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ABSTRACT 

Breast cancer is the most common cancer in women worldwide, and accurate and early 

detection of breast cancer is vital in characterizing the disease. Transcriptomic expression is 

embedded abundant tumor and cell state information. However, selecting a good pipeline in 

applying mRNA expression is critical in downstream characteristics prediction. We designed a 

study that focused on determining the best combinations of preprocessing processes in 

predictions. We tested six normalization methods, two gene selection methods, and over ten 

machine learning algorithms. By using appropriate evaluation metrics, we recommend using 

FPKM normalization method combined with either gene selection method and employing RF for 

the purpose of breast cancer downstream prediction. 
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INTRODUCTION 

Breast cancer is the most common cancer in women worldwide (Waks and Winer, 2019), 

with more than one million cases and about 500,000 attributed deaths per year (Koboldt et al., 

2012). Early detection and accurate understanding of tumor status can help design adjuvant 

chemotherapy and hormonal treatment, and proper medical care improves survival and reduces 

breast cancer mortality (Diest et al., 2004).  

Breast cancer is an umbrella cancer type for several heterogeneous subtypes requiring 

different therapies (Koboldt et al., 2012). By molecular characteristics, breast cancer can be 

classified as luminal A, luminal B, HER-2, basal, or normal (Perou et al., 2000). These subtypes 

are associated with age, tumor size, nuclear grade, and extensive intraductal component 

(Wiechmann et al., 2009). In addition to subtypes, tumor proliferation score, an index of tumor 

growth, is one of the most important prognostic factors (Diest et al., 2004). The most widely 

used assessment of proliferation score is image-based mitosis counting, which lacks strict 

protocols and is less reproductive (Diest et al., 2004; Veta et al., 2019). Another index describing 

the tumor microenvironment is tumor purity, the proportion of cancer cells in the admixture 

(Aran et al., 2015). Similar to tumor proliferation score, the estimation of tumor purity is also 

primarily conducted by analyzing histological images (Aran et al., 2015).  

Proteomic characterization of tumors can also delineate tumor development (Akbani et 

al., 2014). Accurate quantification of proteomics is mostly achieved by mass spectrometry 

analysis that is performed at the atomic level. The large-scale mass spectrometry analysis of 

breast cancer was initiated, early stage of data comprising of 122 samples were released (Krug et 

al., 2020). An alternative way to profile protein level is utilizing reverse-phase protein array 

targeting total or post-translationally modified proteins (Akbani et al., 2014).  
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A large scale of molecular portrait of breast cancer can be achieved by several high-

throughput platforms, such as mRNA expression profiling, DNA copy number analysis, DNA 

methylation, and microRNA expression (Koboldt et al., 2012). Of these platforms, gene 

expression profiling has been extensively investigated for its high information content. Gene 

expression patterns play a crucial role in the diversity and phenotypic variation of breast cancer 

(Perou et al., 2000). Various tumor status can be inferred through mining expression profiling, 

and many components of RNA-seq analysis, for example, choice of normalization, exert 

influence on the final result (Tong et al., 2020).   

The objective of this study was to apply popular RNA-seq normalization methods on 

real-world breast cancer expression profiling, leverage the-state-of-art machine learning 

algorithms to predict clinical or molecular characteristics, and provide suggestions regarding 

normalization method selection based on prediction performance. 

The rest of the paper is organized as follows: 1) a short review on RNA-Seq development 

and some recent applications on cancer related characteristics prediction; 2) an overview of the 

breast cancer collected for this study; 3) detailed explanation of RNA-Seq normalization 

methods evaluated in this study; 4) machine learning algorithms employed for downstream 

prediction; 5) performance metrics used in the evaluation.  
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LITERATURE REVIEW 

RNA-seq 

A transcriptome consists of the complete set of transcripts in a cell, and the abundances 

of these transcripts and the transcriptome are highly associated with specific developmental 

stage, physiological condition, and disease (Wang et al., 2009). Quantitively profiling 

transcriptomes can measure and compare the change of transcriptomes under different 

conditions. Two main categories for quantifying transcriptomes include hybridization and 

sequence-based approaches (Wang et al., 2009). Hybridization-based approaches require prior 

knowledge of genome to design fluorescently labeled microarray, whereas RNA-seq surveys the 

whole genome in a unbiased way with/without the existing knowledge of genomic sequence 

(Wilhelm and Landry, 2009). A typical RNA-seq experiment begins with sample preparation and 

library preparation. Then, labelled cDNA produced from mRNA is deeply sequenced using Next 

Generation Sequencing technology. The resulting sequencing data is subjected to data filtering 

and quality control, and cleaned sequencing reads are aligned to a reference genome or a de novo 

assembly. The obtained expression score, i.e., gene expression count, requires further 

normalization and quantification processing to minimize technical bias (Hrdlickova et al., 2017).  

Normalization methods and downstream prediction 

Successful analysis of RNA-seq data involves multiple factors, for example, a mapping 

algorithm, a mapping strategy, mapping reporting, quantification, and normalization, which all 

influence the final expression scores. Tong et al. (2020) tested a total of 278 combinations of 

mapping algorithms, quantification methods, and normalization methods and investigated the 

impact of each choice by analysis of variance. Among the procedures of RNA-seq analysis 

pipeline, the normalization method accounted for the highest variation of the several prediction 
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performance metrics (Tong et al., 2020). In terms of prediction accuracy, the choice of 

normalization methods accounted for 82 percent in the analysis of variance of prediction 

accuracy (Tong et al., 2020). The normalization methods also played a vital role in prediction 

precision and reliability, accounting for 30 and 67 percent of the variance, respectively (Tong et 

al., 2020).   

Choosing an appropriate normalization method is crucial prior to performing analysis of 

gene expression data. However, the best choice is controversial, and there is no consensus 

answer for it. Dillies et al. (2013) performed a comprehensive evaluation of normalization 

methods on three mRNA and one miRNA-seq datasets and concluded that FPKM and raw count 

were ineffective and ought to be abandoned in differential expression analysis. They 

recommended upper quantile, median, DESeq, and TMM for the sake of identifying 

differentially expressed genes. Tong et al. (2020) also recommended median normalization 

methods in terms of downstream prediction. Yang et al. (2021) compared normalization methods 

for expression quantitative trait loci identification and showed TMM outperformed other 

normalization methods. This evidence revealed the complexity of selecting an optimal 

normalization method.  

In addition to the factors in RNA-seq data production, the performance of machine 

learning algorithms is also heavily influenced by choice of the classifier. The main obstacle 

impeding the development of competitive prediction tools is the small sample size compared to 

the large number of features. For example ,the largest worldwide cancer data collection program, 

The Cancer Genome Atlas Program (TCGA), archived hundreds of samples per disease, and 

each sample was sequenced at tens of thousands of genomic sites. This problem also refers to the 
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curse of dimensionality, and the most effective solution is dimension reduction. One dimension 

reduction technique is feature selection, i.e., gene selection in the current context.  

Many machine learning and statistical algorithms have been employed to mine gene 

expression patterns and make predictions. Sorlie et al., 2001 classified breast cancer samples by 

unsupervised hierarchical clustering and human labeling. Cascianelli et al., 2020) compared 

decision trees, logistic regression, simple neural networks, and support vector machines in 

predicting subtypes of breast cancer samples, and multiclass logistic regression achieved the 

highest accuracy of 88% with 10-fold cross validation. Mostavi et al., 2020 introduced 

convolutional neural networks in subtyping breast cancer and achieved an average accuracy of 

88.4%.  

Machine learning algorithms were also applied in predicting tumor sample purity. A 

supervised machine learning algorithm, XGBoost, was utilized to predict tumor purity score 

using RNA-seq gene expression data in 33 cancer types Li et al., 2019. Koo and Rhee (2021) 

systematically compared machine learning based predictors from gene expression and other non-

gene expression predictors in terms of tumor purity prediction, and ridge regression and multiple 

layer perceptron outperformed other methods. Heng et al. (2017) showed enrichment of a set of 

proliferation genes correlated to high proliferative morphological features.  

The previous studies have demonstrated the potentials of RNA-seq in predicting other 

characteristics of tumor. To further exploit the RNA-seq dataset of breast cancer, we investigated 

the influence of normalization method, classifier, and gene selection on predicting intrinsic 

subtype, tumor status, and pathway protein level.  



 

6 

MATERIAL AND METHODS 

Data collection and processing 

In this study, the gene expression data from breast cancer patients were downloaded from 

the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). A total of 56,602 genes were assayed 

for mRNA expression status. Tumor pathological information was retrieved from the 

corresponding publications. Briefly, tumor and normal samples were collected and histologically 

analyzed (Koboldt et al., 2012), and a total of 817 primary tumor samples were assayed by RNA 

sequencing (Ciriello et al., 2015). Of sequenced samples, 633 samples were previously evaluated 

for proteomic level by Reverse Phase Protein Array (RPPA) with 181 high-quality antibodies 

(Akbani et al., 2014). Several subsets of these antibodies were combined into pathway scores 

based on protein function, and pathway score was the summation of positive regulatory 

components minus the summation of negative regulatory components (Akbani et al., 2014). The 

relative protein level was used to calculate pathway score, and protein level varied across testing 

platforms and batches. Pathway score was reduced to a positive or negative level in this study.  

The predefined molecular subtype by PAM50 (Parker et al., 2009) was denoted as the 

intrinsic subtype. Tumor purity and proliferation score were used to represent the tumor 

histological status. The pathway protein level of three pathways, apoptosis, cell cycle, and DNA 

damage, were retrieved for the prediction task. 

Normalization and gene selection methods 

The following normalization methods were considered: 

(1) Count: the raw read count for each gene 

(2) Count per million (CPM): the count of sequenced fragments scaled by the total 

number of reads times one million (Robinson et al., 2010) 
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𝐶𝑃𝑀 =
𝑟!

∑ 𝑟"#
"$%

× 10& 

(3) Fragments per kilobase million (FPKM): the count of gene expression level 

normalized by the total transcript length and the total number of sequencing reads 

(Mortazavi et al., 2008) 

𝐹𝑃𝐾𝑀 =
𝑟!

𝑙! ∑ 𝑟"#
"$%

× 10' 

(4) Fragment per kilobase million upper quartile (FPKM-UQ): a variant of FPKM, the 

count of gene expression level normalized by the total transcript length and the 75th 

percentile read count value 

𝐹𝑃𝐾𝑀 − 𝑈𝑄 =
𝑟!

𝑙! ∑ 𝑟"()*+	#
"$%

× 10' 

(5) Trimmed mean of M values (TMM): TMM is a reference population-based 

normalization method. The log of fold value between query population and reference 

population was denoted as M-value. Upper and lower 30% (by default) of M-values 

were trimmed off, and the retained M-values were used to obtain the normalization 

factor (Robinson and Oshlack, 2010). 

(6) Relative log expression (RLE): the log value of expression level minus the median of 

the gene across samples  (Anders and Huber, 2010) 

Because of the large number of genes assayed and small number of samples, many 

machine learning algorithms do not perform well. Thus, gene selection is highly recommended 

in these problems. Two gene selection strategies combined with normalization methods were 

evaluated. The first is correlation-based subsetting that retains a subset of genes sharing low 

pairwise correlation (Dağ et al., 2012). In this study, the pairwise correlations were determined, 

and for each pair of genes with a correlation greater than 0.5 (𝜌 > 0.5), one gene was randomly 
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discarded. The other strategy is variance ranking in which the 10000 genes with the highest 

expression variance were selected for analysis. Except for the CPM normalization method that is 

often used with edgeR filtering (Robinson et al., 2010), the other five normalization methods 

were combined with the two gene selection methods. 

Machine learning algorithms 

A number of machine learning and traditional statistical models were tested in this study, 

and these models were run using the train function in the caret package (Kuhn, 2008) in R 4.0. 

The caret package integrates ample model construction resources by utilizing available algorithm 

related packages (Table 1). 

Support Vector Machine (SVM) is a computationally efficient machine learning 

algorithm in the way of separating samples by searching good hyperplanes in a high dimensional 

feature space (Smola and Schölkopf, 2004; Noble, 2006). The kernel function introduces 

additional linear/nonlinear feature space into SVM, and the data can be better separated with a 

smart choice of kernel function (Noble, 2006). Two kernel functions, radial and polynomial 

kernel, were selected to model data. Kernel related parameters, polynomial degree and scale, and 

softness of margin parameter cost were tuned.  

Random Forest is an ensemble algorithm by constructing multiple decision trees with 

resampling, and it can handle both classification and regression problems (Breiman, 2001). The 

number of variables randomly sampled as candidates at each split, mtry, was tuned.  

Many neural network architectures have been recently proposed, and designing a good 

neural network model is complicated and outside the score of this project. In this study, a simple 

neural network, multiple layer perceptron, was included in the evaluation list. The multiple layer 

perceptron contains one input layer, one hidden layer, and one output layer, and this algorithm 
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was implemented in the RSNNS package (Bergmeir and Benítez, 2012). The multiple layer 

perceptron contains a single hidden layer, of which number of hidden units was tuned.  

XGBoost tree was used to perform gradient boosting that creates a lot of new models to 

predict residuals or errors in previous steps and adds these new models into the final prediction 

(Chen and Guestrin, 2016). In addition to gradient boosting, XGBoost used regularization 

strategies which well controls for overfitting and generalizability. Hyperparameters of XGBoost 

include: nrounds, number of boosting iterations; max_depth, the maximum depth of constructed 

tree; eta: shrinkage; gamma, minimum loss reduction; colsame_bytree, subsample ratio of 

columns; min_child_weight, minimum sum of instance weight; subsample, percentage of 

subsample. Due to the limited availabilities of computation resources , hyperparameters of 

XGBoost were not tuned in this study, and the default hyperparameters were used in evaluation 

process. 

Table 1. List of classifiers evaluated in the breast cancer characteristics prediction. 

Classifier Classification Regression Libraries Tuning parameters 
SVM - Radial kernel Yes Yes kernlab sigma, C 
SVM - Polynomial 

kernel Yes Yes kernlab degree, scale, C 

Random Forest Yes Yes randomForest mtry 
Multiple Layer 

Perceptron Yes Yes RSNNS size 

XGBoost tree Yes Yes xgboost 

nrounds, max_depth, eta, 
gamma, 

colsample_bytree, 
min_child_weight, 

subsample 
Partial Least Squares Yes Yes pls ncomp 

Generalized linear 
regression No Yes - - 

Stepwise Linear 
Regression No Yes leaps nvmax 

Ridge Regression No Yes elasticnet lambda 
Lasso Regression No Yes elasticnet fraction 
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Partial least squares regression was performed simultaneously and iteratively to 

decompose predictors and response variable and find latent vectors that explain as much as 

possible of the covariance between predictors and the response variable (Garthwaite, 1994). The 

best number of component in prediction, ncomp, was searched. 

Another four statistic algorithms, generalized liner regression, stepwise linear regression, 

ridge regression, and lasso regression, were employed for regression tasks. In stepwise linear 

regression, the maximum number of predictors, nvmax, was tuned. For ridge and lasso 

regression, the regularization parameters, lambda and fraction, were tuned, respectively. 

Model training and evaluation metrics 

Five-fold cross-validation was used to evaluate the performance of the models. To best 

exploit the models’ potentials, available hyperparameters of each model were randomly searched 

three times.  

Given the heterogenous type of response variables, different evaluation metrics were 

selected to report performance of classifiers. There were. three types of prediction tasks in this 

study: multiclass classification, regression, and binary classification.  

Subtyping (Multiclass classification): 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 +
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
2 	(𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑖𝑠	0.5; 	ℎ𝑖𝑔ℎ𝑒𝑟	𝑖𝑠	𝑏𝑒𝑡𝑡𝑒𝑟) 

Tumor purity and proliferation (Regression): 

𝑅𝑀𝑆𝐸 = O∑ (𝑦*-./ − 𝑦0-/1)23
!$%

𝑁

!

	(𝑙𝑜𝑤𝑒𝑟	𝑖𝑠	𝑏𝑒𝑡𝑡𝑒𝑟) 

Apoptosis, Cell cycle, and DNA damage (Binary classification): 

 Due to the imbalance of datasets, Matthews Correlation Coefficient (MCC), a 
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comprehensive metric known for handling imbalance (Matthews, 1975; Boughorbel et al., 2017), 

was utilized to evaluate performance. 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑁 × 𝐹𝑃)

R(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)	
	(ℎ𝑖𝑔ℎ𝑒𝑟	𝑖𝑠	𝑏𝑒𝑡𝑡𝑒𝑟)  
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RESULT 

 Except for the CPM normalization method, correlation-based gene selection was 

performed on five normalized expression matrices. The subset of selected gene expression 

profiling did not contain any gene pair with a correlation larger than 0.5. The number of genes 

retained varied across different normalization methods (Table 2), and the size of the subset 

derived from FPKM is almost two-fold that of the the subset derived from the raw count.  

Table 2. Number of retained genes with different normalization methods by correlation-based 
gene selection 

Dataset Number of retained genes 
FPKM-byCor 8926 

FPKMUQ-byCor 5468 
count-byCor 4672 
RLE-byCor 5867 

TMM-byCor 6451 
 

In total 809 breast cancer samples with available subtyping information were analyzed, 

with 133, 65, 412, 174, and 25 samples categorized into the five subtypes, Basal, Her2, LumA, 

LumB, and Normal type, respectively. Most of the combinations of normalization and gene 

selection methods failed to adequately predict subtypes given such a limited number of samples 

(Figure 1; Appendix Table 1), and these trained classifiers classified all testing samples into a 

single class. Compared to other classifiers, two classifiers trained with FPKM related datasets 

achieved better performance. Among the five subtypes, Basal subtype was the most accurately 

predicted with over 0.95 balanced accuracy. The averaged balanced accuracy of FPKM-byCor 

reached 0.83, which was slightly higher than that of FPKM-top10000 (0.80). 
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Figure 1. Balanced accuracy of five breast cancer subtypes of the best classifiers in different 
combinations of normalization and gene selection methods. 
 
 Tumor purity and proliferation score are two numerical values derived from lab 

experiments to describe the status of tumor development (Figure 2). Classifiers trained with 

FPKM-top10000 and FPKM-byCor also performed better than other normalization methods 

(Figure 2; Appendix Table 2). Unlike subtyping, no difference was observed among other 

datasets, and all classifiers performed differentially in the two prediction tasks. FPKM-byCor 

performed slightly better than FPKM-top10000 in both situations.  
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(A) (B) 

(C) 
 

(D) 

 
(E) 

 

Figure 2. Data distribution of Tumor purity (A), Proliferation score (B), Apoptosis Score (C), 
Cell cycle score (D),  and DNA damage response score (E) in samples. 
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(A) 

 

(B) 

Figure 3. RMSE of tumor purity (A) and proliferation score (B) of the best classifiers in different 
combinations of normalization and gene selection methods.  
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Apoptosis, cell cycle, and DNA damage are three predefined sets of proteins measured by 

reverse phase protein arrays (Figure 2). The activity of pathways can be measured by comparing 

the expression level of positive regulating proteins and negative regulating proteins. Out of 809 

samples, 628 samples were assayed protein levels, and most of the samples were negatively 

regulated (Table 3). Gene expression levels normalized by FPKM again performed better than 

the other normalization methods, and genes selected by variance slightly outperformed genes 

selected by correlation (Figure 4). Except for FPKM-top10000 and FPKM-byCor, the prediction 

power of the normalization methods were inconsistent across the three tasks.  

Table 3. Summary information of 628 samples assayed by reverse phase protein arrays 

Pathways Positive Negative 
Apoptosis 199 429 
Cell cycle 130 498 
DNA damage 172 456 
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(A) 

 

(B) 

(C) 

Figure 4. MCC of apoptosis (A), cell cycle (B), and DNA damage (C) of the best classifiers in 
different combinations of normalization and gene selection methods.  
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 Each combination of normalization and gene selection methods was tested with all 

applicable machine learning algorithms. Except for stepwise linear regression, Lasso regression, 

and Ridge regression that are designed for regression problems only, the remaining algorithms 

were applicable for both classification and regression tasks. Random Forest was the most 

frequently top-ranked algorithm, accounting for 36 percent of all resulting datasets (Figure 5G). 

SVM-Radial and Partial Least Square followed Random Forest, with both being the top-ranked 

algorithm in over 10 prediction tasks. Except for subtyping and cell cycle score, Random Forest 

occupied the largest portion of datasets among prediction tasks (Figure 5A-F). 

Table 3. The ANOVA table of the variables in prediction tasks.  

Tasks Source df F value p value 

Purity 
normalization method 4 1.613 0.178 
selection method 1 0.457 0.501 
algorithm 9 17.317 7.00E-16 

Proliferation 
normalization method 4 0.717 0.583 
selection method 1 0.056 0.813 
algorithm 9 7.003 1.67E-07 

Cell cycle 
normalization method 4 115.886 <2E-16 
selection method 1 2.222 0.142 
algorithm 5 1.627 0.170 

Apoptosis 
normalization method 4 77.595 <2E-16 
selection method 1 1.271 0.2651 
algorithm 5 2.778 0.0275 

DNA 
damage 

normalization method 4 40.613 5.49E-15 
selection method 1 0.092 0.763 
algorithm 5 0.324 0.896 

 

One-way ANOVA was also performed to determine if there were significant differences 

in mean balanced accuracies or mean RMSEs among normalization methods, selection methods, 

and/or machine learning algorithms (Table 4). Subtyping was excluded because the balanced 

accuracies were assigned to each type instead of single value. Highly significant different 
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between algorithms were observed in two regression tasks, tumor purity and proliferation. 

Significant difference between algorithms was also identified in one binary classification task, 

apoptosis. Highly significant difference between normalization methods were observed in all 

binary classification tasks. Group means between selection methods did not show difference in 

all tasks. 
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A.  B.  

C.  D.  

E.  F.  

G.  

 

Figure 5. The count of algorithms with top rank in the combinations of different normalization 
and gene selection methods on subtyping (A), tumor purity (B), proliferation score (C), apoptosis 
Score (D), cell cycle score (E), DNA damage response score (F), and across datasets (G).  

9

2

SVM-Radial XGBoost

3

8

SVM-Radial RF

5
11

3
1

RF SVM-Polynomial

XGBoost Stepwise

PLS

8
1
1 1

RF SVM-Radial PLS MLP

9

2

PLS XGBoost

5

1
2

3

PLS SVM-Polynomial MLP RF

13

7

24

2

14

3 3

SVM-Radial XGBoost RF SVM-Polynomial PLS Stepwise MLP



 

21 

DISCUSSION 

In this project, we designed a study that focused on predicting the characteristics of breast 

cancer samples by expression information. Among six prediction tasks, FPKM-top10000 and -

byCor outperformed other combinations of normalization and gene selection methods (Figure 1, 

3 & 4; Appendix Table 1&2). The largest number of genes was retained by correlation after 

FPKM normalization method (Table 2). After FPKM normalization, pairwise correlation 

between genes decreased, which indicated FPKM method differentially normalized raw gene 

counts and embedded more information. Aside from FPKM, no consistent trend was observed 

among other normalization methods. For example, TMM-byCor ranked 3 in predicting apoptosis 

while ranking 9 in predicting DNA damage. Two gene selection methods were evaluated, but no 

evident difference was observed. For example, in our tests, FPKM-top10000 and FPKM-byCor 

showed comparable performance across six prediction tasks.  

Random Forest was the algorithm most commonly adopted due to the highest level of 

performance in our survey. Due to the complexity of deep learning architecture design, we did 

not include complicated deep learning models except a single-layer MLP. Mostavi et al. (2020) 

employed a convolutional neural network to predict breast cancer subtype and achieved an 

average F1-score of 0.88 that was higher than 0.78 in this study, but designing a good neural 

network is out of the scope of this project. ANOVA tests also indicated the importance of factors 

varied across different prediction tasks.   

In summary, we tested six normalization and two gene selection methods, resulting in a 

total of 11 gene expression datasets. Each of the eleven gene expression datasets was used to 

train seven to ten algorithms for six response variables. The six response variables also are 

representing three types of prediction tasks, multiclass classification, regression, and binary 
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classification. We recommend using FPKM normalization method combined with either gene 

selection method and employ RF for the purpose of breast cancer downstream prediction. 
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FUTURE DIRECTION 

 This study demonstrated the potential analysis applications of RNA-seq data in 

downstream characteristics, for example molecular subtype and tumor status. This study also 

revealed the recommended choices of normalization methods, gene selection methods, and 

machine learning algorithms. However, due to the limited resources, our study did not cover all 

aspects of exploiting RNA-seq for prediction. Many other feature selection methods (e.g., 

LASSO and Ridge variable selection) are available for adapting into gene selection. Even though 

we surveyed a number of machine learning algorithms with limited parameter searching, the 

algorithm may not be well tuned into the best performance. In summary, we still call for more 

comprehensive experiment design to further delineate the role of each variable in downstream 

characteristics prediction.   
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APPENDIX 

Table A1. Balanced accuracy of breast cancer subtyping in different combinations of 
normalization methods and algorithms. 

Normalization Algorithm Basal Her2 LumA LumB Normal 
cpm-filtered NN 0.500 0.500 0.498 0.498 0.500 
cpm-filtered PLS 0.477 0.496 0.422 0.432 0.500 
cpm-filtered RF 0.499 0.499 0.493 0.495 0.500 
cpm-filtered SVM-Polynomial 0.499 0.500 0.498 0.499 0.500 
cpm-filtered SVM-Radial 0.500 0.500 0.500 0.500 0.500 
cpm-filtered xgboost 0.487 0.493 0.445 0.459 0.499 
FPKM-top10000 NN 0.812 0.689 0.826 0.738 0.623 
FPKM-top10000 PLS 0.974 0.766 0.839 0.772 0.533 
FPKM-top10000 RF 0.932 0.574 0.740 0.653 0.526 
FPKM-top10000 SVM-Polynomial 0.965 0.790 0.756 0.644 0.550 
FPKM-top10000 SVM-Radial 0.894 0.804 0.713 0.625 0.532 
FPKM-top10000 xgboost 0.980 0.808 0.852 0.788 0.549 
FPKM-byCor NN 0.504 0.500 0.501 0.500 0.500 
FPKM-byCor PLS 0.937 0.662 0.772 0.690 0.499 
FPKM-byCor RF 0.974 0.688 0.802 0.718 0.527 
FPKM-byCor SVM-Polynomial 0.963 0.873 0.769 0.728 0.540 
FPKM-byCor SVM-Radial 0.856 0.803 0.702 0.617 0.562 
FPKM-byCor xgboost 0.977 0.843 0.875 0.826 0.624 
FPKMUQ-top10000 NN 0.500 0.500 0.500 0.500 0.500 
FPKMUQ-top10000 PLS 0.451 0.502 0.425 0.462 0.500 
FPKMUQ-top10000 RF 0.500 0.500 0.500 0.501 0.500 
FPKMUQ-top10000 SVM-Polynomial 0.498 0.499 0.495 0.497 0.500 
FPKMUQ-top10000 SVM-Radial 0.501 0.500 0.500 0.500 0.500 
FPKMUQ-top10000 xgboost 0.487 0.495 0.449 0.465 0.505 
FPKMUQ-byCor NN 0.500 0.500 0.500 0.500 0.500 
FPKMUQ-byCor PLS 0.482 0.496 0.463 0.487 0.500 
FPKMUQ-byCor RF 0.499 0.500 0.496 0.498 0.500 
FPKMUQ-byCor SVM-Polynomial 0.496 0.497 0.487 0.492 0.500 
FPKMUQ-byCor SVM-Radial 0.500 0.500 0.500 0.500 0.500 
FPKMUQ-byCor xgboost 0.477 0.484 0.442 0.467 0.499 
count-top10000 NN 0.499 0.504 0.500 0.500 0.500 
count-top10000 PLS 0.468 0.496 0.446 0.466 0.500 
count-top10000 RF 0.500 0.498 0.496 0.496 0.500 
count-top10000 SVM-Polynomial 0.499 0.499 0.498 0.499 0.500 
count-top10000 SVM-Radial 0.500 0.500 0.500 0.500 0.500 
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Table A1. Balanced accuracy of breast cancer subtyping in different combinations of 
normalization methods and algorithms (continued). 

Normalization Algorithm Basal Her2 LumA LumB Normal 
count-top10000 xgboost 0.469 0.501 0.444 0.471 0.500 
count-byCor NN 0.500 0.500 0.497 0.497 0.500 
count-byCor PLS 0.483 0.499 0.435 0.444 0.500 
count-byCor RF 0.500 0.500 0.497 0.497 0.500 
count-byCor SVM-Polynomial 0.497 0.499 0.493 0.498 0.498 
count-byCor SVM-Radial 0.500 0.500 0.500 0.500 0.500 
count-byCor xgboost 0.471 0.487 0.430 0.454 0.504 
RLE-top10000 NN 0.468 0.499 0.422 0.440 0.498 
RLE-top10000 PLS 0.477 0.497 0.456 0.473 0.500 
RLE-top10000 RF 0.500 0.497 0.497 0.499 0.500 
RLE-top10000 SVM-Polynomial 0.499 0.501 0.497 0.498 0.500 
RLE-top10000 SVM-Radial 0.500 0.500 0.500 0.500 0.500 
RLE-top10000 xgboost 0.477 0.501 0.452 0.478 0.500 
RLE-byCor NN 0.499 0.500 0.499 0.499 0.500 
RLE-byCor PLS 0.484 0.498 0.432 0.444 0.500 
RLE-byCor RF 0.500 0.500 0.496 0.494 0.500 
RLE-byCor SVM-Polynomial 0.496 0.501 0.494 0.500 0.499 
RLE-byCor SVM-Radial 0.500 0.500 0.500 0.500 0.500 
RLE-byCor xgboost 0.480 0.497 0.433 0.459 0.503 
TMM-top10000 NN 0.467 0.495 0.415 0.450 0.505 
TMM-top10000 PLS 0.469 0.499 0.425 0.442 0.500 
TMM-top10000 RF 0.500 0.498 0.496 0.497 0.500 
TMM-top10000 SVM-Polynomial 0.499 0.499 0.497 0.498 0.500 
TMM-top10000 SVM-Radial 0.500 0.500 0.500 0.500 0.500 
TMM-top10000 xgboost 0.485 0.493 0.457 0.470 0.499 
TMM-byCor NN 0.500 0.500 0.499 0.498 0.500 
TMM-byCor PLS 0.485 0.498 0.444 0.462 0.500 
TMM-byCor RF 0.500 0.499 0.497 0.496 0.500 
TMM-byCor SVM-Polynomial 0.497 0.501 0.494 0.498 0.499 
TMM-byCor SVM-Radial 0.500 0.500 0.500 0.500 0.500 
TMM-byCor xgboost 0.482 0.498 0.449 0.463 0.499 

 

  



 

29 

Table A2. RMSE of breast cancer tumor purity in different combinations of normalization 
methods and classifiers. 

Normalization Classifier RMSE 
cpm-filtered GLM 375.765 
cpm-filtered Lasso 0.198 
cpm-filtered Stepwise 0.192 
cpm-filtered NN 0.228 
cpm-filtered PLS 0.189 
cpm-filtered RF 0.188 
cpm-filtered ridge 0.279 
cpm-filtered SVM-Polynomial 0.211 
cpm-filtered SVM-Radial 0.190 
cpm-filtered xgboost 0.207 
FPKM-top10000 GLM 26.460 
FPKM-top10000 Lasso 0.152 
FPKM-top10000 Stepwise 0.161 
FPKM-top10000 NN 0.275 
FPKM-top10000 PLS 0.187 
FPKM-top10000 RF 0.187 
FPKM-top10000 Ridge 0.180 
FPKM-top10000 SVM-Polynomial 0.202 
FPKM-top10000 SVM-Radial 0.187 
FPKM-top10000 xgboost 0.207 
FPKM-byCor GLM 16.195 
FPKM-byCor Lasso 0.150 
FPKM-byCor Stepwise 0.161 
FPKM-byCor NN 0.194 
FPKM-byCor PLS 0.164 
FPKM-byCor RF 0.138 
FPKM-byCor Ridge 0.775 
FPKM-byCor SVM-Polynomial 1.173 
FPKM-byCor SVM-Radial 0.172 
FPKM-byCor xgboost 0.147 
FPKMUQ-top10000 GLM 27.191 
FPKMUQ-top10000 Lasso 0.198 
FPKMUQ-top10000 Stepwise 0.193 
FPKMUQ-top10000 NN 0.275 
FPKMUQ-top10000 PLS 0.187 
FPKMUQ-top10000 RF 0.187 
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Table A2. RMSE of breast cancer tumor purity in different combinations of normalization 
methods and classifiers (continued). 

Normalization Classifier RMSE 
FPKMUQ-top10000 Ridge 0.277 
FPKMUQ-top10000 SVM-Polynomial 0.202 
FPKMUQ-top10000 SVM-Radial 0.187 
FPKMUQ-top10000 xgboost 0.207 
FPKMUQ-byCor GLM 13.936 
FPKMUQ-byCor Lasso 0.195 
FPKMUQ-byCor Stepwise 0.192 
FPKMUQ-byCor NN 0.274 
FPKMUQ-byCor PLS 0.189 
FPKMUQ-byCor RF 0.187 
FPKMUQ-byCor Ridge 0.645 
FPKMUQ-byCor SVM-Polynomial 0.247 
FPKMUQ-byCor SVM-Radial 0.188 
FPKMUQ-byCor xgboost 0.206 
count-top10000 GLM 15.715 
count-top10000 Lasso 0.196 
count-top10000 Stepwise 0.195 
count-top10000 NN 0.188 
count-top10000 PLS 0.189 
count-top10000 RF 0.188 
count-top10000 Ridge 0.268 
count-top10000 SVM-Polynomial 0.205 
count-top10000 SVM-Radial 0.188 
count-top10000 xgboost 0.204 
count-byCor GLM 25.203 
count-byCor Lasso 1.116 
count-byCor Stepwise 0.196 
count-byCor NN 0.317 
count-byCor PLS 0.187 
count-byCor RF 0.188 
count-byCor Ridge 4.409 
count-byCor SVM-Polynomial 0.699 
count-byCor SVM-Radial 0.188 
count-byCor xgboost 0.204 
RLE-top10000 GLM 15.414 
RLE-top10000 Lasso 0.198 
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Table A2. RMSE of breast cancer tumor purity in different combinations of normalization 
methods and classifiers (continued). 

Normalization Classifier RMSE 
RLE-top10000 Stepwise 0.194 
RLE-top10000 NN 0.192 
RLE-top10000 PLS 0.187 
RLE-top10000 RF 0.188 
RLE-top10000 Ridge 0.274 
RLE-top10000 SVM-Polynomial 0.205 
RLE-top10000 SVM-Radial 0.188 
RLE-top10000 xgboost 0.204 
RLE-byCor GLM 36.670 
RLE-byCor Lasso 0.245 
RLE-byCor Stepwise 0.192 
RLE-byCor NN 0.189 
RLE-byCor PLS 0.189 
RLE-byCor RF 0.188 
RLE-byCor Ridge 0.917 
RLE-byCor SVM-Polynomial 0.595 
RLE-byCor SVM-Radial 0.189 
RLE-byCor xgboost 0.204 
TMM-TOP10000 GLM 46.190 
TMM-TOP10000 Lasso 0.200 
TMM-TOP10000 Stepwise 0.198 
TMM-TOP10000 NN 0.258 
TMM-TOP10000 PLS 0.190 
TMM-TOP10000 PLS 0.188 
TMM-TOP10000 RF 0.188 
TMM-TOP10000 Ridge 0.277 
TMM-TOP10000 SVM-Polynomial 0.206 
TMM-TOP10000 SVM-Radial 0.188 
TMM-TOP10000 xgboost 0.206 
TMM-byCor GLM 93.366 
TMM-byCor Lasso 0.342 
TMM-byCor Stepwise 0.189 
TMM-byCor NN 0.193 
TMM-byCor PLS 0.189 
TMM-byCor RF 0.189 
TMM-byCor Ridge 5.403 
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Table A2. RMSE of breast cancer tumor purity in different combinations of normalization 
methods and classifiers (continued). 

Normalization Classifier RMSE 
TMM-byCor SVM-Polynomial 0.533 
TMM-byCor SVM-Radial 0.189 
TMM-byCor xgboost 0.204 
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Table A3. RMSE of breast cancer tumor proliferation in different combinations of normalization 
methods and classifiers. 

Normalization Classifier RMSE 
cpm-filtered GLM 23.303 
cpm-filtered Lasso 0.466 
cpm-filtered Stepwise 0.441 
cpm-filtered NN 0.450 
cpm-filtered PLS 0.443 
cpm-filtered RF 0.438 
cpm-filtered Ridge 0.819 
cpm-filtered SVM-Polynomial 0.486 
cpm-filtered SVM-Radial 0.439 
cpm-filtered xgboost 0.467 
FPKM-top10000 GLM 75.442 
FPKM-top10000 Lasso 0.302 
FPKM-top10000 Stepwise 0.252 
FPKM-top10000 NN 0.249 
FPKM-top10000 PLS 0.187 
FPKM-top10000 RF 0.220 
FPKM-top10000 Ridge 0.236 
FPKM-top10000 SVM-Polynomial 0.197 
FPKM-top10000 SVM-Radial 0.224 
FPKM-top10000 xgboost 0.207 
FPKM-byCor GLM 13.938 
FPKM-byCor Lasso 0.312 
FPKM-byCor Stepwise 0.235 
FPKM-byCor NN 0.458 
FPKM-byCor PLS 0.247 
FPKM-byCor RF 0.197 
FPKM-byCor Ridge 0.364 
FPKM-byCor SVM-Polynomial 0.587 
FPKM-byCor SVM-Radial 0.257 
FPKM-byCor xgboost 0.193 
FPKMUQ-top10000 GLM 267.195 
FPKMUQ-top10000 Lasso 0.452 
FPKMUQ-top10000 Stepwise 0.440 
FPKMUQ-top10000 NN 0.464 
FPKMUQ-top10000 PLS 0.436 
FPKMUQ-top10000 RF 0.436 
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Table A3. RMSE of breast cancer tumor proliferation in different combinations of normalization 
methods and classifiers (continued). 

Normalization Classifier RMSE 
FPKMUQ-top10000 Ridge 0.752 
FPKMUQ-top10000 SVM-Polynomial 0.467 
FPKMUQ-top10000 SVM-Radial 0.439 
FPKMUQ-top10000 xgboost 0.467 
FPKMUQ-byCor GLM 26.349 
FPKMUQ-byCor Lasso 0.578 
FPKMUQ-byCor Stepwise 0.456 
FPKMUQ-byCor NN 0.464 
FPKMUQ-byCor PLS 0.434 
FPKMUQ-byCor RF 0.435 
FPKMUQ-byCor Ridge 2.674 
FPKMUQ-byCor SVM-Polynomial 0.917 
FPKMUQ-byCor SVM-Radial 0.436 
FPKMUQ-byCor xgboost 0.462 
count-top10000 GLM 32.681 
count-top10000 Lasso 0.453 
count-top10000 Stepwise 0.447 
count-top10000 NN 0.459 
count-top10000 PLS 0.463 
count-top10000 RF 0.435 
count-top10000 Ridge 0.707 
count-top10000 SVM-Polynomial 0.476 
count-top10000 SVM-Radial 0.435 
count-top10000 xgboost 0.459 
count-byCor GLM 372.363 
count-byCor Lasso 0.492 
count-byCor Stepwise 0.442 
count-byCor NN 0.463 
count-byCor PLS 0.435 
count-byCor RF 0.436 
count-byCor Ridge 8.431 
count-byCor SVM-Polynomial 0.858 
count-byCor SVM-Radial 0.435 
count-byCor xgboost 0.466 
RLE-top10000 GLM 59.853 
RLE-top10000 Lasso 0.454 
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Table A3. RMSE of breast cancer tumor proliferation in different combinations of normalization 
methods and classifiers (continued). 

Normalization Classifier RMSE 
RLE-top10000 Stepwise 0.447 
RLE-top10000 NN 0.501 
RLE-top10000 PLS 0.453 
RLE-top10000 RF 0.437 
RLE-top10000 Ridge 0.709 
RLE-top10000 SVM-Polynomial 0.472 
RLE-top10000 SVM-Radial 0.434 
RLE-top10000 xgboost 0.478 
RLE-byCor GLM 98.418 
RLE-byCor Lasso 0.801 
RLE-byCor Stepwise 0.446 
RLE-byCor NN 0.457 
RLE-byCor PLS 0.438 
RLE-byCor RF 0.436 
RLE-byCor Ridge 3.786 
RLE-byCor SVM-Polynomial 0.938 
RLE-byCor SVM-Radial 0.440 
RLE-byCor xgboost 0.483 
TMM-TOP10000 GLM 37.661 
TMM-TOP10000 Lasso 0.458 
TMM-TOP10000 Stepwise 0.453 
TMM-TOP10000 NN 0.508 
TMM-TOP10000 PLS 0.458 
TMM-TOP10000 RF 0.435 
TMM-TOP10000 Ridge 0.666 
TMM-TOP10000 SVM-Polynomial 0.473 
TMM-TOP10000 SVM-Radial 0.436 
TMM-TOP10000 xgboost 0.472 
TMM-byCor GLM 37.661 
TMM-byCor Lasso 0.458 
TMM-byCor Stepwise 0.453 
TMM-byCor NN 0.508 
TMM-byCor PLS 0.458 
TMM-byCor RF 0.435 
TMM-byCor Ridge 0.666 
TMM-byCor SVM-Polynomial 0.473 
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Table A3. RMSE of breast cancer tumor proliferation in different combinations of normalization 
methods and classifiers (continued). 

Normalization Classifier RMSE 
TMM-byCor SVM-Radial 0.439 
TMM-byCor xgboost 0.472 
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Table A4. RMSE of breast cancer apoptosis score in different combinations of normalization 
methods and classifiers. 

Normalization Classifier MCC 
TMM-byCor SVM-Radial 0.001 
TMM-byCor SVM-Polynomial 0.027 
TMM-byCor RF 0.117 
TMM-byCor xgboost 0.014 
TMM-byCor NN 0.034 
TMM-byCor PLS 0.006 
TMM-top10000 SVM-Radial -0.002 
TMM-top10000 SVM-Polynomial 0.064 
TMM-top10000 RF 0.082 
TMM-top10000 xgboost 0.019 
TMM-top10000 NN -0.009 
TMM-top10000 PLS -0.024 
RLE-byCor SVM-Radial 0.000 
RLE-byCor SVM-Polynomial 0.049 
RLE-byCor RF 0.073 
RLE-byCor xgboost -0.019 
RLE-byCor NN 0.013 
RLE-byCor PLS -0.001 
RLE-top10000 SVM-Radial 0.033 
RLE-top10000 SVM-Polynomial 0.035 
RLE-top10000 RF 0.096 
RLE-top10000 xgboost 0.017 
RLE-top10000 NN -0.043 
RLE-top10000 PLS -0.046 
count-byCor SVM-Radial 0.000 
count-byCor SVM-Polynomial 0.008 
count-byCor RF 0.070 
count-byCor xgboost 0.035 
count-byCor NN 0.001 
count-byCor PLS -0.062 
count-top10000 SVM-Radial 0.000 
count-top10000 SVM-Polynomial 0.063 
count-top10000 RF 0.069 
count-top10000 xgboost -0.021 
count-top10000 NN 0.052 
count-top10000 PLS -0.005 
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Table A4. RMSE of breast cancer apoptosis score in different combinations of normalization 
methods and classifiers (continued). 

Normalization Classifier MCC 
FPKMUQ-byCor SVM-Radial -0.016 
FPKMUQ-byCor SVM-Polynomial 0.006 
FPKMUQ-byCor RF -0.035 
FPKMUQ-byCor xgboost -0.009 
FPKMUQ-byCor NN 0.034 
FPKMUQ-byCor PLS 0.008 
FPKMUQ-top10000 SVM-Radial 0.000 
FPKMUQ-top10000 SVM-Polynomial -0.016 
FPKMUQ-top10000 RF 0.002 
FPKMUQ-top10000 xgboost -0.018 
FPKMUQ-top10000 NN 0.019 
FPKMUQ-top10000 PLS 0.053 
FPKM-byCor SVM-Radial 0.353 
FPKM-byCor SVM-Polynomial 0.321 
FPKM-byCor RF 0.362 
FPKM-byCor xgboost 0.338 
FPKM-byCor NN 0.018 
FPKM-byCor PLS 0.260 
FPKM-top10000 SVM-Radial 0.393 
FPKM-top10000 SVM-Polynomial 0.310 
FPKM-top10000 RF 0.363 
FPKM-top10000 xgboost 0.296 
FPKM-top10000 NN 0.318 
FPKM-top10000 PLS 0.354 
cpm-filtered SVM-Radial 0.000 
cpm-filtered SVM-Polynomial 0.009 
cpm-filtered RF 0.042 
cpm-filtered xgboost -0.006 
cpm-filtered NN 0.029 
cpm-filtered PLS 0.034 

 

  



 

39 

Table A5. RMSE of breast cancer cell cycle score in different combinations of normalization 
methods and classifiers. 

Normalization Classifier RMSE 
TMM-byCor SVM-Radial 0.000 
TMM-byCor SVM-Polynomial -0.016 
TMM-byCor RF -0.029 
TMM-byCor xgboost 0.024 
TMM-byCor NN 0.012 
TMM-byCor PLS 0.044 
TMM-TOP10000 SVM-Radial 0.000 
TMM-TOP10000 SVM-Polynomial -0.012 
TMM-TOP10000 RF -0.037 
TMM-TOP10000 xgboost -0.006 
TMM-TOP10000 NN 0.027 
TMM-TOP10000 PLS 0.046 
RLE-byCor SVM-Radial 0.000 
RLE-byCor SVM-Polynomial -0.031 
RLE-byCor RF -0.011 
RLE-byCor xgboost -0.032 
RLE-byCor NN 0.000 
RLE-byCor PLS 0.006 
RLE-top10000 SVM-Radial 0.000 
RLE-top10000 SVM-Polynomial -0.013 
RLE-top10000 RF 0.005 
RLE-top10000 xgboost 0.015 
RLE-top10000 NN -0.010 
RLE-top10000 PLS 0.058 
count-byCor SVM-Radial 0.000 
count-byCor SVM-Polynomial -0.015 
count-byCor RF 0.005 
count-byCor xgboost 0.000 
count-byCor NN 0.000 
count-byCor PLS 0.006 
count-top10000 SVM-Radial -0.012 
count-top10000 SVM-Polynomial -0.022 
count-top10000 RF -0.049 
count-top10000 xgboost -0.019 
count-top10000 NN -0.012 
count-top10000 PLS 0.083 
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Table A5. RMSE of breast cancer cell cycle score in different combinations of normalization 
methods and classifiers (continued). 

Normalization Classifier RMSE 
FPKMUQ-byCor SVM-Radial 0.000 
FPKMUQ-byCor SVM-Polynomial -0.018 
FPKMUQ-byCor RF -0.026 
FPKMUQ-byCor xgboost 0.022 
FPKMUQ-byCor NN 0.000 
FPKMUQ-byCor PLS -0.061 
FPKMUQ-top10000 SVM-Radial 0.000 
FPKMUQ-top10000 SVM-Polynomial -0.007 
FPKMUQ-top10000 RF -0.029 
FPKMUQ-top10000 xgboost 0.007 
FPKMUQ-top10000 NN -0.024 
FPKMUQ-top10000 PLS 0.025 
FPKM-byCor SVM-Radial 0.470 
FPKM-byCor SVM-Polynomial 0.460 
FPKM-byCor RF 0.405 
FPKM-byCor xgboost 0.471 
FPKM-byCor NN 0.027 
FPKM-byCor PLS 0.435 
FPKM-top10000 SVM-Radial 0.506 
FPKM-top10000 SVM-Polynomial 0.449 
FPKM-top10000 RF 0.372 
FPKM-top10000 xgboost 0.495 
FPKM-top10000 NN 0.494 
FPKM-top10000 PLS 0.530 
cpm-filtered SVM-Radial 0.000 
cpm-filtered SVM-Polynomial -0.004 
cpm-filtered RF -0.050 
cpm-filtered xgboost -0.041 
cpm-filtered NN -0.024 
cpm-filtered PLS 0.030 
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Table A6. RMSE of breast cancer DNA damage score in different combinations of normalization 
methods and classifiers. 

Normalization Classifier MCC 
TMM-byCor SVM-Radial 0.000 
TMM-byCor SVM-Polynomial 0.022 
TMM-byCor RF 0.015 
TMM-byCor xgboost -0.016 
TMM-byCor NN 0.000 
TMM-byCor PLS 0.024 
TMM-top10000 SVM-Radial 0.000 
TMM-top10000 SVM-Polynomial -0.011 
TMM-top10000 RF 0.056 
TMM-top10000 xgboost -0.007 
TMM-top10000 NN -0.039 
TMM-top10000 PLS -0.031 
RLE-byCor SVM-Radial 0.000 
RLE-byCor SVM-Polynomial 0.020 
RLE-byCor RF 0.000 
RLE-byCor xgboost 0.003 
RLE-byCor NN 0.000 
RLE-byCor PLS 0.031 
RLE-top10000 SVM-Radial 0.000 
RLE-top10000 SVM-Polynomial 0.003 
RLE-top10000 RF 0.008 
RLE-top10000 xgboost -0.036 
RLE-top10000 NN -0.001 
RLE-top10000 PLS -0.036 
count-byCor SVM-Radial 0.000 
count-byCor SVM-Polynomial 0.025 
count-byCor RF 0.044 
count-byCor xgboost -0.005 
count-byCor NN 0.000 
count-byCor PLS 0.079 
count-top10000 SVM-Radial 0.000 
count-top10000 SVM-Polynomial -0.030 
count-top10000 RF -0.019 
count-top10000 xgboost 0.032 
count-top10000 NN 0.035 
count-top10000 PLS -0.066 
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Table A6. RMSE of breast cancer DNA damage score in different combinations of normalization 
methods and classifiers (continued). 

Normalization Classifier MCC 
FPKMUQ-byCor SVM-Radial 0.000 
FPKMUQ-byCor SVM-Polynomial -0.018 
FPKMUQ-byCor RF 0.045 
FPKMUQ-byCor xgboost -0.037 
FPKMUQ-byCor NN -0.008 
FPKMUQ-byCor PLS -0.039 
FPKMUQ-top10000 SVM-Radial 0.000 
FPKMUQ-top10000 SVM-Polynomial -0.014 
FPKMUQ-top10000 RF -0.014 
FPKMUQ-top10000 xgboost -0.017 
FPKMUQ-top10000 NN 0.053 
FPKMUQ-top10000 PLS -0.036 
FPKM-byCor SVM-Radial 0.141 
FPKM-byCor SVM-Polynomial 0.213 
FPKM-byCor RF 0.128 
FPKM-byCor xgboost 0.181 
FPKM-byCor NN 0.000 
FPKM-byCor PLS 0.149 
FPKM-top10000 SVM-Radial 0.205 
FPKM-top10000 SVM-Polynomial 0.182 
FPKM-top10000 RF 0.123 
FPKM-top10000 xgboost 0.175 
FPKM-top10000 NN 0.178 
FPKM-top10000 PLS 0.214 
cpm-filtered SVM-Radial 0.000 
cpm-filtered SVM-Polynomial -0.001 
cpm-filtered RF -0.022 
cpm-filtered xgboost -0.029 
cpm-filtered NN -0.025 
cpm-filtered PLS 0.017 

 


