feature attribution is determined for the 

classification task, i.e., evaluating the first-order derivative of target output with respect to 

perturbed input feature. The need for modification could be attributed to two reasons: (1) discrete 

output in the output layer and (2) multiple first-order derivatives yielded by the feed-forward 

neural network output layer (SoftMax layer) (see Figure 7.9).  Considering the fact that the 

inputs fed to the SoftMax activation neurons in the output layer are not discrete, the first-order 

derivatives of such inputs could still be evaluated. These first-order derivatives will aid in 

providing information about the importance of the input features. If Σr represents the net function 

of rth neuron in the SoftMax layer, then the first-order derivative of the net function Σr with 

respect to the kth feature xk is expressed as (see Eq. (7.10)) 

 (
∂Σr

∂xk
) =

1

h
Imag(Σr(xk + ih)) (7.10) 

where, r = 1 … . . m and m indicates the number of class labels. To quantify the change in the 

target output with respect to the kth input feature xk, the average of the first-order derivatives 

obtained for all neurons in the output layer is determined. This average magnitude is referred to 

as saliency (Sk) of kth input feature [25] and is expressed as (see Eq. (7.11)) 

 Sk =
1

N
∑ (∑ |(

∂Σr

∂xjk
)|

m

r=1

)

N

j=1

 (7.11) 

where r denotes the neuron in the SoftMax output layer, m represents the number of class labels, 

Σr represents the net function of rth neuron in the SoftMax layer. The rank of each input feature 
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is then determined based on the magnitude of the first-order derivatives for each perturbed 

feature xk determined as shown in Eq. (7.11). 

 

Figure 7.9. Steps involved in the complex-step sensitivity for the classification task. 

The implementation of CS-FA for generation explanations of FFDNN predictions is 

illustrated in Chapter 8. For this purpose, both regression and classification datasets are 

considered. 
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8. NUMERICAL EXPERIMENTS6 

In this chapter, the numerical experiments are performed to demonstrate the effectiveness 

of the proposed CS-FA-R and CS-FA-C method for generating FFDNN explanations. For this 

purpose, both the real-world datasets and hyperspectral dataset (see Chapter 5) are considered. 

The real-world datasets are chosen from UCI open-source data repository [1]. Furthermore, 

KernelSHAP XAI technique (see Chapter 6) is implemented, and the results are compared.  

8.1. Real-World Datasets 

Three real-world datasets, each for regression and classification problems, are employed. 

For regression problems, the body fat percentage dataset, abalone dataset, and wine quality 

dataset are chosen, and, for the classification task, a vehicle dataset, segmentation dataset, and 

breast cancer dataset are chosen. The descriptive features and target variables for each dataset are 

mentioned as follows. 

Regression 

Body fat percentage dataset [2]: Features – (1) Age (years), (2) Weight (kg), (3) Height 

(cm), (4) Neck (cm), (5) Chest (cm), (6) Abdomen (cm), (7) Hip (cm), (8) Thigh (cm), (9) Knee 

(cm), (10) Ankle (cm), (11) Biceps (cm), (12) Forearm (cm), (13) Wrist (cm); Target variable – 

percentage of body fat. 

Abalone dataset [3]: Features – (1) Female, (2) Infant, (3) Male, (4) Length (gms.), (5) 

Diameter (gms.), (6) Height (gms.), (7) Whole weight (gms.), (8) Shucked weight (gms.), (9) 

Viscera weight (gms.), (10) Shell weight (gms.); Target variable – Number of rings. 

 
6This chapter is based on the paper “A Novel Sensitivity-based Method for Feature Selection”, J Big Data 8, 128 

(2021). https://doi.org/10.1186/s40537-021-00515-w. The material in this chapter was co-authored by Dayakar Naik 

Lavadiya (DNL), and Ravi Kiran Yellavajjala (RK). Contributions of authors are as follows: RK: Conception, 

design of work, interpretation of results, revising the manuscript, and acquiring funding. DLN: execution, data 

generation, coding, first draft preparation, interpretation of results, and revision of manuscript. 
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Wine quality dataset [4]: Features – (1) fixed acidity, (2) volatile acidity, (3) citric acid, 

(4) residual sugar, (5) chlorides, (6) free sulfur dioxide, (7) total sulfur dioxide, (8) density, (9) 

pH, (10) sulfates, (11) alcohol; Target variable – quality score (1 to 10). 

Classification 

Vehicle dataset [5]: Features – (1) Compactness, (2) circularity, (3) radius circularity, (4) 

radius ratio, (5) axis aspect ratio, (6) maximum length aspect ratio, (7) scatter ratio, (8) 

elongatedness, (9) axis rectangularity, (10) maximum length rectangularity, (11) scaled variance 

major, (12) scaled variance minor, (13) scaled radius of gyration, (14) skewness major, (15) 

skewness minor, (16) kurtosis major, (17) kurtosis minor, (18) hollow ratio; Target variable – 

Class label 1 (van), Class label 2 (Saab), Class label 3 (bus), Class label 4 (Opel). 

Segmentation dataset [1]: Features – (1) region-centroid-col (2) region-centroid-row (3) 

short-line-density (4) the results of a line extraction algorithm that counts how many lines of 

length  (5) vedge-mean (6) vedge-sd (7) hedge-mean (8) hedge-sd (9) intensity-mean (10) 

rawred-mean (11) rawblue-mean (12) rawgreen-mean (13) exred-mean (14) exblue-mean (15) 

exgreen-mean (16) value-mean (17) saturatoin-mean (18) hue-mean; Target variable – Class 

label 1 (Window), Class label 2 (foilage), Class label 3 (brickface), Class label 4 (path), Class 

label 5 (cement), Class label 6 (grass), Class label 7 (sky). 

Breast cancer dataset [6]: Features – (1) radius1, (2) texture1, (3) perimeter1, (4) area1, 

(5) smoothness1, (6) compactness1, (7) concavity1, (8) concave points1, (9) symmetry1, (10) 

fractal dimension1, (11) radius2, (12) texture2, (13) perimeter2, (14) area2, (15) smoothness2, 

(16) compactness2, (17) concavity2, (18) concave points2, (19) symmetry2, (20) fractal 

dimension2, (21) radius3, (22) texture3, (23) perimeter3, (24) area3, (25) smoothness3, (26) 
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compactness3, (27) concavity3, (28) concave points3, (29) symmetry3, (30) fractal dimension3; 

Target variable – Class label 1 (Benign), Class label 2 (Malignant). 

Other details about regression and classification datasets are provided in Table 8.1 and 

Table 8.2, respectively. 

Table 8.1. Description of the datasets used for regression task. 

Dataset name Instances No. of features No. of target variables 

Bodyfat 252 13 1 

Abalone 4177 10 1 

Wine quality 1599 11 1 

 

Table 8.2. Description of the datasets used for the classification task. 

Dataset name Instances No. of features No. of class labels 

Vehicle 846 30 4 

Segmentation 210 18 7 

Breast cancer 569 18 2 

 

8.1.1. Configuring Feed-Forward Neural Networks 

Feed-forward deep neural networks (FFDNN) with three hidden layers (HL) are 

configured to train on the regression and classification datasets. While a configuration of 1st HL 

– 20 neurons, 2nd HL – 10 neurons, and 3rd HL – 5 neurons is employed to train on regression 

datasets, a configuration of 1st HL – 60 neurons, 2nd HL – 40 neurons, and 3rd HL – 20 neurons is 

employed to train on classification datasets. A Rectified Linear Unit (ReLU) nonlinear function 

(see Figure 7.4(b)) is used as an activation function for all the configurations [7]. For the purpose 

of training, validating, and testing the chosen configurations, the datasets are randomly 

partitioned into 70:15:15 ratio, respectively. Note that in the case of the classification task, the 

partition ratio is maintained consistently for each class label, i.e., 70:15:15 of training, validation, 

and testing data from each class label is chosen. To ensure that the chosen configurations yield 

repeatable results, the training operation is performed 100 times with the same partition ratio but 
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with the replacement of instances randomly selected in every iteration. The performance metric, 

namely mean squared error (MSE) and accuracy, are evaluated for regression and classification 

datasets, respectively, for chosen configurations. The average MSE error for body fat percentage, 

abalone, and wine quality datasets is determined to be 20.41, 4.6, and 0.53, respectively. The 

average accuracy for the vehicle, segmentation, and breast cancer dataset is determined to be 

75%, 80% and, 90%, respectively. The addition of more hidden layers or neurons in each hidden 

layer to the chosen configuration was found to yield similar MSE errors or accuracies and hence 

are not considered in this study. 

8.1.2. Results 

The proposed complex-step sensitivity analysis (i.e., CS-FA-R and CS-FA-C) is 

performed on the trained FFDNN and the important features governing the predictions of each 

dataset are identified. Other popularly employed XAI technique (for feature attribution), known 

as KernelSHAP, is also considered in this study and the results are compared. SHAP library 

available on Python software is used for this purpose.  

From Table 8.3, it can be inferred that both KernelSHAP and complex-step sensitivity 

analysis yielded Feature 6 (Abdomen) as the most important feature and Feature 9 (Knee) as the 

least relevant feature for determining the percentage of body fat. The order of importance of 

other features are found to vary. Furthermore, the MSE for body fat dataset with each feature's 

inclusion is evaluated for both CS-FA-R and KernelSHAP methods and is shown in Figure 

8.1(a). From Figure 8.1(a), it is evident that the overall trend of MSE for FFDNN decreases with 

the inclusion of each feature. The proposed complex-step sensitivity method and the 

KernelSHAP were found to yield lower MSE with seven top-most features.  
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In the case of the abalone dataset, the Feature 7 (Whole Weight), Feature 8 (Shucked 

Weight) and Feature 10 (Shell Weight) are found to be the top three features and Feature 1 

(female), Feature 2 (infant), and Feature 3 (male) are found to be the least relevant features by 

both CS-FA-R and KernelSHAP (see Table 8.3). However, the order of importance of remaining 

four features' Feature 4 (Length), Feature 5 (Diameter), Feature 6 (Height) and Feature 9 

(Viscera Weight) was found to vary. Similar to the body fat dataset, the MSE of FFDNN with 

the inclusion of each feature is determined for CS-FA-R and KernelSHAP and is shown in 

Figure 8.1(b). From Figure 8.1 (b), it can be inferred that the trend of KernelSHAP and the 

proposed method are similar. A lower MSE is achieved with inclusion of top 3 features. 

In the case of the wine quality dataset, the Feature 10 (sulfates), Feature 11 (alcohol), 

Feature 2 (volatile acidity) and Feature 7 (total sulfurdioxide) are found to be the top four 

features and Feature 3 (citric acid) and Feature 8 (density) are found to be the least relevant 

features by both CS-FA-R and KernelSHAP (see Table 8.1). The order of importance of 

remaining five features' Feature 1 (fixed acidity), Feature 4 (residual sugar), Feature 5 

(chlorides), Feature 6 (free sulfurdioxide) and Feature 9 (pH) was found to vary. The MSE of 

FFDNN with the inclusion of each feature for wine quality dataset is determined for CS-FA-R 

and KernelSHAP and is shown in Figure 8.1 (c). From Figure 8.1 (c), it can be inferred that the 

trend of KernelSHAP and the proposed method are similar. Both KernelSHAP and the proposed 

method identified the Feature 10 (sulfates), Feature 11 (alcohol), Feature 2 (volatile acidity) and 

Feature 7 (total sulfurdioxide) that yield the lowest MSE.  
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Table 8.3. Important features identified by KernelSHAP and CS-FA-R (ranked in the descending 

order of their importance). 

Bodyfat dataset Abalone dataset Wine quality dataset 
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Figure 8.1. Comparison of the complex-step sensitivity method KernelSHAP for the 

classification task. 
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From Table 8.4, it can be inferred that both KernelSHAP and the proposed method 

dentified similar least relevant features for the vehicle dataset (Feature 2 (circularity), Feature 13 

(scaled radius of gyration), Feature 15 (skewness minor) and Feature 16 (kurtosis major)). 

However, the rank of the remaining features was found to vary. Among the first top 6 features, 

four features were found to be common for Kernel SHAP and the proposed method namely 

Feature 5 (axis aspect ratio), Feature 10 (maximum length rectangularity), Feature 14 (skewness 

major) and Feature 18 (hollow ratio). Furthermore, the trend of the accuracy is determined for 

vehicle dataset for Kernel SHAP and the proposed method with the inclusion of each feature in 

succession and is shown in  Figure 8.2(a). From Figure 8.2 (a), it is evident that the accuracy of 

the FFDNN increases with the addition of each feature for the vehicle dataset. The proposed 

method yielded an accuracy of 75% by selecting only the top 6 features and was found to slightly 

outperform KernelSHAP. 

Similar to the vehicle dataset, KernelSHAP and the proposed method yielded similar 

least irrelevant features in the case of the segmentation dataset.  The least relevant features are 

identified as (Feature 3 (short-line density), Feature 4 (lines of length), Feature 5 (vedge-mean), 

Feature 6 (vedge-sd), Feature 7 (hedge-mean), and Feature 8 (hedge-sd)). Interestingly the top 4 

features are also found to be similar, Feature 2 (region-centroid-row), Feature 13 (exred-mean), 

Feature 15 exgreen-mean) and Feature 18 (hue-mean). The trend of the accuracy for the 

segmentation dataset is determined for KernelSHAP and the proposed method with the inclusion 

of each feature in succession and is shown in  Figure 8.2(b). From Figure 8.2 (b), it is evident 

that the accuracy of the FFDNN increases with the addition of each feature for the segmentation 

dataset. Both methods were found to perform similar yielding the highest accuracy of 90% with 

only the top 6 features. 
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Interestingly, in the breast cancer dataset, KernelSHAP and the proposed method both 

resulted in similar top-most features, i.e., Feature 21 (radius3) and feature 23 (perimeter3). 

However, the order of importance of other features were found to vary. Unlike vehicle and 

segmentation dataset no common irrelevant features were identified. The trend of accuracy is 

obtained for the breast cancer dataset with the inclusion of each feature in each succession and is 

shown in Figure 8.2 (c). In the case of the breast cancer dataset, the trend of Kernel SHAP and 

the proposed method was found to be more or less similar. An accuracy of 93% is achieved by 

the inclusion of the top two features, i.e., Feature 21 (radius3) and Feature 23 (perimeter3). 

Table 8.4. Important features identified by SHAP and CS-FA-C (ranked in the descending order 

of their importance). 

 Method Feature Ranking 

Vehicle dataset 
SHAP 3, 14, 18, 10, 5, 1, 12, 8, 17, 9, 7, 6, 4, 11, 2, 15, 13, 16 

CS-FA 10, 8, 5, 17, 14, 18, 11, 3, 6, 12, 7, 1, 9, 4, 13, 2, 15, 16 

Segmentation 

dataset 

SHAP 15, 2, 13, 18, 17, 12, 1, 16, 14, 10, 9, 7, 11, 5, 3, 6, 4, 8  

CS-FA 2, 18, 15, 13, 10, 16, 11, 12, 17, 9, 14, 6, 8, 7, 5, 4, 3, 1  

Breast cancer 

dataset 

SHAP 
28, 23, 8, 22, 24, 3, 7, 25, 29, 1, 4, 14, 13, 2, 27, 26, 16, 18, 21, 

20, 11, 10, 19, 17, 15, 5, 30, 6, 12, 9 

CS-FA 
21, 23, 28, 20, 8, 4, 7, 11, 24, 17, 15, 2, 22, 30, 12, 26, 13, 16, 

1, 14, 10, 9, 29, 25, 18, 19, 6, 3, 27, 5. 
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Figure 8.2. Comparison of the complex-step sensitivity method KernelSHAP for the 

classification task. 

8.2. Hyperspectral Dataset of Corroded ASTM A572 Plates 
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corroded, and coated pixels are extracted (see Chapter 5) and a total of N = 50,000 data 

instances are generated. The number of spectral bands (features), q = 448, and the number of 

classes, m = 5; wherein the class labels C1, C2, C3, C4 and C5 are associated with ‘Non-

corrosion’, ‘Coating’, ‘Acid’ (HCl corrosion), ‘Salt’ (NaCl corrosion), and ‘Sulfate’ (Na2SO4 

corrosion), respectively. Note that there are 10,000 data instances associated with each class 

label.    
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8.2.1. Preprocessing 

As mentioned in Section the hyperspectral data consists of information from the 

neighboring spectral bands that often convey the same information about the object i.e., the 

features are correlated. Since inclusion of highly correlated features may result in the poor 

performance of the classifier and higher computational effort [8,9], the correlated adjacent 

features were grouped and averaged together. For this purpose, Ward hierarchical clustering 

technique is employed in this study for grouping the features. Ward’s method is an 

agglomerative clustering technique that minimizes the total within-cluster variance. The clusters 

which result in minimum information loss are then combined. Detailed description of Ward’s 

method could be found elsewhere [10].  With implementation of Ward’s method, the number of 

features in hyperspectral dataset is reduced from 448 to 39 (see Table 8.5).  

Table 8.5. Clustering of features. 

Feature Wavelength 

1 397.01, 398.32 

2 399.63, 400.93 

3 402.24, 403.55 

4 404.86, 406.17 

5 407.48, 408.79 

6 410.1, 411.41 

7 412.72, 414.03, 415.34 

8 416.65, 417.96, 419.27, 420.58 

9 421.9, 423.21, 424.52, 425.83, 427.15, 428.46 

10 429.77, 431.09, 432.4, 433.71 

11 435.03, 436.34, 437.66, 438.97, 440.29, 441.6, 442.92, 444.23 

12 445.55, 446.87, 448.18, 449.5, 450.82, 452.13 

13 453.45, 454.77, 456.09, 457.4, 458.72, 460.04, 461.36, 462.68, 464, 465.32, 466.64, 467.96 

14 469.28, 470.6, 471.92, 473.24, 474.56, 475.88, 477.2, 478.52, 479.85, 481.17, 482.49, 483.81, 485.14, 

486.46, 487.78, 489.11, 490.43, 491.75, 493.08, 494.4, 495.73, 497.05, 498.38, 499.7, 501.03, 502.35, 

503.68, 505.01, 506.33, 507.66, 508.99, 510.31, 511.64, 512.97, 514.3, 515.63, 516.95, 518.28, 

519.61, 520.94, 522.27, 523.6, 524.93, 526.26, 527.59, 528.92 

15 530.25, 531.58, 532.91, 534.25, 535.58 

16 536.91, 538.24, 539.57, 540.91, 542.24, 543.57, 544.9, 546.24 

17 547.57, 548.91, 550.24 
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Table 8.5. Clustering of features (continued) 

Feature Wavelength 

18 551.57, 552.91 

19 554.24, 555.58 

20 556.91, 558.25 

21 559.59, 560.92, 562.26, 563.59, 564.93 

22 566.27, 567.61, 568.94, 570.28, 571.62, 572.96, 574.3, 575.63, 576.97, 578.31, 579.65, 580.99, 

582.33, 583.67, 585.01, 586.35, 587.69, 589.03, 590.37 

23 591.71, 593.06, 594.4 

24 595.74, 597.08, 598.42 

25 599.77 

26 601.11 

27 602.45, 603.8, 605.14, 606.48, 607.83, 609.17, 610.52, 611.86, 613.21, 614.55, 615.9, 617.24, 618.59, 

619.94, 621.28 

28 622.63, 623.98, 625.32, 626.67 

29 628.02, 629.37, 630.71, 632.06 

30 633.41, 634.76, 636.11, 637.46, 638.81, 640.16 

31 641.51, 642.86, 644.21, 645.56, 646.91, 648.26, 649.61, 650.96, 652.31, 653.67, 655.02, 656.37 

32 657.72, 659.08, 660.43, 661.78, 663.14, 664.49, 665.84, 667.2, 668.55, 669.91, 671.26, 672.62, 

673.97, 675.33, 676.68, 678.04, 679.4, 680.75, 682.11, 683.47, 684.82, 686.18, 687.54, 688.9, 690.25, 

784.52, 785.9, 787.27, 788.65, 790.02, 791.4, 792.77, 794.15, 795.52, 796.9, 798.28 

33 691.61, 692.97, 694.33, 695.69, 697.05, 698.41, 699.77, 701.13, 702.49, 703.85, 705.21, 706.57, 

707.93, 709.29, 710.65, 712.02, 777.66, 779.03, 780.4, 781.78, 783.15 

34 713.38, 714.74, 716.1, 717.47, 718.83, 720.19, 721.56, 722.92, 724.28, 725.65, 727.01, 728.38, 

729.74, 731.11, 732.47, 766.68, 768.05, 769.42, 770.79, 772.17, 773.54, 774.91, 776.28 

35 733.84, 735.2, 736.57, 737.93, 739.3, 740.67, 742.03, 743.4, 744.77, 746.14, 747.5, 748.87, 750.24, 

751.61, 752.98, 754.35, 755.72, 757.09, 758.46, 759.83, 761.2, 762.57, 763.94, 765.31 

36 799.65, 801.03, 802.41, 803.78, 805.16, 806.54, 807.92, 809.3, 810.67, 812.05, 813.43, 814.81, 

816.19, 817.57, 818.95, 820.33, 821.71, 823.09, 824.47, 825.85, 827.23, 828.61, 830, 831.38, 832.76, 

834.14, 835.53, 836.91 

37 838.29, 839.67, 841.06, 842.44, 843.83, 845.21, 846.59, 847.98, 849.36, 850.75, 852.13, 853.52, 

854.91, 856.29, 857.68, 859.06, 860.45, 861.84, 863.23, 864.61, 866, 867.39, 868.78, 870.16, 871.55, 

872.94, 874.33, 875.72, 877.11, 878.5, 879.89, 881.28, 882.67, 884.06 

38 885.45, 886.84, 888.23, 889.63, 891.02, 892.41, 893.8, 895.19, 896.59, 897.98, 899.37, 900.77, 

902.16, 903.55, 904.95, 906.34, 907.74, 909.13, 910.53, 911.92, 913.32, 914.71, 916.11, 917.5, 918.9, 

920.3, 921.69, 923.09, 924.49, 925.89, 927.28, 928.68, 930.08, 931.48, 932.88, 934.28, 935.68, 

937.08, 938.48, 939.88, 941.28, 942.68, 944.08, 945.48, 946.88 

39 948.28, 949.68, 951.08, 952.48, 953.89, 955.29, 956.69, 958.09, 959.5, 960.9, 962.3, 963.71, 965.11, 

966.52, 967.92, 969.33, 970.73, 972.14, 973.54, 974.95, 976.35, 977.76, 979.16, 980.57, 981.98, 

983.38, 984.79, 986.2, 987.61, 989.02, 990.42, 991.83, 993.24, 994.65, 996.06, 997.47, 998.88, 

1000.29, 1001.7, 1003.11, 1004.52 

 

8.2.2. Configuring Feed-Forward Neural Networks 

A feed-forward deep neural network (FFDNN) with a configuration of five hidden layers 

is employed to train the hyperspectral dataset. The details of the configuration is as follows: 1st 
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HL – 200 neurons, 2nd HL – 100 neurons, 3rd HL – 50 neurons, 4th HL – 30 neurons, and 5th HL 

– 10 neurons. A tangent hyperbolic (tanh) nonlinear function is used as an activation function for 

all the neurons in the hidden layers. For the purpose of training, validating, and testing the 

chosen configurations, the datasets are randomly partitioned into 70:15:15 ratio, respectively. 

Note that the partition ratio is maintained consistently for each class label, i.e., 70:15:15 of 

training, validation, and testing data from each class label is chosen. The average accuracy is 

determined to be 97.4% after repeating the training for 100 times with randomly chosen 

instances in each iteration (see Table 8.6). From the confusion matrix it can be found that the 8% 

of ‘Salt’ is misclassified ‘Sulfate’ and 5% of ‘Sulfate’ is misclassified as ‘Salt’.  

Table 8.6. Confusion matrix of correctly and incorrectly classified corrosion source (FFDNN). 

              Class Actual Class Label 

Non-Corrosion Coating Acid Salt Sulfate 

P
re

d
ic

te
d

 L
a
b

el
 

Non-Corrosion 1 0 0 0 0 

Coating 0 1 0 0 0 

Acid 0 0 1 0 0 

Salt 0 0 0 0.92 0.05 

Sulfate 0 0 0 0.08 0.95 

 

8.2.3. Results 

Complex-step sensitivity analysis is performed (see Figure 7.9) and the features 

responsible for the predictions of class labels (HCl, NaCl, Na2SO4, non-corroded, and coated 

pixels) are determined (see Table 8.7). Furthermore, the KernelSHAP is also implemented, and 

the important features are obtained.  
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Table 8.7. Important features identified by SHAP and CS-FA-C (ranked in the descending order 

of their importance). 

 Method Important Features 

Hyperspectral 

dataset 

SHAP 

39, 38, 34, 33, 37, 27, 35, 22, 20, 26, 17, 32, 18, 28, 13, 19, 30, 

16, 24, 23, 31, 21, 11, 12, 29, 14, 10, 15, 25, 6, 9, 36, 1, 8, 2, 4, 

5, 3, 7 

CS-FA 

38, 39, 32, 34, 22, 37, 9, 27, 35, 33, 21, 13, 29, 10, 20, 26, 8, 18, 

17, 23, 12, 2, 31, 4, 7, 30, 19, 5, 11, 15, 24, 36, 25, 28, 1, 16, 3, 

14, 6 

 

From Table 8.7 it is evident that eight among top 10 features are similar for CS-FA-C and 

KernelSHAP methods. These features are identified as Feature 22 (566nm-590nm), Feature 27 

(602nm-621nm), Feature 33 (691nm-712nm, 777nm-783nm), Feature 34 (713nm-732nm, 

766nm-776nm), Feature 35 (733nm-765nm), Feature 37 (838nm-884nm), Feature 38 (885nm-

946nm) and Feature 39 (948nm-1004nm). Nevertheless, the order of importance of other features 

are found to vary. Interestingly the irrelevant features (i.e., last few features) are also found to 

differ except Feature 1 and Feature 3.  The spectral bands of top 10 features obtained from CS-

FA-C indicates an agreement with the spectral profile shown in Figure 5.6. To further verify the 

efficacy of the identified top 10 features, the hyperspectral test dataset are employed (see Section 

5.3.2).   

The prediction ability of the configured FFDNN with inclusion of top 1 feature, top 5 

features, top 10 features and all features is demonstrated for the hyperspectral test image dataset. 

Note that there are three test datasets namely ‘Acid’, ‘Salt’ and ‘Sulfate’ (see Figure 5.3). The 

predictions for ‘Acid’, ‘Salt’ and ‘Sulfate’ datasets are shown in Figure 8.3-Figure 8.5, 

respectively. From Figure 8.3 it is evident that the prediction accuracy improves as the number 

of features are included in succession for ‘Acid’ test image. When top 10 features are employed 

the trained FFDNN is found to improve the predictions. Similarly, from Figure 8.4 and Figure 

8.5 it is evident that inclusion of top 10 features improves the prediction accuracy of ‘Salt’ and 
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‘Sulfate’ test images, respectively. However, with inclusion of all features slight 

misclassifications were observed in all three test images i.e. the non-corroded portions were 

misclassified as ‘Acid’. 

 

Figure 8.3. Prediction of ‘Acid’ corrosion using (a) top 1 feature, (b) top 5 features, (c) top 10 

features, and (d) all features. 

 

Acid Non-Cor Paint Salt Sulphate Acid Non-Cor Paint Salt Sulphate

Acid Non-Cor Paint Salt Sulphate Acid Non-Cor Paint Salt Sulphate
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Figure 8.4. Prediction of ‘Salt’ corrosion using (a) top 1 feature, (b) top 5 features, (c) top 10 

features and (d) all features. 

 

 

 

 

 

 

Acid Non-Cor Paint Salt Sulphate Acid Non-Cor Paint Salt Sulphate

Acid Non-Cor Paint Salt Sulphate Acid Non-Cor Paint Salt Sulphate
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Figure 8.5. Prediction of ‘Sulfate’ corrosion using (a) top 1 feature, (b) top 5 features, (c) top 10 

features and (d) all features. 

8.3. Summary 

In this study the efficacy of the complex-step sensitivity analysis is illustrated in the 

framework of feed-forward deep neural networks. For this purpose, the real-world datasets 

(regression and classification) and hyperspectral dataset are employed. The explanations for 

FFDNN are generated in the form of feature attribution and important features that contribute to 

the predictions are identified. With inclusion of each top feature in succession the trend of 

accuracy (for classification task) was found to increase and the MSE (for regression task) was 

found to decrease for all real-world datasets. In the case of hyperspectral dataset, the predictions 

are obtained on the test images (‘Acid’, ‘Salt’ and ‘Sulfate’) for top 1, 5, 10 features and all 

Acid Non-Cor Paint Salt Sulphate Acid Non-Cor Paint Salt Sulphate

Acid Non-Cor Paint Salt Sulphate Acid Non-Cor Paint Salt Sulphate
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features. The results revealed that the predictions improved with inclusion of more features and 

found to be accurate for top 10 features. For the sake of comparison, other popularly used XAI 

technique KernelSHAP is also employed. The results obtained from the proposed complex-step 

sensitivity analysis and KernelSHAP were found to be similar. 
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9. CONCLUSIONS AND FUTURE WORK 

In this chapter, a brief summary, the conclusions, and the possible future work for each 

research objective are provided. 

9.1. Metallurgical Phase Identification 

In this dissertation, a supervised machine learning approach is proposed to automatically 

identify the metallurgical phases in heat-treated steels, namely ferrite, pearlite, and martensite. 

Unlike traditional techniques wherein pixel intensity is used as a descriptive feature for 

identifying the metallurgical phases, textural features are employed in this study along with the 

pixel intensity. Five different window sizes are considered for extracting the textural features of 

each metallurgical phase. The influence of each window size and the textural features are 

investigated, and the most suitable window size and the important features are determined. 

9.1.1. Conclusions 

Among the 20 descriptive features, ‘pixel intensity’, ‘maximum probability’, ‘auto-

correlation’, ‘sum of squares’ ‘cluster shade’, ‘sum variance’, ‘sum average’ and ‘energy’ are 

found to be the most relevant features for all five window sizes. Unlike the threshold-based 

segmentation approaches, the proposed approach was found to avoid the misclassification of 

grain boundaries into pearlite. Interestingly, the proposed approach does not require the end-user 

to input the number of metallurgical phases present in the microstructure, which is advantageous 

when investigating new microstructures. Based on the current study, the following two 

recommendations are provided: (1) a sufficient number of data points must be acquired (under 

similar conditions) to train the classifier, and (2) an optimal window size must be determined in 

conjunction with the subset of relevant features for accurate prediction of metallurgical phases.  
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9.1.2. Future Direction 

While only heat-treated ASTM A36 structural steel is considered in this study, the 

methodology could be implemented on the microstructures of other metals too. Further, for a 

case wherein the label of the phase may be unavailable, the unsupervised algorithms could be 

used in conjunction with textural features to cluster/segment the similar metallurgical phases.  

9.2. Fracture Type Identification 

Automatic identification of the brittle and ductile fracture regions in fractographic images 

of structural steel with varying grayscale and illumination is developed in this dissertation. For 

this purpose, a textural feature extraction algorithm, Local Binary Pattern (LBP), is employed in 

conjunction with the supervised machine learning classifier Linear Discriminant Analysis 

(LDA). Both block-wise and pixel-wise classification is performed on the test images. 

9.2.1. Conclusions 

Textural features extracted using LBP were found to identify the types of fracture 

accurately. While features/patterns ‘0’ and ‘9’ were determined to important for brittle fracture, 

features/patterns ‘4’ and ‘5’ were identified to be important for ductile fracture. Physically the 

features/patterns ‘0’ and ‘9’ signify the presence of random river-like patterns, and 

features/patterns ‘4’ and ‘5’ signify the presence of edges. When compared to the block-wise 

classification, pixel-wise classification resulted in more accurate classification. However, block-

wise classification is computationally inexpensive, and the area fractions obtained from both 

methods are more or less the same.  

9.2.2. Future Directions 

This methodology could be extended to identify fatigue fractures from fractographic 

images. Fatigue fractures are characterized by the presence of striations (high-cycle fatigue) or 
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elongated cups and cones (ultra-low cycle fatigue) at microscale exhibiting a distinct texture. 

However, a sufficient number of fatigue fracture training images are required to train ML 

algorithms to identify fatigue fracture in addition to the brittle and ductile fracture in 

fractographic images. 

9.3. Detection of Corrosion and its Source 

Color spaces in conjunction with different MLP configurations are explored to detect 

corrosion initiation in steel structures under ambient lighting conditions. To this end, sixteen 

different combinations of color spaces and MLP configurations are explored. The performance 

of each combination is then assessed through the validation dataset obtained from lab-generated 

images, and the best combination is determined. Subsequently, the obtained combination is 

deployed on the test image database, and the efficacy of trained MLP to detect corrosion in real-

world scenarios is demonstrated. Furthermore, the use of hyperspectral images for the 

elimination of visual ambiguity in corrosion detection and identification of corrosion source 

(‘Acid’, ‘Slat’ and ‘Sulfate’) is also demonstrated. Hyperspectral data of ‘Non-corrosion’, 

‘Coating’, ‘Acid’, ‘Salt’ and ‘Sulfate’ labeled specimens are acquired in the VNIR range of the 

EM spectrum and are used to train, test and validate the SVM classifier. 

9.3.1. Conclusions 

The combination of ‘rgb’ color space and an MLP configuration of a single hidden layer 

with 4 neurons (1st HL (4N)) yielded the highest accuracy for corrosion detection. Improved 

accuracy in the case of ‘RGB’ color space can be attributed to the increased non-linearity of the 

decision boundary generated by the MLP, which will ultimately lead to overfitting issues. Under 

shadows and wetting conditions, the trained MLP is still found to yield correct predictions when 

‘rgb’ color features are used. Especially, the detection of corrosion in the bottom side of the deck 
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of a bridge under dark shadows is noteworthy. Interestingly, the proposed method is insensitive 

to the camera sensor employed for the image acquisition, i.e., irrespective of images being 

acquired from a mobile camera or a DSLR camera, the efficacy of trained MLP to detect 

corrosion was not affected. MLP trained on varying illumination dataset alone is sufficient for 

detecting the corrosion under shadows and wetting conditions. 

However, for eliminating the visual ambiguity between the coatings and corroded 

surfaces and identifying the corrosion source, the VNIR spectra are employed. In this study, the 

top two principal components of the reflectance of VNIR spectra, along with an SVM, are used 

to eliminate visual ambiguity between the coating and corroded surfaces. The source of 

corrosion, i.e., ‘Acid’, ‘Salt’ and ‘Sulfate’, is also identified using the top two principal 

components of the reflectance of VNIR spectra. The trained SVM classifier was able to identify 

the source of corrosion accurately.  However, slight misclassifications were observed in the case 

of ‘Salt’ and ‘Sulfate’ data. Misclassifications of ‘Salt’ and ‘Sulfate’ class labels may be 

attributed to the presence of similar iron oxide corrosion products. XRD characterization tests 

revealed the presence of similar corrosion product Goethite on both ‘Salt’ and ‘Sulfate’ corroded 

surfaces which may have led to the confusion. Among the 448 spectral bands that were acquired 

from the hyperspectral images, only a few spectral bands were found to play an important role in 

the identification of corrosion sources and the elimination of visual ambiguity. The important 

ranges of the wavelengths of the spectral bands identified for the classification of coating and 

corroded surfaces are 500-520 nm, 660-680 nm, 760-770 nm, and 830-850 nm.  

9.3.2. Future Directions 

The proposed method does not account for the detection of other corrosion types such as 

pitting corrosion, crevice corrosion, etc. Agglomeration of other feature extraction techniques 
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and ML algorithms could be explored to distinguish the type of corrosion and its severity. 

Corrosion of steel depends on so many other factors which in turn governs the formation of 

different oxidation products—for example, the availability of oxygen, humidity, pH value, etc. 

More information about the corrosion chemistry could be incorporated into ML algorithms to 

characterize the corrosion products. Hyperspectral data for an extended period of corrosion 

should also be taken into account since the color appearance, and oxidation products may 

change. Performing SEM, EDX on the corroded surface would provide supplemental 

information about the morphology and elemental composition. In a practical scenario, false 

negatives for corrosion prediction should be minimized. Performing other spectroscopy analyses 

such as FTIR may provide more information that could be linked with the hyperspectral (VNIR) 

data. 

Push broom hyperspectral imaging systems are expensive and are primarily developed 

for benchtop applications limiting their use in field applications. Building a customized 

multispectral imagining sensor with the ability to capture spectral information in the desired 

range of wavelengths may be a feasible and economical option. The multispectral sensors are 

portable and hence could be easily mounted on UAVs for easy navigation and maneuvers in the 

field. The key wavelengths identified in this study can be used to build a multispectral imagining 

sensor that can eliminate the visual ambiguity and detect the chemically distinctive corroded 

surfaces in civil, structural, aerospace, and offshore structures. 

9.4. Complex-Step Sensitivity Analysis 

The complex-step derivative approximation (CSDA) approach is introduced in the 

context of deep neural networks to perform the sensitivity analysis. The implementation of the 

proposed method is described, and the explanations for neural network predictions are generated 
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for regression and classification tasks. To verify the efficacy of the proposed method, the real 

world datasets and hyperspectral datasets are employed. 

9.4.1. Conclusions 

The first-order derivatives evaluated for FFDNN using the CSDA approach were found 

to eliminate the subtractive cancellation errors and yield analytical quality first-order derivatives. 

Unlike the existing technique in which backpropagation is required to determine the first-order 

derivatives, the proposed method incorporates only feed-forward operation. The feature 

attribution-based explanations generated for real-world datasets are found to be comparable to 

that of KernelSHAP technique. In other words, the top-most important features and the irrelevant 

features were found to be similar for both complex-step sensitivity analysis and KernelSHAP. 

Furthermore, the proposed method, when implemented on the hyperspectral dataset, resulted in 

the identification of the top 10 spectral bands yielding accurate predictions of corrosion source.   

9.4.2. Future Directions  

Besides elementary effects, the interaction of features may also play a vital role in the 

prediction models. The proposed methods’ scope could be extended to determine the first-order 

interaction effects. Further, to reduce the computational time the parallel computing could also 

be incorporated. On the other hand, the implementation of the complex-step sensitivity analysis 

in the framework of convolutional neural networks could also be explored.  

 


