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Abstract 

In trafc data collection, sampling design should satisfy the requirements of identifying 
prominent pulses corresponding to vehicle axle passage. Insufcient measurement leads to 
signal distortion and attenuation, reducing the quality of signal pulses. This study exploits 
the value of under-sampled data by applying compressed sensing (CS) methods to recover 
signal components that are critical for vehicle axle detection. Two CS methods are inves-
tigated in this study to recover the strain signal pulses from inside-pavement instrumented 
sensors at high-speed traversals. The CS methods successfully recovered the signal pulses 
from all axles of the truck used for testing. A comparison of the measured axle distances with 
the reference measurements validated the efectiveness of signal recovery methods. There-
fore, the CS methods have the potential of reducing the cost, energy consumption, and 
data storage space, and improving the data transmission efciency in practical implemen-
tations by enabling sampling devices designed for static measurements to achieve dynamic 
measurements. 
Keywords: vehicle axle detection, compressed sensing, under-sampling, signal recovery 
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1. Introduction 

Vehicle axle detection plays a signifcant role in trafc data collection including vehicle 
counting, vehicle classifcation, and vehicle speed measurement [1–3]. Technologies perform-
ing vehicle axle detection fall into the categories of intrusive sensing (e.g., inductive loops, 
piezoelectric cables, and fber optic sensors) and non-intrusive sensing (e.g., infrared, mi-
crowave radar, and vehicle imaging) [2]. Many of the sensors are constituents of trafc 
control and management system that consists of multiple application modules [4]. 

Available technologies measure signals using optical, acoustical, or photographic methods 
to identify the passage of vehicle axles. A sufcient sampling frequency of the measurement 
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device is required to achieve satisfactory signal quality without much signal distortion and 
guarantee measurement accuracy [5, 6]. By analyzing in-pavement strain signals excited 
with vehicle passes, the work presented in [5] showed that insufcient sampling (i.e., under-
sampling) will lead to severe signal distortion. Signal distortion merges signal pulses for 
adjacent axles and thus prevents accurate axle detection. Nevertheless, a redundantly high 
sampling frequency in trafc data collection leads to potential energy and storage waste. 
Axle detection using under-sampled data is desirable to relieve the cost for data transmission 
and the required space for data storage. 

Compressed sensing (CS) has the potential of identifying the merged signal pulses from 
severely distorted signals. CS recovers under-sampled signals via optimization. CS has 
been wildly applied in biology, medicine, astronomy, etc. since its initiation in [7] and [8]. 
However, its application in trafc data analysis is very limited. Zhang et al. [9] used CS 
methods to recover in-pavement strain signals for weigh-in-motion (WIM) measurements. 
Sousa and Wang [10] used CS methods to reconstruct strain measurements on bridges. 
Nevertheless, none of them applies the CS technique to recover signals corresponding to 
respective vehicle passes, which is important for the comprehensive trafc analysis and 
infrastructure maintenance. 

In the present study, CS methods will be applied to recover the insufciently mea-
sured trafc data for vehicle axle detection via analyzing the properties of trafc-induced 
in-pavement strain signals and specifcally designing the method details for this signal re-
covery problem, including the sensing matrix, sparsity level, upsampling ratio, etc. The new 
contributions of the proposed method are: 

1. Vehicle axle detection from under-sampled signal is investigated via CS based signal 
recovery. 

2. The CS problem is mathematically formulated (including the sensing matrix, expan-
sion matrix, wavelet basis, etc.) for signal recovery from under-sampled signal, which 
can be extended to other practical applications. 

3. Signal pulses important for vehicle axle identifcation can be successfully extracted via 
CS, which is validated via experimental studies. 

4. Two CS methods (i.e., CoSaMP and LASSO methods) are compared to fnd the most 
efcient approach for vehicle axle detection. 

The structure of the remaining part of the present paper is: in Section 2, the basics of 
CS methods for signal recovery are introduced. Section 3 introduces the measured signals 
used for the evaluation and analyzes the signals’ properties. Section 4 formulates the CS 
problem for axle detection by deriving the sensing matrix and analyzes the measured signal 
with sufcient sampling frequency for axle detection. Section 5 applies the two CS methods 
and analyzes their efciency in recovering accurate signals for axle detection. In Section 6, 
the conclusions elaborate that the CS methods can be used to recover signals from under-
sampled measurements with satisfactory accuracy for direct axle detection. 
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2. Basics of CS Methods 

In the CS theory, the original signals can be reconstructed using reduced/downsampled 
measurements as long as their sparseness and/or compressibility satisfy certain conditions 
[7, 11, 12]. With signals compressed at a sampling rate that is much lower than required in 
the traditional practice according to the sampling theorem, CS can potentially improve the 
efciency of data transmission and decrease the space for data storage. 

x = (xi)
n 
i=1 ∈ Rn is the signal to be recovered via CS. Usually, x itself is not a sparse 

signal for CS. It is assumed that an orthonormal basis Ψ exits, so that x = Ψs with s 
being a sparse vector. Φ is the sensing matrix or measurement matrix with a dimension 
of m × n. In CS, it is assumed that m < n. Then the CS problem becomes recovering 
s from the measured signal y = ΦΨs or y = Θs, in which Θ = ΦΨ [13, 14]. Three 
types of algorithms are available to solve the CS problem, namely, (1) Greedy pursuits, (2) 
Convex relaxation, and (3) Combinatorial algorithms. Every category of algorithms has its 
advantages as well as shortcomings [15]. Combinatorial algorithms are computationally fast 
but demanding regarding the amount of data. In comparison, convex relaxation algorithms 
has much less requirement on data quantity while they are less computationally efcient. 
Greedy pursuits are intermediate in these two aspects compared with the combinatorial and 
convex relaxation algorithms. For comparison, this study applies a method with greedy 
pursuits, the Compressive Sampling Matching Pursuit (CoSaMP) method, and a convex 
relaxation method, the LASSO method, to reconstruct the vehicle-induced signals using the 
insufciently measured strain data from in-pavement embedded sensors. 

(a) (b) 

Figure 1: MnROAD Facility at MnDOT. (a) the road sections managed by the MnROAD Facility; (b) the 
concrete road section. 

CoSaMP is essentially a greedy pursuit. Compraed with other greed pursuits, its compu-
tational speed and rigorous error bounds are guaranteed by borrowing ideas from combina-
torial algorithms [17]. In CoSaMP, an approach inspired by the restricted isometry property 
is used to conduct the most challenging step of signal reconstruction, i.e., determining the 
locations of the target signal’s largest components. In detail, the vector y ∗ = Φ∗Φx is taken 
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as a proxy for the signal, which is approximated by applying the matrix Φ∗ to the collected 
samples. This idea is implemented iteratively in the CoSaMP algorithm to approximate 
the target signal, yielding an approximation residual in each iteration. In each iteration, 
samples are updated using the present residual, following which the signal proxy is updated 
and the largest components identifed. The iteration is repeated until the signal energy is 
recovered. Compared with other greedy algorithms, CoSaMP has improved computational 
efciency by identifying more than one largest component in each iteration. 

As a convex optimization method, the LASSO approach has few constraint on the ob-
jective functions. For example, the cardinality does not need to be known in advance in 
LASSO. In LASSO, with the assumptipn that x is sparse, the L1-norm regularization is 
incorporated into the objective function to supress non-contributive elements in x. The CS 
problem is frst solved with diferent regularization parameters, following which the solution 
with appropriate regression error and cardinality will be selected [16]. The major advantage 
of LASSO method is its computational efciency (a convex optimization) even for a very 
large signal reconstruction problem. 

3. Measured Signals and Signal Analysis 

(a) (b) 

7.62 t   7.57 t 7.62 t     8.03 t                5.44 t

1.49 m           11.26 m 1.51 m 5.66 m

(c) 

Figure 2: MnROAD Truck and its axle layout details. (a) MnROAD Truck; (b) tandem; (c) layout of axle 
loads and axle distances. 
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To investigate the efectiveness of the CS methods in trafc data analysis for vehicle axle 
detection, data collected at varied sampling frequencies is needed. In this paper, the actual 
data to be analyzed were measured from the strain gauge and fber-Bragg-grating (FBG) 
sensors pre-installed in the concrete panel at the Minnesota Cold Weather Road Research 
Facility (MnROAD) from Minnesota Department of Transportation (MnDOT). As shown 
in Fig. 1(a), the MnROAD Facility has two separte roadways: (1) a two-lane low-volume 
loop with a 80,000 lb semi-truck (i.e., the MnROAD Truck) load; (2) a road section of the 
interstate I-94 containing two westbound lanes loaded with live trafc vehicles. Fig. 1(b) 
displays a road section of the Cell 40. Cell 40 is comprised of concrete pavements which have 
a panel dimension of 6 ft × 6 ft × 3 in. The concrete pavement is embedded with GFRP-
packaged FBG sensors, strain gauges, etc. for pavement health condition and performance 
monitoring as well as trafc analysis. Figs. 2 (a) and (b) demonstrate the MnROAD Truck 
for axle detection tests and the rear tandem, respectively. Fig. 2 (c) shows the detailed 
information of axle loads. More details can be found in [5, 6, 18, 19]. 
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Figure 3: An example strain signal. The sampling rate is fs = 1200 Hz; the vehicle speed is v = 39 mph. 

With a sufcient sampling frequency, a measurement device can capture the strain pulse 
for each axle as the truck travels across the pavement panels installed with sensors. Zhang 
et al. [5] concluded from related signal analysis that the signal’s fundamental bandwidth 
required for accurate measurements increases with the vehicle’s traveling speed. Fig. 3 
shows the signal measured using the in-pavement strain gauge. The corresponding vehicle 
speed is 39 mph, and the sampling frequency is 1200 Hz. With a sampling frequency as high 
as 1200 Hz, the measured signal in Fig. 3 shows clearly the crossing of each truck axle with 
a an apparent pulse. 

Unlike from signal measurement for the strain gauge, the data collection device for the 
FBG sensor (i.e., NI PXIe-4844 Optical Sensor Interrogator) had a sampling frequency as low 
as 10 Hz. This low sampling frequency of the installed FBG sensors limits their application 
in high-speed trafc data collection. However, it provides an opportunity to examine the 
data in hand for more information than it supplies directly. Figs. 4 (a) to (f) show plots 
of the measured signals from the FBG sensor with a sampling frequency of 10 Hz for the 
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Figure 4: Collected signals from the FBG sensor. The sampling frequency is fs = 10 Hz. 

traversals with vehicle speed varying from 5 mph to 50 mph. The speed was controlled by 
a truck driver and thus was approximate. The strains measured by the FBG sensor have 
lower magnitudes than that from the strain gauge mainly because of their diferences in the 
installation locations and positions within the pavement panel. Unrepeatable driving routes 
also contributed to the variance in measurement. Furthermore, under-sampling caused signal 
attenuation [5]. Additionally, the hardware associated with the FBG sensor provided a 
higher SNR in signal collection and transmission than the strain gauge. 

Fig. 4 (a) shows the signal pulses produced when the truck travels at a low speed of 
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Table 1: Measured pulse widths through peak-fnding 

vehicle speed sampling frequency pulse 1 pulse 2 pulse 3 pulse 4 pulse 5 
v , mph f , Hz , m , m , m , m , m 

5 10 0.47 0.54 0.52 0.62 0.49 
10 10 0.61 0.66 0.55 0.87 0.62 
20 10 1.22 1.05 0.97 1.04 1.13 
30 10 1.47 2.25 2.76 - -
40 10 1.86 2.62 3.38 - -
50 10 2.34 2.50 2.35 - -
39 1200∗ 0.42 0.46 0.43 0.50 0.48 

* strain gauge 
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v ≈ 5 mph across the instrumented pavement. The sampling frequency of 10 Hz is close 
to the frequency of 13 Hz recommended in [5] for a traversal of 5 mph. As the speed 
increases, the signal power shifts further into the high-frequency band. However, a low 
sampling frequency excludes the high-frequency components that are necessary for producing 
sharper signal transitions. Consequently, under-sampling the signal causes signal distortion 
by widened and merging pulses [5]. The gradual variation of signal widths in Figs. 4 (b) to 
(f) emphasizes this phenomenon. All fve pulses remain identifable when v ≈ 10 mph and 
v ≈ 20 mph. However, distortion begins to merge the pulses for the tandem axles. Further 
increases in speed result in severe distortion such that the pulses for tandems axles merge 
into one pulse, from which it is rather difcult to identify the passage of two axles. 

20 40 60 80 100 120 140
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Figure 5: Example of peak-fnding using the “fndpeaks” function in MATLAB. The signal is the strain from 
the FBG sensor with v ≈ 5 mph. The signal width is measured at half prominence. 

Zhang et al. [5] quantifed signal distortion from under-sampling by the pulse width 
at its half prominence. The embedded function “fndpeaks” in MATLAB locates the local 
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maxima and graphically illustrates their prominence and width. Fig. 5 shows the results 
of peak-fnding using the strain signal in Fig. 4 (a). The sign of the signal is inverted for 
the convenience of applying the “fndpeaks” function in MATLAB. Table 1 compares the 
measured pulse widths. The last row lists the pulse widths of the strain gauge signal as 
a reference due to its sufciency in sampling frequency. Compared with the strain gauge 
signal, the pulse widths of the FBG signal at v ≈ 5 mph is slightly higher because of the 
lower sampling frequency. The pulses are widened gradually, though not proportionally, 
with the increase of speed. At v ≈ 30 mph, as the tandem pulses merge, the width of pulse 
2 is larger than the sum of the widths of pulses 2 and 3 for v ≈ 20 mph. The phenomenon 
repeats with pulse 3, which has a width exceeding that of pulses 4 and 5 summed for v ≈ 
20 mph. The pulse widths for v ≈ 40 mph increase further compared with that for v ≈ 
30 mph. When the speed increases further to 50 mph, the pulse widths vary inconsistently, 
most probably due to severe signal distortion and attenuation. For relative comparison, 
Table 2 lists the ratios of pulse widths to that for v ≈ 5 mph. 

Table 2: Ratios of pulse widths taking the case with v ≈ 5 mph as reference 

vehicle speed 
v , mph 

sampling frequency 
f , Hz 

pulse 1 pulse 2 pulse 3 pulse 4 pulse 5 

5 10 1 1 1 1 1 
10 10 1.3 1.2 1.1 1.4 1.3 
20 10 2.6 1.9 1.9 1.7 2.3 
30 10 3.1 4.1 5.3 - -
40 10 4.0 4.8 6.5 - -
50 10 5.0 4.6 4.5 - -

4. Signal Recovery for Axle Detection: the Problem Formulation and Trial Anal-
ysis 

Section 3 clearly shows that insufcient sampling frequency will lead to the loss of de-
tection in vehicle axle at high driving speeds. To recover the signal components important 
for vehicle axle detection from the imprecisely measured signals, this section formulates the 
CS method of signal recovery and tests its efectiveness using a sufciently sampled signal. 
Section 4.1 formulates the sensing matrix, Φ, for recovering the signal pulses referring to 
the results of the signal analysis in Section 3. Section 4.2 tests the performance of signal 
recovery of the CS method with the strain gauge signal measured at fs = 1200 Hz. 

4.1. Sensing Matrix Formulation 

In this study, for signal recovery, the sensing matrix is formulated in the same way as in 
the authors’ previous study [9]. The sensing matrix simulates the decimation operation of a 
low-pass anti-aliasing flter in a practical measuring device, as shown in Fig. 6. As a result, 
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the sensing matrix Φ in CS should incorporate the lowpass fltering (He) and digitizing (D), 
so that Φ =  He × D, in which 

He 

  
hd[0] 0 0 . . . 0 0 0 0 
hd[1] hd[0] 0 . . . 0 0 0 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
hd[N2 − 1] hd[N2 − 2] . . . hd[0] 0 . . . 0 0 

 

 

= 
0 hd[N2 − 1] hd[N2 − 2] . . . hd[0] 0 . . . 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
0 0 . . . . . . . . . . . . . . . . . . . . . . . 0 hd[N2 − 1] hd[N2 − 2] 
0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 hd[N2 − 1] 

(N1+N2−1)×N1 

(1) 
1 0 0 0 0 . . . 0 0 
0 0 0 1 0 . . . 0 0 

D = (2) 
. . . . . . . . . . . . . . . . . . . . . . . . 
0 0 0 0 0 . . . 0 1 

(N1/3)×(N1+N2−1) 

172 

173 

174 

ˆ hd[n] is the impulse response of the low pass flter, and N1 and N2 denote the length of x[n] 
and hd[n], respectively. More details about the formulation of the sensing matrix can be 
found in [9]. 

x[n]

X(Ω)
Hd

x̂[n]

X̂(Ω)

xd[n]

Xd(Ω)
↓ r

ωc = π/r  

Figure 6: Block representation of decimation (Reproduced from [20]). x[n] is the original signal, X(Ω) 
represents the counterpart of x[n] in the frequency domain, Hd represents the low-pass flter, ωc is the cutof 
frequency, r is the decimation factor, ˆx̂[n] denotes the fltered signal with X(Ω) being its counterpart in the 
frequency domain, xd[n] and Xd(Ω) denote the decimator outputs. 
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Figure 7: Coefcients of wavelet decomposed strain gauge signal in Fig. 9 (a) using the wavelet basis 'db4' 
and the recovered coefcients using the LASSO method from the decimated signal in Fig. 9 (b). 

4.2. Trial Analysis with the Strain Gauge Signal 
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Figure 8: Comparison of the recovered strain signal xrec  with the measured signal xobs . 
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This section analyzes the strain signal measured with sufcient sampling frequencies to 
evaluate the potential of CS for signal recovery from under-sampling measurement. Here, 
“sufcient” sampling signifes that the measured signal has signifcant pulses for direct axle 
detection through peak-fnding. The trial analysis uses the strain data that are measured 
from strain gauge at a sampling rate of fs = 1200 Hz with vehicle traveling at v = 39 mph 
(Fig. 3). Without loss of generality, the decimation factor is set to r = 2 and the LASSO 
method is used for signal recovery. 

Figs. 9 (a) and (b) compare the measured signal from strain gauge and the results of 
decimation. The lowpass flter in decimation reduces the noise level and thus improves the 
SNR. As the strain signal is not sparse itself, this study expands the measured signal using 
the wavelet transform to represent it by a sparse vector of coefcients. Test analysis shows 
that the wavelet basis 'db4' from the Daubechies wavelet family yields a sparse representation 
of the measured signal when it is decomposed to the 5th level. The LASSO algorithm of CS 
takes the decimated signal, the sensing matrix Φ, and the expansion matrix Ψ as inputs and 
sets the sparse coefcients s as the target of signal recovery. 
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(a) observed signal, f = 1200 Hz
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(b) decimated signal, f̂ = 600 Hz

Figure 9: Strain signal at fs = 1200 Hz and its decimation with r = 2. 

Figs. 7 (a) and (b) compare the coefcients of the measured signal made sparse using 
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the 'db4' wavelets, sobs , and the coefcients recovered using the LASSO method, srec. The 
comparison shows high quality of recovery with little deviation of srec from sobs. Fig. 8 
compares the measured strain signal, xobs, and the recovered signal, xrec, from the decimated 
signal with xrec = Ψsrec, which also shows high consistency. The encouraging outcomes of 
signal recovery shown in Figs 7 and 8 evidences the potential for recovering a signal from 
its under-sampling measurement using the CS based method. The rest of this paper will 
examine the quality of signal recovery from measured signals with insufcient sampling 
frequency. 

Table 3: Recognized axle distances through peak-fnding (CoSaMP) 

vehicle speed 
v , mph 

sampling frequency 
f or f̂ , Hz 

axle distance 1 
AD1, sample 

axle distance 2 
AD2, sample 

axle distance 3 
AD3, sample 

axle distance 4 
AD4, sample 

5 
10 
20 
30 
40 
50 
30 
40 
50 
39 

10 
10 
10 
10 
10 
10 
20∗ 

30∗ 

20∗ 

1200∗∗ 

21 
14 
11 
4 
4 
3 
8 
10 
16 
353 

7 
4 
3 
9 
6 
5 
2 
3 
19 
96 

46 
28 
21 
-
-
-

16 
18 
2 

703 

6 
4 
3 
-
-
-
2 
3 
-

93 
* pseudo sampling frequency; ** strain gauge 

5. Signal Recovery for Axle Detection: CS from Under-Sampled Signals 

This section shows the outcome of signal recovery using the two CS methods and eval-
uates their efectiveness in axle detection. Sections 5.1 and 5.2 show the outcome of signal 
recovery using under-sampled data for vehicle axle detection using the CoSaMP and LASSO 
methods, respectively. This paper obviates elaborating these two methods due to the limited 
length. The authors refer to [15] for details on the development of CoSaMP, and to [16] for 
details on the LASSO method. 

5.1. Signal Recovery using the CoSaMP method 

In this section, the results of signal recovery with under-sampled signals from FBG sensor 
using the CoSaMP method of CS are presented. The investigated vehicle speeds are v ≈ 30 
mph, v ≈ 40 mph, and v ≈ 50 mph . To determine the best confguration for CS using the 
CoSaMP method, the infuence of two parameters is investigated: (1) the ratio of decimation 
 that determines the pseudo-sampling-frequency ˆ r fs of the recovered signal and the sensing 

matrix Φ; and (2) the target sparsity κt that specifes the number of non-zero data in the 
recovered signal. The criteria include the normalized error in signal recovery, Rnorm, and 
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Figure 10: Recovered signals using the CoSaMP algorithm with observed signals collected at diferent vehicle 
traveling speeds. For case v ≈ 30 mph: rus = 2 and κt = 5; for case v ≈ 40 mph: r = 3 and κt = 7; for case 
v ≈ 50 mph: r = 2 and κt = 10. 

215 

216 

217 
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219 

220 

the sparsity of recovered signal. It should be noted that in this section and in Section 5.2, 
wavelet expansion is unnecessary because the target of signal recovery x is already sparse. 
Subsequently, the analysis ignores the matrix Ψ. 

Intensive parametric analysis reveals the optimum settings of the CoSaMP method, when 
it reaches the balance between the reovery error and signal sparsity. That is r = 3 and κt = 
5 for v ≈ 30 mph, r = 3 and κt = 7 for v ≈ 40 mph, and r = 2 and κt = 10 for v ≈ 50 mph. 
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Table 4: Ratios of axle distance taking AD1 as reference (CoSaMP) 

vehicle speed 
v , mph 

sampling frequency 
f or f̂ , Hz 

axle distance 1 
AD1 

axle distance 2 
AD2 

axle distance 3 
AD3 

axle distance 4 
AD4 

5 
10 
20 
30 
40 
50 
30 
40 
50 
39 
-

10 
10 
10 
10 
10 
10 
20∗ 

30∗ 

20∗ 

1200∗∗ 

*** 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.3 
0.3 
0.3 
2.3 
1.5 
1.7 
0.3 
0.3 
1.2 
0.3 
0.3 

2.2 
2.0 
1.9 
-
-
-

2.0 
1.8 
0.1 
2.0 
2.0 

0.3 
0.3 
0.3 
-
-
-

0.3 
0.3 
-

0.3 
0.3 

* pseudo sampling frequency; ** strain gauge; *** direct measurement from Fig. 2 (c). 
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234 
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238 
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Fig. 10 shows the results of signal recovery for the three speed cases. It can be seen that CS 
recovers all the fve pulses for the case with v ≈ 30 mph and v ≈ 40 mph. However, it fails 
to recognize the adjacent pulses for the frst tandem for the case with v ≈ 50 mph, most 
probably due to the excessive severity of signal distortion caused by insufcient sampling 
frequency. Previous study [5] by authors of the present paper recommends a sampling 
frequency of 128 Hz for v = 50 mph according to the Nyquist sampling theorem, which is 
much higher than that available (i.e., 10 Hz) in measuring the FBG signal. Figs. 11 (a) 
to (c) compare the measured signals bobs with that recovered by CS, brec . The two curves 
matches well in all three plots. Fig. 11 (c) shows that although the CS is accurate in the 
sense that the recovered signal is a solution of the problem Ax = b, it does not yield the 
identical x to the target source signal with recognizable pulses for all vehicle axles. 

To evaluate the accuracy of signal recovery for axle detection, Tables 3 and 4 compare 
the axle distances, i.e., the distances between pulses, and their ratios of the recovered signal 
by CS with that identifed from the measured signals. As introduced in Section 3, the 
peak-fnding technique provides the axle distances. Table 4 shows that for the cases with 
v ≈ 30 mph and v ≈ 40 mph, the recovered signals represent axle distances with very close 
ratios to that from the FBG signals with v ≈ 5 mph, v ≈ 10 mph, and v ≈ 20 mph, the 
strain gauge signal, and direct measurement in Fig. 2 (c). This consistency of axle distance 
ratios verifes the efectiveness of recovering signal with the CoSaMP method for the purpose 
of axle detection, excluding the possibility of recovering random pulses from the measured 
signal. 
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Figure 11: Comparison of observed signal obsb  with its reconstruction rec recb  from recb  = Φx . Φ is the sensing 
matrix; recx is the recovered signal using the CoSaMP algorithm from Φ and obsb  . 
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Figure 12: Recovered signal using the LASSO algorithm with observed signal collected at diferent vehicle 
traveling speeds. For case v ≈ 30 mph: rus = 2; for case v ≈ 40 mph: rus = 3; for case v ≈ 50 mph: rus = 2. 
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5.2. Signal Recovery using the LASSO method 

This section show the outcome of recovering signal for axle detection using the LASSO 
method. The same setting of decimation factor when formulating the sensing matrix as 
optimized in Section 5.1 is used in this section. The LASSO method does not necessarily 
require passing a target sparsity (i.e., κt as in the CoSaMP method). Instead, it gives the 
results of signal recovery for a series of sparsity and the corresponding residuals. Referring 
to [21], this study selects the CS results at the diminishing point of the residual curve that 
has a relative low sparsity; in other words, the determination of the CS-recovered signal in 
LASSO is the result of balancing the error (Rnorm) and sparsity. 

Table 5: Recognized axle distances through peak-fnding (LASSO) 

vehicle speed 
v , mph 

sampling frequency 
f or f̂ , Hz 

axle distance 1 
AD1, sample 

axle distance 2 
AD2, sample 

axle distance 3 
AD3, sample 

axle distance 4 
AD4, sample 

5 
10 
20 
30 
40 
50 
30 
40 
50 
39 

10 
10 
10 
10 
10 
10 
20∗ 

30∗ 

20∗ 

1200∗∗ 

21 
14 
11 
4 
4 
3 
8 
9 
6 

353 

7 
4 
3 
9 
6 
5 
2 
3 
10 
96 

46 
28 
21 
-
-
-

16 
18 
-

703 

6 
4 
3 
-
-
-
2 
2 
-

93 
* pseudo sampling frequency; ** strain gauge 

Figs. 12 shows the results of CS using the LASSO method for FBG signals at v ≈ 30 
mph, v ≈ 40 mph, and v ≈ 50 mph. Similar to the results of the CoSaMP method, the 
LASSO method for signals at v ≈ 30 mph and v ≈ 40 mph yields signals with apparent 
pulses corresponding to the passage of all truck axles, but it fails to recover an efcient 
signal for axle detection from the signal at v ≈ 50 mph. The normalized residuals are at the 
same level with that of the CoSaMP method. As expected, the recovered signal shows high 
consistency with the measured signal as shown in Fig. 13. Tables. 5 and 6 compare the axle 
distances and their ratios identifed from the signal pulses. Similar to the CoSaMP method, 
the LASSO method generates signals with axle distance ratios close to the references for 
the cases with v ≈ 30 mph and v ≈ 40 mph. In summary, the LASSO method produces 
encouraging results of signal recovery for axle detection, as did the CoSaMP method. 

6. Conclusions 

Since insufcient sampling could distort and attenuate the signal pulses and thus reduce 
the accuracy of axle detection, this study investigates the compressed sensing (CS) methods, 
specifcally, CoSaMP and LASSO methods, to recover the important signal pulses for vehicle 
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276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

axle detection from under-sampling measurements. The case study used strain signals col-
lected from inside-pavement installed sensors. CS requires formulating sensing matrix and 
expansion matrix for sparse representation. This study uses decimation to model the efects 
of signal under-sampling, which results from low-pass fltering and digitizing, to derive the 
sensing matrix for signal recovery. For signals measured with a sufcient sampling frequency, 
a wavelet basis is efective in expanding the signal into sparse representation, which then 
forms the expansion matrix in CS. Trial analysis using the sufciently measured signal from 
the strain gauge shows the potential for using CS methods to recover the essential signal 
pulses essential for vehicle axle detection and hence lays the foundation for signal recovery 
from the under-sampled signals. From the case study, it can be seen that the two CS meth-
ods, CoSaMP and LASSO, can recover signals from under-sampling measurements as long 
as the vehicle speed corresponding to the measured signal is not excessively higher than the 
measuring scope of the sampling equipment according to the Nyquist theorem. 

Table 6: Ratios of axle distance taking AD1 as reference (LASSO) 

vehicle speed 
v , mph 

sampling frequency 
f or f̂ , Hz 

axle distance 1 
AD1 

axle distance 2 
AD2 

axle distance 3 
AD3 

axle distance 4 
AD4 

5 
10 
20 
30 
40 
50 
30 
40 
50 
39 
-

10 
10 
10 
10 
10 
10 
20∗ 

30∗ 

20∗ 

1200∗∗ 

*** 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.3 
0.3 
0.3 
2.3 
1.5 
1.7 
0.3 
0.3 
1.7 
0.3 
0.3 

2.2 
2.0 
1.9 
-
-
-

2.0 
2.0 
-

2.0 
2.0 

0.3 
0.3 
0.3 
-
-
-

0.3 
0.2 
-

0.3 
0.3 

* pseudo sampling frequency; ** strain gauge; *** direct measurement from Fig. 2 (c). 

The results of this paper have the potential to reduce the cost in trafc data analysis and 
make full use of available measurement equipment especially in case of emergency. This anal-
ysis was limited to strain data collected from in-pavement sensors. However, practitioners 
can extend this concept to other measurements for trafc data collection. 
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Figure 13: Comparison of observed signal obsb  with its reconstruction rec recb  from recb  = Φx . Φ is the sensing 
matrix; recx is the recovered signal using the LASSO algorithm from Φ and obsb  . 
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