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ABSTRACT

The overall goal of this paper is to give a method of computing out how many words of

length n there are for any Coxeter group via its Brink-Howlett automaton. [6] [7] To build our

automaton, we focus on Coxeter systems and root systems honing in on a special set of roots called

the small roots. We follow closely [1] [5] for the first two chapters. Finally, we build the Brink-

Howlett automaton through literature compiled through the years and present explicit examples

of Ã1 and the Coxeter group on three generators which each pair of generators is in a free relation

with one another.[14] [19] [24]
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PREFACE

I shall give a brief overview context about how I ran into the problem stated above in the

abstract. It may not be the easiest path to follow, but a lot has been gained over the years of

studying Algebraic Combinatorics. A lot of material from this paper comes from [1] and [5].

As one goes through a course in Algebra, one may question how many words of length n

there are for a general presentation of a group. The answer comes from the intersection of two

fields, Coxeter Group Theory and the Theory of Automata. It is natural for any group W to be

defined by its presentation. Recall a presentation for a group W can be given as W ∼=< S | R >.

We represent the group elements as words in the alphabet of our generators S and R is the relations

in the group that give the identity through the operation of concatenation. Doing this leads to

advantages and disadvantages. For one advantage, the multiplication of the words is given by

the operation of concatenation. This is useful in the field Computer Science with implementation

into data structures. There can also be disadvantages. There can be a plethora amount of words

that correspond to the same group element, and in general, there is no finite algorithm that tells

whether two different words are equivalent. This is known as the word problem. Also, there is no

finite algorithm that will reduce a word to an equivalent shortest possible word. This is known as

the reduction problem. Even worse, for that reduced word there may not exist a way for a word to

be fully proved to be reduced. This is known as the recognition problem.

All Coxeter groups do solve the word problem. [23] Coxeter groups have seen to have a

prolific effects in the areas of Geometry, Topology, Combinatorics, Algebra, Polyhedra, Computer

Science, Physics, Chemistry, and Biology for the past 75 years. In fact, one may not realize that

one has seen a Coxeter group until one reaches presentations of groups during their mathematical

studies.

The amount of effort to prove a nice power-series representation for the words of length n

for a general group has been perpetuated for over a century and still going on today with computer

implementation of automata of Coxeter groups.[2] Also, in the Journal of Algebra has released some

aspects of Coxeter groups having the minimal automaton.[19] The development is not as simple as
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one may think. There many foundational aspects one needs to establish and prove to establish the

result of automata of Coxeter groups.

There are many other problems in Coxeter groups in which researchers are interested in.

The problems started with the influence of Dehn in 1911 and 1912 first looking at surface groups.[10]

We list them below:

• Word problem: Given an arbitrary word w in a group G, decide in a finite number of steps

whether or not w defines the group identity. (Solved, [23])

• Conjugacy problem: Given two words w, v of a group G, decide in a finite number of steps

whether or not the words are conjugate to each other. (Solved, [16])

• Isomorphism problem: Given a groupH with a different presentation decide in a finite number

of steps whether a group G and H are isomorphic. This problem is currently ongoing with

respect to Artin automorphisms.[3]

This paper focuses on developing the Brink-Howlett automaton for the first three chapters.

We follow in accordance with [5] for the first two chapters. For chapter three, we consult the

literature that has been developed since 1990’s starting with Brink’s Ph.D thesis [7] to current day

information on the Brink-Howlett automaton.

One of the most viable tools to study the problem of enumerating reduced words of length n

comes from the Brink-Howlett automaton. This automaton puts a Coxeter group into a finite state

automaton.[6] [7] This automaton counts reduced words of length n for a general Coxeter group and

each reduced word corresponds to walk in its geometry via the group’s hyperplane arrangement.
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1. COXETER GROUPS

1.1. Basics of Coxeter Groups

One starts in a basic Abstract Algebra course with permutation group Sn. One can label

a set of balls 1 through n where each ball is distinguishable. One then can reorder the balls to

represent an element of Sn. We use one-line permutation notation here. What is not so obvious is

that we can give a geometric interpretation of Sn via a hyperplane arrangement. We start with a

visual representation of S3 via hyperplane arrangements, where each hyperplane labeled swaps the

coordinates with respect to the labeling of the hyperplane. For example, starting with the identity

element at the bottom, 123, we reflect over the plane labeled X1 = X2 that swaps position 1 and

2 of our element to get a new element of S3, 213.

Figure 1.1. Hyperplane Arrangement of S3

One can see through the way of transpositions si = (i, i+1) for S3 we will get the polynomial

of reduced words of length n being R(S3,{s1,s2})(q) = 1+ 2q+ 2q2 + q3 where the coefficient of each

degree n represents the number of reduced words of length n for the group. The definition of length

will be given a little later on and we will encounter a proof of the following polynomial in the second

chapter using the weak right Bruhat order in chapter 2. In our example, we have one word of length

zero, the identity element 123, two words of length one, 213, 132, two words of length two, 312, 231

and one word of length three, 321. Hyperplane arrangements will be of importance to us in the next
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chapter with consideration of root systems, since Coxeter groups have a nice symmetric geometric

structure.

We begin this paper with the definition of a Coxeter system. We then go forward with some

groundwork theorems, propositions and definitions we will need in the future. We follow [5] for this

chapter.

Definition 1.1.1. A Coxeter system is a pair (W,S) where W is a group (Coxeter group), with

presentation ⟨S | R⟩, for S = {si}i∈I , a function mi,j : S × S → {N \ 0} ∪ {∞} with the map

(si, sj) 7→ order(sisj) = e which gives rise to the relations, R, defined as:

R = {(sisj)mij | mij ∈ {1, 2, ...,∞}, mij = mji, mij = 1 ⇐⇒ i = j}

Lemma 1.1.2. W is a group.

Proof. Elements ofW are words with respect to S, and the operation is concatenation. The identity

is the empty word and the inverse for any word s1s2...sk ∈ W is sksk−1...s2s1 ∈ W , due to s2i = e.

Formally, take W = F/N with F the free group generated by S and N the normal subgroup

generated by {(ss′)m(s,s′) = e}.

We now give a definition of what it means to be an irreducible Coxeter group. This paper

will mainly focus on irreducible Coxeter groups unless otherwise specified.

Definition 1.1.3. A connected component of M is a maximal subset J of [n] (maximal in the sense

that no other vertex can be added to it) such that mjk = 2 for each j ∈ J and k ∈ [n] \ J . In

the graph M , this means that j and k have no edge between them. If M has a single connected

component, it is called connected or irreducible. A Coxeter group W over a Coxeter diagram M is

called irreducible if M is connected.

We will assume that S is finite for the rest of this paper.

All finite irreducible Coxeter groups have been classified.[13] The proof is out of the scope

for this paper. For the interested reader, seeing the proofs in [1] should be more than sufficient for

finite irreducible Coxeter groups.
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Figure 1.2. Finite Irreducible Coxeter Groups [22]

Proof for the classification of affine irreducible Coxeter groups is given by [15].

Figure 1.3. Affine Irreducible Coxeter Groups [22]

Definition 1.1.4. A Coxeter diagram is built by the function m : S×S → {N\0}∪{∞} where

(s, s′) 7→



the vertex of s, if m(s, s′) = 1

not connected by an edge, if m(s, s′) = 2

connected by an edge, if m(s, s′) = 3

connected by a line with weight label, if m(s, s′) ≥ 4

Theorem 1.1.5. A Coxeter system is in a one-to-one correspondence with a Coxeter diagram.

Proof. This is immediate by the construction of the Coxeter system and the Coxeter diagram via

its n× n-symmetric matrix representation.

Example 1.1.6. Take the following Coxeter diagram:

3



Figure 1.4. Coxeter Diagram

We obtain matrix representation via our generator relations where the vertices are our

generators and edges between vertices are our relations. We label the columns and rows of the

matrix by the generators s1, s2, s3 in increasing index order left to right and top to bottom. We

then write the edge relations between two vertices into the matrix as shown on the next page.

M =


1 3 2

3 1 5

2 5 1


Example 1.1.7. The group Sn+1 can be represented by type An where the vertices of An are the

transpositions of Sn+1 such that the vertex si = (i, i + 1), 1 ≤ i ≤ n in the Coxeter diagram of

type An. The edges of type An represent the relations between the generators. Recall that the

presentation of Sn+1 can be given as

Sn+1
∼= ⟨s1, s2, ..., sn ∈ S| s2i = e, sisj = sjsi if |i− j| ≥ 2, sisjsi = sjsisj if |i− j| = 1⟩ni,j=1

Given this, it may be hard to consider if Sn+1 is a Coxeter group. Luckily, Matsumoto and

Tits have laid the ground work to prove what is a Coxeter group. The proof will be given later.

We begin with some properties of a Coxeter system (W,S) with regards to the set

T := {wsw−1| w ∈ W, s ∈ S}.

Each element in T is called a reflection. Observe that S ⊆ T , and t2 = e for all t ∈ T .

4



Definition 1.1.8. [1] We define an injective group homomorphism π : W → ST
B, where ST

B is the

hyperoctahedral group, recalling the relation −π(i) = π(−i), such that

πs(t) =


sts, if s ̸= t

−s, if s = t

Define the sgns(t) = (−1)n(s1s2...sk,t), where n(s1s2...sk, t) = number of times t = s1s2...si...s2s1

for 1 ≤ i ≤ k.

The definition of length and a reduced expression for a Coxeter group element will help our

proofs out.

Definition 1.1.9. The length of w ∈ W is

l(w) = min{n ≥ 0 | w = s1...sn with s1, ..., sn ∈ S}

an expression w = s1...sn with n = l(w) is called a reduced expression for w.

To prove that a given group belongs to a Coxeter system or not, we will establish two

important properties of a Coxeter system, the strong exchange property and the deletion property.

Theorem 1.1.10 ([5], Strong Exchange Property). Let (W,S) be a Coxeter system. Suppose

w = s1s2...sk (si ∈ S) and t ∈ T . If l(tw) < l(w), then tw = s1...ŝi...sk for some i ∈ [k]. If t ∈ S,

we call this the exchange property.

Notation 1.1.11. The hat on-top of a generator, ŝi means that the generator is dropped from the

word.

Proof. Let (W,S) be a Coxeter system. Let w ∈ W , and t ∈ T . It will be sufficient to show that

l(tw) < l(w) ⇐⇒ sgnw−1(t) = −1 since

l(w) = |{t ∈ T | l(tw) < l(w)}| = |{t ∈ T | sgnw−1(t) = −1}|.

⇐ Choose a reduced expression w = s1s2...sk then w−1 = sk...s2s1. Since the parity of sgnw−1(t)

5



is odd, t = s1...si....s1 for some 1 ≤ i ≤ k. Thus,

l(tw) = l(s1...ŝi...sk) < k = l(w).

⇒ Assume that l(tw) < l(w) with sgnw(t) = 1. Then, l(tw) < l(ttw).

π(tw)−1(t) = πw−1t(t) = πw−1(−t) = −πw−1(t) = −(±w−1tw) = −((−1)n(w
−1,t)w−1tw) = −(±w−1tw)

which implies sgnw−1(t) = −1 since sgnw(t) = 1.

Lemma 1.1.12. l(sw) = l(w)± 1

Proof. Let w = s1...sk be a reduced expression for w. If sw is reduced, clearly l(sw) = l(w) + 1.

If sw is not reduced, then by the exchange property sw = s1...ŝi...sk for some i. This is a reduced

expression for sw, else if w = s(sw) would be expressible as a word of length less than k, which is

a contradiction.

Proposition 1.1.13 ([5], Deletion Property). If w = s1s2...sk and l(w) < k, then w =

s1....ŝi...ŝj ...sk for some 1 ≤ i < j ≤ k.

Proof. Choose i to be a maximal index so that sisi+1...sk is not reduced. Then, l(sisi+1...sk) <

l(si+1...sk) l(si+1...sk) = k − i, and l(sisi+1...sk) ̸= k − i+ 1.

Thus, l(sisi+1...sk) = k − i− 1 = l(si+1...sk)− 1. Now, by the exchange property, we have

sisi+1...sk = si+1...ŝj ...sk

s1s2...si−1sisi+1...sk = s1s2...si−1ŝisi+1...ŝj ...sk

Example 1.1.14. For an example of the strong exchange property, consider (W,S) = (A4, {s1, s2, s3, s4})

with w = s3s4s3s4s2s3s1 and consider its wiring diagram. We do the wiring diagram right to left

with respect to the word w. One can see that l(s4w) < l(w) since one will see that the strings of 1

and 5 double cross, or because m3,4 = 3. This means we can straighten the lines where they cross

to reduce to the word w′ = s3s2s3s1.

6



For the deletion property, see that wires 3 and 5 are double crossing, giving the word

w′′ = s4s3s2s3s1.

Figure 1.5. String Diagram

One can use the hyperoctahedral group defined before to establish that looking at the pre-

images of a pair of wires, if they cross an even number of times, one can then straighten out the

wires where they intersect. If looking just in Sn, one can look at the number of inversions of a

permutation w, i.e. the number of pairs (i, j) such that i < j where wi > wj . The number of

inversions is also equivalent to l(w).

Lemma 1.1.15 ([5], Corollary 1.4.8). By properties of the exchange property and deletion property

we obtain

1. Any expression w = s1s2...sk contains a reduced expression for w as a subword, which is

obtainable by deleting an even number of letters.

2. Suppose w = s1s2...sk = s′1s
′
2...s

′
k are two reduced expressions. Then the set of letters in the

first word equals the set of letters appearing in the second word.

7



3. No Coxeter generator element can be expressed in the terms of other Coxeter generator ele-

ments.

Proof. 1. This is a result from the deletion property.

2. Suppose we have that sj /∈ {s′1, ..., s′k} where j is a minimal element with this property. We

must have that

s1s2...sj ...s2s1 = s′1s
′
2...s

′
i...s

′
2s

′
1 for some i.

Thus,

sj = sj−1...s1s
′
1s

′
2...s

′
i...s

′
1s1...sj−1.

On the right-hand side, all the generators belong to {s′1, ...s′k} which implies that sj also is

by a reduced subword. This is a contradiction by our assumption.

3. Using 1, 2 ⇒ 3. Suppose si ̸= sk for some i ̸= k such that si, sk ∈ S \ {s}. Suppose

s = s1...sk ∈ S \ {s}. Then shortening by part 1, s = si ∈ S \ {s} gives us a contradiction.

Theorem 1.1.16 ([5][17], Theorem 1.5.1). Take (W,S) to be a Coxeter system where all generators

have order 2. Then the following are equivalent:

1. (W,S) is a Coxeter system.

2. (W,S) has the exchange property.

3. (W,S) has the deletion property.

Proof. (1) ⇒ (2): Proven.

(2) ⇒(3): Proven.

(3) ⇒ (2):

Let w = s1....sk be a reduced expression. Suppose that l(sw) < l(w) = k. By the deletion property

we have two options for sw:

sw =


ss1...ŝi...ŝj ...sk

ŝs1...ŝi...sk

8



We claim the first option is not possible. If w = s1...ŝi...ŝj ...sk for which l(w) = k−2 < k−1 = l(sw),

this is a contradiction. Thus, we must have s as one of the deleted generators. This implies we

have sw = ŝs1...ŝi...sk = s1...ŝi...sk.

(2) and (3) ⇒ (1):

Let (W,S) be a Coxeter system. We know the generators of our group W , S where our generators

satisfy (2) and (3) with having order two for each generator of our group W . Let m(s, s′) =

order of ss′ in W . We claim that W is the Coxeter group for S, and our matrix m. We will need

to show that:

• S generates W . This is guaranteed by the assumption of our theorem.

• W satisfies the Coxeter relations (ss′)m(s,s′) = e. Guaranteed by our assumption.

• W has no other relations, in other words s1s2 · sk = e is a consequence of Coxeter relations.

Suppose there exists some relation s1...st = e be a relation in a group with the exchange and

deletion property. We shall induct on t. By the deletion property, we have that t = 2k where

k ∈ Z+. Now, rewriting our original relation we have

s1...sk = s′1...s
′
k

moving the right to the left, it will suffice to show that (ss′)m(s,s′) = e for which m(s, s′) is the

order of the product of ss′ whenever this is finite. We define a relation being fine if (ss′)m(s,s′) = e

holds. We assume that all relations less than 2k are fine. We now induct on k with the realization

that k=1 is trivial. We split into two different cases.

Case I: Suppose s1...sk is not reduced. Take a max index i for which si...sk is not reduced where

si+1...sk is reduced. Since k − i− 1 = l(si...sk) < l(si+1...sk) = k − i, by the exchange property we

have

sisi+1...sk = si+1...ŝj ...sk

s′1...s
′
k = s1...si−1sisi+1...sk = s′1...ŝi...ŝj ...s

′
k.

9



The second equality on the second line is a byproduct of Coxeter relations. By assumption we have

the first equality on the second line holds by our assumption given. Similarly, the first and third

word of the second line are hold by our Coxeter relations. This shows that s1...sk = s′1...s
′
k is fine

since the relation is now lowered in length.

Case II: Suppose s1...sk is reduced. Assume s1 ̸= s′1.

s1...sk = s′1...s
′
k

s′1s1...sk = s′2...s
′
k

k − 1 = l(s′1s1...sk) < l(s′2...s
′
k) = k.

By the exchange property,

s′1s1...sk = s1...ŝi...sk

s′1...s
′
k = s1...sk = s′1s1...ŝi...sk.

The first and third word are equivalent since s′2...s
′
k = s1...ŝi...sk which is shorter which implies it

is a byproduct of Coxeter relations. In a similar fashion, for the second word equaling the third

word we have that s1...si = s′1s1...si−1. This is shorter than original and multiply both sides by

Coxeter relations. This holds for all i < k. We shall now consider when i = k.

If i = k, take s1...sk = s′1...s
′
k. If this is a result from Coxeter relations we are done. Else,

reduce to prove that s′1s1...sk = s1...sk−1. By doing the same process as before, we will receive

s′1s1...sk−1 = s1s
′
1s1...sk−2. If this is a resultant of Coxeter relations we are done. Else, reduce to

prove that s1s
′
1s1...sk−2 = s′1s1...sk−1. We iterate until we get to the reduced relation of

s1s
′
1s1s

′
1... = s′1s1s

′
1s1....

Seeing the end of this theorem brings rise to Matsumoto’s Theorem.
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Theorem 1.1.17 ([17], Matsumoto’s Theorem). If two reduced words w,w′ ∈ W represent the

same element w̃ ∈ W of a Coxeter group, then the first word can be transformed into the second

by repeatedly transforming xyxy... to yxyx... (or vice versa) where xyxy... = yxyx.... is one of the

defining relations of the Coxeter group.

Now that we can deduce what is and is not a Coxeter group through the deletion and

exchange property, it would be nice to have a way to represent elements and tell what their word

length is. As one sees in a Combinatorics course, looking at posets is the way to go.
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2. POSETS AND ROOT SYSTEMS

2.1. Posets

We will mainly be concerned about the right weak order Bruhat order unless otherwise

stated. Again, this section is for the reader who is not experienced with [5]. We begin this section

by defining a poset.

Definition 2.1.1. A partially ordered set (poset) is a set S with a partial order ≤, such that:

1. For all x, y ∈ S, if x ≤ y, and y ≥ x then x = y. (Anti-symmetric)

2. For all x, y ∈ S, if x ≤ y, and y ≤ z, then x ≤ z. (Transitive)

3. For all x ∈ S, x ≤ x. (Reflexive)

We can also define a poset structure on a Coxeter system with its reflection set T .

Definition 2.1.2. Let (W,S) be a Coxeter system and T = {wsw−1| w ∈ W, s ∈ S} be the set of

reflections. Let u, v ∈ W . The Bruhat graph is the directed graph whose nodes are the elements of

W and whose edges are given by (1). The Bruhat order is the partial order relation on the set W

defined by (2).

1. For all u, v ∈ W , u → v if v = ut for some t ∈ T where l(v) > l(u).

2. For all u, v ∈ W , u ≤ v if u = u0 → u1 → ... → uk = v for some ui ∈ W .

Example 2.1.3. For S3, we have that T = {s1 = (1, 2), s2 = (2, 3), (1, 3)} when checking all of

the elements of S3. Thus, we achieve the second figure. When T is dropped, we achieve the first

figure when concatenating elements on the right hand side. This is called the right weak Bruhat

order. We denote the covering relation as u ≤R v for the weak right Bruhat order and u ≤R v for

u, v ∈ W .
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Figure 2.1. Weak Right Bruhat Order of S3

Figure 2.2. Strong Bruhat Order of S3

Here are some obvious properties of the Bruhat order:

Corollary 2.1.4. Let (W,S) be a Coxeter system. For the Bruhat order we have

1. u < v ⇒ l(u) < l(v), u, v ∈ W .

2. u < ut ⇐⇒ l(u) < l(ut), for all u ∈ W and t ∈ T .

13



3. The identity element e satisfies e ≤ w for all w ∈ W .

Theorem 2.1.5 ([5], Subword Property). Let w = s1s2...sq be a reduced expression. Then,

u ≤ w ⇐⇒ there exists a reduced expression u = si1si2 ...sik , where 1 ≤ i1 < ... < ik ≤ q.

Theorem 2.1.6 ([5], Chain Property). If u < v, then there exists a chain u = x0 < x1 < ... <

xk = v such that l(xi) = l(u) + i, for 1 ≤ i ≤ k.

Recall that a poset is graded if all maximal chains have the same length. Maximal chains

are not contained in any other chain properly. Observe that the weak right Bruhat order of S3 has

two maximal chains of size three. Also note that not all posets are graded.

Corollary 2.1.7. The Bruhat order is graded by length.

Proof. Immediate by the chain property.

There are also some non-obvious properties we have, as proved in [5].

Theorem 2.1.8 ([5], Lifting Property). If u, v ∈ W, s ∈ S, u < v, u < su, v > sv then u ≤ sv

and su ≤ v.

Lemma 2.1.9. [1] Let u, v ∈ W , then there exists w ∈ W with u ≤ w and v ≤ w.

Corollary 2.1.10. [1] In a finite Coxeter group there exists a unique maximal element, w0 which

is called the long word, denoted w0.

Proposition 2.1.11 ([5], Proposition 2.3.2). For a finite Coxeter group, w0 has the following

properties:

1. w2
0 = e.

2. l(ww0) = l(w0)− l(w).

3. TL(ww0) = T − TL(w), for all w ∈ W , where TL(w) = {t ∈ T | tw < w}.

4. l(w0) = |T |.

14



2.2. Root Systems

The goal of this section is to construct what is called a root poset out of our Coxeter system.

We then observe a special type of root, the small roots of our Coxeter system, that will be crucial

in constructing our automaton. For the sake of brevity, we skip over the notions of parabolic

subgroups in this section, consequently skipping over some proofs. This section is for the reader

who is not familiar with root systems or [5].

Definition 2.2.1. Let (W,S) be a Coxeter system with n generators. Define ∆ := {α1, α2, ...αn} to

be the simple roots which associates each generator si to a simple root αi. This forms a basis for V

as a finite dimensional R|S| vector space of size |S|. For this vector space, we will equip the bilinear

form ⟨., .⟩ : V × V → R defined by ⟨αi, αj⟩ = − cos( π
m(si,sj)

). Observe that ⟨αi, αj⟩ = 1 when i = j

and ⟨αi, αj⟩ ≤ 0 for all i ̸= j. If m(si, sj) = ∞ then we adopt the convention ⟨αi, αj⟩ = −1.

A root α is positive if α = c1α1 + ...+ cnαn,for all ci ≥ 0 and negative if ∀ci ≤ 0. We then

can construct a root system Φ := {wαi| w ∈ W, 1 ≤ i ≤ n}. wαi can be defined through the

following linear mapping:

Let s ∈ S, and β ∈ Φ, where σs : V → V by

σs(β) := s(β) = β − 2
⟨αs, β⟩
⟨β, β⟩

αs.

Since w = s1...sk as some reduced word this can be done inductively starting from sk and

working to the left. For the sake of this paper, we will consider only the case where ⟨β, β⟩ = 1.

Thus, we achieve the resulting formula multiplying a root β, by a generator from the left:

s(β) = β − 2⟨αs, β⟩αs (2.1)

From this definition, sαs = −αs, σ
2
s(β) = e, and ⟨w(α), w(β)⟩ = ⟨(α), (β)⟩ by pure calcula-

tion. Since concatenating by a word on both sides gives the same bilinear form back, we have that

all the roots are unit vectors. This gives us the consequence that if β, γ ∈ Φ and γ = rβ for some

r ∈ R. then r ∈ {+1,−1}. We give a table of root systems associated to a few finite irreducible

Coxeter groups.
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Example 2.2.2. Let V = Rn with the standard basis consisting of the column vectors ei with a

one in the i-th position and zeros elsewhere: ei = (0, ..., 1, ..., 0)t with < ei, ej >= δij .

Type Root System

An(n ≥ 2) {±(ei − ej)| 1 ≤ i ̸= j ≤ n}
Bn(n ≥ 2) {±ei ± ej | 1 ≤ i < j ≤ n} ∪ {±ei|1 ≤ i ≤ n}
Cn(n ≥ 3) {±ei ± ej | 1 ≤ i < j ≤ n} ∪ {±2ei| 1 ≤ i ≤ n}
Dn(n ≥ 4) {±ei ± ej | 1 ≤ i < j ≤ n}

Table 2.1. Non-Exceptional Root Systems

Figure 2.3. Root System Examples

We will need the following technical lemma in the future when constructing our automaton.

Lemma 2.2.3. ([5], Lemma 4.2.4)

If j < m(s, s′), then (...s′ss′)j(αs) = cαs + dαs′ for some c, d ≥ 0.

Proof. For the sake of brevity, see [5].

Proposition 2.2.4. ([5], Proposition 4.2.5)

For all w ∈ W and s ∈ S the following hold:

1. l(ws) > l(w) implies w(αs) > 0.

2. l(ws) < l(w) implies w(αs) < 0.

Proof. See [5]. The proof is by induction and uses the notion of parabolic subgroups.

We also get from this proposition the following theorem about our set of roots, Φ. This

theorem will help us take a select set of roots, mainly Φ+. The roots can never be mixed when

considering Φ.

16



Theorem 2.2.5. ([5], pg. 101) Roots are either positive or negative Φ = Φ+ ⊔ Φ−.

Proof. See the previous proposition that tells us when a root is positive or negative.

Example 2.2.6. Consider R3 with the standard basis e1, e2, e3. let α = e2 − e1 and β = e1 − e3.

Then we have Φ+ = {α, β, α+ β} and Φ− = {−α,−β,−α− β} resulting in Φ = Φ+ ⊔ Φ−.

Figure 2.4. Type A2 Root System

Figure 2.5. Type B2 Root System

Here are some popular properties about roots that will be used later on.

Proposition 2.2.7. ([5], Lemma 4.4.3, Proposition 4.4.4)

1. Let si ∈ S, then si sends αi 7→ −αi and permutes the rest of αj ∈ Φ+.

2. Let w ∈ W , then l(w) = the number of positive roots that w sends to negative roots.
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Proof. 1. siαi = −αi is clear. Now take an arbitrary γ ∈ Φ+ where γ ̸= αi. Then

si(γ) = (γ)− 2⟨αsi , γ⟩αsi = γ − 2⟨αsi ,
∑
s∈S

csαs⟩αsi ≥ 0.

Where cs ∈ R for all s ∈ S, and by the addition property of the bilinear form we are done.

2. Let w, v ∈ W . We preform induction on l(w). This is true for all l(w) ≤ 1. Now, suppose

this is true for all lengths less than l(w). Suppose that w = vs > v, for some s ∈ S. Then

for β ∈ Φ+ by our previous proposition w(β) ∈ Φ− if and only if β = αs or s(β) ∈ {β ∈

Φ+ : w(β) ∈ Φ−}. By the induction hypothesis, there are l(v) + 1 = l(w) such elements for

β ∈ Φ+.

Example 2.2.8. For type A2, as seen in the hyperplane arrangement in example 2.2.6, one can

verify the proposition above provided the table below.

Element l(w) Φ+

e 0 −
s1 1 α
s2 1 β
s1s2 2 β, α+ β
s2s1 2 α, α+ β
s1s2s1 3 α, β, α+ β

Table 2.2. Permuting Type A2 Roots

Theorem 2.2.9. Φ = W∆

Proof. True by definition. This is because ∆ is in bijection with the simple roots of a Coxeter

system with n generators. We then can apply words in W starting from the right of the word to

the root as done in equation 2.1. We can iterate this process until resulting into some root (γ).

Doing this process iteratively, we obtain all the roots of our system. For roots Φ decomposing into

W∆, each root is composed of previous simple roots with an iteration from W . We see that this

holds true with the concept of depth giving that our root posets are graded.

One can measure the rank of a given root by the following definition.
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Definition 2.2.10. ([5], Definition 4.6.1) The depth of a root β ∈ Φ+ is the minimum length of a

word, w, such that wβ < 0. This is notated

dp(β) := min{k : w(β) ∈ Φ− for some w ∈ W with l(w) = k}.

We see from the definition that all elements of ∆ have the depth of 1. One will see from

the next lemma that depth is recursive.

Lemma 2.2.11. ([5], Lemma 4.6.2) Let s ∈ S and β ∈ Φ+ − {αs}. Then

dp(sβ) =


dp(β) + 1, if ⟨β, αs⟩ > 0

dp(β), if ⟨β, αs⟩ = 0

dp(β)− 1, if ⟨β, αs⟩ < 0

Proof. We shall argue by cases.

Case I: Suppose ⟨β, αs⟩ = 0 then s(β) = β. So, dp(s(β)) = dp(β).

Case II: Suppose ⟨β, αs⟩ > 0. It is obvious that dp(s(β)) − dp(β) ≥ −1. If we can show that

dp(β) > dp(s(β)) then we will have dp(s(β)) = dp(β) − 1. Choose a w ∈ W such that w(β) ∈ Φ−

and l(w) = dp(β) Consider the following subcases where ws > w and ws < w.

1. If ws < w, then l(ws) < l(w). Choose w such that ws(s(β)) = w(β) ∈ Φ−. Thus, dp(s(β)) ≤

l(ws) < l(w) = dp(β).

2. Assume that ws > w. Take into consideration the root

γ = ws(β) = w(β − 2⟨β, αs⟩αs) = w(β)− 2⟨β, αs⟩w(αs).

Since w(β) ∈ Φ−, ⟨β, αs⟩ > 0, and by l(ws) > l(w) w(αs) ∈ Φ−we have that γ ∈ Φ−. We

observe that γ ̸= −αs′ for all s′ ∈ S since no two negative roots can sum to −αs′ . Choose

s′ ∈ S such that s′w < w. then, s′w(s(β)) = s′(γ) and s′(γ) ∈ Φ− by permutation of the root

as shown before with γ ∈ Φ− \ {αs′}. Now we obtain dp(s(β)) ≤ l(s′w) < l(w) = dp(β).

Case III: Suppose that ⟨β, αs⟩ < 0. Then we have ⟨s(β), αs⟩ = −⟨β, αs⟩ > 0. By the

previous case, dp(β) = dp(s(s(β))) = dp(s(β))− 1.
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Now that depth has been given, we provide the definition of a root poset.

Definition 2.2.12. ([5], Definition 4.6.3) The root poset on Φ+ is defined by β, γ ∈ Φ+, let β ≤ γ

if there exists s1, s2, ..., sk ∈ S such that

1. γ = sksk−1...s1(β).

2. dp(sisi−1...s1(β)) = dp(β) + i for all 1 ≤ i ≤ k.

Definition 2.2.13. For α, β ∈ Φ+ we say that β precedes α, with the notation β ≤ α, if there is

an element w ∈ W of length dp(α)− dp(β) such that α = wβ.

We establish that the root poset has the partial order of ≤.

Lemma 2.2.14. [6] The relation ≤ is a partial order on Φ+.

Proof. Suppose α, β, γ ∈ Φ+ take on the property that α ≤ β and β ≤ γ. There there exists

a v, w ∈ W such that β = wα, and γ = vβ with the property that dp(β) − dp(α) = l(w) and

dp(γ)− dp(β) = l(v). Our goal is to show that α ≤ γ. Looking at dp(γ)− dp(α) = l(u) + l(v) and

vwα = γ. Thus, it will suffice to show that l(vw) = l(v) + l(w).

Choose u ∈ W that satisfies l(u) = dp(α) and uα ∈ Φ−. Then we obtain uw−1v−1γ = uw−1β =

uα ∈ Φ− which implies that l(uw−1v−1γ) ≥ dp(γ) Doing the inequality in the reverse direction we

achieve the following

l(uw−1v−1) ≤ l(u) + l(w) + l(v)

= dp(α) + dp(β)− dp(α) + dp(γ)− dp(β) = dp(γ)

≤ l(uw−1v−1).

So now we have that l(uw−1v−1) = l(u) + l(w) + l(v).

l(uw−1v−1) = l(u(vw)−1) ≤ l(u) + l((vw)−1) = l(u) + l(vw)

This gives us l(v) + l(w) ≤ l(vw), but by triangle inequality we obtain that l(vw) ≤ l(v) + l(w).

So, l(vw) = l(v) + l(w). Thus, we obtain α ≤ γ.
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For reflexivity, it is obvious with the choice of w = e.

For anti-symmetric, let γ ≤ α then 0 ≤ dp(α)− dp(γ) ≤ 0 which implies α = γ.

Corollary 2.2.15. The root poset (Φ+,≤) has the following properties:

• The minimal elements are the simple roots of depth 1.

• All maximal chains in an interval have the same length, dp(γ)− dp(β).

• All maximal chains in {β| β ≤ γ} have the same length dp(γ) − 1. Thus, depth is a rank

function.

There is an algorithmic way to build root posets. We do this in the following manner:

Let s ∈ S and write β =
∑

s′∈S bsαs. Let ks,s′ = 2 cos( π
m(s,s′)) through the expansion of the

bilinear form we achieve,

s(β) = β + (
∑
s′∈S

ks,s′bs′)αs

Now define

Bs = −bs +
∑

s′:s′−s

ks,s′bs′

such that s′ : s′ − s denotes the elements of s′ ∈ S where s′ is adjacent to s in the Coxeter diagram

of W . Also, bs is the coefficient of the s-th coordinate of β.

Claim: −2⟨αs, β⟩ = Bs − bs.

Proof.

−2⟨αs, β⟩ = −2⟨αs,
∑
s′∈S

b′sα
′
s⟩ =

∑
s′∈S

ks,s′b
′
s

Bs − bs =
∑

s′:s′−s

bs′αs′ − 2bs =
∑

s′:s′−s

bs′αs′ + ks,s′bs = LHS

We now write s(β) = β + (Bs − bs)αs

The following lemma will recognize whether or not s(β) is above β.

Lemma 2.2.16. ([5], Lemma 4.6.4) s(β) > β ⇐⇒ Bs > bs.
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Proof. An analogous way to state the lemma is found out in Lemma 3.15 of [19].

Bs > bs ⇒ dp(s(β)) = dp(β) + 1

Bs < bs ⇒ dp(s(β)) = dp(β)− 1

Through the previous definition of the root poset on Φ+ we come to the conclusion if s(β) is above

β or not.

If Bs − bs > 0 then we have that ⟨αs, β⟩ = Bs−bs
−2 < 0 . Through the definition of depth we have

dp(s(β)) = dp(β) + 1. The second argument is similar to the first.

The following proposition tells us succinctly how to generate the root poset.

Proposition 2.2.17. ([24], Proposition 3.16) Let (W,S) be a Coxeter system with ∆ ⊂ Φ+ the

simple roots. A partially ordered set on Φ+ can be constructed as follows.

1. Begin with the simple roots ∆ = {αs : s ∈ S}. Set j = 1. Then for each root β with depth

j and each s ∈ S such that no s-labelled edge leads down from β, compute the quantity Bs.

Note that γ is also just the positive root s(β).

2. If Bs = bs do nothing. If Bs > bs, let γ be the vector obtained from β by replacing bs with Bs

in the s-th coordinate of β.

3. Then γ is a root of depth j + 1 and (β, γ) is an s-labelled edge.

Example 2.2.18. We first look at the Coxeter system of A3. We then obtain the following root

poset on Φ+ = {α1, α2, α3, α1+α2, α2+α3, α1+α2+α3} which we list off based on their coordinates

in RS . However, not all Φ+ root posets are finite. We shall now define one of the affine irreducible

Coxeter groups.

Definition 2.2.19. Fix n ≥ 3. Let Ãn−1 be the group of all bijections u of Z to itself such that

• u(x+ n) = u(x) + n for all x ∈ Z

•
∑n

x=1 u(x) =
(
n+1
2

)
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Figure 2.6. Root Poset of A3

with composition as the group operation where u = [a1, ...an] where u(i) = ai for i = 1, 2, ..., n.

This is called window notation of u.

Example 2.2.20. Let π = [2, 1,−2, 0, 14], and σ = [15,−3,−2, 4, 1]. Give the two line notation

for π and σ. From this calculate πσ.

π =
( ··· −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 ···
··· −3 −4 −7 −5 9 2 1 −2 0 14 7 6 3 5 19 ···

)
σ =

( ··· −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 ···
··· 10 −10 −7 −1 −4 15 −3 −2 4 1 20 2 3 9 6 ···

)
πσ = [24,−4,−7, 0, 2].

The generators for Ãn−1 we take Ãn−1 = {s̃1, · · · , s̃n} where

s̃i = [1, 2, · · · , i− 1, i+ 1, i, i+ 2, · · · , n] for i = 1, · · · , n− 1

s̃n = [0, 2, 3, · · · , n− 1, n+ 1]

Multiplying an element u ∈ Ãn−1 on the right by s̃i interchanges the entries of the complete notation

of u in positions i+ kn and i+ 1 + kn, for all k ∈ Z.

us̃i =


[u(1), · · · , u(i− 1), u(i+ 1), u(i), u(i+ 2), · · ·u(n)], i ∈ [n− 1]

[u(0), u(2), · · · , u(n− 1), u(n+ 1)], i = n

Also, this group is given as the following Dynkin diagram:
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Figure 2.7. Dynkin Diagram of Ãn−1

Example 2.2.21. Take for example the Coxeter group Ã2. Observe that the red line is a jump of

size two. Again, we use the vector notation in R|S| to correspond to their following roots like in

the previous example.

Figure 2.8. Root Poset of Ã2

We denote the covering of a root by another root by β◁γ where there exists a unique s ∈ S

such that s(β) = γ.

2.2.1. Small Roots

We see in our previous example of Ã2 can have an infinite amount of positive roots. It

would be nice to just take a set of roots which is guaranteed to be finite. To do this, we begin with

the following definition.

Definition 2.2.22. We define the small roots of (W,S), denoted Σ as the following subset of Φ+

where the following hold:

• ∆ = {αs : s ∈ S} ⊆ Σ.
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• If α ∈ Σ, s ∈ S and −1 < ⟨α, αs⟩ < 0, then s(α) ∈ Σ.

We call the covering β ◁ γ in the root poset short if |⟨β, αs⟩| < 1 where s ∈ S such that s(β) = γ,

otherwise, we call the covering long. Since ⟨γ, αs⟩ = −⟨β, αs⟩ we have that a root is small if and

only if it is reachable from a simple root along an up-directed path of short edges.

It may not be apparent that Σ is finite. We will need two intricate lemmas in order to

prove this. We refer to [5] for proofs for both lemmas since they are intricate and involve parabolic

subgroups.

Lemma 2.2.23. ([5], Proposition 4.5.5) There are only finitely many elements in the root poset

of any given depth. This set is given by

{⟨α, αs⟩| α ∈ Φ+, s ∈ S, |⟨α, αs⟩| < 1}.

Proof. See [5].

Example 2.2.24. Seeing the type Ã2 root poset example, there are only 3 elements at any given

depth.

Lemma 2.2.25. ([5], Lemma 4.7.2) Let β, γ ∈ Σ be such that β◁γ in the root poset, and dp(β) ≥ 2.

Then, N(γ) ⊆ N(β) where N(α) := {s ∈ S : |⟨α, αs⟩| < 1}.

Proof. See [5].

Example 2.2.26. Take the root poset of type Ã2. with β = s̃2s̃1 and γ = s̃3s̃2s̃1. Then N(γ) ⊂

N(β).

We now obtain a crucial result in the field of Coxeter groups with the two lemmas above.

Theorem 2.2.27. ([5], Theorem 4.7.3) |Σ| < ∞.

Proof. Suppose for the sake of contradiction that |Σ| = ∞. We will need the two lemmas above

in order to help verify this ubiquitous fact. Since we have Σ, there exists a small root denoted α

which has an arbitrarily large depth. Since α is small we obtain a saturated chain in the root poset

from some simple root αk 7→ α.
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Recall that a subset C ⊆ P (or P itself) is called a chain if its elements are pairwise

comparable. Thus every finite chain is of the form C = {x0, ..., xn}, where x0 < ... < xn. The

number n is called the length of the chain; observe that the length is one less than the cardinality

of the chain. The chain C is called saturated if x0 ◁ ...◁ xn with xi ◁ xi+1 meaning xi covers xi+1

for all indices such that 1 ≤ i ≤ n− 1.

Through the lemma previously stated, there exist only finitely many pairs (J, v) with J ⊆ S

and v ∈ R|J |, such that there exists a γ ∈ Σ with N(γ) = J and (⟨γ, αs⟩)s∈J . Take C to be a

saturated chain in Σ−∆ of length greater than the number of such pairs. Looking at a segment of

C we see that there exists a saturated chain γj ◁ γj+1 ◁ ...◁ γk such that N(γj) = N(γk) for some

j and

⟨γj , αs⟩ = ⟨γk, αs⟩ for all s ∈ N(γk), with dp(γi) = i for i = j, ..., k.

Let si ∈ S be such that si(γi) = γi+1 for i = j, ..., k−1. By the second lemma, we also have

that sj , sj+1, ..., sk−1 ∈ N where γj−1 = sk−1(γj) for all s ∈ N :

⟨γj−1, αs⟩ = ⟨sk−1(γj), αs⟩

= ⟨γj , sk−1αs⟩

= ⟨γj , αs − 2⟨αsk−1
, αs⟩αsk−1

⟩

= ⟨γk, αs − 2⟨αsk−1
, αs⟩αsk−1

⟩

= ⟨γk, sk−1αs⟩

= ⟨sk−1γj , αs⟩

= ⟨γk−1, αs⟩

By γk−1◁γk we have by the depth that γj−1◁γj . Now the saturated chain of roots is extended from

(γj , γk) to (γj−1, γk−1). Through construction we obtain a saturated chain γ1◁ γ2, ...◁ γj ◁ ...◁ γk

in the root poset where γ1 is a simple root, and

⟨γ1, αs⟩ = ⟨γk−j+1, αs⟩ for all s ∈ N.
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Take r ∈ S where γ1 = αr. If r ∈ N then

⟨γk−j+1, αr⟩ = ⟨γ1, αr⟩ = 1

but we must have |⟨γk−j+1, αr⟩| < 1. This is a contradiction. If not, take j ≤ i ≤ k − 1 such that

si(γk−j) = γk−j+1. Then r ̸= si and

0 ≥ ⟨γ1, αsi⟩ = ⟨γk−j+1, αsi⟩ > 0

which is also a contradiction.

Definition 2.2.28. Let β, γ ∈ Φ+. we say that β dominates γ denoted β dom γ. If w(β) < 0

implies w(γ) < 0 for all w ∈ W .

Lemma 2.2.29. ([5], Lemma 4.7.4) Let β ∈ Φ+ and s ∈ S. Then, β dom αs if and only if

< β,αs >≥ 1.

Proof. See [5].

The relation between long and short roots with respect to dominance gives us the property

of humble. A positive root is said to be humble if the root dominates no positive root except itself.

The following lemma is a consequence.

Lemma 2.2.30. ([5], Lemma 4.7.5) Let β, α ∈ Φ+ be such that β ◁ α in the root poset. Then we

have that the following hold:

• If β ◁ α is long, then α is not humble.

• If β ◁ α is short, then α is humble if and only if β is humble.

Proof. Let s ∈ S be such that α = s(β). Assume that the first point holds. Then ⟨α, αs⟩ ≥ 1.

Thus, by the last lemma, we have that α dominates αs. Therefore, α is not humble.

Assume that the second condition holds. Then 0 > ⟨β, αs⟩ > −1. Take γ ∈ ϕ+ \ {β} such that

β dom γ. By the previous lemma, γ ̸= αs. Hence s(β) dom s(γ) and s(γ) ∈ Φ+ \ {s(β)} so β is

humble if α is humble. A similar argument holds for the other case.
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The following theorem will allow us to see that humble roots are small roots when the root

is part of a positive root poset.

Theorem 2.2.31. ([5], Theorem 4.7.6) Let α ∈ Φ+. Then, α ∈ Σ if and only if α is humble.

Proof. Let α ∈ Σ. Then, α has some saturated chain C in the root poset where each edge is short.

This chain is constructed through some simple root α1 ∈ ∆ to α. Every simple root is humble.

Thus, by the second part of the previous lemma we are done.

Suppose that α is humble and let α1◁α2◁ ...◁αp = α be a saturated chain in the root poset from

the simple root of α1 ∈ ∆ to α. By the previous lemma we obtain that αk−1 ◁ αk is short which

gives us that αk−1 is humble. Therefore, we obtain that all the edges are short between the roots

in our chain up to αk. Set αk = α ∈ Σ.

We recall from Combinatorics the definition of an order ideal.

Definition 2.2.32. A set I is an order ideal of a poset P if I ⊆ P and for all x ∈ I and y ∈ P , if

y ≤ x, then y ∈ I.

Corollary 2.2.33. ([5], Corollary 4.7.7) Σ is an order ideal in the root poset.

Proof. Take α ∈ Σ and β ∈ Φ+ such that β◁α. By the previous theorem, α is humble which gives

that β ◁ α is short and β is humble by the previous lemma. Also, by the last theorem, we obtain

that β ∈ Σ.

It is an exercise in ([5], exercise 4.19) to show that all positive roots are small for finite

Coxeter groups found out by [6]. This gives an answer to the reason why every order ideal in the

root poset of An are only made out of positive roots.

It is true that all Coxeter groups contain small roots. Unfortunately, not all Coxeter groups

are restricted to small roots.

Example 2.2.34. Ã2 is a Coxeter group where some of the roots are not small. Recall the diagram

given before where the red lines showing that the root comparisons are long. Computations with

respect to the simple roots of Ã2 produce < αi, αi >= 1, and < αi, αj >= −1
2 where i ̸= j.
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We obtain that the small roots are

{α1, α2, α3, α1 + α2, α2 + α3, α1 + α3}.

With the basics of root posets and having a finite set through small roots we are now ready

to begin to construct a finite state automaton for our affine irreducible Coxeter groups.
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3. AUTOMATA OF COXETER GROUPS

It may come as a surprise to many that Automata Theory, which studies abstract machines

and the computational problems that solve them, and Coxeter groups can be closely related. A bit

of research has been developed over the past hundred years in this subject area. In consideration for

the word problem for a general group the problem is undecidable. Pyotr Novikov in 1955 showed

that there exists a finitely presented group such that the word problem for it is undecidable and

won the Lenin prize in 1957 for this result.[18] However, for Coxeter groups, this is decidable![6]

We will have to develop some theory going back and forth between Coxeter groups and walks on

graphs to count reduced words of length n.

3.1. Automata

Definition 3.1.1. Let W be a finitely generated group. Take a free monoid S∗ by S = {s1, ...sn}.

Thus, S∗ = ∪∞
m=0{a1...am| ai ∈ S}. Define a formal language, L, to be a subset of the set S∗ in

a given finite alphabet S. A finite state automaton (f.s.a) notated Ā is a quintuple (T,A, µ, Y, t0),

where T is a finite set, called the state set. A is a finite set called the alphabet, µ : T × A → T

a function called the transition function, Y ⊂ T is the set of accepted states, and t0 is the initial

state. We say that a word w ∈ L is accepted by the automaton S if the sequence of edge labels

along some directed path from the start node equals w, otherwise w is rejected. A language L is

recognized by the automaton S if the words of L are precisely those that are accepted by S. A

language is regular if it is recognized by some finite state automaton.

Example 3.1.2. In the case for Coxeter groups we now consider the following for the quintuple

stated above

T = The set of nodes of a directed graph.

A = S. The Coxeter group’s generators.

µ = The function of going from one node to the next, known as a ”walk”.

Y = subsets Ỹ of T, such that there exists a walk in the graph containing Ỹ .

t0 = A node of the graph that is assigned as the start node.
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It may not be clear that affine irreducible Coxeter groups have regular languages of reduced

words, such as our previous example of Ã2. However, By Gabor Moussong’s thesis in 1988, we have

this is just the case. Five years later, Brink and Howlett prove that Coxeter groups are automatic.

[6]

For Coxeter groups, due to the deletion and exchange property, we have that for any finite

Coxeter group the expression for a word can always be reduced down. Also, a significant theorem

from [5], Theorem 4.8.3 gives that the language of reduced expressions is regular. From this, we can

separate the automaton into two different camps for Coxeter groups depending on their cardinality.

In the first camp, we have finite Coxeter groups which the automaton can be read off by the poset

of the right weak Bruhat order of (W,S). The right weak Bruhat order of (W,S) will produce out

a finite state automaton. In the second camp, we have the affine irreducible Coxeter groups which

can produce out infinite automaton. Our next goal is to make sure we can produce an finite state

automaton that recognizes an affine irreducible Coxeter group.

Warning 3.1.3. An automaton for a Coxeter group is not unique! We refer to [24], Example 6.2

with regards to the infinite dihedral Coxeter group with the presentation:

W = ⟨s, t| s2 = t2 = e⟩

we construct a third automaton in which W can be recognized.

Figure 3.1. Ã1 Automaton

We now see that an affine irreducible Coxeter group can take on many variations of a f.s.a..

The following definition will help us narrow down what we are looking at.
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Definition 3.1.4. Let W be a Coxeter group and A an automaton for W with corresponding state

set TA. Then A is minimal if whenever B is also an automaton for W with corresponding state set

TB, we have |TA| ≤ |TB|.

Example 3.1.5. |TB| = 7 in the previous example, while |TA| = 3 with the removing the two outer

nodes on the left and the right.

There are conditions in which a certain automaton structure for a Coxeter group, the Brink-

Howlett automaton, is considered minimal or not.

Theorem 3.1.6. [14] The Brink-Howlett automaton ABH is minimal if and only if E = Φ+
sph,

where Φ+
sph is the set of roots supported on a standard spherical subsystem, i.e. the corresponding

root system is finite.

1. when W is finite,

2. when W is right-angled, i.e. ms,t = 2 or ∞ for all s ̸= t.

3. when the Coxeter graph Γ is a complete graph,

4. when W is of type Ãn,

5. when W has rank 3.

Parkinson and Yau give conditions in which a Coxeter group’s Brink-Howlett automaton

can be minimal.

Theorem 3.1.7. [19] Let (W,S) be a finitely generated Coxeter system. The following are equiv-

alent:

1. The Brink-Howlett automaton ABH is minimal.

2. The Coxeter graph of (W,S) does not have a subgraph contained in X. See citation for X.

3. The set of elementary roots is E = Φ+
sph.

Parkinson and Yau also give conditions in which the Brink-Howlett automaton is not min-

imal. [19]
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Theorem 3.1.8. [19] Let (W,S) be a finitely generated Coxeter system. If there exists J ⊂ S and

t ∈ S such that:

1. J is spherical, and

2. J ∪ {t} is not spherical, and

3. wJ(αt) ∈ E,

then the automaton ABH is not minimal.

We now take a faithful attempt in order to investigate how to build an automaton for a

Coxeter group. We know that that a word w ∈ W can be represented by a string of generators

w = s1s2...sk. Beginning at the start node, which is the empty word, we read the word from left to

right in which one generator is applied at a time by following a directed edge through the transition

function µ. If there is a path for the complete word of w then the word is accepted, otherwise, this

word is rejected. We discard the rejected states. Thus, taking T = W and acceptance as w to ws

if l(ws) > l(w). Suppose that W is an infinite Coxeter group. Then, Ā should have an infinite

amount of nodes. However, this is a contradiction as seen in the previous warning. Therefore, a

one-to-one correspondence with nodes to elements will not work if we wish to construct a f.s.a..

Let us consider another approach. Recall the descent set of w,

D(w) = {α ∈ Φ+| w(α) ∈ Φ−}.

Let T = D(w). We define the transition function µ : T × S → T as follows:

µ(D(w), s) =


Rejected, if αs ∈ D(w)

D(ws), if αs /∈ D(w).

We then create an edge labelled with the weight s whenever αs /∈ D(w). It may come as a surprise

that there exists a relation between l(w) and D(w).

Proposition 3.1.9. ([24], Proposition 3.10) |D(w)| = l(w).

Proof. Suppose that l(w) = 1. This holds since s is the only generator with respect to αs that

makes s(αs) = −αs and permutes the rest of the positive roots with respect to s. We now proceed
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by induction on l(w). Suppose that the result holds for an arbitrary v ∈ W . Take w = vs, with

s ∈ S with l(vs) > l(v). Since l(vs) > l(v), we have v(αs) > 0 as shown previously. Thus,

(αs) ∈ Φ+ which implies that αs /∈ Φ−.Therefore, αs /∈ D(w). Let β ∈ Φ+, by the permutation of

roots

w(β) ∈ Φ− ⇐⇒ β = αs or s(β) ∈ D(v).

Since αs /∈ D(v), by the induction hypothesis, we have |D(w)| = l(v) + 1 = l(w).

Is there a nice way to extend D(w) to D(ws)? The answer is affirmed by the following

proposition.

Proposition 3.1.10. ([24] , Proposition 6.5) Let w ∈ W be such that l(w) = k. Suppose that

D(w) = {β1, β2, ..., βk}. If s ∈ S is such that l(ws) > l(w), then D(ws) = {αs}∪{s(β1), s(β2), ..., s(βk)}.

Proof. Let s ∈ S be such that l(ws) > l(w). Since w(βi) < 0 for all βi ∈ D(w),

then ws(s(βi)) = wss(βi) = w(βi) < 0. Since s(αs) = −αs < 0, we have that ws(αs) = −w(αs),

which gives w(αs) > 0. If w(αs) < 0 then we would obtain l(ws) < l(w) which is a contradiction.

Since l(w) = |D(w)| we have that D(ws) is exactly {αs} ∪ {s(D(w))}.

Now we have a method to make walks in the automaton where the nodes correspond to

D(w), and not w. However, if a Coxeter group is infinite, then there could be infinitely many roots

in D(w).

We now try a third approach to constructing the automaton. We take T := D(w)∩Σ. This

set only considers the small roots which become negative when acted upon by w and rejects all of

the non-small roots. T is also finite since |Σ| < ∞. This will give us a finite amount of nodes. For

our transition function µ, we replace D(w) with D(w) ∩ Σ and D(ws) with D(ws) ∩ Σ. We can

rigorously define the sets we shall use to construct the Brink-Howlett automaton.

Definition 3.1.11. The small descent set of w ∈ W is

DΣ(w) = {α ∈ Σ|w(α) < 0}.

Can we extend this definition toDΣ(ws) fromDΣ(w)? We show that this is possible through

a lemma. We first introduce a proposition to help us prove our lemma.
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Proposition 3.1.12. ([5], Proposition 4.5.4) Let α, β ∈ Φ+

1. If |⟨α, β⟩| < 1 then the subgroup generated by sα, and sβ is a finite dihedral group.

2. If ⟨α, β⟩ ≤ −1 then the subgroup generated by sα and sβ is an infinite dihedral group. Fur-

thermore, the roots (sαsβ)
n(α), for n = 0, 1, 2, ... are all positive linear combinations of α and

β.

Proof. See citation.

Lemma 3.1.13. ([24], Lemma 6.7) If α ∈ Σ, s ∈ S and w ∈ W is such that s(α) ∈ Φ+ \ Σ and

l(ws) > l(w). Then, ws(α) > 0.

Proof. Since l(ws) > l(w) we have that w(αs) > 0. We obtain ws(αs) = −w(αs) < 0. Let

ws(α) < 0. Since Σ is an order ideal, and for α ∈ Σ where s(α) ∈ Φ+ \ Σ we obtain ⟨α, αs⟩ ≤ 1.

Due to the previous proposition stated, ws(α) and ws(αs) both are negative. We achieve for the

positive linear combinations of α and αs with n ∈ N

(ws((sαs)
n(α)) = ws(λα+ µαs) = λws(α) + µws(αs) < 0, λ, µ ∈ R.

This implies |D(ws)| = ∞ which is a contradiction since l(ws) = |D(ws)|.

Thus, ws(α) > 0.

Proposition 3.1.14. ([24], Proposition 6.8) w ∈ W, s /∈ DΣ(ws). Then,

DΣ(ws) = {αs} ∪ {{s(β) : β ∈ DΣ(w) ∩ Σ}}

Proof. Suppose α ∈ DΣ(ws) which implies α ∈ Σ and ws(α) < 0. By the previous lemma we have

s(α) /∈ Φ+ \ Σ. We first consider the case that s(α) ∈ Φ− which implies α = αs. In the second

case, we consider if s(α) ∈ Σ. If w(s(α)) < 0 we have s(α) ∈ DΣ(w). By containment, we achieve

DΣ(ws) ⊆ {αs} ∪ {s(β) : β ∈ DΣ(w) ∩ Σ}.

For the other inclusion, let α ∈ {αs} ∪ {s(β) : β ∈ DΣ(w) ∩ Σ}. We have two cases again.

For the first case, α = αs. If α = αs then w(s(α)) = w(−αs) = −w(αs) < 0. For the second case,

α = s(β) which gives ws(α) = ws(s(β)) = w(β) < 0.
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3.1.1. Brink-Howlett Automaton and Examples

We now give the algorithm in which to construct the Brink-Howlett automaton. This

automaton will let us calculate reduced words of length n for our affine irreducible Coxeter systems.

Proposition 3.1.15. ([24], Proposition 6.9) (Brink-Howlett automaton) Let (W,S) be a Cox-

eter System. Construct a finite state automaton as follows:

1. First, find the small roots Σ of W using the definition of Σ.

Let T = {DΣ(w)| w ∈ W}. We construct ABH iteratively.

2. Initialize the algorithm by setting DΣ(e) = D ∈ T .

3. For each s ∈ S such that αs /∈ D, put an s-labeled directed edge:

D →s {αs} ∪ {s(D) ∩ Σ}

by the previous proposition, {αs} ∪ {s(D) ∩ Σ} ∈ T when αs /∈ D.

4. Repeat step 3 for each D ∈ ABH .

One can see the Brink-Howlett automaton explicitly calculated out for Ã2 in [24]. There has

also been work on what can we say for the Brink-Howlett automaton with regards to minimality.

[19] We go canonically by looking at Ã1 = ⟨a, b| a2 = b2 = e⟩.

Example 3.1.16. Take (W,S) = (Ã1, {a, b}) which has the reduced words

{∅, a, b, ab, ba, aba, bab, ...., ababa...., babab....}

We now construct the Brink-Howlett automaton for Ã1. First, we start by finding all the small

roots Σ. Observe that m(a, b) = ∞ which implies that ⟨αa, αb⟩ = −1. Since αa, αb ∈ ∆, then

a(αb) = αb + 2αa /∈ Σ and b(αa) = αa + 2αb /∈ Σ. Therefore, Σ = {αa, αb}. Now we determine the

small descent sets.
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The nodes of the automaton are given by the small descent sets

DΣ(w) = {α ∈ Σ| w(α) < 0}

We begin with the identity. The start node is given by DΣ(e) = {∅}. Next, we look at

DΣ(a) = {αa} ∪ {a(DΣ(e)) ∩ Σ} = {αa}

DΣ(b) = {αb} ∪ {b(DΣ(e)) ∩ Σ} = {αb}

Now using DΣ(b) and DΣ(a) we calculate out the new descent sets. However,

DΣ(ab) = {αb} ∪ {b(DΣ(a)) ∩ Σ} = {αb} = DΣ(b)

DΣ(ba) = {αa} ∪ {a(DΣ(b)) ∩ Σ} = {αa} = DΣ(a)

Hence our algorithm has stopped because we have no new descent sets made from our

previous iteration. Since no new nodes were created in this algorithm, we now obtain the following

automaton.

Figure 3.2. Ã1 Brink-Howlett Automaton

We obtain the polynomials of reduced words of length n by just following the automaton.

R(W,S)(q) = 1 + 2q + 2q2 + 2q3 + ....
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It may not be so easy to obtain a polynomial just by following the automaton. We now

look at another example.

Example 3.1.17. U(Ã2) = ⟨a, b, c| a2 = b2 = c2 = e⟩. It seems that the diagram complexity

heightens even just by raising up by one, as shown in the automaton. We give the automaton as

shown below skipping calculation since it follows in line with the previous example.

Figure 3.3. U(Ã2) Brink-Howlett Automaton

Now that we have the automaton for a given Coxeter system that produces out a finite

state automaton, it would be nice if we could encode the automaton as a polynomial.

The adjacency matrix of ABH(U(Ã2)) is given by

A =



0 1 1 1

0 0 1 1

0 1 0 1

0 1 1 0



where the entry au,v is representative of the number of edges between u 7→ v in the automaton.

We now introduce from the subject area of Statistical Mechanics the transfer matrix method. Let

Pu,v(n) denote the paths from u to v with n edges. Let [u, v] be the interval that starts at u and
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ends at v. Take

Pu,v(n) =
∑

w∈[u,v]

au,wPw,v(n− 1)

= A ∗ P (n− 1)

= An ∗ P (0)

= An ∗ I

= An.

With the following matrix obtained, we would like a way to calculate a generating function for

Pu,v(n). We have the following generating function which will let us see how many reduced words

of length n there are.

Theorem 3.1.18. ([5], Fact A4.1.2) For a fixed u, v ∈ [n],

∞∑
n=0

Puv(n)x
n =

(−1)u+vdet(I − xA; v, u)

det(I − xA)

where semicolon tells to delete the v-th row and u-th column, and I is the n× n identity matrix .

We now conclude our example through calculating out ABH(U(Ã2)).

∞∑
n=0

P1,3(n)x
n =

x(1 + x)2

(1 + x)2(1− 2x)
=

x

1− 2x

rn= reduced words of length n = P1,2(n) + P1,3(n) + P1,4(n) = 3P1,3(n) by symmetry of our

automaton.

If n = 0, then r0 = 1. Compiling what we have, we obtain

∞∑
n=0

rnx
n = 1 +

3x

1− 2x
= 1 + 3

∞∑
n=1

(2)n−1xn.

By the geometric series we have our answer for the number of reduced words of length n.

In both examples we have the coefficients have turned out to be at least integers. The

following theorem gives comfort to our reader about the coefficients of our formal power series.
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Theorem 3.1.19. ([4] [5] , Fact A4.1.3 and Theorem 4.9.1) The formal power series of the relation

of words of a given Coxeter System (W,S) is rational polynomial. We denote this polynomial as

R(W,S)(q) =
∑
k≥0

rkq
k

where rk equals the number of directed paths of length k in the automaton from the start node to

any node in ABH(W ).

Proof. Using transfer matrix method since |S| < ∞ in coordination with [4] gives us our result.

We do not know much about the enumeration of reduced words, but for finite Coxeter

groups there has been significant progress with the implementation of Standard Young Tableaux.

([5], Section 7.4) However, for affine irreducible Coxeter groups, there seems to be no closed algebraic

form for writing the coefficients of the rational polynomial that a Coxeter system gives, but there

has been algorithmic work by Avasjö with triangular groups of rank 3. [2]

Creating the graph of Ã2, even though the process is finite, it may take a considerable

amount of time to construct and there should be a way in order to count the number of states of

the graph given by a Coxeter group. Found in Henrik Eriksson’s Ph.D thesis, we have from Kimmo

Eriksson’s Ph.D thesis the number of states for an affine Coxeter group. Notably given by (1+h)|Φ|

where h is the Coxeter number and |Φ| is the rank of the roots. [11] [12]

One also sees from Eriksson’s paper that the canonical automaton is not necessarily minimal

with C̃n. Work has been done in terms of Shi-arrangements in order to get a bound for an arbitrary

Coxeter group considering its number of states. [20]

Group |Σ| Number of states

Ãn n(n+ 1) (n+ 2)n

B̃n 2n2 (2n+ 1)n

C̃n 2n2 (2n+ 1)n

D̃n 2n(n− 1) (2n− 1)n

Ẽ6 72 136

Ẽ7 126 197

Ẽ8 240 318

F̃4 48 134

G̃2 12 72

Table 3.1. Number of States for Affine Irreducible Coxeter Groups
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3.2. Conclusion

We have seen through the construction of the Brink-Howlett automaton how to count the

reduced words of length n subject to minimality conditions. Due to the number of states of the

automaton being given by (1 + h)|Φ| where h is the Coxeter number of our group.

Finding applications for the Brink-Howlett automaton has proved to be fruitful for Au-

tomata Theory. However, finding more Combinatorial applications has been difficult throughout

the years. We encourage future research by computer generated chromatic polynomials for the

rest of the affine irreducible Coxeter groups via their Brink-Howlett automaton. This provides the

global view of proper colorability of Coxeter groups rather than a locally tessellated argument used

in previous argumentation of proper colorability. Using the Tutte Polynomial will give an automatic

way to compute chromatic polynomials via our automaton for our affine irreducible Coxeter groups.

We warn the reader that enumerative properties of the chromatic polynomial will not hold. For

example, the number of regions of our hyperplane arrangement will not hold for the Brink-Howlett

automaton for Ã1 when plugging in −1 into our chromatic polynomial will not result in the correct

answer.

We also encourage further research into showing that the automation may constitute a

cluster algebra that is of infinite type. Cluster Algebras are well known for ADE Dynkin diagrams

and taking the tensor product of two ADE Dynkin Diagrams has proven to be fruitful as well.

Extending to the automaton of the affine irreducible Coxeter groups may give new sequences not

previously seen or has new combinatorial connections.
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