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ABSTRACT

The electric power grid is undergoing a rapid change predominantly driven by high pene-

tration levels of renewable energy resources (RERs) such as wind and solar. These resources are

interfaced with the power grid through power electronic inverters that use control algorithms to de-

�ne their performance characteristics. As a group, these types of resources are commonly referred

to as inverter-based RERs (IB-RERs). While IB-RERs use power electronic controls to change

active and reactive power injection, the fast inverter controls, separating the power source from the

grid, have changed grid dynamics and posed new challenges to maintaining reliable and safe grid

operation. Moreover, the variable nature of IB-RERs generation under uncertain weather conditions

further challenge the grid operation under uncertain operating conditions resulting from imbalance

in electricity generation and demand. To e�ectively manage IB-RERs for providing reliable grid

services, this dissertation studies the impact of IB-RERs on grid operation at the transmission- and

distribution- levels while considering uncertain operating conditions. More speci�cally, probabilistic

collocation method is introduced to quantify the uncertainty of renewable generation and load de-

mands on the distribution system operation. Also, the probabilistic collocation method is integrated

with grid assessment to assess the grid sti�ness under uncertain operating conditions. In addition,

the impact of transmission-level disturbances on solar generator operation in distribution systems

is investigated by a real-time electromagnetic simulator. The proposed method and analysis results

are useful for guiding grid planning and operation to address the emerging issues of integrating the

high penetration of IB-RERs into the power grid for reliable grid services.
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1. INTRODUCTION

1.1. Background

Renewable energy resources (RERs), such as wind, solar, tidal energy paired with energy

storage devices like batteries, ultra capacitors, �ywheels etc. are being increasingly integrated in

the modern power grid to decrease the overall global carbon footprint. In 2020, RERs generated 834

billion kWh of electricity, or about 21% of all the electricity generated in the United States [1]. The

electricity generation from RERs surpassed the generation from nuclear and coal for the �rst time

on record. Fig. 1.1 shows the annual U.S. electricity generation from utility-scale and small-scale

for all the sectors including electric power, industrial, commercial and residential. The two main

reasons for this surge are decreasing the use of coal for electricity generation and steady growth of

RERs like solar and wind in electricity generation. Fig. 1.2 shows that among the various sources

of renewable energy capacity, solar and wind capacity had a linear growth since the start of the

decade [2].

Figure 1.1. Annual U.S. electricity generation from all sectors (electric power, industrial, commer-
cial, and residential) and includes both utility -scale and small-scale [1].

The integration of RERs deals with incorporating RERs like solar and wind, distributed

generation, energy storage, and providing demand response into the transmission and distribution

side of the bulk power system. It not only focuses on the operational challenges, but also deals

with the economical aspects of these resources into grid planning and operation. These RERs are

1



Figure 1.2. Cumulative capacity of renwable energy in the U.S. from 2009 to2020 by technology. [2].

usually connected to the grid through power electronic devices and thus are collectively referred

to as Inverter Based RERS (IB-RERs). IB-RERs possess their own set of controls and operations

based on power electronics devices which are much more faster that the traditional synchronous

generators in the grid. IB-RERs increase the controllability, reliability and �exibility of the power

grid, alongside it brings about major challenges due to its complex control, intermittent nature and

concerns for protection and security. The faster timescales associated with the IB-RERs provide

faster response times but due to their power electronic interface, they lack the inertial response from

heavy fast spinning synchronous machines, which has been the foundation for maintaining stability

and counter-acting disturbances by maintaining grid stability.

Power system planners and operators are increasingly a�ected by complex varieties of un-

certainties pertaining on the modern grid, e.g. the volatility in generation, consumption, storage,

inaccurate forecasts of weather and load, measurement errors, communication delays, instrument

failure, etc. It is crucial to identify and quantify these uncertainties to realize a futuristic 100%

IB-RER dominated grid, or in other words a net zero carbon grid. Considering the futuristic power

grid with intermittent generation from IB-RERs, the key questions that needs to be answered are:

� Are the prevalent tools for modeling, analysis and control adequate enough for the highly

unforeseeable nature of IB-RERs?

� What are the technical and economic issues that arises during high penetration of IB-RERs?

2



� Are the protection systems installed at present capable of protecting the power systems with

a high penetration of IB-RERs?

� How can we ensure continuity and security of power supply along with voltage and frequency

support to the grid from the intermittent IB-RERs?

One of the key research challenges for system analysis of the future grid is modeling un-

certainties for steady-state and dynamic studies of large interconnected systems with heteroge-

neous generation, large number of IB-RERs in both distribution and bulk power system, centralized

and distributed storage technologies, and stochastic demand with energy-e�cient and electronic-

interfaced loads, electric vehicles, etc [3]. To address these challenges, probabilistic approach to

model uncertainties is adopted in this work to facilitate a much better understanding and more ac-

curate prediction of the system static and dynamic behaviour. Another important area of research

is the selection of appropriate method to model relevant uncertainty for proper representation in

power system modeling and studies [3]. Through this dissertation work of modeling the uncertain-

ties, an accurate prediction of the system static and dynamic behavior is achieved with considerably

lower computational burden, temporally and spatially. The proposed modeling technique measures

the impact of the uncertain input parameters on the system output response characteristics. The

�ndings and outcomes of the works will help in the management of economic cost and reliability

risks (grid planners, utilities, ISOs, RTOs).

Conventionally, deterministic methods are used to assess the performance of a system based

on a speci�c scenario, which neglects the uncertainties in power system operation, models, and

variables largely [3]. Limited number of scenarios are considered for the studies for example, the

normal operation, worst-case condition, etc. Inaccurate selection of the parameters and operating

conditions might lead to the problem considered being either underestimated or overestimated. The

stochasticity of generation and/or load pro�le are expressed and modeled in the form of discrete

values (e.g. high, medium and low levels). This approach does not characterize the system behavior

to the full extentand does not ful�ll the needs of changing landscape of the modern grid.

Conversely, probabilistic methods are particularly suited for analysis of system with random-

ness and uncertainty, which are key characteristics of future power systems. Probabilistic methods

are those in which probability distribution function of the input parameters is known and based
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on them the outputs can be predicted stochastically considering the process as a `black-box' entity.

This method considers the probability distribution for one, some or all the uncertain parameters,

and can therefore better re�ect the actual system behaviour. It aids in determining how sensitive

the output is to variation of the input parameters. The parameters involved are presented in variety

of scenarios considering hourly, daily, seasonal, and annual patterns, which provides more accurate

estimate of true system conditions. Fig. 1.3 a visual description of the uncertainaty analysis frame-

work. The model inputs de�ned are characterized by their uncertainty characteristics. The model

inputs are then fed through the model (e.g. monte carlo simulation, polynomial choas methods,

probabilstic colloation method, etc) and the resulting output is estimated with uncertainty analy-

sis, e.g. by calculating the statistics like mean, variance, con�denece intervals, etc or by building

histograms, probability distriubtion of the output variables.

Figure 1.3. High level visualization of probabilistic approach framework.

IB-RERs are connected in both small-scale and large-scale in the power grids. The small

renewables upto 5 MW are connected to the distribution grid where load is served. The distributed

generation are either residential (generated behind the meter) or community-scale generation (con-

nected to the grid via distriubtion lines). The utility-scale generation is usually greater than 20 MW,

connected to the grid through transmission lines. Both types of integration of IB-RERs have op-

erational and economic advantages to the customers and the utility operators. The distributed

generation integration can signi�cantly reduce energy losses and avoid investments on transmission

and distribution infrastructure. The utility-scale generation have a larger economic bene�t and

its centralized nature makes it easier for grid operators to control and supervise the generation

and transmission. Regardless of where IB-RERs are located in the grid, the intermittent nature

of IB-RERs create challenges in the operation of the grid due to stochasticity in generation and
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meeting the load requirements. As the generation is highly unpredictable, the operators need to

quickly respond and control to accomodate the changing generation patterns. To provide proper

representation of variability in generation in any part of the grid, this dissertation uses probabilistic

approach to model uncertainty in power system studies.

1.2. Motivation

The motive of this work is to encourage power system planners and operators to incorporate

the uncertainty into their system studies. This work presents a probabilistic method-based uncer-

tainty characterization in power distribution systems considering three uncertain parameters, wind,

solar and load changes simultaneously. For the utility-scale generation, this work focuses on quan-

tifying the grid-strength of the grid connected with the intermittent IB-RERs using probabilistic

method. Further, this dissertation also studies the impacts of the transmision-level disturbances on

IB-RERs during fault conditions, emphasizing the need of better modeling in power system stud-

ies. The following sections discusses about various challenges addressed and contribution of this

dissertation on those issues.

Increased penetration of IB-RERs and electronic loads pose operational challenges for tra-

ditional distribution systems. This intermittent nature of the IB-RERs could produce signi�cant

impact on various entities in the network like power �ows, voltage pro�les and losses. Modeling

uncertainties plays a vital role to provide insights for decision-making to maintain stable operation

of the distriubtion network. To model the uncertain parameters and investigate its impacts on the

distribution network, Chapter 2 demonstrates probabilistic approach of modeling uncertainties in

generation and demand, using probabilistic collocation method (PCM). PCM is used to approx-

imate the output response in terms the uncertain input parameters by identifying a good set of

simulations for correctly and robustly determining the relationship [4].

Additionally, the integration of electronic based IB-RERs such as wind, solar and storage

units equipped with complex fast-acting control systems to the weaker portion of the grid has been

challenging for grid planners and operators. If the grid is weak, voltage reference is less stable in

a grid-following inverter based generation, which in turn a�ects the controls and dynamics that

disrupts the overall system behavior. The integration of IB-RERs into a weak grid requires grid

strength assessment in order to evaluate the possible instability and reliability risks. However,

the impact of intermittent nature of these IB-RERs on grid strength has not been explored yet.

5



In order to account for the uncertaintites, a probabilistic approach for grid strength assessment is

proposed under uncertain operating conditions by integrating PCM with grid strength metrics. The

assessment provides statistical information which will aid in visualization of worst-case scenarios for

the grid strength and formulates the range of grid strength metric that is achieved with minimum

and maximum power injected by the integration of IB-RERs.

Along with the increased penetration of IB-RERs in power grid, IB-RERs like solar PV

system experience various dynamics due to trnsmission grid disturbances [5] .Recently, the North

American Electric Reliability Corporation (NERC) has reported a series of similar events of the

unintended loss of solar generation in Southern California over a large geographic area following the

transmission-level disturbances [6, 7, 8, 9]. These events highlight the importance of understanding

the characteristics of the transmission-level disturbances propagating into the distribution systems

and their impacts on the operation of IB-RERs. Therefore, to generate realistic transmission-level

disturbances and investigate their impacts on the solar PV operation under di�erent fault types

and locations, solar penetration levels, and loading levels, a realistic testebed is developed in a real-

time digital simulator. Such impact studies will help the operators and manufacturers to gather

information for stability studies in power grid with higher penetration of IB-RERs and understand

the sensitivities of IB-RERs' peformance especially during abnormal conditions.

1.3. Contributions

In summary, the contributions of the dissertation can be listed as follows.

1. To encourage inclusion of stocahsticity in power system modeling in distriubtion as well as

transmission network, and de�ne/predict operational probabilstic boundaries subjected to

uncertainties, PCM is proposed to model the relation of renewable power uncertainties with

various network parameters important for power system planning and operation with modeling

accuracy and reduced computational burden.

2. Grid strength assessment with high penetration of RERs helps to identify the potential weak

grid issues. However, the grid assessmnet techniques in the literature do not consider the in-

termittency of IB-RERs and lacks probabilistic representation of the grid strength assessment

to consider all the possible scenarios for preparedness against systam instability. This work

for the �rst time provides probalistic model to predict the grid strength metrics and allows
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the planners and operators to analyze the grid strength under uncertain operating conditions.

Furthermore, to improve the accuracy of the PCM method, K-means clustering technique is

utilized to select the collocation points from historical data of the renewable genration for

better representation of the data. This helps in selection of the representative simulation

samples in uncertainty anlaysis of system with high number of IB-RERs e�ciently.

3. Generic dynamic stability models for fault analysis of the bulk power system do not accurately

re�ect all aspects of the behavior of IB-RERs. Moreover, most of the research is directed

towards the impacts of IB-RERs on the operation of bulk power system. To ensure that

models su�ciently re�ect the behavior of IB-RERs installed, a realistic testbed is utilized to

investigate the transmission-level disturbances on solar PV operation under di�erent operating

conditions.

1.4. Overview of Dissertation

This dissertation consists of the materials in the following chapters that has been published in

peer-reviewed conferences and journals. This dissertation is organized as follows: Chapter 2 presents

the impelementation of probabilstic method for uncertainty analysis in a distribution system by

modeling solar and wind power generation and load uncertainty simulatanoeusly; Chapter 3 involves

proposing a probabilistic assesment of grid strength with IB-RER integration of utlity-scale with

case studies with wind generation and solar generation; Cahpter 4 provides impact analysis of the

transmission-level disturbances on the IB-RERs connected to the distribution side of the grid with

the help of real-time simulation tool. Chapter 5 concludes this dissertation.
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2. UNCERTAINTY ANALYSIS IN DISTRIBUTION SYSTEMS

WITH RENEWABLE RESOURCES
1

2.1. Introduction

Uncertainty modeling techniques are measures of the impact of uncertain input parameters

on the system output response characteristics [11]. In terms of such analysis, the accuracy and

computational times are the most in�uential factors as they determine the e�ectiveness of the

approach when evaluating a real-time operating scenario. Several approaches have been proposed for

modeling uncertain behavior in the bulk power system standpoint [12, 13, 14, 15, 16]. Probabilistic

methods are those in which the probability distribution function (pdf) of the input parameters

is known and based on them the outputs can be predicted stochastically considering the process

as a 'black box' entity. One approach that has recently received popularity is the Probabilistic

Collocation Method (PCM), which is an e�ective tool designed to enable uncertainty analysis of

computationally expensive models at a very low computational cost [4]. It also provides a scalable

computational framework for problems with multiple sources of parallel uncertainty, which requires

no particular e�ort to segment the problem into a very large number of parallel tasks, like in case

of Monte Carlo (MC) method, nor any essential dependency between those parallel tasks.

Multiple uncertain parameters are also considered in PCM for many research studies like

in evaluating air tra�c system performance [17] and in power system stability analysis [18, 16].

Load demand, wind, and solar PV are the most widely used system uncertainties, which have been

predominately modelled by using Normal, Weibull and beta distributions, respectively [19, 20]. This

work introduces PCM based uncertainty characterization in power distribution systems considering

three uncertain parameters, wind, solar and load changes simultaneously.

1This chapter is based on the work published as "Uncertainty Analysis in Distribution Networks Integrated with
Renewables by Probabilistic Collocation Method," 2020 52nd North American Power Symposium (NAPS), Tempe,
AZ, USA, (doi: 10.1109/NAPS50074.2021.9449669) [10]. The authors of the paper are M. Maharjan, A. Banaerjee
and R. G. Kavasseri. M. Maharjan was the �rst author and responsible for writing the manuscript and applying
simulation tests. Dr. R. G. Kavasseri and Dr. A. Banerjee served as the proofreader and gave recommendations and
guidance on drafting the paper.
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2.2. Principle of Probabilistic Collocation Method (PCM)

PCM is an approach using Gaussian quadrature to map the relationship between the uncer-

tain input parameters and the output [12]. It streamlines the relationship between the uncertain

parameters and the desired output by identifying a good set of simulations for correctly and robustly

determining the mapping. The coe�cients of this polynomial mapping equation are determined by

methodically selecting the collocation points [4]. The basic principles of PCM are derived from the

concepts of orthogonal polynomials and Gaussian quadrature integration [4].

2.2.1. Orthogonal Polynomials and Gaussian Quadrature

Two polynomial functions g(x) and h(x) are orthogonal only if their inner product is zero [21].

The inner product of g(x) and h(x) is de�ned as

〈g(x), h(x)〉=
∫
R

f(x)g(x)h(x)dx (2.1)

where f(x) is any non-negative weighting function de�ned in a space A, and it can be represented

with the probability density function (pdf) in PCM. A set of orthogonal polynomial functionsH1(x),

H1(x), . . . , Hn(x) can be de�ned,

〈
Hi, Hj

〉
=

 1, i = j

0, i 6= j
(2.2)

where Hi is a polynomial of order i. For each order i, Hi has exactly i roots within the space of A.

These roots are the collocation points to evaluate the coe�cients of g(x) used in PCM. The (−1)th

and 0th order polynomials are de�ned to be 0 and 1, respectively.

H−1(x) = 0

H0(x) = 1

(2.3)
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Gaussian quadrature integration in (2.1) approximates the numeric value for the integral by

selecting appropriate x values to evaluate g(x) and calculate the integral,

∫
R

f(x)g(x)h(x)dx ≈
n∑
i=1

fig(xi) (2.4)

where fi is the coe�cient determined by the weighting function f(x), and g(xi) is computed based

on xi, which are the roots of the higher orthogonal polynomials selected based on the order of the

PCM model.

2.2.2. PCM with Single Uncertainty

Figure 2.1. PCM with single uncertain parameter.

For a single uncertain parameter x with its pdf f(x), the estimated output Y is a function

of the input uncertain parameter x. The function g(x) maps the relationship between x and Y .

The estimated output in PCM can be written as follows.

Ŷ = ˆg(x)

= k0H0(x) + k1H1(x)+...+kn−1Hn−1(x)

(2.5)

where ki are constant coe�cients, Hi are orthogonal polynomials of uncertain input x, and n is

the order of the PCM model. The coe�cients ki are solved by replacing the estimated output and

orthogonal polynomials for the collocation points.

The collocation points are selected as the roots of the next higher order orthogonal poly-

nomial Hn+1 of the uncertain parameter x for nth order PCM model. This approach allows the

collocation points to traverse the high probability regions of their distribution and to capture the
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behavior of the estimated output to the fullest extent [22]. The coe�cients ki can be solved by,


kn−1

...

k0

 =


Hn−1(x1) · · · H0(x1)

...
. . .

...

Hn−1(xn) · · · H0(xn)


−1 

ĝ(x1)

...

ĝ(xn)

 (2.6)

where x1, . . . , xn are the collocation points, ĝ(x1),...,ĝ(xn) are the responses of the output at

the collocation points, and H0(x), . . . , Hn−1(x) are the orthogonal polynomials calculated at the

collocation points. These coe�cients are replaced in (2.5) to obtain the PCM model. The statistics

of the output response for a given range of the uncertain input parameter can be calculated simply

using these coe�cients. The expected value of output approximation Ŷ is given by,

E[Ŷ ] = E[ĝ(x)] = k0, (2.7)

and the variance of the output approximation is given by,

σ2[Ŷ ] = σ2[ĝ(x)] =
n−1∑
i=1

k2
i . (2.8)

2.2.3. PCM with Multiple Uncertainties

Figure 2.2. PCM with multiple uncertain parameters.

When multiple uncertain parameters x1, x2, . . . , xn with independent pdfs f(x1), f(x2),. . . ,

f(xn) are considered in a system, the approximation for the output can be obtained by,

Ŷ = k0 +
n∑
i=1

[ki1Hi1(xi) + ...+ kimHim(xi)] +
n∑
i=1

n∑
j=1
j 6=i

[klHi1(xi)Hj1(xj)] (2.9)
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where k0, ki1, . . . , kim are the coe�cients, and Hi1(xi), . . . , Him(xi) are orthogonal poly-

nomials for uncertain parameter xi [22]. The model coe�cients can be determined by using the

collocation points similar to that of single uncertain parameter. However , the number of collocation

points for single uncertain parameter is (m+ 1) for mth order PCM model, whereas for n uncertain

parameters is given by [12],

1 +m× n+

n
2

 (2.10)

For PCM modeling with multiple uncertain parameters, the number of simulation samples

required for determining the coe�cients increases dramatically. It is evident that as the number

of input parameters and the order of orthogonal polynomials grow, the size and complexity of the

approximation polynomial functions increases. Therefore, the number of input variables and the

order of polynomials must be relatively small to harness the advantages of the proposed method [13].

2.3. Uncertainty Parameters

2.3.1. Wind Generation

Wind speed largely determines the quality and quantity of wind energy produced. The

�uctuation of wind speed, i.e w, can be modeled as Weibull distribution [20, 23], as shown in (2.11).

pdf(w) =

(
k

c

)(w
c

)k−1
e

[
−(w

c )
k
]

(2.11)

where k is the shape factor and c is the scale factor of the weibull pdf of wind speed. The wind

power generation is de�ned using (2.12),

Pwind(w) =


0, if w ≤ winc

Pr
w−win

c

wout
c −win

c
, if winc < w ≤ woutc

Pr, otherwise

(2.12)

where winc and woutc are the cut-in, rated and cut-out wind speed, Pr is the rated power of wind

generator, and P (w) is the generated power by wind turbine. The Weibull distribution based

mapping, as shown in Fig.2.3, depicts the stochastic nature of wind speed with respect to wind

generation based on di�erent values for the shape factor and scale factor of the pdf.
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Figure 2.3. Wind speed represented by Weibull distribution.

Figure 2.4. Solar irradiance represented by Beta distribution.

2.3.2. Solar Generation

The variation of irradiance data is modeled as beta distribution [24]. Equation (2.13) rep-

resents the pdf for solar irradiance.

pdf(s) =



Γ(α+β
Γ(α)Γ(β) × s

(α−1)×

(1− s)(β−1), for 0 ≤ s ≤ 1, α ≥ 0, β ≥ 0

0, otherwise

(2.13)
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where s is solar irradiance in kW/m2. α and β are parameters of the beta pdf. The power

generated from a PV module depends on solar irradiance, ambient temperature and the module

characteristics [16]. The equations in (3.20) are used to �nd the power generated by the PV module.

PPV (s) = N × FF × V (s)× I(s)

FF =
VMPP × IMPP

Voc × Isc

V (s) = Voc −Kv × Tc

I(s) = sa × [Isc +Ki(Tc − 25)]

Tc = TA + sa ×
NOT − 20

0.8

(2.14)

where Tc is the cell temperature in ◦C, TA is the ambient temperature in ◦C, Kv, Ki are voltage

and current temperature coe�cient [V/◦C, A/◦C], respectively, NOT is the nominal operating

temperature of PV cell in ◦C, FF is the �ll factor, Isc is the short circuit current, Voc is the

open circuit voltage, IMPP and VMPP are the current/voltage at maximum power point, and sa is

the average solar irradiance. Fig. 2.4 depicts the beta probability distribution for variation of solar

irradiance with di�erent values of α and β.

2.3.3. Loading

The active power component of the load is modeled as by normal pdf as shown in (2.15),

pdf(PL) =
1√

(2πσ)
e(−(PL − µ)2

2σ2
) (2.15)

where PL is the active power demand, and µ and σ are the mean and standard deviation of the

demand respectively.

2.4. Case Studies

The IEEE 13 bus test system is modi�ed to include the uncertain parameters and demon-

strated the proposed application of PCM. There are total eight unbalanced spot loads and one

distributed load in the highly loaded 4.16 kV feeder. The details of the system data can be found

in [25]. The feeder is built in MATLAB/Simulink with the help of library models [26]. Three

di�erent cases with increasing number of uncertain parameters is studied and the line �ows near

the uncertain generation and/or consumption, and the total losses of the system are observed using
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both MC simulation with 2000 iterations as well as PCM modeling technique. The simulation was

carried out using High Performance Computing (HPC) in the thunder cluster of advanced research

computing resources at North Dakota State University (NDSU).

Figure 2.5. IEEE 13 bus system with wind and solar generation.

2.4.1. Uncertainty in Wind Speed

The wind speed of the wind generating farms located at bus #1 is taken as the uncertain

parameter and active power line �ow from bus #1 to bus #633, and the total active power loss are

examined as the desired output independently. Here, for modeling the uncertainty of wind turbine,

random wind speed samples are generated with the Weibull distribution, then corresponding wind

power is determined using the speed power curve of the wind turbine as shown in (2.12). The shape

and scale parameters of the wind speed are considered as k=5.6340 and c=1.9526. The nominal

wind speed is 12.5 m/s, and the minimum and maximum operating wind speed are 3 m/s and

15 m/s respectively for the 500 kW rated power of the wind turbines.
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Based on the Gram-Schmidt process [21], we can derive the �rst few orthogonal polynomials

as,

H1(w) = w − 5

H2(w) = w2 − 11.7719w + 26.7273

H3(w) = w3 − 20.3050w2 + 110.6824w − 154.2638

(2.16)

Figure 2.6. Comparison of active power �ow distributions in phase A of line 1-633: (a) Monte Carlo
(b) Probabilistic Collocation Method (PCM).

Figure 2.7. Comparison of total active power loss: (a) Monte Carlo (b) Probabilistic Collocation
Method (PCM).
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The roots of these orthogonal polynomials are used to evaluate the coe�cients of the PCM

approximation. The response from the obtained collocation points and the orthogonal polynomials

are utilized to form the linear and quadratic equations. The mean and variance of the desired

outputs from the PCM mapping and Monte Carlo simulation with 2000 sample points are presented

in Table 2.1. The mean of both linear and quadratic PCM approximation are almost close to the

mean obtained from MC simulation. Also, the quadratic approximation gives better results than the

linear approximation. However, the variances can be seen are varying between the MC simulations

and PCM. From the Fig. 2.6 and Fig. 2.7, it can be seen that PCM can predict the probability of

the output signi�cantly, since the mapping was done with regards to the high probability region.

Table 2.1. Mean and variance for uncertainty in wind speed

Monte Carlo PCM -Linear PCM- Quadratic

Flow µ σ2 µ σ2 µ σ2

1-633[A] 0.8491 0.9522 0.7410 0.1838 0.8341 0.1097
1-633[B] 0.8121 0.8179 0.7134 0.1691 0.8860 0.1489
1-633[C] 0.8885 1.0630 0.7507 0.1840 0.942 0.1695
Loss 1.1216 2.1905 1.0210 0.0605 1.4431 0.4585

2.4.2. Uncertainty in Wind Speed and Loading

The wind speed of the wind generation located at bus #1 and the load situated at bus #611

are taken as the two input uncertain parameters. The load at bus #611 is a single phase load at

phase C of the unbalanced system. The load uncertainty follows normal distribution with µX=2

and σX=1. The normally distributed parameter X can be represented as [13],

X = µX + σX(H1(ζ)) (2.17)

where µX and σX are the mean and standard deviation of the uncertain parameter X, and H1(ζ)

represents the �rst order orthogonal polynomial of the standard normal distribution ζ. The orthog-
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onal polynomials of ζ are given by the Hermite polynomials.

H1(ζ) = ζ

H2(ζ) = ζ2 − 1

H3(ζ) = ζ3 − 3ζ

(2.18)

Table 2.2. Mean and variance for uncertainty in wind speed and loading

Monte Carlo PCM -Linear PCM- Quadratic

Flow µ σ2 µ σ2 µ σ2

684-611 3.3181 2.4099 3.2830 2.6354 3.2830 2.6343
1-633[C] 0.8951 1.2101 0.7507 0.1840 0.9108 0.1459
Loss 1.2076 2.0533 1.1054 0.0677 1.7899 0.8792

Now using (2.10), we can �nd the number of collocation points required to model the PCM

model. The roots of the orthogonal polynomials of both the uncertain parameters are used to choose

collocation points. The collocation points pairs are selected in such a way that at least one highest

probability value of uncertain parameters is included. The statistics of the results for this case is

shown in Table 2.2. The variances for line �ow 684 − 611 are signi�cantly accurate as the data is

consistently unidirectional unlike the other two variables.

2.4.3. Uncertainty in Wind Speed, Loading and Solar Irradiance

Three uncertain parameters - wind generation, loading and solar generation, are taken into

consideration. The solar generation is located at bus #680 with rated power of 500kW. The shape

parameters of solar irradiance are considered as α = 6.38 and β = 3.43. For the characteristics of

PV module, the values taken are Isc = 5.32A, Voc = 21.98V, IMPP = 4.76A, and VMPP = 17.32V.

The temperature coe�cients are kv = 14.40 mV/◦C and ki = 1.22 mA/◦C. The nominal operating

temperature of PV cell NOT = 43◦C. The orthogonal polynomials generated for solar irradiance s
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using [27] are as follows:

H1(s) = s− 0.3751

H2(s) = s2 − 0.7863s+ 0.1359

H3(s) = s3 − 1.2201s2 + 0.4472s− 0.0478

(2.19)

These orthogonal polynomials along with the ones for wind speed and loading are used to

model PCM equations by simulating few collocation points. The results are summarized in Table 2.3

which shows comparable means for both variables. The variances are at ballpark, that might be

due to the nature of bidirectional �ows in the network, which is not completely captured by the

PCM model.

Table 2.3. Mean and variance for uncertainty in three parameters

Monte Carlo PCM -Linear

Flow µ σ2 µ σ2

680-671[C] 0.4611 0.0357 0.3089 2.2281
Loss 1.1413 1.8331 1.0859 0.0781

Finally, Table 2.4 compares the computational time for the MC and the PCM based methods,

clearly depicting the advantage of proposed PCM based uncertainty modeling approach which is

able to approximate the ouptut in signi�cantly lesser time.

Table 2.4. Computation time for Monte Carlo and PCM

Method Monte Carlo PCM : 2 samples PCM : 3 samples

CPU time (s) 1310.20 8.51 12.39

2.5. Summary

Uncertainty in IB-RER like wind speed, loading and solar irradiance were introduced using

Weibull, Normal and Beta distribution respectively in a distribution test bed. Probabilistic Collo-

cation Method (PCM) was used to model these uncertain input parameters and approximate the

line �ows and total loss of the test system. The output from the approximation was compared with
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multiple Monte Carlo simulation runs. The results depict that the model was able to achieve accu-

rate mean and ballpark variance of the output variables. As the number of uncertain parameters

increase, the PCM mapping becomes more complex due to increase in number of collocation point-

pairs and model coe�cients. A quick estimate can be made using PCM with signi�cantly smaller

number of model runs than Monte Carlo before leveraging time and cost for detailed computational

analysis.

20



3. PROBABILISTIC GRID STRENGTH ASSESSMENT FOR

TRANSMISSION SYSTEMS WITH HIGH PENETRATION

OF RENEWABLE RESOURCES
1

3.1. Introduction

Many inverter-based renewable energy resources (IB-RERs) are integrated onto the electric

power grid in the world to reduce greenhouse gas emissions. Most renewable energy resources are

interfaced with the power grid through power electronic inverters. While the IB-RERs supply clean

energy to electricity customers, they are also challenging grid planning and operation. The IB-

RERs provide expected real and reactive power based on the electronic controls, which separate the

power source from the grid. These controls, may in turn, depend on a stable voltage reference from

the grid. As the grid is weakened, the voltage reference becomes less stable, and control dynamics

and tuning become increasingly in�uential on overall system behavior [29]. Wind and solar power

are di�erent from most thermal generators since they have variable and uncertain power output

determined by local weather conditions. The weak grid issues may become prominent due to the

variability and uncertainty of IB-RERs [30, 31].

Potential weak grid issues are usually analyzed and identi�ed based on grid strength assess-

ment. In the assessment, short-circuit ratio (SCR) is an index recommended by North American

Electric Reliability Corporation (NERC) to quantify the grid strength [29, 32]. The commonly used

SCR calculation method ignores the interactions among IB-RERs and thus may cause an inaccu-

rate estimation of grid strength at points of interconnection for IB-RERs [29, 33]. To consider the

e�ect of IB-RERs interactions on grid strength, several new methods have been developed, such

as the weighted short-circuit ratio (WSCR) method developed by the Electric Reliability Council

of Texas [33] and the composite short-circuit ratio (CSCR) method developed by GE Energy Con-

1This chapter is based on the work submitted as "Probabilistic Grid Strength Assessment of Power Systems
with Uncertain Renewable Generation based on Probabilistic Collocation Method," 17th International Conference on
Probabilistic Methods Applied to Power Systems (PMAPS) [28] and journal being drafted as "Uncertainty Evaluation
Method for Grid Strength Analysis Under Uncertain Renewable Generation ". The authors of the paper are M.
Maharjan, A. Ekic and D. Wu. M. Maharjan was the �rst author and responsible for writing the manuscript,
developing the methodology, and implementing the case studies for simulation results. A. Ekic assisted in ver�cation
of the results and writing the manuscript, and Dr. D. Wu gave guidance on the methodology, provided resources and
wrote the manuscript.
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sulting [34]. Both the CSCR and the WSCR methods do not consider the real electrical network

connections among IB-RERs, which may not re�ect the actual strength of the grid at the POIs.

Also, both the CSCR and WSCR methods mainly provide the aggregated strength of a power grid

in the area where the IB-RERs are interconnected electrically close, but they do not calculate the

strength of the grid at each individual POIs in the speci�c area. To overcome those shortcomings,

the site-dependent short-circuit ratio (SDSCR) method is proposed in [35] by analyzing the rela-

tionship between grid strength and voltage stability. However, SDSCR does not consider the impact

of the shunt capacitors at POIs on grid strength. To consider the impacts of capacitor compen-

sation for grid strength assessment, [36] proposed a novel method for evaluating the grid strength

using e�ective site-dependent short-circuit ratio (ESDSCR). This method considers the interactions

between the IB-RERs and between the shunt capacitors at POIs of IB-RERs.

Although various methods have been proposed to improve grid strength assessment, it is still

challenging to evaluate grid strength while considering the impact of uncertain renewable generation.

Commonly, Monte Carlo simulation (MCS)-based methods are used to obtain the possible states

of IB-RERs [37, 38, 39]. However, when integrating MCS with the SDSCR-based method, its

computational cost is expensive. Moreover, the computation cost is signi�cantly increased when

considering the impact of IB-RER interaction on grid strength assessment in power systems with

high penetration of IB-RERs.

To address the challenges, the paper proposes a probabilistic approach for grid strength

assessment of power systems under uncertain renewable generation by integrating the probabilistic

collocation method (PCM) with the SDSCR-based method and the ESDSCR-based metod. The

PCM has been studied for uncertainty analysis in numerous power system studies [12, 4, 22, 13, 40].

The PCM is used to establish the probabilistic approximation function to model the impact of

uncertain renewable generation. Since the PCM can obtain accurate results using a small set of

simulations, this method can be potentially used to save the computational cost.

3.2. Grid Strength Assessment

Grid strength assessment can help grid engineers identify and understand �weak� grid issues

for reliably planning and operating the power grid. Grid strength is a characteristic of an electrical

power system that relates to the size of the change in voltage following a fault or disturbance on the

power system [41]. It helps to quantify the e�ect of integration of IB-RERs on power grid stability
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and operation. The stronger a grid is, the less risks the grid will have for weak grid issues. The

strength of a power grid at a point of interconnection (POI) is commonly quanti�ed by SCR, which

is the ratio of the short circuit capacity at the POI to the rated capacity or injected power from the

IB-RER [42]. That is,

SCRi =
|Sac,i|
PR,i

=
|VR,i|2

PR,i
.

1

|ZR,i|
(3.1)

where symbol |.| indicates the magnitude of a complex quantity; Sac,i = |VR,i|2/|Zi| is the short-

circuit capacity of the grid at POI i; VR,i is the voltage at POI i; Zi is the Thevenin equivalent

impedance seen at POI i; and PR,i is the rated capacity or injected power from the IB-RER at POI

i.

The SCR de�ned in (3.1) does not account for the interactions among multiple IB-RERs.

Especially, when IB-RERs are electrically close, the interactions have signi�cant impacts on the

strength of their POIs. To include the impact for grid strength assessment, SDSCR was proposed

in [35] by analyzing the relationship between the SCR and voltage stability in a power grid with a

single IB-RER and then extending this relationship to a power grid with multiple IB-RERs. The

SDSCR is de�ned as [35],

SDSCRi =
|VR,i|2

(|PR,i +
∑

jεR,j 6=iwijPR,j |)|ZRR,ii|
(3.2)

wij =
ZRR,ij
ZRR,ii

.

(
VR,i
VR,j

)∗
(3.3)

where R is the set of all POIs connected to IB-RERs; ZRR,ij is the (i
th, jth) element in submatrix of

bus impedance matrix that is only related to buses connected to IB-RERs; and symbol * indicates

the complex conjugate of a complex quantity.

The SDSCR de�ned in (4.1) takes into account the impact of the interactions among IB-

RERs on the grid strength at POI i by interaction factors wij , which includes two ratios: the ratio

of electrical distance ZRR,ij/ZRR,ii and the ratio of conjugated voltages V ∗R,i/V
∗
R,j . The SCR in

(3.1) can be considered as a special case of the SDSCR when only one IB-RER is connected to the

power grid. Thus, the ranges of SCR for grid strength evaluation can also be applied to SDSCR.
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That is, the grid is strong at a POI if its SDSCR value is larger than 3; the grid is weak at a POI

if its SDSCR value is between 2 and 3; and the grid is very weak at a bus if its SDSCR value

is smaller than 2 [43]. As shown in (4.1), the SDSCR is related to renewable generation PR,i at

di�erent POIs. When the renewable generation is uncertain, the SDSCR evaluation is required for

all feasible uncertain scenarios, which is computationally daunting. To address the challenge, the

paper proposes a probabilistic approach by integrating the PCM with the SDSCR-based method to

reduce computational cost compared with the MCS.

Morever, SCR does not include the e�ect of the reactive power compensation from the shunt

capacitor at the buses for measuring the grid strength. To account for the impact of shunt capacitor,

the grid strength is calculated using e�ective short circuit ratio (ESCR), which is de�ned as [44],

ESCRi =
|Sac,i − jQc,i|

PR,i
(3.4)

where Qc,i = |VR,i|2/|Xc| is the reactive compensation from shunt capacitor at POI i.

Eventhough ESCR de�ned in (3.4) considers the impact of the reactive power compensation

from shunt capacitor at POI on grid strength, it fails to account for the interactions among the

capacitors and the interactions among multiple IB-RERs in a power grid. Especially, when IB-RERs

are electrically close, the interactions have signi�cant impacts on the strength of their POIs. To

include these impacts for grid strength assessment, the e�ective site-dependent SCR (ESDSCR) was

proposed in [36] by establishing the relationship to express the impacts of interconnected capacitors

on voltage stability in a power grid with a single IB-RER and then extending this relationship with

multiple IB-RERs. The ESDSCR is de�ned as [36],

ESDSCRi =
|Sac,i − jQceq,i|

PReq,i

=
|Sac,i − jQc,i −

∑
jεR,j 6=i αijjQc,j |

(|PR,i +
∑

jεR,j 6=i βijPR,j |)
(3.5)

αij =
ZRR,ij
ZRR,ii

.

(
VR,j
VR,i

)
(3.6)
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βij =
ZRR,ij
ZRR,ii

.

(
VR,i
VR,j

)∗
(3.7)

where R is the set of all POIs connected to IB-RERs; ZRR,ij is the (i
th, jth) element in submatrix of

bus impedance matrix that is only related to buses connected to IB-RERs; and symbol * indicates

the complex conjugate of a complex quantity.

The ESDSCR de�ned in (3.5) takes into account the impact of the interactions among IB-

RERs and capacitors on the grid strength at POI i by interaction factors αij and βij . The ESDSCR

at bus i accounts for the reactive compensation from the shunt capacitor connected at bus i (Qc,i)

and the reactive compensation from other capacitors in di�erent locations (Qc,j) with the interaction

factor αij as de�ned in (3.6). Moreover, ESDSCR at bus i utilizes the real power injected by the

IB-RER directly connected to bus i (PR,i) and the real power injection from other IB-RERs at

di�erent locations in the power grid (PReq,i), scaled by the interaction factor βij as de�ned in (3.7).

The ESCR in (3.4) can be considered as a special case of the ESDSCR when only one shunt

element is connected to one IB-RER in the power grid in (3.4). Thus, the ranges of ESCR for

grid strength evaluation is also relevant to ESDSCR. For instance, if the ESDSCR value is larger

than 3 (ESDSCR > 3), then the power grid is strong at a POI ; if ESDSCR value is between

2 and 3 (2 < ESDSCR < 3), the grid is weak at a POI; and if ESDSCR value is smaller than

2 (ESDSCR < 2), the grid is very weak at a POI. From (3.5), it is evident that the ESDSCR is

related to renewable generation PR,i at di�erent POIs. ESDSCR values should not only be calculated

for a deterministic scenario, but should be computed for all possible scenarios that can occur in

power grid. When the renewable generation is uncertain, the ESDSCR evaluation is required for

all feasible uncertain scenarios, which is computationally daunting. To address the challenge, this

paper proposes a probabilistic approach by integrating the PCM with the SDSCR-based method

and the ESDSCR-based method to reduce computational cost compared with the MCS.

3.3. K-means Method for Generating Collocation points

PCM method requires fewer number of simulation model runs to �nd the coe�cients of a

good approximation of the output response. This not only saves simulation time but also save

computational burden with respect to MCS method. It is crucial to select these simulation points,

also known as collocation points, accurately as these represent the probabilistic behavior of the
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uncertain parameter [40]. Traditional PCM method selects the collocation points using the roots of

the next higher order orthogonal polynomials for each uncertain parameter [4, 12].

In this dissertation, k-means clustering algorithm is compared with the traditional root

methd for selection of the collocation points. K-means clustering method is a standard algorithm

used for dimensionality reduction which adequately represents the data into smaller sample [45, 40].

This method splits N number of data to k clusters where each data point belongs to the cluster with

the closest centroid, acting as the representative of the overall cluster. Mathematically, it minimizes

the sum of the Euclidean distances between the each data point and the centroid in each cluster,

which is written as,

min

Nk∑
k=1

nk∑
i=1

||ξi − ck||2 (3.8)

where ξi is the collection of data points, ck is the centroid of the k cluster with nk data points, Nk is

the number of clusters, and ||ξi − ck|| is the Euclidean distance (point to cluster distance) between

ξi and ck. Thus, Nk cluster centroid are obtained that includes signi�cant samples of the total data,

and is used to represent the collocation points for better approximation using PCM model. The

algorithm of K-means clustering is applied using the following steps:

1. De�ne the number of the clusters Nk.

2. Choose initial data points as cluster centroids ck.

3. Compute the point to cluster centroid distances of all the data points to each centroid.

4. Reassign the data point to di�erent cluster with minimum point to cluster distance.

5. Calculate the average of the data points of each cluster to obtain k new centroid location.

6. Repeat steps 3)-5) unless the cluster assignments do not change.

3.4. Probabilistic Approximation Method for Grid Strength Assessment Power Grid

Integrated with Wind Energy

To assess grid strength of power systems under variable renewable generation, the grid

strength metric-based method is integrated with the PCM, which models the impact of uncertain

renewable generation probabilistically based on their historical data and evaluates the probabilistic
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results instead of deterministic values. The method is developed under two main case studies. First

case study includes the grid strength metric SDSCR is approximated using PCM with wind power

generation as uncertain renewable genration and in the other case study, the grid strength metric

ESDSCR is approximated using PCM with solar power as uncertain renewable genration. The

modeling, algorithm, and simulations studies for each case is described in details in rest of this

chapter.

3.4.1. Probabilistic Model of Wind Power Generation

The actual historical data can demonstrate the uncertainty characteristic of renewable gen-

eration. For example, uncertain wind generation is related to variable wind speed. Thus, the fore-

casted or the historical data for wind speed can be used for probabilistically modeling the uncertain

feature of wind generation. The mechanical power output P of wind turbine can be calculated

using [46],

P =
ρ

2
×Ar × w3 × Cp(λ, θ) (3.9)

where ρ is the air density, Ar is the area swept by the rotor blades, λ is the tip seed ratio, θ is the

pitch angle, and Cp is the power coe�cient, which is the function of λ and θ, w is the wind speed,

and its uncertainty can be represented by the Weibull distribution below [22],

f(w) =

(
k

c

)(w
c

)(k−1)
e[−(w/c)k] (3.10)

where f is the pdf of the wind speed, k is the shape factor and c is the scale factor of the distribution

of wind speed w. Fig. 3.1 shows the pdf curve of wind speed that is used in this paper.

To derive the orthogonal polynomials of wind speed for the application of the PCM, we

consider the associated Laguerre polynomial which is orthogonal over [0, ∞) with respect to the

weighting function xze−x with an arbitrary real z.

∞∫
0

xze−xL
(z)
i (x)L

(z)
j (x)dx = 0, i 6= j (3.11)

The weighting function for the Weibull distribution can be rearranged to be expressed in

the form of the Laguerre polynomial [22]. Thus, the orthogonal polynomials for the representative
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distribution can be derived by the method described in [27]. Equation (3.11) can be rearranged by

comparing it with the Weibull distribution and is written as in terms of y as a transitional variable.

∞∫
0

y
k−1
k e−yHi(y)Hj(y)dy = 0, i 6= j (3.12)

where

y =
(x
c

)k
(3.13)

Figure 3.1. Probability density of wind speed with Weibull distribution.

Based on (3.12) and the Gram-Schmidt process [21], the orthogonal polynomials for the wind

speed in wind generators can be derived such as the those listed Tabl 3.1, where Gi(y1) represents

the orthogonal polynomials for wind generator 1 and Hi(y2) for wind generator 2. The roots from

Gi(y1) and Hi(y2) is later converted back to relevant wind speeds. Using these wind speeds, the

coe�cients of the approximation model for SDSCR can be evaluated.

28



Table 3.1. Parameters and orthogonal polynomials for wind generators

Wind Generator 1

G1(y1) = y1 − 1.4872
G2(y1) = (y1)2 − 4.9743y1 + 3.6988
G3(y1) = (y1)3 − 10.4615(y1)2 + 26.0197y1 − 12.8986
G4(y1) = (y1)4 − 17.9487(y1)3 + 93.8856(y1)2 − 155.6735y1 + 57.8786
...

Wind Generator 2

H1(y2) = y2 − 1.5454
H2(y2) = (y2)2 − 5.0909y2 + 3.9338
H3(y2) = (y2)3 − 10.6363(y2)2 + 27.0743y2 − 13.9474
H4(y2) = (y2)4 − 18.1818(y2)3 + 96.6942(y2)2 − 164.0871y2 + 63.3973
...

3.4.2. Probabilistic Evaluation of SDSCR

By integrating the PCM with the SDSCR-based method, the main steps of the proposed

approach for probabilistically assessing grid strength of power systems under uncertain renewable

generation can be summarized as follows:

1. Obtain the actual historical/predicted data of uncertain input parameters such as wind speed,

wind power generation, and convert into intermediate variable using (3.11)-(3.12) to obtain

appropriate pdf of uncertain parameters. Evaluate orthogonal polynomial functions from the

obtained pdf based on equations (2.1)-(2.3).

2. Develop the polynomial models of the output response with respect to input variables of

corresponding wind speed in step 1) using (2.5) or (2.9) and unknown coe�cients.

3. Compute the collocation points from the orthogonal polynomials in step 1) and run power

�ow calculation at these points to �nd the corresponding output of SDSCR de�ned in (4.1).

4. Use these collocation points calculated and the corresponding output of SDSCR in step 3) to

obtain the unknown coe�cients of the approximation model for SDSCR developed in step 2)

to assess grid strength under uncertain wind generation.
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3.4.3. Estimating SDSCR using PCM in IEEE 9 bus sytem

The e�cacy of the proposed method for probabilistically assessing grid strength of power

systems under uncertain renewable generation is demonstrated on the modi�ed IEEE 9-bus system

as shown in Fig. 3.2, where two synchronous generators at buses 1 and 2 are replaced with two doubly

fed induction generators (DFIGs). The parameters of the two DFIGs are presented in Table 3.2.

Figure 3.2. The modi�ed IEEE 9 bus system with two DFIGs.

Table 3.2. Parameters for DFIGs

Parameters DFIG 1 DFIG 2

Shape and scale parameters
k1 = 1.95

c1 = 8

k1 = 2.2

c1 = 10.5
Cut-in speed (m/s) 3 3
Cut-out speed (m/s) 15 15
Rated power (MW) 100 50
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The sum- squared-root error (eSSR) is computed as an index for quantifying the approxi-

mation accuracy [22] .

eSSR =

√√√√√ η∑
i=1

(Ŷi − Yi)2f(ϑi)

ηf(ϑ̂)
(3.14)

where Yi is the actual output from the simulation run, Ŷi is the estimated output, η is the collocation

points, f(ϑi) is the joint pdf and f(ϑ) is the pdf of the highest probability collocation point.

3.4.3.1. PCM Simulation in Various Orders

In the case study, the PCM simulation results of SDSCR at buses 1 and 2 with di�erent orders

(1st �4th order) in the approximation model are compared with MCS results. The approximation

errors for each order of approximated model are calculated based on (3.23). Table III compares the

errors, the mean value, the variance value, computational times, and the required simulation runs.

Equations (3.15)-(3.18) shows the 1st �4th order PCM approximations for SDSCR at bus 2 in terms

of transitional variable y shown in (3.12) and (3.13). Fig. 3 shows the pdf curves from MCS and

the approximation models of four di�erent orders for SDSCR at bus 2. Fig. 4 shows the cumulative

distribution function (cdf) curves from MCS and the 3rd and 4th order approximation models for

SDSCR at bus 2.

ĝ(y) = 0.4048y1 + 0.1086y2 + 2.3751 (3.15)

ĝ(y) = −0.1243y2
1 + 1.4432y1 − 0.6702y2 + 0.3126y1y2 + 3.2943 (3.16)

ĝ(y) = 0.0289y3
1 − 0.51033y2

1 + 0.9942y2
2 + 2.8807y1 − 3.8206y2 − 0.6954y1y2 + 4.9415 (3.17)

ĝ(y) = 0.0134y4
1−0.3405y3

1−0.3534y3
2+2.5740y2

1+4.0564y2
2−5.9685y1−10.0699y2+0.7323y1y2+4.9415

(3.18)
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Figure 3.3. Probability distribution function (pdf) plot for SDSCR at bus 2.

Figure 3.4. Cumulative probability function (cdf) plot for SDSCR at bus 2.

It can be observed from Fig. 3.3 and Fig. 3.4 as well as Table 3.3 that the 3rd approximation

model provides a better estimation of SDSCR than the 1st, 2nd, or 4th order PCM models under

uncertain wind generation. As shown in Fig. 3.3 and Fig. 3.4, the 3rd and 4th order PCM models

provide estimated pdfs and cdfs closer to the those from MCS than the 1st and 2nd order models.
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Moreover, Table 3.3 shows the means and variances from the 3rd order PCM model (i.e., 3.67 and

2.54) and the 4th order PCM model (i.e., 3.66 and 4.08) are closer to those from MCS (i.e., 3.91

and 3.19) than those of the 1st and 2nd order PCM models. By comparing the 3rd with the 4th

order PCM models, the 3rd order PCM model has the mean and variance closer to those from

MCS, though the 3rd with the 4th order PCM models have similar errors (i.e., 0.2820 and 0.2714).

Moreover, the 3rd PCM model takes less time and e�ort than the 4th PCM model. Thus, the 3rd

PCM approximation model provides a better estimation of SDSCR.

Table 3.3. Comparison of MCS with PCM models for SDSCR

MCS PCM 1st PCM 2nd PCM 3rd PCM 4th

mean 3.91 2.72 3.25 3.67 3.66
variance 3.19 0.78 0.85 2.54 4.08
eSSR - 0.6280 0.4934 0.2820 0.2714
runs 5000 3 8 15 24
time(s) 102.71 4.32 4.91 5.11 5.91

Furthermore, it can be seen from Fig. 3.3 and Fig. 3.4 as well as Table 3.3 that the proposed

method for probabilistic grid strength assessment can save a substantial amount of computational

time compared with traditional MCS. As shown in Table 3.3 and Fig. 3.3 and Fig. 3.4, the MCS

requires 5000 simulations to obtain the pdf of SDSCR for given range of uncertain parameters, while

the 3rd order PCM model requires only 15 simulation runs for approximating the pdf of SDSCR

with the same level of accuracy. The time taken from MCS is also almost 20 times larger than that

from the PCM model for SDSCR.

3.4.3.2. Estimating SDSCR for Di�erent Wind Penetration

Further, the proposed approach is used to analyze the e�ect of uncertain wind generation

on grid strength. SDSCR is estimated when wind power penetration is increased from 20% to 40%

of total load power in the system. Fig. 3.5 shows the cdf of SDSCR at bus 2 for di�erent wind

penetrations based on the 3rd order PCM model. Table 3.4 shows the statistic results.

It is observed from Fig. 3.5 and Table 3.4 that the increasing penetration of wind power

leads to more uncertain behaviors a�ecting the grid strength. As shown in Fig. 3.5, the values

for SDSCR lies approximately between 2.5 and 15 for lower wind power penetration (i.e., 20%
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Figure 3.5. Cumulative distribution function (cdf) plot for SDSCR at bus 2 with di�erent wind
power penetrations using the 3rd order PCM model.

Table 3.4. Statistics for SDSCR with di�erent wind power penetration using 3rd order PCM model

Wind Generation
40% of total load

(150 MW)

20% of total load

(75 MW)

mean 3.7488 6.9966
variance 1.9419 7.8545

penetration), whereas for higher wind penetration (i.e., 40% penetration) SDSCR lies between 1.5

to 7.5. This indicates that the risk of weak grid conditions increases with the penetration of wind

generation. Also, Table 3.4 shows that the means and variances for SDSCR has reduced after

increasing the wind penetration. This implies that the increasing penetration of uncertain wind

power has signi�cant impact on grid strength. The proposed approximation method can quantify

the uncertainty impact on grid strength by calculating the means and variances of SDSCR under

uncertain renewable generation.
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3.5. Probabilistic Approximation Method for Grid Strength Assessment Power Grid

Integrated with Solar Energy

The grid strength of a power grid is increasingly a�ected by the uncertain behavior of

IB-RERs. To quantify the change of the grid strength under intermittent renewable generation,

the ESDSCR-based method is integrated with the PCM, which models the impact of uncertain

renewable generation probabilistically based on their historical data and evaluates the probabilistic

results instead of deterministic values.

3.5.1. Probabilistic Model of Solar Power Generation

The historical or the predicted data unique to the installation site can demonstrate the

uncertainty characteristic of renewable generation. Here, the uncertain parameter is taken as PV

generation, which is a function of the PV irradiance. Thus, the e�ect of PV irradiance on the ESD-

SCR metric of grid strength is discussed and evaluated. The forecasted or the historical data for PV

irradiance can be used for probabilistically modeling the intermittent nature of PV generation. The

actual PV irradiance data from 2015 to 2020 retrieved from the NREL database [47] to accurately

represent the probability models of PV irradiance. Like in many studies [19], the variation of irradi-

ance data is modeled as beta distribution. For example in Fig. 3.6, the beta distribution is used to

�t the histogram of the �ve years long raw data of PV irradiance at 12 pm. The shape parameters

a and b from the beta distribution �t are obtained as 2.3318 and 2.1218 respectively, which is used

to represent the irradiance distribution of solar farms. Here, the probabilistic modeling of the input

PV irradiance is treated as independent probability distributions. Equation (3.19) represents the

pdf for solar irradiance.

pdf(ξ) =



Γ(a+b)
Γ(a)Γ(b) × ξ

(a−1)×

(1− ξ)(b−1), for 0 ≤ ξ ≤ 1, a ≥ 0, b ≥ 0

0, otherwise

(3.19)

where ξ is solar irradiance in kW/m2, Γ(.) is the Gamma function, and a and b are parameters of

the beta pdf.

The power generated from a PV module depends on solar irradiance, ambient temperature

and the module characteristics [16]. The equations in (3.20) are used to �nd the power generated
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Figure 3.6. Beta distribution �t for solar irradiance at 12 pm of NREL data.

by the PV plant [48]. Note that the PV cell temperature is neglected.

PPV (ξ) =


PR

(
ξ2

ξstdξc

)
, 0 < ξ < rc

PR

(
ξ
ξstd

)
, ξ > rc

(3.20)

where ξstd is the solar irradiance in standard environment (1000 W/m2), ξc is the minimum solar

irradiance (150 W/m2), and PR is the rated output power of the PV farm.

To derive the orthogonal polynomials of the PV irradiance for the application of the PCM,

we consider Jacobi polynomial which is orthogonal over [-1,1] with respect to the weighting function

(1− x)α(1 + x)β with α > −1 and β > −1.

1∫
−1

Pi(x)Pj(x)(1− x)α(1 + x)βdx = 0, i 6= j (3.21)

The weight function for Jacobi polynomials can be rearranged to represent the density

function of a beta distribution [49]. The orthogonal polynomials for the representative distribution

can be derived by the method described in [50]. Equation (3.21) can be rearranged by comparing it

with the Jacobi polynomials and is written as in terms of y as a transitional variable in the equation
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given below:
1∫

0

Pi(1− 2y)Pj(1− 2y)(y)α(1− y)βdy = 0, i 6= j (3.22)

In (3.22), x = 1−2y and y is a random variable with the parameters for beta distribution is

α+ 1 and β + 1. Using (3.22) and the Gram-Schmidt process [51], the orthogonal polynomials for

the PV irradiance for the solar generators can be derived. These orthogonal polynomials are used

to obtain the collocation points in the traditional method and to build the approximation model

for grid strength in terms of irradiance.

To demonstrate the use of k-means clustering method to obtain the collocation points,

Fig. 3.7 shows the outcome of k-means clustering method used in the PV irradiance at 12 pm for

NREL data shown in Fig.3.6. The PV irradiance is divided into six clusters and it can be seen

that each cluster centroid (denoted as X) represents the range of irradiance data of each cluster.

The cluster centroids obtained are {179.83, 403.61, 528.95, 665.89, 791.15, 909.06} W/m2, that

are utilized as collocation points for model runs to determine the coe�cients of the approximation

model.

Figure 3.7. Clusters of solar irradiance using k-means clustering method.
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3.5.2. Probabilistic Evaluation of ESDSCR

Fig. 3.8 presents the �owchart for generalized approach for probabilistically evaluation of

grid strength of power system. A detailed approach for assessing grid strength quanti�ed in terms

of ESDSCR under uncertain solar generation using the PCM can be summarized as follows:

1. Obtain the actual historical/predicted data of uncertain input parameters such as solar irra-

diance, solar power generation and convert into intermediate variable using (3.21)-(3.22) to

obtain appropriate pdf of uncertain parameters. Evaluate orthogonal polynomial functions

from the obtained pdf based on equations (2.1)-(2.3).

2. Develop the polynomial models of the ESDSCR metric (output response) with respect to

uncertain input variables of corresponding solar irradiance in step 1) using (2.5) or (2.9) and

unknown coe�cients.

3. Compute the collocation points using k-means clustering method and run power �ow cal-

culation at these points to �nd the corresponding output response of ESDSCR de�ned in

(3.5).

4. Utilize these collocation points calculated and the corresponding output of ESDSCR in step

3) to obtain the unknown coe�cients of the approximation model for ESDSCR developed in

step 2) to assess grid strength under uncertain solar generation.

3.5.3. Comparison of K-means Clustering and Traditional Root Methods

The e�cacy of the K-means clustering method for collocation points selection is demon-

strated on the modi�ed IEEE 9-bus system as shown in Fig. 3.9, where two synchronous generators

at buses 1 and 2 are replaced with two solar farms with 100 MW and 50 MW rated power respec-

tively. The parameters of the beta pdf for these solar farms are obtained from the �tting of the

irradiance at 12 pm and 1 pm of NREL data. The values of the parameters for the beta pdf and

the orthogonal polynomials for the respective irradiance of the solar farms are listed in Table 3.5,

where Hi(y1) represents the orthogonal polynomials for solar farm 1 and Gi(y2) for solar farm 2.

The roots from Hi(y1) and Gi(y2) is later converted back to relevant solar irradiance.
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Start

Determine the pdf from the historical 

data of renewable generation

Construct orthogonal polynomials for 

the renewable generation

Create the PCM model for grid 

strength metric 

End

Generate collocation points using      

K-means clustering method

Run model on collocation points and 

calculate the grid strength metric from 

model runs 

Solve the PCM model and check for 

the approximation error

Figure 3.8. Flowchart of probabilistic approximation method for grid strength assessment.
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Figure 3.9. Modi�ed IEEE 9 bus system with two solar farms.

Table 3.5. Parameters and 0rthogonal polynomials for solar farms

Solar farm 1 (a = 2.33 &b = 2.12)

H1(y1) = 2.225y1 + 0.105
H2(y1) = 4.3940y1

2 + 0.28612y1 − 0.8007
H3(y1) = 8.4592y1

3 + 0.6306y1
2 − 3.3886y1 − 0.1019

H4(y1) = 16.1893y1
4 + 1.3013y1

3 − 10.2355y1
2 − 0.4775y1 + 0.6835

...

Solar farm 2 (a = 2.12& b = 1.71)

G1(y2) = 1.915y2 + 0.205
G2(y2) = 3.5198y2

3 + 0.4950y2 − 0.7077
G3(y2) = 6.4954y2

3 + 1.0203y2
2 − 2.7918y2 − 0.1821

G4(y2) = 2.0883y2
4 + 2.0167y2

3 − 8.0735y2
2 − 0.7969y2 + 0.5790

...
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(a) K-means clustering (b) Traditional root

Figure 3.10. Cumulative probability plots for di�erent selection methods for collocation points for
ESDSCR at bus 2

The approximation using the collocation points generated by K-means clustering method are

compared with the approximation obtained using the roots of these orthogonal polynomials [4, 12]

and with the results from MCS with 10,000 simulation runs. The sum- squared-root error (eSSR)

is computed as an index for quantifying the approximation accuracy [22] and is given by,

eSSR =

√√√√√ η∑
i=1

(Ŷi − Yi)2f(ϑi)

ηf(ϑ̂)
(3.23)

where Yi is the actual output from the simulation run, Ŷi is the estimated output, η is the collocation

points, f(ϑi) is the joint pdf and f(ϑ) is the pdf of the highest probability collocation point. The

relative sum-squared-root error (eRSSR) can also be computed as normalized version [52],

eRSSR =
eSSR

µ(Ŷ )
(3.24)

where µ(Ŷ ) is the mean value of Ŷ .

In this comparison study, the PCM approximation model for ESDSCR at buses 1 and 2

with di�erent orders (1st � 3rd order) are derived using collocation points obtained from K-means

clustering method and traditional root method and compared with MCS results. The approxima-

tion errors for each order of approximated model for both methods are calculated based on (3.23)
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(a) K-means clustering (b) Traditional root

Figure 3.11. Cumulative probability plots for di�erent selection methods for collocation points for
ESDSCR at bus 3

and (3.24). Fig. 3.10 and Fig. 3.11 shows the cumulative distribution function (cdf) curves from

MCS and the approximation models of three di�erent orders for ESDSCR at bus 2 and 3 using

k-means clustering and traditional root methods. Table 3.6 compares the errors, the mean value,

and the variance value of MCS method and three di�erent orders of PCM method for ESDSCR at

bus 2 and 3 using k-means clustering and traditional root methods.

From Fig. 3.10a, it can be observed that the 2nd approximation model provides better es-

timation of ESDSCR at bus 2 than the 1st and 3rd order models using k-means clustering method

for determining the representative simulation points from the distribution of the uncertain solar

irradiance. However, when roots of higher orders (traditional root method) was used for collocation

point for PCM modeling, as seen in Fig. 3.10b, 1st order approximation model �ts better than

its higher counterparts. Further, it can be seen in Table 3.6, the errors for 2nd order approxima-

tion model using k-means clustering is the lowest (i.e. eSSR=1.1204 and eRSSR=0.2989) than the

other two orders. Similarly, for traditional root method 1st order model has the lowest errors of

eSSR=1.4852 and eRSSR=0.233 than the remaining models. Thus, for estimation of ESDSCR at

bus 2, 2nd order approximation obtained using k-means clustering is preferred, whereas 1st order

approximation model is better for estimation using traditional root method. It can be further ob-

served that the means and variances from the 2nd order PCM model using k-means clustering (i.e.
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µ=3.7808 and σ2=1.8801) are much closer to those from MCS (i.e. µ=3.4492 and σ2=1.9004) than

the approximation model using traditional root method (i.e. µ=4.3110 and σ2=2.5921).

Similar observations can be detected from the cdf plots of ESDSCR at bus 3 for both

the selection methods in Fig. 3.11 and Table 3.6. The cdf plot in Fig. 3.11a and the errors of

eSSR=1.1959 and eRSSR=0.3281 in Table 3.6 indicate that 3rd approximation model estimates the

better ESDSCR for bus 3 using k-means clustering as point selection method. For traditional

method, ESDSCR at bus 3 was approximated better using 1st order PCM model with least errors.

The mean obtained from model using k-means method (i.e. 3.6646) matches the mean of 3.4833 from

MCS method, whereas the mean from model using traditional root (i.e. 5.0513) is quite di�erent.

According to these observations, the approximation model using k-means clustering method yields

better selection of the collocation points to provide more accurate estimation compared with the

traditional root method.

Table 3.7. Computational time (sec) for di�erent methods

PCM Order 1 2 3

MCS 102.71
K-means clustering 0.69 1.09 2.58
Traditional root 1.88 2.11 2.89

It can be seen from Table 3.7 that the PCM modeling using any selection methods, k-means

clustering or traditional root, saves substantial amount of computational time compare to that

from MCS. Note that the computational time for k-means clustering is slightly lesser than that of

traditional root but not signi�cant enough as both these methods require equal number of simulation

runs for approximating the PCM model to obtain similar accuracy of MCS results. Therefore, k-

means clustering method for selection of collocation points is further used in a larger model since

it is more accurate and equally computationally e�cient than the traditional root method.

3.5.4. Estimating ESDSCR using PCM in IEEE 39 bus system

The proposed method for grid assessment is demonstrated using modi�ed IEEE 39 bus

system with solar farms integrated in the test system, as shown in Fig. 3.12, by comparison of the

ESDSCR at di�erent buses approximated using PCM and MCS of irradiance data from the Baseline
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Table 3.8. Parameters for solar farms

Bus 30 35 36 37 38 39

Rated power (MW) 250 650 560 540 830 1000

Parameters
a 2.33 2.07 2.01 1.74 2.12 2.14
b 2.12 2.37 3.35 4.80 1.71 1.71

Measurement System of the Solar Radiation Research Laboratory of NREL [53]. The synchronous

generators in di�erent buses are replaced by solar farms and the irradiance at di�erent time period

(e.g. at 12 pm, 1 pm, etc.) are used in the solar farms as irradiance data for diversity of irradiance

in each farm. The beta distribution is used to �t the raw irradiance data for di�erent time period

and the parameters obtained, as shown in Table 3.8, are used to de�ne the pdf of irradiance for the

solar farms.

The beta distributed irradiance parameters (ξ1, ξ2, ..., ξ6) is rearranged using Jacobi polyno-

mials (3.22) to �nd the orthogonal polynomials using the Gram-Schmidt process [51] and recursive

formula described in [50]. The orthogonal polynomials determined for two of the solar farms can be

referred from Table 3.5. The collocation points are determined using k-means clustering method and

used to �nd the coe�cients of the (1st-3rd) orders approximation model for ESDSCR using (2.6).

3.5.4.1. PCM Simulation in Various Orders

The ESDSCR values for all the buses where PV is integrated are estimated using the pro-

posed method and MCS. Table 3.9 presents the means and variances obtained from the (1st-3rd)

orders PCM model and MCS. The errors for the approximation models are calculated using (3.23)

and (3.24) for each estimation and presented in Table 3.9. For illustration, the cdf plot and pdf

plot for the ESDSCR estimation at buses 36 and 38, using three di�erent approximation models

and MCS is shown in Fig. 3.13 and Fig. 3.14 respectively. It can be observed from Fig. 3.13 that

the 2nd order approximation model provides a better estimation of ESDSCR at bus 36 than the 1st

or 3rd order PCM models with probabilistic values of solar generation. Moreover, Table 3.9 shows

the means and variances od ESDSCR at bus 36 from the 2nd order PCM model (i.e., 1.68 and 1.93)

are closer to those from MCS (i.e., 1.95 and 1.17) than those of the 1st or 3rd order PCM models.

Besides the statistics, the errors for 2nd order approximation (i.e., eSSR= 1.11 and eRSSR= 0.55)
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Figure 3.12. Modi�ed IEEE 39 bus system with six solar farms.

are lower than that of other orders. Thus, the 2nd order PCM approximation model provides a

better estimation of ESDSCR at bus 36.

Likewise, Fig. 3.14 and Table 3.9 shows that the ESDSCR at bus 38 is better estimated

using 1st order approximation than the higher order models.The means and variances of 1st PCM

model (i.e. 1.4250 and 0.8721) align better with the MCS results (i.e. 1.5875 and 1.7533) compared

to the higher order PCM models. The errors (i.e., eSSR= 1.28 and eRSSR= 0.21) are the lowest

for 1st PCM model, which further proves accuracy in estimation. The means and variances for the

approximation model of each bus that matches closest to that of MCS is highlighted in Table 3.9

to indicate the order of the PCM model that provides the most accurate results. Furthermore, it

is well established that the proposed method for probabilistic grid strength assessment can save a

substantial amount of simulation runs and computational time compared with traditional MCS. For

example, it takes 7 sets of collocation points to model a 1st order PCM, 28 sets of points for 2nd

order PCM model, and so on, whereas it requires 10,000 simulation runs in MCS for approximating

the probability distribution of ESDSCR at a bus with the same level of accuracy.
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Figure 3.13. Cumulative distribution plot of MCS and di�erent orders of PCM models of ESDSCR
at bus 36.

Figure 3.14. Probability density plot of MCS and di�erent orders of PCM models of ESDSCR at
bus 38.
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3.5.4.2. Estimating ESDSCR for Di�erent PV Penetration

Further, the proposed approach is used to analyze the e�ect of uncertain solar generation

on grid strength. In this case study, ESDSCR is estimated for di�erent solar power penetration

with respect to total load power in the system. Fig. 3.15 shows the range of ESDSCR at bus 38

for di�erent PV penetrations based on the 1st order approximation and the statistic results are

given in Table 3.10. From Fig. 3.15 and Table 3.10, it is evident that the increasing penetration of

solar power leads to more uncertain behaviors a�ecting the grid strength. The range of ESDSCR

values lies below 3.21 for higher PV power penetration (i.e., 60% penetration) which re�ects weak

grid conditions as ESDSCR < 3. For 30% PV penetration, the median of the range lies at 2.74

which shows equal variability of the grid conditions and for 15% penetration, the 25th percentile of

ESDSCR values lies above 3.03, indicating mostly strong grid as ESDSCR > 3. This demonstrates

that the risk of weak grid conditions increases with the higher penetration of solar generation. The

means and variances also veri�es decreasing range of ESDSCR (grid strength) with increasing solar

penetration. Thus, this proposed approximation method serves as a great visualization tool that

can quantify the uncertainty impact on grid strength under uncertain renewable generation and

inform the power system planners of possible impacts.

Figure 3.15. Boxplot for ESDSCR at bus 38 with di�erent PV penetrations using 1st order approx-
imation.
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Table 3.10. Estimation of ESDSCR with di�erent PV penetration

PV Penetration 60% 30% 15%

µ 1.4250 3.1132 5.4869
σ2 0.8721 2.1013 3.1678

3.6. Summary

This paper proposed a probabilistic approach for assessing grid strength of power systems

under uncertain renewable generation by integrating the PCM with the SDSCR-based method. In

the proposed approach, the SDSCR-based method and ESDSCR-based method are used for grid

strength assessment, while the PCM was used to establish the approximation polynomial functions

with multiple input variables for modeling the impact of uncertain renewable generation. The

PCM is a computationally e�cient technique, which can reduce the computation burden without

compromising the result accuracy compared to traditional Monte Carlo simulation. Moreover,

the traditional root mehtod was tested with K-means clustering method for selecting the most

representative collocation points for accurate approximation. PCM-based method with K-means

clustering technique was more accurate in estimating the grid strength of IEEE 9 bus sytem with

two PV farms than the traditional root method for collocation point selection.

The e�cacy of the proposed method with SDSCR metric is demonstrated on the modi�ed

IEEE 9-bus system with multiple renewable resources. Further, the proposed method with ESDSCR

metric is tested with higher number renewables (six PV farms) on the modi�ed IEEE 39-bus system.

The distribution of the grid strength metirc with respect to the uncertainties of the renewable

genration is determined and the range of the values of the metric can be predicted using the proposed

method. Further, the results show that with higher penetration of renewables, the integration points

in grid becomes more weak which increases the posibility of stability issues in the network. The

proposed approach is promising for grid strength assessment while considering the impact of variable

renewable generation to guide grid planning and operation for identifying potential weak grid issues.
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4. IMPACT ANALYSIS OF TRANSMISSION-LEVEL

DISTURBANCES ON SOLAR PV IN DISTRIBUTION

SYSTEMS
1

4.1. Introduction

The electric power grid is undergoing a rapid change driven by the high penetration of re-

newable energy resources such as solar and wind via power electronic inverters. While these inverter-

based RERs (IB-RERs) can use power electronic controls to respond to grid disturbances nearly

instantaneously and thus support grid reliability, they are challenging grid planning, operation, and

protection [6]. The North American Electric Reliability Corporation (NERC) recently reported a

series of similar events of the unintended loss of solar generation following the transmission-level

disturbances that occurred from 2016 to 2020 in the Southern California region of the Western

Electricity Coordinating Council's footprint [6, 7, 8, 9].

� On 16 August 2016, the transmission system owned by Southern California Edison experienced

thirteen 500 kV line faults, and the system owned by the Los Angeles Department of Water

and Power experienced two 287 kV faults as a result of the �re. The most signi�cant event

resulted in the loss of nearly 1200 MW. There were no solar PV facilities de-energized as a

direct consequence of the fault event; rather, the fa-cilities ceased output as a response to the

fault on the system [6].

� On 9 October 2017, the �re caused two transmission system faults near the Serrano substation,

east of Los Angeles. The �rst fault was a normally cleared phase-to-phase fault on a 220 kV

transmission line, and the second fault was a normally cleared phase-to-phase fault on a 500

1This chapter is based on the work published as An RTDS-Based Testbed for Investigating the Impacts of
Transmission-Level Disturbances on Solar PV Operation," Energies 2021: Special Issue Power System Dynam-
ics and Renewable Energy Integration [54]. The authors of the paper are M. Maharjan� A. Ekic, B. Strombeck and
D. Wu. M. Maharjan was the �rst author and responsible for writing the manuscript, implementing the case studies
for simulation results in PSCAD software, formal analysis and investigation of the results. A. Ekic developed the
RTDS testbed and provided results for RSCAD software and helped in investigation of the results. B. Strombeck
and Dr. D. Wu gave guidance on methodology, reviewed and wrote the manuscript.
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kV transmission line. Both faults resulted in approximately 900 MW of solar PV generation

loss [7].

� On 20 April 2018 and 11 May 2018, two similar events caused a loss of solar pho-tovoltaic

(PV) facilities in response to transmission line faults, though no generating resources were

tripped as a consequence of either of the line outages [8].

� On 7 July 2020, the static wire on a 230 kV double circuit tower failed, causing a single-line-

to-ground fault on both the #1 and #2 parallel circuits on the tower. The fault was cleared

normally in about three cycles. In addition, a nearby 230 kV line relay incorrectly operated

for an external fault. For this �rst fault event, approximately 205 MW of power reduction

was observed at solar PV facilities in the Southern California region. After the #1 circuit

was re-energized and held, the #2 line was reenergized and relayed back out due to a low-

impedance three-phase fault that was cleared normally in 2.3 cycles. This second fault event

experienced a larger 1000 MW reduction in solar PV output primarily due to the fact that it

was a three-phase fault [9].

These similar events highlight the potential reliability impacts of IB-RERs including solar

PV systems at both the distribution and transmission levels. Recently, these events have been

investigated in [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65] [5�15]. To study the impact of IB-RERs

on the bulk power systems, generic positive sequence dynamic stability simulations such as PSS/E

are used with a simpler representation of IB-RERs and inverters in [55, 56, 57]. To more accurately

capture the dynamics of the inverters' response to actual grid events using generic positive sequence

stability models, reference [58] identi�es the modeling de�ciencies in generic inverter models. In [59,

60, 61], aggregated models of IB-RERs are used instead of individually detailed models of IB-

RERs. Reference [62] presents a coupled simulation method, in which the transmission network

is �rst initialized in a dynamic simulation platform and then the recorded response is passed to

the distribution network, which is simulated in quasi-static time-series simulations. In [63, 64, 65],

the impacts of inverter operating modes and inverter parameters on the transient stability of the

bulk transmission system are studied. However, the existing works do not investigate the impact of

the transmission-level disturbances on IB-RER operation, which is important for the operation of

inverter-based resources. Additionally, these existing works usually use positive sequence stability
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models and simple inverter modeling for simulation analysis. Such models may not be used in

electromagnetic transient simulations for modeling intricate details with di�erent inverter controls

and accurately evaluating the IB-RERs' response during abnormal events. In addition, the complete

network topology of the transmissions system and the distribution system is ignored, which cannot

be used for understanding the characteristics of the transmission-level disturbances propagating into

the distribution systems.

To address these issues, a real-time electromagnetic simulation testbed is constructed based

on a Real-Time Digital Simulator (RTDS) by integrating an IEEE standard transmission network

into an IEEE distribution test feeder interfaced with solar PVs in multiple locations in this paper.

With the testbed and grid strength assessment, the impact of the transmission-level disturbances

on solar PV operation is investigated under di�erent fault types and locations, solar penetration

levels, and loading levels.

The main contributions of this chapter can be summarized as follows:

1. To generate realistic transmission-level disturbances and investigate their impacts on solar

PVs in distribution systems, a real-time electromagnetic simulation testbed is constructed

based on RTDS, which is developed by RTDS Technologies Inc. to solve the power system

equations fast enough to realistically represent conditions in actual power grids [66].

2. The testbed has a full model of a transmission system, distribution system, and solar PVs.

In the modeling of solar PVs, the detailed PV inverter controls are considered in the distri-

bution system with the comprehensive models of synchronous machines and excitation in the

transmission system.

3. By using this testbed to investigate the impact of the transmission-level disturbances on solar

PV operation under di�erent fault types and locations, solar penetration levels, and loading

levels, it is found that the grid strength at di�erent POIs signi�cantly a�ects the transient

stability of solar PV operation. Particularly, at the weak POIs, undesirable transient stability

events are more likely to occur under increasing solar penetration levels or decreasing loading

levels following severe transmission-level disturbances.
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The rest of the chapter is organized as follows: the detailed modeling of the testbed created

using RTDS, including the transmission system, distribution system, and the PV systems and their

inverter controls are presented and the validation of the model is done using PSCAD software with

same parameters and models; the impact of transmission-level disturbances on solar PV operation in

the distribution system is investigated by using the real-time testbed under di�erent fault conditions,

solar penetration, and loading levels, and additional discussion on the impact of grid strength on

solar PV responses under di�erent scenarios are presented; �nally, a summary of the chapter is

presented.

4.2. Real time Digital Simulator Based Testbed

4.2.1. Real Time Digital Simulator

To generate realistic transmission-level disturbances and investigate their impacts on solar

PVs in distribution systems, a real-time electromagnetic simulation testbed is constructed based

on RTDS, which is a commercially available digital real-time power system simulator. RTDS is

developed by RTDS Technologies Inc. in Winnipeg, Canada, for the simulation and analysis of

electromagnetic transients in electric power systems. RTDS can solve the power system equation

fast enough to continuously produce output conditions that realistically represent conditions in

actual power grids.

RTDS is generally composed of hardware and software, which is shown in Figure 1. The

RTDS hardware includes processing and communicating cards, which are in-serted in the unit and

connected to a common plate located in the back of the RTDS. The processing cards have a parallel

processing architecture customized to simulate with one or multiple processors for the equation

solution for the power system and its components. The communicating cards are used to handle

the communication between RTDS and its software installed on the guest computer. RTDS has

additional dedicated interface cards that allow the physical and logical connection between the

simulated power systems and actual devices. The RTDS software is a graphic interface software,

RSCAD, which allows users to build, compile, execute, and analyze simulation cases. This software

has a wide library of power system components, control, and automated protection systems, as

well as a friendly user interface, which can make the assembly and analysis of a wide variety of

electric AC and DC systems easier and integrated. As shown in Fig. 4.1, users can use RSCAD

software to build a model representing the power system and load this model to the RTDS for
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the electromagnetic transient simulation while obtaining the updated states of the simulated power

system model for analysis.

Figure 4.1. Real Time Digital Simulator (RTDS) testbed.

4.2.2. RTDS-Based Power System Model

With RTDS, a representative power system model is constructed for real-time electromag-

netic simulations to investigate the impact of transmission-level disturb-ances on the IB-RER oper-

ation in distribution systems. This model includes complete transmission and distribution systems

with solar PVs. Fig. 4.2 shows the single-line diagram of the constructed power system model. The

component details in the model are described below.

4.2.2.1. Transmission System

In the RTDS-based representative power system model, the transmission system is demon-

strated by the IEEE 9 bus test system. In the system, its voltages include 230 kV at the transmission

level and generator bus voltages of 16.5 kV, 18 kV, and 13.8 kV at buses 1, 2, and 3. The system is

composed of three loads, three transformers, six transmission lines, and three synchronous genera-

tors with exciter and governor con-trol systems. The system data can be found in [67]. The major

electrical components used in the system include a hierarchy component box for the synchronous

generator, the uni�ed T-line model for the transmission line, and the dynamic load model.
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Figure 4.2. Single line diagram of the constructed model for real-time electromagnetic simulation.

Figure 4.3. Modeling components used for constructing the transmission system in the real-time
simulation testbed: (a) hierarchy component box for synchronous generator; (b) uni�ed transmission
line model; (c) dynamic load component.

� The synchronous generator and its excitation and governor systems are represented by a

hierarchy component box. As shown in Fig. 4.3, this hierarchy component box includes the

models of a synchronous machine and its excitation and governor systems. All the synchronous

machine systems are modeled with a steam turbine, a governor system and an excitation

system. The excitation system is modeled with an AC excitation type (EXAC1A) model.

The time constants, regulators, and feedback gains are the input parameters for the excitation

system. The machine is connected to the transmission system via a transformer.

� The transmission lines in the system are represented by the uni�ed T-line model. As shown

in F. 4.3, the uni�ed T-line model is composed of three electrical components: sending end,
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terminal end, and calculation box. The uni�ed T-line model can be used for a Bergeron or a

frequency-dependent phase model, but when required, either of these models can be collapsed

into a simpler PI representation of a line. It is noted that in [59], the data are compensated for

long line e�ects. The transmission lines in the RTDS simulation case are modeled using the

Bergeron line model, which is simulated using distributed line parameters. Thus, the long line

compensation was removed [65] to obtain the uncompensated data for the developed model.

� The load is represented by a dynamic load component in the transmission side of the network,

which is shown in Fig. 4.3. The load model can be used to dynamically adjust the load to

maintain real power and reactive power set points using variable conductance. Additionally,

this model allows setting up the initial values and limits of real and reactive power absorbed

by a load.

4.2.2.2. Distribution System

In the RTDS-based representative power system model, the distribution system is modeled

by the IEEE 13 bus test feeder, which includes a two-winding transformer model, the PI section

line model, dynamic load model, and a hierarchy component box for the voltage regulator [68].

� In this system, a delta-wye transformer is connected to the transmission system, and it is

represented by a two-winding, three-phase transformer model, which is shown in Fig. 4.4.

� The distribution line is represented by the PI section model in which a set of PI sections are

connected in series, as shown in Fig. 4.4. It is noted that the PI sec-tion model requests the

capacitance from the wire to the ground. The data given in [69] are the shunt capacitance

matrix. Thus, the capacitance from the wire to the ground needs to be calculated from this

matrix.

� The load in the system is represented by hierarchy component boxes. As shown in Fig. 4.4,

di�erent colored hierarchy component boxes include di�erent connections of loads, which are

modeled by the dynamic load component.

The voltage regulator has been adopted from the typical parameters used for the IEEE 13

bus test feeder. The voltage regulator is represented by a hierarchy component box. As shown in
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Figure 4.4. Modeling components used for constructing the distribution system in the real-time
simulation testbed: (a) two-winding, three-phase transformer model; (b) PI section model for dis-
tribution lines; (c) hierarchy component boxes for loads.

Fig. 4.5, this hierarchy component box includes three single-phase two-winding transformers and

the controls for the voltage regulator. For each phase, the regulator controls are represented by

an individual hierarchy component box, in which there are the compensator circuit and the step

voltage regulator control. This regulator is constructed based on reference [70].

4.2.2.3. Solar PV System

Solar PVs are integrated into the constructed transmission�distribution model. Each solar

PV is modeled by the PV array component to supply the DC voltage for the converter. The

converter is modeled using an average value model (AVM), and the AC side of the converter is

connected to the feeder. Fig. 4.6 shows the solar PV modeling components.

� A PV array model is used to represent the combination of individual solar cells into PV arrays

to produce voltages and currents at the terminals of a PV array. The PV array generates power

as a function of irradiation and temperature. The parameters of the PV array model can be

modi�ed to obtain a certain output power for the given irradiation and temperature. Each PV
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Figure 4.5. Voltage regulator used for constructing the distribution system.

array has a temperature set to 25 °C and insolation to 1000 W/m2 as input. This model can

specify the parameters about how the cells are connected to form arrays. Additionally, this

model can select di�erent methods for estimating the maximum power point for a given in-

solation and temperature. The detailed parameters of the PV array are presented in Table 4.1.

� The AVM component models the averaged converter control dynamics developed by equivalent

voltage and current sources. As shown in Fig. 4.7, solar PV controls use the maximum power

point tracking (MPPT) algorithm, which computes the DC voltage set point required for

maximum power transfer based on the temperature and insolation levels of the PV array.

This DC voltage set point then feeds into the outer loop DC-bus voltage control, which

computes a corresponding real power set point. The real and reactive power is then fed into

the inner current control loop operating in the dq reference frame and a set of three-phase
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Table 4.1. Parameters for solar PV system.

Components Parameters Value

PV

Number of series cells 36
Number of parallel strings 1
Open-circuit voltage (Voc) 21.7 V
Short-circuit current (Isc) 3.35 A
Number of modules in series 115
Number of modules in parallel 285
Voltage at Pmax 17.4 V
Current at Pmax 3.05 A

DC link capacitor Capacitance (Cdc) 5 mF

Inverter
Filter resistance 1.0 mW

Filter inductance 100 µH

High-pass �lter
RH 0.039 W

LH 7.874 µH
CH 2500 µF

Current control loop
kpi 0.2
kii 0.30675

PLL
kpPLL 5
kiPLL 0.01

modulation waveforms is synthesized. These modulation waveforms are then used in a carrier-

based, sinusoidal pulse width modulation (SPWM) strategy to generate a corresponding set

of �ring pulses.

4.3. Validation of RTDS-Based Power System Model

To verify the performance of the transmission-distribution model, described in the earlier

section, the steady state and dynamic responses from the model developed in RSCAD software are

Figure 4.6. Components for solar PV system used in the variation model.
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Figure 4.7. Block diagram of the inverter controls used for the PV system.

compared with those from the PSCAD [71] software. The modeling and parameters of the testbed

are replicated identically in PSCAD software to con�rm the operation of the representative model

in RSCAD.

The performance of the transmission-distribution model is tested by comparing RTDS sim-

ulation results with those from PSCAD/EMTDC in terms of steady-state simulation testing and

dynamic simulation testing. The steady-state simulation testing is focused on power �ow solu-

tions while the transient simulation testing was centered on the dynamics of voltage and current in

the model under di�erent faulted scenarios. The consistent results between RTDS simulation and

PSCAD/EMTDC con�rm the correct function of the constructed model. To avoid repetition, the

comparison results for all the buses are not shown here.

4.3.1. Steady State Simulation Test

In this test, the power �ow of each representative power system model under normal operat-

ing conditions has been evaluated by the RSCAD and PSCAD software, respectively. The following

criterion has been used for verifying the models in the steady-state simulation testing:

Veri�cation criterion for steady-state simulation testing: If RSCAD and PSCAD provide

close power �ow results in a representative power system model, the model has the correct operation

under operating conditions under normal conditions.

The power �ow results from the RSCAD and PSCAD software and the di�erences in the

results between the two simulation platforms for the transmission side of the testbed is listed in

Table 4.2. The di�erence in the power �ow results for the distribution side of the model is listed

in Table 4.3. It can be observed from Table 4.2 and Table 4.3 that the power �ow results from
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Table 4.2. Comparison of power �ow results from RSCAD and PSCAD in the transmission side of
the testbed.

Bus
RSCAD PSCAD Di�erence

Magnitude
(p.u.)

Angle
Magnitude

(p.u)
Angle

Magnitude
(p.u.)

Angle

1 1.04 0° 1.04 0.101° 0 0.101°
2 1.025 9.65° 1.025 9.47° 0 0.18°
3 1.025 5.36° 1.025 5.24° 0 0.12°
4 1.025 -2.11° 1.024 -2.09° 0.001 0.02°
5 0.9953 -4.23° 0.9942 -3.82° 0.0011 0.41°
6 1.011 -3.99° 1.009 -3.56° 0.002 0.43°
7 1.025 4.45° 1.025 3.91° 0 0.54°
8 1.015 0.56° 1.014 0.94° 0.001 0.38°
9 1.031 2.16° 1.031 2.35° 0 0.19°

RSCAD were consistent with those from the PSCAD simulation. The maximum di�erence in

voltage magnitude obtained is less than 0.04 p.u. and maximum voltage angle is less than 0.79°.

The developed testbed adheres to the veri�cation criteria for steady-state simulation testing and

con�rms accurate operation under the operating conditions without faults.

4.3.2. Dynamic Simulation Test

The dynamic simulation testing is to verify the functionality of the representative power

system model under faulted operating conditions. Since the number of possible faulted condition

conditions of an electrical grid operation is vast, representative faulted cases were selected to test

the performance of the representative power system model given the limited number of possible

tests. For the same fault event, the instantaneous and per-unit voltage and current waveforms at

each fault bus have been simulated by RSCAD and PSCAD, respectively. The following criterion

has been used for the veri�cation of the model in this dynamic simulation testing:

Veri�cation criterion for dynamic simulation testing: If RSCAD and PSCAD provide con-

sistent faulted voltage and current waveforms in a representative power system model under each

applied fault, the model has the correct operation under faulted operating conditions.

Few simulation results after testing the model in symmetrical and unsymmetrical faults at

several locations are presented in the paper. Each fault was applied for 3 cycles in each location.

The results show that the overall performances from RSCAD simulations were consistent with those
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Table 4.3. Di�erence in power �ow results from RSCAD and PSCAD in the distribution side of the
testbed.

Bus
Magnitude

(p.u.)
Angle

Phase A Phase B Phase C Phase A Phase B Phase C

611 0.0139 0.07°
632 0.003 0.013 0.008 0.773° 0.33° 0.38°
633 0.006 0.01 0.013 0.453° 0.05° 0.01°
634 0.035 0.017 0.038 0.79° 0.49° 0.45°
645 0.013 0.007 0.51° 0.34°
646 0.014 0.01 0.25° 0.42°
650 0.0209 0.008 0.0169 0.07° 0.68° 0.19°
652 0.013 0.27°
671 0.01 0.015 0.0168 0.04° 0.26° 0.32°

0.014 0.013 0.0203 0.12° 0.18° 0.15°
680 0.014 0.012 0.0206 0.089° 0.46° 0.37°
684 0.013 0.0149 0.71° 0.12°
692 0.013 0.013 0.0158 0.26° 0.39° 0.1°
RG60 0.02 0.02 0.013 0.61° 0.1° 0.06°

from PSCAD simulations under di�erent fault scenarios. The simulation results for a three-phase

fault at the transmission side and a line-line-to-ground fault at the distribution side of the testbed

are presented as an illustration.

4.3.2.1. Transmission Side Fault

Fig. 4.8 and Fig. 4.9 shows the instantaneous and per-unit voltage and current after a three-

phase fault at bus 8 of the transmission side of the base model. The peak values of the instantaneous

and per-unit currents from RSCAD simulation are about 3.2 kA and 5.4 p.u., respectively while

those from PSCAD are about 4.2 kA and 7.2 p.u. Similarly, the peak values of the instantaneous

and per-unit voltages from RSCAD and PSCAD simulations are di�erent, especially at the clearing

instant of fault. The di�erences mainly result from the di�erent modeling approaches are adopted

in RSCAD and PSCAD.

Also, it is noticed that the individual phases of instantaneous voltage or current have di�erent

dynamics in RSCAD and PSCAD simulations. For example, at the instant of fault, phase a voltage

from RSCAD simulation is going to the negative half cycle while the one from PSCAD simulation is

going to the positive half cycle. The similar di�erences in the dynamics of individual phase voltage
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Figure 4.8. Instantaneous and per-unit voltage and current from RSCAD after a three-phase fault
is applied at bus 8 of the transmission side of the testbed.

Figure 4.9. Instantaneous and per-unit voltage and current from PSCAD after a three-phase fault
is applied at bus 8 of the transmission side of the testbed.

dynamics at the instant of fault and the clearing instant of fault can be observed as well. The

di�erences are mainly from the di�erent techniques are used in RSCAD and PSCAD to initialize

operating conditions before the fault applied. However, the overall dynamic performances of voltage

and current between the two simulation platforms matched well to each other. Based on the

64



veri�cation criterion for dynamic simulation testing, the representative power system model thus

has the correct operation under faulted operating conditions.

4.3.2.2. Distribution Side Fault

Figure 4.10. Instantaneous and per-unit voltage and current from RSCAD after a line-line-to-ground
fault is applied at bus 675 of the distribution side of the testbed.

Figure 4.11. Instantaneous and per-unit voltage and current from PSCAD after a line-line-to-ground
fault is applied at bus 675 of the distribution side of the testbed.
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Similar to the dynamic simulation results tested in the transmission side, some simulation

results in the variation model also have the di�erent peak values of instantaneous and per-unit

voltages (and currents) during the fault duration between the two simulation platforms. These

di�erences can be seen from the simulation results for a line-line-to-ground fault at the distribution

side of the model as shown in Fig. 4.10 and Fig. 4.11. In addition to these di�erences, the overall

dynamic performances of voltage and current between the two simulation platforms matched well

to each other for various faults applied in numerous locations. Based on the veri�cation criterion

for dynamic simulation testing, the distribution side dynamics demonstrated validated operation

under faulted conditions.

4.4. Case Studies

With the transmission�distribution model constructed in Section 3, the impact of transmission-

level disturbances on the operation of distributed solar PVs is investigated using the real-time

electromagnetic transient simulation testbed based on RTDS. In the following transient simulation

analysis, the simulation is performed based on the Dommel algorithm. The simulation time step is

100 µs, and the simulation time is 0.2 s. The transmission�distribution model has 114 nodes. In

the model, �ve cases below are considered.

4.4.1. Impact of Fault Types in Transmission System on Solar PV Operation

In this case, di�erent fault types in the transmission system are generated to investigate

their impacts on the operation of solar PVs in the distribution system. The fault is applied at bus

6 in the transmission system. Four types of faults are considered, including a three-phase fault, a

single line-to-ground fault, a line-to-line fault, and a double line-to-ground fault. Each type of fault

has the same occurring and clearing times when it is applied at bus 6. Following di�erent types

of faults, the voltage and current of each solar PV bus in the distribution system are observed to

analyze the responses of the �ve solar PVs in the distribution system. Fig. 4.12- 4.15 demonstrate

the voltage and current responses at solar PV buses 634 and 680 under the four types of faults at

bus 6 in the transmission system.

It can be observed from Fig. 4.12- 4.15 that the three-phase fault has a more severe impact

on the solar PV operation than the other three types of unsymmetrical faults; among those three

types of unsymmetrical faults, the double line-to-ground fault has the most severe impact. As

shown in Fig. 4.12, the maximum transient voltage and current at solar PV bus 634 (or bus 680)
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Figure 4.12. Three-phase fault applied at bus 6 in the transmission system of the testbed: (a)
instantaneous voltage and current at bus 634; (b) instantaneous voltage and current at bus 680.

Figure 4.13. Single line-to-ground fault applied at bus 6 in the transmission system of the testbed:
(a) instantaneous voltage and current at bus 634; (b) instantaneous voltage and current at bus 680.

following the three-phase fault are approximately 1.72 p.u. and 3.0 p.u. (1.75 p.u. and 17 p.u.),

respectively, which are greater than those at bus 634 (or bus 680) following the other three types of

unsymmetrical faults. Under a single line-to-ground fault, the maximum transient voltage at solar

PV bus 634 (or bus 680) is smaller than 1.1 p.u., while the maximum transient current at solar PV
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Figure 4.14. Line-to-line fault applied at bus 6 in the transmission system of the testbed: (a)
instantaneous voltage and current at bus 634; (b) instantaneous voltage and current at bus 680.

Figure 4.15. Double line-to-ground fault applied at bus 6 in the transmission system of the testbed:
(a) instantaneous voltage and current at bus 634; (b) instantaneous voltage and current at bus 680.

bus 634 (or bus 680) is about 2.4 p.u. (6.8 p.u.). Under a line-to-line fault, the maximum transient

voltage at solar PV bus 634 (or bus 680) is smaller than 1.0 p.u., and the maximum transient current

at solar PV bus 634 (or bus 680) is about 2.0 p.u. (9.1 p.u.). Under a double line-to-ground fault,

the maximum transient voltage at solar PV bus 634 (or bus 680) is still smaller than 1.0 p.u., and

the maximum transient current at solar PV bus 634 (or bus 680) is about 2.0 p.u. (10.5 p.u.). The
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transient voltage of di�erent phases at solar PV bus 634 (or bus 680) for these unsymmetrical faults

is lower than the normal operating voltage. Compared to the single line-to-ground fault and the

line-to-line fault, the double line-to-ground fault on these solar PV buses is more severe.

4.4.2. Impact of Fault Locations in Transmission System on Solar PV Operation

In this case, the impact of fault locations in the transmission system on the operation of

solar PVs in the distribution system is investigated. To this end, another fault with the same fault

occurring and clearing time of the fault transpired at bus 6 is applied at bus 7 in the transmission

system. Still, four types of faults at bus 7, including a three-phase fault, a single line-to-ground

fault, a line-to-line fault, and a double line-to-ground fault, are considered. Following di�erent types

of faults at bus 7, the voltage and current of each solar PV bus are observed to analyze the responses

of the �ve solar PVs in the distribution system. According to the previous analysis, it is known that

when the fault is applied at bus 6, the three-phase fault has the most severe impact on the solar

PV operation. For comparison, Fig. 4.16 shows the voltage and current responses at solar PV buses

634 and 680 under the three-phase fault at bus 7 in the transmission system.

Figure 4.16. Three-phase fault applied at bus 7 in the transmission system of the testbed: (a)
instantaneous voltage and current at bus 634; (b) instantaneous voltage and current at bus 680.

By comparing Fig. 4.16 with Fig. 4.12, it can be seen that when the fault location is moved

far from the distributed solar PVs from bus 6 to bus 7 in the transmission system, the same fault
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has a less severe impact on solar PV operation. Since bus 7 is further than bus 6 in the transmission

system for all solar PVs in the distribution system, the maximum transient voltage and current at

bus 634 (or bus 680) following the three-phase fault at bus 7 is smaller than those at bus 634 (or

bus 680) following the three-phase fault at bus 6. For example, the maximum transient voltage and

current at bus 680 resulting from the fault at bus 7 is less than 1.0 p.u. and 5.67 p.u., respectively,

but those resulting from the fault at bus 6 are 1.75 p.u. and 17 p.u. Thus, when the transmission-

level fault location is closer to the solar PV buses, it has a substantial in�uence on solar PV operation

in the distribution system.

4.4.3. Impact of Solar Penetration Levels in Transmission System on Solar PV Oper-

ation

Under the identi�ed severe transmission-level fault type and location, the impact of solar

penetration level on solar PV operation is further investigated. More speci�cally, the penetration

level of the integrated solar PVs is changed by decreasing the irradiance level from 1000 W/m2 to

750 W/m2. Then, under the three-phase fault at bus 6 in the transmission system, Fig. 4.17 shows

the resulting voltage and current responses at solar PV bus 634 and bus 680 when solar PVs have

the irradiance levels of 750 W/m2.

Figure 4.17. Three-phase fault applied at bus 6 in the transmission system of the testbed: (a)
instantaneous voltage and current at bus 634 with 750 W/m2 solar irradiance; (b) instantaneous
voltage and current at bus 680 with 750 W/m2.
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By comparing Fig. 4.17 with Fig. 4.12, it can be seen that the severity of the impact of

transmission-level disturbance on solar PV operation decreases with solar penetration level. As

shown in Fig. 4.17, both the maximum transient voltage and current decrease with the solar pen-

etration level due to the irradiance decrease to 750 W/m2 from 1000 W/m2. For example, the

maximum transient current is around 14.0 p.u. at solar PV bus 680 following the three-phase fault

at bus 6 in the transmission system when all solar PVs in the distribution system have 750 W/m2

solar irradiance, while the maximum current is increased to 17.0 p.u. at solar PV bus 680 resulting

from the same fault when all solar PVs have 1000 W/m2 solar irradiance. The maximum transient

voltage in the case with 750 W/m2 solar irradiance does not exceed the normal range but with 1000

W/m2 solar irradiance has a peak of 1.75 p.u. for bus 680.

4.4.4. Impact of Loading Levels in Transmission System on Solar PV Operation

Additionally, the impact of loading level on solar PV operation is investigated under the

identi�ed severe transmission-level fault type and location. In this case, the loading level is increased

by four times its original loading level in the distribution system. Under the three-phase fault at

bus 6 in the transmission system, the transient voltages and currents at the solar PV buses are

investigated. For comparison, Fig. 4.18 shows the resulting voltage and current responses at solar

PV bus 634 and bus 680 after the loading is increased.

By comparing Figures 4.12 and 4.18, it can be seen that the maximum transient voltage and

current at bus 634 and bus 680 following the transmission-level fault at bus 6 are decreased with

the increased loading. For example, before the loading level is increased in the distribution system

following the transmission-level fault at bus 6, the maximum transient currents at solar PV bus 634

and bus 680 are approximately 3.0 p.u. and 17 p.u., respectively; after the loading is increased in the

distribution system following the same transmission-level fault, the resulting maximum transient

voltage and current decreases to 2.8 p.u. and 16.2 p.u. at bus 634 and bus 680.

4.4.5. Impact of Grid Strength on Solar PV Operation

To understand the relationship between the previous investigation results with grid strength,

the impact of grid strength on the solar operation is further analyzed in the system. To assess

grid strength, the site dependent short circuit ratio (SDSCR) [35] is used, which considers the

interaction among solar PVs interconnected through the power network. The SDSCR at any point
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Figure 4.18. Three-phase fault applied at bus 6 in the transmission system of the testbed: (a)
instantaneous voltage and current at bus 634 with increased loading; (b) instantaneous voltage and
current at bus 680 with increased loading.

of interconnection (POI) i is calculated using the following Equation (4.1):

SDSCRi =
|VR,i|2

(|PR,i +
∑

jεR,j 6=iwijPR,j |)|ZRR,ii|
(4.1)

wij =
ZRR,ij
ZRR,ii

.

(
VR,i
VR,j

)∗
(4.2)

where R is the set of all POIs connected to IB-RERs; ZRR,ij is the (i
th, jth) element in sub-matrix

of bus impedance matrix that is only related to buses connected to IB-RERs; VR,i is the voltage at

POI i; PR,i is the rated capacity or injected power from the IB-RER at POI i.

Based on the SDSCR de�ned in Equation (4.1), the grid strength at each POI of the solar

PV in the distribution system in Fig 4.2 is evaluated. Table 4.4 lists the SDSCR values for the �ve

POIs. If the SDSCR value is greater than 3, the grid is strong at the POI; if the SDSCR value is

between 2 and 3, the grid is weak at the POI; if the SDSCR value is less than 2, the grid is very

weak at the POI. Thus, it can be observed from Table 2 that buses 632, 634, and 675 are strong

POIs since they have SDSCR values higher than 3. Bus 671 and 680 are the weak POIs as they

have SDSCR values less than 3 but greater than 2.
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Table 4.4. SDSCR values for solar PV buses in the distribution system.

Solar PV Buses SDSCR Values

632 3.6346
634 3.3830
671 2.7768
675 3.0545
680 2.4765

4.5. Discussion

When comparing the evaluation results presented in Table 2 with the simulation results in

Fig. 4.12- 4.18, the following conclusions can be obtained:

� By comparing Table 4.4 with Fig. 4.12- 4.15, it is found that undesirable transient dynamics

may be more likely to occur at weaker POIs under the same fault but di�erent types. Moreover,

the severity of the undesirable transient dynamics at the weaker POIs may increase with the

fault type. Table 4.4 shows that bus 680 is weaker than bus 634. Comparing the maximum

transient voltage and current at bus 634 with those at bus 680, it can be observed from Figures

8-11 that the maximum transient voltage and current at bus 634 are smaller than those at

bus 680 following the same transmission-level fault with the four di�erent types. For example,

when the single line-to-ground fault occurred in the transmission system, Fig. 4.13 shows

that the maximum transient current at bus 634 is approximately 2.4 p.u., but the maximum

transient current at bus 680 is approximately 6.8 p.u. Moreover, when the fault type is changed

into the severest three-phase fault, Fig. 4.12 shows that the maximum transient voltage and

current at bus 634 are approximately 1.72 p.u. and 3 p.u.; however, the maximum transient

voltage and current at bus 680 are approximately 1.75 p.u. and 17 p.u.

� By comparing Table 4.4 with Fig. 4.16, it is also found that under the same three-phase fault

but di�erent locations, weak POIs are more likely to have undesirable transient dynamics. As

shown in Table 4.4, bus 680 is weaker than bus 634. By comparing the maximum transient

voltage and current at bus 634 with those at bus 680 in Fig. 4.12 and 4.16, it can be observed

that when the three-phase fault is moved from bus 6 to bus 7 in the transmission system, the

maximum current transient at bus 634 is decreased from 3 p.u. to 1.4 p.u.; the maximum
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current transient at bus 680 is decreased from 17 p.u. to 5.67 p.u. Additionally, even when

the fault is far from the distribution system (at bus 7), weak bus 680 is still more likely to

have an undesirable transient response than bus 634.

� By comparing Table 4.4 with Figure 4.17, it is found that undesirable transient dynamics may

be more likely to happen at weaker POIs under the increasing solar penetration level in the

distribution system. Compared to bus 634, weak bus 680 has a more severe impact on solar

PV operation following the same transmission-level fault. As shown in Fig. 4.17, for bus 680,

when the solar irradiance is 750 W/m2, the maximum transient current is 14 p.u.; as shown

in Fig. 4.12, when solar irradiance is increased to 1000W/m2, the maximum transient current

is 17 p.u. For bus 634, the maximum transient current is increased from about 2.2 p.u. to 3

p.u. when solar irradiance is increased from 750 W/m2 to 1000 W/m2.

� By comparing Table 4.4 with Fig. 4.18, it is found that increasing the loading level in the

distribution system may decrease the risk of undesirable transient dynamics at weaker POIs

following the transmission-level disturbance. As shown in Fig. 4.12 and 4.18, the severity

of the impact of transmission-level disturbance on solar PV operation decreases with the

increase in loading level in the distribution system. At the weak bus 680, this impact becomes

relatively signi�cant. Before increasing the loading level, the maximum transient current is

17 p.u. following the transmission-level fault at bus 6; the transient current is reduced to

16.2 p.u. following the same transmission-level fault when the loading level is increased. This

change can improve grid strength at bus 680 and thus reduce the risk of undesirable transient

dynamics of solar PV at bus 680.

4.6. Summary

In this dissertation, a real-time RTDS-based simulation testbed was presented to explore

the impacts of realistic transmission-level disturbances on solar PV operation in the distribution

system. The testbed includes detailed modeling of components in the transmission and distribution

systems along with the detailed PV models and its inverter controls to capture the accurate dynamic

behaviors of solar PVs in response to the transmission-level disturbances. The testbed was used

to investigate the transient responses from the solar PV inverters under di�erent transmission-level

disturbances regarding di�erent fault types and locations, solar penetration levels, and loading
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levels. It is found that the grid strength at the POIs of solar PV inverters signi�cantly a�ects

the transient response from the solar PV inverters following the transmission-level disturbances.

At weaker POIs, the transient response is more sensitive to the disturbances. Such sensitivity

becomes more signi�cant when the transmission-level disturbance is closer to the weak POIs or the

disturbances become more severe. Additionally, the impact of the transmission-level disturbances

on the solar PVs at the weak POIs exacerbate with the increasing solar penetration levels and

loading levels. Thus, when an increasing number of IB-RERs are being integrated into the grid, it

is important to study and develop new technologies for grid planning, operation, and protection in

weak grid conditions to address the emerging issues of integrating the high penetration of solar PVs

and other IB-RERs.
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5. CONCLUSION AND FUTURE WORK

This dissertation investigated the impact of IB-RERs on grid operation at the transmission-

and distribution- levels while considering uncertain operating conditions. The major conclusions

are summarized as follows:

The PCM was used to quantify the impact of uncertainty in distribution sytem on grid

operation. In the distrubtion system, uncertainty in IB-RER like wind speed, loading and solar

irradiance were introduced to the PCM by probablistic distributions such as Weibull, Normal and

Beta distributions. By the comparision with Monte Carlo simulations, it was shown that the

PCM was able to achieve accurate mean and ballpark variance of the output variables and has a

signi�cantly smaller number of model runs than Monte Carlo before leveraging time and cost for

detailed computational analysis.

With the PCM, a method was further developed to evaluate uncertainty in the transmisison

sysetm for grid strength analysis. In the method, the SDSCR-based method and ESDSCR-based

approach were used for grid strength assessment, while the PCM was used to establish the approx-

imation polynomial functions with multiple input variables for modeling the impact of uncertain

renewable generation. To improve the accuracy of the PCM approximation model, K-means clus-

tering algorithm was incorporated into the PCM for selecting the most representative collocation

points. The proposed melthod was tested on the modi�ed IEEE 39-bus system with high pene-

tration of solar PVs. The results show that the proposed method is promising for grid strength

assessment while considering the impact of variable renewable generation to guide grid planning

and operation for identifying potential weak grid issues.

In addtion, the impacts of transmission-level disturbances on solar PV operation in the

distribution system were investigated using a real-time electromagnetic simulator, which can capture

the accurate dynamic behaviors of solar PVs in response to the transmission-level disturbances

via detailed modeling of components in the transmission and distribution systems along with the

detailed PV models and its inverter controls. It is found that the grid strength at the POIs of solar

PV inverters signicantly a�ects the transient response from the solar PV inverters following the

transmission-level disturbances. The impact of the transmission-level disturbances on the solar PVs
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at the weak POIs exacerbate with the increasing solar penetration levels and loading levels. Thus,

when an increasing number of IB-RERs are being integrated into the grid,it is important to study

and develop new technologies for grid planning, operation, and protection in weak grid conditions

to address the emerging issues of integrating the high penetration of solar PVs and other IB-RERs.

The dependencies among the uncertainties will be an important factor to consider with re-

gards to the renewable generation mix in the modern grid. For further extension of the research, the

proposed algorithm can account for the correlation between IB-RERs by using numerous methods

like Copula theory, Gaussian mixture model, etc. Also, the most important uncertainties in the

power systems can be identi�ed so that e�cient modeling can be achieved to identify the weak

grids. Further, the approximations from the algorithm can be tested with di�erent contingencies in

the network, to evaluate the e�cacy for abnormal conditions.
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