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ABSTRACT 

Lysine post-translational modification (PTM) plays a vital role in modulating multiple 

biological processes and functions. Lab-based lysine PTM identification is laborious and time-

consuming, which impede large-scale screening. Many computational tools have been proposed 

to facilitate PTM identification in silico using sequence-based protein features. Protein structure 

is another crucial aspect of protein that should not be neglected. To our best knowledge, there is 

no structural feature dedicated to PTM identification. We proposed a novel spatial feature that 

captures rich structure information in a succinct form. The dimension of this feature is much 

lower than that of other sequence and structural features that were used in previous studies. 

When the proposed feature was used to predict lysine malonylation sites, it achieved 

performance comparable to other state-of-the-art methods that had much higher dimension. The 

low dimensionality of the proposed feature would be very helpful for building interpretable 

predictors for various applications involving protein structures. We further attempted to develop 

a reliable benchmark dataset and evaluate performance of multiple sequence- and structure-based 

features in prediction. The result indicated that our proposed spatial structure achieved 

competent performance and that other structural features can also make contribution to PTM 

prediction. Even though utilizing protein structure in lysine PTM prediction is still in the early 

stage, we can expect structure-based features to play a more crucial role in PTM site prediction. 
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LITERATURE REVIEW 

Living cell regulates cellular function and physiology mostly by its inventory of all 

proteins, i.e. proteome [1]. Proteome in eukaryotic cells consists of hundreds of thousand 

proteins across species, exceeding the coding capacity of its corresponding genome [1]. The 

mRNA splicing and protein post translation modification (PTM) are two major mechanisms to 

expand protein complexity over coding capacity [2]. PTMs are enzymatic, covalent chemical 

modifications after transcription, which change the protein’s physical or chemical properties, 

activity, localization, stability [3], [4].  

Currently, over three hundred types of PTMs have been identified [1]. The detection of 

PTM sites were mostly achieved through mass spectrometry-based techniques [1]. Briefly, 

modified proteins show lower or higher molecular mass compared to normal proteins. The 

observed modified protein is digested into peptides using enzymes. Each peptide is examined, 

and its molecular mass is compared to its expected molecular mass. Then, the peptide with 

unexpected mass is sequenced by tandem mass spectrometry [1]. Due to instability of some PTM 

types during mass spectrometry, other biotechnology methods, including Affinity Enrichment, 

Affinity Tagging, and Mass Tagging, are also used to identify PTMs [1].  

Lysine malonylation (Kmal) is a recently identified PTM type [2]. The PTM type was 

validated using multiple biotechnology methods, Western blot, tandem MS, and high-

performance liquid chromatograph. Du et al. [5] showed Kmal was associated with type 2 

diabetes, and elevated Kmal sites were observed in liver tissues of mice models. The Kmal sites 

were involved in an enzyme of the glycolysis pathway. Ma et al. [6] validated the presence of 

Kmal sites in Cyanobacteria, and further bioinformatics analysis indicated Kmal sites 

participated metabolic enzyme activity of phosphoglycerate kinase, which played a role in 
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photosynthesis. In addition, number of Kmal sites were identified in common wheat, and these 

sites were involved in diverse pathways, including carbon metabolism, the Calvin cycle, and 

biosynthesis of amino acids [7].  

The detailed cellular regulation mechanism of Kmal is based on identification of Kmals 

[8]. However, the laborious and low efficiency of PTM site identification via experimental 

method limits the scale of Kmal sites searching. With the advance of artificial intelligence and 

proteomics, many models utilizing characteristics of proteins have been proposed to predict PTM 

sites in silico. Even though models differ in many aspects, such as feature extraction and training 

algorithms, they all can be generalized into ‘Chou’s 5 step rule’: benchmark dataset construction, 

protein sample representation, prediction algorithm, method validation, and model releasing [9]. 

Data Collection 

With the increase of identified Kmal sites by experiments, databases, such as dbPTM 

[10], PLMD [11], and PTM-SD [12], have been established and collected a number of modified 

sites. The collected protein sequences are highly redundant, which means many sequences share 

sequence similarities. Directly using these datasets with extreme redundancy will introduce bias 

into prediction models [13]. For example, if highly similar sequences exist in both training and 

validation dataset, the model may just ‘memorize’ these sequences instead of generalizing 

characteristics. In addition, the sequences and structures submitted into the biological databases 

increase at an exponential speed, and removing redundancy can reduce computational 

complexity [13].  
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Feature Construction 

Sequence-based feature 

Sequence-based features are features directly derived from the whole protein sequence, or 

a segment of the protein sequence. The following are some sequence-based features that have 

been used to encode the original protein sequences. 

The 1-gram and 2-gram are two features based on the idea of k-gram for proteins [14]. 

The k in k-gram defines the length of unique block when calculating frequency. For example, 1-

gram extracts frequency of each single residue in the protein sequence, and 2-gram calculates the 

frequency of each possible pair of residues in the sequence. Given a total of 21 residue types 

(including 20 natural types and 1 non-natural type), the 1-gram and 2-gram features are 21- and 

441-dimensional vectors, respectively.  

The numerical representation converts original sequences into numerical sequences, and 

each residue type is represented by a unique number [15]. Therefore, a protein sequence with n 

residues is represented as a n-dimensional vector.  

The binary encoding, also known as one-hot encoding, converts each residue into a 21 

dimensional orthogonal binary vector [15]. Each orthogonal binary vector consists of one ‘1’ and 

twenty ‘0’. For example, alanine (A) is alphabetically the first residue and is encoded as 

‘100000000000000000000’. Then, a sequence of n residues is represented as a (n-1)*21 

dimensional vector. The difference between numerical representation and binary encoding is 

how a single residue is represented, as a single value or a vector. Because residue type is nominal 

data, consecutive numbering does not always make sense. However, binary encoding can suffer 

from a high dimensional problem when the length of protein sequence increases. 
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The Two Sample Logo incorporates both positive and negative datasets and calculates 

frequency difference between positive and negative samples at the sequence position [16]. For 

example, at position i, a twenty-dimensional vector is produced to represent frequency 

differences of each residue type at this position. The method is a good visualization tool to 

present major compositions in the dataset. 

Word embedding, techniques of natural language processing, has also been applied in 

sequence representation. For instance, Word2vec [17] is a successful word embedding 

application that combines both continuous bag-of-word and skip-gram models. It maps input 

words into dimensional spaces. The protein sequences can also be considered as a collection of 

words and be mapped into spaces. Inspired by that, Asgari and Mofrad proposed ProtVec, a 

dedicated word embedding tool for protein sequences [15]. 

Physicochemical property-based features 

AAindex is a database collecting various physicochemical and biochemical properties of 

amino acids [18]. Selected properties of residues are concatenated into a single vector for each 

sample. Various properties were used in protein function site prediction, including but not 

limited to physicochemical index, hydrophobicity, polarity, polarizability, hydration potential, 

accessibility reduction ratio, net charge, molecular weight, PK-N, PK-C, melting point, optical 

rotation, entropy of formation, heat capacity, and absolute entropy. The method represents a 

sequence of N residues as a vector of (N)*(number of properties selected) dimension. 

The 20 standard amino acids can be grouped into groups based on their own 

characteristics. For example, based on the property of their R group, amino acids were classified 

into six categories: hydrophobic – aliphatic (Ala, Lle, Leu, Met, and Val), hydrophobic – 

aromatic (Phe, Trp, and Tyr), polar neutral (Asn, Cys, Gln, Ser, and Thr), electrically charged – 
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acidic (Asp and Glu), electrically charged – basic (Arg, His, and Lys), and unique amino acids 

(Gly and Pro). EBGW is an encoding method using such information [19]. The method creates 

several dummy vectors to record the presence of the property at each site and slices each dummy 

vector into a couple of sectors. Then, mean value is calculated for each sector and output.  

Evolutionary-derived features 

Position-Specific Scoring Matrix (PSSM) is a pattern matrix derived from multiple 

sequence alignment [20]. The query protein sequence is searched against a sequence database. 

Higher weight value is assigned to a specific site if it is more conserved compared to other sites. 

Based on the PSSM, many derivatives were proposed by row transformation, column 

transformation, or mixture of transformations [21]. 

The KNN encoder, originating from natural language processing [22], produces local 

similarities/dissimilarities of a sample to comparison dataset (containing both positive and 

negative samples) [23]. The similarity between two protein sequences is the summation of site 

substitution values. The substitution values can be obtained from a substitution matrix, such as 

BLOSUM62 matrix [24]. The normalized similarity score is used to perform k-nearest neighbor 

analysis, and the percentage of positive neighbor is the final score of the sample. 

Feature Normalization 

Features extracted from methods discussed above have various ranges. For example, 1- 

and 2-gram generates features ranging from 0 to 1, whereas features from numerical 

representation range from 0 to 20. Distance-based algorithms suffer from features with various 

variation, but tree-based algorithms are not sensitive to scaling [25]. Popular normalization 

methods include linear scaling to unit range, linear scaling to unit variance, transformation to a 
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uniform random variable, rank normalization, and normalization after fitting distributions, and 

empirical experiments revealed performance improvement after data normalization [26].  

Feature Selection 

A comprehensive classifier may utilize features extracted from multiple methods. But 

these features may have thousands of dimensions, which leads to a problem called ‘curse of 

dimensionality’ [27].  

For continuous variables, correlation analysis can detect linear dependencies between 

variable and target. Redundant variables showing extremely high correlation with others may be 

discarded. However, correlation analysis is limited to linear relationships and cannot handle non-

linear relationships [27]. In addition, correlation-based feature selection requires a huge amount 

of computation because the number of pairs increases exponentially when the number of features 

increases. To make the work feasible, a genetic algorithm was implemented to perform a 

stochastic general search to find an optimal subset [28].  

The single-variable classifier method is another brute-force way for feature selection. 

Each single feature is used to train a classifier to obtain the predictive power of the feature. The 

drawback of the single-variable classifier is its intensive computation and the difficulty to 

distinguish top ranking variables [27]. 

Gain ratio, a concept arising from information theory, describes how much information 

can be obtained from an attribute with respect to the class through evaluating entropy [29]. High 

entropy indicates that the feature is uniformly distributed over various classes, and low entropy 

means that the feature forms cluster/s and tends to give high predicting power.  

In addition to selecting features for further analysis, dimension reduction is an alternative 

way to address the high dimensionality problem [27]. Matrix factorization, e.g. singular value 
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decomposition, can extract a set of principal components, thereby maximizing variance with 

lower dimensions. Another way of reconstructing features to reduce dimension is clustering. 

Variables can be clustered into several groups, and the centroid of the group can be used to 

represent the whole group [27].  

Machine Learning Algorithms 

A number of machine learning algorithms have been proposed and applied in 

bioinformatics and computational biology, such as Bayesian classifiers, logistic regression, 

discriminant analysis, classification trees, nearest neighbor, neural networks, support vector 

machine (SVM) [30]. Of these algorithms, SVM, random forest (RF), and neural networks are 

widely used in PTM prediction [8].  

SVM aims to find a hyperplane in an N-dimensional space that can distinctly separate 

data points and maximize the margin [31]. The success of SVM mostly results from selecting the 

particular hyperplane with maximum margin, which maximizes the classifier’s ability to predict 

the correct classification on future samples [32]. Because a real-world dataset is always not 

perfect and may contain errors, the soft margin of SVM handles such errors under predefined 

tolerance. It allows some misclassifications without moving the margin of the separating 

hyperplane. Another concept introduced into SVM is kernel function, which solves nonlinear 

relationship. The kernel function projects an original dataset from a low-dimensional space into a 

higher one, where different classes become linearly separable.  

RF is a tree-based algorithm incorporating an ensemble learning technique [33]. RF 

aggregates a large number of decision trees and outputs the majority voting or the average, and 

the method reduces the variance compared to a single decision tree. The original RF randomly 

draws a number of samples from the original dataset and constructs a decision tree. The key 
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hyperparameter is the number of trees in bagging. In most empirical experiments, the 

performance of the model reaches a plateau when a few hundred of trees are constructed. 

Another recently popularized tool is deep learning. Basic deep learning structures include 

an input layer, several nonlinear layers, and output layers. The current deep learning 

architectures can be categorized into four groups, deep neural networks (DNN), convolutional 

neural network (CNN), recurrent neural network (RNN), and emergent architectures [34]. DNN 

usually consists of an input layer, multiple hidden layers, and an output layer, the numerical 

values move along the architectures. Nodes in a middle layer receive weighted summation from 

nodes of a previous layer, and they are activated by a non-linear function, named the activation 

function, including sigmoid, hyperbolic tangent, rectified linear unit, etc. CNN is extended based 

on DNN by adding convolution and pooling layers. Convolution layers utilize filters (small 

weight matrices) and perform a convolution operation to catch patterns across input data. Pooling 

layers split received tensors into small regions and take maximum or average as output values. 

Usually, the convolution layer and pool layer are combined together several times, and connect 

to a couple of fully-connected layers to increase non-linear properties [34]. RNN shows good 

performance on sequential information, where input data are not independent. The architecture 

consists of extra hidden units where cyclic connection exists. Because the cyclic connection, 

gradient vanishing and gradient explosion hinder long context input. To relieve such problem, 

long short-term memory (LSTM) [35] and gradient recurrent unit (GRU) [36] were proposed to 

serve as memory cells determining ‘memorize’ or ‘forget’.  
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Current Progress on Kmal Prediction 

Available tools for Kmal prediction 

To our knowledge, several methods were proposed for Kmal prediction. Mal-Lys is the 

first proposed method using k-gram encoding and AAindex property feature. The method 

performed feature selection using a correlation-based method and made final prediction using 

SVM with radial basis function [37]. Wang et al. [23] also used SVM and built a new classifier, 

MaloPred. MaloPred incorporated 1-gram, binary encoding, EBGW, KNN and PSSM to 

construct original feature set, and then information gain was employed for feature selection. 

Zhang et al. [15] built three species-specific ensemble models, named kmal-sp. The original 

feature set of kmal-sp consists of 1-gram, 2-gram, quasi-sequence order, numerical encoding, 

binary encoding, Logo, EBGW, AAindex, KNN, PSSM, and S-FPSSM. The original feature set 

was normalized and selected by information gain. The final ensemble models were built based 

on RF, SVM, gradient boosting decision tree, K-nearest neighbor, and logistic regression. 

LEMP, a LSTM-based ensemble malonylation prediction, used enhanced amino acid content and 

employed word embedding, RNN, and RF [38]. MUscADEL is the acronym for Multiple 

Scalable Accurate Deep Learner for lysine PTMs, which also employed word embedding and 

RNN, similar to part of LEMP [8]. Sun et al. [39] proposed CNN-based method K_net, which 

used enhanced amino acid composition and EBGW features. Kmalo a newly proposed ensemble 

classifier, combined five classifiers [40]. Each classifier made use of one feature, including 

binary encoding, AAindex, PSSM, amino acid composition, or pseudo-amino acid composition, 

and RF, SVM, or CNN were implemented depending on the preliminary test performance.  
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Performance of available tools 

The performance of these available tools was evaluated by some measures. Popular 

measures include accuracy, specificity, sensitivity, precision, F-score, Matthew’s correlation 

coefficient (MCC), and the receiver operating characteristic carvers, area under curve (AUC). 

These metrics describe the model performance in terms of true positive, true negative, false 

positive, and false negative. All available tools achieved AUC values over 0.8 (Table 1). 

Currently, there is no global comparison among all tools but some pair-wise comparisons (Table 

1 and 2). All proposed models were built based on a specific dataset, and some models did not 

achieve good performance when evaluated with other datasets. For example, Mal-Lys and 

MaloPred showed much lower AUC values on LEMP and MUscADEL’s datasets, even higher 

than just random guessing. The accuracy of kmal-sp dropped from 0.833 to 0.597 when changing 

dataset into Kmalo’s (Table 2). LEMP achieved commensurable performance to Kmalo in terms 

of accuracy because of sharing the same dataset in training. The predictive performance 

degrading over datasets indicates current models still require further improvements.  

Table 1. Performance comparison by AUC within each study in Homo sapiens. 

 Mal-Lys MaloPred kmal-sp LEMP MUscADEL K_net Kmalo 
Mal-Lys 0.8141 NA2 NA 0.5613 0.529 NA NA 

MaloPred  0.871 0.874 0.656 0.756 NA NA 

kmal-sp   0.923 NA NA NA NA 

LEMP    0.827 NA NA NA 

MUscADEL     0.834 NA NA 
K_net      0.800 NA 
Kmalo       0.943 

1Diagonal values are performance based on its own testing dataset. 
2NA means no comparison or values were not listed in the context. 
3The AUC values were derived by the dataset from the tool (column name). 
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Table 2. Performance comparison by accuracy within each study in Homo sapiens. 

 Mal-Lys MaloPred kmal-sp LEMP MUscADEL K_net Kmalo 
Mal-Lys NA1 NA2 NA NA3 NA NA NA 

MaloPred  0.737 0.802 NA NA NA NA 

kmal-sp   0.833 NA NA NA 0.597 

LEMP    NA NA NA 0.862 

MUscADEL     0.807 NA NA 

K_net      NA NA 
Kmalo       0.866 

1Diagonal values are performance based on its own testing dataset. 
2NA means no comparison or values were not listed in the context. 
3The AUC values were derived by the dataset from the tool (column name). 
 

Accessing Structural Similarity  

In addition to features directly or indirectly derived from sequence information, the 

protein structure is an alternative resource of information for functional prediction. The three-

dimensional structure of proteins at near atomic level resolution implies their potential function 

and evolutionary evidence [41]. Functions of proteins can be predicted from structurally similar 

proteins because protein structure is even more conserved compared to protein sequence [42]. 

Distantly related proteins might show dramatic differences on sequences but function in similar 

ways, which challenges the sequence-based method and favors structurally-motivated approach.  

Multiple structural alignment is a widely-used tool for structure prediction, motif detection, 

analysis of evolutionary, and even classification [43]. So far, multiple structure alignment 

methods can be categorized into two groups, ‘horizontal-first’ and ‘vertical-first’ [44]. The 

‘horizontal-first’ methods utilize pair-wise alignments and merge pairs into multiple alignment 

results. The ‘vertical-first’ methods begin with identifying similar fragment blocks among 

queried proteins and extend these blocks into multiple alignments. To compare protein 

structures, the first question to answer is how to represent an amino acid/residue. Generally, 

there are four types of representation, backbone atom (C-alpha), distance map-based method (C-
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map), secondary structure, and amino acid type or structural alphabet [37]. Because the identified 

structure blocks are three-dimensional objects with internal motion, aligners differed at treating 

these blocks as rigid, flexible, or elastic object [45]. Another important topic in structure 

alignment is scoring function, and aligners make use of scoring function and maximize it for 

optimal solutions. Because of the different choices in protein structure representation, there are 

three groups of scoring function, three-, two-, and one-dimensional [44]. Three-dimensional 

scoring function measures the positional deviations of equivalent atoms of the whole or 

substructures. Two-dimensional scoring function describes the similarities of residue-residue 

interactions, such as contact maps, graphs, and distance matrices. One dimensional scoring 

function profiles amino acid type and backbone conformational state [45].  

So far, protein multiple structural alignment is still an open challenge. The ‘horizontal-

first’ approaches merge pairwise alignment result progressively and also accumulate errors step 

by step [44]. The ‘vertical-first’ approaches identify similar fragment blocks first among 

proteins, but the number of similar fragment blocks grow exponentially with respect to the 

number of proteins [44]. Thus, the ‘vertical-first’ approaches require intensive computation. In 

addition to the two aligner groups, the consensus method provides an alternative way for 

multiple alignment. Ilinkin et al. [46] proposed an algorithm that a consensus (pseudo) structure 

generating from a subset of queries is used for iteratively searching similar structures and 

updating consensus structures in a larger dataset. Limitations of this algorithm are the bias 

underneath the generation of initial consensus and error accumulation of pairwise comparison in 

the iterations [44]. 
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PAPER 1: A NOVEL SPATIAL FEATURE FOR PREDICTING LYSINE 

MALONYLATION SITES USING MACHINE LEARNING  

Abstract 

Lysine malonylation is a recently identified post-translation modification type with 

known effects on type 2 diabetes. Several machine learning algorithms have been used to predict 

lysine malonylation sites using various protein features. We proposed a novel spatial feature that 

captures rich structure information in a succinct form. The dimension of this feature is much 

lower than that of other sequences and structural features that were used in previous studies. 

When the proposed feature was used to predict lysine malonylation sites, it achieved 

performance comparable to other state-of-the-art methods that had much higher dimension. The 

low dimensionality of the proposed feature would be very helpful for building interpretable 

predictors for various applications involving protein structures. 

Introduction  

Post-translation modifications (PTMs) are chemical alterations on protein structure, 

typically catalyzed by subtrate-specific enzymes [1]. Through PTM, one gene can produce 

diverse, complex, and heterogeneous gene products. Currently, over three hundred types of 

PTMs have been identified in protein structures. Among them, lysine malonylation (Kmal) is a 

recently identified type [2]. Kmal was shown to be present in both eukaryotic and prokaryotic 

cells. Du et al. [3] showed that Kmal was elevated in type 2 diabetic mouse models. In addition, 

Kmal plays a role in metabolism and photosynthesis in Cyanobacteria [4]. 

Due to the importance of Kmal, identifying new Kmal sites is crucial to understanding 

biological processes and advancing disease treatment. Due to the high cost and low efficiency of 

experimental validation procedures, in silico prediction is needed to guide the design of 
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experimental procedures. To date, several machine-learning-based prediction algorithms, 

MaloPred [5], Mal-Lys [6], and kmal-sp [7], have been proposed to predict Kmal sites [8]. 

MaloPred extracted features from the sequence-based features, physicochemical properties, and 

evolutionary-derived information. Then, feature selection and model learning were performed 

using support vector machine (SVM). Mal-Lys utilized sequence order information, position-

specific amino acid propensity, and physicochemical properties to conduct prediction with SVM. 

Zhang et al. [7] constructed a comprehensive feature set, subset feature set, and merged 

ensemble models into the final model, kmal-sp.  

As reviewed in Chen et al. [8], types of features that have been used in lysine PTM site 

prediction include sequence-derived features, predicted structural features, physicochemical 

properties, position-specific scoring matrices (PSSMs), and peptide similarity features. In 

addition to these features, the 3-dimensional (3D) structure of protein in the Protein Data Bank 

[9], is a rich source of spatial features that could be used for PTM site prediction. However, one 

main challenge is how to encode the 3D structural features into 1-dimensional (1D) vectors that 

can be efficiently processed by machine learning methods. Additionally, this encoding must be 

invariant to the rotation and transition of the coordinate system. To our knowledge, there is no 

model that utilizes spatial information in PTM site prediction. Herein, we proposed a spatial 

feature that captured the spatial environment of a point of interest in the protein structure. We 

used unsupervised clustering to select features for prediction model training. We demonstrated 

the efficiency of the proposed feature in the prediction of Kmal sites by comparing it with other 

state-of-the-art features. 
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Material and Methods 

Data collection and pre-processing 

The original dataset was collected in [5] with 9,760 experimentally validated 

malonylation sites from 3,433 Uniprot entries. These Uniprot entries were mapped to PDB 

chains via SIFTS [10], and a total of 6,254 unique and available pdb chains were derived. To 

reduce dataset redundancy, sequences with over 70% sequence identity were discarded using 

CD-HIT online server [11]. The resulting dataset comprises 692 PDB chains and 1,036 validated 

Kmal sites. Another 1,036 non-Kmal lysine sites were randomly selected from the chains to be 

used as negative samples. 

Representation schemes for different features 

We proposed a spatial feature and compared its performance with a few common features 

that have been widely used in previous studies. 

The proposed spatial feature 

The orientation of a residue was represented by a vector, which will be referred to as side 

chain vector, originating from its alpha carbon and ending at the mass center of its R group. A 

special case was Glycine whose R group has only a single hydrogen that doesn’t have 

coordinates in the PDB structure. In that case, a pseudo-R group consisting of the carbon in the 

alpha-carboxyl group, N, and O in Glycine were created. For an amino acid of interest, each of 

its neighboring residues was represented using a triplet (t, d, 𝜃), where t was the type of the 

adjacent residue, d was the distance between the mass center of the R group of the neighboring 

residue and that of the residue of interest, and 𝜃 was the dihedral angle between the side chain 

vectors of the two residues. Among them, d and 𝜃 described the neighboring residue’s spatial 

proximity and orientation relative to the residue of interest. For each residue of interest, we 
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considered N spatially nearest neighbors, where N was a parameter to be explored. Therefore, 

the spatial environment of a residue of interest was described as a bag of triplets (ti, di,𝜃i), where 

i ranged from 1 to N.  

We used the following procedure to select M recurring triplet features from the training 

set of positive examples and used them as features to encode examples. The guiding principle for 

this procedure was that features that are important for Kmal function will occur repeatedly in the 

positive data set, i.e., they are conservative in the positive data set. Let P be the number of 

positive examples in the training set, and (𝑡!
", 𝑑!

",𝜃!
") be the triplet describing the ith neighbor of 

the jth positive example. For every triplet (𝑡!
", 𝑑!

",𝜃!
") in the positive set, its conservation score 

was calculated by  

𝐶!
" = # min	

#$%,..,(			
	{		 )(𝑑!

" − 𝑑#*)+ + (𝜃!
" − 𝜃#*)+

!

*$%,..,,		&	*."

	𝑖𝑓	𝑡!
" = 𝑡#	*, 100	𝑖𝑓	𝑡!

" ≠ 𝑡#	*}	 

Basically, for every (𝑡!
", 𝑑!

",𝜃!
") this formula iterated overall positive example other than i 

(i.e. k≠ 𝑖) and for every k, it found the minimum Euclidean distance between (𝑡!
", 𝑑!

",𝜃!
") and all 

(𝑡#$, 𝑑#$,𝜃#$) in the bag of triplets associated with k. Then, 𝐶!
" was the sum of such minimum 

distances over all positive examples in the training set. If (𝑡!
", 𝑑!

",𝜃!
") and (𝑡!

", 𝑑!
",𝜃!

") don’t have 

the same type (i.e., 	𝑡!
" ≠ 𝑡#	$), the distance between the two triplets was arbitrarily set to a large 

value, 100. So, if a triplet occurred in the feature bags of all positive examples, its conservation 

score would be 0. If a triplet occurs only in one positive example, its conservation score would 

be (P-1)*100. A lower conservation score indicated that the triplet was more conservative and 

therefore was more important for Kmal site prediction. We then sorted all triplets in the order of 

ascending conservation score. 
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Some of the triplets were similar to each other with minor variations in d and 𝜃. 

Therefore, we clustered all triplets that had the same type, t, using the k-mean cluster, with k=3. 

So, each type of triplets was clustered into 3 bins. Triplets in the same bin were considered 

equivalent. Thus, each triplet was associated with one bin and each bin corresponding to a group 

of residues that had the same spatial proximity and orientation relative to the residue of interest. 

Therefore, we could treat each bin as a spatial feature for function prediction. 

Using the order of the triplets, we picked the M most conservative bins as features to 

encode examples. Each example was encoded as a vector of M values of 0 or 1, indicating the 

absence or presence of the corresponding spatial features in the bag of triplets associated with the 

example. 

PSSM 

Position-specific scoring matrix (PSSM) represents the evolutionary information of each 

amino acid site. The PSSMs for the dataset were constructed by running PSI-BLAST [12] 

against the uniref50 database with three iterations and e-value at 0.0001.  

FEATURE 

Halperin et al. [13] proposed the FEATURE model that included a large number of 

physicochemical properties from several spherical shells centering at a point of interest on the 

protein structure. The FEATURE combines distance and other traditional features, such as 

solvent accessibility, hydrophobicity, etc.  

Residue identity  

One hot encoding was used to represent the identity of amino acids. The 20 types of 

amino acids were represented using a 20-dimensional binary vector. 
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Side chain property 

Based on the property of their R group, amino acids were classified into six categories: 

hydrophobic – aliphatic (Ala, Lle, Leu, Met, and Val), hydrophobic – aromatic (Phe, Trp, and 

Tyr), polar neutral (Asn, Cys, Gln, Ser, and Thr), electrically charged – acidic (Asp and Glu), 

electrically charged – basic (Arg, His, and Lys), and unique amino acids (Gly and Pro). A 6-

dimensional vector was used to represent the six types of side chains using one-hot coding. 

AAindex 

AAindex is a database collecting various physicochemical and biochemical properties of 

amino acids [14]. It has been used in Kmal prediction previously. As in previous publications 

[6], [7], fifteen numerical index values were extracted for each amino acids, including 

physicochemical index, hydrophobicity, polarity, polarizability, hydration potential, accessibility 

reduction ratio, net charge, molecular weight, PK-N, PK-C, melting point, optical rotation, 

entropy of formation, heat capacity, and absolute entropy.  

Model training and evaluation 

In this study, random forest was used to build prediction models to compare the 

performance of various coding schemes. Random forest [15] is a widely used machine learning 

algorithm, which has successful applications in PTM site prediction [7], [8]. Briefly, the 

algorithm is a bagging-type ensemble of several decision trees by bootstrapping samples, and the 

final decision is made based on voting. The number of trees is a vital hyperparameter of the 

algorithm, and 200 trees were used in this study. 

To measure the performance of models that use different features, four evaluation 

measures were used, including accuracy (ACC), precision (PRE), Sensitivity (SEN), and area 

under receiver operating characteristic curve (AUC). 
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𝐴𝐶𝐶	 = 	 !"#$	&'(!)*$	+	!"#$	,$-.!)*$
.//	(.0&/$(

  

𝑃𝑅𝐸	 = 	 !"#$	&'(!)*$	
!"#$	&'(!)*$	+	1./($	&'()!)*$

  

𝑆𝐸𝑁	 = 	 !"#$	&'(!)*$	
!"#$	&'(!)*$	+	1./($	,.-$!)*$

  

Ten-fold cross-validation was used to evaluate the performance of each model. The final 

measure was the arithmetic mean from the cross-validation test. 

Results 

We used the proposed feature and a few commonly used features to encode the input 

individually. Then, we used random forest to build prediction models for each encoding scheme. 

We compared their prediction performance using ten-fold cross-validation. 

When the proposed spatial feature was used to encode the input, two hyperparameters, N 

and M, needed to be determined. N defines how many neighboring residues to be considered, 

and M defines how many features were selected for the input encoding. We varied N and M in 

the range from 6 to 24, the performance is shown in Table 3. When N = 18 and M = 24, the 

method achieves the best AUC (0.66) and the best ACC (0.60), while PRE (0.58), and SEN 

(0.62) are all very close to the best (bold italic font in Table 3) in the whole spectrum.  
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Table 3. Prediction Performance for the proposed spatial feature 

N M Acc Pre Sen AUC 

6 

6 0.54 0.57 0.23 0.55 
12 0.55 0.57 0.40 0.57 
18 0.59 0.58 0.52 0.61 
24 0.57 0.58 0.57 0.61 

12 

6 0.50 0.52 0.50 0.53 
12 0.54 0.54 0.57 0.59 
18 0.57 0.57 0.60 0.63 
24 0.60 0.59 0.62 0.65 

18 

6 0.52 0.53 0.53 0.57 
12 0.57 0.57 0.59 0.61 
18 0.57 0.57 0.60 0.63 
24 0.60 0.58 0.62 0.66 

24 

6 0.56 0.56 0.55 0.59 
12 0.57 0.58 0.58 0.60 
18 0.59 0.57 0.62 0.64 
24 0.59 0.58 0.63 0.63 

 
In previous Kmal prediction studies [5], [7], protein sequences were truncated into 25-

residue segments and predictions were made regarding whether the lysine residue at the center of 

the segment was a Kmal site. We followed the same procedure when PSSM, AAindex, residue 

identity, and side chain property were used respectively to encode the input. When FEATURE 

was used to encode input, properties of six spheres were extracted, and each sphere resulted in 80 

numeric values. Table 4 compares the performance of these five encoding schemes with that of 

the proposed spatial feature. The best values for each measure are shown in bold italic font. 

Since AUC gives a balanced assessment over both positive and negative classes, we will use 

AUC as the primary measure. Among all the encoding schemes, the proposed spatial feature and 

the FEATURE achieved the best AUC (0.66). The proposed spatial feature also achieved the best 

ACC (0.60), while its PRE (0.58) was very close to the best. 
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Although the overall performance of the proposed spatial feature and that of the 

FEATURE are very similar, the proposed feature has a clear advantage of lower input 

dimension. The proposed method has an input dimension of 24, while the FEATURE has a 

dimension of 480 in the input. Other methods have input dimensions from 144 to 480, much 

higher than that of the proposed method. Lower input dimension offers many benefits including 

easier interpretation of the prediction model, easier identification of properties that are crucial for 

the prediction, and faster computing.  

Both the proposed feature and FEATURE methods used properties derived from protein 

structure. In comparison, the PSSM, AAindex, Residue Identity, and Side Chain Property 

methods only used properties derived from protein sequence. The fact that the proposed method 

and the FEATURE achieved better performance than the others indicates that proper structural 

conformations are needed for the lysine malonylation and structural information is crucial for the 

prediction of Kmal sites. 
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Table 4. Prediction Performance for various encoding schemes 

Feature Dimension of input ACC PRE SEN AUC 
PSSM 480 0.59 0.56 0.68 0.61 

AAindex 360 0.58 0.57 0.71 0.63 
Residue Identity 480 0.59 0.59 0.68 0.61 

Side Chain 
Property 144 0.60 0.58 0.71 0.62 

FEATURE 480 0.59 0.59 0.67 0.66 
The proposed 
spatial feature 24 0.60 0.58 0.62 0.66 

 

Discussion and Conclusion 

The identification of Kmal sites is crucial for understanding the disease mechanism and 

metabolic process [2]. Many methods have been proposed to exploit various features to achieve 

better performance [8]. Most of these features are derived from protein sequences. However, the 

protein structure is the foundation of many protein functions. The availability of more and more 

protein structures provides opportunities to perform function prediction using spatial features. 

Herein, we propose a novel feature based on spatial proximity and relative orientation. The 

feature uses distance and angle to capture the proximity and relative spatial orientation between 

amino acids, providing a succinct description of the structural conformation. 

When 3D structural information is used for functional prediction by machine learning 

methods, a main challenge is how to encode the 3D structural information into 1D vectors that 

the machine learning methods can efficiently process. All previous methods concatenated 

structural features into a vector based on their order on the protein sequence or their proximity on 

the structure. However, the sequential order or structural proximity doesn’t accurately reflect 

how the features are distributed in the 3D space. Therefore, the same spatial feature could be 

placed in different positions of the vector for different examples. However, in the vector 
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presentation, the same vector position of different examples is supposed to describe the same 

feature of different examples. This dilemma presents a hurdle for predicting function using 

structural information. In the proposed method, spatial features are put into an unordered bag, 

and then important features are selected. Examples are encoded into vectors using a set of 

selected spatial features, ensuring that all examples are encoded with the same order of spatial 

features. 

The results presented here demonstrate the efficacy of the proposed spatial feature. The 

proposed spatial feature also has the advantages of low dimensionality, which makes it 

preferable for various prediction tasks. 
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PAPER 2: COMPREHENSIVE ASSESSMENT OF SEQUENCE- AND STRUCTURE-

BASED FEATURES FOR LYSINE POST-TRANSLATIONAL MODIFICATION SITES 

PREDICTION 

Abstract 

Predicting lysine post-translation modifications (PTMs) is increasingly important due to 

its crucial role in multiple biological functions and processes. To date, a large number of 

computational tools have been developed to utilize a large volume of sequencing resources to 

predict one or several types of modification sites. These proposed tools have usually combined 

features derived from sequences, e.g., physicochemical properties, evolutionary profile, and 

predicted secondary structures. However, protein structure also has deep influences on exerting 

biological functions, and very few attempts have been made to employ real structure in PTM 

prediction. In this study, we leveraged the abundant protein structure resources in Protein Data 

Bank (PDB), extracted structural characteristics using the existing methods and our newly 

proposed spatial feature, and evaluated both sequence- and structure-based features in four types 

of lysine PTM sites prediction. Our recently proposed spatial feature achieved the highest MCC 

value in multiple datasets, and sequence-based features showed competitive performance in 

terms of accuracy, AUC, and F1 measures. Even though other structure-based features did not 

outperform sequence-based features, these features derived from structures are still considered 

informative in PTM site prediction. With the development of protein structure production, we 

can expect structure-based features will play a more vital role in PTM site prediction. 

Introduction 

The complicated biological processes supporting cellular growth, reproduction, and 

survival, are mainly mediated by protein molecules. PTM is a type of specific and selective 
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covalent processing that modulates molecular interactions, protein localization, and stability [1]. 

The coding capacity of the human genome is about 30,000 genes, and alternative splicing and 

PTM expand human proteomes to over one million types of proteins [2]. PTMs modify amino 

acid side chains leading to change in physicochemical properties. This change, in turn, 

significantly affects the protein’s structural and functional diversity [3]. Lysine is one of 20 

standard amino acids and a hotspot for enzymatic and chemical PTMs. In addition to being the 

most modified amino acid, lysine has the most comprehensive types of modification [4]. The 

identification of lysine modification has a long history of over seventy years, and new 

modification types are still being identified. Recently, for example, methylation [5] and 

glutarylation have been identified [6]. Of these modification types, acetylation, methylation, 

ubiquitination, and malonylation have been intensely investigated, and the functional importance 

of these modifications encourages the development of more and quicker identification methods.  

Acetylation was first reported on histones more than half decade ago [7]. In Acetylation, 

an acetyl functional group is introduced into the lysine residue, and the process is mainly 

performed by lysine acetyltransferases in species ranging from bacteria to mammals. This 

modification event can change DNA-protein interactions, transcriptional activity, and protein 

stability, leading to cancer, neuro, and cardiovascular diseases [8]. 

Malonylation is a recently identified lysine modification type where a malonyl group is 

attached to lysine [9]. The modified sites were involved in an enzyme of the glycolysis pathway, 

and a typical mice experimental model of type 2 diabetes indicated the lysine malonylation was 

associated with type 2 diabetes [10]. The presence of lysine malonylation is found not only in 

mammals but also in plants. The malonylated lysine was found in multiple subcellular 
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compartments and associated with several pathways, including carbon metabolism and 

biosynthesis of amino acids in wheat [11]. 

The first lysine modification type discovered was methylation, dating back to 1959 [5]. In 

methylation, a methyl group is added to a substrate or substitutes a portion of a lysine. One 

function of lysine methylation is modulating chromatin-based transcriptional control and 

epigenetics. Lysine methylation in histone is associated with euchromatin/heterochromatin and 

transcriptional activation/repression, and the methylation process is enzymatically reversible. 

This dynamic modulation also cross-regulates with other modification events, such as acetylation 

and ubiquitination [12]. 

Ubiquitination was first reported in the 1970s [13]. Unlike acetylation and methylation, 

the ubiquitination process attaches a large molecule to proteins [3]. The large molecule can be 

either a single 76 amino acid polypeptide ubiquitin molecule, multiple ubiquitin molecules, or 

other ubiquitin-related ubiquitin structures. Ubiquitination is associated with protein activation 

and/or inactivation, protein localization, and protein-protein interaction and function as critical 

regulators in multiple cellular processes, such as transcription, DNA repair, signal transduction, 

and cell-cycle control [14].  

Due to the importance of lysine PTMs, many efforts have been dedicated to identifying 

lysine PTM events in substrates. Mass spectrometry, mass tagging, affinity tagging, and affinity 

enrichment are some popular strategies and techniques used to identify PTMs [1]. However, 

these experimental methods are time-consuming and labor-intensive, which hinders large-scale 

analysis on proteomics. Alternatively, machine learning methods can generalize characteristics 

from the existing datasets and make high-throughput predictions on future samples. A number of 

tools have been developed to predict various types of lysine PTMs.  
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Hou et al. [15] combined amino acid physicochemical property, transition probability, 

and position-specific composition from amino acid sequences and built an acetylation classifier 

with logistic regression. Li et al. [16] proposed a classifier model, SSPKA, to predict species-

specific acetylation sites. SSPKA consists of features selected from the sequence, predicted 

secondary structure, functional annotation (domain, binding site, etc.), and functional features 

(gene ontology, KEGG path, etc.). Wuyun et al. [17] utilized sequence-based, physicochemical 

and biochemical properties and predicted structural features, and developed an SVM-based tool, 

KA-predictor, to predict species-specific lysine acetylation sites.  

Wang et al. [18] proposed the first online species-specific malonylation sites predictor, 

MaloPred, by combining sequence-based, physicochemical properties, and evolutionary-derived 

features. Taherzadeh et al. [19] employed sequence-based, evolutionary information, 

physicochemical properties, and predicted structural features and proposed a lysine malonylation 

classifier, SPRINT-Mal. In addition to traditional machine learning methods, Chen et al. [20] 

proposed LEMP that integrated recurrent neural networks with word embedding and random 

forest with sequence-based features to predict lysine malonylation sites.  

Shao et al. [21] mined sequential characteristics using Bi-profile Bayes feature extraction 

methods and proposed an SVM-based classifier, BPB-PPMS, to computationally identify lysine 

methylation sites. Contrasting to species-specific prediction, Lee et al. [22] split the 

identification problem by the identity of modified protein, histone or non-histone. MethyK, a 

web server consisting of two models, was proposed using sequence-based and predicted features. 

Deng et al. [23] developed a multiple-function predictor of GPS-MSP that can predict lysine and 

arginine methylation sites, and the predictor relies on a group-based prediction system that scores 

proteins biochemical properties against positive and negative samples.  
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UbiPred is the first tool dedicated to computationally predicting lysine ubiquitylation 

sites, which extracted informative physicochemical properties and implemented an SVM model 

[24]. Chen et al. [25] utilized local sequence similarity, physicochemical property, and amino 

acid composition feature and implemented several species-specific SVM models known as 

UbiProber. Conventionally, a training dataset consists of a number of experimentally validated 

modification sites as positive data and a similar amount of or more non-validated sites as 

negative data. Wang et al. [26] screened non-validated samples and incrementally selected 

effective negative samples into the negative dataset. They further extracted physicochemical 

property features from their curated dataset and developed a classifier known as ESA-UbiSite 

dedicated to identifying ubiquitination sites in humans. 

Computational identification of PTM sites can be generalized into five steps: construct a 

valid benchmark dataset; extract features or effectively represent collected dataset; train a 

predicting model using machine learning algorithm; assess performance of the model; deploy the 

model using a webserver or standalone program [27]. Amid these steps, feature design is an 

extremely crucial part to develop a robust predictor. Features employed in PTM sites prediction 

include primary sequence-derived features, predicted protein structural features, protein 

physicochemical properties, protein position-specific scoring matrices, peptide similarity 

features, and protein functional annotations [28]. These features are directly or indirectly derived 

from protein sequences. The other type of protein representation is structural characteristics that 

also modulate protein functions. However, modification site prediction progressively advanced 

through mining sequential information rather than structural features due to multiple reasons. 

First, most PTM sites were deposited into protein sequence database, e.g., UniProt [29], and data 

retrieval can be complete through processing one or several databases. Sequences in these 
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databases were well maintained with careful human-curating, but entries in Protein Data Bank 

(PDB) [30] often contain variants and missing information, which hinders structure file parsing. 

Second, the interaction between a prediction webserver or standalone program and users is 

straightforward, which requires query sequences only and may also allow users to define some 

hyperparameters.  

Although combining structural characteristics into PTM sites prediction is not 

convenient, protein structure should not be neglected because functional information is shared by 

proteins with similar structures [31]. For example, most phosphorylation sites were identified at 

the surface of the protein with higher percentage solvent accessibility than these of non-modified 

sites [32]. Arginine and lysine methylation sites had a significantly lower convex hull of protein 

surfaces value, which indicates methylation sites were located at the first convex hull of the 

protein surfaces and prone to contact other proteins [33]. The evidence suggests structural 

features should be combined to facilitate identifying PTM sites. Besides, the entries collected in 

PDB are exponentially increasing every year, and protein structure predicted by computational 

methods provides an alternative way to obtain protein structure [34], indicating these 

aforementioned difficulties are being resolved. Even though structural resources are not as 

abundant and accessible as sequential information, we aimed to utilize current tools to exploit 

protein structures in PTM predictions.  

Material and Methods 

Dataset construction 

To establish feature performance comparison, several benchmark datasets were 

constructed. Datasets from PTM-ssMP [35] were downloaded. The datasets consist of lysine 

acetylation, ubiquitination, methylation, and some modification sites integrated from other 
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databases, e.g., dbPTM [36]. Redundancy was removed using CH-HIT [37] to ensure that 

pairwise similarity among protein sequences was less than 40 percent. Originally protein 

sequences with PTM sites were collected from UniProt, and we used SIFTS [38] to map UniProt 

entries to PDB entries. SIFTS is a project initiated by European Bioinformatics Institute to 

provide residue level mappings between PDB structure and UniProt sequence. In addition to the 

three datasets, the lysine malonylation dataset, which was evaluated in our recent study [39], was 

also included in this study.  

Feature extraction 

In this study, two types of features, sequence- and structure-based features, were 

evaluated (Table 5). Sequence-based features included amino acid identity, amino acid side chain 

properties, AAindex, Position-Specific Scoring Matrices (PSSM), predicted secondary 

structures, and predicted disorder scores. A 25-residue sequence segment with central residue 

lysine (K) of each site was employed to extract sequence-based features. The other type of 

feature, structure-based feature, consists of Half sphere exposure (HSE), residue depth, DSSP, 

and an our recently proposed spatial structure.  

Residue identities 

The identity of a residue was encoded as a 20-dimensional feature vector, and a 25-AA 

segments (12 upstream and downstream AA) was represented using a 480-dimensional 

numerical vector. 

Side chain properties 

According to the characteristics of the side chain in each residue, residues can be 

categorized into six classes: hydrophobic – aliphatic (Ala, Lle, Leu, Met, and Val), hydrophobic 

– aromatic (Phe, Trp, and Tyr), polar neutral (Asn, Cys, Gln, Ser, and Thr), electrically charged – 
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acidic (Asp and Glu), electrically charged – basic (Arg, His, and Lys), and unique amino acids 

(Gly and Pro). Similar to residue identity, the 25-AA segment was retrieved, and a 144-

dimensional numerical vector was generated to describe sequence segment side-chain properties. 

PSSM 

To incorporate evolutionary information of protein sequences, PSSM was utilized to 

indicate conservation scores at each position. PSSM was generated by running PSI-BLAST [40] 

against the UniProt uniref50 database with three iterations and an e-value at 0.0001.  

AAindex 

AAindex [41] that a database archives various physicochemical properties of AAs was 

used to extract physicochemical properties of residues surrounding the modification sites. Fifteen 

numerical index values were extracted for each amino acid, including physicochemical index, 

hydrophobicity, polarity, polarizability, hydration potential, accessibility reduction ratio, net 

charge, molecular weight, PK-N, PK-C, melting point, optical rotation, the entropy of formation, 

heat capacity, and absolute entropy. Thus, a 360-dimensional numerical vector was generated by 

iterating the sequence segment. 

Predicted protein structure 

Protein structures can be predicted by mining sequence evolution profiles. SPIDER3-

Single was employed to predict protein structure using sequence segment. SPIDER3-Single [42] 

is an updated structure predictor based on SPIDER3[43]. This structure predictor takes PSI-

BLAST and HHBlits [44] sequence profiles together with seven physiochemical properties from 

the sequence and feeds into long short-term memory bidirectional recurrent neural networks. 

SPIDER3-Single produces solvent accessible surface area, three-state and eight-state secondary 
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structure, main-chain angles (backbone ϕ and ψ torsion angles and Cα‐atom‐based θ and τ 

angles), half‐sphere exposure, and contact number. 

Predicted disorder score 

Another predicted structure feature adopted in this study is the intrinsic disorder value, 

which reflects the possibility of a protein to fold into a well-defined and rigid structure. We used 

SPOT-Disorder2 to predict protein intrinsic disorder score. SPOT-Disorder2 is a recently 

proposed deep learning-based disorder predictor [45]. The model includes evolutionary profiles 

consisting of PSSM and HHblits and sequentially feeds into inception paths, residual 

connections, Squeeze-and-Excitation, LSTM, and fully connected layer segments. 

HSE 

HSE is a two-dimensional measure of a residue’s solvent exposure [46]. A sphere is 

defined around the interested residue at a given radius and a plane perpendicular to the ∁& −

𝐶'vector splits the sphere into two half spheres. The direction of the ∁& − 𝐶'vector determines 

up and down half-sphere, and the number of ∁& atoms in each sphere reflect the residue’s solvent 

exposure. Another variant of HSE is that instead of using ∁& − 𝐶'vector, the pseudo ∁& −

𝐶'vector based on three consecutive ∁& atoms are adopted. In this study, we included structure 

features generated by both methods using the implementations in Bio.PDB package [47]. 

Residue depth 

 Another structural feature is residue depth that describes the average distance of the 

atoms of a residue from the solvent-accessible surface. The solvent-accessible surface was 

constructed by the program MSMS [48], and the distance value was calculated by Bio.PDB.  
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DSSP 

 DSSP [49] parses protein structure profiles and calculates geometrical features and 

solvent exposure. It yields a relative accessible solvent area, bond angle, torsion angle, and 

hydrogen bond energies. 

Spatial feature 

 We recently proposed a novel spatial structure feature and validated it in lysine 

malonylation dataset [39]. Briefly, N neighbor residues surrounded by the interested residue 

were retrieved. A triplet (𝑡, 𝑑, 𝜃) consisting of type, distance, and angle was used to define the 

center residue and each of N neighbors. Similar triplet was searched in all other samples if have, 

and non-supervised clustering analysis (K-means clustering employed) categorized these triplet 

groups into several clusters within the same amino acid types. Clusters were ranked in terms of 

cluster consistency, and the final feature dataset is comprised of triplets from the first M clusters. 

Besides, we extended the spatial feature from a single angle to three angles as follows. The 

single angle is a dihedral angle between 𝐶&( − 𝑅( and 𝐶&( − 𝑅). The single dihedral angle from 

two vectors cannot absolutely define the position in 3D space, and thus we added two more 

dihedral angles, between	𝐶&( − 𝑅( and 𝐶&( − 𝐶&) and between 𝐶&( − 𝑅( and 𝐶&( − 𝐶*+,-./012). 

With the distance and three angles, the spatial relationship between the center residue and 

another neighbor residue is unique. A program package implemented by Python is developed and 

available in GitHub (https://github.com/lyjspx/A-Novel-Protein-Structural-Feature). The 

package has a number of functionalities: Uniport ID and PDB ID mapping, Residue number and 

PDB number mapping in PDB entry, PSSM retrieval based on PDB ID, and spatial feature 

extraction. PSSM and spatial feature calculated prior will be stored in a Sqlite3 database for the 
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sake of efficient retrieval. Computing techniques, such as multiprocessing and vectorization were 

employed to accelerate computation progress.  
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Table 5. Summary of sequence-based and structures evaluated. 

Feature source Type Name Source 

Sequence Sequence 
information Residue Identity  

 Biochemical AAindex  

  Side chain property  

 Evolution-based PSSM  

 Predicted structure Secondary structure (8-state) SPIDER3‐Single 

  Secondary structure (8-state) in 
probability SPIDER3‐Single 

  Secondary structure (3-state) SPIDER3‐Single 

  Secondary structure (3-state) in 
probability SPIDER3‐Single 

  Accessible Surface Area SPIDER3‐Single 

  Half Sphere Exposure (𝛼 −up and -
down) SPIDER3‐Single 

  Contact Number SPIDER3‐Single 

  Backbone torsion angle 𝜙	𝑎𝑛𝑑	𝜓 SPIDER3‐Single 

  𝜃: angle between 𝐶𝛼89: − 𝐶𝛼8 −
𝐶𝛼8;: SPIDER3‐Single 

  𝜏: angle between 𝐶𝛼8 − 𝐶𝛼8;: SPIDER3‐Single 

  Intrinsic disorder SPOT-Disorder-
Single 

    

Structure 
Half-Sphere Exposure (up, down, and 
angle) based on the approximate 𝐶𝛼 −
𝐶𝛽 

BioPython 

  Half-Sphere Exposure (up, down, and 
angle) based on the real 𝐶𝛼 − 𝐶𝛽 BioPython 
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Table 5. Summary of sequence-based and structures evaluated (continued). 

Feature source Type Name Source 

  

Residue Depth 

(the average distance of the atoms of a 
residue from the solvent accessible 
surface) 

MSMS and 
BioPython 

  Secondary Structure DSSP and 
BioPython 

  Relative ASA DSSP and 
BioPython 

  Backbone torsion angle 𝜙	𝑎𝑛𝑑	𝜓 DSSP and 
BioPython 

  Hydrogen bonds energy (NH–>O_1 
and O–>NH_1) 

DSSP and 
BioPython 

  Spatial feature In house program 

 

  



 

46 

Model training 

Most of the lysine PTM predictors were proposed based on some well-established 

machine algorithms [28]. Four machine learning algorithms were employed to evaluate feature 

performance in this study: random forest, support vector machine (SVM), gradient boost 

classifier, and K-nearest neighbor. Random forest is a popular machine learning algorithm in 

classification and regression [50]. The algorithm essentially is an ensembled decision tree with 

resampling, and we trained the random forest models with 500 trees in this study. SVM classifies 

samples by searching for an optimal hyperplane and can accommodate high-dimensional data 

through the use of kernel functions [51]. We used an SVM with the Gaussian radial basis kernel 

in this study. Gradient Boost Classifier is a decision tree-based algorithm with iterative 

optimization [52]. Another classification algorithm used in this study is K-nearest neighbor, 

which categorizes samples into two classes by nearest neighbors’ voting. Given the limited size 

of PTM datasets we have, 5-fold cross-validation was used to evaluate the performance of 

models. All model training and evaluation were performed using the scikit-learn toolkit [53].  

Evaluation metrics 

Six evaluation measures were used to evaluate performance, including accuracy (ACC), 

sensitivity (SN), precision (PRE), the area under curves (AUC), F1 score (F1), and Matthew’s 

correlation coefficient (MCC).  

𝐴𝐶𝐶	 = 	
𝑇𝑃	 + 	𝑇𝑁

𝑇𝑃	 + 𝐹𝑃	 + 	𝑇𝑁	 + 𝐹𝑁
 

𝑆𝑁 =
𝑇𝑃	

𝑇𝑃	 + 𝐹𝑁
 

𝑃𝑅𝐸 =
𝑇𝑃	

𝑇𝑃	 + 𝐹𝑃	
 

𝐹1 = 2 ×
𝑇𝑃	

2𝑇𝑃	 + 𝐹𝑃	 + 	𝐹𝑁	
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𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑁 × 𝐹𝑃)

;(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)	
 

Results 

Constructed datasets 

Table 6 shows the four datasets we obtained from two sources, PTM-ssMP and Kmal-sp. 

Because most UniProt entries didn’t have corresponding PDB entries, the number of mapped 

PDB entries was about one tenth of that of the original UniProt entries. If a UniProt entry was 

mapped to multiple PDB entries, a single PDB entry was randomly retained for the sake of 

controlling redundancy. The resulting datasets consist of from 96 to 5733 samples. Because 

PTM-ssMP provided negative samples in this data portal, we adopted the same mapping strategy 

on the negative samples. Kmal-sp did not include negative samples, and negative sites of the 

malonylation dataset were randomly picked within non-positive lysine sites of PDB entries. 

Table 6. Summary information of constructed datasets 

Modification type PTM-ssMP (UniProt 
entries) 

PDB entries Source 

Acetylation 9067/9067* 1532/858 PTM-ssMP 
Methylation 544/544 56/40 PTM-ssMP 
Ubiquitination 23243/23243 3691/2042 PTM-ssMP 
Malonylation 9760/NA 1036/1036 Kmal-sp 

*The two numbers represent the numbers of positive and negative samples in the dataset. 
 
Sequence analysis 

The occurrence frequencies of sequences at each position were analyzed by Two Sample 

Logo [54], and flanking sites indicating differential patterns with t-test (P< 0.05) were 

visualized (Figure 1). Due to the small size of the methylation dataset, the sequence pattern is 

extremely sparse, and single amino acid type enriched and depleted in several sites. For example, 

valine (V) enriched at positions 3 and 8 and depleted at position 10. For the rest three datasets, 

differences (enrichment and depletion) at each position between positive and negative samples 
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were less than ten percent. Arginine (R) enriched in multiple positions of malonylation datasets, 

whereas more depletion can be observed in acetylation and ubiquitination datasets. In the 

ubiquitination dataset, ubiquitinated lysine and flanking lysine residues were mutually exclusive, 

as the depletion of lysine at positions 9 – 17.   
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A. 

B. 

 

C. 

 

D. 

 

Figure 1. Sequence motif conservation analysis of lysine acetylation (A), malonylation (B), 
methylation (C) and ubiquitination (D) datasets.  
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Performance evaluation of different features 

In our study, four state-of-the-art machine learning algorithms were employed to evaluate 

how different features contribute the prediction of PTM sites. The test results indicated random 

forest outperformed other algorithms in most cases. Therefore, we will only report the results 

obtained by random forest in Table 7, and the testing results of other methods were included in 

supplemental materials. For our proposed spatial feature, a large number of hyperparameter 

combinations were tested, and the top five combinations based on the MCC value achieved are 

shown in Table 7. Besides, the size of the methylation dataset is relatively small, which led to 

unstable prediction results because of potential sampling error in cross-validation. Thus, the 

feature performance comparisons are mainly focused on the other three datasets.  

The performance of the same feature varied across datasets. We did not observe a single 

encoding scheme that outperformed others across all datasets. Our spatial features achieved the 

best performance in terms of MCC value but not in other comprehensive evaluation measures 

(AUC and F1). The spatial features achieved the highest MCC values with different 

hyperparameter (N, M, and K) combinations in different datasets. Another example, AAindex 

showed good performance in malonylation and ubiquitination site predictions, but the predictive 

power decreased in acetylation prediction.  

In all datasets sequence-based feature encoding schemes performed better than all 

structure derived features except our spatial feature in terms of three comprehensive evaluation 

measures (AUC, F1, and MCC). PSSM, identity, side-chain property, and predicted structure 

features output by SPIDER3-Single each achieved best results in some of the datasets, and our 

spatial feature outperformed other features. Even though AAindex did achieve the best result in 

any of the datasets, it consistently achieved high-performance rank in all datasets.  
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Features derived from sequences have been widely proven to be effective in PTM 

prediction. Structure-based features can also be considered informative features. For instance, 

residue depth (RD) achieved 0.61, 0.57, and 0.15 for AUC, F1, and MCC, respectively. Two 

types of half-sphere exposure feature exhibited differences in all datasets, and a minor advantage 

was achieved by HSE-CA in malonylation and ubiquitination. 
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Table 7. The predictive performance of features by five-fold cross-validation on four datasets 
with random forest model. 

 Acc Pre Sen AUC F1 MCC 
Acetylation       
AAindex 0.647 0.650 0.980 0.574 0.783 0.050 
HSE-CA 0.554 0.631 0.729 0.481 0.680 -0.026 
HSE-CB 0.589 0.654 0.781 0.539 0.707 0.055 

DSSP 0.591 0.641 0.811 0.498 0.713 0.014 
Disorder 0.549 0.652 0.656 0.514 0.654 0.012 
PSSM 0.662 0.671 0.985 0.563 0.798 -0.019 

RD 0.564 0.638 0.743 0.494 0.689 -0.004 
Identity 0.651 0.654 0.978 0.586 0.785 0.084 

Side Chain Property 0.644 0.648 0.983 0.571 0.785 0.027 
Spider3 0.649 0.652 0.976 0.545 0.783 0.054 

Spatial_N6_M24_K2 0.630 0.662 0.885 0.542 0.754 0.098 
Spatial_N6_M18_K2 0.632 0.661 0.867 0.547 0.747 0.094 
Spatial_N12_M24_K3 0.635 0.651 0.925 0.537 0.767 0.090 
Spatial_N12_M18_K2 0.633 0.649 0.926 0.560 0.766 0.072 
Spatial_N6_M12_K2 0.615 0.656 0.837 0.526 0.732 0.070 

Malonylation       

AAindex 0.607 0.594 0.710 0.649 0.639 0.214 
HSE-CA 0.552 0.554 0.542 0.594 0.548 0.110 
HSE-CB 0.532 0.527 0.523 0.549 0.532 0.059 

DSSP 0.558 0.557 0.552 0.613 0.557 0.124 
Disorder 0.576 0.581 0.568 0.589 0.576 0.156 
PSSM 0.578 0.556 0.636 0.630 0.603 0.173 

RD 0.570 0.575 0.566 0.612 0.568 0.151 
Identity 0.587 0.581 0.660 0.633 0.618 0.193 

Side Chain Property 0.606 0.590 0.705 0.637 0.649 0.201 
Spider3 0.583 0.577 0.679 0.624 0.615 0.153 

Spatial_N18_M24_K3 0.605 0.622 0.651 0.657 0.639 0.217 
Spatial_N18_M18_K2 0.593 0.586 0.640 0.627 0.609 0.183 
Spatial_N24_M12_K2 0.593 0.584 0.639 0.629 0.612 0.181 
Spatial_N18_M24_K2 0.595 0.584 0.643 0.629 0.603 0.174 
Spatial_N18_M24_K4 0.596 0.594 0.639 0.632 0.616 0.174 
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Table 7. The predictive performance of features by five-fold cross-validation on four datasets 
with random forest model (continued). 

 Acc Pre Sen AUC F1 MCC 
Methylation       

AAindex 0.595 0.618 0.809 0.512 0.691 0.043 
HSE-CA 0.588 0.653 0.762 0.502 0.686 -0.034 
HSE-CB 0.667 0.697 0.790 0.636 0.747 0.280 

DSSP 0.601 0.682 0.859 0.286 0.765 -0.116 
Disorder 0.553 0.629 0.580 0.571 0.608 0.095 
PSSM 0.701 0.682 0.940 0.682 0.797 -0.039 

RD 0.542 0.638 0.669 0.500 0.623 -0.049 
Identity 0.615 0.625 0.879 0.515 0.744 0.085 

Side Chain Property 0.541 0.593 0.826 0.468 0.681 0.004 
Spider3 0.573 0.600 0.758 0.580 0.672 0.079 

Spatial_3Angle_N24_M24_K4 0.661 0.727 0.740 0.690 0.743 0.303 
Spatial_3Angle_N6_M12_K4 0.661 0.672 0.792 0.606 0.744 0.296 
Spatial_3Angle_N18_M24_K4 0.629 0.745 0.676 0.637 0.717 0.282 
Spatial_3Angle_N18_M6_K3 0.681 0.718 0.774 0.627 0.747 0.273 
Spatial_3Angle_N24_M6_K3 0.650 0.712 0.819 0.638 0.743 0.272 

Ubiquitination       

AAindex 0.653 0.657 0.979 0.594 0.788 0.106 
HSE-CA 0.579 0.665 0.736 0.514 0.697 0.024 
HSE-CB 0.615 0.661 0.859 0.511 0.746 -0.004 

DSSP 0.551 0.648 0.672 0.494 0.659 -0.007 
Disorder 0.577 0.632 0.792 0.512 0.707 0.002 
PSSM 0.657 0.662 0.963 0.568 0.785 0.048 

RD 0.589 0.661 0.778 0.501 0.713 0.002 
Identity 0.649 0.651 0.982 0.596 0.784 0.050 

Side Chain Property 0.653 0.653 0.990 0.585 0.787 0.073 
Spider3 0.652 0.653 0.990 0.591 0.788 0.072 

Spatial_N12_M24_K2 0.654 0.659 0.953 0.563 0.780 0.126 
Spatial_N6_M24_K2 0.636 0.661 0.894 0.568 0.760 0.096 
Spatial_N18_M24_K2 0.648 0.651 0.961 0.558 0.777 0.085 
Spatial_N18_M18_K2 0.647 0.653 0.959 0.555 0.776 0.085 
Spatial_N24_M24_K2 0.648 0.651 0.978 0.554 0.782 0.077 
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Spatial characteristics underneath samples 

Our proposed spatial feature achieved the highest MCC value in all four PTM datasets, 

indicating its superior predictive power. To further elucidate the mechanism of this method, we 

used the spatial features learned in the malonylation dataset as an example to visualize the 

discoveries. Figure 2 shows the top four spatial features, namely LEU-1, LEU-2, ALA-1, and 

ALA-2, that our method extracted when using parameters N18M24K2 (Figure 2). Residues with 

feature LEU-1 has an average distance at 7.29 ranging from 2.86 to 25.81, and the angles are 

averaged at 137.36 ranging from 106.80 to 171.89. For a given feature, positive and negative 

samples only show minor difference in the values of angle that feature takes. Average angles of 

positive and negative samples and in LEU-1 are 138.53 and 136.17, respectively, and similar 

patterns were observed in the angles of the features. The angles between two features with the 

same amino acid type are apparently different. For example, the angle of LEU-1 averaging at 

137.36 is much higher than that of LEU-2 (75.42). In addition to the angle difference between 

features, in our preliminary experiments, angle and distance were evaluated individually, and 

angle achieved higher performance than distance, which suggests the angle portion of the 

features contributed more predicting power than the distance. 

Since positive and negative examples had similar values in the features, then how did the 

feature provide strong predicting power for PTM sites prediction? We analyzed the presence to 

absence ratio of a feature in the positive and negative samples separately, and found that there 

are significant difference between them (Figure 3). Take LEU-2 as an example: the presence to 

absence ratio of this feature is 1.517 in the negative set and 1.827 in the positive set. The 

difference is significant in Pearson's Chi-squared test (P< 0.05). Thus, this feature is enriched in 

the positive set.  Figure 3 visualizes the presence to absence ratios of the top four features. Thus, 
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the predicting power of the proposed spatial features resides in their enrichment or depletion in 

the PTM sites. 

 

Figure 2. Angle and distance distribution of top four clusters of the proposed spatial feature 
(N18M24K2) in lysine malonylation dataset. 
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Figure 3. Presence and absence of neighbors in top four clusters of the proposed spatial feature 
(N18M24K2) in lysine malonylation dataset. * means statistical significance in Pearson’s Chi-
Square test of independence (𝑃<0.05). 
 

Discussion 

 Identifying PTM sites is crucial in understanding the cellular regulation mechanism. By 

2019, 49 lysine PTM site computational prediction tools have been proposed [28]. These tools all 

exploited sequences containing PTM sites extracted features with/without feature selection and 

fed features into one or more machine learning algorithms. These tools mostly collected samples 

from one or more databases and employed state-of-the-art machine learning algorithms. Thus, 

among these procedures, designing new feature encoding schemes is critical to boosting 

predictor performance.  
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 Zheng et al. [33] attempted to combine structural features and sequential features to 

predict lysine and arginine methylation sites, but their final model did not include structural 

features due to a lack of protein structures with annotated PTM sites. Currently, PTM-SD does 

provide the service of collecting structurally resolved and annotated PTM sites [55], but the size 

of their dataset is still too small to train predicting models. For example, as of 2021 only 100 

lysine acetylation modification sites were collected, and, additionally, there is a high level of 

redundancy in the data set. We used SFITS to map protein sequences in UniProt to protein 

structures in PDB, which provided the best solution to obtain protein structures with PTM 

annotations. Since the majority of proteins in UniProt don’t have corresponding structures in 

PDB, patterns observed in datasets derived from UniProt may be different than those observed in 

datasets derived from PDB. For instance, the malonylation dataset originally collected in kmal-sp 

showed lysine (K) and arginine (R) co-localized with modified lysine sites and Serine (S) and 

Glutamic (E) mutually exclusive to modified sites [56]. In our resulting malonylation dataset, the 

pattern is weak or diminished. Another dataset-related issue is the choice of negative samples. 

Using non-validated sites as the negative samples was critiqued, and refined negative samples 

increased ubiquitination accuracy by 0.15 in a previous study [26]. In structural feature 

prediction, how to select negative samples in UniProt or PDB entries is still an open question.  

 We have demonstrated that all real structure based-features were informative even though 

some of them were not competitive to sequence-based features (Table 7). However, the predicted 

structure, SPIDER3-Single, achieved good performance. This good performance probably results 

from the fact that the current structure prediction was implemented based on multiple sequence 

alignment or other derivatives [42], and thus evolutionary information was implicitly embedded 

in the features. Our proposed spatial feature achieved competitive performance compared to 
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other sequence-based features. The spatial feature essentially extracts clusters of neighbors 

sharing similar distance and angle to the center residue and aligns these clusters in order. We 

showed a significant difference in presence and absence within one cluster, but it should be 

pointed out that modification sites interact with many other neighbors simultaneously, an 

interaction that may not be captured in single cluster plots (Figure 3). In addition to a single 

angle, we also attempted to combine three angles into features to precisely depict neighbors’ 

spatial position. The performance with three angles is not as good as a single angle, and the 

reason probably results from a high correlation (>0.95) between angles which may be reductant 

for models. So far, the application of structure-based features is limited due to sample size, 

artificial intelligence structure prediction (e.g., AlphaFold) will boost the size of the protein 

structure pool, and the usage of these features will be much expanded. 
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