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ABSTRACT 

Accurate measurements of soil moisture in a timely manner are necessary in making 

critical management decisions, but it is often very difficult to obtain. Even though soil moisture 

can be measured on the ground using various methods, or estimated via satellite imagery, soil 

moisture conditions at a field scale can be more beneficial. Since Unmanned Aircraft System 

(UAS) technology has become an effective tool in many different ways for producers and 

researchers, the spatial and temporal gaps between the ground and the satellite approaches can be 

fulfilled with the use of UAS. In this study, multi-spectral images were collected over an 

agricultural field in the Red River Valley from an UAS platform. Using this data, the soil 

moisture content was calculated, and a soil moisture map was developed. The remotely sensed 

soil moisture was then compared to the in-situ field moisture measurements to gage the soil 

moisture mapping accuracy. 
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1. INTRODUCTION 

1.1. Background 

In the Red River Valley (RRV), rainfall and snowmelt are the main water source for 

agriculture. Knowing the soil moisture in the field and obtaining it in a timely manner can be 

beneficial to the growers in the RRV. It helps growers make timely decisions on planting, crop 

variety selection, fertilizing, chemical applications, tillage operations, and harvesting. Good 

decisions on the management practices have the potential to maximize crop yields and minimize 

operation costs. Higher soil moisture in the field can lead to different costly complications, such 

as equipment becoming stuck in wet spots, which can halt production, higher fuel usage, large 

soil disturbances, lower machine efficiency, and equipment break downs. Planting, emergence, 

and early growth for a crop are highly dependent on the soil moisture conditions. Drought or 

waterlogging can both cause crop yield decreases.  

During the springtime, after snowmelt, when the soil moisture conditions are in favor of 

crop germination, there is a narrow time window that producers have to plant their crops. 

However, most times in the RRV, many farm fields have numerous wet areas, or the entire field 

may be too wet for field operations. In these wet areas, it may be beneficial to use an alternative 

variety that is more tolerant to waterlogging conditions to minimize impacts on crop yield.  

Monitoring the soil moisture status right after planting can also be beneficial for different 

reasons. The performance of the farm equipment is affected by the soil moisture because wet 

soils can lower machine performance in the field and raise fuel costs. Water management 

strategies, irrigation, or drainage are also dependent on the soil moisture content of the field to 

achieve a higher crop yield potential.  
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In the fall, producers need to know the soil moisture conditions in the field in order to 

determine the time and equipment types for harvesting. Wet falls can lead to delayed harvest, 

while dry falls can result in early harvest to avoid yield losses. There may be specific areas in a 

field that should be avoided due to excessive soil moisture and soil type. In some cases, 

producers also may need to purchase specialized equipment for higher soil moisture field 

conditions. Without knowing the soil moisture conditions at a field scale, one cannot determine 

when and how to perform field operations. 

“Precision agriculture is economically and ecologically promising and it will one day be 

standard practice” (Santhosh, 2003). In today’s farming, Unmanned Aerial Vehicles (UAVs) are 

increasingly used to provide various timely measurements at field scales, such as fertilization 

recommendation, crop yield estimates, plant status monitoring, crop disease monitoring, insects 

diagnosis, contour mapping, water management, etc. Farming smarter with UAVs may become 

the key to increase yields and limit costs. Using UAV images to estimate the soil moisture can be 

one of the benefits to help farmers make a timely decision in farming practices.  

1.2. Objectives 

The main objectives of this study were: 

(1) To determine data processing protocols and to develop soil moisture maps at a field 

scale using UAS collected imagery;  

(2) To compare the remotely sensed soil moisture data with in-situ measured soil 

moisture data; and  

(3) To create a soil moisture map protocol that others can follow and develop soil 

moisture maps for fields based on the imagery and backed up via in-situ data. 
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The objectives were completed by first collecting field data, which included in-situ soil 

moisture measurements and UAS flights, second processing the collected data into a useful form, 

and finally producing a soil moisture map of the flighting area. 
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2. LITERATURE REVIEW 

2.1. Soil Moisture 

“Soil moisture is an environmental descriptor that integrates much of the land surface 

hydrology and is the interface between the solid earth surface and the atmosphere” (Engman, 

2000). The definition of soil moisture content or the surface soil moisture, is the amount of 

volumetric water content in a thin soil layer close to the surface (Leng, 2018). Soil moisture 

control is essential for the high value crops in the RRV. Soil moisture determination benefits 

more than just agriculture, it also serves as an important factor in flood predictions, especially in 

the RRV where flooding is a common occurrence. Soil moisture in the fall can play an important 

role and influence the severity of flooding in the following spring. Since a drier soil can store 

more snowmelt water than a wetter one, the drier soil can absorb more water, reducing runoff 

and flooding (Lakshmi, 2017). 

2.2. Factors Affecting Soil Moisture 

2.2.1. Mechanical Composition 

A soil’s texture as defined by (Hillel, 1998) is the classification of soil based on the 

particle size or the division of soil into sand, silt, and clay according to particle size. Mechanical 

composition or the soil texture is the amount of each of these classes in a soil. According to the 

percentage of sand, silt and clay in a soil, soils are classified into different soil types. Finer soil 

texture like the clayey soils in the RRV retain more water than sandy soils due to more surface 

area for water. In general, the smaller the particle size, the higher the water holding capacity. 

2.2.2. Crop Residue 

Residue is the material left by a crop after harvest. Depending on where the crop residue 

is located, it can affect the water movement into the soil, and the soil moisture and temperature 
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of the soil under it. Residue that is open to the surface aids in water movement while buried 

residue restricts water movement. A high amount of crop residue on the surface can possibly trap 

moisture or insulate the ground to an extent potentially decreasing evapotranspiration. 

2.2.3. Topography 

Topography according to the dictionary is the “configuration of a surface including its 

relief and the position of its natural and man-made features” (Merriam-Webster, 2019). Highly 

varying topography with high slope areas tend to promote runoff due to the tendency of water to 

travel in the direction of least resistance. Flat areas have less potential, allowing water to pond 

and slowly infiltrate or evaporate depending on soil conditions and composition. Topography can 

also affect the energy input from the sun to the soil. This can increase or decrease the rate of 

evapotranspiration from the soil and crop.  

2.3. Soil Moisture Measurement Methods 

Soil moisture content is described as a ratio of the mass of water to the mass of dry soil or 

volume of water to the total volume of the soil. The volume-based soil moisture content can be 

estimated from the mass-based water content and the soil bulk density.  

There are several common methods used for soil moisture measurements. The direct and 

standard method is the gravimetric method. Most methods are indirect, and do not measure soil 

moisture directly. Indirect methods measure a property of the soil using a soil moisture sensor 

that can be related to the soil moisture rather than the soil moisture itself (Evans, 1996). Some 

common indirect methods are tensiometers, electrical resistance, and neutron scattering. 

Common conventional measurements are costly and only provide the information at collection 

points (Pietroniro, 2005). These details are discussed below. 
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2.3.1. Feel 

This is a common method used by experienced growers and scientists. Soil is worked 

with the fingers to form a ribbon and from the structure one guesses the relative moisture. It is an 

easy method to implement but it is generally unreliable (Evans, 1996). 

2.3.2. Gravimetric 

Gravimetric, which can also be called thermos-gravimetric technique, is commonly used 

and has been employed by many as the standard reference for determining soil moisture content 

(Lekshmi, 2014). This is a direct method that is conducted in a laboratory. The first step is to 

collect undisturbed soil cores from the field. The next is taking the samples to the laboratory, 

weigh the samples, and dry them for at least 24 hours at 105 °C depending on sample sizes. After 

drying, the soil is weighed again. Compared to the original wet soil sample, the soil moisture 

content can be calculated from the moisture difference and the total volume of the soil core. The 

following equation shows how the soil water content is calculated: 

 𝜃௠ =
ெೢ

ெೞ
 (1) 

where: 

𝜃௠ = Mass water content (g/g) 

𝑀௪ = Mass of water evaporated in oven (g) 

𝑀௦ = Mass of dry soil (g) 

Most methods for soil moisture estimates are for volume-based moisture content, which 

is:  

 𝜃௩ =
௏ೢ

௏೟೚೟ೌ೗
 (2) 

where: 

𝜃௩ = Volumetric water content (cm3/cm3) 
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𝑉௪ = Volume of water (cm3) 

𝑉௧௢௧௔௟ = Volume total (cm3) 

The relationship between the two soil moistures is estimated from:  

 𝜃௩ =  
௏ೢ ఘ೏

ఘೢ
 (3) 

where: 

𝜌ௗ = bulk density of soil (g/cm3) 

𝜌௪ = density of water (g/cm3) 

2.3.3. Electrical Resistance 

This method usually uses two electrical probes and a block commonly made of gypsum, 

but other materials can include nylon or fiberglass. The soil moisture is calculated based on the 

resistance of the electrode in the block that is in equilibrium with the surrounding soil. This can 

be a limited method depending on soil type and moisture range (Hillel, 1998), as well as soil 

salinity. 

2.3.4. Tensiometer 

Tensiometers have porous ceramic tips connected to vacuum tight tubes and gages that 

measures the amount of suction or soil matric potential. The porous tip is first completely soaked 

in water and then buried in the soil. The tip and the soil reach an equilibrium, where the soil 

draws moisture out of the tip, causing a drop in hydrostatic pressure. This measures the matric 

potential of the soil and gives the user an idea of the soil moisture based on soil water retention 

curve. The main disadvantage of using a tensiometer is the measurement range. They tend to 

only work from zero to 1 atm (1 bar), which works well for moist soils, but does not work for the 

dryer soils (Hillel, 1998). 
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2.3.5. Neutron Scattering 

Neutron probes use radiation to detect soil moisture. The measuring of fast neutrons 

released vs slow neutrons that return is how the method works (Hillel, 1998). These probes tend 

to be versatile and quick, but due to the radioactive component, they have heavy restrictions on 

handling, shipping, and transporting (Lekshmi, 2014). They are also limited to point 

measurements. 

2.3.6. Time Domain Reflectometer 

This method has become widely used and adapted as a mode of measuring soil moisture 

at a quick rate. Solid rods or probes are stuck in the ground with cables connecting to a device 

that sends and receives pulses. The soil moisture is determined from sending a pulse through the 

probes and measuring the time it travels to the end of the probe and back to the sensor (Hillel, 

1998). 

2.4. Satellite Mapping 

Remote sensing from satellite is widely researched for a multitude of systems. SMAP 

(soil moisture active and passive) is being studied in great lengths around the world. NASA 

developed SMAP, which makes direct observations of soil moisture and the freezing or thawing 

of the land from space (Entekhabi, et al., 2010). These satellite images and continued research 

are quite beneficial to the globe. Using satellite, land most places in the world can be observed 

and analyzed with large swaths. This is extremely beneficial for looking at regions as a whole. 

The technology is rapidly growing with more complex algorithms and synergy combinations of 

sensors. Table 1 summarized from Peitroniro et al. (2005) shows some of the advantages and 

disadvantages of different remote sensors used by satellites that have been used to estimate soil 

moisture. 
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Table 1. Summary of remote sensing methods for soil moisture. 

Wavelength Property Advantages Disadvantages Sources of 
Error 

Reflected visible 
and infrared  
(0.3 to 3.0 µm) 

Reflectance High resolution Cloud cover limits 
No direct relationship 
between reflectance and 
soil moisture 

Vegetative 
cover 
Surface 
roughness 
Atmosphere 

Thermal infrared 
(10 to 12 µm) 

Temperature High resolution 
Large swath 
Soil texture 
insignificant 

Bare soil only 
Cloud cover limits 

Vegetation 
Topography 
Atmosphere 

Active 
microwave 
(1-100 cm) 

Backscatter 
coefficient 

All-weather 
High resolution 
Vegetation 
penetration 

Noisy data stream 
Complex interaction with 
surface 

Roughness 
Vegetation 
Topography 

Passive 
microwave 
(1-100 cm) 

Microwave emission 
(brightness 
temperature) 

Nearly all-weather 
Large area coverage 
Vegetation 
penetration 

Poor spatial resolution Surface 
roughness 
Soil 
temperature 
Vegetative 
cover 
Atmosphere 

Data from (Pietroniro, Toyra, Leconte, & Kite, 2005) 

Landsat was first launched in 1972 and was the first satellite system to focus on the land 

surface as its main function. A study done by Rijal et al. (2012) used Landsat data to measure 

soil moisture at 15 cm depths in the RRV. This study did have limitations, the range of soil 

moisture measurement was between 0.20 and 0.40 cm3/cm3, though these are typical soil 

moisture values under average conditions. 

One of the biggest issues with satellite data is the time that it takes to collect ground data 

to calibrate the remote sensing images to refine the algorithms. In relative aspect, the in-situ 

measurements provided point measurements, which were small data points compared to the area 

of the satellite’s coverage. A satellite’s resolution consists of square kilometer sized pixels 

because of the vast amount of land covered. This resolution would not be adequate at the field 

level because of the differences that can be present from one field to another in the same section 

or even from one end of the field to another. Using manned airplanes can help fill the gap 
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between the satellite remote sensing and the field measurements, but this tends to be expensive 

due to the costs associated with operating manned aircraft. This is where the UAS and its rapidly 

expanding market are proving to help and reduce costs of manned aircraft. 

2.5. UAS 

UAV is defined as an unmanned aerial vehicle meaning it can be any sort of vehicle that 

is controlled remotely in the air. UAVs are also referred to as drones or UAS (unmanned aircraft 

system). When describing more than just the UAV itself and including the payload and remote 

control system, the term UAS is used. There are two main types of UAS, fixed wing and multi-

rotor. Both of these have their advantages and disadvantages. Multi-rotor UAS have the 

advantages of maneuverability, hovering, and ease of use, but they lack in endurance. Fixed wing 

UAS have the ability to cover large areas of land and have a longer flight time, but they are 

harder to control manually or are unable to be controlled manually and lack the ability to 

maneuver in congested areas. 

As UAS and sensors become more readily available, so do their uses. A statistical study 

done by Hassen-Esfahani et al. (2017) showed the advantages to using UAS to fill the spatial 

temporal scale gap. The spatial gap is one of the biggest downsides with satellite data when it 

comes to defending data and looking for more “field level” results. In a resolution aspect, the 

point system common with in situ measurements that are used, make for small data points 

compared to the large spatial resolution of satellites that may be unable to differ fields in the 

same section. Using small UAS to help back up and confirm data being recorded by satellites or 

larger aircraft is extremely beneficial to the better development of technology and imagery. 

Satellites, although fairly reliable, can struggle to collect usable data with bad or cloudy weather. 

Due to specific timing of the data collection because of a satellite’s path, a data set can be missed 
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in a desired timeframe. Conversely UAS are ready whenever the user is ready to collect data at 

optimal times. 

2.6. Sensors for Remote Measurements 

2.6.1. Microwave Sensors 

Microwave sensors are widely used sensors for remote sensing of soil moisture (Ma, 

2019). Most commonly, the microwave sensors can be used on satellites, but also can be 

mounted to manned aircraft, though these sensors are large and expensive to use. Recently, some 

microwave sensors have been adapted to a UAS platform, but they are still uncommon. 

2.6.2. Multispectral Sensors 

Multispectral sensors measure an array of different wave lengths in the electromagnetic 

spectrum, which can be used to detect different variations of the Earth’s surface. Commonly a 

combination of the red, green, blue, near infrared, and infrared frequencies are used by 

multispectral sensors.  

Anything that has a temperature above 0 K emits electromagnetic radiation (Kuenzer, 

2013). In the electromagnetic spectrum, the majority of thermal radiation is located in the 

infrared portion that is invisible to the naked eye. Thermal radiation is located in the visible 

range when temperatures are high enough, such as when metal becomes “red hot” in color when 

heated. Thermal infrared sensors have been used on satellite platforms for decades. Sensors 

continue to become more advanced and when used in synergy relationships with other sensor 

with different wavelengths such as microwaves, the output data becomes even more useful. 

Kuenzer et al. (2013) describes how there is not an obvious relationship between thermal 

infrared and soil moisture, but evapotranspiration, specific heat capacity, and emissivity is 
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related to the water content of the soil. Studies use this information to form an indirect 

relationship to determine soil moisture. 

One of the popular methods of determining soil moisture using multispectral sensors is 

the temperature-vegetation dryness index (TVDI) shown in the following equation from 

Sandholt et al. (2001). The basis of this method starts with the normalized difference vegetation 

index (NDVI) and surface temperature (Ts) that is taken from remote sensing measurements and 

plotted to form Figure 1. Figure 2 shows more details of the TVDI triangle. 

 𝑇𝑉𝐷𝐼 =
ೞ்ି ೞ்೘೔೙

௔ା௕∗ே஽௏ூି ೞ೘೔೙

 (4) 

where: 

NDVI = normalized difference vegetation index 

Ts = remotely sensed soil temperature °C 

Tsmin = minimum surface temperature in the triangle °C 

a and b = parameters defining the dry edge modelled as a linear fit to Tsmax = a + b*NDVI 

and Tsmax = maximum surface temperature observed °C 
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Figure 1. Ts/NDVI Triangle (Lambin, 1996) showing how the triangle method is used. 

 

 

Figure 2. Picture illustration of TVDI (Sandholt, 2001). 
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Figure 2 is a modified version of Figure 1 that expresses how different values of TVDI 

fall into the NDVI vs Ts triangle relationship. From this point, Sandholt et al. (2001) used a 

scatter plot of simulated root zone soil moisture vs TVDI to form a linear relationship between 

the TVDI and the soil moisture. This showed that lower TVDI values related to higher soil 

moisture values. 

Once TVDI values are assigned from the NDVI and Ts map data, the linear relationship 

from surface soil moisture content is used to map the soil moisture, while volumetric water 

content requires in-situ soil core measurements (Wigmore et al., 2019). 

Another method by Chang and Hsu (2018) used a linear equation derived from the near-

infrared and red wavelengths. The equation they calculated is as follows: 

 𝑆𝑀 =  

ഊೝ೐೏
ഊಿ಺ೃశబ.బభఱ

ି଴.଴଼

ටଵା
భ

బ.బభఱమ

 (5) 

where: 

SM = Soil moisture (0 to 1) 

λ = Wavelength in nm  

The data was entered into ArcGIS raster calculator to obtain the surface soil moisture at 

determined points on the map that were compared to manual measurements. Chang and Hsu 

(2018) found that their linear equation was more accurate to the in-situ measurements than by the 

TVDI method. 

Another study used a combination of red and near infrared wavelengths in a scatter plot 

collected using a multispectral sensor (Amani et al, 2017). Using the multispectral data collected, 

a soil line is formed on the bottom edge of the scatter plot using the equation:  

 𝜌ேூோ = 𝛾𝜌௥௘ௗ + 𝑏 (6) 

where: 
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𝜌ேூோ = NIR reflectance values (µm) 

𝜌௥௘ௗ = red reflectance values (µm) 

𝛾  = slope 

𝑏 = intercept 

 

Figure 3. NIR vs red soil line (Amani et al., 2017). 

Figure 3 made from Amani et al. (2017) shows how pixels fall in the Red vs NIR space 

with the wettest and barest pixels near the origin, the coverage changing in the Y direction, and 

the soil moisture changing in the X direction. Using this equation, Amani et al. (2017) estimated 

the soil moisture (SM) of the points from Landsat 8 data. The following equation represents the 

SM values in the figure: 
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 𝑆𝑀 =
ఘಿ಺ೃା

ഐೝ೐೏
ಾ

ି௕

ටଵା
భ

ಾమ

 (7) 

where: 

𝜌ேூோ = NIR reflectance values (µm) 

𝜌௥௘ௗ = red reflectance values (µm) 

M = slope of soil line 

b = intercept of perpendicular line indicating wet and bare point of soil line 

2.6.3. Thermal Remote Sensing 

Thermal remote sensing sensors on UAS have gained popularity with more affordable 

options. A study done by Quebajo et al. (2018) used thermal imagery from a UAS mounted 

sensor to monitor sugar beet water stress. They used soil moisture sensors throughout the study 

but did not find a true relationship with the soil moisture. A relationship between the sugar 

content and the water stress was observed by the thermal imaging. A paper by Chang and Hsu 

(2018) used UAS with thermal sensors to detect soil moisture in the field and found a strong 

relationship, though more research is needed for better results. 
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3. METHODOLOGY 

3.1. Study Site 

The study site for this experiment was located in the RRV region just north of Moorhead, 

MN. The data collection took place in a 32 ha (80 ac) tile drained soybean and corn rotation 

field. The field was instrumented with a weather station, soil moisture sensors, observation wells, 

and an eddy covariance weather station (Kolars et al., 2019; Niaghi et al., 2019). Early in the 

data collection, the field was covered in high corn residue from the previous year due in part to a 

minimal tillage practice put in place. In the last data collection, soybeans are visible and have an 

established canopy. Figure 4 shows the location of the study site. 

 

Figure 4. Field location. 

The field contains a tile drainage system that runs from east to west and has a spacing of 

12.2 m. A system of gates is used to maintain the water level in the field. This tile drainage 

system is doubled as a subirrigation system as well for dry weather, taking water from the nearby 
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stream and pumping it in the tile system from the high side in the east side of the field (Kolars et 

al., 2019). 

The data collection area itself consisted of 17 ha rectangle in the center of the field. This 

area was used to minimize the field edge effect and centralize the field’s weather station in the 

middle of the data collection area. 

The soil type of the field is consistent of the RRV, clay and silt make up the majority of 

the soil for the field. The dominate soil in the field is a Colvin silty clay loam with Overly silty 

clay loam and Bearden silt loam roughly splitting the remaining area. Due to the high clay and 

silt content, the water drainage rate is slow, as is typical in the RRV. The map in Figure 5 shows 

the entire field and soil types in it according to Web Soil Survey.  

 

Figure 5. I376A is a Colvin silty clay loam, I383A is an Overly silty clay loam, and I467A is 
a Bearden silt loam. Data taken from Web Soil Survey (USDA, 2018). 



 

19 

3.2. Equipment 

3.2.1. UAS 

For this experiment, a DJI Matrice 600 UAS was used to carry the sensor payload. This 

UAS is relatively common among the research and commercial sectors. It supports a number of 

sensors from DJI that can be used out of the box to collect remote sensing data. This particular 

DJI Matrice was adapted to carry two sensors at the same time. This modification was done at 

North Dakota State University in the Agricultural Engineering Department using the original 

sensor mount for the original DJI sensor and gimbal, and a custom 3D printed gimbal to 

accommodate and stabilize the second sensor. This setup of the UAS with sensors can be seen in 

Figure 6. 

 

Figure 6. DJI Matric 600. 

3.2.2. Sensors 

There were two sensors used in this experiment: a Micasense Altum multispectral camera 

(Figure 7) and a DJI FLIR Zenmuse XT2 thermal camera (Figure 8). The Altum collects data in 

six different bands: Blue – 475 nm center with 32 nm bandwidth, Green – 560 nm center with 27 

nm bandwidth, Red – 668 nm center with 16 nm bandwidth, Red Edge – 717 nm center with 12 
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nm bandwidth, Near Infrared – 842 nm center with 57 nm bandwidth, and Long Wave Infrared – 

8-14 µm. The Zenmuse XT2 camera collects data in the range of 7.5-13.5 µm, which makes it 

within the Long Wave Infrared range from the Altum. The difference in these sensors comes to 

the resolution of the sensors, the Zenmuse provides a higher resolution with more pixels in a 

given area than the Altum.  

 

Figure 7. Micasense Altum sensor and gimbal. 

 

Figure 8. FLIR Zenmuse XT2 sensor. 
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3.2.3. TDR Sensor 

To collect in situ soil moisture data for the experiment, a handheld Field Scout time 

domain reflectometer (TDR) sensor (Figure 9) was used. Two different size probes were used for 

the measurements at 7.6 cm (3 in) and 20 cm (8 in) depth. Due to a high clay content of the soil, 

the sensor was calibrated according to the manufacture specifications in the lab for better 

alignment prior to each field measurements. 

 

Figure 9. TDR sensor. 

3.3. Data Measurements 

The data for the experiment was collected in two different stages, one remotely with the 

UAS and one by hand in a grid pattern around the weather station in the center of the field. The 

UAS collected its images first and then right after, in situ measurements were taken. These 

measurements were collected five times total in the summer of 2019 with four successful 

collection events. 
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3.3.1. UAS Collected Data 

The DJI Matrice UAS collected data via the two equipped sensors, Micasense Altum and 

FLIR Zenmuse XT2. Before flying, the Micasense Altum was used to collect a calibrated image 

using the included white calibration panel. The picture was taken over the white calibration panel 

to adjust for the reflectance from the sun. This calibration image is used later in the processing 

program to calibrate the collected images. Figure 10 shows the collection of the calibration 

image for the Altum sensor. 

 

Figure 10. Micasense Altum multispectral sensor calibration image collection. 

Before the first flight, control points were placed throughout the collection area to aid in 

the data processing and stitching of the pictures. These were a collection of green and white 

buckets and black and whites rubber mats at fixed points. A mat can be seen in Figure 11. All 

flights used the same collection path and ground control points. There was a total of eight 

buckets in the field and two checkered rubber mats that remained in the collection sight 
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throughout the season. These ground control points were also marked by a RTK GPS with sub 

inch accuracy to ensure they were placed consistently in case they were ever disturbed. 

 

Figure 11. Image of control point mat from imagery used as a ground control point. 

Using the installed DJI software, the area of interest was mapped out on a tablet and the 

program determined the optimal travel path to collect the data by incorporating a uniform flight 

height and percent overlap. The area of interest for this project was determined by battery life 

while still encompassing the in-situ grid around the weather station. 

After a flight was conducted, the large raw data set was stored on a memory card for 

processing at a later time. To process the data and stitch the data into one set, the software 

program Pix4 mapper was used. This step took a significant amount of time and computing 

power. The ending result produced a useful data set that could be used in other programs. 

To refine the data into a usable soil moisture index map, ArcGIS Pro was used to take the 

data and form the initial red and NIR images. A grid tool was used to average pixel data into a 

uniform 3 x 3 meter grid. From the grid, tables were formed for both the Red and NIR data. R 

Statistics then was used to determine the soil line based on a linear regression from the data 

tables produced in ArcGIS Pro. Parameters from the R Statistics data were used in equation (7) 

to determine the SM average of each 3 x 3 meter grid square in the ArcGIS Pro map and form a 
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SM map of the field. Figure 12 shows the data processing procedures and Figure 13 shows the 

UAS flight path for the data collection.  

 

Figure 12. UAS data processing flow chart. 

 

Figure 13. UAS flight pattern. The arrows show an example of UAS path. 

3.3.2. TDR Collected Data 

In order to have in situ field measurements that would be repeatable, a grid around the 

weather station was marked with flags before the first flight to maintain sampling consistency. 

The grid was based on the location of the drain tiles in the field, marked with paired 

measurements, over the drain tile vs. in the middle between two drain tiles. It was predicted that 
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the soil moisture would be different at the two locations depending on the water drainage 

management modes. This resulted in 13 paired measurement points around the weather station, 

giving a total of 26 measurement points. There were an additional two points by an observation 

well in the western part of the flight area and two more points by an observation well in the 

eastern part of the collection area. These areas were also divided by over the tile and in the 

middle between the tiles. Figure 14 shows the 30 measurement points in the field in red dots and 

highlighted in yellow squares. The remaining GPS points highlighted in blue squares are control 

points for the UAS where the buckets and the mats were located to aid in data processing. 

 

Figure 14. TDR soil moisture measurement points highlighted in yellow around weather 
station, control points highlighted in blue in the data collection area, and the black area 

outlining the study boundary. 

Once the flight completed, all 30 points were measured for soil moisture with the TDR 

sensor using the 7.6 cm and 20 cm probes. The data was recorded and entered into a spread sheet 

for later comparison with the UAS data. 

To calibrate the collected data by the TDR, soil samples from the field was packed into 

soil columns in the laboratory. These columns were packed to a bulk density of 1.25 g/cm3 and 
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soil and water were mixed to preset the soil at soil moisture contents of 0%, 15%, 25%, 35%, 

45%, and 53%. This data was used to create a calibration curve and form an equation to calibrate 

the field measurements by the TDR device. The TDR data collection method is shown in Figure 

15.  

 

Figure 15. TDR data collecting flow chart. 
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4. RESULTS AND DISCUSSION 

4.1. Data Sets 

Four flights on May 7, May 14, May 23, and July 23, 2019 were post processed to 

develop soil moisture maps. Of the four flights, the three flights in May were collected over bare 

soil conditions. After the May 7th flight, the field was tilled in preparation for planting. The last 

flight took place on July 23, 2019 when the soybeans had grown significantly, providing crop 

cover throughout the collection site. 

4.1.1. First Data Set Result 

The May 7th data set was captured shortly after snow melt, leaving a significant amount 

of moisture. The vegetation condition was bare soil with corn crop residue. Soil temperatures 

were around 40 °F and the air temperature ranged from a low of 24 °F and high of 59 °F. 

Due to the snow melt and some moisture events on the 1st, 2nd, and 3rd of May, this data 

set was found to have the second highest average red reflectance values and third highest average 

NIR reflectance values of the four data sets (Figures 16, 17, and 18). The average values were 

NIR = 0.264 and Red = 0.239. The high red reflectance values and lower NIR values placed it 

appropriately on the NIR vs Red triangle space. As seen on the NIR vs Red space in Figure 19, 

the data set had the highest average remotely sensed soil moisture content on the surface as 

shown in the SM content map. The remotely sensed average soil moisture content for this data 

set was 0.410, which is close to the soil field capacity value. 
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Figure 16. May 7, 2019 RGB image. 

 

Figure 17. May 7, 2019 Red map. 

 

Figure 18. May 7, 2019 NIR map. 
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Figure 19. May 7, 2019 soil line graph. 

4.1.2. Second Data Set Result 

Between May 7th and May 14th there was little rainfall and there was also a tillage event 

recorded. The soil was bare and warmer than the previous flight as seen from the images 

(Figures 20, 21, and 22). Due to these circumstances, the NIR vs Red reflectance values followed 

the soil line tightly (Figure 23). The average NIR and Red reflectance values were low at: NIR = 

0.161 and Red = 0.148. The remote soil moisture for this data set was also the driest at 0.155.  

 

Figure 20. May 14, 2019 RGB image. 
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Figure 21. May 14, 2019 Red map. 

 

Figure 22. May 14, 2019 NIR map. 
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Figure 23. May 14, 2019 soil line graph. 

4.1.3. Third Data Set Result 

The May 23rd flight yielded the second highest remotely sensed soil moisture due to two 

significant rain events in the days prior (Figures 24, 25, and 26). On May 18th there was 0.68” of 

rainfall and on the 22nd of May, the day before the flight, there was 0.86” of rain. The NIR vs 

Red graph showed a similar pattern as May 7th (Figure 27). The average reflectance values were 

as follows: NIR = 0.284 and Red = 0.274. The average remotely sensed soil moisture was 0.397. 

This value was also similar to the May 7th flight.  
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Figure 24. May 23, 2019 RGB image. 

 

Figure 25. May 23, 2019 Red map. 

 

Figure 26. May 23, 2019 NIR map. 
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Figure 27. May 23, 2019 soil line graph. 

4.1.4. Fourth Data Set Result 

The last flight was carried out after the soybean crop had been well established. There 

were some rain events leading up to this date, but due to higher temperatures, growing crops, and 

an operational tile system, the remotely sensed soil moisture was low at 0.188.  The images are 

shown in Figures 28, 29, and 30. The NIR vs Red graph showed the presence of vegetation with 

a high NIR value and dryer conditions with the lower Red value (Figure 31). The average NIR 

reflectance value was 0.283 and Red reflectance value was 0.176. 
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Figure 28. July 23, 2019 RGB image. 

 

Figure 29. July 23, 2019 Red map. 
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Figure 30. July 23, 2019 NIR map. 

 

Figure 31. July 23, 2019 soil line graph. 

4.2. Soil Moisture Maps 

The soil moisture index maps all used the same grid to map out and average the soil 

moisture index in each cell point from the raster data and equation (7) along with the slope of the 
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soil line from each flight. The table below sums up the SM information collected from the data 

sets. The period after the snow melt on May 7th, showed the highest value at 0.5270 and the 

lowest was recorded a week after tillage on May 14th at 0.0918. Each of the four SM maps in 

Figures 32, 33, 34, and 35 all used the same legend for an easy comparison between data sets. 

Table 2. SM map value summaries. 

Date: 5/7/19 5/14/19 5/23/19 7/23/19 
Average SM 0.4100 0.1551 0.3966 0.1882 
SM Max 0.5270 0.2551 0.4971 0.3087 
SM Min 0.2828 0.0918 0.2201 0.1122 
Range 0.2442 0.1633 0.2770 0.1966 
Red Average 0.2386 0.1481 0.2736 0.1758 
NIR Average 0.2645 0.1609 0.2842 0.2834 

 

 

Figure 32. May 7, 2019 SM map. 
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Figure 33. May 14, 2019 SM map. 

 

Figure 34. May 23, 2019 SM map. 
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Figure 35. July 23, 2019 SM map. 

4.3. TDR Data 

The TDR data collected after each flight was used as a comparison data set. The 30 

points of collection used the two different sizes of probes, 7.6 cm and 20 cm in length. The 

heavy crop residue prevented the 7.6 cm probe from gaining the best contact with the soil at 

some collection points. The TDR data appeared to have unachievably high values sometimes and 

out of range values from point to point. Below is a table of the collected data (Table 3). 
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Table 3. TDR collected data. 

Site 
# 

Over Tile Between Tile 

5/7/19 5/14/19 5/23/19 7/23/19 5/7/19 5/14/19 5/23/19 7/23/19 
7.6 
cm 20 cm 

7.6 
cm 20 cm 

7.6 
cm 20 cm 

7.6 
cm 20 cm 

7.6 
cm 20 cm 

7.6 
cm 20 cm 

7.6 
cm 20 cm 

7.6 
cm 20 cm 

1 0.447 0.389 0.431 0.411 0.527 0.453 0.354 0.461 0.422 0.383 0.268 0.369 0.513 0.456 0.530 0.403 

2 0.261 0.433 0.285 0.363 0.620 0.501 0.434 0.425 0.318 0.411 0.242 0.372 0.547 0.512 0.305 0.540 

3 0.338 0.400 0.427 0.456 0.450 0.509 0.281 0.559 0.348 0.358 0.348 0.445 0.567 0.573 0.255 0.487 

4 0.457 0.467 0.480 0.456 0.550 0.571 0.523 0.517 0.391 0.405 0.281 0.461 0.437 0.534 0.361 0.540 

5 0.347 0.459 0.301 0.321 0.520 0.576 0.467 0.596 0.295 0.450 0.311 0.515 0.523 0.596 0.341 0.495 

6 0.321 0.361 0.338 0.296 0.586 0.579 0.351 0.635 0.450 0.422 0.162 0.529 0.507 0.613 0.381 0.596 

7 0.321 0.464 0.364 0.492 0.497 0.573 0.381 0.495 0.401 0.383 0.285 0.534 0.434 0.515 0.351 0.554 

8 0.407 0.425 0.132 0.503 0.490 0.559 0.497 0.635 0.315 0.450 0.315 0.464 0.467 0.537 0.252 0.585 

9 0.315 0.453 0.358 0.431 0.523 0.523 0.348 0.565 0.334 0.450 0.235 0.453 0.653 0.587 0.540 0.506 

10 0.417 0.492 0.285 0.450 0.500 0.551 0.331 0.635 0.474 0.464 0.351 0.481 0.474 0.562 0.324 0.475 

11 0.328 0.380 0.281 0.428 0.547 0.604 0.457 0.613 0.407 0.389 0.242 0.436 0.480 0.601 0.404 0.722 

12 0.411 0.355 0.281 0.445 0.474 0.464 0.351 0.541 0.434 0.484 0.291 0.473 0.470 0.509 0.394 0.400 

13 0.437 0.492 0.152 0.403 0.563 0.501 0.195 0.347 0.411 0.475 0.215 0.461 0.513 0.585 0.683 0.669 

14 0.381 0.310 0.301 0.271 0.537 0.503 0.378 0.335 0.540 0.366 0.358 0.271 0.610 0.596 0.485 0.403 

15 0.218 0.428 0.242 0.355 0.500 0.551 0.507 0.537 0.344 0.347 0.261 0.551 0.596 0.627 0.601 0.540 
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The larger swings and unconventional values showed a pattern of lower error in the first 

flight and higher error as the summer went on. This may have been a calibration issue that 

worsened over time. 

4.4. TDR Corrected Data and Comparison 

To correct the collected data by TDR, a lab experiment was conducted to correlate the 

values by the TDR with gravimetric soil moisture data. Soils from the same field were packed 

into the columns with a known bulk density of 1.25 g/cm3, similar to the bulk density in the field. 

The soil was oven dried first, and a known amount of water was added to the soil to produce 

specified soil moisture contents. Table 4 shows the results of the lab experiment. 
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Table 4. TDR lab experiment results. 

  
Experiment 

number Run 

Moisture content for 3 in (7.6 cm) length (%) Moisture content for 8 in (20 cm) length (%) 

0 15 25 35 45 53 0 15 25 35 45 53 

Standard 
volumetric 

water 
content 

1st 
sample 

1 1.2 25.7 68.9 105.3 108.2 118.5 0.0 35.4 62.0 99.8 90.4 96.2 

2 1.2 24.2 69.4 106.2 101.7 118.5 0.0 35.1 63.4 104.5 90.4 96.2 

3 1.7 25.6 69.4 105.7 101.7 118.5 0.0 34.5 63.4 99.8 90.7 96.2 

2nd 
sample 

4 0.0 16.9 55.2 96.4 122.4 116.5 0.0 24.8 59.0 119.0 94.8 98.7 

5 0.0 16.4 55.7 96.9 121.5 117.0 0.0 25.4 59.0 119.7 95.7 98.4 

6 0.0 16.9 55.2 96.9 122.4 116.5 0.0 24.8 59.0 120.1 95.1 98.7 

3rd 
sample 

7 1.7 25.2 71.4 91.9 105.3 108.7 0.0 33.2 68.4 124.1 94.8 95.7 

8 1.2 26.2 71.4 92.0 106.2 111.1 0.0 33.2 68.7 124.4 95.1 95.7 

9 1.7 26.7 71.4 92.0 105.7 112.1 0.0 33.2 68.7 124.1 95.1 95.7 

Average 0.97 22.64 65.33 98.14 110.57 115.27 0.00 31.07 63.51 115.06 93.57 96.83 

Average Difference -0.97 -7.64 -40.33 -63.14 -65.57 -62.27 0.00 -16.07 -38.51 -80.06 -48.57 -43.83 

High clay 
volumetric 

water 
content 

1st 
sample 

10 2.6 19.8 48.4 72.9 73.6 78.5 2.2 22.6 50.9 83.4 78.6 83.4 

11 2.6 18.2 48.4 72.9 73.2 77.2 2.2 22.3 50.9 84.1 78.3 83.9 

12 2.6 18.6 48.4 72.9 73.2 78.9 2.2 22.3 50.9 84.1 78.9 83.4 

2nd 
sample 

13 1.9 12.6 38.7 60.9 86.2 77.2 2.4 13.2 46.4 98.7 82.8 85.3 

14 1.6 13.5 39.1 66.6 85.2 77.5 2.4 13.0 46.4 98.7 83.9 85.6 

15 1.9 12.2 39.1 66.9 84.5 80.2 2.4 13.2 46.4 98.7 83.4 85.6 

3rd 
sample 

16 2.3 18.9 49.4 63.0 69.9 79.9 2.3 20.4 56.2 105.3 82.8 83.9 

17 2.3 19.2 49.0 63.3 71.2 79.5 2.3 20.4 56.2 105.3 82.8 83.7 

18 2.6 19.2 49.0 63.3 73.2 79.9 2.3 20.1 56.2 105.4 82.5 83.7 

Average 2.27 16.91 45.50 66.97 76.69 78.76 2.30 18.61 51.17 95.97 81.56 84.28 

Average Difference -2.27 -1.91 -20.50 -31.97 -31.69 -25.76 -2.30 -3.61 -26.17 -60.97 -36.56 -31.28 
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Based on the soil bulk density, the maximum water content was 53%, which was 

significantly lower than many of the in situ collected data points from the TDR sensor. The lab 

experiment showed similar discrepancies as the field measurements and remotely sensed data. 

Using the values from the lab experiment, a correction equation was developed from a linear fit 

trendline of the data. The equations formed from the lab experiment can be found in Figure 36. 

 

Figure 36. TDR lab experiment graph and correction equations. 

Three of the four flights resulted in values that were significantly closer to the remotely 

sensed and the calculated values. The only flight that was worsened with the correction equation 

was the first flight. This anomaly raised some question as to why the first flight was close to the 

remotely sensed data initially and the later three flights were better with an equation to correct 

the data. 

The first data set of comparisons are shown in Appendix A, Appendix B, and Appendix 

C with an average of less than a difference of 7.0 for both the 7.6 cm and 20 cm depths before 
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the lab correction equation was applied to the in-situ data. The average difference was increased 

to 20 after the correction equation was applied. The third data set can be seen in Appendix G, 

Appendix H, and Appendix I and showed the greatest improvement of differences averaging 

38.6 in the 7.6 cm category to averaging 7.6 after lab correction. The second data set is shown in 

Appendix D, Appendix E, and Appendix F, and the fourth data set is shown Appendix J, 

Appendix K, and Appendix L and showed similar results of improvement in data after lab 

calibration corrections were applied to the in-situ data set. 

One hypothesis is that the TDR sensor was damaged after the first data set collection 

which resulted in potentially skewed values for the remaining three data sets in-situ 

measurements. Due to the time it took to process the data, this issue was not found until much 

later in the project where the need for a lab analysis of the sensor and a correction equation 

became evident. 

4.5. Results Summary 

 All three objectives were completed in the study with protocols developed to make soil 

moisture maps from UAS collected data, collecting of in-situ soil moisture data, and completing 

a comparison of the UAS soil moisture maps to the in-situ soil moisture measurements. From the 

study, four flights were successfully conducted to collect the necessary NIR and Red channel 

data sets. Among the flights, three were conducted over the field with limited vegetation growth, 

but with plenty crop residue from the previous year and one with full vegetation. Other remote 

sensing methods require a variability of ground conditions in the data collection area to obtain 

valuable results. The conditions of this field that had low variability across the data collection 

area led to the use of the soil moisture equation used in the study for this application. The 

average differences and the average percent errors of the remotely sensed data compared to the 
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in-situ measurements can be found in Table 5 which is a summary of Appendix A, Appendix D, 

Appendix G, and Appendix J. The difference and percent error 1 correlate to the values before 

the sensor lab calibration correction, while the difference and percent error 2 correlate to the 

values after the sensor lab calibration correction was applied.  

The percent error was relatively consistent with the in-situ lab calibrated soil moisture 

data except for the data from the first flight. The first collection data set experienced the least 

percent error in the 20 cm depth at 9% average error and the 7.6 cm depth at 20.3% average error 

before sensor lab calibration, but the errors were much larger after the calibration. The range of 

the percent error after in-situ sensor lab calibration, excluding the first data set, was between 

25.4% to 37.2%. This consistency leaned toward the need for further calibrating the remote data 

for better correlation. Overall, the limited four data sets showed plausible and promising results 

but need more investigating to understand the percent error trend in better detail. 

Looking at the different data sets, it was quite evident when a weather event or farming 

event took place. The snow melts and heavy rainfall caused soil moisture to increase, which were 

noticeable in the imagery on both the first data set and the third data set. The second data set, the 

driest data set, coincided well with the field work during tillage and planting practices that took 

place right before the data collection. Even with the last data set experiencing a completely 

different condition of vegetation, more data sets in different conditions would be beneficial.  
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Table 5. Comparison summaries. 

Date 
Remote 
Sensed 

In Situ Avg Difference 1 Avg Percent Error 1 Avg 
Corrected In Situ 

Avg 
Difference 2 Avg Percent Error 2 Avg 

7.6 cm 20 cm 7.6 cm Δ 20 cm Δ 7.6 cm 20 cm 7.6 cm 20 cm 7.6 cm Δ 20 cm Δ 7.6 cm 20 cm 

5/7/2019 41.7 37.6 41.8 6.7 3.7 20.3% 9.0% 22.5 21.1 19.3 20.7 93.0% 100.5% 

5/14/2019 13.9 29.4 43.0 15.5 29.1 48.7% 66.6% 17.3 21.7 4.8 8.0 27.6% 34.4% 

5/23/2019 38.6 52.3 54.7 13.6 16.1 25.3% 29.1% 31.6 28.3 7.6 10.3 25.4% 37.2% 

7/23/2019 17.9 40.2 52.7 22.3 34.8 52.5% 64.7% 24.1 27.2 7.2 8.1 28.1% 33.8% 
Averages summarized from Appendix A, Appendix D, Appendix G, and Appendix J
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5. CONCLUSION 

A field study was conducted in 2019 at a tile drained farm field in Clay County, MN. 

Four UAS flights were carried over by a DJI Matric 600 from the spring with no vegetation to 

the middle of the growing season with full vegetable. Multispectral images by a Micasense 

Altum sensor and its gimbal and thermal images by a FLIR Zenmuse XTS sensor were collected 

and processed. The soil moisture maps were developed using data from Red and NIR imagery 

with assistance from Pix4D, ArcGIS, and R Statistics software. During each UAS flight, in-situ 

soil moisture data were measured at 7.6 cm and 20 cm depths from 30 fixed locations in the 

field. A simple comparison between the UAS soil moisture and in-situ soil moisture showed a 

good agreement for the first flight, but not for the rest. Another lab experiment was conducted to 

calibrate the soil moisture sensor against the gravitational method. The results showed that after 

the calibration of the sensor, the soil moisture data from the UAS method were comparable with 

the in-situ soil moisture data. This indicated that the UAS collected images were capable of 

developing soil moisture maps in a timely manner. A simple protocol on how to create the soil 

moisture map was developed so that others may follow. However, it became challenging and 

time consuming for an average producer to use this technology to map their fields quickly 

following the protocol. The major limiting factors are the large amount of computing power 

needed to process the large data sets, the need to use remote servers for data processing, and 

specifically, various programs required to determine the input parameters.  

Further studies in different conditions, including drier and wetter parameters and different 

crop conditions, are needed to refine the data and the method. This would further the 

understanding of limitations to the soil moisture equation. A computer program may be 
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developed to simplify the map development process so that an end user can easily apply the 

technology and develop a soil moisture map in a timely manner.  

  



 

48 

REFERENCES 

Amani, M., Parsian, S., MirMazloumi, S. M., & Aineh, O. (2015). Two new soil moisture 
indices based on NIR-red triangle space of Landsat-8 data. International Journal of 
Applied Earth Observation and Geoinformation, 176-186. 

Amani, M., Salehi, B., Mahdavi, S., Masjedi, A., & Dehnavi, S. (2017). Temperature-
Vegetation-soil Moisture Dryness Index (TVMDI). Remote Sensing of Enviroment, 197 
1-14. 

Chang, K.-T., & Hsu, W.-L. (2018). Estimating Soil Moisture Content Using Unmanned Aerial 
Vehicles Equipped with Thermal Infrared Sensors. Proceedings of IEEE International 
Conference on Applied System Innovation 2018 (pp. 168-171). Chiba: Institute of 
Electrical and Electronics Engineers, Inc. 

Engman, E. T. (2000). Soil Moisture. In G. A. Schultz, & E. T. Engman, Remote Sensing in 
Hydrology and Water Managment (pp. 197-216). Berlin: Springer. 

Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., . . . 
Zyl, J. V. (2010). The Soil Moisture Active Passive (SMAP) Mission. Proceedings of the 
IEEE, 704-716. 

Evans, R., Cassel, D., & Sneed, R. E. (1996, June). Measuring Soil Water for Irrigation 
Scheduling: Monitoring Methods and Devices. Retrieved from NC State Extention: 
https://content.ces.ncsu.edu/measuring-soil-water-for-irrigation-scheduling 

Hassen-Esfahani, L., Ebtehaj, A. M., Torres-Rua, A., & McKee, M. (2017). Spatial Scale Gap 
Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for 
Applications in Precision Agriculture. Sensors, doi:10.3390/s17092106. 

Hillel, D. (1998). Enviromental Soil Physics. San Diego: Academic Press. 

Kolars, K., Jia, X., Steele, D.D., and Scherer, T.F. (2019). A soil water balance model for 
subsurface water management. Applied Engineering in Agriculture 35(4): 633-646.  

Kuenzer, C., & Dech, S. (2013). Thermal Infrared Remote Sensing. Dordrecht: Springer. 

Kuenzer, C., Gessner, U., & Wagner, W. (2013). Soil Moisture from Thermal Infrared Satellite 
Data: Synergies with Microwave Data. In C. Kuenzer, & S. Dech, Thermal Infrared 
Remote Sensing: Sensors, Methods, Applications (pp. 315-330). Dordrecht: Springer. 

Lakshmi, V. (2017). Remote Sensing of Hydrological Extremes. Springer International 
Publishing. 

Lambin, E. F., & Ehrlich, D. (1996). The surface temperature-vegetation index space for land 
cover and land cover change analysis. International Journal of Remote Sensing, 463-487. 



 

49 

Leng, P., Li, Z.-L., Duan, S.-B., Gao, M.-F., & Huo, H.-Y. (2018). First results of all-weather 
soil moisture retrieval from an optical/thermal infrared remote-sensing based operational 
system in China. Internation Journal of Remote Sensing, 
DOI:10.1080/01431161.2018.1468119. 

Ma, H., Zeng, J., Chen, N., Zhang, X., Cosh, M. H., & Wang, W. (2019). Satellite surface soil 
moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment 
using global ground-based obseravtions. Remote Sensing of Enviroment, 231. 
doi:https://doi.org/10.1016/j.rse.2019.111215 

"topography." Merriam-Webster.com. 2019 
Retrieved Dec 1, 2019, from https://www.merriam-webster.com/dictionary/topography 

Niaghi, A. R., Jia, X., Steele, D.D., and Scherer, T.F. (2019). Drainage water management 
effects on energy flux partitioning, evapotranspiration, and crop coefficients for corn. 
Agricultural Water Management 225 (2019) 105760. 
https://doi.org/10.1016/j.agwat.2019.105760.   

Pietroniro, A., Toyra, J., Leconte, R., & Kite, G. (2005). Remote Sensing of Surface Water and 
Soil Moisture. In C. R. Duguay, & A. Pietroniro, Remote Sensing in Northern Hydrology 
(pp. 119-142). Washington D.C.: American Geophysical Union. 

Quebajo, L., Perez-Ruiz, M., Perez-Urrestarazu, L., Marinez, G., & Egea, G. (2018). Linking 
thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. 
Biosystems Engineering, 77-87. 

Rijal, S., Zhang, X., & Jia, X. (2012). Estimating Surface Soil Water Content in the Red River 
Valley of the North using Landsat 5 TM Data. Soil Science Journal of America. 

Sandholt, I., Rasmussen, K., & Andersen, J. (2001). A simple interpretation of the surface 
temperature/vegetation index space for assessment of surface moisture status. Remote 
Sensing of Enviroment, 213-224. 

Santhosh, S. K., Laguette, S., Casady, G. M., & Seielstad, G. A. (2003). Remote sensing 
applications for precision agriculture: A learning community approach. Remonte Sensing 
of Enviroment, 157-169. 

Sudha Lekshmi, S., Singh, D., & Baghini, M. S. (2014). A critical review of soil moisture 
measurement. Measurement, 92-105. 

USDA. (2018, November). Web Soil Survey. Retrieved from   
https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx 

Wigmore, O., Mark, B., McKenzie, J., Baraer, M., & Lautz, L. (2019). Sub-metre mapping of 
surface soil moisture in proglacial valleys of the tropical Andes using a multispecral 
unmanned aerial vehicle. Remote Sensing of Enviroment, 222, 104-118. 

 



 

50 

APPENDIX A. MAY 7, 2019 RESULTS 

 

 

  

5/7/19
Site Remote 7.6 cm 20 cm 7.6 cm Δ 20 cm Δ 7.6 cm 20 cm 7.6 cm 20 cm 7.6 cm Δ 20 cm Δ 7.6 cm 20 cm

1 34 44.7 38.9 10.7 4.9 23.9% 12.6% 26.87 19.45 7.13 14.55 26.5% 74.8%
2 41 26.1 43.3 14.9 2.3 57.1% 5.3% 15.28 21.91 25.72 19.09 168.3% 87.1%
3 42 33.8 40 8.2 2 24.3% 5.0% 20.08 20.06 21.92 21.94 109.2% 109.3%
4 48 45.7 46.7 2.3 1.3 5.0% 2.8% 27.49 23.82 20.51 24.18 74.6% 101.5%
5 43 34.7 45.9 8.3 2.9 23.9% 6.3% 20.64 23.37 22.36 19.63 108.3% 84.0%
6 43 32.1 36.1 10.9 6.9 34.0% 19.1% 19.02 17.88 23.98 25.12 126.1% 140.5%
7 42 32.1 46.4 9.9 4.4 30.8% 9.5% 19.02 23.65 22.98 18.35 120.8% 77.6%
8 45 40.7 42.5 4.3 2.5 10.6% 5.9% 24.38 21.46 20.62 23.54 84.6% 109.6%
9 41 31.5 45.3 9.5 4.3 30.2% 9.5% 18.65 23.03 22.35 17.97 119.9% 78.0%

10 45 41.7 49.2 3.3 4.2 7.9% 8.5% 25.00 25.22 20.00 19.78 80.0% 78.4%
11 42 32.8 38 9.2 4 28.0% 10.5% 19.46 18.94 22.54 23.06 115.9% 121.7%
12 41 41.1 35.5 0.1 5.5 0.2% 15.5% 24.63 17.54 16.37 23.46 66.5% 133.7%
13 44 43.7 49.2 0.3 5.2 0.7% 10.6% 26.25 25.22 17.75 18.78 67.6% 74.5%
14 37 38.1 31 1.1 6 2.9% 19.4% 22.76 15.02 14.24 21.98 62.6% 146.3%
15 39 21.8 42.8 17.2 3.8 78.9% 8.9% 12.60 21.63 26.40 17.37 209.5% 80.3%
16 44 42.2 38.3 1.8 5.7 4.3% 14.9% 25.31 19.11 18.69 24.89 73.8% 130.2%
17 40 31.8 41.1 8.2 1.1 25.8% 2.7% 18.83 20.68 21.17 19.32 112.4% 93.4%
18 44 34.8 35.8 9.2 8.2 26.4% 22.9% 20.70 17.71 23.30 26.29 112.5% 148.5%
19 42 39.1 40.5 2.9 1.5 7.4% 3.7% 23.38 20.34 18.62 21.66 79.6% 106.5%
20 44 29.5 45 14.5 1 49.2% 2.2% 17.40 22.87 26.60 21.13 152.9% 92.4%
21 44 45 42.2 1 1.8 2.2% 4.3% 27.06 21.30 16.94 22.70 62.6% 106.6%
22 43 40.1 38.3 2.9 4.7 7.2% 12.3% 24.00 19.11 19.00 23.89 79.1% 125.0%
23 45 31.5 45 13.5 0 42.9% 0.0% 18.65 22.87 26.35 22.13 141.3% 96.8%
24 41 33.4 45 7.6 4 22.8% 8.9% 19.83 22.87 21.17 18.13 106.8% 79.3%
25 44 47.4 46.4 3.4 2.4 7.2% 5.2% 28.55 23.65 15.45 20.35 54.1% 86.0%
26 38 40.7 38.9 2.7 0.9 6.6% 2.3% 24.38 19.45 13.62 18.55 55.9% 95.4%
27 40 43.4 48.4 3.4 8.4 7.8% 17.4% 26.06 24.77 13.94 15.23 53.5% 61.5%
28 41 41.1 47.5 0.1 6.5 0.2% 13.7% 24.63 24.27 16.37 16.73 66.5% 69.0%
29 37 54 36.6 17 0.4 31.5% 1.1% 32.67 18.16 4.33 18.84 13.3% 103.8%
30 38 34.4 34.7 3.6 3.3 10.5% 9.5% 20.45 17.09 17.55 20.91 85.8% 122.3%

Average: 41.7 37.6 41.8 6.7 3.7 20.3% 9.0% 22.5 21.1 19.3 20.7 93.0% 100.5%

Percent Error 2Difference 2Percent Error 1In Situ Corrected In SituDifference 1
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APPENDIX B. 7.6 CM DEPTH COMPARISON 
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APPENDIX C. 20 CM DEPTH COMPARISON 
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APPENDIX D. MAY 14, 2019 RESULTS 

 

  

5/14/19
Site Remote 7.6 cm 20 cm 7.6 cm Δ 20 cm Δ 7.6 cm 20 cm 7.6 cm 20 cm 7.6 cm Δ 20 cm Δ 7.6 cm 20 cm

1 10 43.1 41.1 33.1 31.1 76.8% 75.7% 25.87 20.68 15.87 10.68 61.4% 51.6%
2 15 28.5 36.3 13.5 21.3 47.4% 58.7% 16.78 17.99 1.78 2.99 10.6% 16.6%
3 13 42.7 45.6 29.7 32.6 69.6% 71.5% 25.62 23.20 12.62 10.20 49.3% 44.0%
4 15 48 45.6 33 30.6 68.8% 67.1% 28.93 23.20 13.93 8.20 48.1% 35.4%
5 14 30.1 32.1 16.1 18.1 53.5% 56.4% 17.77 15.64 3.77 1.64 21.2% 10.5%
6 15 33.8 29.6 18.8 14.6 55.6% 49.3% 20.08 14.23 5.08 0.77 25.3% 5.4%
7 13 36.4 49.2 23.4 36.2 64.3% 73.6% 21.70 25.22 8.70 12.22 40.1% 48.5%
8 13 13.2 50.3 0.2 37.3 1.5% 74.2% 7.24 25.84 5.76 12.84 79.5% 49.7%
9 14 35.8 43.1 21.8 29.1 60.9% 67.5% 21.32 21.80 7.32 7.80 34.3% 35.8%

10 15 28.5 45 13.5 30 47.4% 66.7% 16.78 22.87 1.78 7.87 10.6% 34.4%
11 15 28.1 42.8 13.1 27.8 46.6% 65.0% 16.53 21.63 1.53 6.63 9.2% 30.7%
12 14 28.1 44.5 14.1 30.5 50.2% 68.5% 16.53 22.59 2.53 8.59 15.3% 38.0%
13 15 15.2 40.3 0.2 25.3 1.3% 62.8% 8.49 20.23 6.51 5.23 76.7% 25.9%
14 14 30.1 27.1 16.1 13.1 53.5% 48.3% 17.77 12.83 3.77 1.17 21.2% 9.1%
15 14 24.2 35.5 10.2 21.5 42.1% 60.6% 14.10 17.54 0.10 3.54 0.7% 20.2%
16 14 26.8 36.9 12.8 22.9 47.8% 62.1% 15.72 18.33 1.72 4.33 10.9% 23.6%
17 13 24.2 37.2 11.2 24.2 46.3% 65.1% 14.10 18.49 1.10 5.49 7.8% 29.7%
18 14 34.8 44.5 20.8 30.5 59.8% 68.5% 20.70 22.59 6.70 8.59 32.4% 38.0%
19 13 28.1 46.1 15.1 33.1 53.7% 71.8% 16.53 23.48 3.53 10.48 21.3% 44.6%
20 14 31.1 51.5 17.1 37.5 55.0% 72.8% 18.40 26.51 4.40 12.51 23.9% 47.2%
21 15 16.2 52.9 1.2 37.9 7.4% 71.6% 9.11 27.29 5.89 12.29 64.6% 45.0%
22 13 28.5 53.4 15.5 40.4 54.4% 75.7% 16.78 27.57 3.78 14.57 22.5% 52.9%
23 14 31.5 46.4 17.5 32.4 55.6% 69.8% 18.65 23.65 4.65 9.65 24.9% 40.8%
24 14 23.5 45.3 9.5 31.3 40.4% 69.1% 13.66 23.03 0.34 9.03 2.5% 39.2%
25 15 35.1 48.1 20.1 33.1 57.3% 68.8% 20.89 24.60 5.89 9.60 28.2% 39.0%
26 13 24.2 43.6 11.2 30.6 46.3% 70.2% 14.10 22.08 1.10 9.08 7.8% 41.1%
27 14 29.1 47.3 15.1 33.3 51.9% 70.4% 17.15 24.16 3.15 10.16 18.4% 42.0%
28 14 21.5 46.1 7.5 32.1 34.9% 69.6% 12.41 23.48 1.59 9.48 12.8% 40.4%
29 13 35.8 27.1 22.8 14.1 63.7% 52.0% 21.32 12.83 8.32 0.17 39.0% 1.3%
30 14 26.1 55.1 12.1 41.1 46.4% 74.6% 15.28 28.53 1.28 14.53 8.4% 50.9%

Average: 13.9 29.4 43.0 15.5 29.1 48.7% 66.6% 17.3 21.7 4.8 8.0 27.6% 34.4%

Percent Error 2In Situ Corrected In Situ Difference 2Difference 1 Percent Error 1
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APPENDIX E. 7.6 CM DEPTH COMPARISON 
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APPENDIX F. 20 CM DEPTH COMPARISON 
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APPENDIX G. MAY 23, 2019 RESULTS 

 

  

5/23/19
Site Remote 7.6 cm 20 cm 7.6 cm Δ 20 cm Δ 7.6 cm 20 cm 7.6 cm 20 cm 7.6 cm Δ 20 cm Δ 7.6 cm 20 cm

1 40 52.7 45.3 12.7 5.3 24.1% 11.7% 31.86 23.03 8.14 16.97 25.6% 73.7%
2 40 62 50.1 22 10.1 35.5% 20.2% 37.65 25.72 2.35 14.28 6.2% 55.5%
3 37 45 50.9 8 13.9 17.8% 27.3% 27.06 26.17 9.94 10.83 36.7% 41.4%
4 42 55 57.1 13 15.1 23.6% 26.4% 33.29 29.65 8.71 12.35 26.2% 41.7%
5 41 52 57.6 11 16.6 21.2% 28.8% 31.42 29.93 9.58 11.07 30.5% 37.0%
6 42 58.6 57.9 16.6 15.9 28.3% 27.5% 35.53 30.10 6.47 11.90 18.2% 39.6%
7 40 49.7 57.3 9.7 17.3 19.5% 30.2% 29.99 29.76 10.01 10.24 33.4% 34.4%
8 42 49 55.9 7 13.9 14.3% 24.9% 29.55 28.98 12.45 13.02 42.1% 45.0%
9 42 52.3 52.3 10.3 10.3 19.7% 19.7% 31.61 26.96 10.39 15.04 32.9% 55.8%

10 43 50 55.1 7 12.1 14.0% 22.0% 30.17 28.53 12.83 14.47 42.5% 50.7%
11 38 54.7 60.4 16.7 22.4 30.5% 37.1% 33.10 31.50 4.90 6.50 14.8% 20.6%
12 37 47.4 46.4 10.4 9.4 21.9% 20.3% 28.55 23.65 8.45 13.35 29.6% 56.4%
13 40 56.3 50.1 16.3 10.1 29.0% 20.2% 34.10 25.72 5.90 14.28 17.3% 55.5%
14 35 53.7 50.3 18.7 15.3 34.8% 30.4% 32.48 25.84 2.52 9.16 7.8% 35.5%
15 38 50 55.1 12 17.1 24.0% 31.0% 30.17 28.53 7.83 9.47 25.9% 33.2%
16 25 51.3 45.6 26.3 20.6 51.3% 45.2% 30.98 23.20 5.98 1.80 19.3% 7.7%
17 38 54.7 51.2 16.7 13.2 30.5% 25.8% 33.10 26.34 4.90 11.66 14.8% 44.3%
18 36 56.7 57.3 20.7 21.3 36.5% 37.2% 34.35 29.76 1.65 6.24 4.8% 21.0%
19 40 43.7 53.4 3.7 13.4 8.5% 25.1% 26.25 27.57 13.75 12.43 52.4% 45.1%
20 40 52.3 59.6 12.3 19.6 23.5% 32.9% 31.61 31.05 8.39 8.95 26.6% 28.8%
21 38 50.7 61.3 12.7 23.3 25.0% 38.0% 30.61 32.00 7.39 6.00 24.1% 18.7%
22 38 43.4 51.5 5.4 13.5 12.4% 26.2% 26.06 26.51 11.94 11.49 45.8% 43.3%
23 39 46.7 53.7 7.7 14.7 16.5% 27.4% 28.12 27.74 10.88 11.26 38.7% 40.6%
24 37 65.3 58.7 28.3 21.7 43.3% 37.0% 39.71 30.54 2.71 6.46 6.8% 21.1%
25 41 47.4 56.2 6.4 15.2 13.5% 27.0% 28.55 29.14 12.45 11.86 43.6% 40.7%
26 38 48 60.1 10 22.1 20.8% 36.8% 28.93 31.33 9.07 6.67 31.4% 21.3%
27 36 47 50.9 11 14.9 23.4% 29.3% 28.30 26.17 7.70 9.83 27.2% 37.5%
28 41 51.3 58.5 10.3 17.5 20.1% 29.9% 30.98 30.43 10.02 10.57 32.3% 34.7%
29 39 61 59.6 22 20.6 36.1% 34.6% 37.03 31.05 1.97 7.95 5.3% 25.6%
30 36 59.6 62.7 23.6 26.7 39.6% 42.6% 36.16 32.79 0.16 3.21 0.4% 9.8%

Average: 38.6 52.3 54.7 13.6 16.1 25.3% 29.1% 31.6 28.3 7.6 10.3 25.4% 37.2%

Percent Error 2In Situ Corrected In Situ Difference 2Difference 1 Percent Error 1
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APPENDIX H. 7.6 CM DEPTH COMPARISON 
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APPENDIX I. 20 CM DEPTH COMPARISON 
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APPENDIX J. JULY 23, 2019 RESULTS 

 

 

 

  

7/23/19
Site Remote 7.6 cm 20 cm 7.6 cm Δ 20 cm Δ 7.6 cm 20 cm 7.6 cm 20 cm 7.6 cm Δ 20 cm Δ 7.6 cm 20 cm

1 20 35.4 46.1 15.4 26.1 43.5% 56.6% 21.08 23.48 1.08 2.62 5.1% 14.8%
2 19 43.4 42.5 24.4 23.5 56.2% 55.3% 26.06 21.46 7.06 2.04 27.1% 11.5%
3 19 28.1 55.9 9.1 36.9 32.4% 66.0% 16.53 28.98 2.47 7.92 15.0% 34.4%
4 19 52.3 51.7 33.3 32.7 63.7% 63.2% 31.61 26.62 12.61 6.08 39.9% 28.6%
5 14 46.7 59.6 32.7 45.6 70.0% 76.5% 28.12 31.05 14.12 14.55 50.2% 54.9%
6 20 35.1 63.5 15.1 43.5 43.0% 68.5% 20.89 33.23 0.89 10.27 4.3% 39.8%
7 19 38.1 49.5 19.1 30.5 50.1% 61.6% 22.76 25.39 3.76 5.11 16.5% 25.2%
8 22 49.7 63.5 27.7 41.5 55.7% 65.4% 29.99 33.23 7.99 8.27 26.6% 33.8%
9 17 34.8 56.5 17.8 39.5 51.1% 69.9% 20.70 29.31 3.70 10.19 17.9% 42.0%

10 13 33.1 63.5 20.1 50.5 60.7% 79.5% 19.64 33.23 6.64 17.27 33.8% 60.9%
11 16 45.7 61.3 29.7 45.3 65.0% 73.9% 27.49 32.00 11.49 13.30 41.8% 50.0%
12 17 35.1 54.1 18.1 37.1 51.6% 68.6% 20.89 27.97 3.89 9.13 18.6% 39.2%
13 18 19.5 34.7 1.5 16.7 7.7% 48.1% 11.17 17.09 6.83 0.39 61.2% 5.3%
14 17 37.8 33.5 20.8 16.5 55.0% 49.3% 22.57 16.42 5.57 0.08 24.7% 3.5%
15 21 50.7 53.7 29.7 32.7 58.6% 60.9% 30.61 27.74 9.61 4.96 31.4% 24.3%
16 27 53 40.3 26 13.3 49.1% 33.0% 32.04 20.23 5.04 6.93 15.7% 33.5%
17 16 30.5 54 14.5 38 47.5% 70.4% 18.02 27.91 2.02 10.09 11.2% 42.7%
18 16 25.5 48.7 9.5 32.7 37.3% 67.1% 14.91 24.94 1.09 7.76 7.3% 35.8%
19 15 36.1 54 21.1 39 58.4% 72.2% 21.51 27.91 6.51 11.09 30.3% 46.3%
20 17 34.1 49.5 17.1 32.5 50.1% 65.7% 20.27 25.39 3.27 7.11 16.1% 33.0%
21 17 38.1 59.6 21.1 42.6 55.4% 71.5% 22.76 31.05 5.76 11.55 25.3% 45.2%
22 21 35.1 55.4 14.1 34.4 40.2% 62.1% 20.89 28.69 0.11 5.71 0.5% 26.8%
23 20 25.2 58.5 5.2 38.5 20.6% 65.8% 14.72 30.43 5.28 8.07 35.9% 34.3%
24 16 54 50.6 38 34.6 70.4% 68.4% 32.67 26.00 16.67 8.60 51.0% 38.5%
25 13 32.4 47.5 19.4 34.5 59.9% 72.6% 19.21 24.27 6.21 10.23 32.3% 46.4%
26 16 40.4 72.2 24.4 56.2 60.4% 77.8% 24.19 38.11 8.19 18.09 33.9% 58.0%
27 18 39.4 40 21.4 22 54.3% 55.0% 23.57 20.06 5.57 1.94 23.6% 10.3%
28 18 68.3 66.9 50.3 48.9 73.6% 73.1% 41.58 35.14 23.58 13.76 56.7% 48.8%
29 15 48.5 40.3 33.5 25.3 69.1% 62.8% 29.24 20.23 14.24 5.07 48.7% 25.9%
30 22 60.1 54 38.1 32 63.4% 59.3% 36.47 27.91 14.47 4.09 39.7% 21.2%

Average: 17.9 40.2 52.7 22.3 34.8 52.5% 64.7% 24.1 27.2 7.2 8.1 28.1% 33.8%

Percent Error 2Difference 2Difference 1In Situ Corrected In SituPercent Error 1
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APPENDIX K. 7.6 CM DEPTH COMPARISON 
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APPENDIX L. 20 CM DEPTH COMPARISON 
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