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ABSTRACT

Forage availability was crucial for livestock production across the United States.

Rangelands occupied vast areas (31 %) of land and were the primary source of forage for

livestock. However, extreme climatic conditions such as drought affect rangeland forage

production and pose a serious threat to the rangeland enterprise. This increases the need

to monitor forage in vast rangelands and adapt to other measures such as cultivating or

buying forage to balance demand and supply. Despite this need, resources (studies and

tools) on rangeland forage monitoring and existing forage production, handling, and eco-

nomics were scattered and scarce. Therefore, a comprehensive systematic literature review

was performed to gather the current understanding of the technology and resources used

for monitoring and economics of forage production. Remote sensing technologies were

widely used in recent research for their ability to scout vast areas frequently and machine

learning (ML) in successfully comprehending complex relationships. Forage production

economics was predominantly available for alfalfa forage crop, but other crops and bale

collection logistics during production were ignored. Bale collection using conventional

tractor carrying 1 and 2 bales/trip (BPT) and automatic bale picker (8–23 BPT) was simu-

lated mathematically and analyzed with open-source R software using realistic equipment

turning scenarios. Fuel consumption based on aggregation distance for ABP decreased on

average by 72 % and 53 % compared to the tractor with 1 and 2 BPT. A web-based calcula-

tor tool was developed using open-source HTML, CSS, and JavaScript software for forage

economic analysis including more than 10 varieties of forage crops involving the economics

of bale collection (tractor and ABP). Pasture biomass yield prediction was performed with
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R software using vegetation index (VI) and climate data through ML approaches. Recur-

sive feature selection (RFE) and random forest (RF) model for forage yield emerged as

the best methodology based on accuracy. A web-based interactive tool was developed us-

ing Shiny package in R to accommodate “field-specific,” pasture-scale inputs for predicting

biomass yield. In conclusion, these successful results demonstrate the possibility of using

open-source software for simulating logistics, developing models, and building tools for

forage monitoring and analyzing the economics of forage production.
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1. GENERAL INTRODUCTION

1.1. Significance of Rangeland Forage for Livestock Production

In the United States, the rangelands contribute to about 31 % of the total land area,

approximately about 308 million ha (Havstad et al., 2007) and serve as a key resource

for ecological and economic impact. Natural grassland, savannas, pastures, shrublands,

marshes, and wet meadows fall under the category of rangeland (Reeves et al., 2015).

Rangeland is a naturally managed ecosystem often described as the land consisting of

indigenous vegetation which is predominantly grasses. Rangelands were the primary base

for grazing forages and therefore crucial for livestock production. For ages, forages has

been an essential source of nutrients in maintaining animal health and is a rich source of

fiber that facilitates proper digestion in the animals consuming forage. With the conversion

of livestock into milk and meat products, the forages continue to remain as one of the

primary sources of nutrients in the human diet as well.

The forage production in rangeland depends on multiple drivers such as climate,

soil, and topography which aids in regulating the plant-available water. Numerous studies

have explored the influence of factors controlling the forage production, temperature was

observed to be the important feature affecting the four stages of growth such as germina-

tion, winter, spring, and peak forage production (Becchetti et al., 2016). Studies have also

reported a strong link between precipitation and forage production (Allred et al., 2014;

Lang et al., 2019).

Several rangelands in the Northern Great Plains are rain-fed and therefore are vul-

nerable to irregular precipitation trends (Sloat et al., 2018). With increasing climate vari-
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ability, drought conditions are prevalent and pose a serious threat to livestock production.

With reduced production of forage during drought season, the animal stocking rate is af-

fected and the value of cattle drops down. In addition, the rangeland system is overworked

during drought season and the lost plant cover leads to soil erosion (Herrick et al., 2018).

The varying climate intensifies the need for monitoring the forage production in range-

lands and adapting to drought conditions through cultivating and securing forage for later

use (Angerer, 2012).

1.2. Current Technologies for Rangeland Monitoring

Monitoring of rangeland forage has evolved over the years from traditional meth-

ods to the use of modern remote sensing using unmanned aerial vehicles (UAVs) and

satellites. The traditional methods of include clip-dry-weigh, rising plate meter, visual es-

timation (Psomas et al., 2011). These methods are subjective, laborious, time-consuming,

of a smaller scale, and were not comparable to remote sensing technology. The remote

sensing technology provides spatio-temporal information of the rangeland, and the state

of the environment can be easily captured over a large landscape more frequently. Avail-

ability of large imagery data has facilitated the understanding of land cover, plant health,

and monitoring change in the rangeland landscape (Chen and Gillieson, 2009).

The selection of the type of remote sensing data is based on the scale and scope

of the research. Using high spatial resolution (<10 m) was ideal for extracting range-

land biomass; however, consistently using high spatial resolution for a large landscape

is limited by several factors (e.g., computational resources and storage). The satellites

with a coarse spatial resolution with high frequency revisit time, such as Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) was efficient in evaluating biomass on a county,
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national, or global scales; however, was not successful with field-scale level since the res-

olution of MODIS satellite (500 m) was larger than an average pasture size. Over the

last few decades, the Landsat 5, 7, and 8 (30 m) and Sentinel-2 10 m satellite imagery

was widely used for biomass estimation in rangelands for its large spatial coverage, in-

creased revisit frequency, and relatively high resolution. A comparison study between the

satellite imagery reported that Sentinel-2 images assessed and monitored pasture biomass

better than Landsat 8 data (Sibanda et al., 2015). Few tools such as spread-sheets-based,

map-based, and interactive web-based were available to monitor and estimate biomass at

a larger scale.

1.3. The Production, Logistics, and Economics of Forage

In drought-prone regions, to balance the demand and supply of forage and to over-

come seasonal shortfalls, farmers and ranchers resort to cultivating or buying forage for

storage. Forage production economics that includes operating cost, seeding, harvesting,

baling, and storing contributes significantly to the annual livestock production cost (Hor-

rocks and Valentine, 1999; Nayigihugu et al., 2007).

The cultivated forage is left on the field as bales randomly and is collected using

a traditional tractor that can carry 1–2 bales per trip or an advanced automatic bale picker

that can load about 8–23 bales/trip. This bale aggregation logistics represents signifi-

cant effort and economics associated with it. Including operating costs for bale collection

operation would provide farmers with realistic economics. Economic analysis of forage

production aids in making management decisions such as selection of crops, fixing for-

age prices, and efficient operations and plays a vital role in reducing the risk involved

in an agricultural enterprise. Several spreadsheet-based calculators were available, but
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predominantly dealing with alfalfa forage crop, which aids farmers and ranchers with the

economic analysis of their operation.

1.4. Problem Statement

Considering the overview provided on the current grazing scenario in producing

forage crops and rangeland monitoring, handling the harvested forages in bale form, the

economics of forage production and logistics, tools available dealing with the forage yield

monitoring/prediction and economics, there are several issues and research gaps which

can be addressed efficiently using modeling techniques and developing user-friendly web

tool for the ranchers, ranch managers, and farmers. The problems existing with the present

forage production, handling, and economics and the proposed solution in this research are

outlined briefly hereunder:

First, a consolidated review on technology and advancement in rangeland forage

yield prediction, forage logistics, and tools available for the users will be helpful in un-

derstanding the current knowledge domain and identifying research gaps. It also helps in

identifying the features influencing the forage yield. The features generally include the

climate and remotely sensed vegetation indices. Furthermore, collective information on

the technologies such as sensors, type of models, and existing tools was scarce. Therefore,

a need for a systematic literature review on the aforementioned aspects exists.

Second, farmers cultivating forage crops often ignore bale collection logistics opera-

tions in their economics calculations. However, collecting bales is an intensive operation as

the machinery makes overlapping multiple trips collecting bales from the field and trans-

porting them to the field outlet. There was machinery operating costs involved, including

fuel and labor during the collection operation. The fuel used during this process was es-
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timated based on the distance traveled, speed of the machinery used, and machinery’s

fuel consumption characteristics. Therefore, there exists a need for developing a research

work to evaluate energy consumption, in terms of fuel for bale collection operation. This

research can be further used in economic analysis for a realistic representation of the costs

and profits involved.

Third, forage economic analysis involves numerous variables and complex calcu-

lations which are difficult to perform using manual methods. Though a few available

spreadsheet-based calculators for economic analysis are available, some of the disadvan-

tages of using those include, scattered resources lead to downloading more than one

spreadsheet; most spreadsheets calculators are macro-enabled, which possess a high risk

of malware attack; mostly developed for the predominant forage crop, namely alfalfa; and

focused on operation costs, such as harvesting and baling, while machinery, fuel, and la-

bor cost associated with bale collection, which is an intensive field operation, are often

ignored. Therefore, there exists a need for developing a safe, user-friendly web-based

tool for forage economics analysis inclusive of various forage crops and bale collection

operation costs. This tool will be useful for ranchers, forage producers, commercial bale

operators, and others involved in the production and handling of forage.

Fourth, ranchers and rangeland managers on the US Great Plains face drought pe-

riods that range from mild to severe and can last for a season to multiple years. Drought

in rangeland can significantly reduce the amount of forage available for the livestock.

Monitoring forage and estimating the forage yield throughout the growing season with

the consideration of weather parameters is of key importance for rangeland management

decisions. The existing forage prediction models are developed for large-scale regression-
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based prediction using coarse resolution satellites for monitoring thus failing to address the

weather variability and native grass varieties responses specific to a local area. Therefore,

new advanced machine learning (ML) approaches can be explored to predict biomass us-

ing vegetation indices from the fine-resolution satellite in combination with local weather

parameters sis desirable for a “field-specific” forage prediction.

Fifth, ranchers and ranch managers will benefit from a decision support tool for

planning animal stocking rates based on the available forage. A functional tool should be

developed that was easy to use and require only information that is readily available as

user inputs. The existing forage prediction tools are developed for larger scale landscapes,

visually presented, and allow minimal interaction from the user. Therefore, a simple ranch

prediction forage web tool that allows users to input “field-specific” climatic and remote

sensing inputs to predict more realistic forage yields using open-source platforms will be

useful and appreciated by the stakeholders.

1.5. Statement of Hypothesis

1. A systematic review can be performed on the existing models and tools available

for rangeland forage estimation and economic analysis to identify research gaps

and formulate future research directions.

2. Energy expensed during the intensive forage bale collection logistics operation can

be studied and modeled through mathematical simulation.

3. A user-friendly forage analysis web tool can be developed for major forage vari-

eties with sensitivity analysis features and downloadable results using open-source

platforms.
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4. Recent advancements such as a finer spatial satellite in combination with local

weather variables and ML modeling can be used to estimate field-specific range-

land forage yields.

5. A ranch forage prediction user-friendly web tool can be developed using the devel-

oped ML forage prediction models for the ranchers and range managers to aid in

management decisions.

1.6. Statement of Objectives

The specific objectives of this research are to (fig. 1.1):

1. Perform systematic literature review on remote sensing platforms, vegetation in-

dices, weather parameters, prediction models for monitoring forage along with

tools available for prediction of forage yield and economic analysis of forage pro-

duction and handling.

2. Develop prediction models using field parameters to evaluate logistics distance,

operation time, and energy involved in terms of fuel requirements during bale col-

lection processes through mathematical simulation.

3. Build user-friendly forage economic web tool with sensitivity analysis and down-

loadable results using open-source platform resources.

4. Identifying overall methodology of best features selected and best ML model for

rangeland forage yield prediction.

5. Build ranch forage prediction web tool using the developed prediction model with

user-friendly features for ranchers, farmers, and other stakeholders.
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This Research:
Rangeland forage
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logistics, energy,
and economics
and open-source
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logistics
energy

Obj. 3
Forage

economics
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Obj. 5
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yield pre-
diction tool

Figure 1.1. Overview of the whole research on rangeland enterprise showing the
objectives of different component studies.

1.7. Dissertation Organization

The dissertation is organized into chapters that consist of the general introduction

(Chapter 1), and the research objectives are presented in the form of peer-reviewed journal

articles (Chapters 2–6) with individual chapter references, and the general conclusion

(Chapter 7), and appendices covering various additional information of the regular chapter

materials.
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Chapter 1, this general introduction (this chapter) provides an overall significance

of rangeland forage production for livestock production, current technologies used for

rangeland monitoring, forage yield production and logistics, and economics of cultivated

forage. It also includes the problem statement, statement of hypothesis, and statement of

objectives.

Chapter 2, deals with the systematic literature review on economic analysis tools

and forage growth prediction models and tools available (Paper 1), titled: “Rangeland

forage growth prediction and economic analysis tools — a systematic literature review.”

The review covers various remote sensing platforms, vegetation indices, climate features,

prediction models and tools used for forage yield prediction, and forage economic analysis

tools.

Chapter 3, deals with the mathematical simulation of bale collection operation us-

ing tractor and automatic bale picker (Paper 2), titled: “Biomass bales infield aggregation

logistics energy for tractors and automatic bale pickers — a simulation.” The study used

kinematics and analytical geometry principles and simulated field parameters for develop-

ing prediction models to evaluate the aggregation distance and time involved in the bale

collection process.

Chapter 4, deals with the user-friendly web-based tool developed for forage eco-

nomic analysis of several forage crops (Paper 3), titled: “Development of forage economics

calculator web tool.” The chapter contains the overview, structure, styling, and develop-

ment of the web tool. Individual sections, inputs, background models, results, and features

of the web tool are explained in detail. The chapter also contains real field case studies

conducted to validate the performance of the developed web-based calculator.
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Chapter 5, deals with the selection of the best methodology for forage yield predic-

tion (Paper 4), titled: “Biomass yield prediction for pastures using remotely sensed veg-

etation index and climate data through machine learning.” The study used ground-truth

biomass data, spatial data from Landsat, Sentinel, and CubeSat satellites for estimating

the best methodology of influential features and best-performing ML model.

Chapter 6, deals with the development of a web tool, named RangeForage, for

rangeland forage prediction based on the trained ML models developed (Paper 4), titled:

“Development of rangeland forage yield prediction tool.” The chapter contains the need for

the rangeland prediction tool, methodology, user interface input widgets, server functions,

developed application and its demonstration.
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2. RANGELAND FORAGE GROWTH PREDICTION AND ECONOMIC

ANALYSIS TOOLS — A SYSTEMATIC LITERATURE REVIEW *

2.1. Abstract

Farmers and ranchers heavily depend on the annual production of natural forage

and herbage from the grassland for livestock grazing. Many regression and machine learn-

ing (ML) prediction models have been developed for grass and forage to understand the

seasonal variability in the forage production, build management practices, and plan the an-

imal stocking rate. Besides, decision-support tools aid farmers in comparing management

practices and developing forecast scenarios. Although numerous individual studies on for-

age growth, models, predictions, economics, tools were available, a comprehensive review

for forage growth prediction and economic analysis tools was not available. Therefore, in

this study, a systematic literature review (SLR) was performed to establish comprehensive

knowledge and identify research gaps in this knowledge domain to serve better the stake-

holders. The input features (vegetation index (VI), climate, and soil), various models (re-

gression and ML), and relevant tools for grass and forage prediction and tools developed

for forage economic analysis were analyzed. Based on the search criteria and from the

three publication databases, we retrieved 147 relevant peer-reviewed manuscripts of the

current period (2010 – 2021), of which only 85 were screened after applying exclusion cri-

teria for further analysis and reporting. The most frequently used remote sensing satellite

* This paper will be submitted to the Biomass and Bioenergy journal in 2022. Authors: Srinivasagan N.
Subhashree, C. Igathinathane, A. Akyuz, Md. Borhan, J. Hendrickson, D. Archer, M. Liebig, D. Toledo,
K. Sedevic, S. Kronberg, and J. Halvorson. Subhashree performed the systematic literature review and
wrote the manuscript. Dr. Igathinathane Cannayen is the major advisor, principal investigator, and the
corresponding author who worked with Subhashree throughout the research and manuscript development.
All the co-authors have assisted in the research direction and review of the manuscript.
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platform was MODIS based on the review. The most commonly used input features were

normalized difference vegetation index (NDVI), precipitation, and soil moisture. Among

the ML models, the most widely used and with better performance, for estimating grass

and forage yield was the random forest. Four existing tools use inputs such as precipita-

tion, evapotranspiration, and NDVI available for larger-scale grass and forage prediction

and monitoring. Most tools available for forage economic analysis were spreadsheet-based

and focused on alfalfa. Suggestions for future research in this knowledge domain include

the use of high-resolution satellites, combined VI and climate features, advanced ML mod-

els, development of field-specific prediction, and development of interactive, user-friendly,

web-based tools and smartphone applications in this knowledge domain.

2.2. Introduction

Pastures dominate the landscape of western and central United States, covering

more than 60 % of the land surface (M. C. Reeves and Mitchell, 2011). Grasslands, range-

lands, shrublands, meadows, steppes, and woodlands fell under the category of pastures

and were maintained to support various operations but predominantly the livestock in-

dustry. The Northern Great Plains comprises states such as Montana, Wyoming, Colorado,

North Dakota, South Dakota, and Nebraska, which are primarily rural areas, and the re-

gion consists of 25 % of the nation’s livestock population (Derner et al., 2018). Forages are

crucial in maintaining livestock health as they aid in providing essential nutrients and en-

hancing proper digestion in the animals. Therefore, ranchers and farmers have to ensure

a continuous supply of forage through adequate monitoring and management practice for

rangeland and pastureland and making effective agricultural enterprise decisions through

performing economic analysis.
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Although several individual scientific studies on forage growth, models, predictions,

economics, tools were available, a comprehensive review on the knowledge domain of for-

age growth prediction and economic analysis tools was not available. Therefore, this study

reviews the scientific literature, specifically peer-reviewed journal articles of the current

period from years 2010 to 2021, to provide comprehensive knowledge and research gaps

for serving the stakeholders better.

Ranchers rely on natural forage, herbaceous plants, and shrubs that predominantly

grow in range and pastureland. These lands are feeding grounds for beef cattle, dairy

cattle, sheep, goats, horses, and other domestic livestock. Therefore, estimating forage

potential (forage growth prediction) months in advance aid ranchers and range managers

in resource planning and management. In addition to ensuring forage availability and

productivity, effective management practices also benefit the ecosystem of the pastures.

One of the primary indicators for the pasture ecosystem is the biomass yield which is

traditionally measured using destructive methods, such as clipping and drying that are

constrained to small areas due to the nature, time, and labor involved (Feng et al., 2020;

Jin et al., 2014).

A possible replacement for the traditional methods for estimating pasture biomass

is the non-destructive methods such as remote sensing (RS) after suitable validation/cali-

bration. Satellites and unmanned aerial vehicles (UAVs) fall under the RS technology, and

the green vegetation was monitored using its spectral reflectance properties (Atzberger,

2013). The satellite information can be of high value when large areas are studied, the

time and labor were significantly reduced. The satellite datasets can be easily obtained,

and reproducible studies can be performed. The wavelengths from optical sensors, at-
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tached to the satellite platforms efficiently collected and secured the information, can be

used for applications, such as detecting greenness, estimating vegetation density, distin-

guishing different vegetation classes, among others (Hashim et al., 2019; Pal et al., 2018;

Xie et al., 2019). The most commonly used optical sensor satellites are Landsat, Sentinel-2,

MODIS, and AVHRR.

In recent years, the use of satellites for monitoring pasture biomass steadily in-

creased since the data was readily available and freely accessible. Vegetation indices (VI)

estimated from the spectral wavelength data were used as a proxy for the biomass yield

in pastures (Dos Reis et al., 2020). Other than remote sensing methodology, many stud-

ies have explored the influence of soil and climate features in predicting biomass yield

(Krueger et al., 2021; Y. Liu et al., 2021). A simple linear relationship was helpful to

understand the importance of VI, soil, or climate feature in predicting pasture biomass

individually. However, complex and interlinked connections between the features and

biomass were better explained using machine learning (ML) approaches.

Building interactive tools were critical to farmers’ success since it helps them to

make real-time decisions, devise management strategy, and plan budget (Garg et al., 2022;

Leroux et al., 2018). The developed prediction models and economic analysis can be de-

livered as a user-friendly tool that puts farmers at the driver’s seat in making decisions. For

example, tools using a developed prediction model might aid farmers in monitoring pas-

tures and planning livestock stocking rates. Economic analysis tools were vital in aspects

such as measuring farm profit, evaluating the effectiveness of management strategies, and

analyzing scenarios.
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The objective of this study was to review the input features (VI, soil, and climate),

prediction models (regression and ML), and tools applied to grass and forage estimation

and economic analysis tools using systematic literature review (SLR) process. The SLR

was designed to be replicable; therefore, all the required steps of conducting SLR and the

results will be presented for transparency. The review included responses to the research

questions framed during the initial stage of the review. Potential research gaps in a specific

knowledge domain were effectively identified using SLR. These identified research gaps

are expected to serve as a guide to researchers pursuing new research in this subject area

and add information to the knowledge domain.

2.3. Review Methodology

The review methodology followed the systematic literature review (SLR) guidelines

as outlined by Keele et al. (2007). A review protocol is emphasized in SLR which includes

developing specific research questions to be addressed and planning the methods for suc-

cessfully performing the review (fig. 2.1). The SLR relies on a defined search strategy that

helps to find as much as the relevant literature for answering the research questions. The

database sources that were used for selecting relevant literature include, Science Direct,

Web of Science, Scopus, and Google Scholar. The selected literature were screened using

various inclusion or exclusion criteria; this aids in assessing the importance of incorporat-

ing a study addressing a specific research question. According to SLR, the review process

can be classified into three stages; (i) plan, (ii) conduct, and (iii) report the review.

Scope for conducting the review and research questions was identified during the

planning stage. With the scope identified a draft review protocol that details the steps and

procedures to be followed during the review process was developed. The draft protocol
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Define search string
Search strings based on the 

scope of review

Define research question
Questions that the review 

intends to address

Establish research protocol
Procedure followed during 

review process

Retrieve literature
Extract remaining literature after the 

search criteria

Apply screen criteria
• non-peer reviewed • duplicates, published 2010 • 
no clear focus on the scope of review • non-English

Select database
• Google scholar • Web of Science, 
• Science Direct • Scopus • Wiley

Extract data
Obtain data - e.g., author, year, 

inputs, methodology, and outputs

Address research questions
Synthesize data to results and 

answer research questions

Figure 2.1. Flowchart for conducting systematic literature review showing planning,
conducting, and reporting stages of the review.

is then validated to assess if the approach was viable. Other information such as pub-

lication databases, search strings, and selection criteria were defined. The protocol was

further revised and finalized based on the available research question and information.

Data were extracted from the selected literature from various publication sources during

the review stage. Basic information regarding the authors, year of publication, and more

research-related information such as the type of research, methodology, results, and rec-

ommendations were stored. The stored data were analyzed to provide an outline of the

relevant literature published. The final stage was review reporting, where the results were

used to answer the developed research questions and the review was concluded.
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2.3.1. Defining Research Questions

This review aims to focus on the literature published in the domain of “Biomass

yield prediction models and tools for pasture grass and forage and economic analysis tools for

forage.” The research questions have been developed with the objective to gain insights

into this knowledge domain. For this SLR based review, the developed research questions

were:

Q1: What are the significant factors influencing grass and forage biomass yield prediction?

Q2: What are the regression and machine learning modeling techniques used for biomass

yield prediction?

Q3: What are the currently available tools for grass/forage monitoring and yield predic-

tion?

Q4: What are the existing tools for forage economics analysis?

2.3.2. Strategy for Searching Literature

Searching in the broader aspect of the chosen knowledge domain might yield a lot

many published literature which are not in the scope of this review. Therefore, searching

should include basic concepts from the research questions that are relevant to the review

scope. A primary search was conducted to identify and list the search item and their

synonyms for individual search aspects based on the literature abstracts. The search items

identified were used as “search strings” in the publication databases (table 2.1).

2.3.3. Exclusion Criteria

Irrelevant studies that were outside the scope of this review were excluded based

on the following set criteria to perform SLR. There was no exclusion in the geographic

location of the publication.
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Table 2.1. Identified search item strings for systematic literature review.

Search Aspect Search item strings

Grassland grassland*, pasture*, steppe*,
rangeland*, meadow*

Climate precipitation, rainfall, evapo-
transpiration, humidity, solar ra-
diation, temperature, soil tem-
perature

Remote Sensing remote sensing, satellite,
drone*, UAV*

Vegetation indices vegetation ind*, NDVI, GNDVI,
EVI

Methodology machine learning, artificial intel-
ligence, regression

Yield biomass, produc*, monitoring,
harvest, cut, quantity, yield

Note: * indicates placeholder that captures other forms (e.g., plurels).

C1: Literature that do not have clear focus on grass or forage prediction

C2: Literature not in English

C3: Duplicate literatures already retrieved from another database source

C4: Literature published before 2010 (latest 10+ years considered)

C5: Literature including conference papers and magazines

The total number of literature entities (manuscripts) downloaded from the selected four

database sources was 147 (table 2.2). Only 85 manuscripts qualified for further analysis

after applying all the five criteria. Among the databases, more relevant manuscripts were

retrieved from Google Scholar (64 %) followed by Web of Science (17 %), and Science

Direct (table 2.2).
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Table 2.2. Distribution of collected and screened literature based on the database
sources in the chosen knowledge domain.

Database Downloaded Screened Selected (%)

Google Scholar 83 46 54
Web of Science 36 20 24
Science Direct 28 19 22

Total 147 85 100

The data from the qualified manuscripts were extracted based on the research ques-

tions developed in (section 2.3.1). The data from the final screened literature was obtained

for data analysis and the results are presented in the subsequent section.

2.4. Results and Discussion

2.4.1. Important Features Predicting Grass/Forage Yield

To address research question 1 (Q1), data from the selected literature were ex-

tracted (table 2.3) to analyze the most significant features used in the prediction of pas-

ture grass or forage. A collection of the screened literature (n = 85) with information such

as publication database, year published, literature title, citations generated, and reference

illustrated the greater interest in the subject based on the increased number of citations

(table 2.3). The significant remotely sensed vegetation index (VI) and soil, as well as

climate features, were individually analyzed and reported.

2.4.1.1. Vegetation indices

The satellite sensors used in capturing the grass and forage production in grassland,

pasture, rangelands, meadow, and steppe were recorded from the collected and screened

52 manuscripts. The term Landsat included platforms such as Landsat 5, 7, and 8 while

Sentinel included Sentinel 1 and 2. Analyzing the satellites revealed that MODIS, Landsat,
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Table 2.3. Details of selected articles through systematic literature review and their citation scores.

S.No. Database Year Title Citations Reference

1 Sci-Dir 2022 A non-destructive method for rapid acquisition of grassland aboveground
biomass for satellite ground verification using UAV RGB images

* H. Zhang et al. (2022)

2 Sci-Dir 2022 Classification of Zambian grasslands using random forest feature impor-
tance selection during the optimal phenological period

1 Zhao et al. (2022)

3 Sci-Dir 2022 Estimating pasture quality of Mediterranean grasslands using hyperspec-
tral narrow bands from field spectroscopy by Random Forest and PLS
regressions

* Fernández-Habas et al. (2022)

4 Sci-Dir 2022 Monitoring standing herbaceous biomass and thresholds in semiarid
rangelands from harmonized Landsat 8 and Sentinel-2 imagery to sup-
port within-season adaptive management

* Kearney et al. (2022)

5 Sci-Dir 2022 Monitoring the available forage using Sentinel 2-derived NDVI data for
sustainable rangeland management

* İleri and Koç (2022)

6 Goo-Sch 2021 A machine learning method for predicting vegetation indices in China 3 X. Li et al. (2021)

7 Sci-Dir 2021 A novel UAV-based approach for biomass prediction and grassland struc-
ture assessment in coastal meadow

7 Pecina et al. (2021)

8 Goo-Sch 2021 A practical satellite-derived vegetation drought index for arid and semi-
arid grassland drought monitoring

5 Chang et al. (2021)

9 Goo-Sch 2021 Applicability of different vegetation indices for pasture biomass estima-
tion in the north-central region of Mongolia

* Bayaraa et al. (2021)

10 Sci-Dir 2021 Changes and controls of aboveground net primary production in response
to grassland policy in Inner Mongolian grasslands of China

* Zheng et al. (2021)

11 Sci-Dir 2021 Comparing vegetation indices from Sentinel-2 and Landsat 8 under dif-
ferent vegetation gradients based on a controlled grazing experiment

* Qin et al. (2021)

12 Goo-Sch 2021 Enhanced drought detection and monitoring using sun-induced chloro-
phyll fluorescence over Hulun Buir Grassland,China

4 Y. Liu et al. (2021)

13 Goo-Sch 2021 Estimating pasture biomass using Sentinel-2 imagery and machine learn-
ing

9 Y. Chen et al. (2021)

continued . . .
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Table 2.3 Details of selected articles through systematic literature review and their citation scores — (continued)

S.No. Database Year Title Citations Reference

14 Goo-Sch 2021 Estimation of rangeland production in the arid oriental region (Morocco)
combining remote sensing vegetation and rainfall Indices: Challenges and
lessons learned

2 Lang et al. (2021)

15 Goo-Sch 2021 Grassland productivity estimates informed by Soil moisture measure-
ments: Statistical and mechanistic approaches

2 Krueger et al. (2021)

16 Goo-Sch 2021 Improving the estimation of alpine grassland fractional vegetation cover
using optimized algorithms and multi-dimensional features

* Lin et al. (2021)

17 Goo-Sch 2021 Monitoring rainfed alfalfa growth in semiarid agrosystems using Sentinel-
2 imagery

* Echeverŕıa et al. (2021)

18 Web-Sci 2021 National mapping of New Zealand pasture productivity using temporal
Sentinel-2 data

4 Amies et al. (2021)

19 Goo-Sch 2021 Precipitation rather than evapotranspiration determines the warm-season
water supply in an alpine shrub and an alpine meadow

5 H. Li et al. (2021)

20 Sci-Dir 2021 Remote sensing inversion of grassland aboveground biomass based on
high accuracy surface modeling

5 Zhou et al. (2021)

21 Goo-Sch 2021 Remote sensing of aboveground grass biomass between protected and
non–protected areas in savannah rangelands

* Dube et al. (2021)

22 Web-Sci 2021 Remote-sensing inversion method for aboveground biomass of typical
steppe in inner Mongolia, China

4 Lyu et al. (2021)

x23 Sci-Dir 2021 The superiority of the normalized difference phenology index (NDPI) for
estimating grassland aboveground fresh biomass

3 Xu et al. (2021)

24 Goo-Sch 2021 Cool-season grass productivity estimation model evaluating the effects of
global warming and climate adaptation strategies

1 Tarumi et al. (2021)

25 Web-Sci 2021 A new method for grassland degradation monitoring by vegetation
species composition using hyperspectral remote sensing

12 Lyu et al. (2020)

26 Goo-Sch 2020 Estimating grassland parameters from Sentinel-2: a model comparison
study

6 Schwieder et al. (2020)

27 Sci-Dir 2020 Effects of climate change on the growing season of alpine grassland in
Northern Tibet, China

5 X. Zhang et al. (2020)

continued . . .
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Table 2.3 Details of selected articles through systematic literature review and their citation scores — (continued)

S.No. Database Year Title Citations Reference

28 Goo-Sch 2020 Estimating plant pasture biomass and quality from UAV imaging across
Queensland’s Rangelands

10 Barnetson et al. (2020)

29 Goo-Sch 2020 Influence of climate variability on the potential forage production of a
mown permanent grassland in the French Massif Central

7 Gómara et al. (2020)

30 Goo-Sch 2020 Long-term grass biomass estimation of pastures from satellite data 4 Clementini et al. (2020)

31 Goo-Sch 2020 Monitoring and modeling rangeland health with remote sensing 1 Soubry and Guo (2020)

32 Goo-Sch 2020 Monitoring pasture aboveground biomass and canopy height in an inte-
grated crop livestock system using textural information from PlanetScope
imagery

8 Dos Reis et al. (2020)

33 Goo-Sch 2020 Remote sensing applications for insurance: a predictive model for pasture
yield in the presence of systemic weather

6 Brock Porth et al. (2020)

34 Goo-Sch 2020 Spatial and temporal pasture biomass estimation integrating electronic
plate meter, Planet CubeSats and Sentinel-2 satellite data

9 Gargiulo et al. (2020)

35 Goo-Sch 2020 The fusion of spectral and structural datasets derived from an airborne
multispectral sensor for estimation of pasture dry matter yield at paddock
scale with time

10 Karunaratne et al. (2020)

36 Goo-Sch 2020 Estimating natural grassland biomass by vegetation indices using Sentinel
2 remote sensing data

34 Guerini Filho et al. (2020)

37 Goo-Sch 2019 A new approach to predict normalized difference vegetation index using
time-delay neural network in the arid and semi-arid grassland

8 T. Wu et al. (2019)

38 Sci-Dir 2019 Application of the MODIS MOD 17 net primary production product in
grassland carrying capacity assessment

24 De Leeuw et al. (2019)

39 Web-Sci 2019 Canopy height measurements and non?destructive biomass estimation of
Lolium perenne swards using UAV imagery

31 Borra-Serrano et al. (2019)

40 Goo-Sch 2019 Drought-induced decline of productivity in the dominant grassland
species Lolium perenne L. depends on soil type and prevailing climatic
conditions

15 Buttler et al. (2019)

41 Goo-Sch 2019 Effect of irrigation management on pasture yield and nitrogen losses 20 Vogeler et al. (2019)

continued . . .
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Table 2.3 Details of selected articles through systematic literature review and their citation scores — (continued)

S.No. Database Year Title Citations Reference

42 Web-Sci 2019 Estimating grassland aboveground biomass on the Tibetan Plateau using
a random forest algorithm

21 Zeng et al. (2019)

43 Web-Sci 2019 Estimating leaf area index and aboveground biomass of grazing pastures
using Sentinel-1, Sentinel-2 and Landsat images

85 Wang et al. (2019)

44 Goo-Sch 2019 Estimating rangeland forage production using remote sensing data from
a small unmanned aerial system (sUAS) and PlanetScope satellite

18 (H. Liu et al., 2019)

45 Goo-Sch 2019 Yield estimates by a two-step approach using hyperspectral methods in
grasslands at high latitudes

11 Ancin-Murguzur et al. (2019)

46 Goo-Sch 2019 Estimating the basis risk of rainfall index insurance for pasture, range-
land, and forage

21 Yu et al. (2019)

47 Web-Sci 2019 Evaluation of grass quality under different soil management scenarios
using remote sensing techniques

21 Askari et al. (2019)

48 Web-Sci 2019 Grassland ecosystem services in a changing environment: The potential
of hyperspectra monitoring

19 Obermeier et al. (2019)

49 Goo-Sch 2019 Integrating traditional ecological knowledge and remote sensing for mon-
itoring rangeland dynamics in the Altai Mountain region

12 Paltsyn et al. (2019)

50 Web-Sci 2019 LIDAR provides novel insights into the effect of pixel size and grazing
intensity on measures of spatial heterogeneity in a native bunchgrass
ecosystem

10 Jansen et al. (2019)

51 Sci-Dir 2019 Quantitative estimation of biomass of alpine grasslands using hyperspec-
tral remote sensing

14 Kong et al. (2019)

52 Sci-Dir 2019 The classification of grassland types based on object-based image analysis
with multisource data

9 Xu et al. (2019)

53 Web-Sci 2018 Grassland canopy cover and aboveground biomass in Mongolia and Inner
Mongolia: Spatiotemporal estimates and controlling factors

65 John et al. (2018)

54 Goo-Sch 2018 A novel machine learning method for estimating biomass of grass swards
using a photogrammetric canopy height model, images and vegetation
indices captured by a drone

108 Viljanen et al. (2018)

55 Web-Sci 2018 Characterizing the spatio-temporal variations of C3 and C4 dominated
grasslands aboveground biomass in the Drakensberg, South Africa

15 Shoko et al. (2018)

continued . . .
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Table 2.3 Details of selected articles through systematic literature review and their citation scores — (continued)

S.No. Database Year Title Citations Reference

56 Web-Sci 2018 Estimates of grassland biomass and turnover time on the Tibetan Plateau 35 Xia et al. (2018)

57 Web-Sci 2018 Estimating vegetation biomass and cover across large plots in shrub and
grass dominated drylands using terrestrial lidar and machine learning

57 Anderson et al. (2018)

58 Goo-Sch 2018 Innovation in rangeland monitoring: annual, 30 m, plant functional type
percent cover maps for us rangelands, 1984–2017.

115 Jones et al. (2018)

59 Web-Sci 2018 Modeling grassland above-ground biomass based on artificial neural net-
work and remote sensing in the Three-River Headwaters Region

105 Yang et al. (2018)

60 Goo-Sch 2018 Modelling inter-annual variation in dry matter yield and Precipitation use
efficiency of perennial pastures and annual forage crops sequences

25 Ojeda et al. (2018)

61 Sci-Dir 2018 Predicting habitat quality of protected dry grasslands using Landsat NDVI
phenology

36 Weber et al. (2018)

62 Goo-Sch 2018 Remote sensing as a tool to assess botanical composition, structure, quan-
tity and quality of temperate grasslands

4 Wachendorf et al. (2018)

63 Goo-Sch 2018 Spatial and temporal variability of grassland yield and its response to
climate change and anthropogenic activities on the Tibetan Plateau from
1988 to 2013

28 H. Zhang et al. (2018)

64 Goo-Sch 2017 Constructing Italian ryegrass yield prediction model based on climatic
data by locations in South Korea

17 Peng et al. (2017)

65 Sci-Dir 2017 Estimating grassland LAI using the Random Forests approach and Landsat
imagery in the meadow steppe of Hulunber, China

36 LI et al. (2017)

66 Sci-Dir 2017 Estimation and prediction of grassland cover in western Mongolia using
MODIS-Derived vegetation indices

6 Paltsyn et al. (2017)

67 Goo-Sch 2017 Evaluation of remote sensing inversion error for the above-ground
biomass of alpine meadow grassland based on multi-source satellite data

32 Meng et al. (2017)

68 Goo-Sch 2017 Multi-model simulation of soil temperature, soil water content and
biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble
performance

52 Sandor et al. (2017)

69 Goo-Sch 2017 Identification of high nature value grassland with remote sensing and
minimal field data

54 Stenzel et al. (2017)

continued . . .
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Table 2.3 Details of selected articles through systematic literature review and their citation scores — (continued)

S.No. Database Year Title Citations Reference

70 Goo-Sch 2017 Remote sensing of above-ground biomass 119 Kumar and Mutanga (2017)

71 Goo-Sch 2017 The relationship between soil moisture and temperature vegetation on
Kirklareli City Luleburgaz District a natural pasture vegetationPasture
Vegetation

5 Sen and Ozturk (2017)

72 Goo-Sch 2017 The signature of sea surface temperature anomalies on the dynamics of
semiarid grassland productivity.

21 M. Chen et al. (2017)

73 Goo-Sch 2017 Modelling biomass of mountainous grasslands by including a species com-
position map

23 Magiera et al. (2017)

74 Web-Sci 2016 Modeling managed grassland biomass estimation by using multitemporal
remote sensing data–A machine learning approach

80 Ali et al. (2016)

75 Goo-Sch 2016 Calibration of GrassMaster II to estimate green and dry matter yield in
Mediterranean pastures: effect of pasture moisture content

24 Serrano et al. (2016)

76 Web-Sci 2016 Comparison of machine-learning methods for above-ground biomass es-
timation based on Landsat imagery

52 C. Wu et al. (2016)

77 Web-Sci 2016 Grassland and cropland net ecosystem production of the US Great Plains:
Regression tree model development and comparative analysis

10 Wylie et al. (2016)

78 Sci-Dir 2016 Modeling grassland aboveground biomass using a pure vegetation index 50 F. Li et al. (2016)

79 Web-Sci 2016 Application of synthetic NDVI time series blended from Landsat and
MODIS data for grassland biomass estimation

76 B. Zhang et al. (2016)

80 Goo-Sch 2016 Modeling phenological responses of Inner Mongolia grassland species to
regional climate change

24 Q. Li et al. (2016)

81 Sci-Dir 2015 Estimating above-ground biomass on mountain meadows and pastures
through remote sensing

64 Barrachina et al. (2015)

82 Web-Sci 2015 Estimating plant traits of grasslands from UAV-acquired hyperspectral im-
ages: a comparison of statistical approaches

98 Capolupo et al. (2015)

83 Goo-Sch 2015 Water use efficiency of six rangeland grasses under varied Soil moisture
content levels in the arid Tana River County, Kenya

19 Koech et al. (2015)

84 Goo-Sch 2013 The drought calculator: decision support tool for predicting forage
growth during drought.

8 Dunn et al. (2013)

continued . . .
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Table 2.3 Details of selected articles through systematic literature review and their citation scores — (continued)

S.No. Database Year Title Citations Reference

85 Sci-Dir 2010 Using remote sensing and GIS technologies to estimate grass yield and
livestock carrying capacity of alpine grasslands in Golog Prefecture, China

98 Long et al. (2010)

Note: Sci-Dir - Science Direct; Goo-Sch - Google Scholar; Web-Sci - Web of Science; * Citations not reported for these latest publications.
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and Sentinel were mostly applied in the literature predicting pasture or forage yield (ta-

ble 2.4). The finer spatial resolution recorded using PlanetScope satellite was used in

literature published after 2019. Unmanned aerial vehicle (UAV) equipped with hyperspec-

tral sensors were also widely used for grass and forage yield prediction.

Table 2.4. Distribution of screened literature based on the satellite platforms.

Satellite platforms Frequency

MODIS 16
Landsat 15
Sentinel 12
UAV 9
PlanetScope 5
LIDAR 2
EOSDIS 1
NOAA/AVHRR 1
PROBA-V 1

The traditional methods of monitoring biomass involved the destructive process of

hand clipping and drying the biomass from the randomly placed quadrats across a large

landscape (Catchpole and Wheeler, 1992). The traditional method was time-consuming

and laborious process, therefore, not performed frequently. While, surface reflectance

properties of vegetation recorded by satellite sensors were used to develop VI for large-

scale, timely, and non-destructive methods of biomass prediction and plant health moni-

toring. Therefore, with the advances in remote sensing over the recent years, studies on

using vegetation indices as proxies for predicting and large-scale monitoring the spatial

and temporal patterns of the grassland were explored among other studies.

Among the literature collected, normalized difference vegetation index (NDVI) was

the most frequently used VI (28 %) in predicting grass and forage (fig. 2.2) followed by
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Figure 2.2. Vegetation indices versus number of literature collected from
publication database sources. Frequency of vegetation indices is sorted from lowest
to highest. Vegetation indices versus number of literature collected from publication
database sources. Frequency of vegetation indices is sorted from lowest to highest.
NDVI - normalized difference vegetation index, EVI - enhanced vegetation index,
SAVI - soil-adjusted vegetation index, OSAVI - optimized soil-adjusted vegetation
index, RVI - relative vigor index, MSAVI - modified soil-adjusted vegetation index,
NDWI - normalized difference water index, SR - simple ratio, LSWI - land surface
water index, GNDVI - green NDVI, ARVI - atmospherically resistant vegetation index,
GRVI - green and red ratio vegetation index, ExG - excess green, EVI2 - 2-band EVI,
DVI - difference vegetation index.

enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), and optimized

soil-adjusted vegetation index (OSAVI).

A study comparing eight VIs derived from Sentinel 2 and Landsat 8 satellite data

showed that the prediction models developed using the EVI, NDVI, SAVI correlated well
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(R2 = 0.61–0.65) with the above-ground biomass and leaf area index (Qin et al., 2021).

Another recent study on estimating the pasture biomass revealed that NDVI best estimated

the pasture biomass with a prediction performance of R2 between 0.74 and 0.94 using

Sentinel 2 and PlanetScope images (Gargiulo et al., 2020). For a drone-based forage

biomass estimation study, modified soil-adjusted vegetation index (MSAVI) produced good

correlation (r = 0.94–0.99) in predicting forage and dry matter yield (Viljanen et al.,

2018).

2.4.1.2. Climate and soil features

Many studies have explored the use of climate and soil features in forecasting the

annual forage yield which aided in making appropriate decisions on livestock stocking rate

and monitoring the desired plant community. In the collected literature, climate features

mostly used included air temperature, precipitation, solar radiation, relative humidity,

and wind speed. The solar information contains, minimum, average, and maximum air

temperature and solar radiation observations while the term precipitation included rainfall

and snow. The soil moisture, pH, organic matter, and soil nutrients were categorized under

soil variables.

Based on the collected literature, mostly used climate and soil features in predicting

forage and grass biomass were precipitation, air temperature, and soil moisture that con-

tributes to the 33 %, 21 %, and 15 %, respectively (fig. 2.3). Other predominant variables

include relative humidity, soil temperature, and solar radiation (6 %). The features used

less for grass and forage prediction were soil pH, organic matter, and soil nutrients.

A study conducted to estimate the stability of forage covers with respect to climate

revealed that annual precipitation influences the dry matter yield of sequence oats-maize
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Figure 2.3. Distribution of screened literature on the application of climate and soil
features for grass and forage prediction.

and pure alfalfa (Ojeda et al., 2018). Another study in Alpine grassland showed that the

start growing season (January to May) was positively correlated to the mean air temper-

ature and wats negatively correlated to cumulative precipitation (X. Zhang et al., 2020).

The effects of soil features on herbage yield were studied in different pastures where a

decrease in yield was observed with the decrease in soil moisture and increase in soil

temperature (Şen, 2018).

Overall, more recent literature focused on VI (n = 55) than climate features (n = 26),

this shows a steady increasing trend in the adoption of remote sensing technology for

monitoring forage and grass yield. To address Q1, the major VI, soil, and climate fac-

tors commonly used for grass and forage yield prediction were NDVI, precipitation, air

temperature, and soil moisture.
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2.4.2. Overview of Forage/Grass Prediction Models

The yield prediction of forage and grass was a complex relationship between the

climate, soil, and or VI features. Studies have reported using linear regression (LR) for

cases where the yield was correlated to individual features and also multiple linear regres-

sion (MLR) and partial least square regression (PLSR) where the features are combined

for yield prediction. In the last few years, with the intricate connections between forage

yield and the influencing features, new approaches have been developed such as machine

learning (ML) to capture the non-linear relationships.

The common ML methods used in predicting grass or forage yield were artificial

neural network (ANN), gradient boosting (GB), k-nearest neighbor (kNN), random forest

(RF), and support vector machine (SVM). Based on the collected literatures published

in the most recent years (since 2015), large volume of literatures were found using RF

(n = 21), followed by LR (n = 15), MLR (n = 10), PLSR (n = 6), SVM as well as ANN

(n = 4), and GB as well as kNN (n = 3; fig. 2.4).

The highest median R2 was obtained with PLSR (0.75) closely followed by LR

(0.73). High highest median R2 was observed for LR models since the biomass predic-

tion was based on individual VI or climate feature, however, this was not desirable since

forage and grass biomass yield was influenced by combination of features. Among the ML

prediction models, ANN and RF produced the highest median R2 value (0.72). The ab-

solute minimum R2 among all methods was obtained using kNN (0.48). In the literature

that used multiple prediction models, ML models (especially RF) predominantly performed

better than the LR models. For example, a model comparison study conducted to estimate

grass biomass using drone-based VI showed RF (r = 0.77) model consistently performed
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Figure 2.4. Box plot of prediction performance (R2) for the eight most used
regression and machine learning methods. ANN - artificial neural network, GB -
gradient boosting, kNN - k-nearest neighbor, LR - linear regression, MLR - multiple
linear regression, PLSR - partial least square regression, RF - random forest, and
SVM - support vector machine.

better than MLR (Viljanen et al., 2018). Another study comparing linear regression and

ML models to predict grassland biomass established that the RF model produced the best

prediction accuracy (R2 = 0.63) than linear regression, SVM, and kNN methods (C. Wu

et al., 2016).

In general, to answer the research question Q2, based on the analysis results of the

literature data showed that the RF ML model is widely used for its proven performance

over other ML models and regression models.
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2.4.3. Existing Tools for Grass/Forage Prediction

Few user-interactive tools that use the above-described grass and forage yield pre-

diction models were built. These tools aid ranchers to compare management practices,

aid decision-making, develop forecast scenarios, and plan livestock stocking rate. The

existing tools mostly use climate features such as precipitation as inputs for predicting

the biomass yield. Following are the tools developed for forage and grass prediction that

include spreadsheet- and web-based applications.

2.4.3.1. Drought calculator

The drought calculator (DC) was a spreadsheet-based linear decision tool devel-

oped by the United States Department of Agriculture (USDA) Agricultural Research Service

(ARS) and USDA Natural Resources Conservation Service (NRCS) to predict the reduction

in forage production influenced by drought (Dunn, 2013). The DC used an average of

monthly precipitation to predict the forage growth potential (FGP), based on generic for-

age/biomass growth curves of specific zones, for the ranchers and ranch managers to aid

in stocking decisions early during the drought years (fig. 2.5).

The FGP represented the above-ground forage biomass during the growing season

and was measured using the peak standing crop factor. The prediction was based on simple

linear regression models developed using standardized forage production and monthly

precipitation data. The calculator tool was developed and evaluated using the data from

the Great Plains of the US, Colorado, North Dakota, and Wyoming. The overall accuracy

of the DC tool was approximately 75 % (Dunn et al., 2013).

This spreadsheet tool was recently updated and the “dashboard and no-macro” ver-

sion, developed by Agricultural and Biosystems Engineering, North Dakota State University
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Figure 2.5. Previous version of the ND drought calculator rainfall input page for
predicting forage growth potential from three growth zones.

(NDSU), can be downloaded and run using Microsoft Excel (fig. 2.6). The original DC was

not active for the past few years hence sparking the development of the updated tool. The

updated tool was a stripped-down version of the original and developed as a direct tool

without macros and Visual Basic programming (no-macro) that ensured better security.

The updated tool’s inputs included information on the weather station, county, zone, year,

and choice of user data. The tool can perform automatic FGP calculations based on the

data stored from 150 weather stations present in North Dakota. The user data option with

YES allows the users to feed in their precipitation data to be used in the analysis. The user

data and information stored in the user’s computer (e.g., local precipitation, and long-term

precipitation average) can be used as input and the session data can be saved for future

access and reference. The tool’s output was a printable summary report that included

infor-
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Figure 2.6. Updated no-macro ND drought calculator dashboard for predicting forage growth potential using
monthly precipitation for two growth zones.
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mation on the predicted FGP, precipitation data used, and a comparison between the re-

cent and long-term potential for the selected county was presented as graphs.

The DC tool was recommended as a decision-making tool for ranchers for cattle

production by adapting to the varying weather and climatic conditions in the northern

great plains area (J. L. Reeves et al., 2015). Another study that reviewed drought man-

agement options for ranchers to fight against climate risk also suggested using the DC tool

since it was developed based on the direct relationship between precipitation and forage

growth (Shrum et al., 2018). In general, the DC was considered as a science-based tool

that aids livestock producers in North Dakota at an individual level to incorporate suitable

plans based on the information accessible to them (Kichler et al., 2011).

2.4.3.2. US drought monitor

The US Drought Monitor (USDM) is a web-based map tool providing weekly up-

dates of the regions in the united states affected by drought (USDM, 1999). The USDM

was functional since 1999 and maintained and operated by a team involving agencies such

as the USDA, National Drought Mitigation Center (NDMC) at the University of Nebraska-

Lincoln, and the National Oceanic and Atmospheric Administration (NOAA). The primary

users of this tool are banks, farm service agencies, and internal revenue services.

Drought was classified into five different zones on the map namely, abnormally dry

(D0), moderate (D1), severe (D2), extreme (D3), and exceptional (D4, fig. 2.7). The

categorization of the different drought zones is not based on statistical or forecasting mod-

els; however, input variables such as temperature, soil moisture, snow cover, and indices

such as standard precipitation index (SPI) and palmer drought severity index (PDSI) were

involved in determining the drought zones. These input variables were analyzed by the
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Figure 2.7. US Drought Monitor map categorized into abnormally dry (D0),
moderate (D1), severe (D2), extreme (D3), and exceptional (D4). Last accessed on:
February 24, 2022.

drought experts and were compared with their long-term averages to produce drought

maps.

The outputs of the USDM tool include (i) side-by-side comparison and slider options

for drought maps of consecutive weeks with a selectable area type, area, and statistical

type, (ii) visualization of time-series analysis (2000 – 2022) of different USDM indexes,

(iii) map archive consists of all the maps published weekly since 2000, (iv) animated

drought maps for drought conditions over the selected period which can be downloaded
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in a ‘gif’ version, and (v) in addition to the maps, the data were also accessible and down-

loadable in table format from the tabular data archive section.

A study conducted to estimate the drought impact as defined by USDM on field

crops and income showed that in the High Plains, Midwest, and South regions, the USDM

better correlated with the yield than the Northeast and Southeast regions (Kuwayama

et al., 2019). Another study predicted the drought categories of USDM in the US with

the initial conditions derived from the USDM and seasonal climate forecast from North

American Multimodel Ensemble (Hao et al., 2017). Since forage biomass is dependent

on the drought condition, the USDM was prescribed for ranchers as an information tool;

and USDM helps the ranchers to adopt a management framework to adjust their cattle

population based on the available drought condition (Derner and Augustine, 2016).

2.4.3.3. Grass-Cast

The Grass-Cast tool was developed exclusively to forecast grassland productivity

in the Great Plains and Southwest regions. This web-based tool was developed in col-

laboration between Colorado State University, the US Department of Agriculture (USDA),

National Drought Mitigation Center, and the University of Arizona (Peck, 2018). Potential

users of this web tool are researchers, extension specialists, producers, land managers, and

others.

The Grass-Cast tool (fig. 2.8) employs a reliable grassland ecological model, Day-

Cent, to forecast forage biomass of grasslands using 38 years of historical weather and

vegetation growth data along with the current weather data and seasonal climate outlook

data from NOAA climate prediction center (M. Chen et al., 2017; M. Chen et al., 2019;

Hartman et al., 2020; Peck et al., 2019).
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Figure 2.8. Grass-Cast maps with 3 scenarios; if precipitation is above normal (left map), is near-normal (middle
map), and below normal (right map). Last accessed on: February 24, 2022.
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The outcomes of the model include forecasting whether productivity in pounds/acre

(for a spatial grid size of 10 km × 10 km, or ∼6 miles × 6 miles) is above-normal, near-

normal, or below-normal when compared to their 30 year history data of their respective

area. The tool provides three different maps for the users, such as above-normal, near-

normal, and below-normal.

The choropleth colors indicate the possibility of the grassland vegetation of the

cell’s grid to be higher or lower than its more than 30 years of historical data. The Grass-

Cast forecast maps are first published at the beginning of the Spring (April) and until the

end of summer (August). During this period, the maps are published every two weeks to

include recently observed weather data in the model. Therefore, the accuracy of the model

increases with time. Printer-friendly versions of the maps are available with the web tool,

and the previous maps and CSV data (since 2017) can be accessed from the archive option

of the tool.

A comparison study between Grass-Cast and MODIS NDVI (data used for valida-

tion) in predicting the plant production revealed that the model performed better with

increased accuracy from May to mid-June (Parton et al., 2020). Another work on studying

the critical decision dates for drought management in the rangelands belonging to Cen-

tral and Northern Great Plains recommends Grass-Cast as a forage prediction tool for the

ranchers to match the animal demand to the forage availability (Derner et al., 2020; Smart

et al., 2021).

2.4.3.4. Rangeland analysis platform

Rangeland analysis platform (RAP) is a free online interactive tool that provides

quick access to geospatial data for the United States’ rangelands (fig. 2.9). The RAP tool
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Figure 2.9. Range analysis platform — interactive web-based tool for forbs and
grass percentage cover and herbaceous biomass yield.

tool is a collaborative product of the University of Montana, Department of Interior’s Bu-

reau of Land Management, and USDA – Natural Resources Conservation Service (B. Allred,

2019). This web tool’s target audience was anyone in need to make a land management

decision that could include ranchers, landowners, managers, and conservationists.

Datasets from nearly 57 000 field plots from sources such as the National Resources

Conservation Service’s National Resource Inventory (NRI) and Bureau of Land Manage-

ment Assessment, Inventory, and Monitoring (AIM) are combined with the historical Land-

sat database are used in RAP. The tool uses the power of cloud computing and machine
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learning techniques (temporal convolutional network) to monitor rangelands in real-time

(B. W. Allred et al., 2021; Jones et al., 2018; Jones et al., 2021; Robinson et al., 2019). The

RAP monitors the rangeland vegetation from 1984 to the current at pasture, landscape, or

regional scale.

The web tool provides options such as upload shapefile or draw feature to select

the area of interest upon selection. The tool generates time series analysis results based

on the chosen location, which show the trend in the vegetation cover (%) and the biomass

availability (lb/ac) for the selected area (fig. 2.9). The generated results can be down-

loaded in PDF, and the respective data can be downloaded in CSV or Excel formats for

future reference and use.

Several studies on monitoring grassland and estimating the expansion of grass

species used geospatial products from RAP. For instance, the study on tracking the spread

of exotic grasses in the Western United States used RAP’s geospatial data from 1985 to

2018 (Pastick et al., 2021). Another similar study used remote sensing products of RAP to

quantify the rate of spread of annual grass dominance in the Great Basin area of United

States (Smith et al., 2022).

2.4.4. Tools Available for Forage Economics Analysis

Along with the knowledge of the forage/biomass potential yield prediction, the

most significant information for the producers/farmers is the bottom-line economics of

the ranching or agricultural enterprise. However, the number of studies in the domain of

economic analysis is scarce. Furthermore, the ranchers/farmers constantly evaluate the

decision of growing or buying the forage for gracing or feeding their livestock population

in a sustainable manner.
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Though grasses and forages are naturally available in pastures, grasslands, ranches,

meadows, and steppe; however, to meet the year-long feed supply to the livestock, some

forages are cultivated and stored by farmers. Remaining hay after the grain harvest was

also collected and used as animal feed. Studies show that a large portion of the live-

stock production cost is attributed to producing, harvesting, baling, and storing of forage

(Horrocks and Valentine, 1999; Nayigihugu et al., 2007). Therefore, economic analysis

of forage operations was critical for the forage growers in making informed decisions on

aspects such as equipment purchases for farm operations and forage sale price. Economic

analysis of forage includes numerous variables and complex calculations which are diffi-

cult to perform manually (by-hand), tedious, and time-consuming. Following were the few

existing spreadsheet-based calculators replacing the manual estimation.

2.4.4.1. Alfalfa cost calculator

Based on the study conducted in a research trial of the University of Wisconsin-

Extension that established that short rotations of alfalfa were more profitable than long

term rotations, a spreadsheet-based calculator was developed (Undersander and Barnett,

2008). The economic analysis uses fixed and variable costs (including machinery cost and

land rent) of a four-year stand alfalfa crop (fig. 2.10).

The study was extended, again as a spreadsheet calculator, where the inputs in-

cluded factors, such as alfalfa yield, price, fertilizer cost, and land rent cost (Barnett,

2009). The costs of alfalfa production from year one to four are analyzed and provided in

the calculator as default choices to calculate the profit.
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Figure 2.10. Alfalfa profitability and fertilizer cost calculator developed by
University of Wisconsin-Extension.
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2.4.4.2. Haying system enterprise budgeting

The Montana State University Extension developed a detailed calculator to deter-

mine the operating and ownership cost of different haying systems for alfalfa (Brence and

Griffith, 2012). The general inputs of the tool were total acres of hay grown, estimated

yield, cuttings per year, number of times the machine operated per year, and fuel price

(fig. 2.11). In addition, other specific machinery information (speed, field efficiency, type

of fuel, and percent utilized) for tractor, swather, rake, baling, hauling information were

collected as inputs. The machine cost per ton and the operating and ownership costs were

calculated based on the inputs. The tool also generated enterprise budgeting for irrigated

alfalfa hay establishments. The inputs and the generated results were printable for future

use.

2.4.4.3. Enterprise budgeting for producing irrigated alfalfa

A study was conducted by the Washington State University Extension to analyze

the economics of establishing a central pivot irrigation system and producing alfalfa (Nor-

berg and Neibergs, 2012). The results were based on a 120 acre central pivot irrigation

of the alfalfa field. The study revealed that for irrigated alfalfa the cumulative net returns

recaptured the irrigation establishment cost at the end of the third year. Since the estab-

lishment cost is met, the net return of alfalfa significantly increased past three years. The

budgets from this study were presented in an Excel spreadsheet and served as a reference

for growers to compare and analyze their own cost data (fig. 2.12). The reference spread-

sheet included operational costs for fertilizing, irrigation, herbicide, and pesticide. Other

costs included were haying cost (swath, rake, baling, and haul), fixed, variable, and land

cost.
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Figure 2.11. Haying system enterprise budgeting estimate the operating and
ownership costs developed by Montana State University Extension.
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Figure 2.12. Alfalfa budget workbook guidelines reference developed by Washington
State University Extension.
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2.4.4.4. Price standing hay crop forage

A spreadsheet calculator was developed by PennState Extension to estimate prices

for standing hay crop forage from buyer and grower perspectives based on current hay

price, estimated hay yield/acre, and dry matter of haylage (Ishler, 2020). From the

grower’s perspective, cost aspects for mowing, conditioning, raking, baling, and wrapping

were considered. And from the buyer’s standpoint, a comparison of costs for buying silo

haylage versus standing dry hay was provided (fig. 2.13). The machinery costs involved in

the cost analysis were custom rates for the year 2016 published by NASS for Pennsylvania.

2.4.4.5. Decision support tool for hay production vs. hay cost

A decision support spreadsheet tool was developed by Natural Resource Conserva-

tion Service (NRCS) for alfalfa and grass hay (Kirwan, 2020). This tool helped farmers and

ranchers to evaluate profitable operations by producing or purchasing hay (fig. 2.14). Two

default examples on the production estimation for alfalfa and grass hay were provided as

a reference. Provision for entering users’ data was included. Costs of land rent, fertilizer,

seed, herbicide, and their respective machinery were provided as direct inputs. This tool

helped farmers to compare the estimates and make informed decisions. Another feature

of this tool was determining the hay requirement after storage loss, which helps farmers

explore the cost and benefits of hay storage. The storage loss analysis and worksheet were

developed by Iowa State University.
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Figure 2.13. Price of standing hay crop from buyer and grower perspectives developed by PennState Extension.
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Figure 2.14. Decision support tool for producing versus purchasing grass and alfalfa hay developed by Natural
Resource Conservation Service (NRCS).
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2.4.4.6. Forage economics calculator

The forage economics calculator is a user-friendly web-based tool developed by

North Dakota State University in collaboration with NGPRL, USDA-ARS, Mandan (fig. 2.15).

Figure 2.15. Forage economic calculator developed by North Dakota State University
and NGPRL, USDA-ARS, Mandan, ND.

The tool focuses on the bale collection logistics operation, which is often ignored

but a labor-intensive operation that significantly influences the economic outcomes (Sub-

hashree et al., 2021). Other operations such as harvesting, baling, and hauling are pro-
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vided as direct inputs. The tool accommodates 10 different forage types, including annual

and perennial forage and grain forage (remaining hay after grain harvest). The tool takes

29 input variables and generates 37 output parameters dynamically. It serves as a deci-

sion support tool as scenario analysis can be performed, which helps the farmers to make

informed decisions.

A downloadable and printable report was one of the tool’s outputs which consisted

of selected inputs and estimated outputs. The potential users of this tool include hay

producers, farmers, custom hay operators, financial personnel, educators, and others in-

terested in the economics of handling bales. More information on this tool’s scope, devel-

opment, case studies, and scenario analysis are presented in detail in chapter 4.

To answer the research question Q4, though fewer in number, spreadsheet-based

tools, and one web-based tool were available for economic analysis of forage. Most of the

spreadsheet tools were developed for alfalfa forage crop while the web-based tool included

ten different forage crop varieties.

2.5. Research Gaps and Future Recommendations

In the study, based on the literature collected and analyzed data to predict forage

and grass yields, following the SLR methodology, about 49 % of the collected literature

used MODIS and Landsat remote sensing satellites which have a low spatial resolution of

10–30 m, while only 8 % of the literature used PlanetScope with a high spatial resolution

of 3 m). Fine spatial resolution represents more detailed information obtained from the

ground and should perform better in biomass yield predictions. Also, most studies used

either VI or climate features in predicting biomass. However, using both VI and climate

can help understand the influence of the input features as predictors and are expected to
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yield better prediction results. In recent years, ML methods have proved their prediction

performance for non-linear problems; therefore, more ML models need to be examined to

evaluate the best model in predicting grass and forage yield. In the future, studies focused

on (i) comparison between different satellite platforms for determining the influence of

spatial resolution (ii) using both VI and climate features and evaluating the best features

for predicting forage and grass biomass (iii) application of other advanced ML models

(e.g., deep learning) to compare and evaluate the forage and grass yield prediction perfor-

mance, were recommended.

The available forage prediction tools primarily focused on a county or state level

using satellite images. When the prediction tools were developed for a larger scale, the

weather, soil, and plant species variation were lost. These variabilities, specific to a loca-

tion (e.g., producer’s field), play a vital role in rangeland forage prediction. Therefore,

there is scope for developing models for “field-specific” prediction using the local weather,

soil, and plant species composition based on the ground truth and satellite data available.

As a recommendation for future research, user-friendly web tools should be developed

which allow the users to input location-specific variables for better and more realistic pre-

dictions of grass and forage yields. Since the existing tools on forage economics analysis

were predominantly developed for alfalfa forage, incorporation of more forage crops was

recommended. Most of the tools were spreadsheet-based; therefore, the development of

more interactive, user-friendly, web-based tools was recommended for easy management

and avoiding critical errors and security issues of spreadsheet programs.
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2.6. Conclusions

The systematic review methodology was successfully followed to plan, conduct,

gain insights, and report the results for forage yield prediction (input features, models,

and tools) and for economic analysis tools. In total, 85 qualified research manuscripts

were reviewed in this knowledge domain from years 2010 to 2022. Among the selected

database sources, Google Scholar yielded most literature (n = 46) for the search terms

considered. More literature were available for forage yield prediction using vegetation

index (VI) which are remotely sensed (n = 55) than the climate features (n = 26) which

shows a strong increasing trend of remote monitoring of grasslands and pastures. Reported

forage and grass yield prediction studies either used VI or climate features but not both.

The frequencies of studies using satellite platforms were unequally distributed;

among the satellites, MODIS (n = 16) was the most used followed by Landsat, and Sen-

tinel. Mostly a single satellite platform was used for prediction; however, comparison be-

tween the satellites will be useful in assessing the importance of spatial resolution. About

28 % of the literature collected on remote sensing prediction of grass and forage yield

used normalized difference vegetation index (NDVI) and was mostly used VI. Precipitation

(33 %) and soil moisture (15 %) were the most frequently used features in the grass and

forage prediction. The prediction performance of machine learning (ML) models domi-

nated the linear and multiple linear regression models. Among ML models, the random

forest model was widely used (n = 21) and produced the highest median R2 of 0.72.

Existing grass and forage prediction tools were Drought Calculator, U.S. Drought

Monitor, Grass-Cast, and Rangeland Analysis Platform, and they focused on large-scale

prediction, where variability within individual producer’s field that is of interest can be
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lost. Current tools on forage economics analysis deal with alfalfa production, haying sys-

tem enterprise, enterprise budgeting for production of irrigated alfalfa, price of standing

hay crop, decision support tool for hay production vs hay cost, and forage economics cal-

culator. Most of the forage economics tools were predominantly spreadsheet-based and

were developed for cropped alfalfa; however, the NDSU forage economics calculator was

interactive and web-based dealing with 10 forage crops.

Overall, based on the gained insights, the potential future research scope includes

(i) comparison between satellite platforms to assess the influence of spatial resolution on

grass and forage yield prediction and the tradeoffs; (ii) usage of the combination of vege-

tation index and climate features to predict biomass yield; (iii) inclusion of more robust as

well as advanced ML models and comparison of prediction performance; (iv) development

of interactive and user-friendly forage prediction tools for field-specific applications using

local weather, soil, and plant species; (v) creation of web-based for forage economics tools

including all operations and more forage crop varieties; and (vi) development of smart-

phone applications both for forage prediction and economics to increase the impact and

visibility of these outputs to the farming, ranching, and other related sectors.
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3. BIOMASS BALES INFIELD AGGREGATION LOGISTICS ENERGY FOR

TRACTORS AND AUTOMATIC BALE PICKERS — A SIMULATION

STUDY *

3.1. Abstract

Infield bale aggregation is essential for bale removal and for preparing the field for

subsequent crops, which can be more efficiently performed using the modern automatic

bale picker (ABP) that supports multiple bales/trip (BPT) than commonly used tractors.

But the energy involved in the bale aggregation logistics using ABP has not been thor-

oughly evaluated. Therefore, the energy involved in the bale aggregation, in terms of

fuel consumption, was studied for different logistic scenarios using a tractor (control)

and ABP through a user-developed simulation program in ‘R.’ Different variables such as

field areas (8 to 259 ha), biomass yields (3–40 Mg ha−1), four outlet locations, and five

equipment speeds (6.6 –10.5 km h−1) using realistic equipment turning paths were used

in the simulation. The Nebraska Tractor Test general method and fuel efficiency method

were considered for the fuel consumption calculations. Fuel consumption for the ABP (8–

259 ha) with 8 BPT on an average decreased by 72 % and 53 % compared to a tractor with

1 and 2 BPT, respectively, based on logistics distance and equipment operation. Field area,

biomass yield, and BPT were the most influential variables affecting logistics distance;

* This paper was already published with the citation: Srinivasagan N. Subhashree, C. Igathinathane,
M. Liebig, J. Halvorso, D. Archer, J. Hendrickson, and S. Kronberg. (2021). Biomass bales infield aggrega-
tion logistics energy for tractors and automatic bale pickers — A simulation study. Biomass and Bioenergy,
144(2021) 105915. DOI: https://doi.org/10.1016/j.biombioe.2020.105915. Subhashree performed litera-
ture search, developed simulation, analyzed results, and wrote the manuscript. Dr. Igathinathane Cannayen
is the major advisor, principal investigator, and the corresponding author who worked with Subhashree
throughout the research and manuscript development. All the co-authors have assisted in the research di-
rection and review of the manuscript.
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while, field area, biomass yield, BPT, and equipment speed affecting the operation time

and fuel quantity. Convenient prediction models (multi-variate nonlinear) for logistics dis-

tance, operation time, and fuel quantity, using the influential field variables, produced very

good fits (R2 ≥ 0.98). Overall, an ABP with a capacity of 8 BPT, which can also handle

11 BPT, is recommended considering the logistics energy.

3.2. Introduction

Agricultural biomass is one of the most abundant renewable energy resources. The

demand for biomass is increasing due to its versatility ranging from energy generation

to livestock feed applications. Biofuel production at large-scale faces multiple issues and

challenges associated with logistics, schedule of delivery, and inconsistent feedstock sup-

ply (Hess et al., 2007). Logistic operations for biomass including collection, handling,

storage, and transport, contribute to the major cost of bio-energy. Supply chain modeling,

involving five different types of biomass (Miscanthus [Miscanthus giganteus], forest fuel,

short rotation coppice, and straw), concluded that 20 %–50 % of the costs associated with

biomass logistics involve handling and transport (Allen et al., 1998).

Biomass logistics cost is one of the major barriers to biomass utilization. Hence

several models of supply chain logistics have been developed to improve biomass logistics

efficiency. These models studied supply chain for ethanol production (Ebadian et al., 2013;

Lin et al., 2014), Miscanthus (Huisman et al., 1997; Shastri et al., 2010), biomass supply

to biorefineries (Sokhansanj et al., 2006), forest residues (Gallis, 1996; Mobini et al.,

2011), woody biomass (Svanberg et al., 2013; Umeki et al., 2010), GIS-based switchgrass

logistics across 11 US states (Graham et al., 2000), and GIS-based biomass delivery to a

specific location (Graham et al., 1997).

77



Previous logistics studies usually assume biomass is a “point source” available at

the field location and moved to a distant processing facility. A review on biomass collec-

tion, storage, and handling techniques suggests loose biomass from fields be packed into

small bundles (e.g., bales) and then transported to biomass stations for repackaging to

the desired density and size before transporting to the biofuel plants (Zhou et al., 2016).

Since the logistics cost accounts for 90 % of the total costs (EkşioğLu et al., 2010), many

studies have been conducted to model the logistics of biomass using predictive model-

ing approaches integrated with GIS-based methods (Frombo et al., 2009; Velázquez-Mart́ı

and Annevelink, 2009). These studies mainly focused on developing effective methods to

achieve optimal on-road logistics and transport strategies in whole fields or larger areas

considered as a single unit of biomass supply.

In reality, biomass is a “distributed source” and after harvest residues are left,

throughout the field, to dry until they reach optimum moisture of 5 %–20 % wet basis

and baled for collection (Rotz and Muck, 1994; Rotz and Shinners, 2007). Infield biomass

bale logistics of aggregation and transportation to a field outlet, which can then be consid-

ered a biomass point source, is an elaborate operation. Bales need to be collected to clear

the field for the subsequent crops, avoid microbial degradation (Coblentz et al., 1996),

spontaneous heating (Coblentz and Hoffman, 2009), dry matter loss (Scarbrough et al.,

2005), and nutritive value changes (Turner et al., 2002). Therefore, the infield logistics of

bale collection should be efficiently performed and completed within a limited time frame.

Efficient infield biomass collection and handling not only reduce logistics costs but

preserve the quality of the bales. Despite the importance of efficient biomass collection

and handling, studies on infield logistics of bale collection are limited. A method for ef-
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ficient aggregation of bales, based on the minimum distance between subsequent bales,

was developed (Igathinathane et al., 2014). Increasing the number of bales/trip (BPT) us-

ing additional equipment was found to improve infield logistics efficiency. For temporarily

stacking bales before moving to an outlet, comparing the middle edges and the corners

of the field, the middle was found to be the best in terms of efficient logistics distance

(Igathinathane et al., 2016). Another related study, comparing the field middle method

to other mathematical grouping methods, such as centroid, middle data range, geometric

median, medoid, and origin found that the geometric median was the best location for

bale stacks (Subhashree et al., 2017), but recommended the field middle since it is prac-

tical and simple to locate on the field. Various field equipment such as harvester, baler,

tractor, and automatic bale picker (ABP) generate equipment track impacted areas, and

it was found that baler generated the least while ABP generated the most track impacted

area (Subhashree and Igathinathane, 2019).

Many studies have been conducted for predicting tractor fuel consumption during

various infield operations, such as tillage, fertilizer and chemical application, planting,

cultivation, and forage harvesting (Grisso et al., 2014; Kheiralla et al., 2004; Naderloo et

al., 2012; Voltarelli et al., 2013). Fuel efficiency is an important aspect of the tractor engine

that directly influenced fuel consumption. Varying load characteristics, as applicable to the

different number of bales handled in logistics, is one of the major parameters that affect

fuel efficiency (Hansson et al., 2003; Pitla et al., 2016). Speed of equipment’s ground

operation also influences the quantity of fuel consumed. Fuel consumption rate increased

by 105 % between slow (3.0 km h−1) and fast (8.3 km h−1) operation speed of the tractor

(Kichler et al., 2011).
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The variability in the field parameters (e.g., area, biomass yield, windrow varia-

tion) and operating parameters (e.g., type of equipment, BPT, equipment speed) that the

producers encounter should be accounted for to make the results robust. But studies on

the energy involved (or fuel consumption) in the infield biomass bale aggregation logis-

tics, a high effort field operation (Subhashree and Igathinathane, 2019), are not available.

Therefore, a robust study utilizing a novel approach of predicting the fuel consumption

during infield bale aggregation, with varying load and equipment speed scenarios, using

the fuel efficiency and operation time will be beneficial for producers to make efficient

management decisions.

In the proposed study, a mathematical simulation was employed to mimic the in-

field bale aggregation process, as closely as possible, involving the influential field and

operating parameters, for determining the energy involved using two methods as a func-

tion of field parameters. Specific objectives included (i) comparison of logistic distances

and energy involved in infield bale aggregation, in terms of fuel consumption, by the trac-

tor and ABP using general and fuel efficiency methods, (ii) determination of the effect of

field parameters, such as field area, outlet location, BPT, biomass yield, equipment speed,

and windrow variation on logistics distances and fuel usage, and (iii) development of con-

venient models to evaluate the logistics distances, operation time, and fuel requirements

from the field area, BPT, biomass yield, and equipment speed.

3.3. Materials and Methods

The conventional method for infield aggregation is using a tractor and was consid-

ered the “control” method in this study (fig. 3.1A). This was compared to the ABP, also

known as “self-loading bale carrier,” which aggregates and transports bales to the stack
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location or outlet in a single trip (fig. 3.1B). The ABP is a trailer attached to the tractor

with a bale picking arm on its side. Unlike the tractor, which can usually handle only 1 or

2 BPT, the ABP can handle 8–23 BPT.

A B

Figure 3.1. Examples of common and modern bale aggregation equipment:
(A) Tractor equipped with bale spears at the front and rear (capacity = 1–2 bales);
and (B) An automatic bale picker (ABP) with loading arm (capacity up to 23) —
Image sources: https://www.himac.com.au and https://www.farm-king.com.

All infield bale logistics operations in the study were performed through mathemat-

ical simulation using the statistical software environment R (R Core Team, 2017). The

program codes were developed to simulate the layout of bales in the field, mimic the

equipment actions, generate logistic distances, estimate energy involved in the operations

through fuel consumption, perform statistical analysis, generate prediction models, and

visualize the results. Both R ‘base’ graphics and package ‘ggplot2’ (Wickham, 2016) were

used to generate high-quality vector-based graphics for visualization. Bale aggregation by

a tractor (1 and 2 BPT) and ABP (8–23 BPT) gave rise to several turning cases (instances

where the tractor would need to turn) based on the location of adjacent bales (Subhashree

and Igathinathane, 2019), and these realistic turning distances were incorporated in the

analysis. This study only considered a few capacities for specific prediction model devel-
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opment to address the range (1 BPT for tractor; and 8 and 23 BPT for ABP), while the

simulation can accommodate any reasonable BPT (e.g., 1–23). Various aspects involved in

this study are represented in the form of a flow diagram (fig. 3.2).

3.3.1. Mathematical Simulation of Infield Bales Aggregation

The number of bales made by the baler from the windrow was a function of the mass

of the material along the windrow as influenced by the random yield variation (10 % as-

sumed) and the target bale mass considered. The baler followed the path of the windrows,

made by the harvester in the field, and generated the layout of bales in a pattern based

on the windrow biomass availability. The layout of bales in the field, represented by xi

and yi coordinates indicating bale locations used in the logistics analysis, influenced the

path generated by the equipment. The randomness in this bale layout depends on biomass

availability along the windrows as described earlier. Detailed simulation methodology of

bale formation and the field layout is reported elsewhere (Igathinathane et al., 2014), and

was used in this study.

Aggregation logistics involving minimum path distance and realistic equipment

turning paths were simulated to trace the path generated by the tractor and ABP. The

minimum path distance was simulated to achieve the minimum cumulative distance; for

each aggregation trip, the equipment starts (no bales) and ends (full BPT unloaded) at the

field outlet location. A realistic curvilinear turning path was generated based on the turn-

ing radius of the equipment and bales layout. Kinematics and geometrical principles were

used to derive various equipment turning scenarios during bale aggregation (Subhashree

and Igathinathane, 2019).
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Start

Read inputs
(Field area, bales/trip, biomass yield, L/W, swath width, mass of bales, and 

windrow variation)

Simulate infield bales layout
(Generate bales layout coordinates)

Evaluate aggregation logistics distances
(Minimum distance collection and vehicle turning path method)

Perform statistical analysis and develop models
(ANOVA and multivariate nonlinear prediction models – aggregation 

logistics distance, logistics operation time, and fuel quantity)

End

No Yes

Tractor
(1 and 2 bales/trip)

ABP
(8 to 23 bales/trip)

Is bales/trip > 2

Determine fuel consumption
(General and fuel efficiency methods)

Evaluate fuel quantity
(Best fuel consumption method and aggregation logistics operation time)

Estimate aggregation logistics operation time
(Aggregation logistics distance and tractor/ABP speed)

Figure 3.2. Flowchart showing the details of the developed algorithm for the R
program simulation to compare the tractor and ABP (automatic bale picker)
performances based on the generated logistics distances and fuel consumption.
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3.3.2. Parameters Considered in the Simulation

Various inputs to the simulation program were selected to represent different con-

ditions in the field and generate appropriate scenarios of infield bale aggregation. The

input parameters considered were: (i) field areas, expressed as fractions of a “section” (1

square mile = 640 acres = 259 ha) as a standard U.S. land unit as 8, 16, 24, 32, 40, 65,

129, and 259 ha; (ii) BPT 1 and 2 for tractor bale aggregation, while 8, 11, 14, 17, and

23 BPT were considered based on the commonly available commercial carrying capacity

of ABP; (iii) biomass yields, accommodating variation in the yield range of the potential

forages and bioenergy feedstocks, of 3, 4, 5, 6, 7, 8, 10, 15, 20, 30, and 40 Mg ha−1;

(iv) different outlet locations, where the bales are stacked, such as field origin (corner),

field middle, along the field mid-width edge, and along the field mid-length edge; (v) per-

centage of windrow variation, reflecting the spatial variation of yield, as 5 %, 10 %, 15 %,

and 20 %; and (vi) equipment operation speeds at 6.4, 7.4, 8.5, 9.5, and 10.5 km h−1

(4 –6.5 mph). Simulation program with various levels considered for the field parameters,

such as area (8), BPT (7), windrow variation (3), biomass yield (11), outlet locations

(4), and equipment operation speed (5) generated 36 960 scenarios. Several other field

parameters that can affect the simulation, such as (i) length by width (L/W) ratio values

representing the field shape, (ii) harvester swath width (9 m considered); and (iii) random

number generation seed value (2016 considered) were assumed as constant based on the

findings of previous studies (Igathinathane et al., 2014; Subhashree et al., 2017).

3.3.3. Bale Aggregation Energy Through Fuel Consumption

The energy involved in the infield bale aggregation is based on the size of the equip-

ment (tractor directly handling the bales and tractor with ABP) and the logistics distance of
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the bales in the field to the outlet (mass × distance). Possible changes in elevation across

the field and the soil type and conditions are known to influence the fuel consumption, but

were beyond the scope of this study. Energy ultimately comes from the fuel used in the

equipment after meeting various efficiencies. Fuel consumption of a tractor, defined as the

estimation of fuel quantity utilized over a period of time (Grisso et al., 2014), is dependent

on the tractor engine power.

Various methods are available to calculate the fuel consumption for different types

of equipment and levels of loading. Two established methods, namely general and fuel

efficiency, were considered for fuel consumption calculations. The general method was

developed using the Nebraska Tractor Test results data obtained between 1980 and 2005

from more than 500 tractors (Grisso et al., 2014), which considered compression ignition

operating at or below maximum load conditions. While the fuel efficiency method was

built using the data obtained from diesel tractors (Hunt, 2008; Khalilian et al., 1985).

These two methods estimated fuel consumption based on the relationship of varying en-

gine loads, which in turn relied on the total tractor load (tractor total weight).

3.3.4. Total Tractor Load of Fuel Consumption Methods

Two different tractors with engine power capacities of 60 and 93 kW (80 and 125 hp)

were considered based on the handling capacity of 1 and 2 BPT for control and 8–23 BPT

for ABP. The mass of each bale was considered ≈500 kg. A 60 kW (80 hp) tractor was

capable of lifting 1200–2600 kg or 2–5 bales (JD, 2006), however, only 2 BPT was con-

sidered maximum due to the limitation of commercially available lifting attachments and

maneuverability of the tractor. The tractor used in the control method was assumed to ag-

gregate bales by lifting them using bale spears attached to the front and rear of the tractor
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(fig. 3.1A). The ABP, however, is essentially a trailer equipped with a picking arm attached

to a tractor, hence it can handle a large number of bales. The selected engine power of

125 hp was enough to pull the weight of the trailer loaded with 23 bales (Anderson, 2008;

Pronovost, 2017), which is also the maximum capacity considered of ABP in the study.

The total tractor load was calculated based on the empty tractor weight and the bale

load lifted (control) or pulled using a trailer (ABP). A common assumption for both these

methods is that the empty tractor load and maximum allowable bale load (control = 5 BPT

and ABP = 23 BPT) constituted about 30 % and 70 % of the maximum total tractor load,

respectively (JD, 2006; Pronovost, 2017). The unitary method was employed to determine

the percentage of bale load of every additional bale aggregated for BPT less than 5 and 23,

respectively, for control and ABP. Therefore the total tractor load differs based on the BPT

considered.

LT = LE + LB (3.1)

where, LT = total tractor load (%), LE = empty tractor load (%), and LB = bale load (%).

Even though hauling bales by the tractor is related to the drawbar (pulling) power,

the simple fuel consumption methods using drawbar power were not available; therefore,

the documented power take-off (PTO, (ASABE, 2011)) and tractor engine (Khalilian et al.,

1985) power-based fuel consumption methods were employed. Also, in the case of ABP,

the PTO power is used by a self-contained hydraulic system and the ABP’s picking arm

utilizes this hydraulic system for the automatic collection (lifting and loading operations)

of round bales from the field. It is, therefore, logical to use PTO power for ABP bale

aggregation fuel consumption. Further, the rated PTO power was always less than the
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engine power, as it accounted for losses in the powertrain, and using this will be a better

representation of the usable power and fuel consumption.

3.3.4.1. General method

The general method utilized the ASABE Standards (ASABE, 2011) equation devel-

oped for compression ignition engines. This simple method is based on the rated and

available PTO. The rated PTO power was assumed as 75 % of engine power for both trac-

tors (80 and 125 hp) based on the existing sources (JD, 2012; Mahindra, 2018). The rated

PTO power remained constant while the available PTO power varied based on the par-

tial or full tractor load. Fuel consumption, given in imperial units (original source units

presented here), was calculated using the following relationships (ASABE, 2011):

CF1 = (a′X + 0.019)× PR (3.2)

while,

X =
PA

PR
and PA = PR ×

LT

100
(3.3)

where, CF1 = fuel consumption at partial and full tractor load for general method (gal h−1),

a′ = 0.0434 (gal hp−1 h−1), PR = rated PTO power (hp), X = ratio of equivalent available

PTO power based on tractor load to the rated PTO power, PA = available PTO power based

on the part and full tractor load (hp), and LT is substituted from eq. (5.1). The resulting

fuel consumption (gal h−1) can be easily converted to metric units (L h−1) by appropriate

conversion factor.

3.3.4.2. Fuel efficiency method

In addition to the tractor load, the fuel efficiency method (Khalilian et al., 1985)

utilized the fuel efficiency to estimate the fuel consumption. The fuel efficiency was ex-
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pressed in kW h L−1 which denotes the amount of energy in kW generated by the tractor’s

engine in one hour while consuming one liter of fuel. The fuel consumption was deter-

mined using the following equation:

CF2 =
CT

EF
(3.4)

where, CF2 = fuel consumption (L h−1) using energy efficiency method, CT = tractor ca-

pacity (kW), and EF = fuel efficiency (kW h L−1). Estimation of tractor capacity and fuel

efficiency will be presented subsequently.

3.3.4.2.1. Tractor capacity

Tractor capacity or operational engine power is the amount of power utilized from

the maximum engine power to lift or pull the tractor load and thus can vary with the

varying tractor load. The tractor capacity is estimated using the engine power and tractor

load. The following equation was used to determine the tractor capacity.

CT = PE ×
LT

100
(3.5)

where, PE = engine power (kW; corresponding to 80 and 125 hp). The tractor load (LT)

was substituted from eq. (5.1).

3.3.4.2.2. Fuel efficiency

Fuel efficiency is the effectiveness of the tractor in utilizing the fuel for a specific

time, which is influenced by the tractor load. Diesel tractor data were documented by

the Agricultural Engineering Department, Oklahoma State University, which was used in

developing a fuel efficiency table (table 3.1) for part (20 %, 40 %, 60 %, and 80 %) and

full (100 %) tractor loads (Hunt, 2008).
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Table 3.1. Fuel efficiency of different tractor loads (part and full) and different
diesel types engines in kW h L−1 (hp h gal−1) (Hunt, 2008).

Tractor load (%) Types of diesel engine

Natural aspirated Turbo Turbo and cooled

100 2.90 (14.72) 3.07 (15.58) 3.09 (15.68)
80 2.84 (14.41) 2.82 (14.31) 2.86 (14.52)
60 2.60 (13.19) 2.55 (12.94) 2.59 (13.15)
40 2.13 (10.81) 2.10 (10.66) 2.15 (10.91)
20 1.38 (7.00) 1.36 (6.90) 1.42 (7.21)

The type of diesel engine assumed for this study was the turbo and cooled (tur-

bocharger and intercooled) considering the modern tractors used for bale aggregation.

The values of the total tractor load (LT) and fuel efficiency (EF) for turbo-charged and

inter-cooled diesel type engine (table 3.1) when plotted produced a logarithmic trend

(fig. 3.3).

The developed nonlinear prediction model (eq. (4.11)), describing the logarithmic

trend, produced a good fit performance.

EF = 1.047× ln(LT)− 1.711 (R2 ≥ 0.99) (3.6)

The tractor load (%) for each bale, ranging from 1–23, was calculated using this

logarithmic model (eq. (5.1)) and used to predict respective fuel efficiency (EF). The

fuel consumption (L/h) for 80 and 125 hp tractor engine power using the fuel efficiency

method was determined by substituting eqs. (4.5) and (4.11) in eq. (4.4).

3.3.5. Fuel Quantity Calculation

Fuel quantity utilized by both 80 (direct) and 125 hp tractors (ABP) was determined

as a product of the fuel consumption (eq. (5.2) or eq. (4.4)) and the aggregation operation

time for different levels of field area, BPT, and biomass yield as follows. The estimated
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Figure 3.3. Logarithmic model (R2 > 0.99) to predict the fuel efficiency (kW h/L)
using the predictor variable of tractor load (%).

fuel quantity was used to study the effect of different field parameters, conduct statistical

analysis, and develop appropriate prediction models.

QF = CF × TL (3.7)

where, QF is the fuel quantity (L), CF is the fuel consumption (kW h/L) based on the

evaluation method (eq. (5.2) or eq. (4.4)), and TL is the bale aggregation logistics time (h)

evaluated based on developed models.

3.3.6. Statistical Analysis

The results of logistics distance and fuel consumption one-way ANOVA was de-

pendent on the normality spread and equal variances of the data. The normality of

data was determined using the Shapiro-Wilk normality test by employing the R function
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shapiro.test(). Though the results of the Shapiro-Wilk normality test demonstrated non-

normality for both logistics distance and fuel consumption (p < 0.001), one-way ANOVA

was still conducted assuming normality since the simulated data were balanced (Bathke,

2004). The one-way ANOVA was performed to evaluate the variation among these de-

pendent variables as influenced by the aggregation equipment on different areas, BPT,

and biomass yield. The statistical analysis was conducted with 5 % level of significance

(α = 0.05). In addition, Tukey’s HSD was used to determine the specific field area, BPT,

and biomass yield that contributed significantly by comparing within all possible pairs of

groups. Functions aov() and TukeyHSD() in R stats package were used to conduct these

analyses.

3.3.7. Development of Prediction Models

Prediction models to evaluate the logistics distances, time involved, and fuel con-

sumption were developed from common input variables. The most influential predictor

variables among field area, BPT, biomass yield, outlet location, and windrow variation

were determined using the R function relweights() (Johnson, 2000; Kabacoff, 2015).

The variables with highest weights were considered for developing logistics and fuel con-

sumption models.

In infield bale aggregation logistics modeling with specific BPT simplified models

nonlinear models were used and with all the three significant inputs of field area (ha),

biomass yield (Mg ha−1), and BPT. A “Biomass Infield Bale Logistics Multivariate Model”

(BIBLMM) similar to the isotherms based on the Modified Handerson equation (ASABE,

2003; Igathinathane et al., 2005) were developed (Subhashree and Igathinathane, 2019).

For developing these models, R stats package and nls() function were employed.
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Specific BPT model: y = aAb
F Y

c
B (3.8)

BIBLMM3: y =

[
AFYB

a′(BT + b′)

]c′
(3.9)

BIBLMM4: y =

[
AFYB

a′′ + b′′BT + c′′SP

]d′′
(3.10)

where, BIBLMM3 and BIBLMM4 are the respective 3 and 4 parameters models, y is the de-

pendent variable which might include aggregation logistics distance, aggregation time, and

fuel quantity in appropriate units; AF is the field area (ha); YB is biomass yield (Mg ha−1);

BT is the BPT; SP is the equipment speed (km h−1); a, a′, b′′, c′′ are the coefficients; b′ and

a′′ are the constants; b, c, c′, d′′ are the exponents of the models (eqs. (3.8) to (3.10)).

3.4. Results and Discussion

3.4.1. Bale Collection Using Tractor and ABP

The simulation of the tractor and ABP using the curvilinear path method for a field

area of 2 ha with windrow variation of 15 % and other parameters are illustrated in fig. 3.4.

The outlet location for bale aggregation was selected as the field middle. For the 2 ha

field area, with other input parameters, 30 bales were generated. The number of trips

generated by a tractor with 1 BPT (fig. 3.4A) is equal to the number of bales in the bale

field layout. The number of whole and fractional trips generated by a tractor (2 BPT,

fig. 3.4B) ABP (8 BPT, fig. 3.4C) were 15 and 0, and 3 and 1, respectively. The bold

brown box along the borders of the field (fig. 3.4) represents the two-pass headland that

was simulated to allow vehicle turning within the field at the edge. The black dots in the

layout indicate the bale points within the field. The bale radius circle was color-coded with
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red for every first bale of the trip and blue for the rest of the bales of the trip. The trip

number was also marked next to the first bale of the trip. Also, the odd and even bale trip

paths were color-coded in green and red, respectively, for better visualization. The larger

dashed blue circles, tangential to the bales, represent the turning circle which allowed for

better visualization of the vehicle turning path during bale collection.

This bale layout with the generated vehicle path represented the actual collection

of bales in the field. The bale collection started from the center, for the field middle outlet,

and radially expanded to outer bales after collecting the bales near the outlet. It can also

be seen that the logistics distance was greater with the tractor, and it reduced with ABP.

The traffic near the outlet was also reduced with the increase in the number of BPT.

3.4.2. Field Parameters Influence on Bale Aggregation Logistics Distances

The effect of various field parameters on bale aggregation logistics distances, such

as field area, BPT, biomass yield, and outlet locations was similar to the equipment track

impacted areas reported elsewhere (Subhashree and Igathinathane, 2019), for logistics

distances and track impacted areas are proportional. Therefore, brief results are presented

in a tabular form (table 3.2) and detailed descriptions were included in Appendix A.

3.4.3. Statistical Model Development for Logistics Distance and Time

3.4.3.1. Relative weights analysis results for models

Among the independent variables, such as BPT, field area, biomass yield, outlet

location, and windrow variation, the variables with the highest relative weights were se-

lected for developing the logistics distance prediction models. In addition to the above

independent variables, the equipment speed was also accounted for in the analysis in de-

veloping operation time prediction models.
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Table 3.2. Effect of field parameters on bale aggregation logistics distance.

Effect Results in brief Details

Field area • Increased field size increased the logistics distances;
• Logistics distance generated for field areas were highly sig-
nificantly different*; • Overall, field areas were significant
when the number of BPT <17

Appendix
A.1.1.

Bales/trip • Increased BPT decreased the logistics distances; • A drastic
reduction of distances between tractor (1 and 2 BPT) and
ABP (8 and 23 BPT); • ABP with 8 BPT (capable of handling
11 BPT) was considered optimum as the equipment would
have a smaller footprint and a lower subsoil compaction

Appendix
A.1.2

Biomass
yield

• Increased biomass yield gradually increased the logistics
distance; • One-way ANOVA showed highly significant* dif-
ference among biomass yields affecting logistics distance;
• Overall, logistics distances were highly significant* with
biomass yield (>20 Mg ha−1)

Appendix
A.1.3

Outlet loca-
tion

• Field middle outlet produced the least logistics dis-
tance, followed by the mid-edge, and the origin the least;
• Logistics distance reduction of field middle was 44 % and
for mid-edges was 30 % (8–259 ha areas); • Differences
among the outlet locations diminished with BPT >8.

Appendix
A.1.4

Note: SM - Supplementary material. * - Statistically significant (p <0.001) at α = 0.05.

Logistics distance relative weight analysis revealed that the field area, biomass yield,

and BPT accounted for 43 %, 39 %, and 18 %, respectively, while outlet and windrow

variations made insignificant contributions with their weights of 0.74 % and <0.1 %. Op-

eration time analysis showed that field area, biomass yield, BPT, and equipment speed

accounted for 41.66 %, 36.31 %, 20.89 %, and 0.82 %, of weights respectively, while the

outlet (0.31 %) and windrow variation (<0.1 %) were insignificant. Therefore, only the

significant variables were used in models development.

The most influential parameters were based on relative weights analysis, namely

the field area, biomass yield, and BPT affecting the bale aggregation distances. Equip-
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ment speed included for operation time (section 3.4.3.1) was used in the specific BPT and

combined prediction models.

3.4.3.2. Simple specific BPT prediction models

The effects of field area, BPT, and biomass yields on the aggregation logistic dis-

tances showed a nonlinear pattern (Appendix A). Specific BPT prediction models devel-

oped, following eq. (3.8), for the aggregation distances (km) from field areas and biomass

yield produced a very good fit (R2 > 0.99). With the increase in BPT, both the coeffi-

cient and exponents of field area and biomass yield decreased from 0.004 to 0.002, from

1.527 to 1.313, and from 1.345 to 1.135 (a, b and c of eq. (3.8)), respectively, indicating

the logistics distance reduction effect with increased BPT. The nonlinear models predict-

ing aggregation logistics distance for different BPT (1 minimum, 8 recommended, and

23 maximum) are given as:

Tractor (1 bale): DL = 3.943× 10−3 × AF
1.527 YB

1.345 (R2 = 0.99) (3.11)

ABP (8 bales): DL = 1.621× 10−3 × AF
1.439 YB

1.179 (R2 = 0.99) (3.12)

ABP (23 bales): DL = 1.701× 10−3 × AF
1.313 YB

1.135 (R2 = 0.99) (3.13)

where, DL = total bale aggregation logistics distance (km); AF = field area (ha); and

YB = biomass yield (Mg ha−1).

3.4.3.3. Combined multivariate prediction model

Rather than specific BPT prediction models, the combined multivariate model

(BIBLMM3; eq. (3.9)) proved more convenient for modeling overall systems. The data con-

sidered for development included field areas (8, 16, 24, 32, 40, 65, and 129 ha), biomass

yield (3, 4, 5, 6, 7, 8, 10, 15, 20, 30, and 40 Mg ha−1), BPT (1, 2, 8, 11, 14, 17, and 23)

values with fixed windrow variation of 5 % and outlet location at field middle (M:M). The

96



developed BIBLMM3 predicted the aggregation logistics distance (eq. (C.3)) with a good

fit (R2 = 0.98).

DL =

[
AFYB

17.879× (BT + 0.895)

]1.377
(R2 = 0.98) (3.14)

where, DL = total bale aggregation logistics distance (km); AF = field area (ha);

YB = biomass yield (Mg ha−1); and BT = bales/trip.

3.4.3.4. Aggregation logistics operation time

The operation time for the tractor and ABP is directly dependent on the bale aggre-

gation logistics distance and the operational speed of the respective equipment. The speed

of equipment during bale aggregation ranges from 6.4–10.5 km h−1 (4–6.5 mph) (Taylor

et al., 1991).

Since the equipment operation speed is typically slow, the tractor and ABP drawn

by the tractor have similar speeds, and the difference in the operational times came from

the bale aggregation logistics distances. The operation time of the tractor, for the studied

areas (8–259 ha), with 1 and 2 BPT on an average was 7 and 2 times that of ABP with 8

BPT, respectively. Reduction in operation time of ABP with capacity 8 BPT while operating

on a quarter section of the field (≈65 ha) was 84 % and 49 %, respectively, compared to

the tractor with 1 and 2 BPT.

Furthermore, an increase in the number of bales and equipment speed will reduce

the operation time of ABP. The prediction BIBLMM4 developed for aggregation logistics

operation time (eq. (C.4)), which gave the best fit of R2 = 0.98, was used in the fuel

consumption calculations.

TL =

[
AFYB

−46.003 + 80.230BT + 15.052SP

]1.381
(R2 = 0.98) (3.15)
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where, TL = total bale aggregation logistics operation time (h); AF = field area (ha);

YB = biomass yield (Mg ha−1); BT = bales/trip; and SP = equipment speed (km h−1).

3.4.4. Comparison of Fuel Consumption Methods - General vs Fuel Efficiency

The tractor and ABP fuel consumption calculation results using the general (PTO)

and fuel efficiency methods for BPT ranging from 0 to 23 are presented in table 3.3. Ex-

cept for empty tractor load (%), all quantities increased with BPT which is an expected

association as the loads and fuel consumption through both methods would increase with

increased BPT (table 3.3).

A plot of these methods against engine powers demonstrated linear increasing trend

fuel consumption with the load represented by BPT (fig. 3.5). The slopes of the trend were

steeper for lower power (80 hp) and gradual for higher power (125 hp), which is indicative

of better handling of the high power engines of the increasing load. Even though the fuel

consumption started lower for 80 hp tractor compared to 125 hp, the advantage vanished

after 4 BPT as indicated by the intersection of the two trends. Thus hauling more BPT

using ABP with high-power tractor, while reducing the logistics distances (fig. 3.5), results

in lower fuel consumption.

The fuel efficiency method was about 1.35 times the general method. The lower

estimation of the fuel consumption using the general method was due to calculated fuel

consumption being based only on varying PTO power, while the fuel efficiency method

included fuel efficiency values of diesel in addition to the varying tractor loads. Therefore,

the fuel consumption values estimated from the fuel efficiency method (CF2) were more

realistic and were used further for fuel quantity calculations for various field areas, BPT,

and biomass yield levels.
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Table 3.3. Fuel consumption calculation for tractor and ABP using two methods.

PE BT LB LE LT PA CT X EF CF1 CF2

(hp) (%) (%) (%) (hp) (kW) (kW h L−1) (L h−1 (gal h−1)) (L h−1)

80 0 0.00 30.00 30.00 18.00 17.90 0.30 1.85 7.27 (1.92) 9.67
1 14.00 30.00 44.00 26.40 26.25 0.44 2.25 8.65 (2.29) 11.66
2 28.00 30.00 58.00 34.80 34.60 0.58 2.54 10.03 (2.65) 13.62

125 0 0.00 30.00 30.00 28.13 27.96 0.30 1.85 11.36 (3.00) 15.11
1 3.04 30.00 33.04 30.98 30.80 0.33 1.95 11.83 (3.13) 15.78
2 6.09 30.00 36.09 33.83 33.64 0.36 2.04 12.30 (3.25) 16.46
3 9.13 30.00 39.13 36.68 36.47 0.39 2.13 12.77 (3.37) 17.14
4 12.17 30.00 42.17 39.54 39.31 0.42 2.21 13.24 (3.50) 17.81
5 15.22 30.00 45.22 42.39 42.15 0.45 2.28 13.71 (3.62) 18.49
6 18.26 30.00 48.26 45.24 44.98 0.48 2.35 14.18 (3.74) 19.16
7 21.30 30.00 51.30 48.10 47.82 0.51 2.41 14.64 (3.87) 19.83
8 24.35 30.00 54.35 50.95 50.66 0.54 2.47 15.11 (3.99) 20.49
9 27.39 30.00 57.39 53.80 53.49 0.57 2.53 15.58 (4.12) 21.15
10 30.43 30.00 60.43 56.66 56.33 0.60 2.58 16.05 (4.24) 21.80
11 33.48 30.00 63.48 59.51 59.17 0.63 2.63 16.52 (4.36) 22.46
12 36.52 30.00 66.52 62.36 62.00 0.67 2.68 16.99 (4.49) 23.10
13 39.57 30.00 69.57 65.22 64.84 0.70 2.73 17.46 (4.61) 23.75
14 42.61 30.00 72.61 68.07 67.68 0.73 2.78 17.93 (4.74) 24.38
15 45.65 30.00 75.65 70.92 70.52 0.76 2.82 18.39 (4.86) 25.02
16 48.70 30.00 78.70 73.78 73.35 0.79 2.86 18.86 (4.98) 25.65
17 51.74 30.00 81.74 76.63 76.19 0.82 2.90 19.33 (5.11) 26.28
18 54.78 30.00 84.78 79.48 79.03 0.85 2.94 19.80 (5.23) 26.90
19 57.83 30.00 87.83 82.34 81.86 0.88 2.97 20.27 (5.35) 27.52
20 60.87 30.00 90.87 85.19 84.70 0.91 3.01 20.74 (5.48) 28.14
21 63.91 30.00 93.91 88.04 87.54 0.94 3.04 21.21 (5.60) 28.75
22 66.96 30.00 96.96 90.90 90.37 0.97 3.08 21.68 (5.73) 29.36
23 70.00 30.00 100.00 93.75 93.21 1.00 3.11 22.14 (5.85) 29.96

Note: APB - automatic bale picker, PE - engine power (hp), BT - BPT, LB - bale load (%), LE - empty tractor
load (%), LT - tractor load (%), PA - available PTO power based on the part and full tractor load (hp), CT -
tractor capacity (kW), X - ratio of equivalent available PTO power based on the tractor load to the rated PTO
power, EF - fuel efficiency (kW h L−1), CF1 - fuel consumption calculated using the general method (L h−1),
and CF2 - fuel consumption calculated using the fuel efficiency method (L h−1).
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Figure 3.5. Fuel consumption methods comparison at two engine powers.

3.4.5. Effect of Field Parameters on Fuel Quantity

3.4.5.1. Relative weights analysis for fuel quantity models

Based on relative weights analysis the order of influential parameters was field

area (47.14 %), biomass yield (40.58 %), BPT (10.98 %), equipment speed (0.94 %), out-

let location (0.35 %), and windrow variation (<0.1 %) for the fuel quantity. From these

results, the predictor variables such as field area, biomass yield, BPT, and equipment speed

emerged as the first four influential parameters with the cumulative relative weights ac-
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counting for 99.99 %, therefore only these four predictor variables were used for modeling

the fuel quantity.

3.4.5.2. Effect of field area on fuel quantity

Specific levels of field area and BPT for biomass yield at 10 Mg ha−1 were selected

to represent their respective range of 8–259 ha and 1–23 BPT (fig. 3.6).
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Figure 3.6. Effect of field area on the fuel quantity required for selected BPT
(bales/trip) for tractor (1 and 2 BPT) and automatic bale picker (8, 11, 17, and
23 BPT), and field areas (8, 32, 65, 129, and 259 ha) with 10 Mg ha−1 biomass yield.

A general decreasing trend in fuel quantity was observed with the increase in BPT.

However, with the increase in field areas within individual BPT an obvious increasing trend
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(nonlinear) in fuel quantity was observed across the selected BPT levels as more field areas

resulted in more distance traveled by tractor for bale aggregation.

Consolidated data of field area and their calculated fuel quantity with replications

derived from the windrow variation of 5 %, 10 %, and 15 % was used to conduct one-way

ANOVA which demonstrated a high significance (p < 0.001; table 3.4). Results indicate

that an increase in field area significantly influenced the quantity of fuel utilized in bales

aggregation.

Table 3.4. ANOVA of field area, BPT, biomass yield, and equipment speed on the
bale aggregation fuel quantity.

Parameter df Sum Sq Mean Sq F value Pr(>F)

Field area 7 1 740 747 248 678 24.28 <2.00 × 10−16 ***
BPT (bales/trip) 6 638 933 106 489 6.897 <1.06 × 10−6 ***
Biomass yield 10 1.475 × 107 1 475 479 5.726 <5.19 × 10−8 ***
Equipment speed 4 8.136 × 105 203 399 1.828 0.121

Combined data with field areas of 8, 16, 24, 32, 40, 65, 129, and 259 ha; BPT of 1, 2, 8, 11, 14, 17, and
23; biomass yield ha−1 of 3, 4, 5, 6, 7, 8, 10, 15, 20, 30, and 40; equipment speeds of 6.4, 7.4, 8.4, 9.5, and
10.5 km h−1; df is the degrees of freedom; level of significance used is α = 0.05; *** is the significance level
of p < 0.001.

Results derived from further analysis using Tukey’s HSD showed some significant

difference scenarios in fuel quantity across all the possible field area groups in 1–23 BPT

(Appendix: table A3). Across all possible pairs of field area groups, the tractor capacity

of 1 and 2 BPT displayed a significant difference in fuel consumed. Interestingly, for

ABP, a significant difference in fuel quantity across pairs of field area groups was more

prominent with the increase in BPT. Field area ≥32 ha displayed a significant difference

in fuel quantity for a higher ABP capacity of 17 and 23 BPT. A significant difference in fuel

quantity was observed for field areas ≥65 ha across BPT of the tractor and ABP ranging

from 1–23 (data not shown).

102



3.4.5.3. Effect of BPT on fuel quantity

A steep drop in the fuel quantity was observed with the tractor (1 and 2 BPT) and

ABP (8–23 BPT) with the increase in BPT (fig. 3.7).
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Figure 3.7. Effect of BPT (bales/trip) on the fuel quantity required by tractor and
ABP (automatic bale picker) for aggregating 1–23 BPT for selected field areas of 8,
32, 65, 129, and 259 ha with 10 Mg ha−1 biomass yield.

This trend was similar across all the field areas considered but more pronounced

with increased field areas. Reduction in fuel quantity on an average for ABP 8 bales/trip

when compared with tractor capacity of 1 and 2 bales/trip was observed at 72.22 % and

53.29 %, respectively.
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The ANOVA with combined data showed that BPT of the tractor and ABP had a

highly significant influence on the fuel quantity (p < 0.001; table 3.4). The fuel consumed

by the tractor with 1 and 2 BPT was found to be significant across the whole 8–259 ha field

area (data not shown) based on Tukey’s HSD. Similarly, the ABP minimum and maximum

capacities, 8 and 23 BPT group pairs, produced a significant difference for all the field

areas considered (p < 0.05). The ABP group pair 8 and 11 BPT did not produce any

significant difference in fuel quantity for the field areas suggesting that ABP of capacity

8 BPT can be used effectively to aggregate 11 BPT (“Appendix” table A4). A significant

difference in fuel consumption for aggregating >14 BPT was not significant for field areas

>32 ha, indicating no advantage in the quantity of fuel consumed at higher BPT and field

areas — however, the time saved cannot be discounted.

3.4.5.4. Effect of biomass yield on fuel quantity

The impact of biomass yield on fuel quantity across field area range 8–259 ha with

8 BPT (optimum) showed an increase in fuel quantity with the increase in the biomass

yield across all the field areas ranging from 8–259 ha (fig. 3.8). However, this trend was

significant only between 8 and 40 Mg ha−1. In general, the increase in fuel quantity was

linear beyond 20 Mg ha−1 across all field areas.

From the combined data using one-way ANOVA, overall the biomass yield had a

highly significant effect on the fuel quantity (p < 0.001; table 3.4). The Tukey’s HSD

analysis showed that biomass yield<10 Mg ha−1 did not affect the fuel consumption for the

field area range of 8–259 ha (Appendix: table A4). Biomass yields ≥30 Mg ha−1, produced

a significant difference in fuel quantity for field areas ≥32 ha. As the field area increased,

the significance of fuel quantity impacted by the biomass yield decreased.
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Figure 3.8. Effect of biomass yield on the fuel quantity required by ABP (automatic
bale picker) for aggregating 8 BPT (bales/trip) for selected field areas of 8, 32, 65,
129, and 259 ha.

3.4.5.5. Effect of equipment speed on fuel quantity

The effect of increase in equipment speed from 6.4 km h−1 to 10.5 km h−1 on the

fuel quantity for the field area 8–259 ha with 8 BPT (optimum) and biomass yield at

10 Mg ha−1 displayed a decreasing trend (fig. 3.9). The decreasing trend however was

more pronounced with areas greater than 32 ha.

The ANOVA results from the combined data showed that overall the equipment

speed did not have any significant effect on the fuel quantity (p > 0.1; table 3.4). Though

a significant decreasing trend was observed with the increase in equipment speed for field
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Figure 3.9. Effect of equipment speed on the fuel quantity required to aggregate 8
BPT (bales/trip) for selected field areas of 8, 32, 65, 129, and 259 ha.

areas (>32 ha), the Tukey’s HSD analysis (data not shown) revealed that equipment speed

did not affect the fuel consumption for all the field areas in the range of 8–259 ha.

3.4.6. Statistical Model Development for Fuel Quantity

Following the relative weights analysis, the most significant variables such as field

area, biomass yield, BPT, and equipment speed affecting the fuel consumption were used

in the specific BPT and combined fuel quantity prediction models (section 3.4.5.1).
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3.4.6.1. Specific fuel consumption prediction models

Simple specific fuel quantity models for tractor and ABP (1–23 BPT), following

eq. (3.8) with area of field and biomass yield, developed gave very good fit (R2 > 0.99).

The coefficients/exponents (eq. (3.8)) for the entire range of BPT were: a =0.071–0.079;

b =1.527–1.313; and c =1.345–1.347. Increased coefficients/exponents indicated in-

creased fuel use as BPT increased from 1 to 23.

The specific models predicting the fuel quantity utilized in bale aggregation for

different BPT (1 and 2 for tractor, 8 recommended, and 23 maximum) are given as a

function of field area and biomass yield as:

Tractor (1 bale): QF = 0.046× AF
1.527 YB

1.345 SP
−1.000 (R2 = 0.99) (3.16)

Tractor (2 bales): QF = 0.028× AF
1.523 YB

1.338 SP
−1.000 (R2 = 0.99) (3.17)

ABP (8 bales): QF = 0.034× AF
1.435 YB

1.179 SP
−1.001 (R2 = 0.99) (3.18)

ABP (23 bales): QF = 0.051× AF
1.313 YB

1.135 SP
−1.000 (R2 = 0.99) (3.19)

where, QF is the fuel quantity utilized in bale aggregation (L); AF = field area (ha);

YB = biomass yield (Mg ha−1); and SP = equipment speed (km h−1).

The variation of the fuel quantity utilized as a function of field area and biomass

yield was visualized through a 3D plot developed from fuel consumption models (fig. 3.10).

Increased field area and biomass yield exponentially increased the fuel quantity for 1 BPT

(fig. 3.10A) and reduced almost half as BPT increased to 2 BPT (fig. 3.10B) for the tractor.

However, with the use of ABP with the optimum 8 BPT (fig. 3.10C) and the maximum

23 BPT (fig. 3.10D) the fuel quantity was reduced and the response surface was flatter

with an obvious increase towards higher field area and biomass yield. A similar trend was
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Figure 3.10. Fuel quantity utilized in bale aggregation as affected by field area and
biomass yield at a selected equipment speed of 6.4 km h−1. (A) Tractor with 1 BPT
(bales/trip; tractor minimum); (B) Tractor with 2 BPT (tractor maximum); (C) ABP
with 8 BPT (recommended); and (D) ABP (automatic bale picker) with 23 BPT
(maximum).

observed for the other ABP capacity of 11, 14, and 17 BPT (data not shown). Thus, the

nonlinear trend of the fuel quantity became less significant with the increase in the BPT.

3.4.6.2. Combined fuel quantity prediction models

Combined multivariate nonlinear models, developed with parameters such as field

area, biomass yield, and equipment speed, based on the BIBLMM4 for prediction of fuel
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quantity exclusively for tractor and ABP for any BPT, were presented with usual notations.

These models fit performance (R2 = 0.98) was nearly as good as specific BPT models

(R2 =0.99).

Tractor (1 to 2 bales): QF =

[
AFYB

−5.913 + 13.164BT + 2.777SP

]1.414
(R2 = 0.98)

(3.20)

ABP (8 to 23 bales): QF =

[
AFYB

−4.991 + 1.165BT + 4.827SP)

]1.242
(R2 = 0.98)

(3.21)

where, QF is the fuel quantity utilized in bale aggregation (L); AF = field area (ha);

YB = biomass yield (Mg ha−1); BT = bales/trip; and SP = equipment speed (km h−1).

The advantage of using combined models (eqs. (C.3) to (C.6)) over specific BPT

models (eqs. (3.11) to (3.13) and (3.16) to (3.19)) is the interaction effect of all four pa-

rameters considered. These combined models could be applied as a component in building

higher-level models for applications in various fields like agriculture, supply chain logis-

tics, economics, and environmental science to predict the overall impact in conventional

practices.

3.5. Model Validation and Future Recommendation

As the models were made robust involving the most influential variables with cumu-

lative relative weights >99 %, the models will have self-validation properties. The simula-

tion is robust and the variables considered will accommodate the possible variations that

occur in the field. The delays in the logistics operations, however, were not considered in

the study. However, it would be desirable to perform field measurements with tractor and

ABP, at least for some scenarios, to compare the model with field observations, and should
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be considered in the future. Future work should also explore bale stack formation in the

bale aggregation, and rigorous economic analysis, using standard calculation procedures,

of infield logistics using ABP.

3.6. Conclusions

From the infield bale aggregation logistics energy simulation study, field area (43 %),

biomass yield (39 %), and bales/trip (BPT) (18 %) were found to be the most influential

variables in modeling the bale aggregation logistics distance, while field area (41.66 % &

47.14 %), biomass yield (36.31 % & 40.58 %), BPT (20.89 % & 10.98 %), and equipment

speed (0.82 % & 0.94 %) emerged as the most influential variables in modeling operation

time and fuel quantity, respectively. Windrow variation and outlet location variables were

insignificant in modeling logistics distance, operation time, and fuel quantity. The effects

of field area, BPT, and biomass yield were highly significant (p ≤ 0.001) with logistics

distance and fuel quantity; however, the equipment speed considered for fuel quantity

indicated no significance. Simple non-linear specific BPT prediction models for logistics

distance (used only field area and biomass yield) and fuel quantity (used equipment speed

with field area and biomass yield) produced good fits (R2 > 0.99). Combined multivari-

ate non-linear prediction models (BIBLMM) developed for (i) logistics distance that used

BPT as a third variable (BIBLMM3), and (ii) operation time and fuel quantity that used

equipment speed as the fourth variable (BIBLMM4) performed equally well (R2 > 0.98).

The fuel efficiency method was the best since it included the fuel efficiency of

the diesel in addition to considering the part and full tractor loads, and was therefore

used in fuel quantity calculations in this study. The fuel quantity between tractor (1 and

2 BPT) and automatic bale picker (ABP) (8–23 BPT) demonstrated significant difference
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(p ≤ 0.05), across the tested field areas. Fuel consumption for the ABP (8–259 ha) with

8 BPT on an average decreased by 72 % and 53 % compared to a tractor with 1 and 2 BPT,

respectively. The fuel quantity was not significantly different for ABP with 8 and 11 BPT

which suggested that ABP of capacity 8 BPT can be effectively used to aggregate 11 BPT.

Biomass yield ≤10 Mg ha−1 did not influence the fuel quantity across the field areas con-

sidered. Similarly, equipment speed 6.4 –10.5 km h−1 did not have any effect on the fuel

quantity across the field areas. Application of bale stacks, rigorous economic analysis, and

field measurements of bale aggregation should be addressed in the future.

This novel study successfully generated logistics distance, operation time, and fuel

consumption prediction models developed from 36 960 bale aggregation scenarios. Hence,

this study will serve as a tool for farmers/producers to decide between the traditional trac-

tor and ABP, based on fuel consumption for efficient infield bale aggregation logistics.

Besides, the developed multivariate models can serve as a basis to build more complex

models in various fields, such as agriculture, supply chain logistics, economics, and the

environment that could potentially impact conventional practices and influence policy de-

cisions.
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4. DEVELOPMENT OF FORAGE ECONOMICS CALCULATOR WEB

TOOL*

4.1. Abstract

Economic analysis of forage production and handling is vital for maintaining the

agricultural enterprise and evaluating the associated risks. Economic analysis aids in mak-

ing an educated decision related to growing or buying forage, setting forage prices, and

purchasing additional equipment. Manual calculation of the economics is highly complex,

tedious, and time-consuming. Therefore, a multi-device web-based tool, called the “forage

economics calculator web tool” (FECWT) was developed using HTML, CSS, and JavaScript.

The tool’s interface was designed for a user-friendly experience with easy access to com-

mands set in an easy-to-follow layout. The FECWT uses 29 input variables to generates

results “dynamically” for 37 output variables, based either on the supplied default data or

with user-provided inputs (imperial or metric units). The tool emphasizes the cost of the

bale collection activity, while cost of other activities (planting, fertilizer & chemical appli-

cation, harvesting, and baling) are provided as direct inputs. Bale collection is performed

using either a tractor; or a tractor pulling an “automatic bale picker” (ABP), which collects

and transports multiple bales in a trip. The economic analysis outputs include net return,

break-even ratio, payback period, and return on investment. Features of FECWT include

the sensitivity of profit to changes in input values, and downloadable reports and charts for

* This paper is submitted to the Computers and Electronics in Agriculture journal. Authors: Subhashree
N. Srinivasagan, C. Igathinathane, et al. 2021. Title: Forage Economics Calculator Web Tool. Subhashree
performed the literature survey and wrote the manuscript. Dr. Igathinathane Cannayen is the major advisor,
principal investigator, and the corresponding author who worked with Subhashree throughout the research
and manuscript development. All the co-authors have assisted in the research direction and review of the
manuscript.
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record-keeping. Two case studies using farmers’ actual field data inputs demonstrated the

FECWT’s effectiveness, with its generated results corroborating well with farmers’ records.

The tool allows “what-if” scenario analysis of several practical situations and the results

of equipment purchase decision, effect of forage crop types on net return, and low-inputs

scenarios against different field areas are presented. The scenario analysis suggests that

an ABP purchase for field areas greater than ≥65 ha (≥160 ac) could be profitable; alfalfa

and corn were the most profitable forage and grain-forage crops, where the grain revenue

stream of grain-forage crops easily covers the costs and makes a profit; and a low-inputs

scenario (no fertilizers, chemicals, and/or seeds) for forages (alfalfa and grass) decreased

the net returns on average by 8.1 times at 50 % forage yield potential suggesting the use

of all inputs and increased field areas (≥65 ha) make a better profit in this low-inputs

scenario. Potential users of this web tool include farmers, hay producers, custom hay op-

erators, educators, agricultural extension and financial personnel, and others interested in

the economics of handling bales.

4.2. Introduction

Nearly 90 % of the land area of North Dakota (ND) is in farms and ranches and

cattle (Bos taurus) outnumbers the human population by a ratio of 3 to 1 (NDG, 2020b).

In North Dakota and other states with extensive agriculture, forages play a crucial role in

livestock production because they provide the necessary nutrients required for maintaining

livestock. Sufficient and year-round supply of forage is vital in maintaining herd size and

animal health; therefore farmers and ranchers grow forage crops specifically to address

seasonal shortfalls. Producing, harvesting, baling, and storing forage crops represents

a large proportion of annual livestock production costs (Horrocks and Valentine, 1999;
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Nayigihugu et al., 2007). Making effective decisions on the selection of crops, setting

forage prices, and efficient management activities can increase profit and/or reduce the

risk involved in an agricultural enterprise. Performing economic analysis helps forage

growers make educated decisions regarding forage purchases, equipment purchases, and

forage sale prices.

Various parameters and complex calculations, difficult to perform manually, are in-

volved in executing an economic analysis of forage production, such as the revenue and

costs (e.g., labor and fuel) of growing, harvesting, collecting, labor, fuel, and transporting

forage. A few spreadsheet tools are available to replace the manual method of analyzing

forage economics. One example spreadsheet tool was developed to evaluate the hay price

for producers wanting to compare the net return between hay and corn (Barnett, 2009).

Another spreadsheet tool allowed producers to use equipment and equipment information

to determine the ownership and operating cost of specific types of haying systems (Brence

and Griffith, 2012). Other decision support spreadsheet tools developed for alfalfa and

grass enterprises helped producers determine the profitability of producing versus pur-

chasing hay (Kirwan, 2020).

Although these tools are available online, the following caveats should be taken

into account: (i) the tools require forage growers to use multiple spreadsheets to arrive at

a decision; (ii) the available tools are in the format of spreadsheets and the user needs to

download and most likely enable macros in order to run the calculations; and (iii) all of

these tools mainly focus on activities such as forage harvest that might include, mowing,

conditioning, tedding, raking, combining, etc., and baling, while forage (bale) collection

is often ignored. Bale collection is an intensive field operation, wherein the cost associated
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with equipment, fuel, and labor of bale collection plays a significant role in economic

outcomes.

Therefore, we developed a user-friendly web-based tool namely “Forage Economics

Calculator Web Tool” (FECWT) using technologies such as HTML (Hypertext Markup Lan-

guage) (Hickson and Hyatt, 2011), CSS (Cascading Style Sheets) (Powell, 2010), and

JavaScript (Mikkonen and Taivalsaari, 2007) to perform an economic analysis of forage

production, including bale collection. Some of the features guiding our development of

the FECWT are: (i) serving as “one-stop” tool to aid decision making on major aspects such

as growing versus buying forage, purchasing equipment, and setting forage prices based on

net-return estimation; (ii) allowing hassle-free access to the tool from any internet-enabled

device (computer, tablet/iPad or smartphone) with no download or installation of soft-

ware required; (iii) compatible with different operating systems and browser applications;

(iv) considering relevant hay production field activities and costs, with emphasis on round

bale collection using a conventional tractor (collects maximum 2 BPT, BPT), or a tractor

with an automatic bale picker (ABP) (collects multiple (up to 23) BPT); (v) easy operation

of the tool through the availability of relevant research-based default input vales, yet flex-

ibility for altering data to suit user scenarios; (vi) capability of handling different forage

crops and grain-forage crops and their associated revenue streams; and (vii) performing

“what-if” scenario analysis to assess the sensitivity to different inputs of the bottom line

for forage production.

The objective of this study is to develop a forage economics decision support web

tool using open source software with the proposed features. The resulting FECWT is user-

friendly, and allows for scenario analysis to user’s decisions regarding hay production eco-
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nomics. Farmers, hay producers, custom hay operators, educators, and agricultural exten-

sion and financial personnel, and others interested in the economics of handling bales are

prospective users of the FECWT.

4.3. Overview of the Web Tool

The FECWT was developed to perform standard economic analysis, with 29 user-

inputs and 37 outputs (fig. 4.1). Some of the outputs are costs associated with harvest,

baling, bale collection, bale transportation from field to storage, labor, and fuel as well

as revenue generated from selling the bales and grain, net returns, break-even ratio, and

payback period. The tool employs logistics models for the bale collection process and the

cost associated with it as a function of distance and fuel consumption; whereas harvesting,

baling, and bale transportation are processed as direct inputs. Bale collection in the field is

commonly performed using a tractor with a spear or grapple attachment, or less commonly

using an ABP which collects and transports multiple bales (≤23) in a single trip. Both of

these bale collection equipment (tractor and ABP) are included in the tool for comparison.

The cost associated with bale collection is based on simulations (36,960 scenarios) per-

formed to estimate the logistics distance and fuel consumption of a tractor involved in the

activities (Subhashree et al., 2021).

In addition to standard economic analysis, the tool is designed to perform input

sensitivity analyses for profit as well as insights into equipment (ABP) purchase and forage

harvest with collection decisions. The tool generates dynamic/real-time results based on

default or user-input values and generates a downloadable report and chart containing se-

lected inputs and estimated results for comparison, analysis, and record-keeping (fig. 4.1).

Though the tool was developed based on data (common crop type, bale sale price, and
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Inputs

1) Crop type

2) Engine power (hp)

3) Tractor age owned (years) 

4) Annual usage (h)

5) Tractor cost ($)

6) ABP cost ($)

7) Interest rate (%)

8) Field area unit (ac)

9) Number of field units (#)

10) Forage yield (lb/ac)

11) Bale mass (lb)

12) Bale sale price ($/bale)

13) Bales/trip

14) Bale loading (min/bale)

15) Bale unloading (min/bale)

16) Grain yield (bushel/ac)

17) Grain price ($/bushel)

18) Field rent ($/ac)

19) Combined seed+planting cost ($/ac)

20) Combined fertilizer+application cost ($/ac)

21) Combined chemical+application cost ($/ac)

22) Harvest cost ($/ac)

23) Baling cost ($/ac)

24) Fuel cost ($/gal)

25) Tractor speed (mph)

26) People required

27) Labor cost ($/h/labor)

28) Bale transportation cost ($/mile)

29) Bale transportation distance (mile)

Results

1) Equipment

2) Total field area (ac)

3) Total number of bales (bales)

4) Total grain yield (bushel)

5) Bale collection logistics distance (mi)

6) Bale collection time (h)

7) Bale collection fuel consumption (gal)

8) Total bale operation time (h)

9) Total bale fuel consumption (gal)

10) Bale revenue ($)

11) Grain revenue ($)

12) Total revenue ($)

13) Total seed cost ($)

14) Total fertilizer cost ($)

15) Total chemical cost ($)

16) Total harvest cost ($)

17) Total baling cost ($)

18) Total fuel cost ($)

19) Total labor cost ($)

20) Total bale transportation cost ($)

21) Crop input cost ($)

22) Total production cost ($)

23) Total fixed cost ($)

24) Total variable cost ($)

25) Total cost ($)

26) Total revenue per acre ($)

27) Total cost per acre ($)

28) Net return ($)

29) Net return per acre ($)

30) Break even ratio 

31) ABP - Payback period (cycles)

32) ABP - Return on investment (%)

33) Tractor/Tractor + ABP - Payback period (cycles)

34) Tractor/Tractor + ABP – Return on investment (%)

35) Harvest and collection (HCC) cost ($)

36) HCC percent of total cost (%)

37) HCC per acre ($/ac)

Forage economics calculator

HTML + CSS + 
JS coding

Online web 
platform

Real-time with 
user-interaction

Dynamic result 
visualization

Multi-device and multi-
browser compatibility

Figure 4.1. Information flow and overall features of forage economics calculator
web tool (FECWT) showing the user-inputs, FECWT processes and features, and the
generated results using imperial units. The $ represents US dollars (USD).

other costs inputs) collected from ND, the tool can be extended to other locations by alter-

ing the user-input values

4.4. Web Tool Development

The FECWT was developed using the basic open source technologies, HTML, CSS,

and JavaScript (Appendix D). The HTML was used to create the web tool’s content struc-

ture, while CSS was used to design the web tool, including layout, visual effect, and back-

ground color. In the FECWT, JavaScript forms the basis of front-end web development;
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it creates interactive elements that engage the user with the web tool, and performs all

analysis calculations. In addition to the basic web development technologies framework,

a popular front-end open-source toolkit called bootstrap was used to create a responsive

and mobile-first web tool (Spurlock, 2013). Data visualization of the results was achieved

using SVG elements from the basic HTML, supplemented by an open-source JavaScript

library Chart.js that produces responsive, customizable, and downloadable charts (Da

Rocha, 2019). Visual Studio Code (VS Code) text editor was used to write program-

ming languages (HTML, CSS, and JavaScript) to develop the web tool. The VS Code is

an open-source free integrated development environment (IDE) that features language-

specific syntax highlighting, code indentation, plug-in, and add-on to capture code errors.

Code errors were additionally tested and captured by hosting the developed website onto

the local server using Mac terminal commands.

The FECWT’s functionality was built to work as seamlessly as possible with a similar

feel in major web browsers such as Google Chrome, Firefox, and Safari. The tool was also

made to accommodate smartphones, tablets (iOS and Android), and desktop media screen

sizes consistently providing a good visual and responsive web tool experience.

4.4.1. Web Tool Sections

The FECWT consists of three main sections: (i) home page, (ii) user instructions

and manual, and (iii) the actual calculator (fig. 4.2). Each section consists of a collapsible

navigation sidebar at the top-left corner that enables a smooth transition between the

sections. The first section is the home page that welcomes the user to the forage economics

web tool (fig. 4.2A). A visitor counter was added to the home page to track the number of

times the web tool has been accessed and used.
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C

B

A

Figure 4.2. Overview of the forage economics calculator web tool (FECWT): A. home
page of FECWT with web tool user-count feature; B. user instructions and manual
section with downloadable 6-step instructions and detailed manual; C. calculator
section of FECWT with 29 inputs, 37 output results, and a dynamic graph.
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The second section consists of a simple and short 6-step user instructions (Appendix

B) and a detailed manual (fig. 4.2B). The user instructions include a friendly step-by-step

guide for the user, while the detailed manual contains comprehensive information about

the various inputs, region-specific forage and economics data, forage bale collection logis-

tics models, standard economics calculations that run in the background of the web tool,

and the generated outputs. The 6-step user instructions and detailed manual are down-

loadable and printable PDF documents. The third section is the actual forage economics

calculator section, which functions as a user interface with the calculator (fig. 4.2C). The

calculator consists of editable inputs, read-only outputs, and a dynamic graph. Details on

the FECWT user interface and application features are presented next.

4.4.2. User Interface and Web Tool Features

The FECWT’s calculator section is presented in a two-column panel with “inputs”

(29 input items) on the left and “results” (37 output items) on the right (fig. 4.3). Users

interact with the calculator by choosing relevant inputs and input values with which to

perform the analysis. The calculator is dynamic — automatically generating results with

any change in the input values, without any specific button actions needed. Input values

are provided as default, based on current/published research data, or can be modified by

the user, while the results are read-only. A tooltip feature is provided for the input and

result items to display a brief informative message when the user hovers the mouse cursor

over the icon (fig. 4.3A).

Default research-derived values, are provided for all the input items and can be

changed by the user through three different input options: drop-down boxes, checkbox

sliders, and input text boxes. Among the 29 input items (fig. 4.1), four are fixed inputs in
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Tooltip infoA

Drop-down boxC

Check-box optionD

Dynamic plotG

Download reportK

View chartJ

Profit-based color outputH Equipment based outputI

C

D

J

I

H
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E

A B Read-only textboxF

K

B Toggle switch

Slider with editable range valuesE

Figure 4.3. Forage economics calculator web tool (FECWT) user interface and features showing the inputs
column and results column: A. tooltip info, B. drop-down box, C. checkbox option, D. input slider, E. read-only
text box, F. dynamic plot, G. profit-based color output, H. equipment-based output (tractor or automatic bale
picker), I. view chart, J. download report.
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the form of a drop-down containing pre-defined lists and one is a check-box, while the

remaining are variable inputs in the form of sliders or text boxes. The toggle switch helps

the user toggle between the imperial and metric units, allowing the FECWT to be used

globally (fig. 4.3B). Drop-down options display a specific list of items from which the user

can choose one item (fig. 4.3C), selection of crop, engine power, tractor age, and annual

usage. A checkbox is used to include ABP in the calculation (fig. 4.3D), while tractor alone

is the default. This checkbox option, when activated, triggers a case scenario of equipment

purchase that includes ABP along with a tractor for bale collection. Most of the inputs to

the web tool are entered through sliders, which are versatile design tools to select a value

between a range (fig. 4.3E). The slider consists of a minimum, maximum, and a selected

value which are provided by default. However, the minimum and maximum values for

each slider item can be changed, based on user-entered text box inputs.

Sliders are convenient tools to perform “what-if” scenario analyses. Dynamic arrow

markers under each slider are coded to help the user quickly see a snapshot of sensitivity

to each particular input. More specifically the position of these arrow markers informs

the critical value of the input at which a loss or profit would result. The “Reset” button

option at the bottom of the interface resets all input items to their default values for fresh

calculations.

The results column consists of read-only text boxes displaying the determined out-

puts, which are updated automatically (fig. 4.3F). The dynamic graph in the results column

displays various results in the form of a bar chart for quick visualization (fig. 4.3G). The

chart automatically updates with the changing results based on the user inputs. Hover-

ing over the bars in the graph displays a tooltip with their respective result values. For
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the most common output of interest “Net return”, a colored text box was coded for ready

visualization of the outcome; wherein a background color of green indicates profit and

red indicates the loss (fig. 4.3H). The equipment-based outputs estimate the payback and

return on investment (fig. 4.3I) for whichever set of equipment is selected (in fig. 4.3D):

“tractor” only, “tractor and ABP,” or “ABP” only (fig. 4.3I). The payback period represents

the number of cycles (harvests or years) required to cover the cost of equipment (tractor

with or without ABP) and all other input costs captured in the net returns from forage

(with or without grain revenue).

The “View Chart” button at the bottom of the interface allows users to visualize

economic results such as total cost, total revenue, and net return in the form of a high-

quality responsive bar chart that is suitable for printing (fig. 4.3J). The “Download report”

button generates a printable document in PDF format, which contains selected user inputs

and associated results, for record-keeping purposes (fig. 4.3K). The “Clear results” button

clears all the generated results and resets the input panel to the default values for a new

session.

4.4.3. Web Tool Inputs

Among the 29 inputs, 12 are cost-based inputs, while the remaining are related

to the forage crop, equipment, and operation. Detailed description of each input item is

presented in table 4.1. Most forage crop types prevalent in ND have been listed under the

“Crop type” drop-down input. However, if the desired forage crop is not listed, the user

can select “Others” from the list and provide relevant range values in the editable mini-

mum and maximum input boxes for the sliders. The crop type belongs to two categories:

(i) forage crops (e.g., alfalfa, grass, and grass mix), which produce one revenue stream
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Table 4.1. Brief description of the forage economics calculator web tool (FECWT)
input options.

Inputs Description

1. Crop type Forage crops available for sale as bales in commercial markets of North Dakota
(ND), such as on the NDSU feedlist (NDSU, 2020) and BisManonline (Bisman-
online, 2020). Crop types include perennial and annual forage crop types (ex-
clusive forage and grain+forage, which result in one or two revenue streams).

2. Engine power (hp) Engine power ranges of commercially available tractors. The engine power
requirement should match the bale load-carrying capacity (Anderson, 2008;
JD, 2006; Mahindra, 2018).

3. Tractor age owned
(years)

Number of years the tractor is owned by the user.

4. Annual usage (h) Average annual operation of the tractor for bale collection in hours.

5. Tractor cost ($) The listed cost of the tractor during the purchase. The tractor cost is based on
the engine power.

6. ABP cost ($) The listed cost of the ABP during the purchase, which depends on its capacity.
The commercial capacity usually ranges from 8 to 23 bales assuming 5 ft wide
bales.

7. Interest rate (%) Interest rate at which tractor was purchased.

8. Field area unit (ac) Expressed as fractions of a ”section” (1 mile2 = 640 ac = 259 ha) as a standard
US land unit. Range includes from the smallest (SI8ha) to the largest (259 ha)
derived as fractions of the field area unit.

9. Number of field
units (#)

Number of field area units in the farm where forage is cultivated.

10. Forage yield
(lb/ac)

Forage production/ac from the specified field. The range accommodates pos-
sible yield variation of the potential forages.

11. Bale mass (lb) The weight of a single large round bale (dimension 5 × 5 or 5 × 6 ft) in
pounds (lb). The range limits are fixed based on the bale mass sold at the
commercial markets of ND.

12. Bale sale price
($/bale)

Specific to the crop types; price range changes based on the selected crop
(Bismanonline, 2020; NDSU, 2020).

13. Bales/trip Bales/trip ≤ 2 was considered for conventional tractor bale collection, while
bales/trip ≥ 3 were considered based on the available commercial carrying
capacity of ABP.

14. Bale loading time
(min/bale)

Time required to pick up a bale and load it onto a truck for transport.

15. Bale unloading
time (min/bale)

Time required to unload a bale from the truck or ABP and place it in a stack.

continued . . .
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Table 4.1 Brief description of the forage economics calculator web tool (FECWT)

input options — (continued)

Inputs Description

16. Grain yield
(bushel/ac)

Grain yield from the specified field. The range of grain yield values provided
as default are based on the National Agricultural Statistics Service (NASS)
database for ND in 2020 (Jantzi et al., 2020).

17. Grain price
($/bushel)

Grain sale price is specific to the grain-forage crops considered; the default
values provided are based on the NASS database for ND in 2020 (Jantzi et al.,
2020).

18. Field rent ($/ac) The per-acre cost of the average rent for a field. The provided range limits are
based on the data from the 2020 ND Department of Trust Lands survey (NDG,
2020a).

19. Combined seed and
planting cost ($/ac)

Seed cost/ac was direct or annualized, depending on the selected forage crop
type. Typical planting cost is $18/ac for ND (Jantzi et al., 2020). The planting
cost should be added to the input.

20. Combined fertilizer
and application cost
($/ac)

Fertilizer cost/ac, which is the total cost of fertilizers such as nitrogen, phos-
phorous, potassium, sulfur, limestone, and others. Typical application cost is
$7/ac for ND (Jantzi et al., 2020). The application cost should be added to
the input.

21. Combined chemical
and application cost
($/ac)

Chemical cost/ac is the cost of herbicide, fungicide, and insecticide used. Typ-
ical application cost is $7/ac for ND (Jantzi et al., 2020). The application cost
should be added to the input.

22. Harvest cost ($/ac) Involves equipment, fuel and labor cost for harvesting the forages/ac and is
provided as an overall direct input. Harvesting forage crops might include
activities such as mowing, cxonditioning, tedding, raking, etc. For grain +
forage crops harvesting might include activities such as combining, raking,
etc.

23. Baling cost ($/ac) Involves equipment, fuel and labor cost for baling the forages/ac and is pro-
vided as an overall direct input.

24. Fuel cost ($/gal) Cost/gal of fuel (diesel) used in the tractor was fixed based on a 10-year aver-
age, and can be changed to reflect the current price.

25. Tractor speed
(mph)

Operating speed of the tractor (with or without ABP) in the field during bale
collection.

26. People required Number of people involved during bale collection to operate the equipment.

27. Labor cost
($/h/labor)

Labor cost per hour is the cost of labor operating the equipment during bale
collection.

28. Bale transportation
cost ($/mile)

Fuel and labor cost of transporting the bale/mile from field to storage facility.

29.Bale transportation
distance (mile)

Distance between the field and the storage facility.

Note: Inputs #1 – #4 are drop-down options, #6 is a checkbox and slider option, #9 is an input box, and
the rest are slider options showing the research data based default values that can be edited by users to fit
their situation. All $ represents US dollars (USD).
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from the sale of forage bales; and (ii) grain-forage (e.g., corn, wheat, barley, oats, and mil-

lets), which produce two revenue streams from the sale of both grain and forage. A grain

crop that was grown exclusively for forage (e.g., forage oats) can be readily handled by

setting either “Grain yield” or “Grain sale price” or both inputs to zero. Furthermore, with

cultivated perennial forage crops such as alfalfa, which yields forage during four to five

years after planting, the cost of cultivation was annualized to spread the cost across the

productive period. However, for annual forage crops, the cost calculations are straightfor-

ward and applicable for the year of planting.

In the event of zero inputs (“low-inputs” scenario), which is prevalent in the case of

naturally grown forages (e.g., prairie grass) or others that perennial grasses that require

less management, the user can change the value in the minimum input box to zero and set

the slider to the left-most position to select the zero value. The low-inputs scenario makes

sense with perennial forage crops as some of the inputs like seed, fertilizer, and chemical

cost will be zero in some situations, while the other costs like field rent and labor will be

factored into the analysis.

However, without the seed, fertilizer, and chemical, the forage yield is expected

to decrease between 40 % and 60 % of the total yield potential (Angima, 2007). This

scenario of low-inputs was analyzed and presented for different yields and field areas

(section 4.6.3). However, while running this low-inputs scenario, the users are expected

to input their actual forage yield, which represents the reduction based on low-inputs to

obtain the correct outputs.
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4.4.4. Web Tool Generated Results

The results panel is located on the right-hand side of the FECWT with a total of

37 generated outputs (fig. 4.2C). All the outputs are displayed in read-only uneditable text

box. Among the outputs, 14 are cost-based and the rest are standard economic results,

such as net return, revenue, break-even ratio, payback period, return on investment, and

so on. Three non-linear regression models (R2 = 0.98) were developed in our previous

study (Subhashree et al., 2021) to estimate the total logistics distance, operation time, and

fuel quantity consumed during bale collection runs in the background of the calculator.

Eight standard economic analysis equations were included to generate all other results.

For ease of use by the US farmers and ranchers the results presented are in imperial units,

but the models were developed in SI units and therefore conversion factors were employed

in calculations and codes behind the units toggle switch (fig. 4.3B).

It will be always useful to the producers to evaluate whether it will make sense to

harvest and collect the forage or leave it standing in the field based on the costs involved

exclusively for these activities. To address this scenario, the “harvest and collection” cost

(HCC), which was already a part of the total cost (section 4.4.4.12), was also presented

default as an output. This cost involves that associated with the harvest, baling, collection,

and transportation; so that these collective activities leave the field ready for the next crop.

Observing this cost, its proportion with the total cost, and its cost/ac along with net return

values, the users can make an informed decision on this scenario.
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4.4.4.1. Equipment type

The equipment type result displays “tractor” or “tractor and ABP” combined depend-

ing on which was selected in the checkbox. (table 4.1, #6). The conditions for equipment

type is as follows:

Equipment =


Tractor, bales/trip ≤ 2

Tractor with ABP, bales/trip ≥ 3

4.4.4.2. Total field area

Total field area is estimated as a product of the two following inputs: (i) field area

unit and (ii) number of units (table 4.1: #8 and #9).

4.4.4.3. Total number of bales

The total number of bales generated depended on the input values, such as forage

yield, bale mass, field area unit, and number of field units table 4.1: #8 – #11). A random

variation of 10 % in the crop stand uniformity was assumed (Subhashree et al., 2017). Any

change in these inputs is reflected in the resulting total number of bales.

NB =
AF ×NF × YB

MB
(4.1)

where, NB = number of bales, AF = field area (ha), NF = number of field units,

YB = biomass yield (Mg/ha), and MB = bale mass (Mg).

4.4.4.4. Bale collection logistics distance

Logistics distance during bale collection is estimated using the prediction model

developed (Subhashree et al., 2021) with the input values of total field area, BPT, and

biomass yield (table 4.1: #8, #10, and #13).
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DL =

[
AFYB

17.879× (BT + 0.895)

]1.377
(R2 = 0.98) (4.2)

where, DL = total bale collection logistics distance (km), and BT = bales/trip.

4.4.4.5. Bale collection time

The bale collection operational time is estimated using the developed multivariate

model (Subhashree et al., 2021) with the user input values of total field area, BPT, biomass

yield, and equipment speed (table 4.1: #8, #10, #13, and #25).

TC =

[
AFYB

−46.003 + 80.230BT + 15.052SP

]1.381
(R2 = 0.98) (4.3)

where, TC = bale collection time (h) and SP = equipment operation speed (km/h).

4.4.4.6. Bale collection fuel consumption

The fuel (diesel) consumption (gallons) is estimated using the multivariate predic-

tion model developed (Subhashree et al., 2021) with the input values of total field area,

BPT, biomass yield, and equipment speed (table 4.1: #8, #10, #13, and #25). Differ-

ent prediction models based on standard fuel consumption methods (ASABE Standards

(ASABE, 2011) and fuel efficiency (Khalilian et al., 1985)) were used to estimate the fuel

consumption of the equipment (tractor and ABP). These methods estimated fuel consump-

tion based on the horsepower of the engine and bale load.

Tractor (1 to 2 bales): FC =

[
AFYB

−5.913 + 13.164BT + 2.777SP

]1.414
(R2 = 0.98) (4.4)

ABP (8 to 23 bales): FC =

[
AFYB

−4.991 + 1.165BT + 4.827SP

]1.242
(R2 = 0.98) (4.5)

where, FC = fuel quantity (L) consumed during bale collection operation.
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4.4.4.7. Total bale movement time

The total bale movement time is estimated using bale collection (eq. (5.3)) time

plus the time required for loading bales onto a truck and then unloading the bales into a

stack or other storage location. The loading and unloading time can be determined using

the number of bales generated (eq. (5.1)) and the loading and unloading time (min) per

bale inputs (table 4.1, #14 and #15).

TLU = NB × ( TL + TU)/60 (4.6)

TOT = (TLU + TC)/60 (4.7)

where, TLU = total bale loading and unloading time (h), TL = loading time per bale (min),

TU = unloading time per bale (min), TOT = total bale movement time (h).

4.4.4.8. Total bale fuel consumption

Total bale fuel consumption is determined using the fuel consumed during bale

collection (eqs. (4.4) and (4.5)) and during loading and unloading bales. The fuel con-

sumption for loading and unloading of bales is calculated using tractor capacity and fuel

efficiency (Khalilian et al., 1985). The estimated fuel consumption is 15.7 L/h assuming

a tractor capacity of 150 hp and a load of 1 bale (680 kg) for both loading and unloading

operations.

FLU = 15.7× TLU (4.8)

where, FLU = fuel quantity (L) for loading and unloading operation.

TFQ = FC + FLU (4.9)

where, TFQ = total fuel quantity (L).

136



4.4.4.9. Total revenue

The total revenue depends on the number of revenue streams (i.e., revenue from

just bales, or from bales and grain), which is based on the crop type (forage and for-

age+grain). The revenues and costs ($) presented in this study are based on US dollars

(USD). The bale revenue ($) is based on the input values for crop type and price per bale

(table 4.1: #1 and #13), and the number of bales generated (eq. (5.1)). In ND, the forage

crop alfalfa has the highest price per bale while grain residue bales (e.g. straw or stover)

have the lowest price per bale assuming equal bale size (e.g. 5 × 5 ft). However, this price

structure may vary with other geographic locations. Similarly, the grain revenue depends

on the total field area, grain yield, and grain price (table 4.1: #8, #16, and #17).

Total revenue ($) =


Bale revenue, Forage crop

Bale+grain revenues, Grain crop

(4.10)

4.4.4.10. Crop input cost

Crop input cost is the sum of total seed cost, fertilizer cost, and chemical cost in-

cluding their application costs. This cost is influenced by the selected crop type. Total

seed, fertilizer, and chemical costs are estimated based on the inputs, field area unit (ac),

number of units, and seed, fertilizer, and chemical cost ($/ac) with their application, re-

spectively (table 4.1: #8, #9, and #19 – #21).

CIC ($) = TSC + TFRC + TCC (4.11)

where, CIC = crop input cost ($), TSC = total combined seed+application cost ($), TFRC

= total combined fertilizer+application cost ($), and TCC = total combined chemical +
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applicaiton cost ($).

4.4.4.11. Total bale production cost

Total bale production cost is the sum of crop input cost (eq. (4.11)), harvest cost,

and baling cost but the cost of collecting and transporting the bales. Total harvest and

baling costs are estimated using harvest cost ($/ac), baling cost ($/ac), field area unit,

and number of field units (table 4.1: #9, #10, #18, #19).

TPC ($) = CIC + THC + TBC (4.12)

where, TPC = total bale production cost ($), THC = total harvest cost ($), and TBC = total

baling cost ($).

4.4.4.12. Total cost

The standard economic analysis used in determining the total costs with total fixed

cost components, such as depreciation, taxing, housing, insurance, and interest for the

bale collection equipment and total field area rent (Appendix C.1) and total variable cost

components, such as repair and maintenance, total fuel and labor for bale collection and

total bale transportation cost (Appendix C.2) are presented in Appendix C. Total cost is the

sum of total production (eq. (4.12)), total fixed (Appendix C.1), and total variable costs

(Appendix C.2).

TC ($) = TPC + TFC + TVC (4.13)

where, TC = total cost ($), TFC = total fixed cost ($), and TVC = total variable cost ($).

Transportation activity of collected bales from the field to the storage unit and the

cost associated is accounted as a component in the variable cost (Appendix C.2.4).
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4.4.4.13. Net return

Net return refers to the amount of revenue that remains after all the costs are de-

ducted, within a particular year (otherwise, if revenue and costs spill across multiple years,

discounting would be needed before values in different years are added or subtracted).

Then the net return can be calculated using the total revenue (eq. (4.10)) and the total

cost (eq. (4.13)).

Net return ($) = Total revenue− Total cost (4.14)

A net return value greater than zero indicates profit and a value less than zero

indicates a loss.

4.4.4.14. Break-even ratio

Break-even ratio is the ratio of total revenue (eq. (4.10)) to total cost (eq. (4.13)).

Break even ratio =
Total revenue

Total cost
(4.15)

A break-even ratio value greater than 1 indicates profit and a value less than 1

indicates a loss.

4.4.4.15. Payback period and return on investment

Payback period is the length of time required to recover the initial investment on the

equipment (tractor with or without ABP) through profit. The payback period is estimated

in cycles; a year can have one or more cycles depending on the frequency of forage crop

harvest and resulting revenue streams.

Payback period (cycles) =
Equipment cost

Net return (profit per year)
(4.16)
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The return on investment (ROI) is expressed as a percentage and is the ratio of

annual profit to the equipment cost (eq. (4.17)).

Return on investment (%) =
Net return (profit per year)

Equipment cost
× 100 (4.17)

The payback period and return on investment are only calculated if the outcome

of net return is positive. These results were calculated only for a tractor (major piece

of equipment) as well as for the combined tractor and ABP (minor piece of equipment;

but only if ABP was included in the operation), to help with the equipment purchase

decision. More specifically, a farmer might consider investing in an ABP if it meets the

following criteria: (i) generates positive net return; (ii) generates more net return than

using a tractor only; (iii) saves time substantially and has a shorter payback period, and

(iv) generates more net return than any other alternative use of funds being considered

for investment.

4.5. Case Studies With Actual Farmers

Case studies were carried out to demonstrate the functionality and applicability of

FECWT in actual field scenarios. Two farmers were contacted to apply real-field input

values and compare the estimated results with their existing records. The farms of 80 ac

(case study 1) and 40 ac (case study 2) were located in Sioux and Morton County, ND, USA,

respectively. Farmer-1 produced alfalfa, perennial forage variety, and farmer-2 produced

bromegrass (“Grass (Perennial)” - option to be used in FECWT; perennial forage variety).

The tool was temporarily hosted on a local server for the farmer. Input values for field

parameters, bale collection operation, and crop input costs were entered in the FECWT.

Some of the default input options were left as such, while the farmer appropriately modi-
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fied others according to their fields and activities. Selected inputs and the tool-generated

results are presented in table 4.2.

4.5.1. Case Study Inputs

Appropriate data were input into the FECWT using drop-down options, sliders,

and input boxes. The case studies focused on estimating the economics of alfalfa and

bromegrass (5-year crops) using a tractor that can handle only two bales at a time (2 BPT).

For farmer-1 and farmer-2, with alfalfa and brome grass stands producing forage for five

years, the original combined seed and planting cost (≈$145/ac and $84/ac, respectively)

was annualized at $29/ac and $17/ac, respectively. The combined cost of fertilizer and

application for farmer-1 and farmer-2 was set at $0 and $15, respectively. Similarly, the

combined chemical and application cost incurred for farmer-1 and farmer-2 was $22/ac.

Harvesting, baling, equipment, field rent, fuel, and labor costs are provided as direct inputs

based on their operation.

4.5.2. Case Study Results

Selected results of the two case studies are shown in table 4.2 and the “View chart”

in Figure 4.4. The FECWT evaluated net return per acre for the inputs from case studies

1 and 2 as $92 and –$38 for 2 BPT, respectively, corroborated well with the farmer’s own

estimates of about $100/ac and –$35/ac, respectively.

The sensitivity analysis inputs from farmers 1 and 2 revealed a break-even forage

yield of 2834 and 4686 lb/ac, respectively. That is, if the farmers’ respective yields fall

below these values, they will experience an economic loss. Conversely, any yields above

these will generate positive profit. Similarly, the break-even price per bale is $44 and $81
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Table 4.2. Field case studies using forage economics calculator web tool (FECWT) analyzing a perennial and
annual forage crop.

Inputs Results

Parameter Farmer–1 Farmer–2 Parameter Farmer-1 Farmer-2

Crop type Alfalfa (Perennial, 5 years) Brome grass (Perennial, 5 years) Equipment Tractor Tractor
Engine power (hp) 80-149 80-149 Total field area (ac) 80 40
Tractor age owned (years) 10 20 Total number of bales 234 77
Annual usage (h) 200 200 Bale collection distance (mi) 35.0 8.2
Tractor cost ($) 50,000 20,000 Bale collection time (h) 7.0 1.6
ABP cost ($) NA NA Bale collection fuel consumption (gal) 20.4 4.6
Interest rate (%) 5 6 Total bale movement time (h) 10.9 2.9
Field area unit (ac) 80 40 Total bale fuel consumption (gal) 36.6 9.9
Number of field units (#) 1 1 Total revenue ($ ) 17,550 4620
Forage yield (lb/ac) 5000 3500 Total seed cost ($) 2320 672
Bale mass (lb) 1500 1500 Total fertilizer cost ($) 0 1280
Bale sale price ($/bale) 75 60 Total chemical cost ($) 1760 880
Bales/trip 2 2 Total harvest cost ($) 1600 800
Bale loading time (min/bale) 0.5 0.5 Total baling cost ($) 1200 800
Bale unloading time (min/bale) 0.5 0.5 Total fuel cost ($) 73.1 29.8
Field rent ($/ac) 35 40 Total labor cost ($) 217.4 58.4
Combined seed+planting cost ($/ac) 145∗ 84∗ Total bale transportation cost ($) 15 40
Combined fertilizer+application cost ($/ac) 0 32 Crop input cost ($) 4080 2832
Combined chemical+application cost ($/ac) 22 22 Total production cost ($) 6880 4432
Harvest cost ($/ac) 20 20 Total fixed cost ($) 2952 1617
Baling cost ($/ac) 15 20 Total variable cost ($) 309 129
Fuel cost ($/gal) 2 3 Total cost ($) 10141 6178
Tractor speed (mph) 5 5 Total net revenue/acre ($) 219 116
People required 1 1 Total cost/acre ($) 127 154
Labor cost ($/h/labor) 20 20 Net return ($) 7409 −1558
Bale transportation cost ($/mile) 3 4 Net return/acre ($) 92 −38
Bale transportation distance (mile) 5 10 Break even ratio 1.7 0.8

Payback period (cycle; tractor only) 7 NA
Return on investment (%) 15 NA
Harvest and collection cost (HCC, $) 3106 1728
HCC to total cost (%) 31 28
HCC/ac ($) 39 43

Note: The units used are: hp - horsepower, h - hour, lb - pound, ac - acre, $ - US Dollars, mph - miles per hour, and gal - US gallon.
∗ Farmer-1 and Farmer-2 — total seed cost and planting investment for alfalfa and grass crop (perennial, $145/ac/5 years and $84/ac/5 years) is annualized ($29/ac/year and
$17ac/year) in the results, respectively.
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Figure 4.4. Downloadable graphical visualization chart comparing total revenue,
total cost, and net return. Other prominent economics outputs are presented in text.

for farmers 1 and 2, respectively. If the farmers sell their bales for anything less than

these break-even prices, respectively, they will experience an economic loss. Farmer-1,

with self-reported forage yield of 5000 lb/ac and bale sale price of $75, make a profit.

Farmer-2, with a self-reported forage yield of 3500 lb/ac and bale price of $60, incurs a

loss. Further sensitivity analysis revealed that an increase in the bromegrass forage yield

from 3500 lb/ac to 4686 lb/ac (break-even), holding all else constant, would increase the

net return from –$1557 (loss) to $18 (profit) for the field area of 40 ac.
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The results of the low-inputs scenario were obtained assuming the combined cost

of seed +application, fertilizer+application, and chemical+application at $0 and reduced

forage yields (2500 lb/ac and 1750 lb/ac), which is 50 % of the total yield potential

(5000 lb/ac and 3500 lb/ac) for case studies 1 and 2, respectively. Farmer-1 decreases

net return by 60 %, payback increases by 10 cycles, and the return on investment was

decreased by 9 %. While for farmer-2 the low-inputs net return increases by 39 %, and

payback cycle and ROI were not available for farmer-2 since the net return was negative.

The HCC was $3106 for the 80 ac field with a cost of $39/ac and contributed to

31 % of the total cost for farmer-1. While for farmer-2, the HCC was $1728 for the 40 ac

with a cost of $43/ac and contributed to 28 % of the total cost, respectively. The values of

HCC/ac of 34 % and 29 %, which are not substantial (say >50 %) makes sense to harvest

and collect the forage bales, otherwise leaving the crop in the field would reduce the profit

or further increase the loss. Overall, based on these two case studies the accuracy of the

developed tool was highly satisfactory, and more case studies further establish the accuracy

of the analysis.

4.5.3. ABP Inclusion in Case Studies

As both farmers have not used the ABP in their enterprise, a scenario analysis was

conducted to study this additional equipment purchase decision. In this analysis, the ABP

collected 8 BPT while the tractor collected 2 BPT, with all other inputs remaining the same.

Changing the BPT from 2 to 8 alone affected bale collection logistics distance, operation

time, fuel consumption, net return, break-even ratio, and payback period (table 4.3).

Results of ABP inclusion in the two farmers’ case studies indicated that, on average,

the total logistics distance for bale collection decreased by 4.7 times, and the operation
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Table 4.3. Effect of including automatic bale picker (ABP) in case studies.

Case studies Logistics and economics Tractor ABP
(2 bales/trip) (8 bales/trip)

Farmer-1 Logistics distance (mi) 35.0 7.4
(80 ac, Sioux County, ND; Operation time (h) 7.0 1.5
Alfalfa, perennial 5-years) Fuel consumption (gal) 20.4 15.7

Net return ($/ac) 92 94
Payback period (cycle) 7 2.6∗

Farmer-2 Logistics distance (mi) 8.2 1.8
(40 ac, Morton County, ND; Operation time (h) 1.6 0.4
Bromegrass, annual 1-year) Fuel consumption (gal) 4.6 4.3

Net return ($/ac) −38 −38
Payback period (cycle) NA NA

Note: ∗ Payback period (cycle) for ABP equipment only.

time decreased by 78 % using 8 BPT in comparison to the traditional 2 BPT. Since total

labor cost is influenced by the time required to collect and transport bales, a considerable

reduction in cost by using ABP was observed as well. The fuel consumption is proportional

to the bale load, so for case studies 1 and 2, the fuel consumption decreased by 23 % and

8 %, respectively. The net return increased on average by 1.5 % from using ABP instead of

a traditional tractor in the field areas of 40 ac (16.2 ha) and 80 ac (32.4 ha). However, the

equipment purchase scenario analysis results showed (section 4.6.1) that the net return

using ABP increased significantly over a traditional tractor for field areas above 160 ac

(65 ha) prominently.

4.6. Scenario Analysis

The FECWT allows users to perform many kinds of scenario analyses by simply ad-

justing the input values, either by choosing a different input value within the provided

default range or by altering the range itself to suit the user’s requirement. Scenario analy-

sis using the FECWT, with its useful defaults and well-defined set of assumptions, will help

users gain insight into different cases (practical or hypothetical). To further illustrate the
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FECWT’s scenario analysis capabilities, next we explore and provide answers to questions

such as: 1. “Should I purchase an ABP for bale collection?,” 2. “Which major forage crop

type is more profitable, or how do the forage crops rank on economic standpoint?,” and

3. “How much net return to land and management will be possible for farm operators (typ-

ical drylands agriculture of perennial forages) who do not use fertilizer, chemical and/or

seed based on the type of forage grown?”

4.6.1. Equipment Purchase Decision Scenario

Bale collection activity is conventionally performed using a tractor where a spear or

grappler attachment is fixed to the tractor. A maximum of 2 bales can be collected during

a single trip using the tractor. Conversely, the ABP’s bale capacity ranges from 8 to 23 in a

single trip, thus reducing the bale collection time and fuel consumption which is reflected

in the cost savings of labor and fuel. Based on commercial market rates, the cost of an ABP

machine with 8 BPT capacity for 5×6 feet bale size was fixed at $20 000.

The scenario analysis used the payback period as the measure to help farmers with

the equipment tractor (2 bales) and ABP (8 bales) purchase decision. Payback period is

estimated using profit and the equipment cost. The effect of field area (8, 32, 65, 129,

and 259 ha) on the payback period (i.e., number of cycles) was studied for the following

equipment scenarios: (i) combined tractor and ABP, (ii) tractor only, and (iii) ABP only

(fig. 4.5). Tractor being the major piece of equipment, its contribution to the payback

period is obviously much greater than the ABP (minor equipment).

Other inputs in calculating the payback period were considered from the case study

of farmer-1 (table 4.2). The scenario, which considered only the ABP purchase as an

additional piece of equipment, assumed that the farmer already has a tractor — a common
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Figure 4.5. Equipment purchase scenario analysis for alfalfa forage crop: Effect of
field area sections (8, 32, 65, 129, and 259 ha) on payback period (cycles) for
equipment: tractor and ABP, tractor only, and ABP only. Tractor only = 2 BPT; ABP
only and tractor and ABP = 8 BPT.

scenario among traditional farmers and ranchers. The payback period in cycles for the ABP

equipment only was <2.6 for 32 ha (80 ac) and was <1.2 for field areas ≥65 ha (≥160 ac;

fig. 4.5). If tractor alone (new model for example) should be purchased, the payback

period will be 6.7 cycles for 32 ha and≤3 for≥65 ha. The payback period for the combined

tractor and ABP also decreased with an increase in the field areas. The recommendation

for the equipment purchase decision is to purchase the ABP if the field area is ≥32 ha, and

a new tractor (independent of the ABP decision) if the area is ≥65 ha (≥160 ac).
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4.6.2. Forage Crop Type Scenario

Comparison among the selected forage crops (grass and alfalfa) and grain-forage

(millet, oats, wheat, barley, and corn) was performed based on the revenue streams/ac,

total revenue/ac, total cost/ac, and net return/ac (fig. 4.6). The grain yields and prices

(year 2020) we used were based on average values reported in the 2020 National Agri-

cultural Statistics Service database for North Dakota (Jantzi et al., 2020). The lower and

upper bounds of forage yield (defaults in the input panel) for grain crops were determined

using the established harvest index (ratio of grain to straw yield; McCartney et al. (2006)).

The cost values for seed, chemical, and fertilizer for forage and grain crops were obtained

from the farm financial management database for ND in 2020 (FINBIN, 2020). Other in-

puts for the development of the scenario were obtained from the case study for farmer-1

(table 4.2).

The net return/ac for grain crops (millet, oats, wheat, barley, and corn) was always

higher for the forage crops (grass and alfalfa), because it includes revenue streams from

both grain and forage (i.e., what some refer to as crop aftermath). Revenue from the

grain stream for grain-forage crops is substantial, so it easily covers the production cost of

grain and forage; revenue from the forage then generates additional income. The grain

revenue stream ranged between 80.4 % to 89.7 % of the total revenue, and the ratio of

grain revenue to the total cost ranged between 1.3 to 2.0 indicating cost recovery. When

ratios of net return to total cost were compared (again assuming 2020 prices and data

from the case study farmer-1), the best crop was corn (1.44) followed by barley (0.98),

oats (0.90), alfalfa (0.89), wheat (0.88), millet (0.43) and grass (0.35). It should also be

noted that all the crops studied made a profit but to varying degrees (fig. 4.6).
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Figure 4.6. Forage crop type net return scenario: Effect of forage crop types
(exclusive forage and grain-forage crops) economics showing grain revenue, total
(grain + forage) revenue, total cost, and net return.

Alfalfa is a dominant perennial forage crop with high yield potential and value;

therefore, the average net return per acre for alfalfa forage is 3 times that of grasses and

grass mix varieties. Furthermore, comparable net return was observed for alfalfa and

certain grain crops (millet, oats, wheat, and barley) considering the net return was only

from the forage; that is, if a grain-forage crop is being grown strictly for forage, then its

net return would be similar to that for alfalfa. While alfalfa is the most profitable forage
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for this case study, corn is the yields most profit with forge among the grain-forage crops;

however, the choice of crop is based on the field conditions and investment availability.

4.6.3. Low-Inputs Scenario

4.6.3.1. High- and low-yielding forage crops comparison

Low-inputs scenarios for the two forage crops: (i) alfalfa — a high-yielding forage

crop wherein seed+seeding cost was included (required after every 5-year cycle) while the

combined fertilizer and chemical applications costs were set to $0; and (ii) grass — a low-

yielding and low-maintenance perennial forage crop wherein all the associated costs of

seed+seeding (naturally grown grasses do not require seeding), and combined fertilizer

and chemical applications were set to $0, were analyzed. It should also be noted that

some of the high-value grasses need seeding at necessary intervals. The analysis results of

these forage crops for a minimum and maximum field area (8 and 259 ha) with various

percents of potential yield are presented in Figure 4.7. The highest forage potential yield

for alfalfa and grass were assumed to be 5000 lb/ac and 3000 lb/ac, respectively, while

utilizing the other inputs from case study 1 for the analysis (table 4.2). Linear trends of

low-input net return increase with percent potential yield were observed at both minimum

(8 ha) and maximum (259 ha) field areas for both crops considered. The shaded area

between the limiting linear trends represents the net return for the other field areas with

the corresponding linear trends.

For alfalfa the positive net returns occur around 53 % and 43 % (fig. 4.7A), and for

grass around 64 % and 51 % (fig. 4.7B) with 8 ha and 259 ha, respectively. Overall, it can

be observed that alfalfa generates positive net returns with the low-inputs scenario from

about 45 % yield potential and for grass from about 51 %. It was also observed that the

150



−10000

−5000

0

5000

30 40 50 60 70
Percent yield potential (%)

 N
et

 re
tu

rn
 ($

) 

0

10000

20000

30 40 50 60 70
Percent yield potential (%)

 N
et

 re
tu

rn
 ($

) 

8 ha (y = 37x – 1974, R2 = 0.99)

259 ha (y = 1457x – 62523, R2 = 0.99)

Field area: 
Crop: Alfalfa 

259 ha ( y = 880x – 44460, R2 = 1)

8 ha (y = 23x – 1470, R2 = 1)
Field area: 
Crop: Grass A B

Figure 4.7. Low-inputs scenario analysis for alfalfa and grass on the effect of forage percent yield potential
(alfalfa: 5000 lb/ac; grass: 3000 lb/ac) on net return for tractor only (bales/trip = 2) for field areas between 8
and 259 ha.
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slopes for smaller field areas are smaller with $23 and $37 per percent yield potential than

the larger areas with $880 and $1457 per percent yield potential, respectively for grass

and alfalfa, indicating better net returns at larger field areas with an increase in percent

potential yield.

4.6.3.2. Normal and low-inputs net return comparison for alfalfa

To determine how the low-inputs net returns compare with normal use of inputs

(includes fertilizers, and chemicals cost), alfalfa crop was analyzed for different field areas

ranging from 8 to 259 ha (20 to 640 ac) with highest forage potential (5000 lb/ac), while

other input values were considered from case study 1 (table 4.2). The normal net return

was on average 8.4±2.2 and 7.9±2.0 times higher than the low-inputs net return, indicat-

ing that application of fertilizer and chemical contributes to 88 %± 3 % and 87 %± 3 % of

the net return for tractor (BPT = 2) and ABP (BPT = 8) (ignoring negative net return val-

ues), respectively, by increasing the forage yield (fig. 4.8). The low-inputs net return and

normal net return for ABP were always slightly higher than tractor as expected; however,

a noticeable difference between in low-inputs and normal net return values was observed

only for field areas ≥65 ha (≥160 ac).

The recommendation based on the low-inputs scenario is to cultivate forage on

larger field areas and by applying fertilizers and chemicals in addition to the naturally

available forage to increase the forage yield. Although there are costs involved with fer-

tilized and plant protection controlled forages, the net return from the increased forage

yield is significant when compared to the net return from naturally grown forage with

fewer inputs.
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Figure 4.8. Low-inputs scenario analysis with 50 % forage yield potential
(2500 lb/ac) for alfalfa crop: Effect of field area sections (8 ha–259 ha) on normal
net return and low-inputs net return for tractor only (bales/trip = 2) and tractor
and automatic bale picker (ABP) combined (bales/trip = 8).

4.7. Conclusions

In this study, we developed a forage economics calculator web tool (FECWT) to

analyze the economics of various scenarios for forage and grain-forage crop decisions,

requiring minimal user interaction guided by complete user instructions and user-manual.

The tool interface was designed with user-friendly input features (drop-down choices, text

input, and slider) to suit the target users, such as farmers, hay producers, custom hay
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operators, agricultural extension, financial personnel, and anyone else interested in the

economics of handling bales. The inputs included biophysical production parameters along

with costs and prices associated with the forage enterprise. Economic results calculated

by the tool were net return, break-even ratio, payback period, and return on investment.

The tool allowed for various decision analyses, such as equipment purchase (tractor vs

automatic bale picker, ABP), the sensitivity of profit to what-if scenarios. The FECWT

presents results onscreen as values and dynamic charts, which were also made available

as downloadable report and chart.

Case studies involving farmers with actual field inputs were used to test the appli-

cability of FECWT. Case study results from two farms conformed well with the farmer’s

own field records and the tool’s performance was highly satisfactory. Additional scenario

analysis was conducted on the inclusion of ABP in the two case studies. This revealed that

larger field areas (≥65 ha or ≥160 ac) or higher-yielding and higher-value crops (e.g., al-

falfa, grain-forage crops) could help increase the case-study farmers’ profits.

Some findings of the scenario analysis from practical case studies and hypothet-

ical situations were: (i) ABP equipment purchase for field areas ≥65 ha (≥160 ac) was

profitable; (ii) among the crop types, alfalfa and corn was the most profitable forage and

grain-forage options; (iii) low-inputs (no fertilizers, chemicals, and/or seeds) net return

for alfalfa and grass decreased by 8.4 and 7.9 times, respectively at 50% yield potential

suggesting the use of all inputs; however, the low-inputs scenario produces positive net

returns with increased field areas ≥65 ha.

The FECWT can be further developed to include other forage types with relevant

data and other regions. More sophisticated web tool features, such as individual pro-
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file creation with username and password security, data archiving, and data management

should also be considered. Further testing with more case studies using different forage

crops will help in determining the accuracy of the tool.
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5. BIOMASS YIELD PREDICTION FOR PASTURES USING REMOTELY

SENSED VEGETATION INDEX AND CLIMATE DATA THROUGH

MACHINE LEARNING *

5.1. Abstract

Uncertain climate conditions such as extreme drought in native rangeland, pastures,

and hay land reduce production up to 80 %, which leads to forage shortages for livestock

producers. Predicting forage biomass yield is critical in managing livestock since it impacts

livestock stocking rates, the amount of hay purchased, and livestock marketing strategies.

Only a few biomass yield prediction studies on pasture and rangeland exist despite this

need. Therefore, this study focused on developing a biomass yield prediction methodol-

ogy through remote sensing satellite image (multispectral bands) and climate data using

open-source software technologies. Biomass ground truth data were obtained from lo-

cal pastures. Remote sensing data included spatial bands (6 predictors) and vegetation

indices (VI, 30 predictors) estimated from the Landsat, Sentinel, and CubeSat satellites

(3–30 m resolution). The climate data (NDAWN) included precipitation, turf soil tem-

perature, mean temperature, mean dew point temperature, and others (16 predictors).

To model the complex non-linear relationship between the biomass and the spatial and

data, a potential approach of machine learning (ML) was followed for feature selection

and prediction modeling. Recursive feature elimination (RFE) emerged as the best ML

* This paper will be submitted to the Biomass and Bioenergy journal in 2022. Authors: Srinivasagan N.
Subhashree, C. Igathinathane, A. Akyuz, J. Hendrickson, D. Archer, M. Liebig, J. Halvorson, S. Kronberg,
D. Toledo, K. Sedevic, and D. Peck. Subhashree performed the systematic literature review and wrote the
manuscript. Dr. Igathinathane Cannayen is the major advisor, principal investigator, and the corresponding
author who worked with Subhashree throughout the research and manuscript development. All the co-
authors have assisted in the research direction and review of the manuscript.
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feature selection method among others tested (Boruta and backward elimination). The

top-ranked features (52 tested) from RFE were short wave infrared 2, normalized differ-

ence moisture index, and average turf soil temperature. The random forest ML model

produced the highest accuracy (R2 = 0.83) among others tested (support vector machine,

k-Nearest neighbor, and multiple linear regression) for biomass yield prediction. Appli-

cations of the selected methodology (RFE and RF) revealed that (i) the methodology is

equally applicable to other unseen pasters (R2 = 0.79), (ii) finer satellite spatial resolu-

tion (e.g., CubeSat; 3 m) was better in predicting pasture biomass, (iii) the methodology

extended successfully to high-value alfalfa hay crop with good yield prediction accuracy

(R2 = 0.96). Future research scopes include the application of the proposed methodology

on a large scale, other species, use of hyperspectral images and unmanned aerial vehicles,

and development of an interactive tool. Thus it can be recommended that the developed

methodology of using remotely sensed images with climate data and using RFE for feature

selection and RF for biomass yield modeling for biomass and hay forage yield prediction.

5.2. Introduction

In Northern Great Plains (NGP), rangeland forage productivity is greatly influenced

by climatic factors such as precipitation and temperature (Lupo et al., 2013). North

Dakota, located northeast of NGP, has a continental climate and experiences naturally oc-

curring drought and significantly varying temperatures. Local ranchers and livestock pro-

ducers deal with the challenge of forage availability under these typical varying climatic

conditions. Therefore, timely forage biomass production estimation during the growing

season in rangeland and pastures can aid in making efficient management decisions for

livestock production.
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Despite this need, only a few studies on biomass yield monitoring and prediction

for pasture and rangeland exist. These studies relied on a traditional destructive method

of recording biomass production, which involved hand clipping and drying the biomass

from the randomly placed quadrats across a large landscape (Catchpole and Wheeler,

1992; Ma et al., 2019). This traditional method is highly time-consuming, therefore, not

performed frequently during the growing season. However, continuous monitoring of the

biomass production data aids the ranchers in making and adapting real-time management

decisions.

Remote sensing (RS), an alternative methodology, has proved effective in nonde-

structive, extensive, and repetitive coverage of land areas, making it the perfect technology

for continuous monitoring of growth in rangeland and pastures. The RS data includes im-

agery from satellite and UAV platforms. Visible, thermal, multispectral, and hyperspectral

bands captured by the RS sensors were used to validate the clipped biomass (Aparicio

et al., 2000; Lussem et al., 2018). Over the last few years, the high spatial and temporal

resolution satellites, such as Landsat, Sentinel, and CubeSat satellite platforms having re-

spective 30, 10, and 3 m spatial resolution, are freely available and increasingly accessible,

which makes periodic yield monitoring achievable. Some of the free imagery sources for

these satellites are Google Earth Engine, PlanetScope Inc., and U.S. Geological Survey.

Satellites record multispectral bands, including visible, near-infrared (NIR), short-

wave infrared imagery (SWIR), and were used to estimate vegetation indices (VIs). These

indices provided indications to the vegetation characteristics such as greenness, photosyn-

thetic activity, and moisture content (Gómez et al., 2021; Ji and Fan, 2019; Safi et al.,

2022). Some of the most commonly used VIs are normalized difference vegetation index
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(NDVI), enhanced vegetation index (EVI), and atmospherically resistant vegetation index

(ARVI), among many others (Xue and Su, 2017). The effect of climate variables on crop

growth has been extensively documented, and long-term studies showed a strong relation-

ship between climate and plant growth (Zhihui et al., 2016). In addition to climate, soil

plays an imperative role in affecting the growth of plants; warm soil temperature induces

better water and nutrient uptake and contributes to the overall plant growth (Onwuka and

Mang, 2018).

Biomass yield is a combination of spatial and temporal changes, and the variability

can be captured by satellite, climate, and soil data (Meng et al., 2021). The data (satellite,

climate, and soil) are strongly linked and present themselves as nonlinear and complex

interaction in predicting crop yield. Complex interactions among the dependent and in-

dependent variables, in recent times, have been widely analyzed using machine learning

(ML) therefore ideal for agricultural applications. The ML models have been suitable for

applications such as crop yield predictions, nutrient management, species identification,

weed detection, and many others (Subhashree et al., 2020; Timsina et al., 2021; Van

Klompenburg et al., 2020).

In general, a better performance by ML models was reported than by traditional

linear regression models (Belayneh et al., 2014; Cai et al., 2019; Guzmán et al., 2018).

The essential factors of yield estimation using ML were: (i) identification of the most im-

portant independent variables using feature selection methods (ii) development of suitable

prediction models, and (iii) calibration and validation of the developed ML models.

Selection of important climate, soil, and VI (satellite) features for crop yield pre-

diction was performed using feature selection methods such as Boruta, recursive feature
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elimination, information gain, sequential feed-forward selection, Relief, and many others

(Gopal and Bhargavi, 2018; Prasad et al., 2021; PS, 2019). Among the developed ML

models, random forest (RF) has been widely used in predicting crop and forage biomass

yield predictions (López-Calderón et al., 2020; Ramoelo et al., 2015; Zimmer et al., 2021).

Many studies involving soil, climate, and VIs have reported good performance using sup-

port vector regression (SVR) in predicting yield (Kamir et al., 2020; Kuwata and Shibasaki,

2016). For instance, for predicting winter wheat yield in China using climate, soil, and re-

mote sensing data, SVR emerged as one of the best ML models (Han et al., 2020). Several

studies have also tested the performance of k-nearest neighbor (kNN) methods for yield

prediction (Ahamed et al., 2015).

With this background and research opportunity, a study was designed to develop

yield prediction models for the pasture biomass using climate and satellite-based mul-

tispectral images that help the forage producers and ranchers. The specific objectives for

pasture biomass prediction included (i) determining the potential use of using climate vari-

ables and multispectral images (non-destructive method) for biomass prediction; (ii) iden-

tifying and recommending an overall methodology of the best features selected and ML

model based on the prediction accuracy, (iii) investigating the effect of satellite spatial

resolution among Landsat, Sentinel, and CubeSat for biomass prediction; and (iv) evalu-

ating the adaptability of the recommended methodology (features + trained ML model)

for additional unseen pastures and alfalfa forage hay crop.
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5.3. Materials and Methods

5.3.1. Study Site Description

The study sites were located at the Northern Great Plains Research Laboratory (NG-

PRL; USDA-ARS), Mandan, North Dakota 46◦46′12′′N 100◦55′59′′W; fig. 5.1). North Dakota

receives peak precipitation occurring during June–July (3–4 inch). The average high tem-

perature was recorded in July (28 °C), and the average low temperature recorded was

January (−2 °C).

The NGPRL site included three pastures, out of which two were native vegetation

pastures and the rest was seeded forage pasture (Liebig et al., 2013). The former two are

historical pastures: (i) heavily grazed pasture (HGP; 2.8 ha) and (ii) moderately grazed

pasture (MGP; 15.4 ha), were initiated in 1916 and maintained without applying fire,

fertilizer, or herbicides. The crested wheatgrass pasture (CWP; 2.6 ha) once native was

seeded in 1932. Vegetation in MGP was dominated by Kentucky bluegrass (Poa pratensis

L.), an invasive cool-season grass. Blue grama [Bouteloua gracilis (Willd. ex Kunth) Lag. ex

Griffiths], a warm-season native grass, dominated the HGP pasture until 2010 and was too

dominated by the Kentucky bluegrass. A mix of crested wheatgrass [Agropyron desertorum

(Fisch. ex Link) J.A. Schultes] and Kentucky bluegrass can be found in CWP. Among the

pastures, the data from the MGP pasture was used to train the prediction models, while

CWP and HGP data were used for model testing.

5.3.2. Data Acquisition

The whole process methodology followed in the study that includes data extraction,

data preprocessing, and model development is depicted in Figure 5.2. Various details of

the processes involved are described subsequently.
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North Dakota, U.S.

Figure 5.1. Study site pastures located at Northern Great Plains Research Laboratory (NGPRL; USDA-ARS),
Mandan, ND. Polygonal shapefiles of the study pastures are overlaid on the map. CWP: crested wheat pasture,
HGP: highly grazed pasture, MGP: moderately grazed pasture. Inset: Mandan, ND, USA.
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5.3.2.1. Ground truth biomass data

The forage data at NGPRL was collected as aboveground live biomass every 2-3

weeks from mid-April to late September or mid-October (growing season) in the CWP,

HGP, and MGP pastures for the years 2004–2006 and 2017–2018. The biomass was

clipped from four representative samples using 0.25 m2 quadrats. The collected biomass

was dried at 60–80 °C and weighed for moisture content measurements.

5.3.2.2. Climate and soil data

The pastures’ local weather data were obtained from North Dakota Agricultural

Weather Network (NDAWN). The weather station located at NGPRL, Mandan, ND, in this

network was selected, where the data were available from 1999 to the present. Since

the pastures were not far from each other, the same weather data was used. Monthly

data were obtained for nine climate and soil variables: average air temperature, bare soil

temperature, turf soil temperature, wind speed, dew point, and chill and total values of

solar radiation, potential evapotranspiration (PET), and rainfall (table 5.1). This monthly

weather data was exported as a CSV file, a format suitable for reading and processing.

5.3.2.3. Satellite image data

The remote sensing data for 2004–2006 (NGPRL study site) was retrieved from the

Landsat archive of the Google Earth Engine (GEE) using JavaScript (Appendix E.2). The

Landsat images were available once every two weeks from 1972 to the present day and

provide satellite images of the earth’s surface using seven spectral bands at 30 m spatial

resolution. Satellite data for the pastures was obtained by creating a rectangular extent

(as JSON) including all three pasture areas (CWP, HGP, and MGP) for the three years from
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Table 5.1. Climate and remote sensing data considered for the study.

Remote sensing data (Satellite platforms) Climate data (NDAWN)

No. Parameter Abbreviation Availability No. Parameter Abbreviation

Landsat Sentinel CubeSat

Surface reflectance bands Weather variables
1 Blue (0.45–0.52 µm) B X X X 37 Air temperature (minimum, ◦C) Min T
2 Green (0.52–0.60 µm) G X X X 38 Air temperature (average, ◦C) Avg T
3 Red (0.63–0.69 µm) R X X X 39 Air temperature (maximum, ◦C) Max T
4 Near infrared (0.77–0.90 µm) NIR X X X 40 Air temperature (diurnal range, ◦C) Di TR
5 Short-wave infrared 1 (1.57–1.75 µm) SWIR1 X X – 41 Bare soil temperature (◦C) AvgB Soil
6 Short-wave infrared 2 (2.09–2.35 µm) SWIR2 X X – 42 Turf soil temperature (◦C) AvgT Soil

43 Wind speed (average, km/h) Avg WindS
Color vegetation Indices 44 Wind speed (maximum, km/h) Max WS

7 Red chromatic coordinate RCC X X X 45 Wind direction (average, ◦) Avg WD
8 Green chromatic coordinate GCC X X X 46 Total solar radiation (Ly) Tot Sol R
9 Blue chromatic coordinate BCC X X X 47 Potential evapotranspiration (Penman, mm) Pen PT
10 Excess green ExG X X X 48 Potential evapotranspiration (Jensen-Haise, mm) JH PET
11 Normalized excess green ExG2 X X X 49 Total rainfall (mm) Rainfall
12 Excess red ExR X X X 50 Dew point (average, ◦C) Dew P
13 Excess green minus excess red ExGR X X X 51 Wind chill (minimum, ◦C) Min Wind Chill
14 Green red vegetation index (VI) GRVI X X X 52 Wind chill (average, ◦C) Wind Chill
15 Green blue VI GBVI X X X
16 Blue red VI BRVI X X X
17 Greed-red ratio G/R X X X
18 Green-red difference G−R X X X
19 Blue-green difference B−G X X X
20 Visible-band difference VI VDVI X X X
21 Visible atmospherically resistant index VARI X X X
22 Modified green red VI MGRVI X X X
23 Colour index of vegetation CIVE X X X
24 Woebbecke index WI X X X
25 Coloration index CI X X X

Multispectral vegetation indices
26 Normalized difference VI NDVI X X X
27 Green normalized VI GNDVI X X X
28 Soil adjusted VI SAVI X X X
29 Modified soil adjusted VI MSAVI X X X
30 Enhanced VI EVI X X X
31 Normalized difference moisture index NDMI X X –
32 Green atmospherically resistance VI GARI X X X
33 Simple ratio index SR X X X
34 Atmospherically resistant VI ARVI X X X
35 Green chlorophyll index GCI X X X
36 Structure intensive pigment index (SIPI) X X X

Note: VI - Vegetation index, Spatial resolution of Landsat - 30 m, Sentinel - 30 m, CubeSat - 3 m; NDAWN - North Dakota Agricultural Weather Network.
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Landsat 5 (Thematic Mapper, TM) and Landsat 7 (Enhanced thematic mapper, ETM)

(Gorelick et al., 2017). The TM images were mostly used for data collection, while ETM

images were only used in case of missing or no cloud-free TM image available. The Landsat

images were considered from the ‘Tier 1’ category of the GEE datasets for their higher data

quality and level of processing. Atmospheric aspects such as aerosols and thin clouds are

accounted for by using the atmospherically corrected datasets using surface reflectance

from the TM and ETM sensors. Additionally, these Tier 1 and surface reflectance data

were further screened for clouds, snow, and shadows using the CFMask() function (Zhu

and Woodcock, 2012).

Remotely sensed data for the years 2017–2018 for the NGPRL study sites was col-

lected from Sentinel-2. The Sentinel-2 images were available since 2015 once every ten

days with a spatial resolution ranging from 10–30 m. Multi-spectral instrument (MSI) sen-

sor in the Sentinel-2 platforms generates an image with 13 spectral bands ranging from

visible to short-wave infrared. PlanetScope imagery from Planet Labs Inc. was used to

download raw Sentinel-2 images. The satellite image tile covering the study site pastures

was selected with cloud cover condition less than 20 %. These obtained raw Sentinel

images were preprocessed for atmospheric correction. The semi-automatic classification

plugin available in the QGIS (version 3.16) software was used for performing atmospheric

correction for the Sentinel images using the provided metadata (Congedo, 2016).

5.3.3. Data Processing

The approach of obtaining various VIs, representing the forage growth, specific

to the study pastures is to overlay the pasture’s shapefiles on the satellite images and

extract relevant spatial and band information for data processing. The satellite image data
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processing was performed in open-source QGIS and R (version 4.1.1) software. Shapefiles

were generated using the New Shapefile Layer (polygon) option in QGIS (Appendix E.1).

A shapefile vector layer with three polygons was created for the NGPRL pastures to perform

image processing analysis. The downloaded Landsat satellite images were a single raster

layer consisting of multiple bands (eight) as stacks. In contrast, the images from Sentinel-2

were a single raster layer consisting of multiple bands (11 in total). These multiple bands

from Sentinel-2 were stacked using the R function stack() to form a multi-band raster

layer.

The five major bands, commonly used in estimating the plant characteristics are:

blue (B), green (G), red (R), near-infrared (NIR), short-wave infrared (SWIR), and short-

wave infrared 2 (SWIR2) was stripped from the stacked raster layers for estimating VIs

(table 5.1). A stripped band (raster layer) was overlaid onto the pasture shapefile (vector

layer) for extracting band value for the pastures’ shapefiles. The extraction was performed

through zonal statistics using the exact extract() R function. The zonal statistics result

presented the mean value of the pixels (band data) available in the polygon created for

each pasture. This satellite image processing was repeated for all the satellite images

downloaded. Therefore, a user-coded function in R was created to automate the process

of stacking, stripping, and applying zonal statistics for the bands (Appendix F.1 – F.3).

5.3.4. Estimation of Vegetation Indices

The VIs derived by combining spectral bands can be attributed to various plant

characteristics, including growth, water content, pigments, protein content, among others

(Foley et al., 1998). The VIs were estimated from the selected spectral bands (B, G, R,

NIR, SWIR, and SWIR2) from the Landsat and Sentinel-2 images. The list of RGB mul-
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tispectral based vegetation indices commonly used in various applications is presented in

Table 5.2. Estimating VIs had to be repeated multiple times over different dates for the

satellite images. To automate this process, a user-coded R function was created (Appendix

F.4) to execute the estimation of VI (table 5.1).

5.3.4.1. Common RGB bands

The RGB color system is the most used for digital image processing. As RGB bands

correspond to the visible range of the electromagnetic spectrum, true-color composites

can be generated using these spectral bands. In addition to viewing, the three bands can

be mathematically combined (VIs) to extract further information. Most of the RGB-based

VIs were developed to highlight the greenness and spectral variation within the vegetation.

Among the RGB-based VIs, excess green index (ExG) produced using the R, G, and B bands

were the most commonly used to estimate greenness (Woebbecke et al., 1995). Based

on the derived spectral bands from the Landsat and Sentinel-2 platforms, 19 RGB-based

vegetation indices were computed for biomass prediction in the pastures (table 5.2).

5.3.4.2. Multispectral

The sensors in the Landsat and Sentinel-2 were equipped to capture information

in the electromagnetic spectrum that was not visible to the human eye. These multispec-

tral bands were NIR and SWIR bands. Multispectral VIs were calculated mathematically

by combining multispectral bands and or RGB bands. The normalized VI is the most

widely used multispectral VI and is estimated using the NIR and R band (Rouse et al.,

1974). The NDVI values ranged between −1 and +1, where −1 and +1 relate to poor and

healthy vegetation, respectively. NDVI proved successful in estimating canopy cover and
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Table 5.2. List of RGB and multispectral based vegetation indices.

Vegetation index Equation Reference

Red chromatic coordinate (RCC) R
R+G+B (Woebbecke et al., 1995)

Green chromatic coordinate (GCC) G
R+G+B (Woebbecke et al., 1995)

Blue chromatic coordinate (BCC) B
R+G+B (Woebbecke et al., 1995)

Excess green (ExG ) 2G−B −R (Woebbecke et al., 1995)

Normalized excess green (ExG2) B
R+G+B (Woebbecke et al., 1995)

Excess red (ExR) 1.4R−G
R+G+B (Meyer et al., 1999)

Excess green minus excess red (ExGR) ExG2− ExR (Meyer et al., 2004)

Green red vegetation index (GRVI) G−R
G+R (Hunt et al., 2005)

Green blue vegetation index (GBVI) G−B
G+B

Blue red vegetation index (BRVI) B−R
B+R

Greed-red ration (G/R) G
R (Steele et al., 2009)

Green-red difference (G-R) G−R

Blue-green difference (B-G) B −G

Visible-band difference vegetation index (VDVI) 2G−R−B
2G+R+B (Xiaoqin et al., 2015)

Visible atmospherically resistant index (VARI) G−R
G+R−B (Gitelson et al., 2002)

Modified green red vegetation index (MGRVI) G2−R2

G2+R2 (Bendig et al., 2015)

Colour index of vegetation (CIVE) 0.441R− 0.881G+ 0.385B + 18.787 (Kataoka et al., 2003)

Woebbecke index (WI) G−B
R−G (Woebbecke et al., 1995)

Coloration index (CI) R−B
R

Normalized difference vegetation index (NDVI) NIR−R
NIR+R (Rouse et al., 1974)

Green normalized vegetation index (GNDVI) NIR−G
NIR+G (Gitelson et al., 1996)

Soil adjusted vegetation index (SAVI) 1.5(NIR−R)
NIR+G+0.5 (A. R. Huete, 1988)

Modified soil adjusted vegetation index (MSAVI) 2NIR+1−
√

(2(NIR)+1)2−8(NIR−R)

2 (Qi et al., 1994)

Enhanced vegetation index (EVI) 2.5× NIR−R
1+NIR+6R−7.5B (A. Huete et al., 1997)

Normalized difference moisture index (NDMI) NIR−SWIR
NIR+SWIR (Wilson and Sader, 2002)

Green atmospherically resistant vegetation index (GARI) NIR−(G−(B−R))
NIR+(G−(B−R)) (Gitelson et al., 1996)

Simple ratio index (SR) NIR
R (Birth and McVey, 1968)

Atmospherically resistant vegetation index (ARVI) NIR−2R−B
NIR+2R−B (Kaufman and Tanre, 1992)

Green chlorophyll index (GCI) NIR
G−1 (Gitelson, Gritz, et al., 2003)

Structure intensive pigment index (SIPI) NIR−B
NIR+B (Penuelas et al., 1995)

Note: R - red, B - blue, and G - green bands recorded from the satellite platforms
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vigor; however, it was sensitive to the effects of soil, atmosphere, and cloud. Therefore 10

multispectral VIs were utilized to validate the pasture biomass (table 5.2).

5.3.5. Modeling Approaches

The ML modeling techniques were used to predict the pasture biomass through

selected features. Different wrapped-based feature selection methods were employed to

compare and choose the best features representing the pasture biomass. Using the best

features, various ML models were considered to predict the biomass and were compared

within the selected ML models and against the simple multiple linear regression (MLR)

models. The feature selection and prediction models considered are presented in detail

subsequently.

5.3.6. Feature Selection

Features for this study included the extracted satellite band values (6), estimated

VIs (RGB: 19, multispectral: 10), and climate variables (16), a total of 51 variables (ta-

ble 5.1). Among these features, understandably, some were highly relevant in predicting

pasture biomass than others. Feeding all the variables into machine learning models (in-

cluding the irrelevant features) would impact the accuracy and increase the computation

load and time. To address this a wrapper-based feature selection method was employed.

In the wrapper-based feature selection process, a subset of the most relevant fea-

tures was selected from a dataset, and features are either removed or added based on

training a model and the inference obtained. In this study, three wrapper feature selection

algorithms such as Boruta, recursive feature elimination, and stepwise regression were

used to estimate the relevant features. Correlation and mutual information were used to

validate the results of the selected feature selection algorithms.
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5.3.6.1. Backward elimination

Backward elimination was one of the three popular simple filter-based feature selec-

tion methods, and others are forward selection and stepwise regression. It was a wrapper-

based feature selection algorithm that initially considered all the features to build MLR

models. The R function step() was used to perform the backward elimination algorithm

(Venables and Ripley, 2002). The MLR model was used to estimate the features with less

relevance based on the calculated Akaike information criterion (AIC). Like adjusted R-

squared, the AIC also penalizes the model performance while using an increased number

of unnecessary variables. In this process, some features considered significant at an early

stage may be eliminated later. In general, backward elimination produced a better subset

of features since it was evaluated for significance by comparing with the other features (Xu

and Zhang, 2001). Therefore, only backward elimination feature selection was considered

for this study.

5.3.6.2. Boruta

Boruta was a wrapper-based method built using a random forest (RF) algorithm

that determined variable importance measures by default (Chen et al., 2022; Luo et al.,

2022). The Boruta feature selection method was implemented by using the Boruta()

R package (Kursa, Rudnicki, et al., 2010). In the Boruta algorithm, for each feature,

a shadow feature was created, and the values were obtained by randomly shuffling the

values of the original feature. This extended dataset was subjected to the RF to evaluate

the important features. The number of RF iterations performed on the extended dataset

containing the original and shadow features was 120. At every iteration, the maximum

Z-score of the shadow features (maximal importance of the random features, MIRA) were
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calculated to compare with the Z-score of the individual original feature. The algorithm

hypothesizes that the importance of the original feature is equal to or higher than the

estimated MIRA and when the hypothesis holds true, the number of hits (N) were recorded

from the total iteration. An original feature was considered significant if the value of the

hits is at least 0.5N .

5.3.6.3. Recursive feature elimination

Recursive feature elimination (RFE) was a wrapper-based algorithm built around

the random forest (RF, section 5.3.7.3) model (ML) to yield the optimum features (Prasad

et al., 2021; Pullanagari et al., 2018). In R, the RFE feature selection was performed using

the rfe() function in the caret package (Kuhn, 2008). The RFE method initially employed

all the features and eliminated the feature with the least RMSE calculated from the out-of-

bag (OOB) data. A new RF model was developed using the remaining features. The pro-

cess was recursively applied by employing 10-fold cross-validation (repeated 5 times) to

optimize the variable selection process and select the most important features. At every

run of this recursive process, the RF model with the selected subset of features yielding

the least RMSE was considered optimum. However, the rank of the features was updated

when another model with a different subset of features yielded the minimum RMSE. The

RFE estimated the best subset of features yielding a minimum RMSE value through this

repeated process (Appendix F.5).

5.3.7. Linear and Machine Learning Prediction Models

The features were ranked based on the feature importance results from the back-

ward elimination, Boruta, and RFE. Then, the ranked features were fed to selected the

linear and ML models, MLR, RF, support vector regression (SVR), and k-nearest neighbor-
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hood (kNN) (fig. 5.2). The number of the feature data fed into the ML models increased

successively by one feature; the ML models were analyzed using the highest-ranked fea-

ture, and the process was repeated by including the second-highest feature and so on.

5.3.7.1. Train, validation, and test dataset

The original dataset containing selected features from the feature selection methods

(predictors) and pasture biomass (response) were subjected to random splitting with a

replacement for obtaining train and test data. The R function sample() was used perform

the data splitting operation. The partition ratio considered for the train and test datasets

was 50, 60, 70, and 50, 40, and 30, respectively (fig. 5.2). The 10-fold cross-validation

method was used to validate the performance of the developed ML model. The train and

validate dataset was used to train the prediction models, while the test dataset was used to

estimate the accuracy of the trained models. The models developed using the train dataset

were run ten times to record the accuracy from the test dataset; the partition ratio yielding

consistent accuracy was considered optimum.

5.3.7.2. Multiple linear regression

The MLR statistical models are simpler compared to the ML counterparts but have

the advantage of being easy to calculate and comprehend and can be considered as “con-

trol” model to compare ML models. These models used two or more predictor variables

to explain the outcome of one response variable by fitting a linear equation (Jiang et al.,

2019; Shastry et al., 2015). In R, the MLR was performed using the lm() function (Cham-

bers and Hastie, 1992). The model assumes a linear relationship between the predictor

and response variables, and the predictor variables are not highly correlated. Each value

175



of the predictor variables was associated with the response variable, and the model deter-

mined a regression coefficient that had the least overall model error.

5.3.7.3. Random forest

The RF was an ensemble learning algorithm (ML) with a collection of several deci-

sion trees (Filippi et al., 2019; Li et al., 2020). The function ranger() in R was used to

perform RF analysis (Appendix F.5). In RF, random samples were drawn from the train

data with replacement using the bootstrap aggregating (bagging) method to avoid over-

fitting (Fawagreh et al., 2014). The random samples selected from the train data were

called in-bag data and constituted for 64 % of the train data. At the same time, the re-

maining 36 % of the samples were called the out-of-bag (OOB) data. Decision trees in RF

are built independently using in-bag data and a random subset of features selected at each

node where the feature importance was assigned based on the prediction accuracy. The

OOB data was used to validate the built decision trees and the resulting mean square er-

ror determined the prediction accuracy and variable importance. The final predictions for

regression-based RF were obtained by averaging the prediction results from all the trees

(bagging).

5.3.7.4. Support vector regression

The SVR was a supervised ML algorithm developed to predict discrete values (Shafiee

et al., 2021; Were et al., 2015). The SVR algorithm in R was performed using the function

svm() from the library “e1071”. The SVR principles were similar to the support vector

machine and used kernel functions to project the data onto a hyperspace to represent

complex nonlinear patterns (Gunn et al., 1998). Kernel functions of SVR include sigmoid,

polynomial, nonlinear, and radial basis (RBF); however, only RBF was used for this study
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for its proven performance (Zhang et al., 2020). The SVR provides flexibility by defin-

ing the amount of error acceptable by the model and determining the best fit line within

that allowed threshold value. The threshold value was the distance between the hyper-

plane (best-fit line) and the boundary called the maximum error ε (epsilon). The value of

epsilon can be tuned to obtain the desired SVR model accuracy.

5.3.7.5. k-nearest neighbors

The kNN was an instance-based learner where for the test data instance, the model

finds the k samples nearest in the train data based on the distance value and averages their

responses (Gonzalez-Sanchez et al., 2014; Subhashree et al., 2020). The “caret” package

in R with the method option selected as “kNN” was used to implement the algorithm. The

k value was always an odd number and played a significant role in determining the model’s

accuracy. A small k value might lead to poor accuracy if the noise were present in the data,

while a large k value might ignore the noise in the data but would significantly increase the

computation load. An optimum k value can be estimated based on the model’s accuracy

obtained from a selected range of k values.

5.3.8. High-Performance Computing Resources Used

Selecting features and training ML models, especially with RFE, were computation-

ally intensive involving a lot of number crunching in a repeated manner. Such compu-

tational loads cannot be efficiently handled by local computers (common laptop or desk-

top), specifically during the developmental stage where several iterations are involved.

Therefore, we used the North Dakota State University’s Center for Computationally As-

sisted Science and Technology (CCAST) high-performance computer clusters. An example

of performance comparison with a single run using OnDemand RStudio Server IDE is:
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the runtime for RFE feature selection method on CCAST (system time: 719 s; 1 node and

4 cores with a 16 GB RAM configuration at basic service level) was on an average 1.5 times

faster (other calculations up to 2.5 times) than the local system (system time: 1127 s). The

performance of the CCAST basic service level can be improved further by requesting more

resources. It was observed that the use of systems like CCAST or similar is necessary while

developing ML models involving several variables (multispectral image bands and climate

data).

5.3.9. Model Performance Assessment

5.3.9.1. Hypertuning parameters

The best performance of the ML models was not guaranteed with the default hy-

perparameter settings; therefore, the hyperparameters need to be tuned to achieve the

best predictions (Schratz et al., 2019). The ML models considered for this study were all

subjected to hyperparameter tuning to determine the robust estimates. The tuning can

be performed by manually selecting the parameters; however, automatic selection was

recommended to estimate the optimum parameter.

The RF models involved several hyperparameters such as the number of trees in-

volved (num.trees), the number of variables randomly selected at each split (mtry), and

minimum observation at each node (min.node.size). The number of trees tested was 500,

1000, and 1500, while the mtry value was set to p/3 (default value for regression) where

p is the total number of features, and min.node.size was selected as 5 (default value for

regression). All these RF hyperparameters were used in the grid search operation.

With SVR, the essential parameters were kernel, epsilon (ε), cost, and gamma. Ker-

nels were crucial in SVR since they used the data for transitioning into higher dimensional
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space. The ε determined the width of the tube around the hyperplane (decision boundary)

developed using the RBF function. The cost function in SVR determines the softness of the

margin, and the gamma determines the shape of the decision boundary; a high gamma

value results in more curvature. The values considered for ε were between the range 0

and 1, while the cost values ranged between 22 and 29, and the gamma values considered

were 0.001, 0.1, 1, and 3.

The kNN model used a range of k values between 5 and 9 with an increment of 1

for determining the optimum based on the accuracy.

5.3.9.2. Performance metrics

The robustness of the models was determined using 10-fold cross-validation re-

peated ten times. The performance of the models was recorded using the metrics, such

as coefficient of determination (R2), root mean square error (RMSE), and mean absolute

error (MAE) for the predictions from ML regression models, which were represented in the

following equations. A higher value of R2 and a smaller value of RMSE and MAE represent

a better prediction performance of the model tested.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(5.1)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5.2)

MAE =
1

n

n∑
i=1

|yi − ŷi| (5.3)

where, yi = observed value, ŷi = predicted value, ȳi = mean of observed values, and

n = number of observations.
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5.4. Results and Discussion

5.4.1. Feature Ranking Results

The 51 predictor features including climate, remote sensing bands, and VIs (ta-

ble 5.1) were ranked using the feature selection strategy described in section 5.3.6. The

ranking results from one pasture site (CWP) for the year 2006 are shown in Figure 5.3.

Among the feature selection methods considered, the ranking differed which reflected

the unique techniques of the feature selection. However, the similarity between the top-

ranking features for the random forest-based feature selection algorithms, Boruta, and RFE

methods was observed.

The best feature in predicting biomass in all three methods was the SWIR2, a re-

flectance band captured by the satellite sensors. The band SWIR2 was reported as one of

the best wavelengths to estimate the fractional cover of the vegetation and the bare soil

(Sagan et al., 2021). In addition to SWIR2, the red band ranked among the top 6 fea-

tures in the feature selection methods and has been used in predicting yield in agricultural

applications (Yang and Anderson, 2000). Several studies have reported the successful pre-

diction of biomass yield using the NDMI also known as the drought index (El-Hendawy

et al., 2017; Jin et al., 2016). The important climate variables were average wind speed

(Avg WindS) and average turf soil temperature (AvgT Soil).

Among the vegetation indices, the normalized difference moisture index (NDMI)

ranks one of the top 4 features in all the feature selection methods. The NDMI was gener-

ated using the RS bands NIR and SWIR; it can be observed that the band SWIR ranked as

the second most important variable in Boruta and RFE feature selection methods.
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Figure 5.3. Feature (52 total) ranking results from backward elimination, Boruta, and recursive feature
elimination feature selection methods.
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It is interesting to note that wind speed, which is not an obvious variable to explain

the biomass yield, is ranked higher than several obvious variables such as rainfall, ExG,

and so on. However, the wind speed was a crucial parameter in impacting the evapotran-

spiration and soil erosion and thereby affecting the crop yield. Wind speed also increases

the crop water requirements by increasing potential evapotranspiration as the accumu-

lated humid air near the leaves is removed (Dong et al., 2020). Furthermore, the turf soil

temperature for grasses was essential for the growth of crops since the warm temperature

provides a favorable condition for water and nutrient uptake and has been used in various

agricultural studies (Kahimba et al., 2008; Kaspar and Bland, 1992).

The vegetation indices VARI and MGRVI which commonly used combined band

values of green and red was ranked the least in predicting biomass yield. The climate

variable rainfall did not contribute to predicting biomass yield data; therefore, ranked as

one of the least important features. Interestingly, the 6 RS bands obtained ranked in the

top 15 features for at least 2 feature selection methods. Though the feature ranking is

available for all the features, the optimum number of features required can be determined

by sequentially feeding to the ML models and observing the prediction accuracy.

5.4.2. Feature Selection and Model Performance Comparison

The ranked features from the selected feature selection models for MGP pasture

were fed sequentially and the responses of the ML models were compared using RMSE

metrics, the lower RMSE value implies higher model performance in predicting biomass.

Based on the observed model responses, the best-performing feature selection method, the

number of features, and ML models were determined.

182



5.4.2.1. Feature selection methods comparison

Overall, a decrease in RMSE was observed with an increase in the number of fea-

tures across all the feature selection methods (fig. 5.4). However, a steep decrease in the

RMSE trend was observed for features less than 10. Among the feature selection methods,

RFE recorded the lowest RMSE value across all the ML methods except MLR indicating a

better selection of important features.
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Figure 5.4. Feature ranking from backward elimination, Boruta, and recursive
feature elimination feature selection methods. MLR - multiple linear regression,
kNN - k-nearest neighbor, SVR - support vector regression, and RF - random forest.
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For MLR, the backward elimination feature selection method performed the best

because the wrapper-based backward elimination feature selection algorithm internally

uses the MLR model to estimate the best features (Mao, 2004).

A comparable RMSE trend was observed for the feature selection methods Boruta

and RFE because of the similar feature rank as discussed in the previous section (sec-

tion 5.4.1). The average percentage decrease for RMSE value for RFE compared to MLR

and Boruta was 11 % and 2 %, respectively (fig. 5.5).

5.4.2.2. Machine learning models comparison - ranking

Among the ML models, the RMSE was the lowest for RF followed by SVM, kNN,

and MLR across all the feature selection methods (fig. 5.4). As expected, the MLR model

was the least accurate in biomass prediction since it assumes a linear relationship between

the predictor and response variables. Previous studies also report similar dominance of

ML models in yield prediction over the linear regression models (Belayneh et al., 2014;

Cai et al., 2019; Guzmán et al., 2018). With the increase in the number of features, a

steady decrease in RMSE was observed for the MLR model for all the feature selection

methods. While for other ML models (kNN, RF, and SVM), the lowest RMSE was observed

for features less than 10 and the addition of more features increased the RMSE values

indicating a reduced performance of the ML models. This trend was strongly observed

with the kNN model. The average reduction in RMSE of the ML models, kNN, SVM, and

RF compared to MLR was 13, 19, and 29 % (fig. 5.5A).

Overall, RFE performed well in the selected most influential predictors for estimat-

ing the biomass yield. The RFE methodology has been widely followed for evaluating

remote sensing variables and climate in estimating pasture and forage yield prediction
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(Feng et al., 2020; Pullanagari et al., 2018). Among the ML models, RF performed better

in biomass prediction. Previous ML comparison studies show that RF has proven to be

efficient in agricultural applications for predicting crop yield and above-ground biomass

(Filippi et al., 2019; Li et al., 2020). Using the selected RFE and RF methodology, the

absolute RMSE deviation percentage was estimated for each additional feature (fig. 5.5B).

The cut-off value for selecting the features was fixed at 2.5 % of absolute RMSE deviation.

Results revealed that for every additional feature after 10 the deviation of absolute

RMSE value was less than 2.5 %. Therefore, the top 10 ranked features from RFE recom-

mended for training the RF model were: SWIR2, AvgT Soil, SWIR, AvgB soil, Red, Green,

Dew P, Min T, NDMI, and Tot Sol R (table 5.1). Based on these results, for studies that

used combined climate and remote sensing data to predict pasture and forage biomass,

the methodology RFE for feature selection and RF for building ML prediction model was

recommended.

5.4.3. Application of the Developed Methodology and Model

The validity of the developed methodology (section 5.4.2) of RFE (features selec-

tion) and RF (prediction model) was further explored by using it for the three different

applications by addressing questions such as: (i) What is the predictive performance of the

methodology, developed based on one pasture, for estimating biomass in other pastures?

(ii) How does the spatial resolution of satellite images (Landsat, Sentinel, and CubeSat)

influence the accuracy of predicting pasture biomass? (iii) How capable is the developed

methodology in predicting cultivated hay crops such as alfalfa?
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5.4.3.1. Application 1 - Performance of the developed methodology in other pastures

The performance of the selected methodology based on the results from MGP pas-

ture was tested using the unseen biomass data from the pastures CWP and HGP. Fea-

ture selection using RFE and building RF models were individually performed for the pas-

tures CWP and HGP. Based on the feature selection results, the essential common features

that emerged important in all the pastures are SWIR2, SWIR, Red, NDMI, AvgT Soil, and

AvgB Soil (table 5.1). A linear trend was more pronounced in HGP and MGP than CWP

(fig. 5.6). The trend produced by the developed RF models in HGP (R2 = 0.84) and MGP

(R2 = 0.83) was linear for 2004, 2005, and 2006, indicating a good correlation between

the observed and predicted data. For CWP, a good correlation was observed for biomass

<1500 kg/ha (R2 = 0.79); however, with increasing biomass, the trend showed a reduced

correlation. It is vital to note that the ground truth data (observed) was already not pro-

ducing a clear growth trend for the CWP pasture.

For prediction model assessment, the pasture biomass data from the CWP and HGP

pastures were provided as test data to the trained RF model using MGP pasture data. The

results showed that better predictions were obtained for the HGP pasture (R2 = 0.65)

followed by CWP pasture (R2 = 0.37). Comparable predictions were obtained for pastures

MGP, and HGP since both the pastures were dominated by Kentucky bluegrass. Even

though CWP pasture contained Kentucky bluegrass, however, it was dominated by crested

wheatgrass, which resulted in a lesser performance of the trained ML model. The selected

methodology RFE and RF was recommended for predicting biomass in other pastures as it

produced good accuracy.
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Figure 5.6. Observed versus predicted biomass for the developed machine learning
model for the pastures mildly grazed pasture (MGP), highly grazed pasture (HGP),
and crested wheat pasture (CWP).

Furthermore, the results revealed that the direct trained ML model (opposed to

methodology RFE and RF) developed using the MGP pasture data can be used for pre-

dicting biomass for other pastures dominated by Kentucky bluegrass. The application of

trained ML models directly to pastures with similar soil and plant characteristics will be

simpler, and the development of such trained ML models for specific pastures or fields will

prove to be practical and useful.
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5.4.3.2. Application 2 - Effect of remote sensing platforms resolution in forage predic-

tion

To evaluate the effect of satellite images resolutions, the developed methodology

(RFE & RF) was used to build models to validate MGP pasture biomass using bands and VI

features sourced from three different satellite platforms with varying resolutions, such as

Landsat, Sentinel, and CubeSat along with climate features obtained from NDAWN for the

years 2017 and 2018 (fig. 5.7). The ranked top 10 features from the RFE for MGP with

different satellites are presented in Table 5.3.

It was observed that the band values SWIR and SWIR2 were influential in predicting

biomass in the pasture for Landsat and Sentinel platforms. However, in CubeSat with

the absence of SWIR or SWIR2 bands, the NIR band emerged as the best predictor band

feature.

Studies have reported that CubeSat NIR with fine resolution showed good perfor-

mance in determining green leaf biomass and phenology (Gitelson, Viña, et al., 2003;

John et al., 2020). The prominence of SWIR, SWIR2, and NIR bands indicates that the

wavelength range of 0.77–2.35 µm was best for estimating biomass growth in pastures.

More vegetation indices such as GARI, GCI, GNDVI, and BCC (4 out of 10) emerged as

important features for CubeSat compared to Landsat and Sentinel platforms. Blue and

GCC remote sensing data commonly appeared as influential bands and VI for Landsat and

CubeSat satellite platforms.

Based on the predictions on the trained RF model using the ranked features from

RFE and data from the satellite platforms, it can be observed that CubeSat has the highest
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Figure 5.7. Satellite imagery with spatial resolution for moderately grazed pasture
at Northern Great Plains Research Laboratory; A. Landsat 30 m (July 31, 2018); B.
Sentinel 10 m (July 13, 2018); C: PlanetScope’s CubSat 3 m (July 14, 2018).
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Table 5.3. Feature rank from recursive feature elimination for satellite platforms.

Rank Landsat Sentinel CubeSat

1 AvgT Soil AvgT Soil AvgT Soil
2 Green Di TR NIR
3 G Rdiff SWIR2 GCI
4 SWIR2 Tot Sol R MSAVI
5 SWIR Avg WindS GNDVI
6 AvgB Soil AvgB Soil SAVI
7 Blue SWIR AvgB Soil
8 SIPI Avg WD Blue
9 BCC NDMI RCC
10 Di TR JH PET NDVI

Note: Please refer to Table 5.1 for more information on the features.

R2 and the lowest RMSE and MAE followed by Sentinel and Landsat (fig. 5.8).
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Figure 5.8. Landsat, Sentinel, and CubeSat satellite comparison using performance
metrics coefficient of determination (R2) and root mean square error (RMSE).
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In most instances, the performance of Sentinel was more close to CubeSat than to

Landsat. The RMSE and MAE followed a similar trend because of the nature of estimation.

A more stabilized trend of the metrics was observed for the CubeSat satellite with finer

resolution. Therefore, satellite images with higher resolution, such as CubeSat that is

available from 2014, were recommended in predicting pasture biomass. Based on the

availability of the satellite imagery, the recommended order of preference was CubeSat,

Sentinel, and Landsat platforms for better biomass prediction accuracy.

5.4.3.3. Application 3 - Cultivated hay crop alfalfa yield prediction with developed

methodology using CubeSat

The selected methodology and CubeSat satellite imagery were used to evaluate the

prediction of the cultivated alfalfa hay crop. Forage from the alfalfa fields (H1 and G1;

fig. 5.9) were harvested mechanically and fed to livestock. The alfalfa crops were seeded

in 2015 for H1 and in 2019 for G1 and were harvested three times every year between

June and August for the years 2017, 2018, and 2020. The amount of biomass harvested

during the first harvest was on an average 2.4 times higher than the second and the third

harvest. The dry matter alfalfa yield (ground truth) was used for the analysis.

The results from the RFE feature selection methodology revealed that climate fea-

tures such as average turf soil temperature and potential evapotranspiration, all three

visible bands (R, G, and B), and MSAVI vegetation index as influential in predicting al-

falfa forage. Previous yield prediction study on Italian ryegrass (Lolium multi-florum Lam.)

has reported that MSAVI was a significant feature in predicting forage biomass (Lim et al.,

2015).
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H1

G2

Figure 5.9. Alfalfa forage fields H1 and G2 represented as polygon shapefiles
located at Northern Great Plains Research Laboratory, (NGPRL; USDA-ARS),
Mandan, ND, USA.

The prediction results (different years and cuts) reveal that the methodology, devel-

oped using perennial pastures, can be applied to hay crops and was successful in predict-

ing the alfalfa forage yield for all the years with an accuracy of R2 =0.95 (fig. 5.10). The

methodology of RFE and RF used only the three years limited data for three years; how-

ever, more data and different fields should to tested in the future to validate the method-

ology to be applied for hay forage prediction.
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Figure 5.10. Observed versus predicted yields for alfalfa forage (hay crop) for
different years (2017, 2018, and 2020), cuts (1–3), and fields (H1 and G2; fig. 5.9).

5.5. Conclusions

Multispectral satellite images and climate features were found to be the potential

indicator for predicting pasture biomass in a non-destructive, more frequent, and large-

scale method. The machine learning (ML) approach was useful in building prediction

models for evaluating pasture biomass. Among the feature selection methods considered,

recursive feature elimination (RFE) emerged as the best, followed by Boruta and backward

elimination to identify the most significant features in predicting biomass.

Highly influential remote sensing bands, vegetation index, and climate features

predicting pasture biomass were SWIR2, normalized moisture index, and turf soil temper-
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ature for Landsat and NIR, green chlorophyll index, and average turf soil temperature for

CubeSat, respectively. The top-ranking most common features with Landsat and CubeSat

satellites are infra-red bands (NIR and SWIR), blue band, turf soil temperature, and bare

soil temperature.

Among prediction models including multiple linear regression and three ML regres-

sion algorithms (random forest (RF), support vector regression, and k-nearest neighbor),

the RF was the most satisfactory based on the prediction performance. The developed

overall methodology of “RFE” for feature selection and “RF” for prediction was found to

be successful and recommended in predicting pasture biomass.

Some of the conclusions based on the use of the developed methodology to differ-

ent applications are (i) the methodology (RFE and RF) accurately predicted biomass yields

in other unseen pastures; (ii) finer satellite spatial resolution was better in predicting pas-

ture biomass, and based on the availability of satellite imagery the order of preference was

CubeSat (3 m), Sentinel (10 m), and Landsat (30 m); and (iii) the methodology can be ex-

tended successfully to high-value hay crop like alfalfa for accurate forage yield prediction.

In the future, the proposed methodology should be investigated on a large scale

and on more diverse pasture grass/forage and variable soil types. The use of hyperspectral

imagery from unmanned aerial vehicles should be explored to evaluate the biomass/forage

prediction potential and accuracy, individually and combined with high-resolution satellite

imagery. An interactive tool built using the trained model and/or methodology to predict

forage and deliver real-time forage monitoring for the farmers and ranchers will be a

natural progression of this research outcome.
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6. DEVELOPMENT OF A USER-FRIENDLY RANGELAND FORAGE YIELD

PREDICTION WEB TOOL *

6.1. Abstract

Frequently occurring droughts in North Dakota significantly reduce forage produc-

tion in the rangelands and pastures and affect the livelihood of the ranchers and other

forage producers. In addition, overgrazing, during these extreme conditions due to inef-

ficient cattle stocking rates, impacts the rangeland environment. A decision support tool

for the ranchers in the Northern Great Plains area monitoring and predicting the forage

potential would be valuable, especially during adverse drought conditions, for resource al-

location and stocking rate planning. The existing tool (North Dakota Drought Calculator)

was a simple and useful spreadsheet-based program that uses only precipitation as input

and generates forage yield potential. However, other parameters that affect the forage

yield prediction could be used following the recent advances in remote sensing satellite

technology, local weather data, soil, plant species, and field-specific inputs modeled using

advanced analysis such as machine learning (ML) will be beneficial but have not been

reported so far. Therefore, an exclusive web-based interactive tool was developed using

open-source ShinyR software with an ML model operating at the background trained based

on the satellite and climate data. The tool was designed to accommodate user inputs spe-

cific to their pasture. The tool’s simple inputs include rangeland/pasture shapefile, climate

* This paper will be submitted to the Computers and Electronics in Agriculture journal in 2022. Authors:
Srinivasagan N. Subhashree, C. Igathinathane, S. Ludwig, A. Akyuz, J. Hendrickson, D. Archer, M. Liebig,
D. Toledo, K. Sedevic, and D. Peck. Subhashree performed the systematic search, collected the data, de-
veloped the necessary code, and wrote the manuscript. Dr. Igathinathane Cannayen is the major advisor,
principal investigator, and the corresponding author who worked with Subhashree throughout the research
and manuscript development. All the co-authors have assisted in the research direction and review of the
manuscript.
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data, and satellite imagery using the freely available PlanetScope Inc. platform. The tool

extracts spatial data from the supplied satellite images, estimates vegetation indices (VIs),

collects climate data, and inputs to the already trained random forest model (best among

tested ML models). The tool’s output includes biomass production and maps to visual-

ize estimated vegetation indices. This developed user-friendly web-based tool will work

as a decision-support tool that places ranchers, forage producers, natural resource plan-

ners, and researchers in the driver’s seat in making forage production, stocking rates, and

rangeland health management decisions.

6.2. Introduction

The rangeland ecosystem in the United States, spanning millions of hectares, is pri-

marily managed by livestock operations. Climatic factors such as rainfall and temperature

greatly influence rangeland productivity. A study successfully linked the rangeland pro-

duction to the growing season precipitation, which is a highly variable parameter (Knapp

and Smith, 2001). Therefore, extreme conditions such as droughts, like the one recently

experienced by vast areas of the Northern Great Plains (NGP) from 2020–2021 can trigger

undesirable changes in the rangelands which reduced forage production and endangered

the ranching livelihoods (Godde et al., 2020).

The livestock operations were vulnerable to the reduced rangeland production since

it reduces the number of livestock supported by the rangelands, which reduces the value

of cattle and calf. In addition, excessive rangeland grazing during drought conditions was

more prone to ecological degradation, including increased soil erosion due to the lost plant

cover (Thurow and Taylor, 1999).
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Increasing variability in climate factors and its effect on the rangeland ecosystem

heightens the need for ranchers and farmers to monitor rangelands and devise manage-

ment plans to adapt to the oncoming drought, such as reserve forage to balance demand

and supply and varying animal stocking rate based on the forage availability.

In this context, few interactive tools for rangeland monitoring were developed. The

existing tool, exclusively meant for North Dakota, was the “Drought Calculator” devel-

oped by NRCS and USDA–ARS, a spreadsheet-based tool that predicted the forage yield

potential based only on the precipitation data and generic forage growth curves. The

drought calculator was used precipitation data to provide regression-based predictions

for above-ground forage biomass. And, the drought calculator was recommended as a

decision-support tool for cattle production (Reeves et al., 2015).

Another web-based map tool known as the United States Drought Monitor (USDM)

tool was available, which categorized drought into five zones based on the temperature,

soil moisture, snow cover, and drought indices such as Palmer drought severity index and

standard precipitation index. The USDM tool was recommended for ranchers for adopting

a management framework based on the existing drought conditions (Derner and Augus-

tine, 2016).

The Grass-Cast was a recent tool developed for forecasting grassland production

in the Great Plains and Southwest areas. The tool used normalized difference vegetation

index (NDVI) and evapotranspiration data as inputs for the ecological DayCent model for

predicting forage at a spatial grid of10 km × 10 km, or ∼6 miles × 6 miles (Peck et al.,

2019). The rangeland analysis platform tool enabled users to access geospatial data and

visualize annual biomass growth trends from 1984 to current (Allred et al., 2021).
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The existing tools were very few in numbers and were predominantly focused on

forage prediction at a larger scale. Recent advances in remote sensing (satellite) technol-

ogy have made existing forage (e.g., Red, Green, Blue, NIR, and SWIR bands) and au-

tomatic recording of climate variables (weather station) related information access more

affordable and provided continuous data for forage production analysis. However, the

field-specific (field-scale) predictions using local weather, soil, and plant species will be

beneficial but have not been reported so far.

In this research, described in the previous chapter, the developed machine learning

(ML) random forest (RF) model using 10 significant features, such as blue band, near-

infrared band, NDVI, soil adjusted vegetation index (SAVI), modified soil adjusted vege-

tation index, green chlorophyll index, green normalized difference vegetation index, and

red chromatic coordinates from the CubeSat satellite (3 m spatial resolution) along with

bare soil temperature and turf soil temperature emerged as the best in predicting forage

yield. Therefore, the objective of this study was to extend the developed RF prediction

model, while the significant features might vary based on the field-specific conditions dur-

ing feature extraction, as a user-friendly web tool for farmers and ranchers.

6.3. Application Methodology

The open-source programming language R (R Core Team, 2017) is globally popular

for its robust statistical and computing and analysis and was commonly used software in

the data science community (Lai et al., 2019). This benefit combined with the highly ac-

tive community providing help and contributing to the development of a large variety of R

packages has rendered R an ideal tool for creating applications. Therefore, the tool “Range-

Forage” was developed and implemented using the Shiny package (Chang et al., 2019),
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which can be used to create intuitive web applications in R software without JavaScript,

HTML, or CSS. Shiny is based on the reactive-programming approach which automati-

cally renders the results when the inputs are provided/modified. The tool used packages

such as sf (Hijmans and van Etten, 2011) and raster (Pebesma et al., 2018), which were

equipped with handling and processing geospatial data and was efficiently combined with

ML analysis. The package leaflet() was applied to the tool to produce interactive map

visualization. The basic Shiny functionality and appearance can be enhanced using ad-

vanced HTML, CSS, and JavaScript-based features since “shinyR” is capable of working

cross-platform. The shinyR is an R package to build dynamic R shiny-based dashboards to

analyze CSV files, and it provides a simple dashboard design and performs data analysis

and ML (supervised and unsupervised).

In general, shiny applications are categorized into two sections: client-side user in-

terface (UI.R) script and cloud-based server (server.R) script. The UI was responsible for

the appearance including the type and arrangement of components in the web applica-

tions. The components mostly were widgets designed to accept inputs from the user such

as text, numbers, tables, and many others. The UI was also sometimes presented with

multiple tabs based on the need of the application. The Server defines and controls the

output data generated based on the inputs from the UI which were combined with the

operations.

In RangeForage app, these operations include: (i) data (raster and shapefile) load-

ing and parsing; (ii) estimating and visualizing band values and vegetation indices (VI);

and (iii) predicting forage yield based on the trained ML model. The Shiny framework of

the RangeForage application is presented in Figure 6.1.
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Inputs
• Shapefile 
• Raster image
• Climate features

Outputs
• Estimating vegetation indices
• Forage yield evaluation
• Interactive maps

• Extraction of band values
• Estimation of vegetation indices
• Visualization of data
• Prediction using random forest

Client-side user interface (UI.R)

Cloud computing server (server.R)

Figure 6.1. Shiny R framework of RangeForage tool consisting on user interface and
server components.

6.4. RangeForage Prediction Tool

The tool consists of the main calculator tab “RangeForage” with inputs in the side

layout panel and results were presented in the main panel (fig. 6.2). Map visualization of

the estimated VI is presented in the “Data visualization” tab and the general information

and user instructions were presented in the “About” tab. The user can navigate between

the tabs by clicking on the navigation bar at the top. The subsequent sections focus on

the data collection and processing of input data such as shapefile and raster dataset and

detailed presentation of the user interface and server components.

6.4.1. Data Collection and Processing

The inputs shapefile and raster file were required as user inputs. The input data

needs to be procured and processed before it can be used in the tool. The following sections

presented the approaches followed to obtain input data from freely available resources and

open-source software.
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Figure 6.2. User interface of RangeForage web tool showing inputs (left) and results panel (right).
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6.4.1.1. Creating shapefile

Shapefile defined the geometry of a feature comprising a set of geographical co-

ordinates. The shapefile for rangeland was created using the open-source software QGIS

(QGIS Development Team, 2022). An empty shapefile layer (.shp format) was created

using Layer → New → New Shapefile Layer. In the dialog box, the file name, geometry

type (polygon), and projection for the shapefile need to be selected (fig. 6.3).

Figure 6.3. Creating a new polygon shapefile layer using QGIS software.

For the geometry type, the option polygon should be selected and the projection

should be set to EPSG:4326-WGS 84. Vector features can be digitized using the toggle

editing feature by right-clicking on the shapefile. Once the polygon shapefile is digitized,

the toggle editing feature is clicked again to generate a new shapefile product.

6.4.1.2. Downloading raster image

The raster images were captured using different band wavelengths by the satellite

sensors which can be used for crop health monitoring, weed detection, and many other

agricultural applications. PlanetScope was one of the easily accessible resources to procure
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raster images as TIFF files from satellites such as Landsat 8, Sentinel 2, and CubeSat

(fig. 6.4).

A B

Figure 6.4. Downloading raster images; A. PlanetScope’s filter search dialog box; B.
raster image tile (captured by the satellite) available for the selected extent (shown
in blue).

The source contained atmospherically corrected surface reflectance raster images

that were available for ready use. An extent was drawn to download the tile images from

satellite for the selected area. The PlanetScope dialog box was used to edit inputs such as

time range, cloud cover (0 and 20 %), satellite platform (CubeSat), to filter search results.

The resulting raster images were further screened by overlaying onto the extent created

and selecting the best images for the time range selected. The screened raster images from

CubeSat contained four bands, blue, green, red, and near-infrared (NIR).

6.4.1.3. Obtaining weather data

Local weather data was obtained from North Dakota Agricultural Weather Network

(NDAWN). Among the list of stations available, a station near the rangeland location (Man-

dan, ND) was selected (fig. 6.5). Most weather data at this resource was available from
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Figure 6.5. Weather variables selected using North Dakota agricultural weather
network (NDAWN).

the year 1999 to the present. The weather variables of interest were selected among the

13 available and the time period range was fed to create a table based on the selection.

The generated table was exported from NDAWN as a CSV file.

6.4.2. Shiny User Interface

The user-interface of the tool was designed using Shiny widgets (fig. 6.6) such as

file upload box (fileInput()), slider (sliderInput()), action button (actionButton()),

and checkbox (checkbonInput()). The file upload box was used to upload shapefile and

raster image into the tool (fig. 6.6A). One or more files can be uploaded using this option,

however, the tool allowed for multiple upload at a time (Appendix G.1).

The slider input was used to feed the weather variable inputs into the tool. A min-

imum and maximum value were provided for the slider range and the user can select the

value between the range by dragging the slider position (fig. 6.6B). Unlike other widgets,
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B

C

D

Figure 6.6. Shiny widgets used in the RangeForage prediction tool; A. file upload,
B. slider, C. action button, and D. checkbox.

the action button named “Estimate biomass” was used to observe the events from the user

interface and then activates a block of code from the server-side to present forage yield

prediction results (fig. 6.6C). The checkboxes were used to visualize different estimated

VIs as raster files overlaid onto a map (fig. 6.6D). The conditions for the checkboxes were

designed in a way that if one checkbox was checked, the other checkboxes were unabled

to avoid overlaying of multiple raster files. When the selected checkbox was unchecked,

all checkboxes were made available for visualization.

6.4.3. Shiny Server

The server side of shiny consists of reactEvent() and observeEvent() functions

which triggers block of code or user-defined functions when the inputs are entered or

modified (Appendix G.2). This tool used several user-defined functions to perform various

operations such as loading input data (raster, shapefile, and weather variables), perform-

ing analysis, transforming the projections of the shapefile to a raster image, cropping the

raster image based on the shapefile extent, extracting individual band values from the

raster image, estimate the VI, predicted forage yield and create interactive maps. The

trained RF model is available as an RDS file and was read using readRDS() function by the
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tool for prediction analysis. The base map from the ESRI (Environmental Systems Research

Institute) was added to the tool as the default layer. The outputs of the functions were ren-

dered to the user interface using renderTable(), renderText(), and renderLeaflet()

pre-defined functions.

6.5. RangeForage Tool Application - A Demonstration

The application of the RangeForage tool was demonstrated using mildly grazed

pasture (MGP) located in Northern Great Plains Research Laboratory (NGPRL) located in

Mandan, ND. The date of the pasture satellite image selected for the tool demonstration

was June 18, 2017.

6.5.1. Loading Tool Inputs

A shapefile for the pasture was created using the method presented in Section 6.4.1.1.

The shapefile was uploaded from the local system into the user interface using the file in-

put “Upload shapefile” option (fig. 6.7). The tool reads the shapefile and renders it as

an overlaid feature on ESRI “Leaflet” as the base map. Once the file is uploaded, the

interactive map zooms to the geographic location showing the shapefile extent.

After the shapefile was rendered, the “Upload raster” input file option was clicked to

browse the raster file from the local system. The raster file from CubeSat satellite obtained

from PlanetScope was uploaded to the tool (section 6.4.1.2). The entire raster file tile

overlaid the leaflet base map and the map visualization panel showed the uploaded raster

file and shapefile (fig. 6.8).
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B

A

Figure 6.7. Loading shapefile; A. file upload from a local system, and B. extent of
shapefile overlaid on the base map.

Figure 6.8. Loading raster file; A. file upload from a local system, and B. raster and
shapefile overlaid on the base map.
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The inputs for weather variables, turf soil temperature (75 ◦F) and bare soil tem-

perature (65 ◦F) from NDAWN (section 6.4.1.3) are simply fed as inputs using the slider

widget (fig. 6.9). The selected value is displayed on the top of the slider bar. The slider

values can be changed for creating scenario analysis for extreme weather and soil condi-

tions.

Figure 6.9. Weather variable input using slider shiny widget.

Upon receiving shapefile and raster inputs the tool automatically estimated the in-

dividual band values from the raster image. The bands’ values of the raster images were

averaged (mean) for the extent of the shapefile and were presented in the main panel as

a table format (fig. 6.10). The estimated vegetation indices from the average band values

were also presented. At this stage, all the required inputs such as weather variables, band

values, and VI were available. The tool creates a data frame consisting of all the required

inputs and feeds to the trained RF model for prediction. The action button “Estimate
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biomass” (fig. 6.9) was clicked to trigger the results of the yield prediction to be displayed

in the main panel (fig. 6.10) The predicted yield 1666.11 kg/ha was comparable to the

observed yield was 1726.70 kg/ha.

Figure 6.10. Extracted band values, estimated vegetation indices, forage yield
results presented in tool’s main panel.

The data visualization tab of RangeForage tool produced raster maps containing

choropleth images for the 6 estimated vegetation indices, the checkbox option enabled the

user to check the VI to be displayed in the main panel (fig. 6.11). A legend with the VI

values and choropleth colors was created with the generation of every VI raster map. The

map aids in visualizing the change in biomass yield at every geographical location.

This demonstration serves how a user can able to use the RangeForage tool using

the strategy of inputs, cloud computing using a pre-trained model, and outputs (fig. 6.1).

Therefore, the tool can be used by any stakeholder by properly specifying the inputs and

deriving their desired “field-specific” outputs.
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Figure 6.11. Extracted band values, estimated vegetation indices, forage yield
results presented in tool’s main panel.

6.6. Conclusions

There is an increasing need for decision-support tools for predicting and monitor-

ing rangeland forage. The developed user-friendly tool “RangeForage” predicted rangeland

biomass and is expected to support farmers, ranchers, and other stakeholders in buying

forage, planning livestock, and developing management plans. The R programming lan-

guage has proved to be an ideal environment to combine spatial analysis, build ML models,

generate visualization, and develop web applications.

The tool can be considered as a contribution to make “pasture-specific” yield predic-

tions feasible and accessible. A further step in the context of this tool is to integrate more

satellite-specific models (Landsat and Sentinel), currently only CubeSat-based model is

present. The tool can be equipped to store the past years’ yield data and inclusion of

more data visualization tools to produce a history of production yields that is specific to
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the rangeland. Features to facilitate more scenario analysis that can be used to predict

biomass at various conditions can be added in the future versions of this tool.
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7. GENERAL CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

7.1. General Conclusions

Rangeland forage prediction is crucial for maintaining livestock production and

sustenance of the ranching enterprise. Extreme climatic conditions such as drought reduce

forage production and lost vegetation cover that leads to soil erosion. Frequently occurring

droughts heightens the need for monitoring forage yield as well as predicting yields in

rangelands. The study focuses on forage yield potential assessment through naturally

grown on rangelands or cultivated forage and prediction model and tool development.

Objective 1: A systematic literature review was successfully performed by review-

ing 85 qualified research manuscripts (2010 to 2022) to gain insights on forage yield

prediction including input features, models, and economic analysis tools. A strong trend

of remote monitoring of grasslands was observed as a large number of literature collected

used remotely sensed vegetation index (VI, n =55) than climate features (n =26) as in-

puts. Only very few studies used both VI and climate to predict the forage yield. Among

the satellite platform, MODIS (n =16) was the most frequently used followed by Landsat

and Sentinel. Normalized difference vegetation index (NDVI) was the most widely used VI

(28 %) while precipitation (33 %) and soil moisture (15 %) was the most used climate and

soil features. Existing tools such as Drought Calculator, U.S. Drought Monitor, Grass-Cast,

and Rangeland Analysis Platform focused on large-scale grass and forage yield prediction

and monitoring. Several spreadsheet-based calculators such as alfalfa production, hay-

ing system enterprise, enterprise budgeting for production of irrigated alfalfa, and price

of standing hay crop were available for forage economic analysis and focused majorly on
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the alfalfa forage crop. However, NDSU’s forage economic calculator was web-based and

included more than 10 forage crops. Based on the scenario analysis using the tool for dif-

ferent forage and forage-grain crops, where alfalfa and corn produced the highest profits.

Objective 2: Biomass/forage bale collection logistics distance and fuel consump-

tion (energy) were studied and compared between the conventional tractor and advanced

automatic bale picker (ABP; carrying capacity of 2 and 23). The most influential field pa-

rameters affecting the aggregation distance, fuel quantity, and operation time were field

area, biomass yield, bales per trip (BPT), and equipment speed. Combined multivariate

prediction models developed for logistics distance, fuel quantity, and operation time from

the 36 960 bale aggregation scenarios performed equally well (R2 >0.98). Fuel consump-

tion of ABP at 8 BPT for field areas between 8 and 259 ha on average decreased by 72 %

and 53 % on comparison with a tractor with 1and 2 BPT. No significant difference was

observed for ABP with 8 and 11 BPT, therefore, ABP with 8 BPT was recommended for

aggregation which can be effectively used to aggregate 11 BPT.

Objective 3: A user-friendly web tool named “Forage Economics Calculator Web

Tool” (FECWT) was successfully developed using HTML, CSS, and JavaScript to perform

forage economics analysis including the bale collection logistics operation. The tool’s in-

put included biophysical production parameters along with cost and price associated with

forage enterprise. Major economic results obtained were net return, break-even ratio, pay-

back period, and return on investment. In addition, the tool aided as a decision-support

system for equipment purchase (tractor or ABP for bale collection), the sensitivity of profits

in the form of “what-if scenario analysis.” The outputs of the tools also include a dynamic

chart and a generated report that were available as downloadable items. Case studies
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performed with the farmers’ actual field inputs and records compared to the tool’s per-

formance were found to be highly satisfactory. Scenario analysis results performed using

practical case studies and hypothetical situations revealed that ABP equipment purchase

was profitable for field areas ≥65 ha (≥160 ac) or for fields with high-yielding or high-

value forage or grain crops.

Objective 4: The study successfully identified the best overall methodology of best

features selected for predicting grass and forage yield. Multispectral satellite images

along with climate features were successfully used to predict pasture biomass in a non-

destructive manner. Literature in this subject area indicate that machine learning (ML)

is a potential approach for forage yield monitoring and prediction. Among the feature

selection methods, recursive feature elimination (RFE) was the best in identifying signif-

icant features for biomass prediction followed by Boruta and backward elimination. The

top-ranking features were infra-red bands, blue band, turf soil temperature, and bare soil

temperature. Among ML prediction models, the prediction performance of random for-

est (RF) was the best followed by support vector machine and k-nearest neighbor. The

ML models produced better predictions than multiple linear regression models. The se-

lected methodology of RFE for feature selection and RF for model development produced

a good prediction performance on the unseen pasture data. Comparison between the satel-

lite platforms using the selected methodology yielded that the satellite with finer spatial

resolution and the methodology can be explored with high-value crops such as alfalfa.

Objective 5: A rangeland forage prediction tool was successfully developed using

the Shiny package in R, an open-source platform for applications development. The tool

predicted the rangeland forage based on the developed pre-trained ML model. The R
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programming proved to be an ideal environment to integrate spatial analysis, build ML

models, generate visualization, and develop web applications. The tool can be seen as a

contribution to making “field-specific”, pasture level, yield prediction feasible and acces-

sible. The tool is expected to aid ranchers and hay producers in aspects such as buying

forage, planning livestock, and developing range management plans.

7.2. Suggestions for Future Work

• Inclusion of more robust ML models and comparison for rangeland forage predic-

tion. Build more interactive and user-friendly forage related tools focusing on field-

specific applications using local weather, soil, and plant inputs. Development of

smartphone applications for forage prediction and economic analysis for increased

visibility, usability, and awareness of farming and ranching outputs.

• Exploring more aggregation logistics methods scenario for identifying the methods

that are most efficient in fuel consumption. Inclusion of more aggregation scenarios

such as stacking locations of the collected bales before moving to the corner of the

field for transportation. Extending the simulation study on evaluating the aggrega-

tion and fuel quantity consumption to real-field bale collection using aerial imagery

with geolocation of the bales.

• The tool FECWT can be further developed to include more forage and crop types

and relevant data (costs) for other regions. Conducting more case studies for un-

derstanding the performance of the calculator based on the input variability and

geographic location. More features such as creating profiles using username and

password for individuals for security, data archiving, and data management should

be considered.
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• The proposed methodology of forage yield monitoring and prediction should be fur-

ther investigated with high-volume data and inclusion of more diverse soil, climate,

and plant species community. The use of hyperspectral imagery using an unmanned

aerial vehicle (UAV) should be explored to understand the potential and scope for

predicting pasture biomass. Development of an interactive tool with minimal inputs

can aid farmers to monitor forage prediction in real-time.

• The rangeland forage prediction tool to include more satellite data specific mod-

els and past years yield data for forge yield prediction and trend analysis. Past

years’ data can be made available for users and the developing trend plots for the

users to visualize the history of the production yield that is specific to their field-

/pasture/rangeland. Inclusion of features facilitating scenario analysis to predict

biomass at various climatic and soil conditions will be useful.
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APPENDIX A. BALE COLLECTION LOGISTICS ENERGY - EFFECT OF

FIELD PARAMETERS ON AGGREGATION LOGISTICS DISTANCE

This appendix contains additional information for Chapter 3. Energy expended in

biomass bale aggregation logistics using automatic bale picker (ABP) can be significantly

influenced by the field parameters such as field area, biomass yield, and outlet location.

Different levels of these parameters were simulated and the effect on the bale aggregation

logistics distance, which directly affects the energy involved in the logistics that is also

expressed in fuel quantity, is presented in this supplementary material. The results of

Tukey’s HSD conducted to determine the specific field area, bales/trip of ABP, and biomass

yield that contributed significantly by comparing within all possible pairs of groups for

aggregation logistics distance and fuel quantity consumed were also presented.

A.1. Effect of Field Parameters on Logistics Distance

A.1.1. Effect of Field Area on Logistics Distance

The distance required to aggregate bales increased as the field size increased (Sub-

hashree and Igathinathane, 2019). A general increasing trend of bale aggregation logistics

distance using automatic bale picker (ABP) with an increase in field area from 8 to 259 ha

for biomass yield at 10 Mg ha−1 was observed (fig. A1). This trend was obvious as more

field areas generated more bales and hence aggregation distances. With all bales/trip

(BPT) tested (1–23 BPT), the increase in logistics distances showed a similar increasing

trend across the field areas.
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Figure A1. Effect of field area on the aggregation logistics distances generated for
selected BPT (bales/trip) for tractor (1 and 2 BPT) and automatic bale picker (8, 11,
17, and 23 BPT), and field areas (8, 32, 65, 129, and 259 ha) with biomass yield at
10 Mg.ha−1.

Table A1. ANOVA of field area, BPT, and biomass yield on bale aggregation logistics
distances.

Parameter df Sum Sq Mean Sq F value Pr(¿F)

Field area 7 167 245 23 892 12.580 <8.43× 10−13***
BPT (bales/trip) 6 90 895 15 149 6.414 <4.45× 10−6***
Biomass yield 10 1 903 302 190 330 4.493 <5.22× 10−6***

Combined data with field areas of 8, 16, 24, 32, 40, 65, 129, and 259 ha; BPT of 1, 2, 8, 11, 14, 17, and 23; biomass yield of 3, 4, 5,
6, 7, 8, 10, 15, 20, 30, and 40 Mg ha−1; df is the degrees of freedom; and *** represents the significance at p < 0.001.
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A.1.2. Effect of BPT on Logistics Distance

An obvious increase in aggregation distances, inversely proportional to the number

of bales handled in a trip, was also observed (fig. A2).
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Figure A2. Effect of BPT (bales/trip) on the aggregation logistics distance generated
for selected field areas (8, 32, 65, 129, and 259 ha) for tractor (0–5 BPT) and auto-
matic bale picker (ABP; 8–23 BPT) with biomass yield at 10 Mg ha−1.

A drastic reduction of aggregation distances was observed between tractor (1 and 2

BPT) and ABP (8 and 23 BPT). A similar reduction in logistics distances with increased BPT

of tractor and ABP was also observed across all the field areas for 10 Mg ha−1. Reduction

in logistics distance, on an average 83 % and 67 %, was observed for ABP of 8 BPT when

compared with tractor of 1 and 2 BPT respectively. This shows the clear advantage of using
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the ABP in place of the tractor. However, the reduction in logistics distances especially

≥8 BPT was reduced across all the areas considered.

The one-way ANOVA with the combined data of all the areas and BPT with the

replications derived from the windrow variations of 5 %, 10 %, and 15 % showed highly

significant differences (p < 0.001) among the BPT (fig. A1). The Tukey’s HSD analysis

indicated that for smaller areas (≤24 ha), the studied BPT ranges were not significantly

different (p > 0.05). For areas ≥32 ha, both the tractor and ABP the BPT ranges were

significantly different. Based on these results, ABP is favored over a tractor for reduced

bale aggregation logistics distances with large field areas. However, an ABP with 8 BPT,

which is also capable of handling 11 bales, is recommended because the equipment would

have a smaller footprint and a lower potential for creating subsoil compaction (Voorhees

et al., 1986), especially for field areas ≤24 ha. With increased field areas, higher capacity

ABPs are more efficient but the equipment size and the compaction due to load become

important concerns.

A.1.3. Effect of Biomass Yield on Logistics Distance

The influence of biomass yield (3–40 Mg ha−1) on logistic distance with 8 BPT (op-

timum) for different field areas (8–259 ha) showed a gradual increasing trend in logistics

distance with the increasing biomass yield, however, this was more pronounced between

the biomass yields 10–40 Mg ha−1 and at increased field areas (> 32 ha) (fig. A3). A sim-

ilar steady increasing trend across 8–129 ha but a steep increase at 259 ha were observed

because of an increased number of bales generated in combination with the biomass pro-

ductivity and field area.
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Figure A3. Effect of biomass yields (3–40 Mg ha−1) on the aggregation logistics dis-
tance generated for selected field areas (8, 32, 65, 129, and 259 ha) using automatic
bale picker (ABP) with 8 BPT (bales/trip).

The one-way ANOVA (table. A1) showed highly significant differences (p < 0.001)

among the biomass yields affecting the bale logistics distance. The Tukey’s HSD analysis re-

vealed significant differences for 40 Mg ha−1 when compared with 3 to 10 Mg ha−1 respec-

tively, for the field areas <129 ha. However, for the area of 259 ha significant differences

were observed between the highest level 40 Mg ha−1 and the lower levels 3 to 5 Mg ha−1

biomass yields. No significant differences were observed for biomass yields ≥15 Mg ha−1

across all the field areas ¿32 ha. Overall, these results indicate that for reduced biomass

yields (e.g.,≤20 Mg ha−1) the differences in bale aggregation logistics distances will not be

significant.
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A.1.4 Effect of Outlet Location on Logistics Distance

An illustration of the effect of four outlet locations in a field area of 4 ha and 8 BPT

depicts the variation in the bale aggregation paths and traffic near the outlet is shown in

Figure A4. The outlet field middle (O:M; fig. A4A) is around the field center, mid-width

(O:W; fig. A4B) is along the middle of the width-edge (x-axis), and mid-length (O:L; fig.

A4C) is along the middle of the length-edge (y-axis), and the origin (O:O; fig. A4D) is the

corner of the field.

The bale aggregation distances of the tractor and ABP followed a similar trend for

all the outlet locations (fig. A5). When square fields were considered, the logistics distance

of edge outlets (O:W and O:L) were identical. In the case of rectangular fields, the outlet

at the longest edge should be the primary consideration (Igathinathane et al., 2016). The

field middle outlet produced the least logistics distance, followed by the mid-edge, and the

origin outlet the least. The logistics distance reduction of field middle was 44 % and for

mid-edges was 30 % based on 8–259 ha field areas. With BPT >8 (ABP), the differences

among the outlet locations diminished. However, when aggregating bales with tractors

directly that handle only a couple of bales, the field middle emerged as the best choice for

an outlet.
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Figure A4. Effect of outlet location on bale aggregation; Simulation data: area = 4 ha;
BPT = 8; turning radius, rt =10 m; biomass yield/ha = 10 Mg; bale mass = 500 kg;
harvester swath = 9 m; field aspect ratio = 1.0 ; random variation in biomass yield
= 15 %; and random number seed used = 2016.
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A.2. Tukey’s HSD R Source Code

1 #******** ANOVA and Tukey ’ s HSD R code and r e s u l t s ********#
2 # DV − Dependent v a r i a b l e s ( L o g i s t i c s aggregat ion d i s t ance and f u e l quan t i t y consumed)
3 # IV − Independent v a r i a b l e ( F i e l d area , ba le s / t r i p , biomass y i e l d )
4 #Import ing data
5 dat <− read . t a b l e ( header = T , t e x t = ’
6 Area BY BG LD Time FQ
7 8 3 1 0.75 1.17 18.467
8 8 3 2 0.46 0.71 11.686
9 8 3 8 0.21 0.33 6.762

10 8 3 11 0.23 0.35 7.860
11 8 3 14 0.22 0.34 8.290
12 8 3 17 0.19 0.3 7.883
13 8 3 23 0.19 0.29 8.690
14 . . . ’ )
15

16 DV <− dat$LD; IV <− dat$BY
17 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18

19 # Tes t ing anova to determine s i g n i f i c a n t d i f f e r e n c e in l o g i s t i c s
20 # di s t ance d i s t ance in f luenced by biomass y i e l d
21 anov <− aov (DV ˜ as . f a c t o r ( IV ) )
22 > anov
23 Ca l l :
24 aov ( formula = DV ˜ as . f a c t o r ( IV ) )
25

26 Terms :
27 as . f a c t o r ( IV ) Res idua l s
28 Sum of Squares 1903302 15841473
29 Deg . of Freedom 10 374
30

31 Res idual standard e r ro r : 205.8079
32 Est imated e f f e c t s may be unbalanced
33 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34

35 # Further Tukey ’ s HSD a n a l y s i s from the anova r e s u l t s to determine the
36 # biomass y i e l d pa i r c o n t r i b u t i n g to the s i g n i f i c a n t d i f f e r e n c e
37 # in l o g i s t i c s d i s t ance
38 # Output of the Tukey ’ s HSD a n a l y s i s i s shown hereunder :
39

40 #*******************************************************
41 tuk <− TukeyHSD( anov )
42 > tuk
43 Tukey mul t ip l e comparisons of means
44 95% family−wise conf idence l e v e l
45

46 F i t : aov ( formula = DV ˜ as . f a c t o r ( IV ) )
47 $ ‘ as . f a c t o r ( IV ) ‘
48 d i f f lwr upr p adj
49 4−3 3.133429 −156.2070285 162.4739 1.0000000
50 5−3 6.294571 −153.0458856 165.6350 1.0000000
51 6−3 9.320286 −150.0201713 168.6607 1.0000000
52 7−3 12.513143 −146.8273142 171.8536 1.0000000
53 8−3 15.666286 −143.6741713 175.0067 0.9999999
54 10−3 21.686000 −137.6544571 181.0265 0.9999974
55 15−3 45.765429 −113.5750285 205.1059 0.9976260
56 20−3 94.722000 −64.6184571 254.0625 0.7002749
57 30−3 162.009429 2.6689715 321.3499 0.0424590
58 40−3 218.254571 58.9141144 377.5950 0.0006138
59 5−4 3.161143 −156.1793142 162.5016 1.0000000
60 6−4 6.186857 −153.1535999 165.5273 1.0000000
61 7−4 9.379714 −149.9607428 168.7202 1.0000000
62 8−4 12.532857 −146.8075999 171.8733 1.0000000
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63 10−4 18.552571 −140.7878856 177.8930 0.9999994
64 15−4 42.632000 −116.7084571 201.9725 0.9986972
65 20−4 91.588571 −67.7518856 250.9290 0.7418159
66 30−4 158.876000 −0.4644571 318.2165 0.0514229
67 40−4 215.121143 55.7806858 374.4616 0.0008057
68 6−5 3.025714 −156.3147428 162.3662 1.0000000
69 7−5 6.218571 −153.1218856 165.5590 1.0000000
70 8−5 9.371714 −149.9687428 168.7122 1.0000000
71 10−5 15.391429 −143.9490285 174.7319 0.9999999
72 15−5 39.470857 −119.8695999 198.8113 0.9993315
73 20−5 88.427429 −70.9130285 247.7679 0.7811803
74 30−5 155.714857 −3.6255999 315.0553 0.0620517
75 40−5 211.960000 52.6195429 371.3005 0.0010559
76 7−6 3.192857 −156.1475999 162.5333 1.0000000
77 8−6 6.346000 −152.9944571 165.6865 1.0000000
78 10−6 12.365714 −146.9747428 171.7062 1.0000000
79 15−6 36.445143 −122.8953142 195.7856 0.9996699
80 20−6 85.401714 −73.9387428 244.7422 0.8160245
81 30−6 152.689143 −6.6513142 312.0296 0.0738964
82 40−6 208.934286 49.5938287 368.2747 0.0013627
83 8−7 3.153143 −156.1873142 162.4936 1.0000000
84 10−7 9.172857 −150.1675999 168.5133 1.0000000
85 15−7 33.252286 −126.0881713 192.5927 0.9998557
86 20−7 82.208857 −77.1315999 241.5493 0.8494181
87 30−7 149.496286 −9.8441713 308.8367 0.0883630
88 40−7 205.741429 46.4009715 365.0819 0.0017764
89 10−8 6.019714 −153.3207428 165.3602 1.0000000
90 15−8 30.099143 −129.2413142 189.4396 0.9999422
91 20−8 79.055714 −80.2847428 238.3962 0.8787397
92 30−8 146.343143 −12.9973142 305.6836 0.1048264
93 40−8 202.588286 43.2478287 361.9287 0.0022985
94 15−10 24.079429 −135.2610285 183.4199 0.9999929
95 20−10 73.036000 −86.3044571 232.3765 0.9242692
96 30−10 140.323429 −19.0170285 299.6639 0.1429228
97 40−10 196.568571 37.2281144 355.9090 0.0037154
98 20−15 48.956571 −110.3838856 208.2970 0.9958609
99 30−15 116.244000 −43.0964571 275.5845 0.3936870

100 40−15 172.489143 13.1486858 331.8296 0.0215595
101 30−20 67.287429 −92.0530285 226.6279 0.9553874
102 40−20 123.532571 −35.8078856 282.8730 0.3014895
103 40−30 56.245143 −103.0953142 215.5856 0.9876523
104 #*******************************************************
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A.3. Tukey’s HSD Results

A.3.1. Aggregation Logistics Distance Influenced by the Field Parameters BPT and

Biomass Yield

This table consists of results of Tukey’s HSD analysis conducted to determine the

specific BPT and biomass yield (Mg ha−1) pairs that contributed to a significant difference

of aggregation logistics distance.

Table A2. Tukey’s HSD analysis results of aggregation logistics distance influenced
by the field parameters BPT and biomass yield.

Field parameter Area (ha)

8 32 65 129 259

BPT (bales/trip)
8–11 NS * * * *
11–14 NS NS * * *
11–23 NS * * * *
14–17 NS NS * * *
14–23 NS * * * *
17–23 NS NS * * *
Biomass yield (Mg ha−1)
3–30 * NS NS NS NS
3–40 * * * * *
4–40 * * * * *
5–40 * * * * *
6–40 * * * * NS
7–40 * * * * NS
8–40 * * * * NS
10–40 * * NS NS NS
15–40 * NS NS NS NS

Note: * indicates bale aggregation logistics distance is significant and NS not significant at p < 0.05.
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A.3.2. Fuel Quantity Influenced by Parameter Field Area

This table consists of the results of Tukey’s HSD analysis conducted to determine

the specific field area pairs that contributed to a significant difference in fuel quantity

consumed.

Table A3. Tukey’s HSD analysis results of fuel quantity influenced by the field area.

Field area (ha) BPT (bales/trip)

1 2 8 11 17 23

8–16 * * NS NS NS NS
8–24 * * NS NS NS NS
8–32 * * NS NS * *
8–40 * * NS NS * *
16–24 * * NS NS NS NS
16–32 * * NS NS NS NS
16–40 * * NS * * *
16–65 * * * * * *
24–32 * * NS NS NS NS
24–40 * * NS NS NS NS
24–65 * * * * NS *
32–40 * * NS NS * *
32–65 * * NS NS * *
40–65 * * NS NS * *

Note: * indicates fuel quantity is significant and NS not significant at p < 0.05.
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A.3.3. Fuel Quantity Influenced by Field Parameter BPT and Biomass Yield

This table consists of results of Tukey’s HSD analysis conducted to determine the

specific BPT and biomass yield (Mg ha−1) pairs that contributed to a significant difference

in fuel quantity consumed.

Table A4. Tukey’s HSD analysis results of fuel quantity influenced by BPT and biomass
yield.

Field parameters Area (ha)

8 32 65 129 259

BPT (bales/trip)
8–11 NS NS NS NS NS
8–14 NS NS * * *
8–17 NS * * * *
8–23 * * * * *
11–14 NS NS NS NS NS
11–17 NS NS NS NS NS
11–23 * NS NS NS NS
14–17 NS NS NS NS NS
14–23 * NS NS NS NS
17–23 * NS NS NS NS

Biomass yield (Mg ha−1)
3–30 * NS * * *
3–40 * * * * NS
4–30 * NS NS NS NS
4–40 * * * * *
5–30 * NS NS NS NS
5–40 * * * * *
6–30 * NS NS NS NS
6–40 * * * * *
7–30 * NS NS NS NS
7–40 * * * * *
8–30 * NS NS NS NS
8–40 * * * * *
10–30 * NS NS NS NS
10–40 * * * * *
15–40 * * * * NS
20–40 * * NS NS NS

Note: * indicates the fuel quantity is significant and NS not significant at p < 0.05.
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APPENDIX B. FORAGE ECONOMICS CALCULATOR - SIX-STEP USER

INSTRUCTION

This appendix provides short six-step user instructions developed for the forage eco-

nomics calculator (Chapter 4). The “Forage Economics Calculator” webtool can generate

economic analysis outputs involving forage crop production, harvesting, baling, aggrega-

tion, labor, fuel cost, and the revenue generated from selling the bale forage or biomass.

Emphasis is given to the bale aggregation operation, while the other operations are taken

as direct inputs. The tool’s interface is designed to be user-friendly and dynamic that

requires minimal inputs from the user.

The tool consists of inputs and results panel with buttons to perform relevant ac-

tions. The input values when fed through the input panel and their respective outcomes

are dynamically generated and displayed in the results panel of the calculator. Default

input values were already available as starters and dynamic arrow indicators, sensitive to

the bottomline, show the optimum cutoff levels.

This document is the user-instructions, included in the subsequent pages, which

describe how to use the “Forage Economics Calculator” web tool through its web-browser

interface. It assumes that the user’s system is already directed to the tool’s web page.
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B.1. Web Tool User Instructions

Step 1: Input drop-down option

Drop-down inputs are already loaded with default options, and however, can be

changed using the instructions below:

1. Open list: Click on the drop-down list to view the options listed

2. Scroll items: Hover over the desired option on the list

3. Select item: Click to select

Repeat instructions under “Step 1” for all the drop-down options.

Using drop-down inputs, such as (1) Crop type, (2) Engine power, (3) Machine age

owned, (4) Annual usage, and (5) Number of field units are fed.
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Step 2: Slider inputs

Sliders are used to input values graphically by moving the slider between the lower

and upper limits provided. A default is already selected and the value is shown on the left.

The minimum and maximum range values of the slider are given as a default, how-

ever can be changed following the instructions below. Actual values are input through the

slider position.

1. Edit minimum: Click on editable text-box placed on the left of the slider bar to

enter the minimum limit value for the range

1. Edit maximum: Click on editable text-box placed on the right of the slider bar to

enter the maximum limit value for the range

1. Select slider: Hover over the slider button to highlight.
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1. Slider input: Click and drag the slider button over the bar to select a value between

the set range

1. Slider position - sensitivity: A dynamic arrow indicates the cutoff value of the

input the loss/profit, where the slider button on the left of the arrow gives loss

while right gives profit. This dynamic arrow helps to eliminate the guesswork from

the user to produce a positive bottomline.

Repeat instructions under “Step 2” for all the slider inputs.
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Step 3: Number-box input

The editable number-box input only allows numbers to be entered. The number-box

value can be changed to the desired value as follows:

1. Select number-box: Click on the editable number-box to select it.

1. Number-box input: Values can be increased or decreased by clicking the up and

down arrow present in the number-box.
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Dynamic results - from the inputs

Steps 1, 2, and 3 generates live outcomes and dynamic plot on the results panel.
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The output “Net return (NR)” box is color-coded (green - profit; red - loss) to readily

observe the outcome. The per-unit relevant results such as (1) Total revenue per acre, (2)

Total cost per acre, and (3) Net return per acre were also shown as gray output boxes.

The dynamic plot serves as a ready-to-observe tool of the generated results, which

can be used to easily compare the contribution of the various cost components.
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Step 4: Download report

A report containing selected input values and the generated outcomes, which can

be used for record-keeping or comparison, can be accessed in a PDF format by following

the instructions:

1. Download report: Click on the “Download report” button on the results panel to

initiate the download process for the report.

1. View report: Once download is finished, click on the PDF file to view the report.
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Step 5: Reset input values

1. Reset inputs: Click on the “Reset” button to reset all the input values to the default

input values.
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Step 6: Clear result values

1. Clear results: Click on the “Clear results” button to clear all the result values and

the plot.

Any change in the inputs will bring the updated calculations and plots back.
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APPENDIX C. FORAGE ECONOMICS CALCULATOR - STANDARD

ECONOMICS CALCULATIONS

This appendix provides standard economic calculations including fixed and variable

costs used in chapter 4 – Development of forage economics calculator web tool.

C.1. Total Fixed Cost

Total fixed cost ($) is the sum of total depreciation, taxing, housing, and insurance,

interest cost, and total field area rent and is estimated using the inputs, machine cost,

interest rate, field area, and field area rent (Chapter 4: table 4.1): #5, #6, #9, #10).

TFC ($) = D + THI + I + TFAR (C.1)

where, TFC = total fixed cost ($), D = total depreciation cost ($), THI = total taxing,

housing, and insurance cost ($), I = total interest cost ($), and TFAR = total field area

rent ($).

C.1.1. Depreciation (D)

The average annual depreciation cost ($/year) is calculated based on the machine

cost, salvage value, and useful life of the machine (Bond and Jolley, 1991).

Average annual depreciation =
Machine cost− Salvage value
Useful life of machine (year)

(C.2)

Salvage value ($) is the value of the machine at disposal and can be calculated as

the percent of the machine cost. The salvage values as percentage for three different range

of machine engine (30–79 hp, 80–149 hp, and > 150 hp) and annual usage hours (200, 400,

and 600 h) were reported by the Iowa State University, extension and outreach (Edwards,

2015). The following second-order polynomial models with a good fit (R2 > 0.99) were
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developed from the above Iowa State University study using the inputs engine capacity

(hp), annual usage (h), and machine age (years) as follows:

30–79 hp

200 h: VS = 0.09(AM)2 − 3.88(AM) + 66.03 (R2 = 0.99)

400 h: VS = 0.09(AM)2 − 3.76(AM) + 60.73 (R2 = 0.99)

600 h: VS = 0.09(AM)2 − 3.61(AM) + 56.86 (R2 = 0.99)

80–149 hp

200 h: VS = 0.10(AM)2 − 4.23(AM) + 69.89 (R2 = 0.99)

400 h: VS = 0.10(AM)2 − 4.25(AM) + 69.45 (R2 = 0.99)

600 h: VS = 0.10(AM)2 − 4.23(AM) + 68.89 (R2 = 0.99)

> 150 hp

200 h: VS = 0.12(AM)2 − 4.95(AM) + 70.17 (R2 = 0.99)

400 h: VS = 0.12(AM)2 − 4.87(AM) + 68.23 (R2 = 0.99)

600 h: VS = 0.12(AM)2 − 4.79(AM) + 66.81 (R2 = 0.99)

where, VS is the salvage value percentage (%) and AM is the machine age (1 – 15) in years.

Salvage value ($) = VS ×Machine cost (C.3)

The useful life of the machine in years is calculated using the hours of use until

wear-out and the annual usage (h). The hours of use until wear-out are assumed to be

10,000 h, and this assumption is based on the probability that the machine will become

obsolete after this time of usage. machine will become obsolete after this time of usage.

Useful life of machine (year) =
10, 000 (h)

Annual usage (h/year)
(C.4)
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Substituting eq. (C.3) and eq. (C.4) in eq. (C.2) determines the average annual

depreciation cost. determines the average annual depreciation cost.

Depreciation hourly cost ($/h) =
Average annual depreciation ($)

Annual usage (h)
(C.5)

Total depreciation cost ($) = Depreciation hourly cost × Total operation time (C.6)

Hourly depreciation cost ($/h) is determined using average annual depreciation

cost ($) and annual usage (h) (eq. (C.5)). Total depreciation cost is determined using

hourly depreciation cost ($/h) and total operational time (h) (eq. (C.6)).

C.1.2. Taxing, Housing, and Insurance (THI)

The annual property tax, housing, and insurance (THI) costs are determined by

multiplying the THI percentage fixed for the specific type of machine by the average in-

vestment in the machine. The average investment is the average value of machine cost

and salvage value (eq. (C.7)). The total taxing, housing, and insurance percentage is

considered as 1.33% for tractor (Bond and Jolley, 1991).

Average annual THI cost =
Machine cost + Salvage value

2
× 1.33% (C.7)

THI hourly cost ($/h) =
Average annual THI cost

Annual usage
(C.8)

Total THI cost ($) = THI hourly cost× Total operation time (C.9)

THI hourly cost ($/h) is determined using average annual THI cost ($) and annual

usage (h) (eq. (C.8)). The total depreciation cost is determined using hourly THI cost

($/h) and total operational time (h) (eq. (C.9)).

C.1.3. Interest (I)

The machine when purchased using a loan, the interest rate is charged against the

average value of the machine cost and salvage value. This amount is the money paid to
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the lender as interest payments for the borrowed capital (Bond and Jolley, 1991). The

interest rate is fed by the user into the calculator (Chapter 4: table 4.1): #6).

Average annual interest cost ($) =
Machine cost + Salvage value

2
× Interest rate (%)

(C.10)

Interest hourly cost ($/h) =
Average annual interest cost

Annual usage
(C.11)

Total interest cost ($) = Interest hourly cost× Total operation time (C.12)

Interest hourly cost ($/h) is determined using average annual interest cost ($) and

annual usage (h) (eq. (C.11)). Total interest cost is determined using hourly interest cost

($/h) and total operational time (h) (eq. (C.12)) .

C.1.4. Total Field Area Rent (TFAR)

Total field area rent cost is the product of field area unit, number of field units, and

field area rent per acre, (Chapter 4: table 4.1): #9, #10, #14).

Substituting the component costs from equations eq. (C.7), eq. (C.10), and eq. (C.13)

along with total field area rent in eq. (C.2) determines the total fixed cost.

C.2. Total Variable Cost

Total variable cost is the sum of total repair and maintenance, total fuel, total labor

cost, and total bale transportation cost. Inputs used to estimate the total variable cost are

machine age, fuel cost, labor cost, bale transportation distance, bale transportation cost

(Chapter 4: table 4.1): #20 – #24), and operation time (Chapter 4: eq. 4.3).

TVC ($) = RMC + TFC + TLC + TBTC (C.13)

where, TVC = total variable cost ($), RMC = total repair and maintenance cost ($),

FC = fuel cost ($), LC = labor cost ($), and TBTC = total bale transportation cost ($).
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C.2.1. Repair and Maintenance (RMC)

The accurate prediction of repair and maintenance cost ($) is difficult since the

repair cost of the machine depends on other external factors such as the purpose of use,

terrain, soil, and operating conditions. The annual repair and maintenance cost can be de-

termined using the machine cost ($), total accumulated repair (TAR), machine age (year),

and annual usage (h).

Average annual RMC ($) = Machine cost× TAR
Machine age

(C.14)

A series of varying total accumulated repairs (TAR) equations based on the type of

equipment has been developed by the University of Idaho, Washington State University,

and Oregon State University (Painter, 2011). The TAR equation for a 4-wheel drive tractor

is as follows: The TAR equation for a 4-wheel drive tractor is as follows:

Total accumulated repairs = 0.003×
(

Annual usage×Machine age
1000

)2.0

(C.15)

Substituting eq. (C.15) in eq. (C.14) estimates the annual repair and maintenance

cost.

RMC hourly ($/h) =
Average annual RMC

Annual usage
(C.16)

Total RMC ($) = RMC hourly cost× Total operation time (C.17)

RMC hourly ($/h; eq. (C.16)) is determined using average annual RMC ($) and

annual usage (h). Total RMC cost (eq. (C.17)) is determined using hourly RMC ($/h) and

total operational time (h).

C.2.2. Total Fuel Cost (TFC)

Total fuel cost ($) is calculated as a product of input fuel cost per gallon (Chapter

4: table 4.1): #20) and the calculated fuel consumption (Chapter 4: eq. 4.4 and 4.5).
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C.2.3. Total Labor Cost (TLC)

Total labor cost ($) is the product of the number of laborers, labor cost per hour

(Chapter 4: table 4.1): #21 and #22), and the estimated operation time (Chapter 4: eq.

4.3).

C.2.4. Total Bale Transportation Cost (TBTC)

The total cost for transporting the bales from the field to a storage unit is estimated

as a product of the following inputs, bale transportation cost per unit mile and distance

(Chapter 4: table 4.1): #23 and #24).

Substituting the component costs from equation eq. (C.17) along with total fuel

cost, total labor cost and total bale transportation cost in eq. (C.13) determines the total

variable cost.
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APPENDIX D. FORAGE ECONOMICS CALCULATOR - HTML, CSS, AND

JS SOURCE CODE

This appendix provides source codes for Chapter 4 “ Development of forage eco-

nomics calculator web tool”. The source code for HTML, CSS, and JS are provided below.

D.1. Cascading Style Sheet (CSS) for Styling Calculator

1 html ,
2 body {
3 overflow−x : hidden ;
4 s c r o l l −behavior : smooth ;
5 }
6

7 . nav {
8 height : 100%;
9 width : 0;

10 p o s i t i o n : f i x e d ;
11 z−index : 1;
12 top : 0;
13 l e f t : 0;
14 background−co lo r : #111;
15 opac i t y : 0 .9 ;
16 overflow−x : hidden ;
17 padding−top : 60px ;
18 t r a n s i t i o n : 0.7 s ;
19 }
20

21 . nav a {
22 d i s p l a y : b lock ;
23 padding : 20px 30px ;
24 font−s i z e : 25px ;
25 tex t−decora t ion : none ;
26 co lo r : #ccc ;
27 }
28

29 . nav a : hover {
30 co lo r : # f f f ;
31 t r a n s i t i o n : 0.4 s ;
32

33 }
34

35 . nav . c l o s e {
36 p o s i t i o n : abso lu te ;
37 top : 0;
38 r i g h t : 22px ;
39 margin−l e f t : 50px ;
40 font−s i z e : 30px ;
41 }
42

43 . s l i d e a {
44 co lo r : #000;
45 font−s i z e : 36px ;
46 }
47

48 #content {
49 padding : 20px ;

260



50 t r a n s i t i o n : margin−l e f t 0.7 s ;
51 overf low : hidden ;
52 width : 100%;
53 }
54

55 . submenu {
56 height : 50%;
57 }
58

59 @media (max−width : 767px ) {
60 . hidden−xs {
61 d i s p l a y : none ! important ;
62 }
63 }
64

65 . s e r v i c e −icon {
66 background−co lo r : # f f f ;
67 co lo r : #1D809F ;
68 height : 7rem ;
69 width : 7rem ;
70 d i s p l a y : b lock ;
71 l i ne −height : 7.5rem ;
72 font−s i z e : 2.25rem ;
73 box−shadow : 0 3px 3px 0 rgba (0 , 0 , 0 , 0 .1) ;
74 }
75

76 . masthead {
77 co lo r : #FFC82E ;
78 background−image : u r l ( Images/NDSU temp . jpg ) ;
79 background−repeat : no−repeat ;
80 background−attachment : s c r o l l ;
81 background−p o s i t i o n : cente r cente r ;
82 background−s i z e : cover ;
83 min−height : 100vh ;
84 }
85

86 #manualsec {
87 tex t−a l i g n : cente r ;
88 co lo r : #FFC82E ;
89 background−image : u r l ( Images/NDSU temp . jpg ) ;
90 background−repeat : no−repeat ;
91 background−attachment : s c r o l l ;
92 background−p o s i t i o n : cente r cente r ;
93 background−s i z e : cover ;
94 min−height : 100vh ;
95 }
96

97 . paddingsec {
98 padding−bottom : 0.5%;
99 }

100

101 . img−f l u i d {
102 opac i t y : 1 .0 ;
103 f i l t e r : alpha ( opac i t y =100) ;
104 }
105

106 . img−f l u i d : hover {
107 opac i t y : 0 .5 ;
108 f i l t e r : alpha ( opac i t y=40) ;
109 }
110

111 /* Container holding the image and the t e x t */
112 . con ta iner {
113 p o s i t i o n : r e l a t i v e ;
114 tex t−a l i g n : cente r ;
115 co lo r : white ;
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116 }
117

118 /* Bottom l e f t t e x t */
119 . bottom−l e f t {
120 p o s i t i o n : abso lu te ;
121 bottom : 8vh ;
122 l e f t : 14vw;
123 }
124

125 . bottom−l e f t −two {
126 p o s i t i o n : abso lu te ;
127 bottom : 2vw;
128 l e f t : 9vw;
129 }
130

131 . p o r t f o l i o −item {
132 d i s p l a y : b lock ;
133 p o s i t i o n : r e l a t i v e ;
134 overf low : hidden ;
135 max−width : 530px ;
136 margin : auto auto 1rem ;
137 }
138

139 . p o r t f o l i o −item . capt ion {
140 d i s p l a y : f l e x ;
141 height : 100%;
142 width : 100%;
143 background−co lo r : rgba (33 , 37 , 41 , 0 .2) ;
144 p o s i t i o n : abso lu te ;
145 top : 0;
146 bottom : 0;
147 z−index : 1;
148 }
149

150 . p o r t f o l i o −item . capt ion . capt ion−content {
151 co lo r : # f f f ;
152 margin : auto 2rem 2rem ;
153 }
154

155 . p o r t f o l i o −item . capt ion . capt ion−content h2 {
156 font−s i z e : 0.8rem ;
157 tex t−transform : uppercase ;
158 }
159

160 . p o r t f o l i o −item . capt ion . capt ion−content p {
161 font−weight : 300;
162 font−s i z e : 1.2rem ;
163 }
164

165 @media (min−width : 992px ) {
166 . p o r t f o l i o −item {
167 max−width : none ;
168 margin : 0;
169 }
170

171 . p o r t f o l i o −item . capt ion {
172 −webkit−t r a n s i t i o n : −webkit−c l i p −path 0.25 s ease−out , background−co lo r 0.7 s ;
173 −webkit−c l i p −path : i n s e t (0px ) ;
174 c l i p −path : i n s e t (0px ) ;
175 }
176

177 . p o r t f o l i o −item . capt ion . capt ion−content {
178 t r a n s i t i o n : opac i t y 0.25 s ;
179 margin−l e f t : 5rem ;
180 margin−r i g h t : 5rem ;
181 margin−bottom : 5rem ;
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182 }
183

184 . p o r t f o l i o −item img {
185 −webkit−t r a n s i t i o n : −webkit−c l i p −path 0.25 s ease−out ;
186 −webkit−c l i p −path : i n s e t (−1px ) ;
187 c l i p −path : i n s e t (−1px ) ;
188 }
189

190 . p o r t f o l i o −item : hover img {
191 −webkit−c l i p −path : i n s e t (2rem) ;
192 c l i p −path : i n s e t (2rem) ;
193 }
194

195 . p o r t f o l i o −item : hover . capt ion {
196 height : 70%;
197 width : 83%;
198 background−co lo r : rgba (29 , 128 , 159 , 0 .9) ;
199 −webkit−c l i p −path : i n s e t (2rem) ;
200 c l i p −path : i n s e t (2rem) ;
201 }
202 }
203

204 . masthead . masthead−subheading {
205 font−s i z e : 1.5rem ;
206 font−s t y l e : i t a l i c ;
207 l i ne −height : 1rem ;
208 margin−bottom : 25px ;
209 font−fami ly : ” Droid S e r i f ” , −apple−system , BlinkMacSystemFont , ” Segoe UI ” , Roboto , ” He lve t i ca

Neue” , Ar ia l , sans−s e r i f , ” Apple Color Emoji ” , ” Segoe UI Emoji ” , ” Segoe UI Symbol ” , ”
Noto Color Emoji ” ;

210 co lo r : #FFC82E ;
211 }
212

213 . masthead . masthead−heading {
214 font−s i z e : 2rem ;
215 font−weight : 700;
216 l i ne −height : 2rem ;
217 margin−bottom : 2rem ;
218 font−fami ly : ” Montserrat ” , −apple−system , BlinkMacSystemFont , ” Segoe UI ” , Roboto , ” He lve t i ca

Neue” , Ar ia l , sans−s e r i f , ” Apple Color Emoji ” , ” Segoe UI Emoji ” , ” Segoe UI Symbol ” , ” Noto
Color Emoji ” ;

219 }
220

221 . row−f l u i d [ c l a s s *=” span ” ] {
222 margin−l e f t : 0;
223 }
224

225 . big−banner {
226 /* The image used */
227 background−image : u r l ( Images/NDSU temp . jpg ) ;
228

229 /* F u l l he ight */
230 height : 100vh ;
231

232 /* Center and s c a l e the image n i c e l y */
233 background−p o s i t i o n : cente r ;
234 background−repeat : no−repeat ;
235 background−s i z e : cover ;
236 background−co lo r : t r ansparen t ;
237 }
238

239 . s l i d e c o n t a i n e r {
240 height : 25px ;
241 /* Width of the out s ide conta iner */
242 }
243
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244 . s l i d e r : hover {
245 opac i t y : 1;
246 }
247

248 . s l i d e r ::− webkit−s l i d e r −thumb {
249 −webkit−appearance : none ;
250 appearance : none ;
251 p o s i t i o n : r e l a t i v e ;
252 width : 15px ;
253 height : 15px ;
254 border−rad ius : 50%;
255 background : #0A5640 ;
256 cursor : po in te r ;
257 }
258

259

260 . s l i d e r {
261 −webkit−appearance : none ;
262 height : 5px ;
263 border−rad ius : 5px ;
264 background : #d3d3d3 ;
265 o u t l i n e : none ;
266 opac i t y : 0 .7 ;
267 −webkit−t r a n s i t i o n : .2 s ;
268 t r a n s i t i o n : opac i t y .2 s ;
269 }
270

271 . s l i d e s {
272 d i s p l a y : f l e x ;
273 a l ign−items : cente r ;
274 j u s t i f y −content : cen te r ;
275 }
276

277 @media a l l and (max−width : 768px ) {
278 #s l i d e r s e t {
279 padding−l e f t : 120px ;
280 }
281 }
282

283 @media a l l and (max−width : 768px ) {
284 #HayMount {
285 max−height : 100%;
286 max−width : 100%;
287 }
288 }
289

290 @media a l l and (max−width : 768px ) {
291 #myChart1 {
292 max−width : 100%;
293 max−height : 40%;
294 }
295 }
296

297 . header {
298 height : 10vh ;
299 }
300

301 @media a l l and (max−width : 700px ) {
302 . header {
303 height : 20vh ;
304 font−s i z e : 10px ;
305 }
306 }
307

308 #conta iner {
309 max−width : 90vw;
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310

311 @media screen and (min−aspect−r a t i o : 13/9) {}
312

313 @media screen and (max−aspect−r a t i o : 13/9) {}
314

315 }
316

317 . box {
318 padding : 0 5px 0 5px ;
319 }
320

321 div . t o o l t i p −inner {
322 tex t−a l i g n : l e f t ;
323 −webkit−border−rad ius : 0px ;
324 −moz−border−rad ius : 0px ;
325 border−rad ius : 5px ;
326 margin−bottom : 6px ;
327 background−co lo r : #0A5640 ;
328 co lo r : white ;
329 font−s i z e : 14px ;
330 max−width : 400px ;
331 /* opac i t y : 1; */
332 }
333

334 div . t o o l t i p . show {
335 opac i t y : 0 .95;
336 }
337

338

339 . padding−0 {
340 padding−bottom : 0;
341 }
342

343 . bu l l e l ements {
344 font−s i z e : 2vh ;
345 }
346

347 . c o n t a i n e r f l e x {
348 d i s p l a y : f l e x ;
349 height : 240px ;
350 j u s t i f y −content : space−between ;
351 a l ign−items : f l ex −end ;
352 }
353

354 . btn : focus {
355 o u t l i n e : none ;
356 }
357

358 . rowht{
359 height : 48px ;
360 }
361

362 /* togg le in l a b e l des ign ing */
363 . t ogg le {
364 p o s i t i o n : r e l a t i v e ;
365 d i s p l a y : i n l i n e −block ;
366 width : 50px ;
367 height : 25px ;
368 background−co lo r : red ;
369 border−rad ius : 30px ;
370 border : 2px s o l i d gray ;
371 }
372

373 /* A f t e r s l i d e changes */
374 . t ogg le : a f t e r {
375 content : ’ ’ ;
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376 p o s i t i o n : abso lu te ;
377 width : 23px ;
378 height : 23px ;
379 border−rad ius : 50%;
380 background−co lo r : gray ;
381 /* top : 0.5 px ; */
382 l e f t : 1px ;
383 t r a n s i t i o n : a l l 0.5 s ;
384 }
385

386 /* Toggle t e x t */
387 p {
388 font−fami ly : Ar ia l , He lve t i ca , sans−s e r i f ;
389 font−weight : bold ;
390 }
391

392 /* Checkbox checked e f f e c t */
393 . checkbox : checked + . togg le : : a f t e r {
394 l e f t : 25px ;
395 }
396

397 /* Checkbox checked togg le l a b e l bg co lo r */
398 . checkbox : checked + . togg le {
399 background−co lo r : green ;
400 }
401

402 /* Checkbox vanished */
403 . checkbox {
404 d i s p l a y : none ;
405 }

D.2. JavaScript - User-Defined Functions for Calculation Operation

1 func t ion c a l c u l a t e () {
2

3

4 var remember = document . getElementById ( ” switch ” ) . checked
5

6 var tAr = document . getElementById ( ’ Ar ’ ) ; // s t r i n g va lues s to red
7 var tB t = document . getElementById ( ’ Bt ’ ) ;
8 var tBy = document . getElementById ( ’ By ’ ) ;
9 var tSp = document . getElementById ( ’ Sp ’ ) ;

10 var tUn = document . getElementById ( ’Un ’ ) ;
11 var tLo = document . getElementById ( ’ BLT ’ ) ;
12 var tUnLo = document . getElementById ( ’BULT ’ )
13

14 var fAr = par seF loa t ( tAr . value ) * 0.404686; // ac to ha convers ion
15 var fB t = par seF loa t ( tB t . value ) ;
16 var fBynb = par seF loa t ( tBy . value ) * 0.000112085; // lb / ac to kg/m2 convers ion 0.000112085
17 var fBynb1 = par seF loa t ( tBy . value ) * 0 .1 ; // Mg/ha to kg/m2 convers ion 0.1
18 var fBy = par seF loa t ( tBy . value ) * 0.00112085; // lb / ac to Mg/ha convers ion 0.000112085
19 var fSp = par seF loa t ( tSp . value ) * 1.60934; // mph to km/ hr convers ion
20 var fUn = par seF loa t ( tUn . value ) ;
21 var fLo = par seF loa t ( tLo . value ) ;
22 var fUnLo = par seF loa t ( tUnLo . value ) ;
23 var ArF = 10;
24

25 document . getElementById ( ’ TVCt ’ ) . s e t A t t r i b u t e ( ’ f i l l ’ , ”# f f f ” ) ;
26 document . getElementById ( ’ TFCt ’ ) . s e t A t t r i b u t e ( ’ f i l l ’ , ”#000” ) ;
27 document . getElementById ( ’ TPCt ’ ) . s e t A t t r i b u t e ( ’ f i l l ’ , ”#000” ) ;
28

29

30 // ABP row
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31 var checkStatus = document . getElementById ( ” ckb ” ) . checked
32 i f ( checkStatus == f a l s e ) {
33 document . getElementById ( ”ABP” ) . d i sab led = true ;
34 document . getElementById ( ”nABP” ) . innerHTML = 0;
35 document . getElementById ( ”ABP” ) . min = 0;
36 document . getElementById ( ”ABP” ) . value = 0;
37 document . getElementById ( ”ABPMc” ) . s t y l e . co lo r = ” grey ” ;
38 document . getElementById ( ”nABP” ) . s t y l e . co lo r = ” grey ” ;
39 document . getElementById ( ”minABP” ) . s t y l e . co lo r = ” grey ” ;
40 document . getElementById ( ”ABP” ) . s t y l e . background = ” grey ” ;
41 document . getElementById ( ”maxABP” ) . s t y l e . co lo r = ” grey ” ;
42 document . getElementById ( ” ABPinfo ” ) . s t y l e . co lo r = ” grey ” ;
43 document . getElementById ( ” ABParrow ” ) . s t y l e . co lo r = ” grey ” ;
44 document . getElementById ( ” EquipLabel ” ) . s t y l e . co lo r = ” grey ” ;
45 document . getElementById ( ”ABPRes ” ) . s t y l e . co lo r = ” grey ” ;
46 document . getElementById ( ” EqTyp ABP” ) . s t y l e . co lo r = ” grey ” ;
47 document . getElementById ( ” PBLabel ” ) . s t y l e . co lo r = ” grey ” ;
48 document . getElementById ( ”PB in fo ” ) . s t y l e . co lo r = ” grey ” ;
49 document . getElementById ( ”PB ABP” ) . s t y l e . background = ”#FFC82E” ;
50 document . getElementById ( ”PB ABP” ) . s t y l e . co lo r = ” grey ” ;
51 document . getElementById ( ” ROILabel ” ) . s t y l e . co lo r = ” grey ” ;
52 document . getElementById ( ”ROI in fo ” ) . s t y l e . co lo r = ” grey ” ;
53 document . getElementById ( ”ROI ABP” ) . s t y l e . co lo r = ” grey ” ;
54 document . getElementById ( ”ROI ABP” ) . s t y l e . background = ”#FFC82E” ;
55 document . getElementById ( ” EquipPlot ” ) . value = ” Trac tor ”
56 document . getElementById ( ” minBt ” ) . value = 1
57 document . getElementById ( ” Bt ” ) . min = 1
58 document . getElementById ( ” Bt ” ) . max = 2
59 document . getElementById ( ”maxBt ” ) . value = 2
60 document . getElementById ( ” Equip ” ) . value = ” Trac tor ”
61 } e l s e {
62 document . getElementById ( ”ABP” ) . d i sab led = f a l s e ;
63 document . getElementById ( ”ABP” ) . min = 10000;
64 document . getElementById ( ”ABPMc” ) . s t y l e . co lo r = ” black ” ;
65 document . getElementById ( ”nABP” ) . s t y l e . co lo r = ”#0A5640” ;
66 document . getElementById ( ”minABP” ) . s t y l e . co lo r = ” black ” ;
67 document . getElementById ( ”ABP” ) . s t y l e . background = ”#d3d3d3” ;
68 document . getElementById ( ”maxABP” ) . s t y l e . co lo r = ” black ” ;
69 document . getElementById ( ” ABPinfo ” ) . s t y l e . co lo r = ”#0A5640” ;
70 document . getElementById ( ” ABParrow ” ) . s t y l e . co lo r = ” black ” ;
71 document . getElementById ( ” EquipLabel ” ) . s t y l e . co lo r = ” black ” ;
72 document . getElementById ( ”ABPRes ” ) . s t y l e . co lo r = ”#0A5640” ;
73 document . getElementById ( ” EqTyp ABP” ) . s t y l e . co lo r = ” black ” ;
74 document . getElementById ( ” PBLabel ” ) . s t y l e . co lo r = ” black ” ;
75 document . getElementById ( ”PB in fo ” ) . s t y l e . co lo r = ”#0A5640” ;
76 document . getElementById ( ”PB ABP” ) . s t y l e . background = ” white ” ;
77 document . getElementById ( ”PB ABP” ) . s t y l e . co lo r = ” black ” ;
78 document . getElementById ( ” ROILabel ” ) . s t y l e . co lo r = ” black ” ;
79 document . getElementById ( ”ROI in fo ” ) . s t y l e . co lo r = ”#0A5640” ;
80 document . getElementById ( ”ROI ABP” ) . s t y l e . co lo r = ” black ” ;
81 document . getElementById ( ”ROI ABP” ) . s t y l e . background = ” white ” ;
82 document . getElementById ( ” EquipPlot ” ) . value = ” Trac tor and ABP” ;
83 document . getElementById ( ” minBt ” ) . value = 3
84 document . getElementById ( ” Bt ” ) . min = 3
85 document . getElementById ( ” Bt ” ) . max = 23
86 document . getElementById ( ”maxBt ” ) . value = 23
87 document . getElementById ( ” Equip ” ) . value = ” Trac tor and ABP”
88 }
89 // Tota l f i e l d area
90 t o t A r v a l = par seF loa t ( tAr . value * fUn ) ;
91 to tFAr . value = t o t A r v a l . toF ixed (0) ;
92

93 // Number of ba le s
94 var tBm = document . getElementById ( ’Bm ’ ) ;
95 var fBm = par seF loa t (tBm . value ) ;
96
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97 i f ( remember == f a l s e ) {
98 var fBmc = fBm * 0.454; // l b s to kg convers ion
99 var arHaEq = 10000;

100 var swath = 9;
101 var HeadPass = 2;
102 var area = fAr * arHaEq ; // m2
103 var L = Math . s q r t ( area ) ; //m
104 var W = area / L ; //m
105 var IL = (L − ( swath * HeadPass * 2) ) ;
106 var IW = (W − ( swath * HeadPass * 2) ) ;
107 var N = ( IL * IW) * fBynb / fBmc ;
108 var nbales = Math . round (N) ;
109 NB. value = nbales * fUn ;
110 } e l s e {
111 var fBmc = fBm ; // kg
112 // a l e r t ( ” fBmc = ” + fBm) ;
113 var arHaEq = 10000;
114 var swath = 9;
115 var HeadPass = 2;
116 var area = tAr . value * arHaEq ; // m2
117 var L = Math . s q r t ( area ) ; //m
118 var W = area / L ; //m
119 var IL = (L − ( swath * HeadPass * 2) ) ;
120 var IW = (W − ( swath * HeadPass * 2) ) ;
121 var N = ( IL * IW) * fBynb1 / fBmc ;
122 var nbales = Math . round (N) ;
123 NB. value = nbales * fUn ;
124 }
125

126 // Tota l gra in y i e l d
127 var GrY = document . getElementById ( ”GY” ) . value ;
128 var TGYv = GrY * tAr . value * fUn ;
129 TGY . value = TGYv ;
130

131

132 // L o g i s t i c s d i s t ance
133 var Log i sD i s = Math . pow(( ( fAr * fBy ) / (17.879 * ( fB t + 0.895) ) ) , 1.377) * fUn ;
134 var Log i sDis1 = Math . pow(( ( tAr . value * tBy . value ) / (17.879 * ( fB t + 0.895) ) ) , 1.377) * fUn ;
135 i f ( remember == f a l s e ) {
136 LD . value = ( Log i sD i s * ArF * 0.621371) . toF ixed (2) ;
137 } e l s e {
138 LD . value = ( Logi sDis1 * ArF ) . toF ixed (2) ;
139 }
140

141 // Bale c o l l e c t i o n operat ion time
142 var optTime = Math . pow(( ( fAr * fBy ) / (−46.003 + ( fB t * 80.230) + ( fSp * 15.052) ) ) , 1.381) *

fUn ;
143 var optTime1 = Math . pow(( ( tAr . value * tBy . value ) / (−46.003 + ( fB t * 80.230) + ( tSp . value *

15.052) ) ) , 1.381) * fUn ;
144 i f ( remember == f a l s e ) {
145 var OTval = ( optTime ) * ArF ;
146 OT. value = OTval . toF ixed (2) ;
147 } e l s e {
148 var OTval = ( optTime1 ) * ArF ;
149 OT. value = OTval . toF ixed (2) ;
150 }
151

152 // Bale consumption f u e l consumption
153 var FuelConsp
154 i f ( remember == f a l s e ) {
155 i f ( fB t == 1 | | fB t == 2) {
156 FuelConsp = Math . pow(( ( fAr * fBy ) / (−5.913 + ( fB t * 13.164) + ( fSp * 2.777) ) ) , 1.414) ;
157 } e l s e {
158 FuelConsp = Math . pow(( ( fAr * fBy ) / (−4.991 + ( fB t * 1.165) + ( fSp * 4.827) ) ) , 1.242) ;
159 }
160 FuelConspUn = ( FuelConsp * ArF * 0.264172) * fUn ;
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161 } e l s e {
162 i f ( fB t == 1 | | fB t == 2) {
163 FuelConsp1 = Math . pow(( ( tAr . value * tBy . value ) / (−5.913 + ( fB t * 13.164) + ( tSp . value *

2.777) ) ) , 1.414) ;
164 } e l s e {
165 FuelConsp1 = Math . pow(( ( tAr . value * tBy . value ) / (−4.991 + ( fB t * 1.165) + ( tSp . value *

4.827) ) ) , 1.242) ;
166 }
167 FuelConspUn = ( FuelConsp1 * ArF ) * fUn ;
168 }
169 FCP . value = FuelConspUn . toF ixed (2) ;
170

171

172

173

174 // Tota l ba le operat ion time − c o l l e c t i o n , loading , and unloading
175 var LUnL = (( fLo + fUnLo ) * nbales * fUn ) / 60; // loading and unloading operat ion time −

conver t ing min to h
176 var totOpTime = LUnL + OTval ;
177 TBOT. value = totOpTime . toF ixed (2) ;
178

179

180 // Tota l f u e l consumption − c o l l e c t i o n , loading , and unloading
181 // Loading and unloading f u e l consumption
182 // Refer to equat ions 5 , 6 , and 7 in the − A s imula t ion study paper
183 var CTval = 111.855 * 20 / 100; // 150 hp i s 111.855 kw and load of 20 % (1 bale / t r i p ) i s

assumed ( eq . 5)
184 var EFval = 1.047 * Math . log (20) − 1.711
185 var CFval = CTval / EFval ;
186 var FCons
187 i f ( remember == f a l s e ) {
188 FCons = CFval * LUnL * fUn * 0.264172; // conver t ing l i t r e to ga l
189 }
190 e l s e {
191 FCons = CFval * LUnL * fUn ; // l i t r e
192 }
193 var totFconsp = FCons + FuelConspUn
194 TBFC . value = totFconsp . toF ixed (2) ;
195

196 // Tota l ba le s revenue
197 var tBc = document . getElementById ( ’ Bc ’ ) ;
198 var fBc = par seF loa t ( tBc . value ) ;
199 var TBRv = ( fBc * nbales * fUn ) . toF ixed (0) ;
200 var TBRcs = Number(TBRv) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
201 i f ( TBRcs . length > 6) {
202 TBR . s t y l e . f on tS i z e = ”10px ” ;
203 } e l s e {
204 TBR . s t y l e . f on tS i z e = ”13px ” ;
205 } ;
206 TBR . value = ’ $ ’ + TBRcs
207

208 // Tota l gra in revenue
209 var Gpr = par seF loa t ( document . getElementById ( ’GP ’ ) . value ) ;
210 var TGRv = TGYv * Gpr ;
211 var TGRcs = Number(TGRv) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
212 i f (TGRcs . length > 6) {
213 TGR. s t y l e . f on tS i z e = ”10px ” ;
214 } e l s e {
215 TGR. s t y l e . f on tS i z e = ”13px ” ;
216 } ;
217 TGR. value = ’ $ ’ + TGRcs
218

219 // Tota l ba le t r an spo ra t i on cos t
220 var tB t c = document . getElementById ( ’BTC ’ ) . value ;
221 var fB t c = par seF loa t ( tB t c ) ;
222 var tBtd = document . getElementById ( ’BTD ’ ) . value ;
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223 var fBtd = par seF loa t ( tBtd ) ;
224 TBTC . value = fB t c * fBtd ;
225

226

227 // Get t ing index value of the age in years
228 var ageyrs = document . getElementById ( ” AgeYrs ” ) ;
229 var ageyF = par seF loa t ( ageyrs . value ) ;
230 var opt = ageyrs . opt ions [ ageyrs . s e l e c t ed Index ] . value ;
231

232 // Get t ing index value of the engine power input
233 var EngP = document . getElementById ( ”EHp” ) ;
234 var optEP = EngP . opt ions [EngP . se l e c t ed Index ] . value ;
235

236 // Get t ing index value of the annual usgae in hours
237 var AnHrs = document . getElementById ( ” AnnHrs ” ) ;
238 var optAH = AnHrs . opt ions [AnHrs . s e l e c t ed Index ] . value ;
239

240 // Get t ing the input t r a c t o r p r i c e value
241 var MPrice = document . getElementById ( ”Mp” ) . value ;
242

243 // Get t ing the loan i n t e r e s t r a t e
244 var I r v a l = document . getElementById ( ” I r ” ) . value ;
245

246 // a l e r t ( I r v a l ) ;
247

248 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Trac tor f i x e d co s t and RMC funct ion
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

249

250 /******** Tota l f i x e d cos t (TFC) − Trac tor **********/
251 var checkStatus = document . getElementById ( ” ckb ” ) . checked
252

253 var TFCres = [0 , 0 , 0 , 0] ;
254

255 /********** Tota l f i x e d cos t c a l c u l a t i o n f o r t r a c t o r */
256 func t ion TFCval ( af , bf , c f ) {
257 var sa l vg = af * Math . pow( ageyF , 2) − bf * ageyF + c f ;
258 var s a l v a l = MPrice * sa l vg * 0 .01;
259 var u s e l i f = 10000 / optAH ;
260 var deprv = ( ( ( ( MPrice − s a l v a l ) / u s e l i f ) / optAH) * totOpTime ) ;
261 var deprva l = ( ( ( ( MPrice − s a l v a l ) / u s e l i f ) / optAH) ) ;
262 var THIv = ( ( ( ( ( pa r seF loa t ( s a l v a l ) + par seF loa t ( MPrice ) ) / 2) * 0.0133) / optAH) * totOpTime )

;
263 var THIval = ( ( ( ( ( pa r seF loa t ( s a l v a l ) + par seF loa t ( MPrice ) ) / 2) * 0.0133) / optAH) ) ;
264 var INTv = ( ( ( ( ( pa r seF loa t ( s a l v a l ) + par seF loa t ( MPrice ) ) / 2) * ( I r v a l / 100) ) / optAH) *

totOpTime ) ;
265 var INTval = ( ( ( ( ( pa r seF loa t ( s a l v a l ) + par seF loa t ( MPrice ) ) / 2) * ( I r v a l / 100) ) / optAH) ) ;
266 var TFCv = ( par seF loa t ( deprv ) + par seF loa t ( THIv ) + par seF loa t ( INTv ) ) . toF ixed (0) ;
267 TFCres [0] = deprv ;
268 TFCres [1] = THIv ;
269 TFCres [2] = INTv ;
270 TFCres [3] = TFCv ;
271 re turn TFCres ;
272 }
273

274 i f ( optEP == 0 && optAH == 200) {
275 TFCval (0.0896 , 3.8793 , 66.025)
276 } e l s e i f ( optEP == 0 && optAH == 400) {
277 TFCval (0.0893 , 3.7568 , 60.73)
278 } e l s e i f ( optEP == 0 && optAH == 600) {
279 TFCval (0.0866 , 3.6077 , 56.856)
280 } e l s e i f ( optEP == 1 && optAH == 200) {
281 TFCval (0.0998 , 4.2295 , 69.889)
282 } e l s e i f ( optEP == 1 && optAH == 400) {
283 TFCval (0 .1 , 4.2478 , 69.449)
284 } e l s e i f ( optEP == 1 && optAH == 600) {
285 TFCval (0 .1 , 4.25 , 69.0)
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286 } e l s e i f ( optEP == 2 && optAH == 200) {
287 TFCval (0.1197 , 4.9515 , 70.168)
288 } e l s e i f ( optEP == 2 && optAH == 400) {
289 TFCval (0.1186 , 4.8668 , 68.225)
290 } e l s e i f ( optEP == 2 && optAH == 600) {
291 TFCval (0.116 , 4.7858 , 66.809)
292 }
293

294 var Dep va l = par seF loa t ( TFCres [0]) ;
295 var THI va l = par seF loa t ( TFCres [1])
296 var INT va l = par seF loa t ( TFCres [2]) ;
297 var THI I va l = (( pa r seF loa t (( TFCres [1]) ) + par seF loa t ( TFCres [2]) ) ) . toF ixed (0) ;
298

299

300

301 var Dep va lout = par seF loa t ( TFCres [0]) . toF ixed (0) ;
302 var THI va l = par seF loa t ( TFCres [1])
303 var INT va l = par seF loa t ( TFCres [2]) ;
304 var THI I va lout = (( pa r seF loa t (( TFCres [1]) ) + par seF loa t ( TFCres [2]) ) ) . toF ixed (0) ;
305

306 // Land rent co s t
307 var Lrv = document . getElementById ( ” Far ” ) ;
308 var LrCal = ( par seF loa t ( tAr . value ) * Lrv . value ) . toF ixed (1) ;
309 LRC . value = ’ $ ’ + LrCal ;
310

311 // Tota l f i x e d cos t
312 var TTFCs = ( par seF loa t (Dep va l ) + par seF loa t (THI I va l ) + par seF loa t ( LrCal ) ) . toF ixed (0) ;
313 var TFCcs = Number(TTFCs) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
314 i f ( TFCcs . length > 6) {
315 TFC . s t y l e . f on tS i z e = ”10px ” ;
316 } e l s e {
317 TFC . s t y l e . f on tS i z e = ”13px ” ;
318 } ;
319

320 // No−cos t (FAR , FRC , CC, LC = 0$) : Tota l f i x e d cos t
321 NCTFC = par seF loa t ( TFCres [3]) . toF ixed (0) ; // t r a c t o r
322

323

324 /**********RMC − Trac tor **************/
325 var Xv = (( optAH * opt ) / 1000) ;
326 var TAR = (0.003 * Math . pow(Xv , 2) ) ;
327 var RMCv = ( ( ( ( MPrice * TAR) / opt ) / optAH) * totOpTime ) . toF ixed (1) ;
328

329 //
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

330

331 // Labor co s t :
332 var Lcv = document . getElementById ( ” Lc ” ) ;
333 var NL = document . getElementById ( ”NL” ) ;
334 var LcCal = ( par seF loa t ( Lcv . value ) * totOpTime * par seF loa t (NL . value ) ) ;
335 // LC . value = ’ $ ’ + ( LcCal ) . toF ixed (1) ;
336 TLC . value = ’ $ ’ + ( LcCal ) . toF ixed (1) ;
337

338 // Fuel co s t :
339 var Fcv = document . getElementById ( ” Fc ” ) ;
340 var FcCal = ( par seF loa t ( Fcv . value ) * totFconsp ) ;
341 TotFuC . value = ’ $ ’ + ( FcCal ) . toF ixed (1) ;
342 var FCLCval = FcCal + LcCal ;
343 FCLC . value = ’ $ ’ + ( FCLCval ) . toF ixed (1) ;
344

345 // Tota l ba le t r a n s p o r t a t i o n cos t
346 var fB t c = par seF loa t ( document . getElementById ( ”BTC” ) . value ) ;
347 var fBtd = par seF loa t ( document . getElementById ( ”BTD” ) . value ) ;
348 var TBTCval = fB t c * fBtd ;
349 TBTCv . value = ’ $ ’ + TBTCval ;

271



350

351 // Tota l v a r i a b l e co s t ( Trac tor )
352 var TVCv = ( par seF loa t (RMCv) + par seF loa t ( FCLCval ) + par seF loa t ( TBTCval ) ) . toF ixed (0) ;
353 var TVCcs = Number(TVCv) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
354 i f ( TVCcs . length > 6) {
355 TVC . s t y l e . f on tS i z e = ”10px ” ;
356 } e l s e {
357 TVC . s t y l e . f on tS i z e = ”13px ” ;
358 } ;
359

360 // Seed cos t :
361 var Arv = par seF loa t ( document . getElementById ( ” Ar ” ) . value ) ;
362 var SCvl = par seF loa t ( document . getElementById ( ” Sc ” ) . value ) ;
363 var s e l e c t I n d e x = document . getElementById ( ” drop ” ) . s e l e c t ed Index ;
364 i f ( s e l e c t I n d e x == ”0” | | s e l e c t I n d e x == ”1” ) {
365 SCv = SCvl / 5;
366 } e l s e {
367 SCv = SCvl
368 }
369 // var SCv = par seF loa t ( document . getElementById ( ” Sc ” ) . value ) ;
370 var SCcal = SCv * Arv * fUn ;
371 SC . value = ’ $ ’ + ( SCcal ) . toF ixed (1) ;
372 TSC . value = ’ $ ’ + ( SCcal ) . toF ixed (0) ;
373

374 // F e r t i l i z e r co s t :
375 var FRCv = par seF loa t ( document . getElementById ( ” Frc ” ) . value ) ;
376 var FRCcal = FRCv * Arv * fUn ;
377 FRC . value = ’ $ ’ + ( FRCcal ) . toF ixed (1) ;
378 TFRC . value = ’ $ ’ + ( FRCcal ) . toF ixed (0) ;
379

380 // Chemical co s t :
381 var CCv = par seF loa t ( document . getElementById ( ”Cc ” ) . value ) ;
382 var CCcal = CCv * Arv * fUn
383 CC . value = ’ $ ’ + ( CCcal ) . toF ixed (1) ;
384 TCC . value = ’ $ ’ + ( CCcal ) . toF ixed (0) ;
385

386 // Crop input co s t :
387 var CICv = ( par seF loa t ( SCcal ) + par seF loa t ( FRCcal ) + par seF loa t ( CCcal ) ) . toF ixed (0) ;
388 var CICcs = Number( CICv ) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
389 i f ( CICcs . length > 6) {
390 CIC . s t y l e . f on tS i z e = ”10px ” ;
391 } e l s e {
392 CIC . s t y l e . f on tS i z e = ”13px ” ;
393 } ;
394 CIC . value = ’ $ ’ + CICcs ;
395

396 // No−cos t (FAR , FRC , CC, LC = 0$) : Crop input co s t
397 NCCIC = par seF loa t ( SCcal ) ;
398

399 // Harvest co s t :
400 var HCv = par seF loa t ( document . getElementById ( ”Hc” ) . value ) ;
401 var HCcal = HCv * Arv * fUn ;
402 HC. value = ’ $ ’ + ( HCcal ) . toF ixed (1) ;
403 THC. value = ’ $ ’ + ( HCcal ) . toF ixed (0) ;
404

405 // Bal ing co s t :
406 var BLv = par seF loa t ( document . getElementById ( ” Bl ” ) . value ) ;
407 var BLcal = (BLv * Arv * fUn )
408 BL . value = ’ $ ’ + ( BLcal ) . toF ixed (1) ;
409 TBC . value = ’ $ ’ + ( BLcal ) . toF ixed (0) ;
410

411 // Crop input co s t
412 CICa . value = document . getElementById ( ’ CIC ’ ) . value ;
413

414 // Tota l product ion cos t
415 var TPCv = ( par seF loa t ( HCcal ) + par seF loa t ( BLcal ) + par seF loa t ( CICv ) ) . toF ixed (0) ;
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416 var TPCcs = Number(TPCv) . t o L o c a l e S t r i n g ( ’ en ’ )
417 i f ( TPCcs . length > 6) {
418 TPC . s t y l e . f on tS i z e = ”10px ” ;
419 } e l s e {
420 TPC . s t y l e . f on tS i z e = ”13px ” ;
421 } ;
422 TPC . value = ’ $ ’ + TPCcs ;
423

424 var Dep va l = par seF loa t ( TFCres [0]) ;
425 var THI va l = par seF loa t ( TFCres [1])
426 var INT va l = par seF loa t ( TFCres [2]) ;
427 var THI I va l = (( pa r seF loa t (( TFCres [1]) ) + par seF loa t ( TFCres [2]) ) ) . toF ixed (0) ;
428

429 // ABP Depr i c i a t i on , taxing , housing , insurance , i n t e r e s t , and t o t a l f i x e d co s t
430 var ABPPrice = document . getElementById ( ”ABP” ) . value ;
431 var salvPercABP = 69;
432 var sa lva lABP = ABPPrice * salvPercABP * 0.01;
433 var use l i f eABP = 10000 / optAH ;
434 var deprABPv = ( ( ( ( ( ABPPrice − salvalABP ) / use l i f eABP ) / optAH) * totOpTime ) + (Dep va l ) ) .

toF ixed (0) ;
435 // var deprABPval = ( ( ( ( ( ABPPrice − salvalABP ) / use l i f eABP ) / optAH) ) ) ;
436 var THI ABPv = ( ( ( ( ( ( pa r seF loa t ( sa lvalABP ) + par seF loa t ( ABPPrice ) ) / 2) * 0.0133) / optAH) *

totOpTime ) + (THI va l ) ) ;
437 // var THI ABPval = ( ( ( ( ( ( pa r seF loa t ( sa lva lABP ) + par seF loa t ( ABPPrice ) ) / 2) * 0.0133) / optAH)

) ) ;
438 var INT ABPv = ( ( ( ( ( ( pa r seF loa t ( sa lvalABP ) + par seF loa t ( ABPPrice ) ) / 2) * ( I r v a l / 100) ) /

optAH) * totOpTime ) + ( INT va l ) ) ;
439 // var INT ABPval = ( ( ( ( ( ( pa r seF loa t ( sa lva lABP ) + par seF loa t ( ABPPrice ) ) / 2) * ( I r v a l / 100) ) /

optAH) ) ) ;
440 var THI I ABPv = ( par seF loa t (THI ABPv) + par seF loa t ( INT ABPv) ) . toF ixed (1) ;
441 var TTFC ABP = ( par seF loa t ( deprABPv ) + par seF loa t (THI I ABPv) + par seF loa t ( LrCal ) ) . toF ixed (0) ;
442

443 /**********RMC − ABP **************/
444 var Xv = (( optAH * 1) / 1000) ; // opt = 1; Machine years owned assumed = 1
445 var TAR = (0.003 * Math . pow(Xv , 2) ) ;
446 var RMC ABP = par seF loa t ( ( ( ( ( ABPPrice * TAR) / opt ) / optAH) * totOpTime ) ) . toF ixed (1) ;
447 var RMC ABPv = ( par seF loa t (RMC ABP) + par seF loa t (RMCv) ) . toF ixed (1) ;
448

449 // Tota l v a r i a b l e co s t (ABP)
450 var TVC ABPv = ( par seF loa t (RMC ABPv) + par seF loa t ( FCLCval ) + par seF loa t ( TBTCval ) ) . toF ixed (0) ;
451 var TVC ABPcs = Number(TVC ABPv) . t o L o c a l eS t r i n g ( ’ en ’ ) ;
452 i f (TVC ABPcs . length > 6) {
453 TVC . s t y l e . f on tS i z e = ”10px ” ;
454 } e l s e {
455 TVC . s t y l e . f on tS i z e = ”13px ” ;
456 } ;
457

458 // Tota l co s t ( Trac tor )
459 TFCv = TTFCs ;
460 var TCv = ( par seF loa t (TPCv) + par seF loa t (TVCv) + par seF loa t (TFCv) ) . toF ixed (0) ;
461 var TCcs = Number(TCv) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
462 i f ( TCcs . length > 6) {
463 TC . s t y l e . f on tS i z e = ”10px ” ;
464 } e l s e {
465 TC . s t y l e . f on tS i z e = ”13px ” ;
466 } ;
467 TC . value = ’ $ ’ + TCcs ;
468

469 TotFC . value = ’ $ ’ + TFCv ;
470 TotVC . value = ’ $ ’ + TVCv ;
471 TotPC . value = ’ $ ’ + TPCv ;
472

473 // Tota l co s t (ABP)
474 var TC ABPv = ( par seF loa t (TPCv) + par seF loa t (TVC ABPv) + par seF loa t (TTFC ABP) ) . toF ixed (0) ;
475 var TC ABPcs = Number(TC ABPv) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
476 i f (TC ABPcs . length > 6) {
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477 TC . s t y l e . f on tS i z e = ”10px ” ;
478 } e l s e {
479 TC . s t y l e . f on tS i z e = ”13px ” ;
480 } ;
481

482 // Tota l revenue per acre
483

484 var drpOp = document . getElementById ( ” drop ” ) . s e l e c t ed Index
485

486 i f (drpOp == 0) { document . getElementById ( ” FrgeP lo t ” ) . value = ” A l f a l f a ” }
487 e l s e i f (drpOp == 1) { document . getElementById ( ” FrgeP lo t ” ) . value = ” A l f a l f a mix ” }
488 e l s e i f (drpOp == 2) { document . getElementById ( ” FrgeP lo t ” ) . value = ” Bar ley ” }
489 e l s e i f (drpOp == 3) { document . getElementById ( ” FrgeP lo t ” ) . value = ” Corn ” }
490 e l s e i f (drpOp == 4) { document . getElementById ( ” FrgeP lo t ” ) . value = ” Grain mix ” }
491 e l s e i f (drpOp == 5) { document . getElementById ( ” FrgeP lo t ” ) . value = ” Grass ” }
492 e l s e i f (drpOp == 6) { document . getElementById ( ” FrgeP lo t ” ) . value = ” Grass mix ” }
493 e l s e i f (drpOp == 7) { document . getElementById ( ” FrgeP lo t ” ) . value = ” M i l l e t ” }
494 e l s e i f (drpOp == 8) { document . getElementById ( ” FrgeP lo t ” ) . value = ” Oats ” }
495 e l s e i f (drpOp == 9) { document . getElementById ( ” FrgeP lo t ” ) . value = ”Wheat ” }
496 e l s e i f (drpOp == 10) { document . getElementById ( ” FrgeP lo t ” ) . value = ” Others ” }
497

498 // Crop type s t y l i n g opt ions
499 i f (drpOp == 2 | | drpOp == 3 | | drpOp == 4 | | drpOp == 7 | | drpOp == 8 | | drpOp == 9) {
500 document . getElementById ( ” GYtext ” ) . s t y l e . co lo r = ” black ” ;
501 document . getElementById ( ” GYInfo ” ) . s t y l e . co lo r = ”#0A5640” ;
502 document . getElementById ( ” GPtext ” ) . s t y l e . co lo r = ” black ” ;
503 document . getElementById ( ” GPInfo ” ) . s t y l e . co lo r = ”#0A5640” ;
504 document . getElementById ( ”GY” ) . s t y l e . background = ”#d3d3d3” ;
505 document . getElementById ( ”GP” ) . s t y l e . background = ”#d3d3d3” ;
506 document . getElementById ( ”minGP” ) . s t y l e . co lo r = ” black ” ;
507 document . getElementById ( ”maxGP” ) . s t y l e . co lo r = ” black ” ;
508 document . getElementById ( ”minGY” ) . s t y l e . co lo r = ” black ” ;
509 document . getElementById ( ”maxGY” ) . s t y l e . co lo r = ” black ” ;
510 document . getElementById ( ”markGP” ) . s t y l e . co lo r = ” black ” ;
511 document . getElementById ( ”markGY” ) . s t y l e . co lo r = ” black ” ;
512 document . getElementById ( ”nGP” ) . s t y l e . co lo r = ”#0A5640” ;
513 document . getElementById ( ”nGY” ) . s t y l e . co lo r = ”#0A5640” ;
514 document . getElementById ( ” TGYText ” ) . s t y l e . co lo r = ” black ” ;
515 document . getElementById ( ” TGYInfo ” ) . s t y l e . co lo r = ”#0A5640” ;
516 document . getElementById ( ”TGY” ) . s t y l e . co lo r = ” black ” ;
517 document . getElementById ( ” TGYUnit ” ) . s t y l e . co lo r = ” black ” ;
518 document . getElementById ( ”TGY” ) . s t y l e . background = ” white ” ;
519 document . getElementById ( ”TGY” ) . value = TGYv ;
520 document . getElementById ( ” TGRText ” ) . co lo r = ” black ” ;
521 document . getElementById ( ” TGRText ” ) . s t y l e . co lo r = ” black ” ;
522 document . getElementById ( ” TGRInfo ” ) . s t y l e . co lo r = ”#0A5640” ;
523 document . getElementById ( ”TGR” ) . s t y l e . background = ” white ” ;
524 document . getElementById ( ”TGR” ) . s t y l e . co lo r = ”#0000FF ” ;
525 document . getElementById ( ”TGR” ) . value = ’ $ ’ + TGRcs ;
526 document . getElementById ( ” TypePlot ” ) . value = ” Grain and Forage ”
527 }
528 e l s e i f (drpOp == 0 | | drpOp == 1 | | drpOp == 5 | | drpOp == 6) {
529 document . getElementById ( ” GYtext ” ) . s t y l e . co lo r = ” grey ” ;
530 document . getElementById ( ” GYInfo ” ) . s t y l e . co lo r = ” grey ” ;
531 document . getElementById ( ” GPtext ” ) . s t y l e . co lo r = ” grey ” ;
532 document . getElementById ( ” GPInfo ” ) . s t y l e . co lo r = ” grey ” ;
533 document . getElementById ( ”GY” ) . s t y l e . background = ” grey ” ;
534 document . getElementById ( ”GP” ) . s t y l e . background = ” grey ” ;
535 document . getElementById ( ”nGY” ) . s t y l e . co lo r = ” grey ” ;
536 document . getElementById ( ”GY” ) . s t y l e . co lo r = ” grey ” ;
537 document . getElementById ( ”minGY” ) . s t y l e . co lo r = ” grey ” ;
538 document . getElementById ( ”maxGY” ) . s t y l e . co lo r = ” grey ” ;
539 document . getElementById ( ”nGY” ) . innerHTML = 0;
540 document . getElementById ( ”GY” ) . min = 0;
541 document . getElementById ( ”GY” ) . max = 0;
542 document . getElementById ( ”nGP” ) . s t y l e . co lo r = ” grey ” ;
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543 document . getElementById ( ”GP” ) . s t y l e . co lo r = ” grey ” ;
544 document . getElementById ( ”minGP” ) . s t y l e . co lo r = ” grey ” ;
545 document . getElementById ( ”maxGP” ) . s t y l e . co lo r = ” grey ” ;
546 document . getElementById ( ”markGP” ) . s t y l e . co lo r = ” grey ” ;
547 document . getElementById ( ”markGY” ) . s t y l e . co lo r = ” grey ” ;
548 document . getElementById ( ”nGP” ) . innerHTML = 0;
549 document . getElementById ( ”GP” ) . min = 0;
550 document . getElementById ( ”GP” ) . max = 0;
551 document . getElementById ( ” TGYText ” ) . s t y l e . co lo r = ” grey ” ;
552 document . getElementById ( ” TGYInfo ” ) . s t y l e . co lo r = ” grey ” ;
553 document . getElementById ( ”TGY” ) . s t y l e . co lo r = ” grey ” ;
554 document . getElementById ( ” TGYUnit ” ) . s t y l e . co lo r = ” grey ” ;
555 document . getElementById ( ”TGY” ) . s t y l e . background = ”#FFC82E” ;
556 document . getElementById ( ”TGY” ) . value = ”−−−” ;
557 document . getElementById ( ” TGRText ” ) . s t y l e . co lo r = ” grey ” ;
558 document . getElementById ( ” TGRInfo ” ) . s t y l e . co lo r = ” grey ” ;
559 document . getElementById ( ”TGR” ) . s t y l e . co lo r = ” grey ” ;
560 document . getElementById ( ”TGR” ) . value = ”−−−” ;
561 document . getElementById ( ”TGR” ) . s t y l e . background = ”#FFC82E” ;
562 document . getElementById ( ” TypePlot ” ) . value = ” Forage ”
563 }
564

565 // Crop type j a v a s c r i p t opt ions
566 i f (drpOp == 2 | | drpOp == 3 | | drpOp == 4 | | drpOp == 7 | | drpOp == 8 | | drpOp == 9) {
567 TRev = ( par seF loa t (TBRv) + par seF loa t (TGRv) ) . toF ixed (0) ;
568 } e l s e i f (drpOp == 0 | | drpOp == 1 | | drpOp == 5 | | drpOp == 6) {
569 TRev = TBRv ;
570 }
571

572 TRevcs = Number(TRev) . t o L o c a l eS t r i n g ( ’ en ’ ) ;
573 i f ( TRevcs . length > 6) {
574 TotRev . s t y l e . f on tS i z e = ”10px ” ;
575 } e l s e {
576 TotRev . s t y l e . f on tS i z e = ”13px ” ;
577 } ;
578 TotRev . value = ’ $ ’ + TRevcs ;
579

580

581

582 var TRACv = (TRev / Arv ) . toF ixed (0) ;
583 var TRACcs = Number(TRACv) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
584 i f (TRACcs . length > 6) {
585 TRAC . s t y l e . f on tS i z e = ”10px ” ;
586 } e l s e {
587 TRAC . s t y l e . f on tS i z e = ”13px ” ;
588 } ;
589 TRAC . value = ’ $ ’ + TRACcs ;
590

591 // Tota l co s t per acre ( Trac tor )
592

593 var TCACv = (TCv / Arv ) . toF ixed (0) ;
594 var TCACcs = Number(TCACv) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
595 i f (TCACcs . length > 6) {
596 TCAC . s t y l e . f on tS i z e = ”10px ” ;
597 } e l s e {
598 TCAC . s t y l e . f on tS i z e = ”13px ” ;
599 } ;
600

601 // Tota l co s t per acre (ABP)
602

603 var TCAC ABPv = (TC ABPv / Arv ) . toF ixed (0) ;
604 var TCAC ABPcs = Number(TCAC ABPv) . t o L o c a l eS t r i n g ( ’ en ’ ) ;
605 i f (TCAC ABPcs . length > 6) {
606 TCAC . s t y l e . f on tS i z e = ”10px ” ;
607 } e l s e {
608 TCAC . s t y l e . f on tS i z e = ”13px ” ;
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609 } ;
610

611

612 // Net re turn ( t r a c t o r )
613 var NPv = ( par seF loa t (TRev) − par seF loa t (TCv) ) ;
614 var NPcs = Number(NPv) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
615 i f ( NPcs . length > 6) {
616 NP . s t y l e . f on tS i z e = ”10px ” ;
617 } e l s e {
618 NP . s t y l e . f on tS i z e = ”13px ” ;
619 } ;
620

621

622 // Net re turn (ABP)
623 var NP ABPv = ( par seF loa t (TRev) − par seF loa t (TC ABPv) ) . toF ixed (0) ;
624 var NP ABPcs = Number(NP ABPv) . t o L o c a l e S t r i n g ( ’ en ’ ) ;
625 i f (NP ABPcs . length > 6) {
626 NP . s t y l e . f on tS i z e = ”10px ” ;
627 } e l s e {
628 NP . s t y l e . f on tS i z e = ”13px ” ;
629 } ;
630

631 i f ( checkStatus == f a l s e ) {
632 i f (NPv < 0) {
633 document . getElementById ( ’NP ’ ) . s t y l e . backgroundColor = ”#FFA07A” ;
634 } e l s e {
635 document . getElementById ( ’NP ’ ) . s t y l e . backgroundColor = ”#98FB98” ;
636 }
637 } e l s e i f ( checkStatus == true ) {
638 i f (NP ABPv < 0) {
639 document . getElementById ( ’NP ’ ) . s t y l e . backgroundColor = ”#FFA07A” ;
640 } e l s e {
641 document . getElementById ( ’NP ’ ) . s t y l e . backgroundColor = ”#98FB98” ;
642 }
643 }
644 // No−cos t (FAR , FRC , CC, LC = 0$) :
645 // Tota l f i x e d cos t − No cos t
646 NCTFC = par seF loa t ( TFCres [3]) . toF ixed (0) ; // t r a c t o r
647 var NCTFC ABP = ( par seF loa t ( deprABPv ) + par seF loa t (THI I ABPv) ) ; // ABP
648 // Tota l v a r i a b l e co s t − No cos t
649 NCTVC = ( par seF loa t (RMCv) + par seF loa t ( FcCal ) + par seF loa t ( TBTCval ) ) . toF ixed (0) ; // t r a c t o r
650 var NCTVC ABP = ( par seF loa t (RMC ABPv) + par seF loa t ( FcCal ) + par seF loa t ( TBTCval ) ) . toF ixed (0) ; //

ABP
651 // Tota l product ion cos t − No cos t
652 NCTPC = (NCCIC + par seF loa t ( HCcal ) + par seF loa t ( BLcal ) ) . toF ixed (0) ; // t r a c t o r
653 // Tota l co s t − No cos t
654 NCTCv = par seF loa t (NCTFC) + par seF loa t (NCTPC) + par seF loa t (NCTVC) ; // t r a c t o r
655

656 NCTC ABPv = par seF loa t (NCTFC ABP) + par seF loa t (NCTPC) + par seF loa t (NCTVC ABP) ;
657 // Net revenue − No cos t
658 var NCNRv = ( par seF loa t (TRev) − par seF loa t (NCTCv) ) ; // t r a c t o r
659 var NCNRcs = Number(NCNRv) . t o L o c a l e S t r i n g ( ’ en ’ ) ; // t r a c t o r
660 var NCNR ABPv = ( par seF loa t (TRev) − par seF loa t (NCTC ABPv) ) . toF ixed (0) ; // t r a c t o r
661 var NCNR ABPcs = Number(NCNR ABPv) . t o L o c a l eS t r i n g ( ’ en ’ ) ; // t r a c t o r
662

663 // Harvest and c o l l e c t i o n co s t
664 var HCCv = par seF loa t ( HCcal + BLcal + TBTCval + FCLCval + TFCres [3]) . toF ixed (0) ;
665 var HCC ABPv = par seF loa t ( HCcal + BLcal + TBTCval + FCLCval + deprABPv + THI I ABPv) . toF ixed (0)

;
666 var HCCPrv = par seF loa t (HCCv / TCv * 100) . toF ixed (0) ;
667 var HCCABPPrv = par seF loa t (HCC ABPv / TC ABPv * 100) . toF ixed (0) ;
668 var HCCAcv = par seF loa t (HCCv / Arv ) . toF ixed (0) ;
669 var HCCABPAcv = par seF loa t (HCC ABPv / Arv ) . toF ixed (0) ;
670

671 // Net retuen per acre ( t r a c t o r )
672 var NPACv = (TRACv − TCACv) . toF ixed (0) ;
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673

674 // Net retuen per acre (ABP)
675 var NPAC ABPv = (TRACv − TCAC ABPv) . toF ixed (0) ;
676

677

678 // Break even ( t r a c t o r )
679 var BEv = TRev / TCv ;
680

681 // Break even (ABP)
682 var BE ABPv = TRev / TC ABPv ;
683

684

685 // Payback and ROI ( t r a c t o r )
686 i f (NPv > 0) {
687 var PBv = ( MPrice / NPv) . toF ixed (1) ;
688 PB . value = PBv ;
689 var ROIv = (NPv / MPrice * 100) . toF ixed (0) ;
690 i f (ROIv == Number . POSITIVE INFINITY | | ROIv == Number . NEGATIVE INFINITY ) {
691 ROIv = 0
692 }
693 ROI . value = ROIv ;
694 } e l s e {
695 PB . value = ”−−−” ;
696 ROI . value = ”−−−” ;
697 }
698

699

700 i f (NCNRv > 0) {
701 // a l e r t ( ” po s t i v e ” )
702 var NCPBv = ( MPrice / NCNRv) . toF ixed (0) ; // ”No−cos t ” pay back ( t r a c t o r )
703 var NCROIv = (NCNRv / MPrice * 100) . toF ixed (0) ; // ”No−cos t ” ROI ( t r a c t o r )
704 // NCPB . value = NCPBv ;
705 i f (NCROIv == Number . POSITIVE INFINITY | | NCROIv == Number . NEGATIVE INFINITY ) {
706 NCROIv = 0
707 }
708 // NCROI . value = NCROIv ;
709 } e l s e {
710 // a l e r t ( ” negat ive ” )
711 // NCPB . value = ”−−−” ;
712 // NCROI . value = ”−−−” ;
713 }
714

715 // Payback and ROI (ABP)
716 i f (NCNR ABPv > 0) {
717 var PB ABPv = (( par seF loa t ( MPrice ) + par seF loa t ( ABPPrice ) ) / (NP ABPv) ) . toF ixed (0) ;
718 PB . value = PB ABPv ;
719

720 var ROI ABPv = ((NP ABPv) / ( pa r seF loa t ( MPrice ) + par seF loa t ( ABPPrice ) ) * 100) . toF ixed (0) ;
721 ROI . value = ROI ABPv ;
722

723 var NCPB ABPv = (( par seF loa t ( MPrice ) + par seF loa t ( ABPPrice ) ) / (NCNR ABPv) ) . toF ixed (0) ; // ”
No−cos t ” pay back

724 var NCROI ABPv = ((NCNR ABPv) / ( pa r seF loa t ( MPrice ) + par seF loa t ( ABPPrice ) ) * 100) . toF ixed (0)
; // ”No−cos t ” ROI

725 // NCPB . value = NCPBv ;
726 // NCROI . value = NCROIv ;
727 } e l s e {
728 PB . value = ”−−−” ;
729 ROI . value = ”−−−” ;
730 }
731

732 // Payback and ROI f o r ABP equipment only
733 var PBeqp = ( par seF loa t ( ABPPrice ) / pa r seF loa t (NPv) ) . toF ixed (1) ;
734 var ROIeqp = (( par seF loa t (NPv) / pa r seF loa t ( ABPPrice ) ) * 100) . toF ixed (0) ;
735

736 var PBeqp abp = ( par seF loa t ( ABPPrice ) / par seF loa t (NP ABPv) ) . toF ixed (1) ;
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737 var ROIeqp abp = (( par seF loa t (NP ABPv) / pa r seF loa t ( ABPPrice ) ) * 100) . toF ixed (0) ;
738

739

740 i f ( checkStatus == f a l s e ) {
741 Dep . value = ’ $ ’ + Dep va lout ;
742 THI I . value = ’ $ ’ + THI I va lout ;
743 TFC . value = ’ $ ’ + TFCcs ;
744 RMC. value = ’ $ ’ + RMCv;
745 TVC . value = ’ $ ’ + TVCcs ;
746 TotFC . value = ’ $ ’ + TFCv ;
747 TotVC . value = ’ $ ’ + TVCv ;
748 TotPC . value = ’ $ ’ + TPCv ;
749 TC . value = ’ $ ’ + TCcs ;
750 TCAC . value = ’ $ ’ + TCACcs ;
751 NP . value = ’ $ ’ + ’ ’ + NPcs ;
752 NPAC. value = ’ $ ’ + NPACv ;
753 BE . value = BEv . toF ixed (2) ;
754 i f (NPv > 0) {
755 PB . value = PBv ;
756 ROI . value = ROIv ;
757 } e l s e {
758 PB . value = ”−−−” ;
759 ROI . value = ”−−−”
760 }
761 EqTyp . value = ” Trac tor ”
762 PB ABP . value = ”−−−” ;
763 ROI ABP . value = ”−−−” ;
764 // NCNR. value = ’ $ ’ + NCNRcs ;
765 // NCPB . value = NCPBv ;
766 // NCROI . value = NCROIv ;
767 HCC. value = ’ $ ’ + HCCv;
768 HCCPc . value = HCCPrv + ’% ’ ;
769 HCCPAc . value = ’ $ ’ + HCCAcv ;
770 } e l s e i f ( checkStatus == true ) {
771 Dep . value = ’ $ ’ + deprABPv ;
772 THI I . value = ’ $ ’ + THI I ABPv ;
773 TFC . value = ’ $ ’ + TTFC ABP ;
774 RMC. value = ’ $ ’ + RMC ABPv ;
775 TVC . value = ’ $ ’ + TVC ABPcs ;
776 TotFC . value = ’ $ ’ + TTFC ABP ;
777 TotVC . value = ’ $ ’ + TVC ABPcs ;
778 TotPC . value = ’ $ ’ + TPCv ;
779 TC . value = ’ $ ’ + TC ABPcs ;
780 TCAC . value = ’ $ ’ + TCAC ABPcs ;
781 NP . value = ’ $ ’ + NP ABPcs ;
782 NPAC. value = ’ $ ’ + NPAC ABPv ;
783 BE . value = BE ABPv . toF ixed (2) ;
784 PB . value = PB ABPv ;
785 ROI . value = ROI ABPv ;
786 EqTyp . value = ” Trac tor and ABP”
787 PB ABP . value = PBeqp abp ;
788 ROI ABP . value = ROIeqp abp ;
789 // NCNR. value = ’ $ ’ + NCNR ABPcs ;
790 // NCPB . value = NCPB ABPv ;
791 // NCROI . value = NCROI ABPv ;
792 HCC. value = ’ $ ’ + HCC ABPv ;
793 HCCPc . value = HCCABPPrv + ’% ’ ;
794 HCCPAc . value = ’ $ ’ + HCCABPAcv ;
795 }
796

797

798 // P lo t
799 var HT = 210;
800 var yva l = 25;
801 var FCmax = 600;
802 var PBmax = 25;
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803 var BEmax = 20;
804

805

806

807 // Fuel consumption p lo t (FC)
808 i f ( pa r seF loa t ( FuelConsp ) < FCmax) {
809 var FCperc = FuelConsp / FCmax ;
810 var FCHt = ( FCperc * HT) . toF ixed (0) ;
811 document . getElementById ( ” TCr ” ) . s e t A t t r i b u t e ( ” y ” , yva l ) ;
812 document . getElementById ( ” TCr ” ) . s e t A t t r i b u t e ( ” he ight ” , HT) ;
813 document . getElementById ( ” FCr ” ) . s e t A t t r i b u t e ( ” he ight ” , FCHt) ;
814 document . getElementById ( ” FCr ” ) . s e t A t t r i b u t e ( ” y ” , Math . abs (( pa r seF loa t (HT) − FCHt) ) +

par seF loa t ( yva l ) ) ;
815 } e l s e {
816 document . getElementById ( ” TCr ” ) . s e t A t t r i b u t e ( ” y ” , yva l ) ;
817 document . getElementById ( ” TCr ” ) . s e t A t t r i b u t e ( ” he ight ” , HT) ;
818 }
819

820 // Cost r e l a t e d p lo t (TR , TC , NR)
821 var dperc1
822 var dHT1
823 var dperc3
824 var dHT3
825 var y o f f = 10;
826 var SumTC = par seF loa t (TFCv) + par seF loa t (TVCv) ;
827

828 var TVCperc = (TVCv * 50) / SumTC;
829 var TFCperc = (TFCv * 50) / SumTC;
830

831 // a l e r t ( ”SumTC = ” + SumTC) ;
832 // a l e r t ( ”TFCv = ” + TFCv) ;
833 // a l e r t ( ” TFCperc = ” + TFCperc ) ;
834

835 i f ( pa r seF loa t (NPv) > 0) {
836 dperc1 = (TCv * 100 / TRev) . toF ixed (0) ;
837 dHT1 = ( dperc1 * 0.01 * HT) . toF ixed (0) ;
838 dHTVC = ((dHT1 * TVCperc ) / 100) . toF ixed (0) ;
839 var yval1 = Math . abs ((HT − dHT1) ) + yva l ;
840 var yvalTPC = yval1 + dHT1 / 2 + y o f f ;
841 var yvalTFC = yval1 + ( TVCperc * dHT1 * 0.01) + y o f f ;
842 var yvalTVC = yval1 + y o f f ;
843

844 document . getElementById ( ” TRr ” ) . s e t A t t r i b u t e ( ” y ” , yva l ) ;
845 document . getElementById ( ” TRr ” ) . s e t A t t r i b u t e ( ” he ight ” , HT) ;
846

847 document . getElementById ( ” TCr ” ) . s e t A t t r i b u t e ( ” he ight ” , dHT1) ;
848 document . getElementById ( ” TCr ” ) . s e t A t t r i b u t e ( ” y ” , yval1 ) ;
849

850 document . getElementById ( ” TPCr ” ) . s e t A t t r i b u t e ( ” he ight ” , dHT1 / 2) ;
851 document . getElementById ( ” TPCr ” ) . s e t A t t r i b u t e ( ” y ” , yval1 ) ;
852

853 document . getElementById ( ” TPCt ” ) . s e t A t t r i b u t e ( ” y ” , yvalTPC ) ;
854 document . getElementById ( ” TFCt ” ) . s e t A t t r i b u t e ( ” y ” , yvalTFC ) ;
855 document . getElementById ( ” TVCt ” ) . s e t A t t r i b u t e ( ” y ” , yvalTVC ) ;
856

857

858

859 document . getElementById ( ”TVCr” ) . s e t A t t r i b u t e ( ” he ight ” , dHTVC) ;
860 document . getElementById ( ”TVCr” ) . s e t A t t r i b u t e ( ” y ” , yval1 ) ;
861

862 dperc3 = (NPv * 100 / TRev) . toF ixed (0) ;
863

864 document . getElementById ( ”NRr” ) . s t y l e . f i l l = ” green ”
865 } e l s e {
866 dperc1 = (TRev * 100 / TCv) . toF ixed (0) ;
867 dHT1 = ( dperc1 * 0.01 * HT) . toF ixed (0) ;
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868 dHTVC = ((HT * TVCperc ) / 100) . toF ixed (0) ;
869 var yval2 = Math . abs ((HT − dHT1) ) + yva l ;
870 yvalTPC = yva l + HT / 2 + y o f f ;
871 yvalTFC = yva l + ( TVCperc * HT * 0.01) + y o f f ;
872 yvalTVC = yva l + y o f f ;
873

874 document . getElementById ( ” TCr ” ) . s e t A t t r i b u t e ( ” y ” , yva l ) ;
875 document . getElementById ( ” TCr ” ) . s e t A t t r i b u t e ( ” he ight ” , HT) ;
876

877 document . getElementById ( ” TRr ” ) . s e t A t t r i b u t e ( ” he ight ” , dHT1) ;
878 document . getElementById ( ” TRr ” ) . s e t A t t r i b u t e ( ” y ” , yval2 ) ;
879

880 document . getElementById ( ” TPCr ” ) . s e t A t t r i b u t e ( ” he ight ” , HT / 2) ;
881 document . getElementById ( ” TPCr ” ) . s e t A t t r i b u t e ( ” y ” , yva l ) ;
882

883 document . getElementById ( ” TPCt ” ) . s e t A t t r i b u t e ( ” y ” , yvalTPC ) ;
884 document . getElementById ( ” TFCt ” ) . s e t A t t r i b u t e ( ” y ” , yvalTFC ) ;
885 document . getElementById ( ” TVCt ” ) . s e t A t t r i b u t e ( ” y ” , yvalTVC ) ;
886

887

888 document . getElementById ( ”TVCr” ) . s e t A t t r i b u t e ( ” he ight ” , dHTVC) ;
889 document . getElementById ( ”TVCr” ) . s e t A t t r i b u t e ( ” y ” , yva l ) ;
890

891 dperc3 = (Math . abs (NPv) * 100 / TCv) . toF ixed (0) ;
892 document . getElementById ( ”NRr” ) . s t y l e . f i l l = ” red ”
893 }
894 dHT3 = ( dperc3 * 0.01 * HT) . toF ixed (0) ;
895 document . getElementById ( ”NRr” ) . s e t A t t r i b u t e ( ” he ight ” , dHT3) ;
896 document . getElementById ( ”NRr” ) . s e t A t t r i b u t e ( ” y ” , Math . abs ((HT − dHT3) ) + yva l ) ;
897

898 // Payback per iod p lo t (PB)
899

900 i f (PBv < PBmax) {
901 var PBperc = PBv / PBmax ;
902 var PBHt = ( PBperc * HT) . toF ixed (0) ;
903 document . getElementById ( ” PBr ” ) . s e t A t t r i b u t e ( ” y ” , yva l ) ;
904 document . getElementById ( ” PBr ” ) . s e t A t t r i b u t e ( ” he ight ” , HT) ;
905 document . getElementById ( ” PBr ” ) . s e t A t t r i b u t e ( ” he ight ” , PBHt) ;
906 document . getElementById ( ” PBr ” ) . s e t A t t r i b u t e ( ” y ” , Math . abs (( pa r seF loa t (HT) − PBHt) ) +

par seF loa t ( yva l ) ) ;
907 } e l s e {
908 document . getElementById ( ” PBr ” ) . s e t A t t r i b u t e ( ” y ” , yva l ) ;
909 document . getElementById ( ” PBr ” ) . s e t A t t r i b u t e ( ” he ight ” , HT) ;
910 }
911

912 // Break even r a t i o p lo t (BE)
913

914 i f (BEv < BEmax) {
915 var BEperc = BEv / BEmax ;
916 var BEHt = ( BEperc * HT) . toF ixed (0) ;
917 document . getElementById ( ” BEr ” ) . s e t A t t r i b u t e ( ” y ” , yva l ) ;
918 document . getElementById ( ” BEr ” ) . s e t A t t r i b u t e ( ” he ight ” , HT) ;
919 document . getElementById ( ” BEr ” ) . s e t A t t r i b u t e ( ” he ight ” , BEHt) ;
920 document . getElementById ( ” BEr ” ) . s e t A t t r i b u t e ( ” y ” , Math . abs (( pa r seF loa t (HT) − BEHt) ) +

par seF loa t ( yva l ) ) ;
921 } e l s e {
922 document . getElementById ( ” BEr ” ) . s e t A t t r i b u t e ( ” y ” , yva l ) ;
923 document . getElementById ( ” BEr ” ) . s e t A t t r i b u t e ( ” he ight ” , HT) ;
924 }
925

926 } // end of func t ion c a l c u l a t e ()
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D.3. JavaScript - User-Defined Functions for Data Visualization

1 func t ion chartDeets1 () {
2

3 var TPCch = par se In t ( document . getElementById ( ”TPC” ) . value . r ep lace ( ’ $ ’ , ’ ’ ) . r ep lace ( /\ , /g , ’ ’ ) ) ;
4 var TBRch = par se In t ( document . getElementById ( ”TBR” ) . value . r ep lace ( ’ $ ’ , ’ ’ ) . r ep lace ( /\ , /g , ’ ’ ) ) ;
5 var TCch = par se In t ( document . getElementById ( ”TC” ) . value . r ep lace ( ’ $ ’ , ’ ’ ) . r ep lace ( /\ , /g , ’ ’ ) ) ;
6 var NRch = par se In t ( document . getElementById ( ”NP” ) . value . r ep lace ( ’ $ ’ , ’ ’ ) . r ep lace ( /\ , /g , ’ ’ ) ) ;
7 var Cropch = document . getElementById ( ” FrgeP lo t ” ) . value ;
8 var Croptypch = document . getElementById ( ” TypePlot ” ) . value ;
9 var Equiptypch = document . getElementById ( ” EquipPlot ” ) . value ;

10 var TRACch = document . getElementById ( ”TRAC” ) . value ;
11 var TCACch = document . getElementById ( ”TCAC” ) . value ;
12 var NPACch = document . getElementById ( ”NPAC” ) . value ;
13 var BEch = document . getElementById ( ”BE” ) . value ;
14 var PBch = document . getElementById ( ”PB” ) . value ;
15 var ROIch = document . getElementById ( ”ROI” ) . value ;
16

17 Cropchd . value = Cropch ;
18 Croptypchd . value = Croptypch ;
19 Equiptypchd . value = Equiptypch ;
20 TRACchd . value = TRACch ;
21 TCACchd . value = TCACch ;
22 NPACchd . value = NPACch ;
23 BEchd . value = BEch ;
24 PBchd . value = PBch ;
25 ROIchd . value = ROIch ;
26

27 var c tx = document . getElementById ( ” myChart1 ” ) ;
28

29 Chart . d e f a u l t s . g loba l . elements . r e c t ang l e . borderWidth = 2;
30

31 Chart . p lug ins . r e g i s t e r ({
32 beforeDraw : func t ion ( cha r t In s t ance ) {
33 var c tx = cha r t In s t ance . char t . c t x ;
34 c tx . f i l l S t y l e = ” white ” ;
35 c tx . f i l l R e c t (0 , 0 , cha r t In s t ance . char t . width , cha r t In s t ance . char t . he ight ) ;
36 }
37 }) ;
38 i f (window . bar != undefined )
39 window . bar . des t roy () ;
40 window . bar = new Chart ( ctx , {
41 // var myChart1 = new Chart ( ctx , {
42 type : ’ bar ’ ,
43 data : {
44 l a b e l s : [ ” Tota l revenue (TR) ” , ” Tota l co s t (TC) ” , ” Net Return (NR) ” ] ,
45 d a t a s e t s : [{
46 l a b e l : ’ ’ ,
47 backgroundColor : [ ” green ” , ” red ” , ” blue ” ] ,
48 data : [TBRch , TCch , NRch] ,
49 }] ,
50 borderWidth : 10 ,
51 } ,
52 opt ions : {
53 t o o l t i p s : {
54 c a l l b a c k s : {
55 da ta se t : [1 , 2 , 3] ,
56 l a b e l : func t ion ( t o o l t i p I t e m ) {
57 re turn ”$” + Number( t o o l t i p I t e m . yLabel ) ;
58 }
59 }
60 } ,
61 re spons ive : f a l s e ,
62 t i t l e : {
63 d i s p l a y : true ,
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64 t e x t : ’ Forage economics c a l c u l a t o r web t o o l ’
65 } ,
66 legend : {
67 d i s p l a y : f a l s e ,
68 } ,
69 s c a l e s : {
70 xAxes : [{
71 barThickness : 80 , // number ( p i x e l s ) or ’ f l e x ’
72 maxBarThickness : 80 // number ( p i x e l s )
73 }] ,
74 yAxes : [{
75 g r idL ine s : {
76 co lo r : ” b lack ” ,
77 borderDash : [2 , 5] ,
78 } ,
79 t i c k s : {
80 beginAtZero : t rue
81 } ,
82 s ca l e La be l : {
83 d i s p l a y : true ,
84 l a b e l S t r i n g : ”U. S . Do l l a r s ($) ” ,
85 }}]
86 }}}) ;
87 }
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APPENDIX E. BIOMASS YIELD PREDICTION - SHAPEFILE CREATION

AND SATELLITE DATA COLLECTION

This appendix provides the procedure for creating shapefile using open-source QGIS

software and javascript source codes for extracting Landsat and Sentinel satellite images

from Google Earth Engine (GEE) using cloud mask function used in Chapter 5 “Biomass

yield prediction for pastures using remotely sensed vegetation index and climate data

through machine learning”.

E.1. Creating Shapefile Using QGIS Software

A georeferenced web map service layer can be traced to produce shapefile with

vector features using the following steps.

1. Create a georeferenced shapefile, Layer→ Create Layer→ New Shapefile Layer

2. In the new shapefile layer dialog box, enter the file name (.shp), select geometry

type as “Polygon”, and select the coordinate system and save this layer (fig.E1.A).

3. The shapefile is added to the layers box on the left hand side, right click on the

created layer and select “Toggle Editing” (fig.E1.B).

4. Select the “Add Polygon” to digitize the polygon. Click a set of points on the perime-

ter of the desired polygon, when the last point is clicked enter the id number of the

created polygon (fig.E1.C).

5. If needed, more polygons can be added to the same layer and once done, right click

on the shapefile layer on the left hand side and click the “Toggle Editing” button

again to finish editing the shapefile layer.
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A B C

Figure E1. Creating polygon shapefile using QGIS software.

E.2. Collecting Landsat and Sentinel Data From the GEE Archive

1 # Cloud mask func t ion
2 var cloudMaskL457 = func t ion ( image ) {
3 var qa = image . s e l e c t ( ’ p i x e l qa ’ ) ;
4 var cloud = qa . bitwiseAnd (1 << 5)
5 . and( qa . bitwiseAnd (1 << 7) )
6 . or ( qa . bitwiseAnd (1 << 3) ) ;
7 var mask2 = image . mask () . reduce ( ee . Reducer . min () ) ;
8 re turn image . updateMask ( cloud . not () ) . updateMask (mask2) ;
9 } ;

10

11 # S e l e c t i n g Landsat or Sen t ine l a r ch ive
12 var da ta se t = ee . ImageCol lec t ion ( ’LANDSAT/LT05/C01/T1 SR ’ )
13 . f i l t e r D a t e ( ’2012−05−01 ’ , ’ 2012−08−31 ’ )
14 .map( cloudMaskL457 ) ;
15 var year = ’ 2017 ’
16 var landsa t = da ta se t . median () . c l i p ( geometry ) ;
17 p r i n t ( geometry ) ;
18

19 # V i s u a l i z i n g s a t e l l i t e image on base map
20 var visParams = {
21 bands : [ ’ B3 ’ , ’ B2 ’ , ’ B1 ’ ] ,
22 min : 0 ,
23 max: 3000 ,
24 gamma: 1 .4 ,
25 } ;
26 Map. se tCente r (−100.91386732871885, 46.770380732680884 ,15) ;
27 Map. addLayer ( landsat , visParams , ’ 2003 ’ ) ;
28

29 # Export ing the s e l e c t e d image to Google dr i ve
30 Export . image . toDr ive ({
31 image : landsat ,
32 d e s c r i p t i o n : year ,
33 s c a l e : 30 ,
34 reg ion : geometry
35 })
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APPENDIX F. BIOMASS YIELD PREDICTION - R SOURCE CODES FOR

SATELLITE BAND EXTRACTION, DATA SIMULATION AND MACHINE

LEARNING APPROACHES

This appendix provides R source codes for the Chapter 5 “Biomass yield prediction

for pastures using remotely sensed vegetation index and climate data through machine

learning”. The R codes for satellite data extraction, data simulation, feature selection, and

machine learning are shown below.

F.1. User-Defined Function to Extract the Raster (Satellite) Image Values Based on

the Pasture Shapefile

1 e x t r c t S a t V a l <− func t ion ( f l de r , shp f l , s r c ){
2 a l l l andsa t bands <− l i s t . f i l e s ( f l de r , pa t te rn = ” . t i f $” , f u l l . names = TRUE) # d o l l a r s ign at the

end to get a l l f i l e s end with t i f
3 l a n d s a t v a l <− data . frame ()
4 f i e l d boundary <− s t read ( s h p f l ) # boundary f i l e
5 f o r ( i in 1: length ( a l l l andsa t bands ) ){
6 f i lnme <− a l l l andsa t bands [ i ] # t i f f f i l e
7 img <− stack ( f i lnme )
8 exc l1 <− fi lnme ; exc l2 <− s t r remove ( excl1 , s p r i n t f ( ”%s / ” , f l d e r ) ) ; e x c l f <− s t r remove ( excl2 , ” .

t i f ” )
9 band v a l s <− cbind ( Date = as . Date ( exc l f , ”%Y %m %d” ) , f i e l d boundary , exact e x t r a c t ( img , f i e l d

boundary , ’mean ’ ) , Source = s r c ) # zonal s t a t i s t i c s
10 l a n d s a t v a l <− rbind ( landsa tva l , band v a l s )
11 }
12 re turn ( l a n d s a t v a l )
13 }
14

15 f l d e r I n <− ” /Volumes/ GoogleDrive /Shared d r i v e s /1 Subhashree NDSU PhD Work/1 ForageY ie ldPrec t ion
Data/Data/ DrToledoData /1 CubeSat/2018”

16 s h p f l I n <− ” /Volumes/ GoogleDrive /Shared d r i v e s /1 Subhashree NDSU PhD Work/1 ForageY ie ldPrec t ion
Data/Data/ Shp f lPas tu re MGP/ PasturesArea4 . shp ”

17

18 r e sVa l <− e x t r c t S a t V a l ( f l d e r I n , shp f l In , ”DT” )
19 head ( re sVa l )
20

21 wri te . csv ( resVal , f i l e=” /Volumes/ GoogleDrive /Shared d r i v e s /1 Subhashree NDSU PhD Work/1
ForageY ie ldPrec t ion Data/Data/ DrToledoData /1 CubeSat/2018/CubeSatSatDT2018 . csv ” , row . names =
T) # Export ing ex t ra c t ed va lues as . csv f i l e

285



F.2. Band Data Simulation Using Loess Fit Performed for Each Pasture

1 # Loess random sampling func t ion
2 DataSimUsingLoess <− func t ion ( dat , xv , yv , smpl , rep l , sd p){
3 ranx <− seq (min( dat %>% dplyr : : s e l e c t ( xv ) ) , max( dat %>% dplyr : : s e l e c t ( xv ) ) , by = 1)
4 f i t d <− l o e s s ( pas te ( yv , ” ˜ ” , xv ) , data = dat )
5 pred l <− p r e d i c t ( f i t d , ranx , se = T)
6 l c l <− predl $ f i t − qt (0.975 , pred l $df ) * pred l $se # ht tp s : // s tackover f low . com/ ques t ions /22717930/how

−to−get−the−confidence−i n t e r v a l s −for−lowess−f i t −using−r
7 l cu <− predl $ f i t + qt (0.975 , pred l $df ) * pred l $se
8 predsSDl <− as . data . frame ( cbind ( ranx , pred l $ f i t , l c l , l cu ) )
9 colnames ( predsSDl ) = c ( ” ranx ” , ” f i t ” , ” lwr ” , ” upr ” )

10 predsSDl$spd <− sd ( c ( predsSDl$ f i t , predsSDl$lwr , predsSDl$upr ) )
11 predsSDl$spd2 <− ( predsSDl$ f i t − predsSDl$lwr ) / 1.75
12 big data <− data . frame ()
13 f o r ( i in 1:nrow( predsSDl ) ) {
14 spd <− ( predsSDl$ f i t [ i ] − predsSDl$lwr [ i ]) / 1.75
15 n f i t <− rnorm( repl , predsSDl$ f i t [ i ] , spd )
16 xp <− rep ( predsSDl$ranx [ i ] , r ep l )
17 yp <− rep ( predsSDl$ f i t [ i ] , r ep l )
18 c l <− rep ( predsSDl$lwr [ i ] , r ep l )
19 cu <− rep ( predsSDl$upr [ i ] , r ep l )
20 dat1 <− as . data . frame ( cbind (xp , yp , c l , cu , n f i t ) )
21 dat1$ i <− i # keeping t ra ck of i t e r a t i o n s
22 big data <− rbind ( big data , dat1 )
23 # d a t a l i s t [[ i ]] <− dat1 # add to the l i s t
24 }
25 colnames ( big data ) <− c ( ”DOY” , ” F i t t e d Y i e l d ” , ”ConfLow” , ” ConfUp ” , ” RandYield ” , ” i ” )
26 re turn ( big data )
27 }
28

29 PID <− ”MGP” ; yr <− 2006 # change
30 Sdat <− Vdat %>% f i l t e r ( Pas ture == PID )
31 head ( Sdat )
32

33 x f <− ”DOY” ; y f <− ”SWIR2” ; da t f <− Sdat # change input s
34 r e s <− DataSimUsingLoess ( dat f , xf , yf , 200 , 4 , 1.75)
35 out <− res %>% dplyr : : s e l e c t ( ”DOY” , ” RandYield ” )
36

37 # Export ing the generated random band data in to csv
38 out$Year <− yr ; out$ Pas ture <− PID ; out$ v a r i a b l e <− yf ; out$Date <− format ( as . Date ( out$DOY,

o r i g i n = ”2006−01−01” ) )
39 out f <− out [ , c (4 , 3 , 6 , 1 , 5 , 2) ]
40 out f ; head ( out f )

F.3. Combining Simulated Band Data Into a Data Frame and Filtering Using Date

1 # Import ing s imulated band va lues
2 f l d e r <− s e l e c t D i r e c t o r y ( capt ion = ” S e l e c t D i r e c to ry ” , l a b e l = ” S e l e c t ” , path = g e t A c t i v e P r o j e c t

() )
3 AlBands <− l i s t . f i l e s ( f l de r , pa t te rn = ” . csv$” , f u l l . names = TRUE)
4 Blue <− read csv ( AlBands [1]) ; Green <− read csv ( AlBands [2]) ; NIR <− read csv ( AlBands [3]) ; Red <−

read csv ( AlBands [4]) ;
5 SWIR <− read csv ( AlBands [5]) ; SWIR2 <−read csv ( AlBands [6])
6 i d e n t i c a l ( Blue [ ,1 :4 ] , Green [ ,1 :4 ] ) ; i d e n t i c a l ( Green [ ,1 :4 ] , Red [ ,1 :4 ] ) ; i d e n t i c a l (Red [ ,1 :4 ] , NIR

[ ,1 :4 ] ) ; i d e n t i c a l (NIR [ ,1 :4 ] , SWIR[ ,1 :4 ] ) ; i d e n t i c a l (SWIR[ ,1 :4 ] , SWIR2[ ,1 :4 ] )
7

8 # Combined band va lues data frame
9 dbnds <− as . data . frame ( cbind ( Blue [ , 1 :4] , Blue [ ,6] , Green [ ,6] , Red [ ,6] , NIR [ ,6] , SWIR[ ,6] , SWIR2

[ ,6] ) )
10 colnames ( dbnds ) <− c ( ” Pas ture ” , ” Year ” , ” Date ” , ”DOY” , ” Blue ” , ” Green ” , ”Red” , ”NIR” , ”SWIR” , ”

SWIR2” )
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11 dbnds$Date <− mdy( dbnds$Date )
12 dbnds <− dbnds %>% f i l t e r ( Pas ture == ”MGP” )
13

14 # Import ing l i v e biomass data
15 pth <− f i l e . choose ()
16 datBm <− read . csv ( pth )
17 datBm$Year <− as . numeric (datBm$Year ) ; datBm$DOY <− as . numeric (datBm$DOY) ; datBm$Date <− mdy(datBm

$Date )
18 LvB04 <− datBm %>% f i l t e r ( Year == 2006)
19

20 StDt <− LvB04$Date [1]
21

22 i f ( LvB04$Date [1] < dbnds$Date [1]){
23 StDt <− dbnds$Date [1]
24 } e l s e {
25 StDt <− LvB04$Date [1]
26 }
27

28 i f ( LvB04$Date [nrow(LvB04) ] < dbnds$Date [nrow( dbnds ) ]){
29 EnDt <− LvB04$Date [nrow(LvB04) ]
30 } e l s e {
31 EnDt <− dbnds$Date [nrow( dbnds ) ]
32 }
33

34 StDt ; EnDt
35

36 LvB04F <− LvB04 %>% f i l t e r ( Date >= StDt & Date <= EnDt )
37 dbndsF <− dbnds %>% f i l t e r ( Date >= StDt & Date <= EnDt )
38 #s t r (LvB04F) ; s t r ( dbndsF )
39 i d e n t i c a l ( LvB04F [ ,4] , dbndsF [ ,4] )
40

41 datb <− cbind (LvB04F [ , 1 :4] , LvBiom = LvB04F[ ncol (LvB04F) ] , dbndsF [5 : ncol ( dbndsF ) ]) ; colnames (
datb ) [5] <− ” LvBiom ”

F.4. Estimating Vegetation Indices

1 # 1. V i s i b l e band vege ta t ion i n d i c e s
2 Blv <− datb$Blue ; Grv <− datb$Green ; Rdv <− datb$Red ; Nirv <− datb$NIR ; Swv <− datb$SWIR; Sw2v <−

datb$SWI2
3

4 # 2. Red chromatic co lo r coord inate
5 datb$RCC <− Rdv/ (Rdv + Grv + Blv )
6

7 # 3. Green chromatic co lo r coord inate
8 datb$GCC <− Grv/ (Rdv + Grv + Blv )
9

10 # 4. Blur chromatic co lo r coord inate
11 datb$BCC <− Blv / (Rdv + Grv + Blv )
12

13 # 5. Exces s i ve green index
14 datb$ExG <− 2*Grv − Blv − Rdv
15

16 # 6. Exces s i ve green index v2
17 datb$ExG2 <− (2*Grv − Blv − Rdv) / (Rdv + Grv + Blv )
18

19 # 7. Excess red index
20 datb$ExR <− (1.4 *Rdv − Grv ) / (Rdv + Grv + Blv )
21

22 # 8. Excess green minus excess red index
23 datb$ExGR <− datb$ExG2 − datb$ExR
24

25 # 9. Green red vege ta t ion index
26 datb$GRVI <− ( Grv − Rdv) / ( Grv + Rdv)
27
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28 # 10. Green blue vege ta t ion index
29 datb$GBVI <− ( Grv − Blv ) / ( Grv + Blv )
30

31 # 11. Blue red vege ta t ion index
32 datb$BRVI <− ( Blv − Rdv) / ( Blv + Rdv)
33

34 # 12. Green red r a t i o
35 datb$G R <− Grv/Rdv
36

37 # 13. Green−Red d i f f e r e n c e
38 datb$G R d i f f <− Grv − Rdv
39

40 # 14. Blue−Green d i f f e r e n c e
41 datb$B Gd i f f <− Blv − Grv
42

43 # 15. V i s i b l e −band d i f f e r e n c e vege ta t ion index
44 datb$VDVI <− (2*Grv − Rdv − Blv ) / (2*Grv + Rdv + Blv )
45

46 # 16. V i s i b l e a tmospher i ca l l y r e s i s t a n t index
47 datb$VARI <− ( Grv − Rdv) / ( Grv + Rdv − Blv )
48

49 # 17. Modif ied green red vege ta t ion index
50 datb$MGRVI <− ( Grvˆ2 − Rdvˆ2) / ( Grvˆ2 + Rdvˆ2)
51

52 # 18. Color index of vege ta t ion
53 datb$CIVE <− 0.441*Rdv − 0.881*Grv + 0.385* Blv + 18.787
54

55 # 19. Woebbecke index
56 datb$WI <− ( Grv − Blv ) / (Rdv − Grv )
57

58 # 20. Co lora t ion index
59 datb$CI <− (Rdv − Blv ) /Rdv
60

61 # 21. Normalized d i f f e r e n c e vege ta t ion index
62 datb$NDVI <− ( Nirv − Rdv) / ( Nirv + Rdv)
63

64 # 22. Green normalized d i f f e r e n c e vege ta t ion index
65 datb$GNDVI <− ( Nirv − Grv ) / ( Nirv + Grv )

F.5. Machine Learning - Recursive Feature Elimination and Random Forest

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 # Recurs ive f ea tu r e e l im ina t i on
3 s e t . seed (1234)
4

5 # Define the con t ro l us ing a random f o r e s t s e l e c t i o n func t ion
6 con t ro l <− rfe Con t ro l ( func t i on s = rfFuncs , # random f o r e s t
7 method = ” repeatedcv ” , # repeated cv
8 repea t s = 2 , # number of repea t s
9 number = 10) # number of f o l d s

10

11 t r a inY <− as . matr ix ( datT %>% dplyr : : s e l e c t (LvBiom) ) # conver t ing y to a matr ix otherwise e r ro r
produced

12 t r a inX <− datT %>% dplyr : : s e l e c t ( Blue : Min Wind C h i l l )
13

14 # s t r ( t r a inX ) ; s t r ( t r a inY )
15 # c l a s s ( t r a inY )
16

17 # Run RFE
18 RFESys <− system . time ( r e s u l t r f e1 <− r f e ( x = tra inX ,
19 y = tra inY ,
20 s i z e s = c (1:13) ,
21 r f eCon t ro l = con t ro l ) )
22
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23 # P r i n t the r e s u l t s
24 Impvar <− as . matr ix ( varImp ( r e s u l t r f e1 ) )
25 datImp <− r e s u l t r f e1 $ v a r i a b l e s
26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 # S p l i t t i n g da ta se t in to t r a i n i n g and t e s t i n g
28 s e t . seed (1234)
29 ind <− sample (2 , nrow( datT ) , r ep lace = T , prob = c (0.70 , 0.30) )
30 t r a inB <− datT [ ind == 1 ,]
31 t e s t B <− datT [ ind == 2 ,]
32 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 # Machine l ea rn ing − Random f o r e s t
34 AlRanked <− RfeFR
35

36 t r a i nS <− tra inB \%>\% dplyr : : s e l e c t (LvBiom , AlRanked )
37 t e s t S <− te s t B \%>\% dplyr : : s e l e c t (LvBiom , AlRanked )
38

39 #s t r ( t r a inS ) ; s t r ( t e s t S )
40

41 m1 <− randomForest ( formula = LvBiom ˜ . ,
42 data = tra inS , do . t r a c e = F)
43 # m1;
44 # plo t (m1)
45

46 # number of t r e e s with lowest MSE
47 nt re <− which . min(m1$mse) ; n t re
48

49 model c a r e t <− c a r e t : : t r a i n (LvBiom ˜ . , data=tra inS ,
50 method = ” ranger ” ,
51 t r C o n t r o l = t r a i n C o n t r o l (method=” cv ” , number = 10) ,
52 num. t r e e s = ntre ,
53 importance = ’ impur i ty ’ )
54

55 saveRDS (model care t , ”RF model . rds ” )
56

57 # P r e d i c t i n g accuracy of the t r a i n i n g data
58 r f s <− p r e d i c t (model care t , t r a i nS )
59 rmse <− s q r t (mean(( t r a inS $LvBiom − r f s ) ˆ2) )
60 R2 <− round ( cor ( t r a inS $LvBiom , r f s ) ˆ2 ,2)
61

62 # P r e d i c t i n g accuracy of the t e s t i n g data
63 r f s <− p r e d i c t (model care t , t e s t S )
64 rm <− Metr i c s : : rmse ( t e s t S $LvBiom , r f s )
65 R2 <− round ( cor ( t e s t S $LvBiom , r f s ) ˆ2 ,2)
66 me <− Metr i c s : : mae( t e s t S $LvBiom , r f s )
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APPENDIX G. RANGEFORAGE WEB TOOL - R SOURCE CODES FOR

USER INTERFACE AND SERVER

This appendix provides R source codes for the Chapter 6 “Development of a user-

friendly rangeland forage yield prediction web tool”. The R codes for the user interface

and server side are presented below.

G.1. User Interface R Code for Tool Development

1 ui <− f lu idPage (
2 theme = shinytheme ( ” dark ly ” ) ,
3 f l u idPage (
4 t ags $ s t y l e (
5 HTML(
6 ’
7 #s idebar {
8 background−co lo r :#006633;
9 co lo r : white ;

10 }
11 . navbar{
12 background−co lo r : #f f c c00 ! important ;
13 co lo r : #006633;
14 font−weight : bold ;
15 }
16 . navbar−nav : hover {
17 co lo r : b lack ;
18 }
19 body , l abe l , input , button , s e l e c t {
20 font−fami ly : ” A r i a l ” ;
21 } ’
22 )
23 ) ,
24 navbarPage (
25 theme = ” ceru lean ” ,
26 # <−−− To use a theme , uncomment t h i s
27 ” Forgage y i e l d p r e d i c t i o n c a l c u l a t o r ” ,
28 tabPanel ( ” Ca l cu l a to r ” ,
29 s idebarLayout (
30 ## adding s idebar panel in page layout f o r p i ck ing data
31 s idebarPane l (
32 id = ” s idebar ” ,
33 f i l e I n p u t (
34 ” shpF i l e ” ,
35 ” Upload s h a p e f i l e ( . shp f i l e ) ” ,
36 mul t ip l e = T ,
37 accept = c ( ” . shp ” , ” . cpg ” , ” . dbf ” , ” . p r j ” , ” . qpj ” , ” . shx ” )
38 ) ,
39 f i l e I n p u t (
40 ” r s t F i l e ” ,
41 ” Upload r a s t e r ( . t i f f i l e ) ” ,
42 mul t ip l e = F ,
43 accept = c ( ” . t i f ” )
44 ) ,
45 s l i d e r I n p u t (
46 ”C1” ,
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47 div (HTML( ” Average t u r f s o i l temperature (&degF ) : ” ) ) ,
48 min = 0 ,
49 max = 100 ,
50 value = 50
51 ) ,
52 s l i d e r I n p u t (
53 ”C2” ,
54 div (HTML( ” Average bare s o i l temperature (&degF ) ” ) ) ,
55 min = 0 ,
56 max = 100 ,
57 value = 50
58 ) ,
59 f luidRow (
60 column (12 , ac t ionBut ton ( ” Pred ” , ” Est imate biomass ” ) ,
61 a l i g n = ” cente r ” ) ,
62 )
63 ) , # end s idebarPane l
64 mainPanel ( l e a f l e t O u t p u t ( ”map” ) , ## Bas i c map f o r user to explore
65 f l u idPage ( fluidRow (
66 column (6 ,
67 tableOutput ( ” values1 ” ) , a l i g n = ” cente r ” ) ,
68 column (6 ,
69 tableOutput ( ” values2 ” ) , a l i g n = ” cente r ” ) ,
70 ) ,
71 f luidRow ( column (12 , textOutput ( ” ResOut ” ) , a l i g n = ” cente r ” ) ) ) )
72 ) # End s idebarLayout 1
73 ) ,# End tab panel 1
74 tabPanel ( ” Data v i s u a l i z a t i o n ” ,
75 s idebarLayout (
76 ## adding s idebar panel in page layout f o r p i ck ing data
77 s idebarPane l (
78 id = ” s idebar2 ” ,
79 s h i n y j s : : u seSh iny j s () ,
80 f luidRow (
81 column (6 ,
82 checkboxInput ( ” gc i ID ” , ”GCI ” , FALSE) ) ,
83 column (6 ,
84 checkboxInput ( ” msaviID ” , ”MSAVI” , FALSE) ) ) ,
85 f luidRow (
86 column (6 ,
87 checkboxInput ( ” gndviID ” , ”GNDVI” , FALSE) ) ,
88 column (6 ,
89 checkboxInput ( ” sav i ID ” , ” SAVI ” , FALSE) ) ) ,
90 f luidRow (
91 column (6 ,
92 checkboxInput ( ” rcc ID ” , ”RCC” , FALSE) ) ,
93 column (6 ,
94 checkboxInput ( ” ndviID ” , ”NDVI” , FALSE) ) ) ,
95 ) , # end s idebarPane l
96 ## Main Panel 2
97 mainPanel (
98 textOutput ( ” outT ” ) ,
99 l e a f l e t O u t p u t ( ”mapn” ) ,

100 tableOutput ( ” tab le3 ” ) ,
101 )
102 ) # End s idebarLayout 2
103 ) , # End tabPanel 2
104 tabPanel ( ” About ” , ” This panel i s i n t e n t i o n a l l y l e f t blank ” )
105 ) # c l o s e navbarPage
106 ) # s t y l e f lu idPage
107 ) ## c l o s e ui
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G.2. Server R Code for Tool Development

1 s e r ve r <− func t ion ( input , output , s e s s i o n ) {
2 uploadShpf i l e <− r e a c t i v e ({
3 i f ( ! i s . n u l l ( input$ shpF i l e ) ) {
4 shpDF <− input$ shpF i l e
5 prevWD <− getwd ()
6 uploadDirec tory <− dirname (shpDF$datapath [1])
7 setwd ( uploadDirec tory )
8 f o r ( i in 1:nrow(shpDF) ) {
9 f i l e . rename(shpDF$datapath [ i ] , shpDF$name[ i ])

10 }
11 shpName <−
12 shpDF$name[ grep ( x = shpDF$name , pa t te rn = ” * . shp ” ) ]
13 shpPath <− paste ( uploadDirectory , shpName , sep = ” / ” )
14 setwd (prevWD)
15 shpF i l e <− s h a p e f i l e ( shpPath )
16 # shpF i l e <− s t read ( shpPath )
17 re turn ( shpF i l e )
18 } e l s e {
19 re turn ()
20 }
21 })
22

23 output$map <−
24 r e n d e r L e a f l e t ({
25 ## begin render ing l e a f l e t and s t o r e as ’map ’ in se rve r output
26 l e a f l e t ( ) %>% addProv ide rT i l e s ( p rov ide r s $ E s r i . NatGeoWorldMap) %>% ## Add basemap
27 addScaleBar () %>% #add dynamic s c a l e bar
28 addDrawToolbar (
29 po ly l ineOpt ions = FALSE ,
30 c i r c l e O p t i o n s = FALSE ,
31 polygonOptions = TRUE,
32 markerOptions = FALSE ,
33 c i r c l eMarkerOpt ions = FALSE ,
34 rec tang leOpt ions = FALSE ,
35 s i ng l eFea tu re = FALSE ,
36 ed i tOpt ions = edi tToo lbarOpt ions ()
37 ) %>%
38 setView ( l a t = 46.769 ,
39 lng = −100.916,
40 zoom = 10)
41 }) ## c l o s e map
42

43 observeEvent ( input$ shpF i le , {
44 crd <− coord ina te s ( up loadShpf i l e () )
45 l t l n <− crd [1 ,]
46 l e a f l e t P r o x y ( ”map” ) %>%
47 addPolygons ( data = uploadShpf i l e () ) %>%
48 f l yTo ( l a t = l t l n [2] ,
49 lng = l t l n [1] ,
50 zoom = 15)
51 })
52

53 img <− r e a c t i v e ({
54 f <− input$ r s t F i l e
55 r a s t e r : : r a s t e r ( f $datapath )
56 })
57

58 observeEvent ( input$ r s t F i l e , {
59 r s t <− img ()
60 s p t s <− r as t e rTo Po in t s ( r s t , s p a t i a l = TRUE)
61 l l p t s <− spTransform ( spts , CRS( ”+pro j=l o n g l a t +e l l p s=WGS84 +datum=WGS84 +no def s +towgs84

=0,0 ,0 ” ) )

292



62 crd <− coord ina te s ( l l p t s )
63 xmin <− min( crd [ ,1] ) ; xmax <− max( crd [ ,1] ) ; ymin <− min( crd [ ,2] ) ; ymax <− max( crd [ ,2] )
64 x <− xmin + (xmax − xmin) /2
65 y <− ymin + (ymax − ymin) /2
66 l e a f l e t P r o x y ( ”map” ) %>%
67 c lear Images () %>%
68 addRasterImage ( img () , p r o j e c t = F) %>%
69 f l yTo ( l a t = y ,
70 lng = x ,
71 zoom = 15)
72 })
73

74 # Reading the t i f f i l e as r a s t e r b r i c k f o r e x t r a c t i n g bands
75 r s t a c k <− r e a c t i v e ({
76 req ( input$ r s t F i l e )
77 f <− input$ r s t F i l e
78 r a s t e r : : b r i c k ( f $datapath )
79 })
80

81 # E x t r a c t i n g bands to show in t a b l e
82

83 extB <− r e a c t i v e ({
84 req ( up loadShpf i l e () , r s t a c k () )
85 valB <− e x a c t e x t r a c t r : : exact e x t r a c t ( r s t a c k () , up loadShpf i l e () , ’mean ’ )
86 re turn ( valB )
87 })
88

89 est imatedBands <− r e a c t i v e ({
90 req ( extB () )
91 va l <− extB ()
92 dataIn <− data . frame (
93 ” Bands (mean , um) ” = c ( ” Blue ” ,
94 ” Green ” ,
95 ”Red” ,
96 ” Near i n f r a r e d ” ) ,
97 Value = as . cha rac t e r ( c ( round ( va l [ [1] ] ) ,
98 round ( va l [ [2] ] ) ,
99 round ( va l [ [3] ] ) ,

100 round ( va l [ [4] ] ) ) ) ,
101 s t r i n g s A s F a c t o r s = FALSE ,
102 check . names = FALSE)
103 }
104 )
105

106 es t imatedVI <− r e a c t i v e ({
107 req ( extB () )
108 va l <− extB ()
109 Blv <− val [[1]]
110 Grv <− val [[2]]
111 Rdv <− val [[3]]
112 Nirv <− val [[4]]
113 SAVI <− (( Nirv − Rdv) / ( Nirv + Rdv + 0.5) ) * (1 .5)
114 MSAVI <− (2 * Nirv + 1 − s q r t ((2 * Nirv + 1) ˆ 2 − 8 * ( Nirv − Rdv) ) ) / 2
115 GNDVI <− ( Nirv − Grv ) / ( Nirv + Grv )
116 GCI <− ( Nirv ) / ( Grv − 1)
117 NDVI <− ( Nirv − Rdv) / ( Nirv + Rdv)
118 RCC <− Rdv/ (Rdv + Blv + Grv )
119 ca t ( ”RCC = ” , RCC, ”\n” )
120 dataIn <− data . frame (
121 ” Vegetat ion index ” = c ( ” SAVI ” ,
122 ”MSAVI” ,
123 ”GNDVI” ,
124 ”GCI ” ,
125 ”NDVI” ,
126 ”RCC” ) ,
127 Value = as . cha rac t e r ( c (
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128 round (SAVI , 3) ,
129 round (MSAVI , 3) ,
130 round (GNDVI , 3) ,
131 round (GCI , 3) ,
132 round (NDVI , 3) ,
133 round (RCC, 3)
134 ) ) ,
135 s t r i n g s A s F a c t o r s = FALSE ,
136 check . names = FALSE
137 )
138 })
139

140 # Show the va lues in an HTML t a b l e −−−−
141

142 # Bands v a r i a b l e t a b l e
143 output$values1 <− renderTable ({
144 estimatedBands ()
145 })
146

147 # VI t a b l e
148 output$values2 <− renderTable ({
149 es t imatedVI ()
150 })
151

152 # Resu l t output
153

154 Resv <− r e a c t i v e ({
155 req ( extB () )
156 va l <− extB ()
157 Blv <− val [[1]]
158 Grv <− val [[2]]
159 Rdv <− val [[3]]
160 Nirv <− val [[4]]
161 SAVI <− (( Nirv − Rdv) / ( Nirv + Rdv + 0.5) ) * (1 .5)
162 MSAVI <− (2 * Nirv + 1 − s q r t ((2 * Nirv + 1) ˆ 2 − 8 * ( Nirv − Rdv) ) ) / 2
163 GNDVI <− ( Nirv − Grv ) / ( Nirv + Grv )
164 GCI <− ( Nirv ) / ( Grv − 1)
165 NDVI <− ( Nirv − Rdv) / ( Nirv + Rdv)
166 RCC <− Rdv/ (Rdv + Blv + Grv )
167 ca t ( ” RCCresv = ” , RCC, ”\n” )
168 Inp <− data . frame ( cbind (
169 ” SAVI ” = round (SAVI , 3) , ”MSAVI” = round (MSAVI , 3) , ”GNDVI” = round (GNDVI , 3) , ”GCI ” = round

(GCI , 3) ,
170 ”NDVI” = round (NDVI , 3) , ”RCC” = round (RCC, 3) , ” Blue ” = round ( Blv , 3) , ”NIR” = round ( Nirv ,

3) , ”AvgT S o i l ” = input$C1 , ”AvgB S o i l ” = input$C2) )
171 model c a r e t <− readRDS( ”RF TrainModel CubeSat . rds ” )
172 r f s <− round ( p r e d i c t (model care t , Inp ) , 2)
173 re turn ( r f s )
174 p r i n t ( Inp )
175 })
176

177 observeEvent ( input$Pred , {
178 output$ResOut <− renderText ({
179 pas te ( ” Biomass y i e l d p r e d i c t i o n = ” , Resv () , ” kg/ha ” )
180 })
181 })
182

183

184 # tabPanel 2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
185

186 # Text heading output
187 output$outT <− renderText ({
188 i f ( input$gndviID == TRUE){
189 ” Vegetat ion index s e l e c t e d : green normalized d i f f e r e n c e vege ta t ion index (GNDVI) ”
190 } e l s e i f ( input$ndviID == TRUE){
191 ” Vegetat ion index s e l e c t e d : normalized d i f f e r e n c e vege ta t ion index (NDVI) ”
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192 } e l s e i f ( input$ sav i ID == TRUE){
193 ” Vegetat ion index s e l e c t e d : s o i l ad jus ted vege ta t ion index ( SAVI ) ”
194 } e l s e i f ( input$ rcc ID == TRUE){
195 ” Vegetat ion index s e l e c t e d : red chromatic coord inate (RCC) ”
196 } e l s e i f ( input$msaviID == TRUE){
197 ” Vegetat ion index s e l e c t e d : modif ied s o i l ad jus ted vege ta t ion index (MSAVI) ”
198 } e l s e i f ( input$ gc i ID == TRUE){
199 ” Vegetat ion index s e l e c t e d : green c h l o r op hy l l index (GCI) ”
200 } e l s e {
201 ” Vegetat ion index s e l e c t e d : ”
202 }
203 })
204

205 # Est imat ing VIs
206

207 uploadShpfi leRead <− r e a c t i v e ({
208 i f ( ! i s . n u l l ( input$ shpF i l e ) ) {
209 shpDF <− input$ shpF i l e
210 prevWD <− getwd ()
211 uploadDirec tory <− dirname (shpDF$datapath [1])
212 setwd ( uploadDirec tory )
213 f o r ( i in 1:nrow(shpDF) ) {
214 f i l e . rename(shpDF$datapath [ i ] , shpDF$name[ i ])
215 }
216 shpName <−
217 shpDF$name[ grep ( x = shpDF$name , pa t te rn = ” * . shp ” ) ]
218 shpPath <− paste ( uploadDirectory , shpName , sep = ” / ” )
219 setwd (prevWD)
220 shpF i l e <− s t read ( shpPath )
221 re turn ( shpF i l e )
222 } e l s e {
223 re turn ()
224 }
225 })
226

227 ra s <− r e a c t i v e ({
228 req ( uploadShpfi leRead () , r s t a c k () )
229 shp1 <− s f : : s t t ransform ( uploadShpfi leRead () , c r s ( r s t a c k () ) )
230 m1 <− r a s t e r : : mask( r s t a c k () , shp1 )
231 re turn (m1)
232 })
233

234 ndviV <− r e a c t i v e ({
235 ndvi <− ( ras () $ n i r − ras () $red ) / ( ras () $ n i r + ras () $red )
236 re turn ( ndvi )
237 })
238

239 gndviV <− r e a c t i v e ({
240 gndvi <− ( ras () $ n i r − ras () $green ) / ( ras () $ n i r + ras () $green )
241 re turn ( gndvi )
242 })
243

244 gciV <− r e a c t i v e ({
245 gc i <− ras () $ n i r / ( ras () $green − 1)
246 re turn ( gc i )
247 })
248

249 rccV <− r e a c t i v e ({
250 r c c <− ras () $red / ( ras () $red + ras () $green + ras () $blue )
251 re turn ( r c c )
252 })
253

254 sav iV <− r e a c t i v e ({
255 s a v i <− (( ras () $ n i r − ras () $red ) / ( ras () $ n i r + ras () $red + 0.5) ) * (1 .5)
256 re turn ( s a v i )
257 })
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258

259 msaviV <− r e a c t i v e ({
260 msavi <− (2 * ras () $ n i r + 1 − s q r t ((2 * ras () $ n i r + 1)ˆ2 − 8 * ( ras () $ n i r − ras () $red ) ) ) / 2
261 re turn ( msavi )
262 })
263

264

265 # Raster base map
266 output$mapn <−
267 r e n d e r L e a f l e t ({
268 ## begin render ing l e a f l e t and s t o r e as ’map ’ in se rve r output
269 l e a f l e t ( ) %>% addProv ide rT i l e s ( p rov ide r s $ E s r i . NatGeoWorldMap) %>% ## Add basemap
270 addScaleBar () %>% #add dynamic s c a l e bar
271 addDrawToolbar (
272 po ly l ineOpt ions = FALSE ,
273 c i r c l e O p t i o n s = FALSE ,
274 polygonOptions = TRUE,
275 markerOptions = FALSE ,
276 c i r c l eMarkerOpt ions = FALSE ,
277 rec tang leOpt ions = FALSE ,
278 s i ng l eFea tu re = FALSE ,
279 ed i tOpt ions = edi tToo lbarOpt ions ()
280 ) %>%
281 setView ( l a t = 46.769 ,
282 lng = −100.916,
283 zoom = 10)
284 }) ## c l o s e map
285

286 VId i sp <− func t ion ( v In f ){
287 r s t <− vIn f
288 s p t s <− r as t e rTo Po in t s ( r s t , s p a t i a l = TRUE)
289 l l p t s <− spTransform ( spts , CRS( ”+pro j=l o n g l a t +e l l p s=WGS84 +datum=WGS84 +no def s +towgs84

=0,0 ,0 ” ) )
290 crd <− coord ina te s ( l l p t s )
291 xmin <− min( crd [ ,1] ) ; xmax <− max( crd [ ,1] ) ; ymin <− min( crd [ ,2] ) ; ymax <− max( crd [ ,2] )
292 x <− xmin + (xmax − xmin) /2
293 y <− ymin + (ymax − ymin) /2
294 pal <− colorNumeric ( ”RdYlGn” , va lues ( v In f ) , na . co lo r = ” t ransparen t ” )
295 l e a f l e t P r o x y ( ”mapn” ) %>%
296 c lear Images () %>%
297 addRasterImage ( vInf , c o l o r s = pal , p r o j e c t = F) %>%
298 setView ( l a t = y ,
299 lng = x ,
300 zoom = 20) %>%
301 addLegend ( pal = pal , va lues = values ( v In f ) , t i t l e = ” Vegeta t ion index ” , p o s i t i o n = ”

bottomright ” )}
302

303

304 varVI <− c ( ” gc i ID ” , ” msaviID ” , ” sav i ID ” , ” rcc ID ” , ” ndviID ” , ” gndviID ” )
305

306

307 DisEnbFnc <− func t ion ( inPID , ViD , IndFn ){
308 i f ( inPID == TRUE){
309 VId i sp ( IndFn )
310 s e l <− ViD
311 i f ( s e l == ViD ){
312 s e l t <− varVI[−which ( varVI==ViD ) ]
313 }
314 s h i n y j s : : d i s a b l e ( as . cha rac t e r ( s e l t [1]) )
315 s h i n y j s : : d i s a b l e ( as . cha rac t e r ( s e l t [2]) )
316 s h i n y j s : : d i s a b l e ( as . cha rac t e r ( s e l t [3]) )
317 s h i n y j s : : d i s a b l e ( as . cha rac t e r ( s e l t [4]) )
318 s h i n y j s : : d i s a b l e ( as . cha rac t e r ( s e l t [5]) )
319 }
320 e l s e {
321 s e l t <− varVI[−which ( varVI==ViD ) ]
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322 s h i n y j s : : enable ( as . cha rac t e r ( s e l t [1]) )
323 s h i n y j s : : enable ( as . cha rac t e r ( s e l t [2]) )
324 s h i n y j s : : enable ( as . cha rac t e r ( s e l t [3]) )
325 s h i n y j s : : enable ( as . cha rac t e r ( s e l t [4]) )
326 s h i n y j s : : enable ( as . cha rac t e r ( s e l t [5]) )
327 l e a f l e t P r o x y ( ”mapn” ) %>%
328 c lear Images () %>%
329 c l e a r C o n t r o l s () %>%
330 setView ( l a t = 46.769 ,
331 lng = −100.916,
332 zoom = 11)
333 }
334 }
335

336 observeEvent ( input$gndviID , DisEnbFnc ( input$gndviID , ” gndviID ” , gndviV () ) )
337 observeEvent ( input$ndviID , DisEnbFnc ( input$ndviID , ” ndviID ” , ndviV () ) )
338 observeEvent ( input$gciID , DisEnbFnc ( input$gciID , ” gc i ID ” , gciV () ) )
339 observeEvent ( input$ savi ID , DisEnbFnc ( input$savi ID , ” sav i ID ” , sav iV () ) )
340 observeEvent ( input$rccID , DisEnbFnc ( input$rccID , ” rcc ID ” , rccV () ) )
341 observeEvent ( input$msaviID , DisEnbFnc ( input$msaviID , ” msaviID ” , msaviV () ) )
342

343 shpAr <− r e a c t i v e ({
344 req ( uploadShpfi leRead () )
345 Ar <− s f : : s t area ( uploadShpf i leRead () )
346 re turn ( Ar )
347 })
348

349 DatViz <− r e a c t i v e ({
350 req ( uploadShpfi leRead () )
351 Ar <− s f : : s t area ( uploadShpf i leRead () )
352 ArF <− round ( Ar/10000 , 2)
353 dataIn <− data . frame (
354 ” Area (ha) ” = as . cha rac t e r ( ArF ) ,
355 ”Minimum” = as . cha rac t e r (0) ,
356 ”Mean” = as . cha rac t e r (0) ,
357 ”Maximu” = as . cha rac t e r (0) ,
358 s t r i n g s A s F a c t o r s = FALSE ,
359 check . names = FALSE)
360 }
361 )
362

363 # VI t a b l e
364 output$ tab le3 <− renderTable ({
365 DatViz ()
366 })
367

368 } ## c l o s e se rve r
369

370

371 shinyApp ( ui = ui , s e r ve r = se rve r ) ## Run the app l o c a l l y
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