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ABSTRACT 

A widely used breeding method is genomic selection, which uses genome-wide marker 

coverage to predict genotypic values for quantitative traits. Genomic selection combines 

molecular and phenotypic data in a training population to obtain the genomic estimated breeding 

values of individuals in a testing population that have been genotyped but not phenotyped. One 

popular method for this estimation is G-BLUP. To further simplify data collection efforts and 

costs, we developed models with linear model, Bayesian linear model, K-nearest neighbors, and 

Random Forest to predict quality traits and compare the predictive ability of this new approach 

with G-BLUP using Pearson correlation and area under the receiver operating characteristic 

curve. The goal of this approach is to enable the analysis of large-scale data sets to provide 

relatively accurate estimates of quality traits without the time and energy consumption of marker 

analysis. Application of the methods to predict the quality traits for spring wheat breeding data 

reveals that compared with G-BLUP methods, the proposed methods perform better in loaf 

volume prediction, perform poorly in flour extraction and bake absorption prediction, and in 

mixograph prediction, the performance is not bad. 
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1. INTRODUCTION 

Wheat grain quality is a complex set of traits that play a critical role for wheat producers, 

end-users and breeders. The functionality and versatility of wheat stem from the elasticity and 

flexibility of its gluten. Wheat quality can be defined as the ability of wheat grain or flour to 

meet end-user specific requirements. The wheat seed is a complex structure, and many 

characteristics can be measured based on the intended application of the wheat kernels. Various 

phenotypic traits for cereals, flour, dough, and final products must be evaluated to determine the 

overall quality and best end-use products. Many laboratory tests must be considered to ensure 

that the candidate wheat varieties meet the quality requirements for a given end-use product. 

Grain protein, test weight, milling flour extraction, mixograph, loaf volume as well as the bake 

absorption, are the most popular properties for wheat varieties (Singh and Kent-Jones 2021). 

In order to determine the quality characteristics of wheat grains and suitable end-use 

products, it is necessary to conduct a milling test to grind wheat into flour. Wheat grains are 

complex and consist of many distinctive parts. The purpose of milling is to separate the flour-like 

edible endosperm from various bran skins. The chemical composition of wheat is different, so 

the composition of flour is also different. Since wheat quality testing requires a large amount of 

flour, it is time-consuming and expensive. Therefore, in many breeding programs, it is usually 

evaluated as a final performance test (Singh, R. Paul and Kent-Jones 2021). This situation 

usually leads to promising wheat varieties that cannot be released due to poor quality. Also, the 

development of any wheat variety with excellent and specialized end-use traits is restricted. 

Accurate handling and end-use quality prediction models will enable breeding programs to 

eliminate unacceptable production lines or production lines for specific goals before time and 
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resources are invested in production lines that fail the final test (Battenfield, Sarah D., et al. 

2009). 

The goal of this paper is to provide accurate estimates of quality traits without using data 

that are time consuming or costly to obtain, including marker data and large-scale milling and 

baking measurements. By using phenotypic data from traits that are easy to measure to predict 

other traits that are difficult and expensive to obtain, we will identify underperforming lines to 

discard, and at the same time, advance high-quality lines in the breeding process, thus saving 

labor, time, and money. 

The rest of this paper is organized as follows. In Section 2, we review the literature on 

genomic selection methods using genotypic data and introduce additional methods with potential 

for analyzing only phenotypic data to make wheat grain quality predictions. Section 3 presents 

the methodology of the proposed methods and the nonparametric method used to compare the 

predictive ability of these methods. Section 4 describes the data sets that were analyzed and used 

to compare the methods of analysis. Section 5 presents the results of the analysis and 

comparisons of the different methods.  Conclusions and future research are presented in Section 

6. 
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2. LITERATURE REVIEW 

A widely used breeding method is genomic selection (GS), which uses genome-wide 

marker coverage to predict phenotypic values for quantitative traits. Within the scope of 

quantitative trait breeding, marker-assisted selection with previously identified significant 

markers has limited ability to predict complex traits (Heffner et al., 2011). However, the genomic 

selection models use high-density genotype datasets and simultaneously simulate all additive 

genetic variances. These models use an entry with known phenotypes and genotypes to train the 

algorithm, cross-validate the predictions and then use only the available genotype information to 

predict traits in the material. This method which was initially introduced into animal breeding 

demonstrates that the Ridge Regression and Bayesian methods could be used to simulate total 

additive variance and predict breeding values (Meuwissen et al., 2001). The claim that getting a 

genome-wide marker profile will become cheaper than phenotyping each individual is becoming 

a reality (Poland and Rife, 2012). One study aimed to determine the predictive ability of several 

GS models for all necessary processing and end-use quality traits, to assess the predictive ability 

of the forward prediction to the next year, and to introduce end-use quality GS into the 

CIMMYT bread wheat breeding program (Battenfield et al., 2016). 

Emerging research on crop plants suggests that GS may be a handy tool for plant 

breeding (Heffner et al. 2009). GS combines molecular and phenotypic data in a training 

population to obtain the genomic estimated breeding values of individuals in a testing population 

that have been genotyped but not phenotyped. The main advantages of GS over phenotype-based 

selection in breeding are that it reduces the cost per cycle and the time required for variety 

development (Lorenzana and Bernardo 2009). Additionally, several authors have used breeding 

data to study genomic selection extensively and evaluate plant breeding programs by optimizing 
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training populations (Asoro et al., 2011; Zhao et al., 2013; Liu et al., 2015; Isidro et al., 2015) 

and genotype * environment interaction (Burgueño et al, 2012; Heslot et al, 2014; Jarquín et al, 

2014; Lado et al, 2016).  

The ridge regression BLUP (RR-BLUP) method can simultaneously estimate all marker 

effects for GS (Meuwissen et al., 2001; Whittaker et al., 2000). Rather than categorizing markers 

as either significant or as having no effect, ridge regression shrinks all marker effects toward 

zero (Breiman, 1995; Whittaker et al., 2000). The method assumes that markers are random 

effects with a common variance (Meuwissen et al., 2001). The equal variances assumption does 

not imply that all markers have the same effect (Bernardo and Yu, 2007) but that marker effects 

are all equally shrunken toward zero. Nevertheless, the assumption that individual markers have 

the same variance is unrealistic, and therefore, RR-BLUP incorrectly treats all effects equally 

(Xu, 2003b). Despite the incorrect assumption of equal marker variance, RR-BLUP is superior to 

subset selection because it is a very stable procedure in the sense that small changes in the data 

do not cause large changes in the estimated coefficients, while subset selection is unstable and 

produces more variable response to selection. (Whittaker et al., 2000).  

There is a close connection between marker-based RR-BLUP and G-BLUP, in which the 

performance of breeding lines is predicted based on their G to other germplasm (Jeffrey B., 

2011). The basic G-BLUP model is 

𝑦 = 𝑾𝒈 + 𝜀 

𝒈~𝑁(0,𝑲𝜎𝑔
2), 

where 𝒈 is a vector of genotypic values. In pedigree-based prediction of breeding values, K is the 

additive relationship matrix 𝑨 derived from the coefficients of coancestry (Bernardo, 2010). 
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These coefficients reflect the average behavior of alleles undergoing Mendelian segregation, but 

the actual segregation can be captured with the marker-based relationship matrix 

𝑲𝑅𝑅 = 𝑮𝑮′. 

This equation has the property that, for random populations, its expected value is 

proportional to 𝑨 plus a constant (Habier et al., 2007); for this reason, it has been called the 

realized (additive) relationship matrix. Another key property of 𝑲𝑅𝑅 is that the genomic‐

estimated breeding values (GEBVs) it produces are equivalent to those from the marker‐based 

RR‐BLUP approach (Hayes et al., 2009). 

The above-mentioned genomic selection methods use genome markers to predict wheat 

quality, but we noticed that some of these qualities are usually correlated with each other. The 

viscoelasticity of wheat dough is mainly regulated by storage proteins, gluten, and gliadin 

(Delcour and Hoseney, 2010; Garg et al., 2006; Payne et al., 1987; Zheng et al., 2009). Wheat 

breeders often use mixograph (National Manufacturing Co., Lincoln, NE) results to screen early 

generation lines for dough gluten strength. Flour water absorption measured by the mixograph 

often serves as bake absorption in bread baking tests.  

Of particular importance is that different traits need different time and energy to measure. 

Grain volume weight, or test weight (TW), and grain protein are the first measurements taken if 

the wheat breeders are conducting a quality test. They are the easiest and cheapest traits to 

measure compared with other quality traits since they are determined in the wheat and milling 

test. These parameters are also important because they are measured when producers sell grain, 

and deficiencies in either can result in cash discounts. To get the phenotypic data of mixograph, 

loaf volume, water absorption and milling extraction, testing on flour and dough is needed. Flour 

extraction is the amount of white flour that is extracted from a given weight of clean and 
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conditioned wheat. The mixograph measures and records resistance of a dough to mixing. 

(AACC Method 54-40.02).  

Thereby, we proposed new methods to predict the quality traits based on these two 

parameters alone. These methods include traditional and machine learning models with test 

weight and protein as independent factors, combined with the influence of the year, to predict 

other quantitative traits and identify underperforming wheat lines. To simplify data collection 

efforts and costs, we built Bayesian linear model (BAY), k nearest neighbors (K-NN), and 

Random forest (RF) models without markers to classify some quality traits. The methods we 

were proposing are more suitable for identifying low quality wheat lines for breeding and are 

potentially easier because they use only a subset of the phenotypic data. It can reduce the money 

and energy for the breeders on markers or large-scale milling and baking.  

Bayesian linear regression is a linear regression method in which statistical analysis is 

performed in the context of Bayesian inference (Box, G. E. P.; Tiao, G. C., 1973). When the 

error of the regression model has a normal distribution, and the specific form of the prior 

distribution is assumed, the explicit result can be used for the posterior probability distribution of 

the model parameters. Reference prior distribution on coefficients will provide a connection 

between the frequentist solutions and Bayesian answers. 

K nearest neighbors is often used in search applications where you are looking for 

“similar” items. For various forest inventory mapping and estimation applications, this technique 

has become extremely popular. This popularity can be attributed to its non-parametric, 

multivariate features, intuitiveness, and ease of use (Altman, Naomi S., 1992). This technique 

can assign weights to the contribution of neighbors. Therefore, whether it is classification or 

regression, the contribution of the closer neighbors to the mean is greater than that of the distant 
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neighbors. In this paper, we used K-NN regression, the output of which is the attribute value of 

the object. This value is the average of the values of the k nearest neighbors. If the features are 

displayed at very different scales or use different physical units, normalizing the training data 

can greatly improve its predictive ability because the algorithm relies on distance. 

Random forest is one of the newest members of non-parametric statistics and machine 

learning algorithms. Facts have proved that this technology has excellent performance on many 

practical problems, but its mechanism has not been fully understood (Ho, Tin Kam, 1995). 

Random forest is composed of many overall decision trees. Each tree in the random forest will 

return a category prediction, and the category with the most votes will be the prediction of our 

model. A large number of relatively unrelated trees operating as a committee will outperform 

any single component model. 

A Cross-validation method using a population with genotypic and phenotypic data is 

commonly used to assess GS accuracy. This accuracy is theoretically equal to the correlation 

between predicted phenotypes and observed phenotypes divided by the square root of heritability 

(Lee et al., 2008). In this article, however, we used another standard as an estimate of the 

predictive ability, which is based on the ranking of traits values to identify relatively sufficient or 

underperforming groups by looking at varying selection intensities and determining whether they 

should be kept based on a simulated breeding situation. This is unique from most of the literature 

in that it is not a “straight” predictive ability. Since this test is based on an observed variable that 

lies on a graded scale, we evaluated the overall value of the test by using receiver operating 

characteristic (ROC) curves (Hanley and Mcneil, 1982; Metz, 1978). The curve will then pass 

through the point (0,1) on the unit gird. The closer the ROC curve comes to the ideal point, the 
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better its discriminating ability. In this approach, the population is divided into training set and 

test set. 

The area under the ROC curve represents a recommended index of predictive ability. It is 

a useful indicator of both the magnitude or importance of a difference between two populations 

and the predictive ability of discrimination performance. The usual estimator for this area is 

closely related to the Mann-Whitney U statistic. We used some properties of this nonparametric 

statistic to compare areas under ROC curves arising from proposed methods and G-BLUP 

applied to the same individuals. This approach calculates the correlation between the original 

measurements. The average of the two correlations is used along with the average of the areas 

under the two curves to derive an estimated correlation between the two areas (Hanley and 

Mcneil, 1983). 
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3. METHODOLOGY

Genomic selection, or the prediction of GEBVs using dense molecular markers, is rapidly 

emerging as a key component of efficient breeding programs. The basic linear regression model 

used to predict GEBVs with regularization models is: 

𝒚 = 𝜇𝟏𝒏 +𝑿𝜷 + 𝒆,  

where 𝒚 = (𝑦1, . . . , 𝑦𝑛)
𝑇is the vector of observed phenotypes, 𝟏𝒏is a column vector of n ones, μ

is a common intercept, X is a n × p matrix of markers; 𝜷 is the vector of the regression 

coefficients of the markers and e is the vector of the residual errors with 𝑣𝑎𝑟( 𝒆) = 𝑰𝜎𝑒
2. In what

follows, we assume that the observed phenotypes have been mean-centered. 

3.1. Data Set Descriptions 

3.1.1. Original data set 

The original dataset, which was the motivation for this research, contains both phenotypic 

and genotypic data from 466 wheat lines from the North Dakota State University spring wheat 

breeding program. This advanced yield trials are grown in 4 - 7 diverse locations across North 

Dakota. The trials were replicated but quality samples were taken from single representative 

plots. The trials were managed by Hard Red Spring Wheat breeding project and Research 

Extension Center Agronomists. Management was in accordance with local practices.  

The genotypic data from 16383 single nucleotide polymorphisms (SNPs) were obtained 

using genotyping‐by‐sequencing (GBS). Briefly, DNA was isolated with the Wizard Genomic 

DNA Purification Kit (A1125; Promega) per the manufacturer's instructions and quantified with 

a Quant‐iT PicoGreen dsDNA assay kit (P7589; Thermo Fisher Scientific). GBS libraries were 

constructed based on the protocol of Poland et al. (2012) with minor modifications.  
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The phenotypic data is comprised of six quality trait variables, including two predictors: 

TW and protein, and four response variables: loaf volume, bake absorption, flour extraction, and 

mixograph classification. By considering genotype as a random effect, best linear unbiased 

predictors (BLUPs) across all locations were used for prediction analysis. Single values from 

each line at each environment (location by year combination) were used to get BLUP value for 

each line. 

Of the 466 wheat lines, the bottom 15% of the phenotypic data for each year were 

considered wheat lines which should be removed from the breeding program based on their 

quality phenotype; the remaining are considered successes. 𝑁 is the number of total wheat lines 

from 2011 to 2018 year; 𝑀 is the number of lines falling below the 15% cutoff. The number of 

wheat lines varies because some lines were tested in multiple years and only unique lines are 

shown.  

Table 1. The number of unique spring wheat genotypes for each year considered 

YEAR 2011 2012 2013 2014 2015 2016 2018 

𝑵 119 80 34 76 49 61 47 

𝑴 30 20 9 19 13 16 12 

3.1.2. New data set 

We also applied a subset of the proposed methods to a new data set containing more 

phenotypic predictor variables but no genotypic data. This dataset utilized 48 hard red spring 

wheat genotypes grown in 2018 and 2019, and these genotypes were sent to the North Dakota 

State University bread wheat quality laboratory (PI=Dr. Senay Simsek) for flour, dough, and 

baking quality tests. It includes peak maximum time (PMT), maximum torque (BEM), torque 15 

seconds before and after maximum torque (abbreviated as AM and PM, respectively), 

aggregation energy (AE), start-up energy (SUE), plateau energy (PE), gluten performance index 
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(GPI), solvent retention capacity (SRC), farinograph water absorption (FABS), farinograph peak 

time (PKT), farinograph stability (STAB) and loaf volume (VOL). 

FABS is an important factor in determining the quality of final products, and flour 

samples with high water absorption are more suitable for making bread (Ma et al., 2007). STAB 

measured the length of time the dough maintains maximum consistency. PKT was recorded as 

the time from the addition of water to the flour until the dough reaches its maximum consistency. 

The SRC was measured as the weight of the solvent remaining in the flour after 

centrifugation. It was expressed as a percentage of the moisture content of the flour sample at 

14%.  GPI is the ratio of lactic acid SRC to the sum of SRC values. Gluten aggregation 

properties of flour samples were also measured to get some quality trait variables. PMT was 

measured as the time in seconds to reach maximum torque. BEM measured the maximum 

resistance of gluten to mixing. AE was measured as the area under the curve between 15 seconds 

before and after the maximum torque (AACCI Method 2010). 

3.2. Traditional Method: G-BLUP 

Ridge regression (RR) is ideal if there are many predictors, all with non-zero coefficients 

and drawn from a normal distribution. It performs well with many predictors, each having a 

small effect, and prevents coefficients of linear regression models with many correlated variables 

from being poorly estimated and exhibiting high variance. RR shrinks the coefficients of 

correlated predictors equally towards zero. For example, given k identical predictor variables, 

each variable will get the same coefficient, which is equal to 1/k of the size that a single 

predictor variable will get when it is fitted separately (Friedman J, Hastie T, Tibshirani R 2010). 

Therefore, RR does not force the coefficients to zero, so it is impossible to choose a model with 

only the most relevant and predictive subset of predictions. 
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The ridge regression estimator solves the regression problem using ℓ2 penalized least 

squares: 

𝜷̂(𝑟𝑖𝑑𝑔𝑒) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜷

∑ (𝑦𝑖 − 𝑥𝑖𝛽)
2𝑛

𝑖=1 + 𝜆‖𝜷‖2
2, 

where 𝑥𝑖
𝑇 is the 𝑖th row of X, ‖𝜷‖2

2 = ∑ 𝛽𝑗
2𝑝

𝑗=1 is the ℓ2 -norm penalty on 𝜷, and 𝜆 ≥ 0 is the 

tuning parameter which regulates the strength of the linear shrinkage by determining the relative 

importance of the data-dependent empirical error and the penalty term. The intercept is assumed 

to be zero in the 𝜷̂ estimator due to mean-centering of the phenotypes. RR-BLUP uses the same 

estimator as ridge regression but estimates the penalty parameter by the restricted maximum 

likelihood (REML) as 𝜆 = 𝜎𝑒
2/𝜎𝛽

2, where 𝜎𝑒
2is the residual variance, and 𝑣𝑎𝑟( 𝜷̂) = 𝑰𝜎𝛽

2 is the 

variance matrix of the regression coefficients (Piepho H.P. 2009). 

The marker‐based RR‐BLUP and G‐BLUP have a close connection, in which the 

performance of breeding lines is predicted based on their G to other germplasm (Jeffrey B. 

Endleman, 2011). The basic G‐BLUP model is  

𝒚 = 𝒁𝝁 + 𝑿𝜷 + 𝜺, 𝝁~𝑁(0,𝑲𝜎𝑢
2), 

where 𝑿 is a full‐rank design n × p matrix of markers for the fixed effects 𝜷, 𝒁 is the design 

matrix for the random effects 𝝁, 𝑲 is a positive semidefinite matrix, and the residuals are 

normally distributed with constant variance. Variance components are estimated by REML using 

the spectral decomposition algorithm of Kang et al. (2008).  

When the realized relationship matrix 

𝑲 = 𝑮𝑮′ 

is used, the RR‐BLUP and G‐BLUP of the prediction problem give equivalent GEBVs. 𝐺 is the 

genotype matrix (e.g., {0,1} for biallelic single nucleotide polymorphisms (SNPs) under an 
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additive model). The realized relationship model is in fact a kernel in genotype space and can be 

written as 

𝐾𝑖𝑗 = 〈𝐺𝑖., 𝐺𝑗.〉,

where the angle brackets denote the inner product between genotypes 𝑖 and 𝑗. In the additive 

relationship model, the genetic covariance between lines is proportional to their similarity in the 

genotype space, because the inner product measures the geometric similarity of two vectors 

(Jeffrey B. Endelman 2011). 

There are two kernels other than RR. One is the Gaussian model (GAUSS): 

𝐾𝑖𝑗 = exp [− (
𝐷𝑖𝑗

𝜃
)
2

], 

where 

𝐷𝑖𝑗 = [
1

4𝑀
∑(𝐺𝑖𝑘 − 𝐺𝑗𝑘)

2
𝑀

𝑘=1

]

1
2

is the Euclidean distance between genotypes 𝑖 and 𝑗, normalized to the interval [0,1]. Endelman 

defined the parameter θ as a proportional parameter that affects the speed at which the genetic 

covariance decays with the distance (2011). The other kernel is the exponential model (EXP): 

𝐾𝑖𝑗 = exp⁡[−
𝐷𝑖𝑗

𝜃
]. 

These kernels are available through the rrBLUP function G.BLUP in the R software, 

which aim to predict the genotype value of one population based on the genotype and phenotype 

of the second trained population. 

3.3. Linear Regression 

What follows is a simple but essential model that will be the basis for a later study of 

predicting quality traits. First, a random variable Z has a standard normal distribution if its 
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density function 𝑓𝑍(𝑧) is given by the standard normal density function ∅(z) =
𝑒−𝑧

2/2

√2𝜋
. The 

function Φ(z) = ∫ ∅(𝑢)𝑑𝑢
𝑧

−∞
 denotes the distribution function of a standard normal variable, so 

an equivalent condition is that the distribution function of Z satisfies 𝐹𝑍(𝑧) = 𝑃(𝑍 ≤ 𝑧) = Φ(z).  

A random variable 𝑌 is normal (u, σ2). Note that the parameters u and σ are the mean 

and standard deviation of Y, respectively. The parameter µ affects the location, and the parameter 

σ effects the spread of a normal distribution. 

We used phenotypic data in a training population to obtain estimated breeding values of 

individuals in a test population. Let independent variables 𝑥1 and 𝑥2 denote the genotypes of TW 

and protein to predict other traits in the same year. The regression linear models (LM) are 

created as following: 

• Loaf Volume Prediction: 𝑦1𝑖 = 𝛽10 + 𝛽11𝑥1 + 𝛽12𝑥2 + 𝛽1𝑖 + 𝛽13𝑥1𝑥2 + 𝜀1, where 𝑦1𝑖 is 

the value of loaf volume, 𝛽11 is the parameter of TW on loaf volume, 𝛽12 is the 

parameter of protein on loaf volume, 𝛽13 is the interaction coefficient of two predictors.  

• Mixograph Prediction: 𝑦2𝑖 = 𝛽20 + 𝛽21𝑥1 + 𝛽22𝑥2 + 𝛽2𝑖 + 𝛽23𝑥1𝑥2 + 𝜀2, where 𝑦2 is 

the value of mixograph, 𝛽21 is the parameter of TW on mixograph, 𝛽22 is the parameter 

of protein on mixograph, 𝛽23 is the interaction of two predictors. 

• Flour Extraction Prediction: 𝑦3𝑖 = 𝛽30 + 𝛽31𝑥1 + 𝛽32𝑥2 + 𝛽3𝑖 + 𝛽33𝑥1𝑥2 + 𝜀3 , where 

𝑦3 is the value of flour extraction, 𝛽31 is the parameter of TW on flour extraction, 𝛽32 is 

the parameter of protein on flour extraction, 𝛽33 is the interaction of two predictors. 

• Bake Absorption Prediction: 𝑦4𝑖 = 𝛽40 + 𝛽41𝑥1 + 𝛽42𝑥2 + 𝛽4𝑖 + 𝛽43𝑥1𝑥2 + 𝜀4 , where 

𝑦3 is the value of absorption, 𝛽41 is the parameter of TW on bake absorption, 𝛽42 is the 

parameter of protein on bake absorption, 𝛽43 is the interaction of two predictors. 
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3.4. Bayesian Linear Regression 

Since the interaction of TW and protein is not significant for all response variables, we 

only considered the two predictors of TW and protein when developing the Bayesian linear 

regression model in order to simplify the formula. Under the assumption that the errors ε are 

normally distributed with constant variance σ2, we have for the random variable of each

response 𝑦𝑖 (loaf volume, flour extraction, mixograph or bake absorption),  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀 = 𝜷𝑇𝑿 + 𝜀

conditioned on the observed data 𝑿 and the parameters 𝜷, σ2, is normally distributed as

𝑦𝑖|𝑿, 𝜷, σ
2~𝑁(𝜷𝑇𝑿, σ2).

Let 𝐷 = (𝑦1, … , 𝑦𝑛) be the data. The likelihood function is 

𝑓(𝐷|𝑿, 𝜷, 𝜎2) = ∏ 𝑓(𝑦𝑖|𝑿, 𝜷, 𝜎
2)𝑛

𝑖=1 = (2𝜋𝜎2)−𝑛/2exp⁡{−
1

2𝜎2
∑ (𝑦𝑖 − 𝜷𝑇𝑿)2𝑛
𝑖=1 }.

We first considered the case under the reference prior, which is a standard noninformative prior. 

Using this reference prior, we obtained distributions as the posterior distributions of 𝜷, 𝜎2. The

non-informative prior distribution was set π(𝜷, 𝜎2) ∝
1

𝜎2
. Using the hierarchical model

framework, this is equivalent to assuming that the joint prior distribution of 𝜷 under 𝜎2 is a

uniform prior, while the prior distribution of 𝜎2 is proportional to 
1

𝜎2
. That is, π(𝜷|𝜎2) ∝ 1 and

π(𝜎2) ∝
1

𝜎2
. 

Then we applied Bayes’ rule to derive the joint posterior distribution of 𝜷, 𝜎2, which is

proportional to the product of the likelihood and the joint prior distribution: 

𝑓(𝜷, 𝜎2|𝐷) ∝ (𝜎2)−
𝑛
2
−1 exp {−

1

2𝜎2
∑(𝑦𝑖 − 𝜷𝑇𝑿)2
𝑛

𝑖=1

}. 
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So the posterior distribution of 𝜷 conditioning on 𝜎2 is 𝜷|𝜎2, 𝐷~𝑡(𝑛 − 3, 𝜷̂, (𝑠𝑒𝜷)
2
), and

the posterior distribution of 𝜎2 is 
1

𝜎2
~𝐺𝑎𝑚𝑚𝑎 (

𝑛−3

2
,
𝑆𝑆𝐸

2
), where 𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖 . The

posterior mean, 𝜷̂, is the center of the t-distribution of 𝜷, which is the same as the frequentist 

ordinary least square estimates of 𝜷. The standard errors 𝑠𝑒𝜷 are same as the ordinal least 

squares’ estimates, given as 

𝑠𝑒𝛽0 = 𝜎̂√
1

𝑛
+
𝑥̅2

𝑆𝑥𝑥

𝑠𝑒𝛽1 = 𝑠𝑒𝛽2 = √
𝜎̂2

𝑆𝑥𝑥
. 

3.5. K Nearest Neighbors 

The k nearest neighbors method (K-NN) is a non-parametric algorithm that stores all 

available cases and predicts the numerical target based on a similarity measure (e.g., distance 

functions). The method takes many labelled points and uses them to learn how to label other 

points. When an unknown vector is to be classified, its k closest neighbors are found from among 

all the prototype vectors, and the class label is decided based on a majority rule. To avoid ties on 

overlap regions, the value of k should be odd.  

A simple implementation of K-NN regression is to calculate the average of the numerical 

target of the K nearest neighbors. A common selection for the distance metric is Euclidean 

distance, 𝑑𝑖𝑗 = √(𝑥1𝑖 − 𝑥1𝑗)
2
+ (𝑥2𝑖 − 𝑥2𝑗)

2
 where i and j denote individuals, 𝑥1𝑖 and 𝑥1𝑗 are

the values of TW for the 𝑖th and 𝑗th individual, 𝑥2𝑖 and 𝑥2𝑗 are the values of protein for the 𝑖th 

and 𝑗th individual. 
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We choose k through cross-validation by partitioning the dataset into training data, cross-

validation data, and test data. We then used the training data for finding the nearest neighbors, 

the cross-validation data to find the best value of k, and finally the test data to test our model. In 

this way, we used different values of k to predict the label of each individual in the validation set, 

and then used that value in the final setup of the algorithm. 

The K-NN prediction for the 𝑖th individual is 𝑦̂𝑖 =
∑ 𝑦𝑖𝑗
𝑘
𝑗=1

𝑘
, where 𝑖 denote individuals 

and 𝑗 denote neighbors of individual 𝑖, 𝑦𝑖𝑗 is the response value (loaf volume, mixograph, flour 

extraction or bake absorption) for the 𝑖th individual. 

3.6. Random Forest 

A set of T unpruned ensemble of regression trees constitutes the random forest. These 

trees are generated based on bootstrap sampling in the original training data. The bootstrap 

resampling of the data used to train each tree can increase the diversity between trees. Each tree 

is composed of root nodes, branch nodes, and leaf nodes. For each node of the tree, the optimal 

node is selected to separate features from the set of features, which are randomly selected from 

the feature space (Rahman, R., Dhruba, S.R., Ghosh, S. et al. 2019). 

Figure 1. Random Forest algorithm structure 
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The figure above shows the structure of a random forest. These trees run in parallel and 

there is no interaction between them. The operation of random forest is to construct several 

decision trees during training and then output the average value of the class as the prediction of 

all trees. Using the randomized feature selection process, we fit the tree based 

on bootstrap samples {(𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑚, 𝑌𝑚)} from training data. We performed the

following three steps: 

1) Randomly selected data points from the training set.

2) Built a decision tree related to these data points.

3) Chose the number m of trees, and repeated steps 1 and 2.

4) For a new data point from the test data, made each tree predict the response value of that data

point, and assigned the new data point to the average of all predicted response values.

The averaging makes the random forest better than a single decision tree, thus improving its 

predictive ability and reducing overfitting. 

3.7. Data Treatment 

3.7.1. Best linear unbiased prediction 

By treating the genotype as a random effect, the best linear unbiased predictor (BLUP) 

was used in this study for predictive analysis. BLUP was derived from Charles Roy Henderson 

in 1950. BLUP is a technique for estimating genetic value. Generally speaking, it is a method of 

estimating random effects. It can be used to remove noise in the image and estimate small areas. 

The model for quality traits observations {𝑌𝑗 , 𝑗 = 1, … , 𝑛} is written as 

𝑌𝑗 = 𝑢 + 𝑥𝑗
𝑇𝛽 + 𝜉𝑗 + 𝜀𝑗,

where 𝜉𝑗 and 𝜀𝑗 represent the random effect and observation error for observation 𝑗. Suppose 𝜉𝑗 

and 𝜀𝑗 are uncorrelated and have known variances 𝜎𝜉
2 and 𝜎𝜀

2, respectively. Further 𝑥𝑗 is a vector
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of independent variables for the 𝑗th observation and 𝛽 is a vector of regression parameters. The 

BLUP of 𝑘th observation can be defined as 𝑌̂𝑘 = ∑ 𝑐𝑗,𝑘𝑌𝑗
𝑛
𝑗=1 , where 𝑐𝑗,𝑘 is the linear coefficient

of the predictor 𝑌̂𝑘. This BLUP was chosen to minimize the variance of the prediction error 

𝑉𝑎𝑟(𝑢 + 𝑥𝑘
𝑇𝛽 + 𝜉𝑘 − 𝑌̂𝑘)

and was subject to the condition of unbiased predictor variables 

𝐸(𝑢 + 𝑥𝑘
𝑇𝛽 + 𝜉𝑘 − 𝑌̂𝑘) = 0.

3.7.2. Steps for group definition 

To clarify the definition of the groups, we performed the following three steps: 

1) Obtain predicted values by the G-BLUP models and proposed method models.

2) Rank predicted values and assign those in the bottom (least desirable) b% as group 1 and

others as group 2. We used b=15.

3) Rank observed values and assign those in the bottom b% as group 1 and others as group 2.

3.7.3. Cross-validation for time series predictor evaluation 

We used block cross-validation and sufficient control over stationarity because it makes 

full use of all available information for training and testing, resulting in reliable error estimates 

(Christoph and José 2012). 

Our dataset is a collection of observations obtained through same wheat lines over time, 

so it is time series ordered data. Time-series ordered data can be problematic for cross-validation, 

so we used a forward-chaining approach that is sometimes more appropriate for time series, 

where the procedure is as follows (Ma, Z., Dai, Q. 2016): 

fold 1: training [2011], test [2012] 

fold 2: training [20111, 2012], test [2013] 

fold 3: training [2011, 2012, 2013], test [2014] 
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fold 4: training [2011, 2012, 2013, 2014], test [2015] 

fold 5: training [2011, 2012, 2013, 2014, 2015], test [2016] 

fold 6: training [2011, 2012, 2013, 2014, 2015, 2016], test [2018] 

This approach more accurately models the situation we see at prediction time, where we 

model on past data and predict on forward-looking data.  

3.7.4. Synthetic data generation for imbalanced data 

When we divided wheat lines into sufficient and underperforming groups, the number of 

lines in the underperforming group (group 1) was much less than the number of lines in the 

sufficient group (group 2). Therefore, this imbalance in the data must be considered prior to 

building predictive models. Regarding the generation of synthetic data, synthetic minority 

oversampling technology (SMOTE) is a powerful and widely used method. The SMOTE 

algorithm creates artificial data based on the similarity of the TW and protein of a few samples. 

It generates a set of random observations in the underperforming group to bias the learning of the 

classifier to the underperforming group. This technique was proposed by Chawla, Bowyer, Hall, 

and Kegelmeyer in 2002, and has become an established method, extending to more than 85 

kinds of basic methods. One way to visualize how basic concepts work is to imagine drawing a 

line between two existing minority data points. Then, SMOTE creates a new synthetic instance 

somewhere between these rows. 

To generate artificial data, bootstrapping and k-nearest neighbors are implemented. 

Precisely, it works this way:  

1) Take the difference between the feature vector under consideration and its nearest neighbor.

2) Multiply this difference by a random number between 0 and 1.

3) Add it to the feature vector under consideration.
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4) This causes the selection of a random point along the line segment between two specific

features.

3.8. Traditional Predictive Ability 

Model evaluation is the task of evaluating a model, which is essential for selecting the 

best model among several possible choices. In quantitative genetics, it is common to use the 

Pearson correlation coefficient between predicted values and BLUPs of phenotypic values as a 

model selection criterion (González-Recio et al., 2014). It theoretically represented by 

𝑟𝑦𝑦̂ =
𝐶𝑂𝑉[𝑦, 𝑦̂]

√𝑉𝐴𝑅[𝑦]𝑉𝐴𝑅[𝑦̂]
, 

where 𝐶𝑂𝑉[𝑦, 𝑦̂] is covariance of observed and predicted values, 𝑉𝐴𝑅[𝑦] is the variance of 

observed values, and 𝑉𝐴𝑅[𝑦̂] is the variance of predicted values. The model is better when 𝑟𝑦𝑦̂ is 

higher and perfect correlation is achieved when 𝑟𝑦𝑦̂ = 1. 

3.9. Mann-Whitney Two-sample Test to Compare the AUC 

After getting the predicted value and prediction of group label of loaf volume, 

mixograph, and flour extraction based on the effect of TW, protein, and their interaction, we 

checked the predictive ability of these models. If the observed value of a wheat line predicted to 

be in group one falls in the lowest b% of observed values (we used b=15), then this wheat line 

was correctly classified, and is considered a true positive (TP). Simply stated, the variable that is 

in the bottom b% group and is predicted to be in the bottom b% is TP; the variable that is not in 

the bottom b% group and is predicted to be in the 1 − b% group is true negative (TN).  The 

following table illustrate true positive rate (TPR), false positive rate (FPR), false negative rate 

(FNR), and true negative rate (TNR) 
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Table 2. True positive rate and False positive rate 

  TRUE CONDITION 

  Bottom b% (P) 1 − b% group (N) 

PREDICTED 

CONDITION 

Predicted bottom 

b% 

True positive (TP) False positive (FP) 

Predicted 1 − b% 

group 

False negative (FN) True negative 

(TN) 

  TPR=TP/P 

FNR=FN/P 

FPR=FP/N 

TNR=TN/N 

 

Receiver operating characteristic curves (ROC curves) are created by plotting the TPR 

against the FPR at various threshold settings. ROC curves are an excellent way to see how any 

predictive model can distinguish between true positives and negatives. The best predictive model 

should have a high TPR and a low FPR. 

Suppose a sample of  𝑁 individuals undergo a test for predicting phenotypic value by two 

methods. The observed values of the 𝑚 of these individuals are in the bottom b% group. Let this 

group be denoted by 𝐶1 and let the group of  n = N −m individuals who are within the 1 − b% 

group be denoted by 𝐶2. Let 𝑋𝑖, 𝑖 = 1,2, … ,𝑚 and 𝑌𝑗 , 𝑗 = 1,2, … , 𝑛 be the indicator values of the 

variable on which the diagnostic test is based for members of  𝐶1 and 𝐶2, to construct 

respectively. 

𝑋𝑖 = {
1, 𝑖𝑡ℎ⁡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙⁡𝑜𝑓⁡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑⁡𝑣𝑎𝑙𝑢𝑒𝑠⁡𝑖𝑠⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝐶1⁡

0, 𝑖𝑡ℎ⁡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙⁡⁡𝑜𝑓⁡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑⁡𝑣𝑎𝑙𝑢𝑒𝑠⁡𝑖𝑠⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝐶2
 

𝑌𝑗 = {
1, 𝑗𝑡ℎ⁡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙⁡𝑜𝑓⁡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑⁡𝑣𝑎𝑙𝑢𝑒𝑠⁡𝑖𝑠⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝐶1⁡

0, 𝑗𝑡ℎ⁡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙⁡𝑜𝑓⁡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑⁡𝑣𝑎𝑙𝑢𝑒𝑠⁡𝑖𝑠⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝐶2
 

These results can be used to construct an empirical ROC curve for assessing the 

diagnostic performance of the test. Let TPR =
1

𝑚
∑ 𝐼(𝑋𝑖 = 𝑌𝑗 = 1)𝑚
𝑖=1 (𝑗 = 1,2, … , 𝑛) where 

𝐼(𝐴) = 1 if 𝐴 is true and 0 otherwise. Also let FPR =
1

𝑛
∑ 𝐼(𝑋𝑖 = 𝑌𝑗 = 0)𝑛
𝑗=1 (𝑖 = 1,2, … ,𝑚). 
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Then, TPR is the empirical sensitivity of the test, which is derived by dichotomizing the 

variable into positive or negative results, and FPR is the corresponding empirical specificity. It 

has been shown that the area under an empirical ROC curve (AUC) is equal to the Mann-

Whitney two-sample statistic applied to the two samples 𝐶1 and 𝐶2 when calculated by the 

trapezoidal rule. Since the Mann-Whitney statistic is a generalized U-statistic, statistical analysis 

of diagnostic tests performance can be performed by using the general theory of U-statistics.  

The Mann-Whitney statistic estimates the probability, θ, that a predicted class label will 

be same as the observed group label. It can be computed as the average over a kernel φ, as θ̂ =

1

𝑚𝑛
∑ ∑ φ(𝑋𝑖, 𝑌𝑗)

𝑚
𝑖=1

𝑛
𝑗=1 , where φ(𝑋𝑖, 𝑌𝑗) = {

1, 𝑌𝑗 = 𝑋𝑖
0, 𝑌𝑗 ≠ 𝑋𝑖

. 

Sen (1960) has provided a method of structural components to provide consistent 

estimates of the elements of the variance-covariance matrix of a vector of U-statistics. This 

method is equivalent to jackknifing but is conceptually more straightforward when dealing with 

U-statistics. We exploit this methodology to compare the areas under two ROC curves. For the 

proposed methods, θ̂𝑠, the X-components and Y-components are defined, respectively, as 

𝑉10
𝑠 (𝑋𝑖) =

1

𝑛
∑φ(𝑋𝑖

𝑠, 𝑌𝑗
𝑠)⁡(𝑖 = 1,2, … ,𝑚)

𝑛

𝑗=1

 

and 

𝑉01
𝑠 (𝑋𝑖) =

1

𝑚
∑ φ(𝑋𝑖

𝑠, 𝑌𝑗
𝑠)⁡(𝑗 = 1,2, … , 𝑛)𝑚

𝑖=1 . 

For the G-BLUP approach, set 

𝑉10
𝑟 (𝑋𝑖) =

1

𝑛
∑φ(𝑋𝑖

𝑟 , 𝑌𝑗
𝑟)⁡(𝑖 = 1,2, … ,𝑚)

𝑛

𝑗=1

 

and 
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𝑉01
𝑟 (𝑋𝑖) =

1

𝑚
∑ φ(𝑋𝑖

𝑟 , 𝑌𝑗
𝑟)⁡(𝑗 = 1,2, … , 𝑛)𝑚

𝑖=1 . 

Also define the 2 × 2 matrix 𝑆10 such that the elements are: 

𝑠10
𝑠,𝑟 = 𝑠10

𝑟,𝑠 =
1

𝑚−1
∑ [𝑉10

𝑠 (𝑋𝑖) − θ̂𝑠]𝑚
𝑖=1 [𝑉10

𝑟 (𝑋𝑖) − θ̂𝑟], 

𝑠10
𝑠,𝑠 =

1

𝑚−1
∑ [𝑉10

𝑠 (𝑋𝑖) − θ̂𝑠]
2𝑚

𝑖=1 , 

𝑠10
𝑟,𝑟 =

1

𝑚−1
∑ [𝑉10

𝑟 (𝑋𝑖) − θ̂𝑟]
2𝑚

𝑖=1 . 

Similarly define 𝑆01, which has elements.  

𝑠01
𝑠,𝑟 = 𝑠01

𝑟,𝑠 =
1

𝑛−1
∑ [𝑉01

𝑠 (𝑋𝑖) − θ̂𝑠]𝑛
𝑖=1 [𝑉01

𝑟 (𝑋𝑖) − θ̂𝑟], 

𝑠01
𝑠,𝑠 =

1

𝑛−1
∑ [𝑉01

𝑠 (𝑋𝑖) − θ̂𝑠]
2𝑛

𝑖=1 , 

𝑠01
𝑟,𝑟 =

1

𝑛−1
∑ [𝑉01

𝑟 (𝑋𝑖) − θ̂𝑟]
2𝑛

𝑖=1 . 

The estimated covariance matrix for the vector of parameter estimates, 𝛉̂ = (θ̂𝑠, θ̂𝑟), is thus 

S =
1

𝑚
𝑆10 +

1

𝑛
𝑆01. 

For contrast L𝛉′, where L = (1,−1),  

L𝛉̂′ − L𝛉′

[𝐿S𝐿′]1/2
 

has a standard normal distribution. A two-sided 95% confidence interval for L𝛉′ is thus 

[L𝛉̂′ ± 1.96[𝐿S𝐿′]1/2].  
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4. RESULTS 

The first analysis used the original data set and compares the linear model, Bayesian 

linear model, K-nearest neighbors, and random forest methods with G-BLUP methods (ridge 

regression, exponential, gaussian) on wheat lines from 2011-2018 spring wheat to the best linear 

unbiased prediction (BLUP) data.  

Predictive ability is expressed as the Pearson correlation between predicted values and 

the true observed values (Table 3). Compared with G-BLUP methods, we can see that linear 

model, Bayesian linear model, K-nearest neighbors, and random forest perform better in loaf 

volume prediction, perform poorly in flour extraction and bake absorption prediction, and in 

mixograph prediction, the performance is not bad. To obtain further conclusions about the 

accuracy of these predictive models, we proposed a hypothesis to test whether their areas under 

the ROC curve are equal. 
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Table 3. Predictive ability of seven models for 4 response variables 

YEAR  METHOD VOLUME EXTRACTION MIXOGRAPH ABSORPTION 

2012 BAY 0.47 0.05 0.26 0.13 

LM 0.47 0.05 0.26 0.13 

K-NN 0.47 0.02 0.18 0.09 

RF 0.44 0.14 0.22 0.06 

RR 0.49 0.29 0.32 0.49 

EXP 0.47 0.34 0.26 0.48 

G 0.47 0.33 0.24 0.48 

2013 BAY 0.66 0.31 0.24 0.06 

LM 0.67 0.16 0.20 0.08 

K-NN 0.69 0.11 0.27 0.08 

RF 0.66 0.18 0.18 0.11 

RR 0.52 0.55 0.33 0.62 

EXP 0.56 0.50 0.35 0.58 

G 0.53 0.51 0.35 0.59 

2014 BAY 0.62 0.26 0.50 0.26 

LM 0.62 0.20 0.52 0.24 

K-NN 0.61 0.20 0.49 0.25 

RF 0.59 0.07 0.48 0.27 

RR 0.66 0.56 0.45 0.37 

EXP 0.64 0.57 0.46 0.36 

G 0.65 0.57 0.48 0.36 

2015 BAY 0.71 0.21 0.30 0.40 

LM 0.71 0.21 0.32 0.40 

K-NN 0.68 0.20 0.26 0.49 

RF 0.67 0.28 0.15 0.46 

RR 0.49 0.23 0.41 0.28 

EXP 0.52 0.24 0.39 0.28 

G 0.50 0.25 0.38 0.29 

2016 BAY 0.20 0.39 0.40 0.12 

LM 0.20 0.38 0.42 0.12 

K-NN 0.22 0.27 0.26 0.26 

RF 0.17 0.18 0.28 0.12 

RR 0.21 0.17 0.26 0.42 

EXP 0.22 0.23 0.29 0.45 

G 0.21 0.22 0.27 0.42 

2018 BAY 0.28 0.04 0.14   

LM 0.29 0.23 0.28   

K-NN 0.31 0.18 0.06   

RF 0.27 0.05 0.11   

RR 0.04 0.17 0.11   

EXP 0.08 0.16 0.16   

G 0.06 0.17 0.13   

Note: BAY = Bayesian linear model; LM = linear model; K-NN = K nearest neighbor; RF = 

random forest; RR = ridge regression; EXP = exponential; G = Gaussian. 
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4.1. Linear Regression 

We estimated the areas under the step-up ROC curves to check the predictive ability 

intuitively for each year. We prefer to interpret the AUC as an average TPR across FPR, because 

AUC = ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡
1

0
. A perfect classifier has AUC = 1, whereas one that performs no better than 

chance has an AUC of 0.5. 

Next, we used the nonparametric approach described in section 3.8 to compare AUCs for 

the loaf volume prediction results with LM and G-BLUP. The resulting P-values and two-sided 

95% confidence intervals (CI) are presented in Table 4. There is no significant difference 

between LM over G-BLUP in the year 2012, 2013, 2014 and 2016. The confidence interval is 

the difference between LM and G-BLUP. Therefore, when CI is positive, it indicates that LM is 

better; otherwise, G-BLUP is better. Additionally, LM obtained more accurate predictions in 

2015 and 2018. Figure 2 shows the ROC curves corresponding to two tests with significant 

differences. The blue line is the ROC curve of LM, and other lines are the ROC curves of G-

BLUP. The area under the blue line is significantly larger than the area under the other lines. 

These results indicate that LM performed better than G-BLUP in 2015 and 2018. 

Considering these data, LM performs similarly or better than G-BLUP when predicting 

loaf volume. This is because the predictors (TW and protein) are all significant for the linear 

model method in predicting response variable (loaf volume).  

Even if LM is better than G-BLUP, in terms of prediction, it may still be too low to be of 

any practical value. The first ROC curve in 2015 corresponds to a better prediction than the 

second in 2018. Therefore, in order to prove whether LM is a good prediction method, we also 

considered the traditional predictive ability (correlation) and TPR/PPV. 
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Table 4. LM VS G-BLUP: P-values and 95% CIs for loaf volume prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.22 0.02 0.09 Accept 
 

EXP -0.21 0.03 0.13 Accept 
 

G -0.21 0.03 0.13 Accept 
 

2013 RR -0.37 0.03 0.10 Accept 
 

EXP -0.37 0.02 0.08 Accept 
 

G -0.37 0.03 0.10 Accept 
 

2014 RR -0.12 0.09 0.77 Accept 
 

EXP -0.13 0.09 0.72 Accept 
 

G -0.13 0.08 0.58 Accept 
 

2015 RR 0.07 0.28 0.00 Reject LM 

EXP 0.05 0.27 0.01 Reject LM 

G 0.06 0.27 0.00 Reject LM 

2016 RR -0.20 0.04 0.18 Accept 
 

EXP -0.23 0.00 0.06 Accept 
 

G -0.22 0.02 0.09 Accept 
 

2018 RR 0.17 0.55 0.00 Reject LM 

EXP 0.15 0.53 0.00 Reject LM 

G 0.16 0.54 0.00 Reject LM 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 2. ROC curves of LM and G-BLUP for loaf volume in 2015 and 2018 

In Table 5, the AUC results for predicting flour extraction are presented. There is no 

significant difference between LM and G-BLUP in 2012 and 2018. G-BLUP provides better 

results based on its AUC in 2013, 2014 and 2016, and LM performs better in 2015(Figure 3). 

The predictive ability of the flour extraction LM is lower than that of the loaf volume LM, 

because the predictor TW is not highly related with the response flour extraction in the linear 

model. 
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Table 5. LM VS G-BLUP: P-values and 95% CIs for flour extraction prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.23 0.08 0.35 Accept 
 

EXP -0.24 0.06 0.24 Accept 
 

G -0.24 0.07 0.28 Accept 
 

2013 RR -0.64 -0.23 0.00 Reject RR 

EXP -0.64 -0.19 0.00 Reject EXP 

G -0.62 -0.16 0.00 Reject G 

2014 RR -0.70 -0.37 0.00 Reject RR 

EXP -0.69 -0.35 0.00 Reject EXP 

G -0.69 -0.37 0.00 Reject G 

2015 RR 0.05 0.42 0.01 Reject LM 

EXP 0.03 0.39 0.02 Reject LM 

G 0.05 0.40 0.01 Reject LM 

2016 RR -0.41 -0.06 0.01 Reject RR 

EXP -0.44 -0.11 0.00 Reject EXP 

G -0.45 -0.12 0.00 Reject G 

2018 RR -0.33 0.15 0.45 Accept 
 

EXP -0.32 0.14 0.44 Accept 
 

G -0.33 0.13 0.39 Accept 
 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 3. ROC curves of LM and G-BLUP for flour extraction in 2013, 2014, 2015 and 2016 

Table 6 shows the two approaches are not significantly different in the years 2012, 2016 

and 2018 for mixograph prediction. The ROC curves corresponding to the test with significant 
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differences are shown in Figure 4. G-BLUP performs better in 2015, and LM provides better 

results in 2013 and 2014. There is no clear pattern as to which method is always better than the 

other. But we can see that LM is not worse than G-BLUP. 

Table 6. LM VS G-BLUP: P-values and 95% CIs for mixograph prediction 

YEAR KERNEL  CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓  BETTER METHOD 

2012 RR -0.36 -0.06 0.06 Accept   

EXP -0.42 -0.10 0.05 Accept   

G -0.44 -0.12 0.05 Accept   

2013 RR 0.01 0.39 0.04 Reject LM 

EXP 0.00 0.35 0.05 Reject LM 

G 0.01 0.36 0.04 Reject LM 

2014 RR 0.01 0.30 0.03 Reject LM 

EXP 0.03 0.31 0.02 Reject LM 

G 0.02 0.30 0.02 Reject LM 

2015 RR -0.35 -0.05 0.01 Reject RR 

EXP -0.35 -0.04 0.01 Reject EXP 

G -0.33 -0.03 0.02 Reject G 

2016 RR -0.16 0.20 0.85 Accept   

EXP -0.15 0.21 0.72 Accept   

G -0.16 0.20 0.82 Accept   

2018 RR -0.41 0.09 0.20 Accept   

EXP -0.46 0.00 0.06 Accept   

G -0.44 0.04 0.11 Accept   

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 4. ROC curves of LM and G-BLUP for mixograph in 2013, 2014 and 2015 
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The resulting AUC analysis in Table 7 indicates there is no significant difference 

between the proposed method and G-BLUP, except for the year 2012. This shows that these 

methods provide almost the same performance for bake absorption prediction. Figure 5 provides 

the ROC curve corresponding to the test with significant differences is plotted. 

Table 7. LM VS G-BLUP: P-values and 95% CIs for bake absorption prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.27 0.00 0.05 Reject RR 

EXP -0.28 -0.01 0.03 Reject EXP 

G -0.28 -0.01 0.03 Reject G 

2013 RR -0.44 0.02 0.07 Accept 

EXP -0.37 0.09 0.24 Accept 

G -0.37 0.10 0.25 Accept 

2014 RR -0.21 0.09 0.44 Accept 

EXP -0.19 0.12 0.64 Accept 

G -0.19 0.11 0.62 Accept 

2015 RR -0.03 0.34 0.10 Accept 

EXP -0.03 0.34 0.09 Accept 

G -0.03 0.34 0.09 Accept 

2016 RR -0.22 0.05 0.22 Accept 

EXP -0.24 0.05 0.19 Accept 

G -0.23 0.05 0.21 Accept 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

Figure 5. ROC curves of LM and G-BLUP for bake absorption in 2012 

4.2. Bayesian Linear Model 

Next, we compared the AUCs of the loaf volume prediction result of the Bayesian linear 

model and G-BLUP. Table 8 lists the resulting P-values and 95% confidence intervals. In 2012, 
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2013, 2014, and 2016, there were no significant differences between BAY and G-BLUP. In 

addition, BAY obtained more accurate forecasts in 2015 and 2018(Figure 6). In short, the 

performance of BAY is similar to or better than G-BLUP when predicting loaf volume. 

Table 8. BAY VS G-BLUP: P-values and 95% CIs for loaf volume prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.22 0.02 0.09 Accept 
 

EXP -0.21 0.03 0.13 Accept 
 

G -0.21 0.03 0.13 Accept 
 

2013 RR -0.37 0.03 0.10 Accept 
 

EXP -0.37 0.02 0.08 Accept 
 

G -0.37 0.03 0.10 Accept 
 

2014 RR -0.12 0.09 0.77 Accept 
 

EXP -0.13 0.09 0.72 Accept 
 

G -0.13 0.08 0.58 Accept 
 

2015 RR 0.07 0.28 0.00 Reject BAY 

EXP 0.05 0.27 0.01 Reject BAY 

G 0.06 0.27 0.00 Reject BAY 

2016 RR -0.20 0.04 0.18 Accept 
 

EXP -0.23 0.00 0.06 Accept 
 

G -0.22 0.02 0.09 Accept 
 

2018 RR 0.19 0.52 0.00 Reject BAY 

EXP 0.18 0.51 0.00 Reject BAY 

G 0.18 0.52 0.00 Reject BAY 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 6. ROC curves of BAY and G-BLUP for loaf volume in 2015 and 2018 

In Table 9, the AUC results are provided for prediction flour extraction. There were no 

significant differences between BAY and G-BLUP in 2012 and 2018, but G-BLUP provided 

better results based on its AUC in 2013, 2014 and 2016. Bay performs better in 2015. Figure 7 

shows the ROC curves corresponding to tests with significant differences. 
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Table 9. BAY VS RR-BLUP: P-values and 95% CIs for flour extraction prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.23 0.08 0.35 Accept 
 

EXP -0.24 0.06 0.24 Accept 
 

G -0.24 0.07 0.28 Accept 
 

2013 RR -0.75 -0.34 0.00 Reject RR 

EXP -0.75 -0.30 0.00 Reject EXP 

G -0.73 -0.27 0.00 Reject G 

2014 RR -0.60 -0.26 0.00 Reject RR 

EXP -0.59 -0.25 0.00 Reject EXP 

G -0.60 -0.26 0.00 Reject G 

2015 RR 0.03 0.39 0.02 Reject BAY 

EXP 0.01 0.36 0.04 Reject BAY 

G 0.02 0.37 0.03 Reject BAY 

2016 RR -0.40 -0.07 0.01 Reject RR 

EXP -0.44 -0.11 0.00 Reject EXP 

G -0.45 -0.12 0.00 Reject G 

2018 RR -0.13 0.25 0.54 Accept 
 

EXP -0.14 0.23 0.65 Accept 
 

G -0.14 0.23 0.64 Accept 
 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 7. ROC curves of BAY and G-BLUP for flour extraction in 2013, 2014, 2015 and 2016 

Table 10 shows that the two methods have no significant differences in the mixograph 

predictions in 2013, 2014, 2016, and 2018. Figure 8 indicates that G-BLUP performed better in 

2012 and 2015. This shows that BAY is not a suitable method for predicting mixograph. 
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Table 10. BAY VS G-BLUP: P-values and 95% CIs for mixograph prediction 

YEAR KERNEL CI P-VALUE H0:𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.36 -0.06 0.01 Reject RR 

EXP -0.42 -0.10 0.00 Reject EXP 

G -0.44 -0.12 0.00 Reject G 

2013 RR -0.02 0.37 0.08 Accept 
 

EXP -0.03 0.33 0.11 Accept 
 

G -0.02 0.34 0.09 Accept 
 

2014 RR -0.02 0.27 0.09 Accept 
 

EXP -0.01 0.28 0.06 Accept 
 

G -0.01 0.27 0.07 Accept 
 

2015 RR -0.36 -0.04 0.01 Reject RR 

EXP -0.36 -0.04 0.02 Reject EXP 

G -0.34 -0.03 0.02 Reject G 

2016 RR -0.17 0.20 0.88 Accept 
 

EXP -0.16 0.21 0.76 Accept 
 

G -0.17 0.20 0.85 Accept 
 

2018 RR -0.02 0.24 0.09 Accept 
 

EXP -0.02 0.24 0.11 Accept 
 

G -0.02 0.24 0.09 Accept 
 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 8. ROC curves of BAY and G-BLUP for mixograph in 2013 and 2015 

In Figure 9, the ROC curve corresponding to the test with significant differences is 

plotted. The P-values and 95% confidence intervals in Table 11 indicate that, except for 2012, 

there is no significant difference between the BAY and G-BLUP. This shows that these methods 

have similar bake absorption prediction performance. However, based on the fact that the 

predictive ability of G-BLUP was higher than the proposed methods, G-BLUP provided 

marginally better performance.  
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Table 11. BAY VS RR-BLUP: P-values and 95% CIs for bake absorption prediction 

YEAR KERNEL CI P-VALUE H0:𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD

2012 RR -0.27 0.00 0.05 Reject RR 

EXP -0.28 -0.01 0.03 Reject EXP 

G -0.28 -0.01 0.03 Reject G 

2013 RR -0.44 0.02 0.07 Accept 

EXP -0.37 0.09 0.24 Accept 

G -0.37 0.10 0.25 Accept 

2014 RR -0.21 0.09 0.44 Accept 

EXP -0.19 0.12 0.63 Accept 

G -0.19 0.11 0.62 Accept 

2015 RR -0.03 0.34 0.10 Accept 

EXP -0.03 0.34 0.09 Accept 

G -0.03 0.34 0.09 Accept 

2016 RR -0.22 0.05 0.22 Accept 

EXP -0.24 0.05 0.19 Accept 

G -0.23 0.05 0.21 Accept 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

Figure 9. ROC curves of BAY and G-BLUP for bake absorption in 2012 

4.3. K Nearest Neighbors 

Using to the root mean square error (RMSE) results of cross-validation, we selected the k 

value for each response variable with K-NN as described in section 3.5. Also, we compared 

AUC of K-NN and G-BLUP with the same nonparametric approach as with the other proposed 

methods. Table 12 and Figure 10 reveal that in the years 2015 and 2018, K-NN provided better 

loaf volume classification results than G-BLUP. This non-parametric approach also provides 

similar or better performance in loaf volume prediction compared to G-BLUP.  
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Table 12. K-NN VS G-BLUP: P-values and 95% CIs for loaf volume prediction 

YEAR KERNEL CI P-VALUE H0:𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.23 0.00 0.05 Accept 
 

EXP -0.22 0.01 0.07 Accept 
 

G -0.22 0.01 0.07 Accept 
 

2013 RR -0.33 0.06 0.16 Accept 
 

EXP -0.34 0.05 0.13 Accept 
 

G -0.33 0.06 0.16 Accept 
 

2014 RR -0.14 0.08 0.58 Accept 
 

EXP -0.15 0.08 0.55 Accept 
 

G -0.15 0.06 0.43 Accept 
 

2015 RR 0.06 0.29 0.00 Reject K-NN 

EXP 0.04 0.27 0.01 Reject K-NN 

G 0.06 0.28 0.00 Reject K-NN 

2016 RR -0.18 0.07 0.40 Accept 
 

EXP -0.21 0.03 0.15 Accept 
 

G -0.19 0.05 0.24 Accept 
 

2018 RR 0.14 0.48 0.00 Reject K-NN 

EXP 0.13 0.48 0.00 Reject K-NN 

G 0.14 0.49 0.00 Reject K-NN 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

  

Figure 10. ROC curves of K-NN and G-BLUP for loaf volume in 2015 and 2018 

Table 13 shows that based on the AUC P-values and 95% confidence interval, G-BLUP 

is better for predicting flour extraction than K-NN. The K-NN are similar to those of LM in that 

the predictor TW is not significant for the response flour extraction. The ROC curves 

corresponding to the test with significant differences are shown in Figure 11. 
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Table 13. K-NN VS RR-BLUP: P-values and 95% CIs for flour extraction prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.29 0.01 0.07 Accept 
 

EXP -0.30 -0.01 0.04 Reject EXP 

G -0.29 0.00 0.05 Reject G 

2013 RR -0.67 -0.32 0.00 Reject RR 

EXP -0.67 -0.28 0.00 Reject EXP 

G -0.64 -0.25 0.00 Reject G 

2014 RR -0.36 -0.03 0.02 Reject RR 

EXP -0.35 -0.02 0.03 Reject EXP 

G -0.35 -0.03 0.02 Reject G 

2015 RR -0.25 0.12 0.49 Accept 
 

EXP -0.29 0.10 0.36 Accept 
 

G -0.27 0.11 0.41 Accept 
 

2016 RR -0.24 0.10 0.43 Accept 
 

EXP -0.28 0.06 0.19 Accept 
 

G -0.28 0.05 0.16 Accept 
 

2018 RR -0.24 0.13 0.55 Accept 
 

EXP -0.25 0.11 0.43 Accept 
 

G -0.25 0.11 0.43 Accept 
 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 11. ROC curves of K-NN and G-BLUP for flour extraction in 2012, 2013 and 2014 
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It can be seen from Table 14 that K-NN is similar to or better than G-BLUP in predicting 

mixograph. These results shows that the two methods have no significant differences in the 

mixograph predictions in 2012, 2016, and 2018. Figure 12 shows the ROC curves in 2013 and 

2014, when K-NN performs better than G-BLUP. 

Table 14. K-NN VS G-BLUP: P-values and 95% CIs for mixograph prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.20 0.08 0.41 Accept 
 

EXP -0.25 0.03 0.13 Accept 
 

G -0.27 0.01 0.06 Accept 
 

2013 RR 0.04 0.39 0.02 Reject K-NN 

EXP 0.03 0.34 0.02 Reject K-NN 

G 0.04 0.35 0.02 Reject K-NN 

2014 RR 0.03 0.30 0.02 Reject K-NN 

EXP 0.04 0.31 0.01 Reject K-NN 

G 0.03 0.30 0.01 Reject K-NN 

2015 RR -0.29 0.05 0.17 Accept 
 

EXP -0.28 0.06 0.20 Accept 
 

G -0.27 0.07 0.26 Accept 
 

2016 RR -0.24 0.07 0.27 Accept 
 

EXP -0.23 0.08 0.37 Accept 
 

G -0.24 0.07 0.30 Accept 
 

2018 RR -0.12 0.18 0.67 Accept 
 

EXP -0.12 0.18 0.70 Accept 
 

G -0.11 0.18 0.66 Accept 
 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 12. ROC curves of K-NN and G-BLUP for mixograph in 2012 and 2014 

The AUC P-values and 95% confidence intervals obtained in Table 15 indicate that, 

except for 2012, there is no significant difference between K-NN and G-BLUP. This shows that 
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these two methods can provide similar bake absorption prediction performance. In Figure 13, the 

ROC curve corresponding to the test with significant differences is plotted. 

Table 15. K-NN VS G-BLUP: P-values and 95% CIs for bake absorption prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD

2012 

RR -0.35 -0.09 0.00 Reject RR 

EXP -0.35 -0.10 0.00 Reject EXP 

G -0.35 -0.10 0.00 Reject G 

2013 

RR -0.37 0.06 0.16 Accept 

EXP -0.29 0.14 0.47 Accept 

G -0.30 0.14 0.48 Accept 

2014 

RR -0.21 0.02 0.11 Accept 

EXP -0.19 0.05 0.24 Accept 

G -0.19 0.05 0.23 Accept 

2015 

RR -0.13 0.24 0.55 Accept 

EXP -0.12 0.24 0.53 Accept 

G -0.12 0.24 0.53 Accept 

2016 

RR -0.22 0.04 0.18 Accept 

EXP -0.23 0.03 0.14 Accept 

G -0.22 0.04 0.17 Accept 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

Figure 13. ROC curves of K-NN and G-BLUP for bake absorption in 2012 

4.4. Random Forest 

We compared the AUC of Random forest and G-BLUP with the Mann-Whitney two-

sample test. Table 16 shows that in 2015 and 2018, RF can provide better loaf volume prediction 

results than G-BLUP. In Figure 14, the ROC curves corresponding to the tests with significant 



 

40 
 

differences is shown. This non-linear model also provides better performance in loaf volume 

prediction.  

Table 16. RF VS G-BLUP: P-values and 95% CIs for loaf volume prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.19 0.03 0.16 Accept 
 

EXP -0.18 0.04 0.21 Accept 
 

G -0.18 0.04 0.21 Accept 
 

2013 RR -0.38 0.01 0.06 Accept 
 

EXP -0.39 0.00 0.05 Accept 
 

G -0.38 0.01 0.06 Accept 
 

2014 RR -0.13 0.09 0.70 Accept 
 

EXP -0.13 0.09 0.66 Accept 
 

G -0.14 0.07 0.53 Accept 
 

2015 RR 0.07 0.28 0.00 Reject RF 

EXP 0.05 0.27 0.01 Reject RF 

G 0.06 0.27 0.00 Reject RF 

2016 RR -0.18 0.06 0.33 Accept 
 

EXP -0.21 0.02 0.11 Accept 
 

G -0.19 0.04 0.19 Accept 
 

2018 RR 0.14 0.49 0.00 Reject RF 

EXP 0.12 0.48 0.00 Reject RF 

G 0.13 0.49 0.00 Reject RF 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 14. ROC curves of RF and G-BLUP for loaf volume in 2018 

Table 17 shows that, based on the AUC P-values and 95% confidence intervals, G-BLUP 

is a better method of predicting flour extraction than RF in the years 2013, 2014, and 2016 

(Figure 15). There is no significant difference between the two methods in 2013, 2015, and 2018. 
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Table 17. RF VS G-BLUP: P-values and 95% CIs for flour extraction prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.27 0.04 0.15 Accept 
 

EXP -0.28 0.02 0.09 Accept 
 

G -0.28 0.03 0.11 Accept 
 

2013 RR -0.55 -0.20 0.00 Reject RR 

EXP -0.56 -0.16 0.00 Reject EXP 

G -0.53 -0.13 0.00 Reject G 

2014 RR -0.30 -0.09 0.00 Reject RR 

EXP -0.28 -0.07 0.00 Reject EXP 

G -0.29 -0.08 0.00 Reject G 

2015 RR -0.22 0.15 0.71 Accept 
 

EXP -0.25 0.13 0.53 Accept 
 

G -0.24 0.14 0.60 Accept 
 

2016 RR -0.41 -0.10 0.00 Reject RR 

EXP -0.45 -0.15 0.00 Reject EXP 

G -0.46 -0.15 0.00 Reject G 

2018 RR -0.01 0.36 0.06 Accept 
 

EXP -0.02 0.33 0.09 Accept 
 

G -0.02 0.33 0.08 Accept 
 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 15. ROC curves of RF and G-BLUP for flour extraction in 2013, 2014 and 2016 



 

42 
 

Table 18 shows that the two methods have no significant differences in the mixograph 

predictions in most years. G-BLUP performs better only in 2015 (Figure 15). These two methods 

provide similar mixograph prediction performance. 

Table 18. RF VS G-BLUP: P-values and 95% CIs for mixograph prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD 

2012 RR -0.20 0.08 0.42 Accept 
 

EXP -0.26 0.04 0.16 Accept 
 

G -0.29 0.02 0.10 Accept 
 

2013 RR -0.12 0.31 0.40 Accept 
 

EXP -0.14 0.27 0.53 Accept 
 

G -0.13 0.28 0.47 Accept 
 

2014 RR -0.02 0.27 0.09 Accept 
 

EXP 0.00 0.28 0.06 Accept 
 

G -0.01 0.27 0.07 Accept 
 

2015 RR -0.42 -0.07 0.01 Reject RR 

EXP -0.41 -0.07 0.01 Reject EXP 

G -0.40 -0.05 0.01 Reject G 

2016 RR -0.33 0.08 0.24 Accept 
 

EXP -0.31 0.09 0.29 Accept 
 

G -0.32 0.08 0.25 Accept 
 

2018 RR -0.09 0.21 0.41 Accept 
 

EXP -0.09 0.21 0.44 Accept 
 

G -0.08 0.21 0.40 Accept 
 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

 

Figure 16. ROC curves of RF and G-BLUP for mixograph in 2015 

Table 19 shows the two approaches are not significantly different in the year 2013, 2014 

and 2016 for bake absorption prediction. The G-BLUP performs better in 2012, and RF provides 
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better results in 2015. In Figure 17, the ROC curves corresponding to the tests with significant 

differences are plotted. There is no clear pattern which method is always better than the other. 

But we can see that our approach is not worse than G-BLUP. 

Table 19. RF VS RR-BLUP: P-values and 95% CIs for bake absorption prediction 

YEAR KERNEL CI P-VALUE H0:⁡𝛉̂𝒔 = 𝛉̂𝒓 BETTER METHOD

2012 RR -0.31 -0.05 0.01 Reject RR 

EXP -0.32 -0.05 0.01 Reject EXP 

G -0.32 -0.06 0.01 Reject G 

2013 RR -0.41 0.02 0.08 Accept 

EXP -0.34 0.10 0.28 Accept 

G -0.34 0.10 0.29 Accept 

2014 RR -0.28 0.03 0.11 Accept 

EXP -0.26 0.05 0.20 Accept 

G -0.26 0.05 0.19 Accept 

2015 RR 0.06 0.39 0.01 Reject RF 

EXP 0.07 0.39 0.01 Reject RF 

G 0.07 0.40 0.01 Reject RF 

2016 RR -0.26 0.39 0.06 Accept 

EXP -0.27 0.39 0.11 Accept 

G -0.27 0.40 0.20 Accept 

Note: RR = ridge regression; EXP = exponential; G = Gaussian. 

Figure 17. ROC curves of RF and G-BLUP for bake absorption in 2012 and 2015 

4.5. Original Data Set Results and Discussion 

We compared a total of seven prediction models, including linear and nonlinear (Table 

20). The three G-BLUP methods almost provide the same results in the prediction of loaf 

volume, flour extraction, mixograph classification, and bake absorption. Based on the results 

obtained above, we conclude that the performance of the models without marker information is 
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similar to or better than the models with marker information for loaf volume prediction. 

However, for flour extraction prediction, the G-BLUP methods provide similar or better results 

than the proposed methods. For mixograph classification prediction, when comparing the linear 

model and the G-BLUP methods, there is no clear pattern as to which method is always better. 

The results of G-BLUP are similar to or better than the Bayesian linear model. K-nearest 

neighbors provides similar or better performance than G-BLUP.  Random forest and G-BLUP 

methods can provide almost the same performance of mixograph classification prediction. Linear 

model, Bayesian linear model and k-nearest neighbors can provide almost the same bake 

absorption prediction performance as G-BLUP. Although there is no clear pattern indicating 

which method between random forest and G-BLUP is always better, we can see that the 

proposed approach is not worse than G-BLUP. 

Table 20. Seven prediction models 

MODELS WITH MARKER 

INFORMATION 
MODELS WITHOUT MARKER 

INFORMATION 

G‐BLUP(RR-BLUP) Linear model 

G‐BLUP (Gaussian) Bayesian linear model 

G‐BLUP (Exponential) K-NN

Random Forest

4.5.1. Comparison of proposed method using original data set 

Up to now, each of the proposed methods were compared to G-BLUP.  Now, we compare 

the proposed methods to each other to find the best method of loaf volume prediction using the 

non-parametric Mann-Whitney two-sample statistic to compare AUCs. We chose loaf volume 

because the proposed methods provided a better performance than predicting flour extraction, 

bake absorption and mixograph. From the results of the 95% confidence intervals and p-values in 

Table 21, it can be found that there is no significant difference between these methods. 
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Table 21. LM VS K-NN VS RF VS BAY: P-values and 95% CIs for loaf volume prediction 

LM K-NN RF BAY 

CI P-value CI P-value CI P-value CI P-value

2012 LM - - - -0.05 0.01 0.27 -0.04 0.00 0.11 0.00 0.00 1.00

K-NN -0.05 0.01 0.27 - - - -0.07 0.00 0.06 -0.04 0.00 0.11

RF -0.04 0.00 0.11 -0.07 0.00 0.06 - - - -0.01 0.05 0.27

BAY 0.00 0.00 1.00 -0.04 0.00 0.11 -0.01 0.05 0.27 - - - 

2013 LM - - - -0.01 0.07 0.19 -0.03 0.06 0.43 0.00 0.00 1.00 

K-NN -0.01 0.07 0.19 - - - -0.02 0.11 0.15 -0.03 0.06 0.43 

RF -0.03 0.06 0.43 -0.02 0.11 0.15 - - - -0.07 0.01 0.19 

BAY 0.00 0.00 1.00 -0.03 0.06 0.43 -0.07 0.01 0.19 - - - 

2014 LM - - - -0.03 0.00 0.14 -0.01 0.02 0.53 -0.01 0.01 1.00 

K-NN -0.03 0.00 0.14 - - - -0.03 0.01 0.30 -0.01 0.02 0.59 

RF -0.01 0.02 0.53 -0.03 0.01 0.30 - - - 0.00 0.03 0.13 

BAY 0.00 0.00 1.00 -0.01 0.02 0.59 0.00 0.03 0.13 - - - 

2015 LM - - - -0.02 0.02 1.00 -0.02 0.02 1.00 0.00 0.00 1.00 

K-NN -0.02 0.02 1.00 - - - -0.02 0.02 1.00 -0.02 0.02 1.00 

RF -0.02 0.02 1.00 -0.02 0.02 1.00 - - - -0.02 0.02 1.00 

BAY 0.00 0.00 1.00 -0.02 0.02 1.00 -0.02 0.02 1.00 - - - 

2016 LM - - - 0.00 0.06 0.07 -0.06 0.01 0.22 0.00 0.00 1.00 

K-NN 0.00 0.06 0.07 - - - -0.03 0.05 0.79 -0.06 0.01 0.22 

RF -0.06 0.01 0.22 -0.03 0.05 0.79 - - - -0.06 0.00 0.07 

BAY 0.00 0.00 1.00 -0.06 0.01 0.22 -0.06 0.00 0.07 - - - 

2018 LM - - - -0.15 0.03 0.17 -0.02 0.12 0.15 0.00 0.00 1.00 

K-NN -0.15 0.03 0.17 - - - -0.10 0.08 0.83 -0.02 0.12 0.15 

RF -0.02 0.12 0.15 -0.10 0.08 0.83 - - - -0.03 0.15 0.17 

BAY 0.00 0.00 1.00 -0.02 0.12 0.15 -0.03 0.15 0.17 - - - 

Note: BAY = Bayesian linear model; LM = linear model; K-NN = K nearest neighbor; RF = 

random forest. 

4.5.2. PPV and TPR of original data set 

In addition to predictive ability, we also include the results in Table 22 to show positive 

predictive value (PPV) and sensitivity (TPR). PPV is the proportion of lines identified as 

underperforming that are actually in the underperforming group. TPR is the proportion of 

underperforming lines identified as underperforming. 

In 2012, our proposed methods have higher TPR and PPV than G-BLUP in terms of 

mixograph and bake absorption prediction. In 2013, the proposed methods achieve similar or 
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better performance in mixograph and bake absorption. G-BLUP performs better in 2014 for flour 

extraction and bake absorption. In 2015 the proposed methods have the same or better TPR and 

PPV for all response predictions. In the 2016 flour extraction and mixograph analysis, the 

proposed methods are not worse than G-BLUP. In 2018, for all response predictions, proposed 

methods have the same or better TPR and PPV. These results indicate that LM, K-NN and BAY 

are not worse than G-BLUP methods in prediction of loaf volume, mixograph and bake 

absorption. 
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Table 22. PPV and TPR of seven models for 4 response variables 

YEAR METHOD VOLUME EXTRACTION MIXOGRAPH ABSORPTION 
  

TPR PPV TPR PPV TPR PPV TPR PPV 

2012 LM 0.40 0.40 0.10 0.10 0.10 0.17 0.40 0.40 

BAY 0.40 0.40 0.10 0.10 0.10 0.17 0.40 0.40 

K-NN 0.40 0.40 0.10 0.10 0.10 0.17 0.40 0.40 

RF 0.40 0.40 0.10 0.10 0.14 0.14 0.30 0.30 

RR 0.30 0.30 0.30 0.30 0.10 0.17 0.20 0.20 

EXP 0.50 0.50 0.40 0.40 0.00 0.00 0.20 0.20 

G 0.50 0.50 0.40 0.40 0.00 0.00 0.20 0.20 

2013 LM 0.25 0.25 0.25 0.25 0.75 0.75 0.25 0.25 

BAY 0.25 0.25 0.10 0.10 0.50 0.50 0.25 0.25 

K-NN 0.25 0.25 0.10 0.10 0.50 0.50 0.25 0.25 

RF 0.25 0.25 0.25 0.25 0.50 0.50 0.25 0.25 

RR 0.50 0.50 0.30 0.30 0.50 0.50 0.25 0.25 

EXP 0.50 0.50 0.25 0.25 0.50 0.50 0.00 0.00 

G 0.50 0.50 0.25 0.25 0.50 0.50 0.00 0.00 

2014 LM 0.22 0.22 0.00 0.00 0.44 0.50 0.11 0.13 

BAY 0.22 0.22 0.10 0.10 0.33 0.38 0.25 0.25 

K-NN 0.22 0.22 0.10 0.10 0.44 0.50 0.11 0.13 

RF 0.22 0.22 0.33 0.11 0.33 0.38 0.11 0.13 

RR 0.22 0.22 0.44 0.44 0.11 0.13 0.33 0.38 

EXP 0.22 0.22 0.33 0.33 0.11 0.13 0.33 0.38 

G 0.22 0.22 0.33 0.33 0.11 0.13 0.33 0.38 

2015 LM 0.57 0.57 0.14 0.14 0.14 0.14 0.14 0.14 

BAY 0.57 0.57 0.29 0.29 0.29 0.29 0.14 0.14 

K-NN 0.57 0.57 0.10 0.10 0.14 0.14 0.43 0.43 

RF 0.57 0.57 0.14 0.14 0.14 0.14 0.43 0.43 

RR 0.43 0.43 0.14 0.14 0.29 0.29 0.29 0.29 

EXP 0.14 0.14 0.14 0.14 0.29 0.29 0.29 0.29 

G 0.29 0.29 0.14 0.14 0.14 0.14 0.29 0.29 

2016 LM 0.14 0.17 0.14 0.14 0.57 0.44 0.29 0.22 

BAY 0.14 0.17 0.14 0.14 0.43 0.33 0.29 0.22 

K-NN 0.14 0.17 0.29 0.29 0.43 0.33 0.14 0.11 

RF 0.14 0.17 0.14 0.14 0.57 0.44 0.13 0.11 

RR 0.29 0.33 0.14 0.14 0.29 0.22 0.43 0.33 

EXP 0.43 0.50 0.29 0.29 0.29 0.22 0.43 0.33 

G 0.43 0.50 0.29 0.29 0.29 0.22 0.43 0.33 

2018 LM 0.14 0.14 0.29 0.29 0.10 0.10 0.14 0.17 

BAY 0.14 0.14 0.14 0.14 0.29 0.29 0.14 0.17 

K-NN 0.14 0.14 0.10 0.10 0.14 0.14 0.14 0.11 

RF 0.00 0.00 0.14 0.14 0.29 0.29 0.00 0.00 

RR 0.14 0.14 0.14 0.14 0.29 0.29 0.14 0.17 

EXP 0.14 0.14 0.14 0.14 0.29 0.29 0.00 0.00 

G 0.14 0.14 0.14 0.14 0.29 0.29 0.14 0.17 

Note: BAY = Bayesian linear model; LM = linear model; K-NN = K nearest neighbor; RF = 

random forest; RR = ridge regression; EXP = exponential; G = Gaussian. 
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4.6. New Data Set Results and Discussions 

A potential reason why the predictive ability of our proposed methods is not as good as 

expected is that the number of independent predictors is too small and are not highly associated 

with the response variables. Therefore, we applied the proposed methods to a new data set that 

contains more predictors. There are two years in the new data set, 2018 and 2019, so we set the 

2018 data as the training set and the 2019 data as the test set.  

Table 23. Predictive abilities of LM, BAY, K-NN and RF for FABS, PKT, STAB and VOL 

FABS PKT STAB VOL 

LM 0.87 0.46 0.33 0.67 

BAY 0.87 0.46 0.33 0.67 

K-NN 0.69 0.32 0.29 0.40 

RF 0.86 0.43 0.32 0.63 

Note: BAY = Bayesian linear model; LM = linear model; K-NN = K nearest neighbor; RF = 

random forest; FABS = farinograph water absorption; PKT = farinograph peak time; STAB = 

farinograph stability; VOL = loaf volume. 

There are 10 predictors (PMT, BEM, AM, PM, AE, SUE, PE, GPI and SRC) and 4 

response variables (FABS, PKT, STAB, VOL). Predictive ability is shown in Table 23 

Predictive abilities for the four traits were evaluated with proposed methods. The four proposed 

models conferred similar predictive abilities. The highest predictive ability approached 0.87 for 

farinograph water absorption, 0.46 for farinograph peak time, 0.33 for farinograph stability, and 

0.67 for loaf volume. Since this data set has more predictors, it has higher accuracy, especially 

for linear model, Bayesian linear model and random forest methods. 

To compare the performance of linear model, Bayesian linear model, k-nearest neighbor, 

and random forest on FABS, PKT, STAB and VOL quality traits, we also drew the ROC curves 

in Figure 18 and performed the Mann-Whitey method to test if the areas under the ROC curves 

are equivalent in Table 24. From the ROC curves and test results, the AUC of K-NN is smaller 

than the other three methods, especially for PKT and VOL prediction. 
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Figure 18. ROC curves of FABS, PKT, STAB and VOL using proposed methods 

Table 24. P-values and 95% CIs for FABS, PKT, STAB and VOL using proposed methods 

  LM K-NN RF BAY 

  CI P-value CI P-value CI P-value CI P-value 

FABS 

LM - - - -0.02 0.00 0.02 -0.01 0.01 0.82 0.00 0.00 1.00 

K-NN -0.02 0.00 0.02 - - - 0.00 0.02 0.02 -0.01 0.01 0.82 

RF -0.01 0.01 0.82 0.00 0.02 0.01 - - - 0.00 0.02 0.05 

BAY 0.00 0.00 1.00 -0.01 0.01 0.82 0.00 0.02 0.05 - - - 

PKT 

LM - - - -0.20 -0.13 0.00 -0.04 0.00 0.09 0.00 0.00 1.00 

K-NN -0.20 -0.13 0.00 - - - 0.11 0.18 0.00 0.00 0.04 0.09 

RF -0.04 0.00 0.09 0.11 0.18 0.00 - - - 0.13 0.20 0.05 

BAY 0.00 0.00 1.00 0.00 0.04 0.09 0.13 0.20 0.05 - - - 

STAB 

LM - - - -0.06 -0.01 0.00 -0.05 -0.01 0.01 0.00 0.00 1.00 

K-NN -0.06 -0.01 0.00 - - - -0.02 0.03 0.65 0.01 0.05 0.01 

RF -0.05 -0.01 0.01 -0.02 0.03 0.65 - - - 0.01 0.06 0.01 

BAY 0.00 0.00 1.00 0.01 0.05 0.01 0.01 0.06 0.01 - - - 

VOL 

LM - - - -0.24 -0.17 0.00 -0.01 0.02 0.98 0.00 0.00 1.00 

K-NN -0.24 -0.17 0.00 - - - 0.17 0.24 0.00 -0.02 0.01 1.00 

RF -0.01 0.02 0.98 0.17 0.24 0.00 - - - -0.07 0.04 0.05 

BAY 0.00 0.00 1.00 -0.02 0.01 0.98 -0.07 0.04 0.05 - - - 

Note: BAY = Bayesian linear model; LM = linear model; K-NN = K nearest neighbor; RF = 

random forest; FABS = farinograph water absorption; PKT = farinograph peak time; STAB = 

farinograph stability; VOL = loaf volume. 

Table 25 shows the TPR and PPV of proposed methods to predict FABS, PKT, STAB 

and VOL in the new dataset. The highest TPR/PPV approached 0.76/0.77 for farinograph water 

absorption (RF), 0.45/0.47 for farinograph peak time (LM and BAY), 0.43/0.42 for farinograph 
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stability (LM and BAY), and 0.62/0.64 for loaf volume (LM and BAY). This TPR/PPV analysis 

indicates that the proposed methods worked well, especially for FABS and VOL. 

Table 25. TPR and PPV of proposed models in predicting FABS, PKT, STAB and VOL 

 
FABS PKT STAB VOL 

 
TPR PPV TPR PPV TPR PPV TPR PPV 

LM 0.72 0.73 0.45 0.47 0.43 0.42 0.62 0.64 

BAY 0.72 0.73 0.45 0.47 0.43 0.42 0.62 0.64 

K-NN 0.69 0.70 0.19 0.20 0.38 0.37 0.25 0.26 

RF 0.76 0.77 0.39 0.41 0.38 0.37 0.57 0.58 

Note: BAY = Bayesian linear model; LM = linear model; K-NN = K nearest neighbor; RF = 

random forest; FABS = farinograph water absorption; PKT = farinograph peak time; STAB = 

farinograph stability; VOL = loaf volume. 
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5. SUMMARY 

In this paper, we developed four models without marker information for predicting wheat 

quality traits, including linear model, Bayesian linear model, k-nearest neighbors, and random 

forest. The goal of these proposed methods was to provide relatively accurate estimates of 

quality traits without the need for time and energy consumption for marker analysis. Then we 

used a non-parametric approach to infer whether the areas under the ROC curves of these models 

are equal. The better methods with significant difference were shown in Table 26. 

Table 26. Better methods with significant difference 
 

VOLUME EXTRACTION MIXOGRAPH ABSORPTION 

2012 
 

G-BLUP G-BLUP G-BLUP 

2013 LM, BLM, K-NN, RF G-BLUP LM, BLM, K-NN 
 

2014 
 

G-BLUP LM, BLM, K-NN 
 

2015 
 

LM, BLM G-BLUP RF 

2016 
 

G-BLUP 
  

2018 LM, BLM, K-NN, RF 
   

Note: BAY = Bayesian linear model; LM = linear model; K-NN = K nearest neighbor; RF = 

random forest 

We successfully applied the proposed methods to the real spring wheat dataset and found 

that based on the results of Mann-Whitney tests and traditional predictive ability (Pearson 

correlation), all four proposed models performed better for predicting loaf volume than G-BLUP 

methods with marker information. The proposed methods are not suitable for flour extraction and 

bake absorption prediction, where the G-BLUP methods performed better. For mixograph 

classification, the proposed methods were not worse than G-BLUP, but it does not mean that we 

should utilize the prediction model. The TPR/PPV analysis indicates that LM, K-NN and BAY 

are not worse than G-BLUP methods in prediction of loaf volume, mixograph and bake 

absorption. In conclusion, the proposed methods with good effect and low cost can be used in 

combination with genome selection when predicting quality traits. But there were not consistent 
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results through years, further investigation is needed, and it is necessary to collect more breeding 

data. 

We also applied the proposed methods to another wheat dataset and found it has good 

traditional predictive ability in predicting farinograph water absorption, farinograph peak time, 

and loaf volume, especially for linear model, Bayesian linear model and random forest methods. 

The TPR/PPV analysis performed on the new dataset indicates that the proposed methods 

performed better compared with the original dataset. Therefore, the proposed methods can 

provide better results when the dataset has more related predictors. 

Future investigations are necessary to validate the kinds of conclusions that can be drawn 

from this study. There are two factors harming the accuracy of our proposed method, one is the 

number of predictors, another is the number of experimental data. The development of multi-

trait/hybrid analysis to include both genotypic and new phenotypic chemical measurements will 

help to obtain further conclusions for this research. Increasing the size of the data set used for 

training to develop models will improve the predictive ability of this study. Weighting or 

selecting predictors based on the relationship between the predictors and response variables may 

produce better predictive models. 
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APPENDIX A. R CODES FOR LINEAR MODEL 

library(readxl) 

data <- read_excel("data.xlsx") 

par(mfrow=c(1,1)) 

plot(data$TW,data$volume) 

plot(data$Protein,data$volume) 

cor(scale(data$Protein),data$volume,use="complete.obs") 

hist(data$Protein) 

hist(data$volume) 

plot(data$year,data$volume) 

#check outliers 

boxplot(data$volume,main="volume") 

boxplot(data$TW,main="TW") 

boxplot(data$Protein,main="Protein") 

boxplot(data$volume,main="Volume") 

boxplot(data$Extraction,main="Extraction") 

boxplot(data$Mixograph,main="Mixograph") 

##data11 

train=data[data$year==2011,] 

test=data[data$year==2012,] 

#test=test[,c(1:7)] 

fittedModel1=glm(volume~TW+Protein,family=gaussian,data=train) 

#summary(fittedModel1) 
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AIC(fittedModel1) 

fittedvolume=predict(fittedModel1,newdata=test) 

sse=sum((test$volume-fittedvolume)^2) 

sst=sum((test$volume-mean(test$volume))^2) 

1-sse/sst 

cor(fittedvolume,test$volume) 

cor(rank(fittedvolume),rank(test$volume)) 

data12=cbind(test,fittedvolume) 

##data12 

train=data[data$year==2011 | data$year==2012,] 

test=data[data$year==2013,] 

fittedModel1=glm(volume~TW*Protein+year,family=gaussian,data=train) 

#summary(fittedModel1) 

fittedvolume=predict(fittedModel1,newdata=test) 

cor(fittedvolume,test$volume) 

data13=cbind(test,fittedvolume) 

##data14 

train=data[data$year==2011 | data$year==2012 | data$year==2013,] 

test=data[data$year==2014,] 

fittedModel1=glm(volume~TW*Protein+year,family=gaussian,data=train) 

#summary(fittedModel1) 

fittedvolume=predict(fittedModel1,newdata=test) 

cor(fittedvolume,test$volume) 
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data14=cbind(test,fittedvolume) 

##data15 

train=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014,] 

test=data[data$year==2015,] 

fittedModel1=glm(volume~TW*Protein+year,family=gaussian,data=train) 

#summary(fittedModel1) 

#predict(test$volume,fittedModel1) 

fittedvolume=predict(fittedModel1,newdata=test) 

cor(fittedvolume,test$volume) 

data15=cbind(test,fittedvolume) 

##data16 

train=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014 | 

data$year==2015,] 

test=data[data$year==2016,] 

#train=train[complete.cases(train),] 

test=test[complete.cases(test),] 

fittedModel1=glm(volume~TW*Protein+year,family=gaussian,data=train) 

#summary(fittedModel1) 

#predict(test$volume,fittedModel1) 

fittedvolume=predict(fittedModel1,newdata=test) 

cor(fittedvolume,test$volume) 

data16=cbind(test,fittedvolume) 

##data18 
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train=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014 | 

data$year==2015 | data$year==2016,] 

test=data[data$year==2018,] 

#train=train[complete.cases(train),] 

test=test[complete.cases(test),] 

fittedModel1=glm(volume~TW*Protein+year,family=gaussian,data=train) 

#summary(fittedModel1) 

#predict(test$volume,fittedModel1) 

fittedvolume=predict(fittedModel1,newdata=test) 

cor(fittedvolume,test$volume) 

data18=cbind(test,fittedvolume) 

data_lm_volume=rbind(data12,data13,data14,data15,data16,data18) 

library(xlsx) 

write.xlsx(data_lm_volume,file="data_lm_volume.xlsx",sheetName = "data_lm_volume", 

append = FALSE) 
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APPENDIX B. R CODES FOR BAYESIAN LINEAR MODEL 

library(readxl) 

data <- read_excel("data.xlsx") 

library(BAS) 

bay=function(train,test){ 

  fit= bas.lm(volume ~TW+Protein, data = train, prior = "BIC",  

              modelprior = Bernoulli(1),  

              include.always = ~ .,  

              n.models = 1) 

  fittedvolume=predict(fit, newdata=test, estimator="BPM", se.fit=TRUE)$fit 

  return(fittedvolume) 

} 

###12 

train=data[data$year==2011,] 

test=data[data$year==2012,] 

fittedvolume=bay(train,test) 

cor(fittedvolume,test$volume) 

cor(rank(fittedvolume),rank(test$volume)) 

data12=cbind(test,fittedvolume) 

##data13 

train=data[data$year==2011 | data$year==2012,] 

test=data[data$year==2013,] 

fittedvolume=bay(train,test) 
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cor(fittedvolume,test$volume) 

cor(rank(fittedvolume),rank(test$volume)) 

data13=cbind(test,fittedvolume) 

##data14 

train=data[data$year==2011 | data$year==2012 | data$year==2013,] 

test=data[data$year==2014,] 

fittedvolume=bay(train,test) 

cor(fittedvolume,test$volume) 

cor(rank(fittedvolume),rank(test$volume)) 

data14=cbind(test,fittedvolume) 

##data15 

train=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014,] 

test=data[data$year==2015,] 

fittedvolume=bay(train,test) 

cor(fittedvolume,test$volume) 

cor(rank(fittedvolume),rank(test$volume)) 

data15=cbind(test,fittedvolume) 

##data16 

train=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014 | 

data$year==2015,] 

test=data[data$year==2016,] 

fittedvolume=bay(train,test) 

cor(fittedvolume,test$volume) 
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cor(rank(fittedvolume),rank(test$volume)) 

data16=cbind(test,fittedvolume) 

##data18 

train=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014 | 

data$year==2015 | data$year==2016,] 

test=data[data$year==2018,] 

train=train[complete.cases(train),] 

fittedvolume=bay(train,test) 

cor(fittedvolume,test$volume) 

cor(rank(fittedvolume),rank(test$volume)) 

data18=cbind(test,fittedvolume) 

data_bay_volume=rbind(data12,data13,data14,data15,data16,data18) 

library(xlsx) 

write.xlsx(data_bay_volume,file="data_bay_volume.xlsx",sheetName = "data_bay_volume", 

append = FALSE) 
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APPENDIX C. R CODES FOR K NEAREST NEIGHBOR 

library(class) 

library(readxl) 

library(caret) 

library(ROSE) 

data <- read_excel("data.xlsx") 

##data12 

train12=data[data$year==2011,] 

test12=data[data$year==2012,] 

##data13 

train13=data[data$year==2011 | data$year==2012,] 

test13=data[data$year==2013,] 

##data14 

train14=data[data$year==2011 | data$year==2012 | data$year==2013,] 

test14=data[data$year==2014,] 

##data15 

train15=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014,] 

test15=data[data$year==2015,] 

##data16 

train16=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014 | 

data$year==2015,] 

test16=data[data$year==2016,] 

##data18 
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train18=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014 | 

data$year==2015 | data$year==2016,] 

test18=data[data$year==2018,] 

###### 

findk=function(Train,Test,train_labels){ 

  i=1 

  k.optm=1 

  for (i in 1:10){ 

    knn.mod <- knn(train=Train, test=Test, cl=train_labels, k=i) 

    k.optm[i] <- 100 * sum(test_labels == knn.mod)/NROW(test_labels) 

    k=i 

    cat(k,'=',k.optm[i],' 

        ') 

  } 

  plot(k.optm, type="b", xlab="K- Value",ylab="Accuracy level") 

  } 

###### 

data.rose<- ROSE(Group_V~TW+Protein, data = train12, seed = 3)$data 

Test12=cbind(test12$Protein,test12$TW) 

Train12=cbind(data.rose$Protein,data.rose$TW) 

train_labels=data.rose$Group_V 

test_labels=test12$Group_V 

findk(Train12,Test12,train_labels) 
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knn<- knn(train=Train12, test=Test12, cl=train_labels, k=4) 

ACC<- 100 * sum(test_labels == knn)/NROW(test_labels) 

table(knn,test_labels) 

test12$Group_V_knn=knn 

###### 

data.rose<- ROSE(Group_V~TW+Protein, data = train13, seed = 3)$data 

Test13=cbind(test13$Protein,test13$TW) 

Train13=cbind(data.rose$Protein,data.rose$TW) 

train_labels=data.rose$Group_V 

test_labels=test13$Group_V 

findk(Train13,Test13,train_labels) 

knn<- knn(train=Train13, test=Test13, cl=train_labels, k=7) 

ACC<- 100 * sum(test_labels == knn)/NROW(test_labels) 

table(knn,test_labels) 

test13$Group_V_knn=knn 

######## 

data.rose<- ROSE(Group_V~TW+Protein, data = train14, seed = 3)$data 

Test14=cbind(test14$Protein,test14$TW) 

Train14=cbind(data.rose$Protein,data.rose$TW) 

train_labels=data.rose$Group_V 

test_labels=test14$Group_V 

findk(Train14,Test14,train_labels) 
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knn<- knn(train=Train14, test=Test14, cl=train_labels, k=4) 

ACC<- 100 * sum(test_labels == knn)/NROW(test_labels) 

table(knn,test_labels) 

test14$Group_V_knn=knn 

######### 

data.rose<- ROSE(Group_V~TW+Protein, data = train15, seed = 3)$data 

Test15=cbind(test15$Protein,test15$TW) 

Train15=cbind(data.rose$Protein,data.rose$TW) 

train_labels=data.rose$Group_V 

test_labels=test15$Group_V 

findk(Train15,Test15,train_labels) 

knn<- knn(train=Train15, test=Test15, cl=train_labels, k=4) 

ACC<- 100 * sum(test_labels == knn)/NROW(test_labels) 

table(knn,test_labels) 

test15$Group_V_knn=knn 

##### 

data.rose<- ROSE(Group_V~TW+Protein, data = train16, seed = 3)$data 

Test16=cbind(test16$Protein,test16$TW) 

Train16=cbind(data.rose$Protein,data.rose$TW) 

train_labels=data.rose$Group_V 

test_labels=test16$Group_V 

findk(Train16,Test16,train_labels) 
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knn<- knn(train=Train16, test=Test16, cl=train_labels, k=10) 

ACC<- 100 * sum(test_labels == knn)/NROW(test_labels) 

table(knn,test_labels) 

test16$Group_V_knn=knn 

###### 

data.rose<- ROSE(Group_V~TW+Protein, data = train18, seed = 3)$data 

test18=test18[complete.cases(test18$volume),] 

Test18=cbind(test18$Protein,test18$TW) 

Train18=cbind(data.rose$Protein,data.rose$TW) 

train_labels=data.rose$Group_V 

test_labels=test18$Group_V 

findk(Train18,Test18,train_labels) 

knn<- knn(train=Train18, test=Test18, cl=train_labels, k=2) 

ACC<- 100 * sum(test_labels == knn)/NROW(test_labels) 

table(knn,test_labels) 

test18$Group_V_knn=knn 

### 

data_knn_volume=rbind(test12,test13,test14,test15,test16,test18) 

library(xlsx) 

write.xlsx(data_knn_volume,file="data_knn_volume.xlsx",sheetName = "data_knn_volume", 

append = FALSE)  
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APPENDIX D. R CODES FOR RANDOM FOREST 

library(readxl) 

library(ROSE) 

library(randomForest) 

data <- read_excel("data.xlsx") 

##data12 

train12=data[data$year==2011,] 

test12=data[data$year==2012,] 

##data13 

train13=data[data$year==2011 | data$year==2012,] 

test13=data[data$year==2013,] 

##data14 

train14=data[data$year==2011 | data$year==2012 | data$year==2013,] 

test14=data[data$year==2014,] 

##data15 

train15=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014,] 

test15=data[data$year==2015,] 

##data16 

train16=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014 | 

data$year==2015,] 

test16=data[data$year==2016,] 

##data18 
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train18=data[data$year==2011 | data$year==2012 | data$year==2013 | data$year==2014 | 

data$year==2015 | data$year==2016,] 

test18=data[data$year==2018,] 

###### 

data.rose<- ROSE(Group_V~TW+Protein, data = train12, seed = 3)$data 

Test12=test12[,c(4,5)] 

Train12=data.rose 

Train12$Group_V=factor(Train12$Group_V) 

test_labels=test12$Group_V 

rf <- randomForest(Group_V ~ .,data=Train12) 

pred = predict(rf, newdata=Test12) 

ACC<- 100 * sum(test_labels == pred)/NROW(test_labels) 

table(pred,test_labels) 

test12$Group_V_rf=pred 

###### 

data.rose<- ROSE(Group_V~TW+Protein, data = train13, seed = 3)$data 

Test13=test13[,c(4,5)] 

Train13=data.rose 

Train13$Group_V=factor(Train13$Group_V) 

test_labels=test13$Group_V 

rf <- randomForest(Group_V ~ .,data=Train13) 

pred = predict(rf, newdata=Test13) 

ACC<- 100 * sum(test_labels == pred)/NROW(test_labels) 
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table(pred,test_labels) 

test13$Group_V_rf=pred 

######## 

data.rose<- ROSE(Group_V~TW+Protein, data = train14, seed = 3)$data 

Test14=test14[,c(4,5)] 

Train14=data.rose 

Train14$Group_V=factor(Train14$Group_V) 

test_labels=test14$Group_V 

rf <- randomForest(Group_V ~ .,data=Train14) 

pred = predict(rf, newdata=Test14) 

ACC<- 100 * sum(test_labels == pred)/NROW(test_labels) 

table(pred,test_labels) 

test14$Group_V_rf=pred 

######### 

data.rose<- ROSE(Group_V~TW+Protein, data = train15, seed = 3)$data 

Test15=test15[,c(4,5)] 

Train15=data.rose 

Train15$Group_V=factor(Train15$Group_V) 

test_labels=test15$Group_V 

rf <- randomForest(Group_V ~ .,data=Train15) 

pred = predict(rf, newdata=Test15) 

ACC<- 100 * sum(test_labels == pred)/NROW(test_labels) 

table(pred,test_labels) 
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test15$Group_V_rf=pred 

##### 

data.rose<- ROSE(Group_V~TW+Protein, data = train16, seed = 3)$data 

Test16=test16[,c(4,5)] 

Train16=data.rose 

Train16$Group_V=factor(Train16$Group_V) 

test_labels=test16$Group_V 

rf <- randomForest(Group_V ~ .,data=Train16) 

pred = predict(rf, newdata=Test16) 

ACC<- 100 * sum(test_labels == pred)/NROW(test_labels) 

table(pred,test_labels) 

test16$Group_V_rf=pred 

###### 

data.rose<- ROSE(Group_V~TW+Protein, data = train18, seed = 3)$data 

Test18=test18[,c(4,5)] 

Train18=data.rose 

Train18$Group_V=factor(Train18$Group_V) 

test_labels=test18$Group_V 

rf <- randomForest(Group_V ~ .,data=Train18) 

pred = predict(rf, newdata=Test18) 

ACC<- 100 * sum(test_labels == pred)/NROW(test_labels) 

table(pred,test_labels) 

test18$Group_V_rf=pred 
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### 

data_rf_volumn=rbind(test12,test13,test14,test15,test16,test18) 

library(xlsx) 

write.xlsx(data_rf_volumn,file="data_rf_volumn.xlsx",sheetName = "data_rf_volumn", 

append = FALSE) 
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APPENDIX E. R CODES FOR G-BLUP 

library(xlsx) 

library(readxl) 

BLUP.AYT11_16<- read_excel("blups_18.xlsx") 

BLUP.AYT11_16[1:3,] 

library(MASS) 

library(psych) 

BLUP.AYT11=BLUP.AYT11_16[1:112,] 

dim(BLUP.AYT11) 

BLUP.AYT11[1:3,] 

BLUP.AYT12=BLUP.AYT11_16[113:184,] 

dim(BLUP.AYT12) 

BLUP.AYT12[1:3,] 

BLUP.AYT13=BLUP.AYT11_16[185:215,] 

dim(BLUP.AYT13) 

BLUP.AYT13[1:3,] 

BLUP.AYT14=BLUP.AYT11_16[216:281,] 

dim(BLUP.AYT14) 

BLUP.AYT14[1:3,] 

BLUP.AYT15=BLUP.AYT11_16[282:346,] 

dim(BLUP.AYT15) 

BLUP.AYT15[1:3,] 

BLUP.AYT16=BLUP.AYT11_16[347:427,] 
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dim(BLUP.AYT16) 

BLUP.AYT16[1:3,] 

BLUP.AYT18=BLUP.AYT11_16[BLUP.AYT11_16$year==2018,] 

dim(BLUP.AYT18) 

BLUP.AYT18[1:3,] 

##AYT12, 13, 14, 15, 16 as training population to predict AYT11 

phenotype.train=BLUP.AYT11_16[c(113:427),] 

dim(phenotype.train) 

phenotype.train[1:3,] 

phenotype.valid=BLUP.AYT11_16[1:112,] 

dim(phenotype.valid) 

phenotype.valid[1:3,] 

##AYT11, 13, 14, 15, 16 as training population to predict AYT12 

phenotype.train=BLUP.AYT11_16[c(1:112, 185:427),] 

dim(phenotype.train) 

phenotype.train[1:3,] 

phenotype.valid=BLUP.AYT11_16[113:184,] 

dim(phenotype.valid) 

phenotype.valid[1:3,] 

##AYT11, 12, 14, 15, 16 as training population to predict AYT13 

phenotype.train=BLUP.AYT11_16[c(1:184, 216:427),] 

dim(phenotype.train) 

phenotype.train[1:3,] 



 

76 
 

phenotype.valid=BLUP.AYT11_16[185:215,] 

dim(phenotype.valid) 

phenotype.valid[1:3,] 

##AYT11, 12, 13, 15, 16 as training population to predict AYT14 

phenotype.train=BLUP.AYT11_16[c(1:215, 282:427),] 

dim(phenotype.train) 

phenotype.train[1:3,] 

phenotype.valid=BLUP.AYT11_16[216:281,] 

dim(phenotype.valid) 

phenotype.valid[1:3,] 

##AYT11, 12, 13, 14, 16 as training population to predict AYT15 

phenotype.train=BLUP.AYT11_16[c(1:281, 347:427),] 

dim(phenotype.train) 

phenotype.train[1:3,] 

phenotype.valid=BLUP.AYT11_16[282:346,] 

dim(phenotype.valid) 

phenotype.valid[1:3,] 

##AYT11-12-13-14-15 as training population to predict AYT16 

phenotype.train=BLUP.AYT11_16[1:346,] 

dim(phenotype.train) 

phenotype.train[1:3,] 

phenotype.valid=BLUP.AYT11_16[347:427,] 

dim(phenotype.valid) 
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phenotype.valid[1:3,] 

##AYT11-12-13-14-15 as training population to predict AYT18 

phenotype.train=BLUP.AYT11_16[BLUP.AYT11_16$year!=2018,] 

dim(phenotype.train) 

phenotype.train[1:3,] 

phenotype.valid=BLUP.AYT11_16[BLUP.AYT11_16$year==2018,] 

dim(phenotype.valid) 

phenotype.valid[1:3,] 

GBS50.AYT11_16=read.delim("genotype_AYT11-

16_427GBSna50ABD_LDKNNimp.F01_meanImp.txt", header=T, sep=",", na.string="NA") 

dim(GBS50.AYT11_16) 

GBS50.AYT11_16[1:5,1:20] 

library(readr) 

SW_GBS20_21_48_Homo_NA50_F01_imputed <- 

read_csv("SW_GBS20_21_48_Homo_NA50_F01_imputed.csv") 

GBS50.AYT11=as.matrix(GBS50.AYT11_16[1:112,]) 

GBS50.AYT12=as.matrix(GBS50.AYT11_16[113:184,]) 

GBS50.AYT13=as.matrix(GBS50.AYT11_16[185:215,]) 

GBS50.AYT14=as.matrix(GBS50.AYT11_16[216:281,]) 

GBS50.AYT15=as.matrix(GBS50.AYT11_16[282:346,]) 

GBS50.AYT16=as.matrix(GBS50.AYT11_16[347:427,]) 

GBS50.AYT18=as.matrix(SW_GBS20_21_48_Homo_NA50_F01_imputed[428:477,-1]) 
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## define train and valid genotype data  

Markers_impute.train=as.matrix(rbind(GBS50.AYT12, GBS50.AYT13, GBS50.AYT14, 

GBS50.AYT15, GBS50.AYT16))   

Markers_impute.valid=as.matrix(GBS50.AYT11) 

Markers_impute.train=as.matrix(rbind(GBS50.AYT11, GBS50.AYT13, GBS50.AYT14, 

GBS50.AYT15, GBS50.AYT16))   

Markers_impute.valid=as.matrix(GBS50.AYT12) 

Markers_impute.train=as.matrix(rbind(GBS50.AYT11, GBS50.AYT12, GBS50.AYT14, 

GBS50.AYT15, GBS50.AYT16))   

Markers_impute.valid=as.matrix(GBS50.AYT13) 

Markers_impute.train=as.matrix(rbind(GBS50.AYT11,GBS50.AYT12, GBS50.AYT13, 

GBS50.AYT15, GBS50.AYT16))   

Markers_impute.valid=as.matrix(GBS50.AYT14) 

Markers_impute.train=as.matrix(rbind(GBS50.AYT11, GBS50.AYT12, GBS50.AYT13, 

GBS50.AYT14, GBS50.AYT16))   

Markers_impute.valid=as.matrix(GBS50.AYT15) 

Markers_impute.train=as.matrix(rbind(GBS50.AYT11, GBS50.AYT12, GBS50.AYT13, 

GBS50.AYT14, GBS50.AYT15))   

Markers_impute.valid=as.matrix(GBS50.AYT16) 

Markers_impute.train=as.matrix(SW_GBS20_21_48_Homo_NA50_F01_imputed[1:427,-1])   

Markers_impute.valid=as.matrix(GBS50.AYT18) 

dim(Markers_impute.train) 

dim(Markers_impute.valid) 
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############################################################# 

library(rrBLUP) 

m_train=Markers_impute.train 

m_pred=Markers_impute.valid 

for (i in c(4,5,7,10)){ 

  y_train=t(as.matrix(phenotype.train[,i])) 

  ans.RR=G.BLUP(y=y_train,G.train=m_train,G.pred=m_pred) 

 ans.GAUSS=G.BLUP(y=y_train,G.train=m_train,G.pred=m_pred,K.method='GAUSS') 

  ans.EXP=G.BLUP(y=y_train,G.train=m_train,G.pred=m_pred,K.method='EXP') 

  #cor(ans.RR$g.pred,phenotype.valid[,i]) 

  #cor(ans.GAUSS$g.pred,phenotype.valid[,i]) 

  #cor(ans.EXP$g.pred,phenotype.valid[,i]) 

  if(i==4){ 

    ANS_Extraction=phenotype.valid[,c(1,4)] 

    ANS_Extraction[,3]=ans.RR$g.pred 

    ANS_Extraction[,4]=ans.GAUSS$g.pred 

    ANS_Extraction[,5]=ans.EXP$g.pred 

names(ANS_Extraction)=c("Entry","Extraction","Extraction_RR","Extraction_G","Extraction_E

XP") 

  } 

  else if(i==5){ 

    ANS_Absorption=phenotype.valid[,c(1,5)] 

    ANS_Absorption[,3]=ans.RR$g.pred 
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    ANS_Absorption[,4]=ans.GAUSS$g.pred 

    ANS_Absorption[,5]=ans.EXP$g.pred 

names(ANS_Absorption)=c("Entry","Absorption","Absorption_RR","Absorption_G","Absor

ption_EXP") 

  } 

  if(i==7){ 

    ANS_Volume=phenotype.valid[,c(1,7)] 

    ANS_Volume[,3]=ans.RR$g.pred 

    ANS_Volume[,4]=ans.GAUSS$g.pred 

    ANS_Volume[,5]=ans.EXP$g.pred 

    names(ANS_Volume)=c("Entry","Volume","Volume_RR","Volume_G","Volume_EXP") 

  } 

  if(i==10){ 

    ANS_Mixograph=phenotype.valid[,c(1,10)] 

    ANS_Mixograph[,3]=ans.RR$g.pred 

    ANS_Mixograph[,4]=ans.GAUSS$g.pred 

    ANS_Mixograph[,5]=ans.EXP$g.pred 

names(ANS_Mixograph)=c("Entry","Mixograph","Mixograph_RR","Mixograph_G","Mixogr

aph_EXP") 

  }  

} 

cor(ANS_Absorption$Absorption,ANS_Absorption$Absorption_RR) 

cor(ANS_Absorption$Absorption,ANS_Absorption$Absorption_G) 
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cor(ANS_Absorption$Absorption,ANS_Absorption$Absorption_EXP) 

cor(ANS_Extraction$Extraction,ANS_Extraction$Extraction_RR) 

cor(ANS_Extraction$Extraction,ANS_Extraction$Extraction_G) 

cor(ANS_Extraction$Extraction,ANS_Extraction$Extraction_EXP) 

cor(ANS_Mixograph$Mixograph,ANS_Mixograph$Mixograph_RR) 

cor(ANS_Mixograph$Mixograph,ANS_Mixograph$Mixograph_G) 

cor(ANS_Mixograph$Mixograph,ANS_Mixograph$Mixograph_EXP) 

cor(ANS_Volume$Volume,ANS_Volume$Volume_RR) 

cor(ANS_Volume$Volume,ANS_Volume$Volume_G) 

cor(ANS_Volume$Volume,ANS_Volume$Volume_EXP) 

#BLUPS2011=cbind(ANS_Absorption,ANS_Extraction[,-1],ANS_Mixograph[,-

1],ANS_Volume[,-1]) 

#BLUPS2012=cbind(ANS_Absorption,ANS_Extraction[,-1],ANS_Mixograph[,-

1],ANS_Volume[,-1]) 

#BLUPS2013=cbind(ANS_Absorption,ANS_Extraction[,-1],ANS_Mixograph[,-

1],ANS_Volume[,-1]) 

#BLUPS2014=cbind(ANS_Absorption,ANS_Extraction[,-1],ANS_Mixograph[,-

1],ANS_Volume[,-1]) 

#BLUPS2015=cbind(ANS_Absorption,ANS_Extraction[,-1],ANS_Mixograph[,-

1],ANS_Volume[,-1]) 

BLUPS2016=cbind(ANS_Absorption,ANS_Extraction[,-1],ANS_Mixograph[,-

1],ANS_Volume[,-1]) 
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BLUPS2018=cbind(ANS_Absorption,ANS_Extraction[,-1],ANS_Mixograph[,-

1],ANS_Volume[,-1]) 

BLUPS11_16=rbind(BLUPS2011,BLUPS2012,BLUPS2013,BLUPS2014,BLUPS2015,BLU

PS2016) 

write.xlsx(BLUPS11_16, file = "RR-BLUPS11_16.xlsx", append = FALSE) 

write.xlsx(BLUPS2018, file = "G-BLUPS18.xlsx", append = FALSE) 

##################################################### 

#GS model_80vs20 cross-validation 11-16AYT 

phenotype=as.matrix(BLUP.AYT11_16) 

dim(phenotype) 

Markers_impute=as.matrix(GBS50.AYT11_16) 

dim(Markers_impute) 

cycles=3 

for(r in 1:cycles){ 

  train=as.matrix(sample(1:427,342)) 

  test=setdiff(1:427, train) 

  Pheno_train=phenotype[train,] 

  m_train=Markers_impute[train,] 

  Pheno_valid=phenotype[test,] 

  m_pred=Markers_impute[test,] 

  for(i in c(4,5,7,10)) 

  { 

    y_train=as.numeric(Pheno_train[,i]) 
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    ans.RR=G.BLUP(y=y_train,G.train=m_train,G.pred=m_pred) 

    ans.GAUSS=G.BLUP(y=y_train,G.train=m_train,G.pred=m_pred,K.method='GAUSS') 

    ans.EXP=G.BLUP(y=y_train,G.train=m_train,G.pred=m_pred,K.method='EXP') 

    if(i==4){ 

      ANS_Extraction=as.data.frame(Pheno_valid[,c(1,4)]) 

      ANS_Extraction[,3]=ans.RR$g.pred 

      ANS_Extraction[,4]=ans.GAUSS$g.pred 

      ANS_Extraction[,5]=ans.EXP$g.pred 

names(ANS_Extraction)=c("Entry","Extraction","Extraction_RR","Extraction_G","Extractio

n_EXP") 

    } 

    else if(i==5){ 

      ANS_Absorption=as.data.frame(Pheno_valid[,c(1,5)]) 

      ANS_Absorption[,3]=ans.RR$g.pred 

      ANS_Absorption[,4]=ans.GAUSS$g.pred 

      ANS_Absorption[,5]=ans.EXP$g.pred 

names(ANS_Absorption)=c("Entry","Absorption","Absorption_RR","Absorption_G","Absor

ption_EXP") 

    } 

    else if(i==7){ 

      ANS_Volume=as.data.frame(Pheno_valid[,c(1,7)]) 

      ANS_Volume[,3]=ans.RR$g.pred 

      ANS_Volume[,4]=ans.GAUSS$g.pred 
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      ANS_Volume[,5]=ans.EXP$g.pred 

      names(ANS_Volume)=c("Entry","Volume","Volume_RR","Volume_G","Volume_EXP") 

    } 

    else if(i==10){ 

      ANS_Mixograph=as.data.frame(Pheno_valid[,c(1,10)]) 

      ANS_Mixograph[,3]=ans.RR$g.pred 

      ANS_Mixograph[,4]=ans.GAUSS$g.pred 

      ANS_Mixograph[,5]=ans.EXP$g.pred 

names(ANS_Mixograph)=c("Entry","Mixograph","Mixograph_RR","Mixograph_G","Mixogr

aph_EXP") 

    } 

  } 

  if(r==1){ 

    BLUPSCV1=cbind(ANS_Absorption,ANS_Extraction[,-1],ANS_Mixograph[,-

1],ANS_Volume[,-1]) 

  } 

  else if(r==2){ 

    BLUPSCV2=cbind(ANS_Absorption,ANS_Extraction[,-1],ANS_Mixograph[,-

1],ANS_Volume[,-1]) 

  } 

  else if(r==3){ 

    BLUPSCV3=cbind(ANS_Absorption,ANS_Extraction[,-1],ANS_Mixograph[,-

1],ANS_Volume[,-1]) 
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  } 

} 

write.xlsx(BLUPSCV1, file = "BLUPSCV.xlsx", sheetName="BLUPSCV1",append = 

FALSE) 

write.xlsx(BLUPSCV2, file = "BLUPSCV.xlsx", sheetName="BLUPSCV2",append = 

RR_BLUPS11_16) 

write.xlsx(BLUPSCV3, file = "BLUPSCV.xlsx", sheetName="BLUPSCV3",append = 

RR_BLUPS11_16) 
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APPENDIX F. R CODES FOR ROC CURVES 

library(readxl) 

library(zoo) 

library(xlsx) 

blups_V <- read_excel("G_bayVS_lm.xlsx",sheet="lm") 

blups_V <-blups_V [,-1] 

#####################18############################# 

blups_V18=blups_V[which(blups_V$Year=="2018"),] 

blups_V18=blups_V18[complete.cases(blups_V18$Volume),] 

blups_V18=blups_V18[complete.cases(blups_V18$lmVolume),] 

blups_V18$rank_Volume<-rank(blups_V18$Volume) 

n=nrow(blups_V18) 

m=as.integer(n*0.3) 

blups_V18 <-blups_V18[order(blups_V18$rank_Volume),] 

G=split(blups_V18,c(rep(1,each=m),rep(2,each=n-m))) 

#####################16############################# 

blups_V16=blups_V[which(blups_V$Year=="2016"),] 

blups_V16$rank_Volume<-rank(blups_V16$Volume) 

summary(blups_V16) 

n=nrow(blups_V16) 

m=as.integer(n*0.15) 

blups_V16 <-blups_V16[order(blups_V16$rank_Volume),] 

G=split(blups_V16,c(rep(1,each=m),rep(2,each=n-m))) 

#######################15########################### 
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blups_V15=blups_V[which(blups_V$Year=="2015"),] 

blups_V15=blups_V15[complete.cases(blups_V15$Volume),] 

blups_V15=blups_V15[complete.cases(blups_V15$lmVolume),] 

blups_V15$rank_Volume<-rank(blups_V15$Volume) 

n=nrow(blups_V15) 

m=as.integer(n*0.15) 

blups_V15 <-blups_V15[order(blups_V15$rank_Volume),] 

G=split(blups_V15,c(rep(1,each=m),rep(2,each=n-m))) 

#######################14########################### 

blups_V14=blups_V[which(blups_V$Year=="2014"),] 

blups_V14=blups_V14[which(blups_V14$EXP=="13"),] 

blups_V14$rank_Volume<-rank(blups_V14$Volume) 

summary(blups_V14) 

n=nrow(blups_V14) 

m=as.integer(n*0.15) 

blups_V14 <-blups_V14[order(blups_V14$rank_Volume),] 

G=split(blups_V14,c(rep(1,each=m),rep(2,each=n-m))) 

#######################13########################### 

blups_V13=blups_V[which(blups_V$Year=="2013"),] 

blups_V13=blups_V13[which(blups_V13$EXP=="13"),] 

blups_V13$rank_Volume<-rank(blups_V13$Volume) 

summary(blups_V13) 

n=nrow(blups_V13) 
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m=as.integer(n*0.15) 

blups_V13 <-blups_V13[order(blups_V13$rank_Volume),] 

G=split(blups_V13,c(rep(1,each=m),rep(2,each=n-m))) 

#######################12########################### 

blups_V12=blups_V[which(blups_V$Year=="2012"),] 

blups_V12=blups_V12[which(blups_V12$EXP=="13"),] 

blups_V12$rank_Volume<-rank(blups_V12$Volume) 

summary(blups_V12) 

n=nrow(blups_V12) 

m=as.integer(n*0.15) 

blups_V12 <-blups_V12[order(blups_V12$rank_Volume),] 

G=split(blups_V12,c(rep(1,each=m),rep(2,each=n-m))) 

fun(G,G,G,G,n,m,n,m) 

fun=function(G,g,H,h,n,m,N,M){ 

  G2=G$`1` #bottom X 

  G1=G$`2` 

  G2 <-G2[order(G2$lmVolume,decreasing =T),] 

  m1=n-m 

  m1*m 

  q=rep(0,m+1) 

  for(j in 1:m){ 

    for(i in 1:m1){ 

      if (G1$lmVolume[i]>G2$lmVolume[j]){ q[j+1]=q[j+1]+1 }  
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      else if(G1$lmVolume[i]==G2$lmVolume[j]) {q[j+1]=q[j+1]+0.5 }  

      else if(G1$lmVolume[i]<G2$lmVolume[j]) {q[j+1]=q[j+1]+0 } 

    }} 

  q1=c(0:m)/m 

  q2=q/m1 

  smoothingSpline2 = smooth.spline(q1,q2, spar=0.4) 

  plot(q1,q2,xlim = c(0,1),ylim = c(0,1),col="blue",pch=1,lty=2,xlab="FPR",ylab="TPR") 

  lines(smoothingSpline2,col="blue") 

  par(new=TRUE) 

  ##################### 

  g2=g$`1`#X n 

  g1=g$`2`#Y m 

  g2 <-g2[order(g2$Volume_RR,decreasing =T),] 

  M1=N-M # m 

  Q=rep(0,M+1) 

  for(i in 1:M1){ 

    for(j in 1:M){ 

      if (g1$Volume_RR[i]>g2$Volume_RR[j]){ Q[j+1]=Q[j+1]+1 }  

      else if(g1$Volume_RR[i]==g2$Volume_RR[j]) {Q[j+1]=Q[j+1]+0.5 }  

      else if(g1$Volume_RR[i]<g2$Volume_RR[j]) {Q[j+1]=Q[j+1]+0 } 

    }} 

  Q1=c(0:M)/M 

  Q2=Q/M1 
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  smoothingSpline2 = smooth.spline(Q1,Q2, spar=0.4) 

  plot(Q1,Q2,xlim = c(0,1),ylim = c(0,1),pch=2,col="red",xlab="",ylab="") 

  lines(smoothingSpline2,col="red") 

  par(new=TRUE) 

 #################### 

  H2=H$`1`#X n 

  H1=H$`2`#Y m 

  H2 <-H2[order(H2$Volume_EXP,decreasing =T),] 

  M1=N-M # m 

  Q=rep(0,M+1) 

  for(i in 1:M1){ 

    for(j in 1:M){ 

      if (H1$Volume_EXP[i]>H2$Volume_EXP[j]){ Q[j+1]=Q[j+1]+1 }  

      else if(H1$Volume_EXP[i]==H2$Volume_EXP[j]) {Q[j+1]=Q[j+1]+0.5 }  

      else if(H1$Volume_EXP[i]<H2$Volume_EXP[j]) {Q[j+1]=Q[j+1]+0 } 

    }} 

  Q1=c(0:M)/M 

  Q2=Q/M1 

  smoothingSpline2 = smooth.spline(Q1,Q2, spar=0.4) 

  plot(Q1,Q2,xlim = c(0,1),ylim = c(0,1),pch=3,col="yellow",xlab="",ylab="") 

  lines(smoothingSpline2,col="yellow") 

  par(new=TRUE) 

  #################### 
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  h2=h$`1`#X n 

  h1=h$`2`#Y m 

  h2 <-h2[order(h2$Volume_G,decreasing =T),] 

  M1=N-M # m 

  Q=rep(0,M+1) 

  for(i in 1:M1){ 

    for(j in 1:M){ 

      if (h1$Volume_G[i]>h2$Volume_G[j]){ Q[j+1]=Q[j+1]+1 }  

      else if(h1$Volume_G[i]==h2$Volume_G[j]) {Q[j+1]=Q[j+1]+0.5 }  

      else if(h1$Volume_G[i]<h2$Volume_G[j]) {Q[j+1]=Q[j+1]+0 } 

    }} 

  Q1=c(0:M)/M 

  Q2=Q/M1 

  smoothingSpline2 = smooth.spline(Q1,Q2, spar=0.4) 

  plot(Q1,Q2,xlim = c(0,1),ylim = c(0,1),pch=4,col="green",xlab="",ylab="") 

  lines(smoothingSpline2,col="green") 

  title(main="2018 Volume ROC Curve for LM and G-BLUP",font.main=4) 

  legend(0.8,0.7, 

c("LM","RR","EXP","G"),col=c("blue","red","yellow","green"),pch=1:4,lty=1:4,box.lwd=0.8) 

  #abline(v=0.2) 

  id<-c(1:m+1) 

  (AUC_GLM <- sum(diff(q1[id])*rollmean(q2[id],2))) 

  (S_GLM=q2[m+1]*q1[m+1])   
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  id2=c(1:M+1) 

  (AUC_FP <- sum(diff(Q1[id2])*rollmean(Q2[id2],2))) 

  (S_PS=Q2[m+1]*Q1[m+1]) 

  return(c(AUC_GLM,S_GLM,AUC_FP,S_PS)) 

} 
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APPENDIX G. R CODES FOR COMPARING AUC 

library(readxl) 

G_VS_lm <- read_excel("G_VS_lm.xlsx") 

True12=G_VS_lm[G_VS_lm$Year==2012,] 

True13=G_VS_lm[G_VS_lm$Year==2013,] 

True14=G_VS_lm[G_VS_lm$Year==2014,] 

True15=G_VS_lm[G_VS_lm$Year==2015,] 

True16=G_VS_lm[G_VS_lm$Year==2016,] 

True18=G_VS_lm[G_VS_lm$Year==2018,] 

#######################11########################### 

True18=True18[complete.cases(True18$lmVolume),] 

n=nrow(True18) 

m=as.integer(n*0.15) 

True18$rank_Volume<-rank(True18$Volume) 

True18 <-True18[order(True18$rank_Volume),] 

g=split(True18,c(rep(1,each=m),rep(2,each=n-m))) 

#####################16############################# 

n=nrow(True16) 

m=as.integer(n*0.15) 

True16$rank_Volume<-rank(True16$Volume) 

True16 <-True16[order(True16$rank_Volume),] 

g=split(True16,c(rep(1,each=m),rep(2,each=n-m))) 

#######################15########################### 



 

94 
 

n=nrow(True15) 

m=as.integer(n*0.15) 

True15$rank_Volume<-rank(True15$Volume) 

True15 <-True15[order(True15$rank_Volume),] 

g=split(True15,c(rep(1,each=m),rep(2,each=n-m))) 

#######################14########################### 

n=nrow(True14) 

m=as.integer(n*0.15) 

True14$rank_Volume<-rank(True14$Volume) 

True14 <-True14[order(True14$rank_Volume),] 

g=split(True14,c(rep(1,each=m),rep(2,each=n-m))) 

#######################13########################### 

n=nrow(True13) 

m=as.integer(n*0.15) 

True13$rank_Volume<-rank(True13$Volume) 

True13 <-True13[order(True13$rank_Volume),] 

g=split(True13,c(rep(1,each=m),rep(2,each=n-m))) 

#######################12########################### 

n=nrow(True12) 

m=as.integer(n*0.15) 

True12$rank_Volume<-rank(True12$Volume) 

True12 <-True12[order(True12$rank_Volume),] 

g=split(True12,c(rep(1,each=m),rep(2,each=n-m))) 
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########################################################################### 

fun_RR(g,g,n,m,n,m) 

fun_EXP(g,g,n,m,n,m) 

fun_G(g,g,n,m,n,m) 

fun_RR=function(G,g,n,m,N,M){ 

  G2=G$`1` #bottom X 

  G1=G$`2`  

  m1=n-m 

  m1*m 

  p=0 

  for(i in 1:m1){ 

    for(j in 1:m){ 

      if (G1$lmVolume[i]>G2$lmVolume[j]){ p=p+1 }  

      else if(G1$lmVolume[i]==G2$lmVolume[j]) {p=p+0.5 }  

      else if(G1$lmVolume[i]<G2$lmVolume[j]) {p=p+0 } 

    }} 

  p 

  (P=p/(m1*(m))) 

  V10=rep(0,m1) 

  for(i in 1:m1){ 

    for(j in 1:m){ 

      if (G1$lmVolume[i]>G2$lmVolume[j]){ V10[i]=V10[i]+1 }  

      else if(G1$lmVolume[i]==G2$lmVolume[j]) {V10[i]=V10[i]+0.5 }  
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      else if(G1$lmVolume[i]<G2$lmVolume[j]) {V10[i]=V10[i]+0 } 

    }} 

  V10=V10/m 

  V01=rep(0,m) 

  for(j in 1:m){ 

    for(i in 1:m1){ 

      if (G1$lmVolume[i]>G2$lmVolume[j]){ V01[j]=V01[j]+1 }  

      else if(G1$lmVolume[i]==G2$lmVolume[j]) {V01[j]=V01[j]+0.5 }  

      else if(G1$lmVolume[i]<G2$lmVolume[j]) {V01[j]=V01[j]+0 } 

    }} 

  V01=V01/m1   

  g2=g$`1`#X n 

  g1=g$`2`#Y m 

  M1=N-M # m 

  ps=0 

  for(i in 1:M1){ 

    for(j in 1:M){ 

      if (g1$Volume_RR[i]>g2$Volume_RR[j]){ ps=ps+1 }  

      else if(g1$Volume_RR[i]==g2$Volume_RR[j]) {ps=ps+0.5 }  

      else if(g1$Volume_RR[i]<g2$Volume_RR[j]) {ps=ps+0 } 

    }} 

  ps 

  (Ps=ps/(M1*(M)))#probability 
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  v10=rep(0,M1) 

  for(i in 1:M1){ 

    for(j in 1:M){ 

      if (g1$Volume_RR[i]>g2$Volume_RR[j]){ v10[i]=v10[i]+1 }  

      else if(g1$Volume_RR[i]==g2$Volume_RR[j]) {v10[i]=v10[i]+0.5 }  

      else if(g1$Volume_RR[i]<g2$Volume_RR[j]) {v10[i]=v10[i]+0 } 

    }} 

  v10=v10/M 

  v01=rep(0,M) 

  for(j in 1:M){ 

    for(i in 1:M1){ 

      if (g1$Volume_RR[i]>g2$Volume_RR[j]){ v01[j]=v01[j]+1 }  

      else if(g1$Volume_RR[i]==g2$Volume_RR[j]) {v01[j]=v01[j]+0.5 }  

      else if(g1$Volume_RR[i]<g2$Volume_RR[j]) {v01[j]=v01[j]+0 } 

    }} 

  v01=v01/M1 

  ######################S10########### 

  s10_11=0 

  s10_12=0 

  s10_21=0 

  s10_22=0 

  for(i in 1:m1){ 

    s10_11=s10_11+(V10[i]-P)*(V10[i]-P) 
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  } 

  (s10_11=s10_11/(m1-1)) 

  for(i in 1:m1){ 

    s10_12=s10_12+(V10[i]-P)*(v10[i]-Ps) 

  } 

  (s10_12=s10_12/(m1-1)) 

  for(i in 1:m1){ 

    s10_21=s10_21+(v10[i]-Ps)*(V10[i]-P) 

  } 

  (s10_21=s10_21/(m1-1)) 

  for(i in 1:M1){ 

    s10_22=s10_22+(v10[i]-Ps)*(v10[i]-Ps) 

  } 

  (s10_22=s10_22/(M1-1)) 

  S10=matrix(0,2,2) 

  S10[1,1]=s10_11 

  S10[1,2]=s10_12 

  S10[2,1]=s10_21 

  S10[2,2]=s10_22 

  ######################S01 

  s01_11=0 

  s01_12=0 

  s01_21=0 
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  s01_22=0 

  for(i in 1:m){ 

    s01_11=s01_11+(V01[i]-P)*(V01[i]-P) 

  } 

  (s01_11=s01_11/(m1-1)) 

  for(i in 1:m){ 

    s01_12=s01_12+(V01[i]-P)*(v01[i]-Ps) 

  } 

  (s01_12=s01_12/(m1-1)) 

  for(i in 1:m){ 

    s01_21=s01_21+(v01[i]-Ps)*(V01[i]-P) 

  } 

  (s01_21=s01_21/(m1-1)) 

  for(i in 1:M){ 

    s01_22=s01_22+(v01[i]-Ps)*(v01[i]-Ps) 

  } 

  (s01_22=s01_22/(M1-1)) 

  S01=matrix(0,2,2) 

  S01[1,1]=s01_11 

  S01[1,2]=s01_12 

  S01[2,1]=s01_21 

  S01[2,2]=s01_22 

  ######################lm-rr## 
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  S10 

  S01 

  S=S10/M1+S01/M 

  L=t(matrix(c(1,-1))) 

  PP=matrix(c(P,Ps)) 

  Up=L%*%PP+1.96*(L%*%S%*%t(L))^0.5 

  Lo=L%*%PP-1.96*(L%*%S%*%t(L))^0.5 

  z=L%*%PP/((L%*%S%*%t(L))^0.5) 

  (pvalue=2*pnorm(-abs(z))) 

  #X=(L%*%PP/((L%*%S%*%t(L))^0.5))^2 

  #pchisq(X, df=1, lower.tail=FALSE) 

  return(c(Up,Lo,pvalue)) 

} 

fun_G=function(G,g,n,m,N,M){ 

  G2=G$`1` #bottom X 

  G1=G$`2`  

  m1=n-m 

  m1*m 

  p=0 

  for(i in 1:m1){ 

    for(j in 1:m){ 

      if (G1$lmVolume[i]>G2$lmVolume[j]){ p=p+1 }  

      else if(G1$lmVolume[i]==G2$lmVolume[j]) {p=p+0.5 }  
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      else if(G1$lmVolume[i]<G2$lmVolume[j]) {p=p+0 } 

    }} 

  p 

  (P=p/(m1*(m))) 

  V10=rep(0,m1) 

  for(i in 1:m1){ 

    for(j in 1:m){ 

      if (G1$lmVolume[i]>G2$lmVolume[j]){ V10[i]=V10[i]+1 }  

      else if(G1$lmVolume[i]==G2$lmVolume[j]) {V10[i]=V10[i]+0.5 }  

      else if(G1$lmVolume[i]<G2$lmVolume[j]) {V10[i]=V10[i]+0 } 

    }} 

  V10=V10/m 

  V01=rep(0,m) 

  for(j in 1:m){ 

    for(i in 1:m1){ 

      if (G1$lmVolume[i]>G2$lmVolume[j]){ V01[j]=V01[j]+1 }  

      else if(G1$lmVolume[i]==G2$lmVolume[j]) {V01[j]=V01[j]+0.5 }  

      else if(G1$lmVolume[i]<G2$lmVolume[j]) {V01[j]=V01[j]+0 } 

    }} 

  V01=V01/m1 

  g2=g$`1`#X n 

  g1=g$`2`#Y m 

  M1=N-M # m 
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  ps=0 

  for(i in 1:M1){ 

    for(j in 1:M){ 

      if (g1$Volume_G[i]>g2$Volume_G[j]){ ps=ps+1 }  

      else if(g1$Volume_G[i]==g2$Volume_G[j]) {ps=ps+0.5 }  

      else if(g1$Volume_G[i]<g2$Volume_G[j]) {ps=ps+0 } 

    }} 

  ps 

  (Ps=ps/(M1*(M)))#probability 

  v10=rep(0,M1) 

  for(i in 1:M1){ 

    for(j in 1:M){ 

      if (g1$Volume_G[i]>g2$Volume_G[j]){ v10[i]=v10[i]+1 }  

      else if(g1$Volume_G[i]==g2$Volume_G[j]) {v10[i]=v10[i]+0.5 }  

      else if(g1$Volume_G[i]<g2$Volume_G[j]) {v10[i]=v10[i]+0 } 

    }} 

  v10=v10/M 

  v01=rep(0,M) 

  for(j in 1:M){ 

    for(i in 1:M1){ 

      if (g1$Volume_G[i]>g2$Volume_G[j]){ v01[j]=v01[j]+1 }  

      else if(g1$Volume_G[i]==g2$Volume_G[j]) {v01[j]=v01[j]+0.5 }  

      else if(g1$Volume_G[i]<g2$Volume_G[j]) {v01[j]=v01[j]+0 } 
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    }} 

  v01=v01/M1 

  ######################S10########### 

  s10_11=0 

  s10_12=0 

  s10_21=0 

  s10_22=0 

  for(i in 1:m1){ 

    s10_11=s10_11+(V10[i]-P)*(V10[i]-P) 

  } 

  (s10_11=s10_11/(m1-1)) 

  for(i in 1:m1){ 

    s10_12=s10_12+(V10[i]-P)*(v10[i]-Ps) 

  } 

  (s10_12=s10_12/(m1-1)) 

  for(i in 1:m1){ 

    s10_21=s10_21+(v10[i]-Ps)*(V10[i]-P) 

  } 

  (s10_21=s10_21/(m1-1)) 

  for(i in 1:M1){ 

    s10_22=s10_22+(v10[i]-Ps)*(v10[i]-Ps) 

  } 

  (s10_22=s10_22/(M1-1)) 
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  S10=matrix(0,2,2) 

  S10[1,1]=s10_11 

  S10[1,2]=s10_12 

  S10[2,1]=s10_21 

  S10[2,2]=s10_22 

  ######################S01 

  s01_11=0 

  s01_12=0 

  s01_21=0 

  s01_22=0 

  for(i in 1:m){ 

    s01_11=s01_11+(V01[i]-P)*(V01[i]-P) 

  } 

  (s01_11=s01_11/(m1-1)) 

  for(i in 1:m){ 

    s01_12=s01_12+(V01[i]-P)*(v01[i]-Ps) 

  } 

  (s01_12=s01_12/(m1-1)) 

  for(i in 1:m){ 

    s01_21=s01_21+(v01[i]-Ps)*(V01[i]-P) 

  } 

  (s01_21=s01_21/(m1-1)) 

  for(i in 1:M){ 
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    s01_22=s01_22+(v01[i]-Ps)*(v01[i]-Ps) 

  } 

  (s01_22=s01_22/(M1-1)) 

  S01=matrix(0,2,2) 

  S01[1,1]=s01_11 

  S01[1,2]=s01_12 

  S01[2,1]=s01_21 

  S01[2,2]=s01_22 

  ######################lm-rr## 

  S10 

  S01 

  S=S10/M1+S01/M 

  L=t(matrix(c(1,-1))) 

  PP=matrix(c(P,Ps)) 

  Up=L%*%PP+1.96*(L%*%S%*%t(L))^0.5 

  Lo=L%*%PP-1.96*(L%*%S%*%t(L))^0.5 

  z=L%*%PP/((L%*%S%*%t(L))^0.5) 

  (pvalue=2*pnorm(-abs(z))) 

  #X=(L%*%PP/((L%*%S%*%t(L))^0.5))^2 

  #pchisq(X, df=1, lower.tail=FALSE) 

  return(c(Up,Lo,pvalue)) 

} 

fun_EXP=function(G,g,n,m,N,M){ 
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  G2=G$`1` #bottom X 

  G1=G$`2`  

  m1=n-m 

  m1*m 

  p=0 

  for(i in 1:m1){ 

    for(j in 1:m){ 

      if (G1$lmVolume[i]>G2$lmVolume[j]){ p=p+1 }  

      else if(G1$lmVolume[i]==G2$lmVolume[j]) {p=p+0.5 }  

      else if(G1$lmVolume[i]<G2$lmVolume[j]) {p=p+0 } 

    }} 

  p 

  (P=p/(m1*(m))) 

  V10=rep(0,m1) 

  for(i in 1:m1){ 

    for(j in 1:m){ 

      if (G1$lmVolume[i]>G2$lmVolume[j]){ V10[i]=V10[i]+1 }  

      else if(G1$lmVolume[i]==G2$lmVolume[j]) {V10[i]=V10[i]+0.5 }  

      else if(G1$lmVolume[i]<G2$lmVolume[j]) {V10[i]=V10[i]+0 } 

    }} 

  V10=V10/m 

  V01=rep(0,m) 

  for(j in 1:m){ 
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    for(i in 1:m1){ 

      if (G1$lmVolume[i]>G2$lmVolume[j]){ V01[j]=V01[j]+1 }  

      else if(G1$lmVolume[i]==G2$lmVolume[j]) {V01[j]=V01[j]+0.5 }  

      else if(G1$lmVolume[i]<G2$lmVolume[j]) {V01[j]=V01[j]+0 } 

    }} 

  V01=V01/m1 

  g2=g$`1`#X n 

  g1=g$`2`#Y m 

  M1=N-M # m 

  ps=0 

  for(i in 1:M1){ 

    for(j in 1:M){ 

      if (g1$Volume_EXP[i]>g2$Volume_EXP[j]){ ps=ps+1 }  

      else if(g1$Volume_EXP[i]==g2$Volume_EXP[j]) {ps=ps+0.5 }  

      else if(g1$Volume_EXP[i]<g2$Volume_EXP[j]) {ps=ps+0 } 

    }} 

  ps 

  (Ps=ps/(M1*(M)))#probability 

  v10=rep(0,M1) 

  for(i in 1:M1){ 

    for(j in 1:M){ 

      if (g1$Volume_EXP[i]>g2$Volume_EXP[j]){ v10[i]=v10[i]+1 }  

      else if(g1$Volume_EXP[i]==g2$Volume_EXP[j]) {v10[i]=v10[i]+0.5 }  
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      else if(g1$Volume_EXP[i]<g2$Volume_EXP[j]) {v10[i]=v10[i]+0 } 

    }} 

  v10=v10/M 

  v01=rep(0,M) 

  for(j in 1:M){ 

    for(i in 1:M1){ 

      if (g1$Volume_EXP[i]>g2$Volume_EXP[j]){ v01[j]=v01[j]+1 }  

      else if(g1$Volume_EXP[i]==g2$Volume_EXP[j]) {v01[j]=v01[j]+0.5 }  

      else if(g1$Volume_EXP[i]<g2$Volume_EXP[j]) {v01[j]=v01[j]+0 } 

    }} 

  v01=v01/M1 

  ######################S10########### 

  s10_11=0 

  s10_12=0 

  s10_21=0 

  s10_22=0 

  for(i in 1:m1){ 

    s10_11=s10_11+(V10[i]-P)*(V10[i]-P) 

  } 

  (s10_11=s10_11/(m1-1)) 

  for(i in 1:m1){ 

    s10_12=s10_12+(V10[i]-P)*(v10[i]-Ps) 

  } 
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  (s10_12=s10_12/(m1-1)) 

  for(i in 1:m1){ 

    s10_21=s10_21+(v10[i]-Ps)*(V10[i]-P) 

  } 

  (s10_21=s10_21/(m1-1)) 

  for(i in 1:M1){ 

    s10_22=s10_22+(v10[i]-Ps)*(v10[i]-Ps) 

  } 

  (s10_22=s10_22/(M1-1)) 

  S10=matrix(0,2,2) 

  S10[1,1]=s10_11 

  S10[1,2]=s10_12 

  S10[2,1]=s10_21 

  S10[2,2]=s10_22 

  ######################S01 

  s01_11=0 

  s01_12=0 

  s01_21=0 

  s01_22=0 

  for(i in 1:m){ 

    s01_11=s01_11+(V01[i]-P)*(V01[i]-P) 

  } 

  (s01_11=s01_11/(m1-1)) 
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  for(i in 1:m){ 

    s01_12=s01_12+(V01[i]-P)*(v01[i]-Ps) 

  } 

  (s01_12=s01_12/(m1-1)) 

  for(i in 1:m){ 

    s01_21=s01_21+(v01[i]-Ps)*(V01[i]-P) 

  } 

  (s01_21=s01_21/(m1-1)) 

  for(i in 1:M){ 

    s01_22=s01_22+(v01[i]-Ps)*(v01[i]-Ps) 

  } 

  (s01_22=s01_22/(M1-1)) 

  S01=matrix(0,2,2) 

  S01[1,1]=s01_11 

  S01[1,2]=s01_12 

  S01[2,1]=s01_21 

  S01[2,2]=s01_22 

  ######################lm-rr## 

  S10 

  S01 

  S=S10/M1+S01/M 

  L=t(matrix(c(1,-1))) 

  PP=matrix(c(P,Ps)) 
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  Up=L%*%PP+1.96*(L%*%S%*%t(L))^0.5 

  Lo=L%*%PP-1.96*(L%*%S%*%t(L))^0.5 

  z=L%*%PP/((L%*%S%*%t(L))^0.5) 

  (pvalue=2*pnorm(-abs(z))) 

  #X=(L%*%PP/((L%*%S%*%t(L))^0.5))^2 

  #pchisq(X, df=1, lower.tail=FALSE) 

  return(c(Up,Lo,pvalue)) 

} 




