

Thesis Question

Can a family of four be self-sufficient on five acres of land?

Project Emphasis

Design an affordable and self-sufficient single family house
Create an affordable and cohesive space for raising livestock

Provide a suitable and efficient space for growing food

Goals of the Thesis Project

Demonstrate that homesteading can be accomplished in a modern society.

Understand how to efficiently and affordably run a homestead.

Provide an alternative to the traditional way of providing for one's family.

Understand how to create efficient and self-sufficient housing.

Understand how to create a space suitable for growing food efficiently.

Site Information

5.09 acres of land listed at \$21,600

Near the Heartland Trail (used for walking, biking, and horseback riding)

4 miles northeast of Park Rapids
Half is covered in trees, half is field
Growing zone 3

PASSIVE HEATING

AVERAGE HIGH \& LOW TEMPURATURE

Passive heating options using solar energy:

Thermal Mass

PASSIVE COOLING

AVERAGE HIGH \& LOW TEMPURATURE

BOTANICAL

Square Foot Gardening

Maximizes yield.
Keeps soil friable.
Reduces watering
Reduces weeding

Greenhouses

Hoop House / High Tunnel

Moderately extends the growing season

Easy to build
Requires an irrigation system

Conventional Greenhouse

Use heaters and solar energy to extend the gowning season

Requires skilled construction
Requires an irrigation system

Cold Frame / Hot Bed

Easy to build

Protects plants from frost
Does not need an irrigation system

LIVESTOCK

General Care

Most animals do not need to be kept indoors or in a heated space as it may affect their natural cycles.

A shelter should be provided to protect livestock from wind, rain, and summer sun.

Interior spaces, such as a barn, should be well ventilated.

Livestock should have access to feed and water at all times, especially in cold weather.

Dual Purpose

Provide more than one resource (meat, eggs, milk, wool, hide) or skill (protection, herding, transportation)

Maximize efficiency when space is limited.

Rotational Grazing

Increases pasture production
Reduces waste.
Increases drought resistance.
Natural pest control.
Centralizes needs.

Major Project Elements

Residential House

Provides sleeping and living spaces for the family

Sustainable design to lower energy needs and costs

Pantry to store one year's worth of food harvested from the homestead

Livestock Barns

Stalls and pens for livestock
Storage spaces for feed and equipment

Milking stanchion
Sustainable design to lower energy needs and costs

High tunnel / Garden Spaces
Greenhouse to increase the growing season

Raised garden beds to provide a year worth of food

Irrigation system

Performance Criteria

THE SITE

Adjacency Matrix

Space Allocation (minimum)ADJACENT
NEARBY
NOT ADJACENT

THE HOUSE

Adjacency Matrix

Bathroom

Living Room
Mechanical Room

Garage

0
ADJACENT
NEARBY
NOT ADJACENT

Mudroom: 25 sqaure feet
Laundry Room: 10 square feet
Bathroom: 50 square feet
Bedroom 1: 100 square feet
Bedroom 2: 80 square feet

Garage: 288 square feet Bedroom 3: 80 square feet Kitchen: 80 square feet Living Room: 100 square feet Mechanical Room: 50 sqaure feet

THE BARN

Adjacency Matrix

Site Plan

1. Sacrifice Pen
2. Rotation Pasture
3. Yard

4. Driveway
5. House
6. Berry Bushes
7. Hoop House
8. Raised Garden Beds
9. Compost Pits
10. Chicken Run
11. Barn
12. Hay \& Storage Shed
13. Livestock Shelter
14. Cloths Line
15. Windmill

RENDERS

Residential House

PLANS

Main Level Plan

Cellar Plan

STRUCTURE

Buck \& Beam Straw Bale Construction

Wood framing supports the weight of the roof (opposed to the straw bales carrying the load)

The wood framing is built first, then walls are infilled with straw bales

This method reduces settling issues
R-Value of 36

ELEVATIONS

South Elevation

North Elevation

East Elevation

West Elevation

SECTIONS

Transverse Section

HVAC Solution

PASSIVE HEATING

PASSIVE COOLING

ACTIVE SYSTEM

Package Unit - Air handling unit will be located in the cellar, and the compressor will be located on the west side of the house next to the exterior cellar door.

RENDERS

Livestock Barn

PLAN

STRUCTURE

Quonset Hut - Double skin system to keep cool in summer months
Traditional Wood Framing - Used to construct the end walls, uninsulated
Buck \& Beam Straw Bale Construction - Used to insulate the feed room, non load bearing

ELEVATIONS

Front Elevation

Side Elevation

SECTIONS

Transverse Section

RENDERS

High Tunnel / Garden Spaces

PLAN

STRUCTURE

ELEVATIONS

Front Elevation

Side Elevation

SECTIONS

Transverse Section

Longitudinal Section

RENDERS

ANALYSIS

RESOURCE FLOWCHART

ENERGY CALCULATIONS

MONTH	ELECTRICITY CONSUMPTION	SOLAR ENERGY	NET ENERGY	BALANCE
January	$-1,888 \mathrm{kWh}$	$+2,341 \mathrm{kWh}$	+453 kWh	$+\$ 54.36$
Febuary	$-1,673 \mathrm{kWh}$	$+3,331 \mathrm{kWh}$	$+1,658 \mathrm{kWh}$	$+\$ 198.96$
March	$-1,356 \mathrm{kWh}$	$+4,166 \mathrm{kWh}$	$+2,810 \mathrm{kWh}$	$+\$ 337.20$
Arpil	$-1,015 \mathrm{kWh}$	$+4,512 \mathrm{kWh}$	$+3,497 \mathrm{kWh}$	$+\$ 419.64$
May	-662 kWh	$+4,702 \mathrm{kWh}$	$+4,040 \mathrm{kWh}$	$+\$ 484.80$
June	-411 kWh	$+6,038 \mathrm{kWh}$	$+5,627 \mathrm{kWh}$	$+\$ 675.24$
July	-429 kWh	$+6,468 \mathrm{kWh}$	$+6,039 \mathrm{kWh}$	$+\$ 724.68$
August	-409 kWh	$+6,061 \mathrm{kWh}$	$+5,652 \mathrm{kWh}$	$+\$ 678.24$
September	-587 kWh	$+4,531 \mathrm{kWh}$	$+3,944 \mathrm{kWh}$	$+\$ 473.28$
October	-982 kWh	$+3,085 \mathrm{kWh}$	$+2,103 \mathrm{kWh}$	$+\$ 252.36$
November	$-1,311 \mathrm{kWh}$	$+2,150 \mathrm{kWh}$	+839 kWh	$+\$ 100.68$
December	$-1,733 \mathrm{kWh}$	$+2,053 \mathrm{kWh}$	+320 kWh	$+\$ 38.40$
YEARLY	$-12,456 \mathrm{kWh}$	$+49,438 \mathrm{kWh}$	$+36,982 \mathrm{kWh}$	$+\$ 4,437.84$

\qquad NET ENERGY

CHORE SCHEDULE

TASK	LOCATION	SEASON	REPETITION	DURATION
Feed Chickens	Barn	Year Round	Daily	2 min
Water Chickens	Barn	Year Round	Daily	2 min
Collect Eggs	Barn	Year Round	Daily	1 min
Milk Cow	Barn	Year Round	Bidaily	30 min
Fill Stock Tank	Barn	Winter	Daily	5 min
Feed Pigs	Barn	Year Round	Daily	4 min
Weed Garden	Garden	Summer	Weekly	90 min
Clean Stock Tank	Barn	Summer	Weekly	10 min
Clean Coop	Barn	Year Round	Biweekly	15 min
Hay	Sacrifice Pen	Winter	Biweekly	15 min
Hay	Sacrifice Pen	Summer	Monthly	15 min
Canning/Freezing	House	Fall	Yearly	na

TOTAL PRODUCTION

PRODUCT	SOURCE	YEARLY PRODUCTION	WEEKLY PRODUCTION
Eggs	Chickens (16-18)	3,500 eggs	48 eggs
Poultry	Meat Birds (25)	125 lbs	2 lbs
Milk	Cow (1 Highlander)	730 gal	14 gal
Beef	Cow (1 Highlander)	220 lbs	4 lbs
Pork	Pig (1)	175 lbs	3 lbs
Produce	Garden	587 lbs	11 lbs
Electricity	Solar Panel (342 sf)	$54,852 \mathrm{kWh}$	$1,055 \mathrm{kWh}$

EXPENSES

PRODUCT	COST
Hay	$-\$ 1,200$
Pig Feed	$-\$ 750$
Chicken Feed	$-\$ 400$
Meat Bird (Chicks)	$-\$ 75$
Straw	$-\$ 200$
TOTAL	$-\$ 2,625$

CONSTRUCTION COST

DESCRIPTION	COST
Site	$-\$ 21,600$
House	$-\$ 170,000$
Barn	$-\$ 15,000$
High Tunnel	$-\$ 1,000$
Hay Shed	$-\$ 4,000$
TOTAL	$-\$ 211,600$

Conclusion

Just Enough Acres provides:
A sustainable house that is affordable and provides privacy for all members.

An efficient barn for caring for livestock.
A garden space to provide a year's worth of food for the homesteader.

Just Enough Acres meets all of the project goals while making a profit of an estimated \$1,800 a year.

