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ABSTRACT

The evolution of blood flow is vital in understanding the pathogenesis of brain aneurysms.

Several past studies have shown evidence for a turbulent inflow jet at the aneurysm neck. Although

there is a great need for analyzing inflow jet dynamics in clinical practice, data summarized in non-

invasive modalities such as Magnetic Resonance Imaging or Computed Tomography are usually

limited by spatial and temporal resolutions, and thus cannot account for the hemodynamics. In

this paper, Dynamic Mode Decomposition (DMD) is used to pinpoint the dominant modes of the

inflow jet in patient-specific models of sidewall aneurysms. This paper aims to prove that the

dynamic modes are inflow jet interaction with the distal wall in addition to the hemodynamics

of the parent artery. Our work indicates that DMD is an essential tool for analyzing blood flow

patterns of brain aneurysms and is a promising tool to be used in in vivo context.
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1. INTRODUCTION

1.1. The clinical aspect of brain aneurysms

Intracranial Aneurysm is a common cerebrovascular disorder that causes swelling in the

blood vessels of the brain [32]. It is estimated that this disorder affects 2% to 5% of all adults

worldwide [32]. In the United States alone, 1 out of every 50 people have or will have an unruptured

aneurysm [33]. Typically aneurysms are more common in persons between 35 and 60 years with

women more likely than men to develop one if they are over the age of 40 [33]. Furthermore,

patients can develop multiple aneurysms. Approximately 10-30% of patients currently have or will

have multiple aneurysms [36].

Nearly all aneurysms are discovered purely by accident, causing problems such as pressing

up against cranial nerves or hemorrhaging [13, 23, 24]. Aneurysms, themselves, vary in shape, size,

and complexity. Additionally, aneurysms can develop two or more branches becoming what is called

a bifurcation aneurysm [24] and thus, have increased complexity. Moreover, aneurysms can cause

serious problems such as pressing up against cranial nerves as was previously mentioned, leaking

blood into the brain, or rupture which can cause hemorrhaging [13, 23].

Hence, if an aneurysm ruptures, it can pose life-threatening consequences. Thus, rupture risk

analysis of existing aneurysm(s) in a patient is crucial. Luckily, less than 1% of aneurysms rupture

[33]. Despite this low risk, roughly half a million globally die each year to a ruptured aneurysm

[25]. As a result, treatment of the aneurysm is required to prevent further issues. Additionally, the

more complex an aneurysm is, the harder it is to calculate rupture risk.

1.2. The anatomy of brain aneurysms

Roughly 85% of all aneurysms occur in the circle of Willis [28]. The circle of Willis (CoW)

is a major artery network located at the base of the brain. The CoW consists of an arterial ring

and other artery vessels that branch off from the ring as shown in Figure 1.1. The ring, itself is

formed by the posterior communicating arteries (PComA) and the anterior communicating arteries

(AComA) which act as a highway between the brain’s posterior and anterior [20]. The anterior

cerebral arteries (ACA) feed into the AComA. The vertebral arteries (VA) join at the basilar artery

(BA) which feeds into the posterior side of the ring. Beneath the BA on either side the posterior
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Figure 1.1. Labeled model of a Circle of Willis arterial network. (Source: wikipedia.org).

cerebral arteries (PCA) branch off of the ring. On the left and right sides of the ring branch out the

middle cerebral arteries (MCA) close to the brain’s anterior outside the ring along with the internal

carotid arteries (ICA) close to the brain’s anterior inside the ring.

However, only about 49% of the population have a complete CoW network [20]. Liang et al

describe in their paper that are a total of nine possible CoW configurations including a complete

CoW [20]. The other configurations have missing or incomplete artery pairs of the list of artery

pairs previously discussed.

A single aneurysm can take on one of two different shapes either saccular or fusiform. A

saccular aneurysm is a bulge that is attached on one side of the artery [24]. In contrast, fusiform

aneurysms are a bulge that surrounds the edges of the artery [24]. Saccular aneurysms are generally

more common [10], and thus will serve as the primary focus of our research.
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1.3. Measuring the rupture risk

Current risk factor calculators take into account the patient’s history, as well as the location,

orientation, size, and complexity of the aneurysm [12, 13]. Due to the complexity of some aneurysms,

finding the right treatment can be a challenge. Treatment options available for brain aneurysms

include surgical clipping, endovascular coiling, and more recently flow diverters [22].

In a surgical clipping procedure, the neurosurgeon inserts a metal clip at the base of the

aneurysms to stop the flow to it [22]. Unlike surgical clipping, endovascular coiling is less invasive, in

that the neurosurgeon inserts a catheter into an artery typically in your groin, and guides it through

your body to the aneurysm [22]. Like many surgical treatments, they are not free of risks. Bleeding

in the brain or loss of flow to the brain can occur, and even though coiling is less invasive, the

aneurysm can reopen later on [22] However, some complex brain aneurysms are not fixable by the

first two treatments and are then typically repaired using flow diverter devices [24]. Flow into the

lesion is reduced in this way while preserving the flow to the side branches and distal vasculature [24].

The tight mesh of flow diverters (FD) allows for resistance to flow across the device’s surface [24].

Due to the various options, treatment decisions are often based on a neurosurgeon’s preference and

intuition as the treatment process is often challenging due to the microsurgeries that are required

[24].

This is where medical imaging comes into play. Several researchers in the field of com-

putational fluid dynamics aim to solve this problem. The structures of aneurysms via computed

tomography (CT) or magnetic resonance imaging (MRI), can render detailed fluid flow simulations

to a reasonable scale as been shown by several studies [5, 24, 35, 36]. This large assortment of

data allows for the velocity and pressure fields to be expressed in great detail. However, there is

a significant gap between numerical analysis and clinical practice [4, 39] as determining the right

treatment for a specific patient from raw data is not an easy task. In this study, we aim to present

the findings in a detailed methodical report describing the features of the flow. The report in turn

can serve as a way to help neurosurgeons decide on the best treatment for a specific patient.

1.4. The role of Computational Fluid Dynamics in disease monitoring

It was previously stated that current risk factor calculators take into account the patient’s

history as well as the configuration of the aneurysm in space [12, 13]. This approach is not very
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specific as this is what would be called a black box approach, i.e. we are looking at the aneurysm

from the outside. Moreover, current risk factor calculators lack necessary data related to intra-

aneurysmal blood flow dynamics [24]. As a result, many current risk factor calculators cannot

predict unstable aneurysms accurately [24]. Blood fluid dynamics more commonly referred to as

hemodynamics can help with the measure of rupture risk [38].

Hemodynamics of blood in brain aneurysms is analyzed using image-based computational

fluid dynamics. Computational fluid dynamics (CFD), the analysis of fluid flows using numerical

computations [37], is useful in determining and visualizing the underlying hemodynamics. Further-

more, previous studies have shown that wall shear stress is associated with the growth and rupture

of an intracranial aneurysm [29, 38]. Ultimately, the holy grail of hemodynamics is directly mea-

suring wall shear stress (WSS) within the aneurysm, the force exerted on the aneurysm wall [24].

Fortunately for us, hemodynamics can indirectly measure WSS using image-based CFD [38].

It is also worth noting, aneurysms will only vibrate if the instabilities have sufficient energy

close to that of its wall [13]. In other words, an aneurysm ruptures when the stress within the wall

exceeds the strength of the wall [21]. This vibration may play into the possible maladaptive response

of the cells within the wall that in turn leads to the growth of the aneurysm and its eventual rupture

[13]. Hence, why WSS affects the life cycle of an aneurysm [29].

Most computational fluid dynamics models cannot account for flow instabilities, but high-

fidelity (high precision) CFD can [13]. This coincides with the fact that spatial resolution determines

the accuracy of WSS estimations [38]. One such aneurysm case that has a higher chance of flow

instabilities is bifurcation aneurysms in that they are more complex [13]. High-frequency flow insta-

bilities, sometimes with non-negligible power into the hundreds of Hz, can arise from jet instabilities

as the flow enters the aneurysm which consequently is consistent with direct numerical simulations

of transient turbulence in a stenosed carotid bifurcation model [13]. Thus, this is more than just a

coincidence.

1.4.1. Modeling blood flow dynamics

Blood, in the CFD model, is assumed to be an incompressible Newtonian fluid in that it

has a constant viscosity and density as blood is mostly water [1]. However, sometimes the blood

vessel size is too small for this assumption and it is approximated as a Navier-Stokes fluid or as

a non-Newtonian fluid [1]. Typically, blood has a higher viscosity than plasma, but as hematocrit
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levels rise so does viscosity causing blood to act more like a non-Newtonian fluid, especially at fairly

low shear rates [1].

In several CFD studies of laminar-turbulent transitional flow in the human brain, various

methodologies were used namely, Reynolds-averaged Navier-Stokes (RANS), large eddy simulation

(LES), and direct numerical simulation (DNS) [31]. In RANS modeling, two equations are used to

produce a turbulence model, the equation for the medium and the transitional flow model [31].

1.4.2. Hemodynamics of brain aneurysms in patient-specific anatomies

The study of blood flow dynamics in normal cerebral arteries and the CoW are crucial

to understanding the hemodynamics of aneurysms and how they develop [29]. Blood flow into

an aneurysm can vary greatly depending on the aneurysm’s size, shape, orientation, and location

[8, 24, 29]. Generally, blood will fill the aneurysm before continuing its normal course. In the

case of saccular aneurysms, blood flow acts vaguely similar to water entering a circular wave pool.

Blood flows, filling the aneurysm before leaving and continuing down the vessel [8]. The larger the

aneurysm the longer blood flow is halted by the aneurysm so to speak. This in turn slows the flow

of blood to the rest of the brain.

Intra-aneurysmal flow patterns are usually simple and stable or complex and turbulent [29].

Simple flow patterns might consist of a single vortex region or a vortical structure in an aneurysm

[29]. The main vortex may stay fixed or move during the cardiac cycle [29]. More complex flow

patterns typically have more than one recirculation region which may remain stable, move, or behave

independently of each other [29]. Blood flow dynamics in aneurysms depends not only on the size,

shape, orientation, and location of the aneurysm but on the size and shape of the parent artery as

well [29, 39].

In some cases, blood flows straight into the aneurysm colliding against the aneurysm wall

creating a region of high wall shear stress (WSS) [29]. Other aneurysms have an inflow jet that

generates slower flow resulting in a more uniform WSS [29]. WSS, in essence, is a diverging me-

chanical stress which acts on the vessel lumen [39]. WSS vectors, themselves tend to vary relative

to the aneurysm size, characterization of the inflow jet, and the location of the inflow jet; this in

turn creates different regions of elevated WSS [29, 39]. However, the issue is three-dimensional WSS

needs there to be a complete velocity gradient tensor which over a decade ago was an impossible

task [38].
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Xiaolin Wu and their colleagues presented the similarities and differences in the velocity field,

vortex, and WSS distributions obtained by 4D Flow MRI, Stereoscopic Particle Image Velocime-

try (Stereo-PIV), Tomographic Particle Image Velocimetry (Tomo-PIV), and computational fluid

dynamics (CFD). [38]. Wu and their colleagues reconstructed and 3-D printed a patient-specific

aneurysm from 4D Flow 7-Tesla MRI, and then tested the different imaging techniques. [38]. Their

results showed all modalities were able to describe the flow characteristic of a high-velocity inflow

jet as well as its vortex ring structure. [38]. Although the qualitative agreement in WSS was found

across all modalities, there was wide variability in absolute WSS scores [38]. In their study, Tomo-

PIV resulted in a higher WSS and better velocity agreement with CFD than Stereo-PIV did. [38].

This confirms spatial resolution is the main factor in the underestimation of WSS. [38].

1.5. Predicting rupture risk using modal analysis of flows

MacDonald and their colleagues stated that spectrograms of cardiovascular CFD data can

illustrate spectro-temporal hemodynamic trends. [21]. With this in mind, they set out to test

whether the presence of horizontal harmonic bands in spectrograms can be linked to aneurysm

rupture status. [21]. They found that the visual nature of spectrograms allows for a better ability

to compare the power, duration, and quality of flow instabilities between the aneurysm cases. [21].

To test their hypothesis they conducted univariate logistic regression on each of the hemodynamic

metrics and computed significant tests. [21]. However, MacDonald and their colleagues did find

statistically significant evidence with only one of the hemodynamic metrics. [21]. Furthermore, they

found that harmonic concentration of spectral power in sac spectrograms had a stronger association

with rupture status than hemodynamic predictors. [21].

Any number of flows can share several of the same parameters and/or features such as the

Reynolds number [3, 27, 30]. Other features include flow instabilities, vortex pairing, merging, etc.,

[30]. Many of these features can be identified using visualizations of the flow, even under turbulent

conditions [2, 30]. One would expect to be able to extract features using modal analysis [2, 30] as

explained below.

1.6. Modal analysis of blood flows

Even at the basic level, some fluids can express complex flow patterns that vary with time

and space [30]. As a result, extracting the most important features, or modes, is often the first

step in the analysis of such flows [30]. This is where modal decomposition comes into play. The
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decomposition of the important modes can be done using one of several methods. For our research,

we used the following modal decomposition method, Dynamic Modal Decomposition (DMD). Before

one can understand DMD, one needs to understand where it comes from.

1.6.1. Eigenvalue Decomposition vs Singular Value Decomposition

Eigenvalue decomposition is conducted on square matrices, whereas singular value decom-

position can be applied to rectangular matrices [30]. Analyses that use eigenvalue decomposition

are typically utilized when the operator of the domain and range matrices are the same [30, 34].

For any matrix A ∈ Cn×n, there exists an eigenvector, v ∈ Cn and an eigenvalue, λ ∈ C such that

Av = λv [30]. For this statement to be true every eigenvector has only one unique eigenvalue [30].

Eigenvalue decomposition expands the formula, Av = λv, by applying the multiplication in

an iterative manner [30]. This results in the equation AV = ΛV where V = [v1, v2, ...vn] ∈ Cn×n

and Λ = [λ1, λ2, ...λn] ∈ Cn×n [30]. For eigenvalue decomposition to work, matrix A must have a

complete set of n linearly independent eigenvectors [30].

For any eigenvalue, λj , the real and imaginary parts describe the growth rate while each

eigenvector, vj , explains how often and in the direction the state variable changes. Also, for a linear

system to be stable the real part of each eigenvalue must be less than zero or in other words, must

fall on the left-hand side of the complex plane [30].

Singular value decomposition (SVD) expands the idea of eigenvalue decomposition, in that

SVD can be applied to a rectangular matrix instead of a square matrix [30]. SVD allows for dimen-

sion reduction which can be used for low-rank matrix approximations as well as rotation around

a vector [9, 30]. Like eigenvalue decomposition, SVD can be used as a means of demonstrating

the effect of matrix operations by multiplying scalars in the appropriate directions [30]. In the two

following modal decomposition methods, SVD is used [30].

1.6.2. Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a type of modal decomposition that derives

modes from optimizing the squared mean of the field variable [30]. POD stands as one of the most

popular techniques in evaluating fluid flow [30]. The POD algorithm takes individual scalars or

data points from a vector field, q(ξ, t), concerning discrete points in space-time as inputs [30]. An

individual scalar or point in a vector field in this way is what is called a snapshot. On the other
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hand, the outputs are sets of orthogonal modes ϕj(ξ), their corresponding temporal coefficients

aj(t), and energy levels λj , ordered by the relative amount of energy [30].

For the given flow-field q(ξ, t), snapshots of the flow-field are represented as a collection

of finite-dimensional data vectors: x(t) = q(ξ, t) − q̄(ξ) ∈ Rn where t = t1, t2, ..., tm [30]. X(t)

represents the varying component of the data vector with the time-averaged value q̄(ξ) removed

[30]. The goal of POD is to find the optimal basis vectors in that we want to find vectors that be

used to represent the flow field using the fewest number of modes [30], thus SVD is used.

1.6.3. Dynamic Mode Decomposition (DMD)

Dynamic mode decomposition (DMD) is a modal decomposition that allows for breaking up

time-resolved data into modes [30]. DMD combines aspects of POD and discrete Fourier transform

[7, 26, 30]. This results in mode structures that are not only spatiotemporally coherent but can be

discerned solely from the data [30]. DMD at its heart is linear algebra, this method can be added

upon and extended to several applications [30]. Since DMD is purely a data-driven algorithm in

that it does not require governing equations, it has spanned several fields beyond fluid dynamics

[30].

DMD is a relatively new technique in analyzing flow dynamics [26]. In DMD, the evolution

of the flow field is approximated as a closed dynamical system [30], which can be approximated

by an operator A. The formulation of DMD, therefore, accounts for the temporal evolution of the

DMD spatial modes ψ, the eigenvectors of the linear operator A.

The snap-shot DMD methodology [30] is briefly introduced here. First, consider the time-

dependent flow field in a collection of a N - sequence snapshot as follows:

VN = [v1, v2, . . . , vN ] (1.1)

Here the superscript N denotes the total number of flow field snapshots. The notation vi denotes the

ith snapshot (time instance). Assuming that the time evolution of the flow field v can be describe

by an operator A as:

vi+1 = Avi (1.2)
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Then VN could be described using the first vector v1 as:

VN = VN
1 = [v1,Av1, . . . ,A

N−1v1] (1.3)

If the equation 1.2 holds true, the following equation could be obtained if the second vector v2 is

used:

AVN
1 = VN

2 = VN−1
1 S+ rTN−1 (1.4)

where r is the residual vector, and S is the companion matrix, which contains some eigenvec-

tors of A. In practice, the DMD algorithm utilizes the Singular Value Decomposition to approximate

the matrix A. First, a SVD for the matrix VN−1
1 should be carried out as:

VN−1
1 = UΣW⋆ (1.5)

where U; Σ and W are the left singular vectors, singular values, and right singular vectors of the

matrix VN−1
1 , respectively. The notation ⋆ denotes the complex conjugate. A truncation rank r

can be further selected from the diagonal of the matrix Σ out of the total number of the singular

value (N − 1). Substituting the previous SVD into these equations and rearranging the resulting

expression:

Ũr
⋆
AŨr = Ũr

⋆
VN

2 W̃rΣ̃r
−1 ≡ S̃ (1.6)

Solve the corresponding eigenvalue problem: S̃yi = µiyi to find the eigenvalue ith for matrix S̃.

Then the DMD modes ψi can be obtained as ψi = Uyi. The norm of each DMD mode represents

the energy contribution of the mode to the evolution of flow field dynamics. The corresponding

eigenvalues indicate the temporal evolution (mode frequency) of each mode. The temporal evolution

of each mode can be found by computing its eigenvalue λi. Here, λi = ln(µi)/∆t. The real part of λi

(Re(λi)) stands for the growth rate of the DMD modes ψi. Its complex part (ℑ(λi)/2π) represents

the frequency of ψi. ∆t is the time step between two successively snapshots.

1.7. Summary

In this work, we use Direct Numerical Simulation to simulate blood flow dynamics in the

human brain without any assumption on the turbulent modeling. Using our results from these
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simulations, we hope to create a better risk factor analysis calculation method of whether or not an

aneurysm in a patient will rupture, is close to rupturing, or poses no immediate risks to the patient.

This report in turn can help narrow surgeons decide on the best treatment for a specific patient.

The details of our methodology in the next chapter.
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2. METHODOLOGY

2.1. Anatomical models

In this work, all aneurysm models are taken from the Aneurisk project https://github.

com/permfl/AneuriskData. All models are downloaded from the Aneurisk project. Before any

simulations can be run, we need to calculate the volumetric space of our medium i.e. the volume of

each aneurysm as well as the volume of the parent artery to, the artery to which the aneurysm is

attached to. This was done in the three-dimensional modeling program, Paraview by opening each

aneurysm STL file and measuring the diameter of the aneurysm, the diameter of the vessel, and the

height of the aneurysm with the rule tool. Each dimension was measured several times to minimize

user error. Table 3.1 shows the calculated average diameter for each artery and each aneurysm as

well as the calculated average height of each aneurysm. Now that we have the dimensions of our

medium we can move on to modeling blood flow.

Table 2.1. Measured dimensions for eleven selected aneurysm models from the Aneurisk project
( https://github.com/permfl/AneuriskData). These dimensions were calculated in Paraview and
verified using the dimensions from the Aneurisk data.

Patient ID Artery Diameter (D) Aneurysm Diameter (W ) Aneurysm Height (H) Location
C0002 3.6275 mm 4.3725 mm 7.7625 mm L-ICA
C0006 3.2625 mm 7.9025 mm 4.8431 mm ICA
C0014 4.5875 mm 6.9175 mm 5.2375 mm ICA
C0016 3.0825 mm 7.7675 mm 7.4925 mm ICA
C0034 3.0766 mm 8.5366 mm 7.6166 mm ICA
C0036 3.9625 mm 10.7725 mm 14.2625 mm ICA
C0042 3.9425 mm 8.4375 mm 7.7575 mm ICA
C0067 3.5375 mm 4.1125 mm 3.0875 mm ICA
C0075 3.5725 mm 12.0225 mm 11.8025 mm ICA
C0085 3.3275 mm 9.6025 mm 7.1475 mm ICA
C0088b 3.4625 mm 7.3125 mm 7.2875 mm ICA

2.2. Extracting a 3D Model From Patient Data

Before anything else can be done, an aneurysm model needs to be generated, done via

segmentation. Segmentation is extracting vessels from image data so that a 3D model can be created.

[24]. The segmentation process depends on image quality and precision. [24]. Better quality leads
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to clear models while precision leads to more accurate models. The image size is another factor.

The size of the image voxels determines the approximated smoothness of rectangular voxels. [24].

When 3D geometries are generated, the region of interest, then can the mesh be created.

We used Slicer for this research project, as Slicer is an easy-to-use three-dimensional model-

ing software with the ability to extract a 3D model from a Digital Imaging and Communications in

Medicine (DICOM) file part. In Slicer, the DICOM folder directory is imported using the DICOM

Module These DICOM files are loaded into the local Slicer DICOM database automatically. The

Slicer DICOM database organizes the DICOM file parts by Patient id making it easier to load file

parts from a single patient. Once the database is generated, DICOM files can be loaded by the

Patient or as individual file parts.

Once the Slicer DICOM database is all set up, then can come the actual segmentation

process. To create a segment from a DICOM file part, Slicer switched to the segmentation module.

From here new segment was created from the desired DICOM file part, either a CT or MRI scan or

another three-plane representation. These three planes are crucial to generate a 3D model otherwise

you get a flat 2D plane. After the segment is created, Slicer is switched to the segmentation editor

module. In the segmentation module, several filters can be applied to extract the Circle of Willis

(COW) from the DICOM file part. For this, the threshold filter was determined to get the best

results. The threshold filter works by using the brightness intensity of the image to extract the

model. Occasionally, the slider bar had to be adjusted so that the intensity range for the threshold

filter extracts the correct parts.

The next step is to export the model as a stereolithography (STL) file and clean up the

model. The segmentation module at the bottom has the option to export the model as an STL.

At this point, the final model has not yet been achieved as the threshold filter can only do so

much. From here there are a few more steps before the final model can be realized and ready for

simulation. For the cleaning, another 3D modeling software was used, Meshmixer. First, the STL

file was imported into Meshmixer. Second, a random spot on the COW was selected and extended

to all other connected parts via the selection editor. Next, the selection was inverted to isolate all

unnecessary parts in the model and then, was deleted.

At this point, each patient’s COW has been realized, however, the aneurysms from each

still need to be extracted. The COWs were exported as STL files for later use. The next step is to
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isolate the aneurysm for each patient’s COW. This requires the model to be edited as some parts

of the model are cut away. Several plane cuts were made in the model of each patient’s COW to

crop around the volume of each aneurysm in question. Finally, each aneurysm model was exported

as an STL file.

2.3. Computational Setup

For each of the eleven cases listed, each aneurysm was extracted from its respective .stl file

and cleaned up in Meshmixer. The extraction process is mentioned in more detail in the previous

subsection. After the extraction of each aneurysm, in Meshmixer the inlet and outlet portion of the

aneurysm’s patient artery were extended for consistency purposes.

Figure 2.1. Illustration of a y-plane view of a sample fluid mesh. This illustration shows the fluid
mesh setup for each aneurysm as previously mentioned where D represents the diameter of the
parent artery and the blue outline is the bounds of the fluid mesh.

After which, each aneurysm was imported in Pointwise so the fluid meshes could be created.

It should also be noted that in our simulation negative y points toward the heart and positive y

points away from the heart. Each fluid mesh was created with a rectangular prism encapsulating

their respective aneurysm. The constraints of the fluid meshes are as follows, along the x and z-

axes the fluid mesh’s corresponding aneurysm was fully enclosed then along the y-axis the negative
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edge was placed at about five times the diameter the of parent artery from the boundaries of the

aneurysm while the positive edge along the y-axis was placed at about five times the diameter the

of parent artery from the boundaries of the aneurysm or before the end of the outlet whichever was

less. This is best illustrated by the following figure 2.1. The precision of the mesh was set to 201

voxels along both the x- and z-axes and 321 voxels along the y-axis for a total of 12.9 million points.

The extended models of each aneurysm are shown in Figure 2.2.

Figure 2.2. Extracted aneurysms listed as follows: top row (from left to right), C0002, C0006, and
C0014; second row (from left to right), C0016, C0034, and C0036; third row (from left to right),
C0042, C0067, and C0075; bottom row (from left to right), C0085 and C0088b.
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2.4. Numerical simulations of blood flow dynamics

The numerical method employed in this work has been extensively described and thoroughly

validated against in vitro [15] and in vivo data [18]. Therefore, only a brief description of the numer-

ical method is presented in this section. For more details about the method the reader is referred to

the previous publications: [14, 15, 19]. The governing equations for the fluid (blood) are the three-

dimensional, unsteady incompressible continuity and Navier-Stokes equations [17]. The governing

equations are solved in a background curvilinear domain that contains the complex geometry of the

intracranial aneurysm model using the sharp-interface curvilinear-immersed boundary (CURVIB)

method [14]. The discrete equations are integrated in time using a fractional step method [11].

A Newton-Krylov solver is used to solve the momentum equations in the momentum step and a

Generalized Minimal Residual (GMRES) solver with a multigrid preconditioner is employed for the

Poisson equation [16].

At the inflow boundary, a uniform velocity profile varying in time is prescribed with the peak

velocity of U0 = 0.5m/s using the measurement data at the Internal Carotid Artery of a human

subject [6]. The inlet locates approximately 5D0 far from the sac. Here D0 is the diameter of the

inlet. At the outflow boundary, Neumann-type boundary conditions are specified for the velocity

components. No-slip and no-flux conditions are prescribed at all artery wall boundaries, which are

considered rigid.

The resulting parameters for the simulations are as follows:

Re =
U0L

ν
=

0.5m/s× 10−3m

3.35× 10−6m2/s
≈ 150. (2.1)

The cardiac cycle is chosen at T = 72pbm = 60seconds/72 = 0.83seconds. The non-dimensional

timescale is thus:

τ =
D

U0
=

1× 10−3

0.5
= 2× 10−3seconds (2.2)

With the discretization of 4000 timesteps per cardiac cycle, this amount to the physical timestep

of:

∆t = 0.83seconds/4000 ≈ 0.21× 10−3seconds (2.3)
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Set this into the control.dat, which corresponds to the non-dimensional timestep of:

dt =
∆t

τ
=

0.21× 10−3seconds

2× 10−3seconds
= 0.10375 (2.4)

Table 2.2. The computational cases for all models. The size of the structural grid is indicated in
the i, j, k directions.

Patient ID Simulation Progress DMD Progress Writing Grid Size
C0002 Complete Complete Complete 201× 201× 321
C0006 Complete Complete Complete 201× 201× 321
C0014 Complete Complete Complete 201× 201× 321
C0016 Complete Complete Complete 201× 201× 321
C0034 Complete Complete Complete 201× 201× 321
C0036 Complete Complete Complete 201× 201× 321
C0042 Complete Complete Complete 201× 201× 321
C0067 Complete Complete Complete 201× 201× 321
C0075 Complete Complete Complete 201× 201× 321
C0085 Complete Complete Complete 201× 201× 321
C0088b Complete Complete Complete 201× 201× 321

2.5. DMD analysis procedure

The following cases are of interest for DMD analysis from the Aneurisk project: 1) C0002;

2) C0006; 3) C0014; 4) C0016; 5) C0034; 6) C0036; 7) C0042; 8) C0067; 9) C0075; 10) C0085. First,

an analysis of blood flows in brain aneurysms using CFD is carried out. After that, the capability

of DMD to identify the incoming jet and classify the incoming jet is implemented in the following

steps:

• Step 1: First, one cardiac cycle is discretized into 4000 timesteps. A total of 12,000 timesteps

(3 cardiac cycles) of simulations are performed for one case. The timesteps from 8,000 to

12,000 (the last cycle) are selected for DMD analysis. The spacing between two successive

instances of DMD is ∆t = 100 timesteps (40 instances for one DMD analysis). Compare the

incoming jet, which needs to show the velocity distribution in a plane at the timestep 9,000

and 9500 for all cases.
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• Step 2: Recover the physical velocities by multiplying the velocity vectors in Paraview with

a factor of U0 = 0.5m/s. After this step, the physical velocities are correctly reflected in the

Paraview results.

• Step 3: Cut the aneurysm domain. Select the region k value so that it contains only the

aneurysm. Adjust the i and j directions so that only the aneurysm dome is included in the

final data.

• Step 4: Run the Matlab code using the PBS script (not on the GUI).

• Step 5: To visualize the modes using Red (Mode 1), Green (Mode 2), and Blue (Mode 3) in

Paraview.

For each patient, the aneurysm mesh was kept with no down-scaling and the data cells were

written to .csv files. This was done by importing each of the aneurysms in Paraview. Secondly, for

each case, the aneurysm was isolated as much as possible trimming the ends of the parent artery as

shown in Figure 2.3. At this point, any part of the parent artery floating in free space, circled in

red in Figure 2.3, can be ignored for now as clipping this off now can run into errors when Matlab

tries to read the .csv files.

Once the aneurysm has been isolated then the model can be exported as a list of .csv files,

one for each timestep. Next, the DMD code was run on the .csv files to get the DMD modes. Due

to the large size of several .csv files, some upwards of approximately 10 GB, the DMD Matlab code

was run on the NDSU CCAST High-Performance Computing server.
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Figure 2.3. Visualization of the DMD setup in Paraview. Here is shown the extracted subset of
C0002’s aneurysm.

2.6. The MATLAB code for DMD analysis

Assemble_Data.m

function [X coord_x coord_y coord_z ] = Assemble_Data ( )

Number_Of_Instances = 40 ;

X = [ ] ;

for my_time = 1 : Number_Of_Instances

f i l ename = sprintf ( ’ data06x_%d . csv ’ ,my_time−1);

l o ad i n g_ f i l e = readmatr ix ( f i l ename ) ;

% Compute v e l o c i t y magnitude
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% Vec_X 6

% Vec_Y 7

% Vec_Z 8

Vec = [ ] ;

Vec = [ l o ad i n g_ f i l e ( : , 6 ) ; l o ad i n g_ f i l e ( : , 7 ) ; l o ad i n g_ f i l e ( : , 8 ) ] ;

%Vec = s q r t ( l o a d i n g_ f i l e ( : , 6 ) .^2 + l oad i n g_ f i l e ( : , 7 ) .^2 +

l o ad i n g_ f i l e ( : , 8 ) . ^ 2 ) ;

X = [X Vec ] ;

i f (my_time == 1)

coord_x = l o ad i n g_ f i l e ( : , 3 ) ;

coord_y = l o ad i n g_ f i l e ( : , 4 ) ;

coord_z = l o ad i n g_ f i l e ( : , 5 ) ;

end

end

mrDMD.m

function t r e e = mrDMD(Xraw , dt , r , max_cyc , L)

% func t ion t r e e = mrDMD(Xraw , dt , r , max_cyc , L)

% Inputs :

% Xraw n by m matrix o f raw data ,

% n measurements , m snapshots

% dt time s t ep o f sampling

% r rank o f t runca t ion

% max_cyc to determine rho , the f r e q cu t o f f , compute

% o s c i l l a t i o n s o f max_cyc in the time window

% L number o f l e v e l s remaining in the recurs ion

T = s ize (Xraw , 2) ∗ dt ;

rho = max_cyc/T; % high f r e q c u t o f f a t t h i s l e v e l

sub = ce i l (1/ rho /8/pi/dt ) ; % 4x Nyquist f o r rho

%% DMD at t h i s l e v e l

Xaug = Xraw ( : , 1 : sub : end ) ; % subsample

Xaug = [Xaug ( : , 1 :end−1); Xaug ( : , 2 :end ) ] ;

X = Xaug ( : , 1 :end−1);

Xp = Xaug ( : , 2 :end ) ;
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[U, S , V] = svd (X, ’ econ ’ ) ;

r = min( s ize (U, 2 ) , r ) ;

U_r = U( : , 1 : r ) ; % rank t runca t ion

S_r = S ( 1 : r , 1 : r ) ;

V_r = V( : , 1 : r ) ;

At i lde = U_r’ ∗ Xp ∗ V_r / S_r ;

[W, D] = eig ( At i lde ) ;

lambda = diag (D) ;

Phi = Xp ∗ V( : , 1 : r ) / S ( 1 : r , 1 : r ) ∗ W;

%% compute power o f modes

Vand = zeros ( r , s ize (X, 2 ) ) ; % Vandermonde matrix

for k = 1 : s ize (X, 2) ,

Vand ( : , k ) = lambda .^( k−1);

end ;

% the next 5 l i n e s f o l l ow Jovanovic e t al , 2014 code :

G = S_r ∗ V_r ’ ;

P = (W’∗W) . ∗ conj (Vand∗Vand ’ ) ;

q = conj (diag (Vand∗G’∗W) ) ;

Pl = chol (P, ’ lower ’ ) ;

b = (Pl ’ ) \ ( Pl\q ) ; % Optimal vec to r o f ampl i tudes b

%% Reconstruct the modes

%% Psi = diag ( b )∗Vand ;

%% Reconstruct the data −−−> Needs f u tu r e works here ! !

%%X_reconstruct = Phi ∗ Psi ;

%% conso l i d a t e s low modes , where abs (omega) < rho

omega = log ( lambda )/ sub/dt /2/pi ;

mymodes = find (abs ( omega ) <= rho ) ;

t h i s l e v e l .T = T;

t h i s l e v e l . rho = rho ;

t h i s l e v e l . h i t = numel (mymodes) > 0 ;

t h i s l e v e l . omega = omega (mymodes ) ;

t h i s l e v e l .P = abs (b(mymodes ) ) ;

t h i s l e v e l . Phi = Phi ( : , mymodes ) ;

t h i s l e v e l . sigma = diag (S ) ;

t h i s l e v e l . lambda = lambda ;
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t h i s l e v e l . b = b ;

%%t h i s l e v e l . Psi = Psi ;

%% recurse on ha l v e s

i f L > 1 ,

sep = f loor ( s ize (Xraw , 2 ) / 2 ) ;

n ex t l e v e l 1 = mrDMD(Xraw ( : , 1 : sep ) , dt , r , max_cyc , L−1);

n ex t l e v e l 2 = mrDMD(Xraw ( : , sep+1:end ) , dt , r , max_cyc , L−1);

else

nex t l l e v e 1 = c e l l ( 0 ) ;

n ex t l e v e l 2 = c e l l ( 0 ) ;

end ;

%% reconc i l e index ing on output

% ( because Matlab does not support r e cu r s i v e data s t r u c t u r e s )

t r e e = c e l l (L , 2^(L−1)) ;

t r e e {1 ,1} = t h i s l e v e l ;

for l = 2 :L ,

c o l = 1 ;

for j = 1 :2^( l −2) ,

t r e e { l , c o l } = nex t l e v e l 1 { l −1, j } ;

c o l = co l + 1 ;

end ;

for j = 1 :2^( l −2)

t r e e { l , c o l } = nex t l e v e l 2 { l −1, j } ;

c o l = co l + 1 ;

end ;

end ;

mrDMD_map.m

function [map , low_f_cutoff ] = mrDMD_map(mrdmd)

% func t ion [map, low_f_cutof f ] = mrDMD_map(mrdmd)

[ l e v e l s , M] = s ize (mrdmd) ;

map = zeros ( l e v e l s , M) ;

low_f_cutoff = zeros ( l e v e l s +1, 1 ) ;

for i = 1 : l e v e l s ,

chunks = 2^( i −1);

K = M / chunks ;

21



for j = 1 : chunks ,

f = abs ( imag(mrdmd{ i , j } . omega ) ) ;

P = mrdmd{ i , j } .P ;

P = P( f >= low_f_cutoff ( i ) ) ;

i f ~isempty (P) ,

map( i , ( 1 :K)+( j −1)∗K) = mean(P) ;

end ;

end ;

low_f_cutoff ( i +1) = mrdmd{ i , 1 } . rho ;

end ;

Show_Map_Frequency.m

% Assemble the data

[X coord_x coord_y coord_z ] = Assemble_Data ( ) ;

% s i z e o f the g r i d in Paraview

% these numbers are not the same fo r every case

nx = 101 ;

ny = 101 ;

nz = 101 ;

dt = 0 . 8 5 7 ; % seconds

L = 2 ; % number o f l e v e l s

r = 4 ; % rank o f t runca t ion

T = 0 . 8 5 7 ; % seconds

max_cycle = 200 ; % cu to f f −f requency

mrdmd = mrDMD(X, dt , r , max_cycle , L ) ;

% compile v i s u a l i z a t i o n o f mu l t i r e s mode ampl i tudes

[map , low_f ] = mrDMD_map(mrdmd) ;

[ L , J ] =s ize (mrdmd) ;

% Save the ana l y s i s

save ( ’ Analys i s_Results . mat ’ , ’mrdmd ’ , ’L ’ , ’ r ’ , ’T ’ , ’ dt ’ , ’map ’ , ’ J ’ , ’ low_f ’ , ’ coord_x ’ , ’ coord_y ’ ,

’ coord_z ’ , ’−v7 . 3 ’ ) ; % Note the −v7 .3 i s f o r f i l e s l a r g e r than 2GB

%%

% f i g u r e ;

% imagesc(−map) ;

% se t ( gca , ’YTick ’ , 0 . 5 : (L+0.5) , ’ YTickLabel ’ , f l o o r ( low_f ∗10)/10) ;
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% se t ( gca , ’XTick ’ , J/T∗ (0 :T) + 0 . 5 ) ;

% s e t ( gca , ’ XTickLabel ’ , ( g e t ( gca , ’XTick ’) −0.5)/J∗T) ;

% ax i s xy ;

% x l a b e l ( ’Time ( sec ) ’ ) ;

% y l a b e l ( ’ Freq . (Hz ) ’ ) ;

% colormap pink ;

% gr id on ;

% Check i f the r e s u l t f o l d e r i s t he re

i f not ( i s f o l d e r ( ’VTK_Files ’ ) )

mkdir ( ’VTK_Files ’ )

else

delete ( ’ . / VTK_Files /∗ .∗ ’ ) ;

end

%% Export the modes out

for l e v e l= 1 : L

Number_Of_Bin = 2.^( l e v e l −1);

for bin=1:Number_Of_Bin

Current_Cell = mrdmd{ l e v e l , bin } ;

omega = Current_Cell . omega ;

number_of_modes = s ize ( omega , 1 ) ;

Spectrum{ l e v e l , bin } . omega = Current_Cell . omega ;

Spectrum{ l e v e l , bin } . power = Current_Cell .P ;

Spectrum{ l e v e l , bin } . sigma = Current_Cell . sigma ;

Spectrum{ l e v e l , bin } . lambda = Current_Cell . lambda ;

Spectrum{ l e v e l , bin } . b = Current_Cell . b ;

for k=1:number_of_modes % p l o t f i r s t four DMD modes

f i l ename = sprintf ( ’VTK_Files/DMD_Mode_m%d_b%d_l%d . vtk ’ , k , bin , l e v e l ) ;

Phi = Current_Cell . Phi ;

mymode = Phi ( : , k ) ;

my_size = length (mymode) / 2 ;

%% == Taking the v e l o c i t y v e c t o r s out #

current_mode = mymode ( 1 : my_size ) ;

n_points = length ( coord_x ) ;

U_x = current_mode ( 1 : n_points ) ;

U_y = current_mode ( n_points+1:2∗n_points ) ;

U_z = current_mode (2∗ n_points+1:end ) ;
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Velocity_x = reshape (U_x, nx , ny , nz ) ;

Velocity_y = reshape (U_y, nx , ny , nz ) ;

Velocity_z = reshape (U_z, nx , ny , nz ) ;

Umag = sqrt ( Velocity_x .^2 +Velocity_y .^2 + Velocity_z . ^ 2 ) ;

x = reshape ( coord_x , nx , ny , nz ) ;

y = reshape ( coord_y , nx , ny , nz ) ;

z = reshape ( coord_z , nx , ny , nz ) ;

Write_To_VTK( f i l ename , x , y , z , Velocity_x , Velocity_y , Velocity_z ) ;

end % End of i n d i v i d u a l mode

end % End of b in

end % End of l e v e l

% Save the power spectrum sepa ra t e l y so t ha t i t i s e a s i e r to take out

save ( ’ Spectrum .mat ’ , ’ Spectrum ’ , ’−v7 . 3 ’ ) ; % Note the −v7 .3 i s f o r f i l e s l a r g e r than 2GB

% % For debug

% lamda_k = Spectrum {1 ,1}. lambda ;

% the ta = 0:2∗ p i /100:2∗ p i ;

% my_x = cos ( t h e t a ) ;

% my_y = sin ( t h e t a ) ;

% f i g u r e ( 2 ) ;

% p l o t (my_x, my_y) ;

% hold on

% p l o t ( r e a l ( lamda_k ) , imag ( lamda_k ) , ’ r o ’ )

% ax i s equa l

% number_of_instances = s i z e (X, 2 ) ;

%

% myb = Spectrum {1 ,1}. b ;

%

%

% %% compute power o f modes

% Vand = zeros ( r , number_of_instances ) ; % Vandermonde matrix

% for k = 1: number_of_instances

% Vand ( : , k ) = lamda_k .^( k−1);

% end ;

%
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% time_dynamics = diag (myb) ∗ Vand ;

%

% % Compute power f o r each mode

% Power_Scale = abs (myb .∗ lamda_k .^ number_of_instances ) ;

% [B Index ] = so r t (Power_Scale , ’ descend ’ ) ;

%

% f i g u r e ;

% fo r i = 2 :2 :16 % Ignore the f i r s t mode − the mean

% dyna_mode = time_dynamics ( Index ( i ) , : ) ;

% hold on

% p l o t ( imag (dyna_mode ) ) ;

% end

%

Write_To_VTK.m

function Write_To_VTK( f i l ename , x , y , z , u , v , w)

%Output f i l e name

nr_of_elements=numel ( x ) ;

f i d = fopen ( f i l ename , ’w ’ ) ;

%ASCII f i l e header

fpr intf ( f i d , ’#␣vtk␣DataFi le ␣Vers ion ␣ 3 .0\n ’ ) ;

fpr intf ( f i d , ’VTK␣from␣Matlab\n ’ ) ;

fpr intf ( f i d , ’BINARY\n\n ’ ) ;

fpr intf ( f i d , ’DATASET␣STRUCTURED_GRID\n ’ ) ;

fpr intf ( f i d , [ ’DIMENSIONS␣ ’ num2str( s ize (x , 1 ) ) ’ ␣ ’ num2str( s ize (x , 2 ) ) ’ ␣ ’

num2str( s ize (x , 3 ) ) ’ \n ’ ] ) ;

fpr intf ( f i d , [ ’POINTS␣ ’ num2str( nr_of_elements ) ’ ␣ f l o a t \n ’ ] ) ;

fc lose ( f i d ) ;

%append binary x , y , z data

f i d = fopen ( f i l ename , ’ a ’ ) ;

fwrite ( f i d , [ reshape (x , 1 , nr_of_elements ) ;

reshape (y , 1 , nr_of_elements ) ;

reshape ( z , 1 , nr_of_elements ) ] , ’ f l o a t ’ , ’ b ’ ) ;

%append another ASCII sub header

fpr intf ( f i d , [ ’ \nPOINT_DATA␣ ’ num2str( nr_of_elements ) ’ \n ’ ] ) ;

fpr intf ( f i d , ’VECTORS␣ ve l o c i t y_vec to r s ␣ f l o a t \n ’ ) ;

%append binary u , v ,w data
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fwrite ( f i d , [ reshape (u , 1 , nr_of_elements ) ;

reshape (v , 1 , nr_of_elements ) ;

reshape (w, 1 , nr_of_elements ) ] , ’ f l o a t ’ , ’ b ’ ) ;

%append some s ca l a r data

fpr intf ( f i d , ’ \nSCALARS␣Umag␣ f l o a t \n ’ ) ; %ASCII header

fpr intf ( f i d , ’LOOKUP_TABLE␣ de f au l t \n ’ ) ; %ASCII header

fwrite ( f i d , reshape ( sqrt (u.^2+v.^2+w.^2) , 1 , nr_of_elements ) , ’ f l o a t ’ , ’ b ’ ) ; %binary data

fc lose ( f i d ) ;
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3. RESULTS

3.1. Model validation: Simulation of a model for axisymmetric stenosed vessel

To validate our methodology, we first perform CFD simulation in an idealized model of a

stenosis artery. Stenosis is the narrowing of walls in blood vessels caused by plaque build-up or

increased stress on the vessel walls. [31]. The narrowing of the blood vessels makes them more

prone to rupturing as well as disrupting the overall flow of blood. [31]. There are two types of

stenosed geometries, axisymmetric and eccentric stenosis. [31]. In axisymmetric stenosis, the blood

flow toward the center of the vessel, whereas in eccentric stenosis, blood flows toward one of the

sides of the vessel. [31]. Our simulation results agree well with the reported dynamics in stenosis

literature.

Figure 3.1. Mesh of Stenosed vessel.

Here the axisymmetric stenosis model is represented as:

Rm(Z)

D
= 0.5− 0.125[1 + cos(πZ/D)] : −D ≤ Z ≤ D (3.1)

where Z = 0 is the throat of the stenosis. D is the unobstructed tube diameter and Rm is the local

radius that varies with axial direction Z [31]. Figure 3.1 provides the mesh for this model.
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Using large eddy simulation we reconstructed the axisymmetric stenosed vessel simulation

Tan et al generated in their paper. In correspondence with Tan et al’s paper, in our simulation,

shown in figure 3.2, the Reynolds number was 1000 with a vessel diameter of 1 cm and a stenosis

diameter of 0.5 cm. Our mesh voxel dimensions were 201×201×231 for a total of 9.3 million points.

Figure 3.2. Animation Still shot of CFD model of blood flow in an Axisymmetric Stenosed Vessel

Figure 3.3, shows this simulation as velocity streamlines of the blood flow. A slice of the

inlet was down-sampled to show the mesh grid.

Figure 3.3. Animation Still shot of CFD model of blood flow showing flow velocity streamlines in
an Axisymmetric Stenosed Vessel.
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3.2. Blood flow structures in the aneurysm models

3.2.1. Two-dimensional flow patterns on representative planes

The Computational Fluid Dynamics simulations have demonstrated that the hemodynamic

conditions inside the aneurysms are dominated by its inflow jet [15]. A slice was taken of each model

to show the hemodynamic conditions of the aneurysms. This was done in Paraview by taking a

plane cut of each and then saving the fluid flow animation frames; ten frames of the fluid flow were

sampled from 40 total frames.

Figure 3.4. C0002 Flow Velocity xz-plane slice at timesteps (from left to right) 8200, 8600, 9000,
9400, 9800, 10200, 10600, 11000, 11400, and 11800; where 9000 is the time of peak velocity.

In patient C0002’s aneurysm, blood fills up the aneurysm, but it appears to lose momentum

as the inflow jet collides with the aneurysm wall as seen in Figure 3.4. This loss in momentum

is most likely due to the oblong shape of this aneurysm. The shape of C0002’s aneurysm makes

it unique in that unlike the other aneurysms in the report, it doesn’t have the expected ellipsoid

shape. Its oblong shape is most likely due to where the inflow jet collides with the aneurysm wall.
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Figure 3.5. C0006 Flow Velocity z-plane slice at timesteps (from left to right) 8200, 8600, 9000,
9400, 9800, 10200, 10600, 11000, 11400, and 11800; where 9000 is the time of peak velocity.

Blood in patient C0006’s aneurysm fills up the aneurysm flowing in a whirlpool-like motion

before exiting and continuing on as seen in Figure 3.5. The flow velocity of blood at the outlet is

greater than at the inlet due to the circular momentum built up in the aneurysm. Unlike C0002,

this aneurysm has a more ellipsoid shape and has higher flow velocity, especially at timestep 9000

(ts = 9000). Additionally, it is worth noting that C0006’s aneurysm is approximately the same size

as C0002’s aneurysm according to the collected measurements.

In patient C0014’s aneurysm (Figure 3.6), we can see a similar whirlpool-like motion. Unlike

C0006’s aneurysm, the blood flow velocity here is less and decays faster. This might be due to the

fact of where the inflow jet hits the aneurysm wall, hitting it fairly close to the outflow jet. Something

that is also worth noting is that this aneurysm’s parent artery diameter is the largest in comparison

to the other cases.

In patient C0016’s aneurysm (Figure 3.7), the blood flow pattern is not defined as any of the

other previously mentioned aneurysms. However, there seems to be an overall circular motion. This

circular motion is better conveyed by the DMD modes for this aneurysm as shown in Figure 3.29.

Another characteristic that differentiates this aneurysm from all the others the blood flow seems a
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lot more erratic as seen in Figure 3.7. This erratic flow pattern is probably due to the orientation

of the aneurysm and where the inflow jet hits the aneurysm wall.

Figure 3.6. C0014 Flow Velocity z-plane slice at timesteps (from left to right) 8200, 8600, 9000,
9400, 9800, 10200, 10600, 11000, 11400, and 11800; where 9000 is the time of peak velocity.

Figure 3.7. C0016 Flow Velocity x-plane slice at timesteps (from left to right) 8200, 8600, 9000,
9400, 9800, 10200, 10600, 11000, 11400, and 11800; where 9000 is the time of peak velocity.
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Like with patients C0006 and C0016, blood in patient C0034’s aneurysm fills up the aneurysm

flowing in a whirlpool-like motion before exiting and continuing on. Similarly, the flow velocity of

blood at the outlet is greater than at the inlet due to the circular momentum built up in the

aneurysm. This whirlpool-like motion appears to be more apparent in this case than in C0006.

Additionally, it is worth noting that C0034’s aneurysm is approximately the same height as c0002’s

aneurysm height and has approximately the same diameter as C0006’s aneurysm according to the

collected measurements. This doesn’t come as much of a surprise as c0034’s aneurysm is nearly

twice the size of c0002’s aneurysm and c0006’s aneurysm respectively.

Figure 3.8. C0034 Flow Velocity z-plane slice at timesteps (from left to right) 8200, 8600, 9000,
9400, 9800, 10200, 10600, 11000, 11400, and 11800; where 9000 is the time of peak velocity.

Unlike many of the previous cases, the flow in C0036 takes more of a corkscrew path, spiraling

the distal wall of the aneurysm and losing momentum as can be seen in Figure 3.9. The inflow jet

hits the very edge of the aneurysm wall where it meets the edge of the parent artery wall. It is also

worth mentioning that this aneurysm is essentially tied for the largest aneurysm by volume with

C0075’s aneurysm mentioned later in this paper.

In patient C0042’s aneurysm, it may not be as clear as in the previous cases, but the

whirlpool motion is still there. This particular circumstance is most likely because of where the

inflow jet impinges on the aneurysm wall as can be seen in Figure 3.10. Due to where the inflow jet
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hits the aneurysm wall, the momentum of the flow that should be conserved within the aneurysm

is lost to flow leak out to the parent artery near the aneurysm’s outflow jet. It is also worth noting

that this aneurysm is the third largest by volume in comparison to the other cases.

Figure 3.9. C0036 Flow Velocity z-plane slice at timesteps (from left to right) 8200, 8600, 9000,
9400, 9800, 10200, 10600, 11000, 11400, and 11800; where 9000 is the time of peak velocity.

Figure 3.10. C0042 Flow Velocity xz-plane slice at timesteps (from left to right) 8200, 8600, 9000,
9400, 9800, 10200, 10600, 11000, 11400, and 11800; where 9000 is the time of peak velocity.
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Figure 3.11. C0067 Flow Velocity z-plane slice at timesteps (from left to right) 8200, 8600, 9000,
9400, 9800, 10200, 10600, 11000, 11400, and 11800; where 9000 is the time of peak velocity.

Patient C0067’s aneurysm is one of the smallest cases, and as can be seen from the simulation

snapshots in Figure 3.11, blood completely fills the aneurysm. The same whirlpool-like motion

mentioned in some of the previous cases is present. The flow velocity inside C0067’s aneurysm is

maintained much longer than the other aneurysms. The small size of this aneurysm most likely

contributes to this conservation. It is also worth noting that C0067’s aneurysm is the smallest by

volume of the cases mentioned in this report.

Figure 3.12. C0075 Flow Velocity xz-plane slice at timesteps (from left to right) 8399, 8799, 9199,
9599, 9999, 10399, 10799, 11199, 11599, and 11999; where 9199 is the time of peak velocity.
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In patient C0075’s aneurysm, blood fills the majority of the aneurysm as the vessel clips

the bottom of this bifurcation aneurysm. Flow is seemingly unstable at certain time steps. Flow

velocity inside an aneurysm is a lot less than many of the other aneurysms. This is most likely due

to the size of the aneurysm. It is also worth mentioning that this aneurysm is essentially tied for

the largest aneurysm by volume with C0036’s aneurysm.

Figure 3.13. C0085 Flow Velocity z-plane slice at timesteps (from left to right) 8200, 8600, 9000,
9400, 9800, 10200, 10600, 11000, 11400, and 11800; where 9000 is the time of peak velocity.

Blood flow in patient C0085’s aneurysm, Figure 3.13, unlike the majority of the other cases

in this report doesn’t have that typical whirlpool-like motion. Instead, C0085’s aneurysm blood

flow has a corkscrew-like motion, with the spiral motion increasing in its diameter as it moves away

from the inflow jet before its eventual decay. This phenomenon is supported by the DMD modes

in Figure 3.35. It is also worth mentioning that it appears that this patient might be developing a

second aneurysm that may or not merge with this one.

In the sidewall aneurysm from patient C0088, case C0088b, the blood partially fills the

aneurysm moving in a spiral motion. Unlike the other patients, C0088 had two aneurysms one

which was a sidewall aneurysm and the other a terminal aneurysm. With patient C0088 having two
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Figure 3.14. C0088b Flow Velocity xyz-plane slice at timesteps (from left to right) 8200, 8600, 9000,
9400, 9800, 10200, 10600, 11000, 11400, and 11800; where 9000 is the time of peak velocity.

aneurysms, it is unclear what effect the other aneurysm has on the inlet conditions of C0088b since

both are in close proximity.

3.2.2. Three-dimensional flow structures

Each of the following three-dimensional flow structures was generated in Paraview following

several steps. First, for each case, its Result files were imported into Paraview. Secondly, the contour

of each aneurysm was visualized using the built-in cell data point data converter and contour filters.

Then, each aneurysm was isolated from the parent artery; this process was shown in Figure 2.3 and

explained in step 3 of section 2.5. Unlike with setting up for the DMD analysis, the unconnected

parts of the parent artery can be safely removed as the visualization can be done solely in Paraview.

Finally, the built-in streamline filter is applied to the flow field data.

Figure 3.15, shows the velocity streamlines of the flow pattern inside patient C0002’s aneurysm.

Here the circular motion mentioned with the other aneurysm cases is presented contradictory what

is shown by slice views seen in Figure 3.4. This isn’t all that surprising as the slice views cannot

capture as much of the flow patterns in the aneurysm as the three-dimensional streamline views

can. Additionally, in this illustration, we can the flow velocities in the parent artery are more or
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less conserved. Thus, the blood flow here is essentially stable as flow velocities in the parent artery

are conserved.

Figure 3.15. Flow pattern inside C0002’s aneurysm. The velocity field at the peak systole is
visualized by the streamlines.

Figure 3.16. Flow pattern inside C0006’s aneurysm. The velocity field at the peak systole is
visualized by the streamlines.
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However, when taking a look at the three-dimensional velocity streamlines of the blood flow

inside patient C0006’s aneurysm in Figure 3.16, this further supports the flow patterns depicted in

this aneurysm’s slice views seen in Figure 3.5. Additionally, the flow seems to destabilize a little;

this destabilization was not clear in the slice views. In the next section, it becomes more clear that

the flow in this aneurysm destabilizes as shown by this case’s DMD modes in Figure 3.27.

Figure 3.17. Flow pattern inside C0014’s aneurysm. The velocity field at the peak systole is
visualized by the streamlines.

The three-dimensional velocity streamlines of the blood flow inside patient C0014’s aneurysm

seen in 3.17, agrees with what was shown in Figure 3.6. Also, the exact point at which the inflow jet

enters the aneurysm is more clear and confirms that it does enter the aneurysm in close proximity

to the outflow jet. Similarly to the flow inside C0002’s aneurysm, the flow velocities in the parent

artery of C0014’s aneurysm appear to be conserved. Again, the blood flow here is essentially stable

as flow velocities in the parent artery are conserved.
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The erratic flow pattern of the blood in patient C0016’s aneurysm mentioned in the previous

section is confirmed by the three-dimensional velocity streamlines of the blood flow illustrated in

Figure 3.18. Despite this erratic flow, the blood flow here is essentially stable as flow velocities in

the parent artery are conserved. Additionally, the overall blood velocities, in this case, are lowest

in comparison to the other cases.

Figure 3.18. Flow pattern inside C0016’s aneurysm. The velocity field at the peak systole is
visualized by the streamlines.

The whirlpool motion mentioned for the blood flow pattern in C0034’s aneurysm, mentioned

in the previous section, is better shown by the three-dimensional velocity streamlines portrayed in

Figure 3.19. Flow moving to the aneurysm is slower than flow leaving the aneurysm confirming the

momentum build-up that was previously mentioned. This increase in flow velocity in turn causes

the flow to become unstable.
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Figure 3.19. Flow pattern inside C0034’s aneurysm. The velocity field at the peak systole is
visualized by the streamlines.

Figure 3.20. Flow pattern inside C0036’s aneurysm. The velocity field at the peak systole is
visualized by the streamlines.
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Blood flow inside patient C0036’s aneurysm appears to be unstable as depicted by the three-

dimensional velocity streamlines in Figure 3.20. This destabilization of the flow is supported by

the analysis of the DMD modes for this case in the next section. Furthermore, the aneurysm also

appears to be only partially filled. However, the corkscrew-like motion isn’t as clear in this view as

it was in the slice views as shown in Figure 3.9.

From the three-dimensional streamlines of the blow flow in patient C0042’s aneurysm shown

in Figure 3.21, the whirlpool motion can be seen which wasn’t the case in the corresponding slice

views shown in Figure 3.10. On the other hand, flow velocities in the parent are not conserved as

the flow entering the aneurysm is greater than the flow leaving the aneurysm.

Figure 3.21. Flow pattern inside C0042’s aneurysm. The velocity field at the peak systole is
visualized by the streamlines.

Unlike the slice views for patient C0067’s aneurysm shown in Figure 3.11, the flow portrayed

by the three-dimensional velocity streamlines shown in Figure 3.22 seems to destabilize. This

contradiction is most likely due to how small this aneurysm is. Also, it is unclear if the flow

velocities in the parent artery are conserved.
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Figure 3.22. Flow pattern inside C0067’s aneurysm. The velocity field at the peak systole is
visualized by the streamlines.

Blood flow in patient C0075’s aneurysm, according to the three-dimensional velocity stream-

lines shown in Figure 3.23, is highly unstable confirming what was discussed previously for this case.

The three-dimensional velocity streamlines just so happen to capture this instability better than the

slice views in Figure 3.12 were able to. Which isn’t all too surprising. Additionally, flow velocities

in the parent artery are not conserved.

Figure 3.23. Flow pattern inside C0075’s aneurysm. The velocity field at the peak systole is
visualized by the streamlines.
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According to the three-dimensional velocity streamlines of the blood flow, flow in C0085’s

aneurysm is highly unstable as depicted in Figure 3.24. This instability was not clear in correspond-

ing the slice views in Figure 3.13. Additionally, the tiny bulge on the parent artery is shown to

play a role in the flow patterns, thus this patient does have a second aneurysm despite the source

data stating otherwise. Further investigation of C0085’s secondary aneurysm should be considered

in future works.

Figure 3.24. Flow pattern inside C0085’s aneurysm. The velocity field at the peak systole is
visualized by the streamlines.

Unlike patient C0085, patient C0088 clearly has two aneurysms, hence the ’b’ designation

C0088b. However, only C0088b is discussed as the other is not a sidewall aneurysm. As shown by

the three-dimensional velocity streamlines for C0088b in Figure 3.25, blood flow does not completely

fill the aneurysm coinciding with what was mentioned in the previous section regarding the slice

views depicted in Figure 3.14. Again, since patient C0088 has two aneurysms, it is unclear what

effect the other aneurysm has on C0088b.

43



Figure 3.25. Flow pattern inside C0088’s sidewall aneurysm, C0088b. The velocity field at the peak
systole is visualized by the streamlines.

3.3. DMD analysis

For each patient, the aneurysm mesh was kept with no down-scaling and the data cells were

written to .csv files. Due to the large size of several .csv files, some upwards of approximately 10

GB, the DMD Matlab code was run on the NDSU CCAST server.

From the CFD simulation results, the DMD analysis is carried out for both patients. In

these cases, the total number of snapshots is maximum at n = 40. The distribution of the discrete-

time eigenvalues λk in the complex plane shows that there exist eigenvalues in the interior part

of the unit circle. The modes associated with these eigenvalues are damped quickly with time.

Their magnitudes can be large but they contribute to the flow dynamics in a short period of time.

Therefore, this justifies the use of the scaled magnitude |λnkbk| to identify the dominant modes.
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Figure 3.26. C0002 DMD modes 1 (red), 2 (green), and 3 (blue). Modes 2 and 3 almost completely
overlap for this case, hence why only specs of blue can be seen.

Figure 3.27. C0006 DMD modes 1 (red), 2 (green), and 3 (blue).
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Figure 3.28. C0014 DMD modes 1 (red), 2 (green), and 3 (blue).

Figure 3.29. C0016 DMD modes 1 (red), 2 (green), and 3 (blue).

46



Figure 3.30. C0034 DMD modes 1 (red), 2 (green), and 3 (blue).

Figure 3.31. C0036 DMD modes 1 (red), 2 (green), and 3 (blue).
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Figure 3.32. C0042 DMD modes 1 (red), 2 (green), and 3 (blue).

Figure 3.33. C0067 DMD modes 1 (red), 2 (green), and 3 (blue).
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Figure 3.34. C0075 DMD modes 1 (red), 2 (green), and 3 (blue).

Figure 3.35. C0085 DMD modes 1 (red), 2 (green), and 3 (blue).
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Figure 3.36. C0088b DMD modes 1 (red), 2 (green), and 3 (blue).

The Computational Fluid Dynamics and the DMD simulations show the hemodynamic

conditions inside the aneurysms are dominated by the inflow jet. In C0002’s aneurysm (Figure

3.26), is very hard to tell what is going on with the inflow jet, however, it seems to collide against

the distal wall but fails to fill the entire aneurysm. The inflow jet in C0006 (Figure 3.27), is shown

to collide against the aneurysm wall head-on causing the flow to destabilize as it spirals out of the

aneurysm. In case C0014 (Figure 3.28), the flow is more stable as the primary mode for each can

capture the majority of the overall fluid flow. Consequently, the inflow jet in case C0014 enters the

aneurysm off to one side. Similarly, in case C0016 (Figure 3.29), the flow is again more stable as the

primary mode for each can capture the overall fluid flow. However, the flow isn’t nearly as stable

as the flow in case C0014.

Case 0034 (Figure 3.30), on the other hand, shares more similarities with case C0014 in

that it appears to be very stable. The inflow jet for C0034 enters the aneurysm from the dorsal

side. Since both cases C0014’s and case C0034’s inflow jets collide with the distal at an offset point

instead of a more central point, they don’t destabilize like case C0006’s flow does. The reason flow

in case C0016 is less stable than C0014 and C0034 is probably because of how close the inflow jet

is in proximity to the outflow jet.

Flow in case C0036 (Figure 3.31) appears to destabilize as it spirals back towards the outflow

jet. Even though the inflow jet of this case is in close proximity to the outflow jet, nearly the entire
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aneurysm is filled. For case C0042 (Figure 3.32), the inflow jet hit the aneurysm wall so close to

the proximity of the outflow jet that it appears as if back-flow from the outflow jet is what fills this

aneurysm. Similarly to case C0016 and case C0036, the proximity of the inflow jet in relation to

the outflow jet in case C0042 contributes why the flow destabilizes.

Case C0067’s (Figure 3.33) inflow jet appears to be the most stable. This is probably to

the fact of how small the aneurysm, in this case, is which in turn compresses the flow inside the

aneurysm in a tight bundle. Even though the inflow jet and the outflow jet of this case are in close

proximity, the small diameter of this aneurysm seems to prevent the flow from destabilizing as much

as would be expected. Case C0002, previously mentioned has a similar diameter to this case despite

it being larger. Thus, it seems the diameter of the aneurysm may play a bigger role than the height

of the aneurysm in determining flow stability.

Case C0075 (Figure 3.34) differs from all the other cases in that this aneurysm is a bifurcation

aneurysm. This in turn destabilizes the flow in C0075, however, the destabilization is not as much as

one would expect considering blood mainly fills the aneurysm where the aneurysm starts to branch

off. The two branches themselves appear untouched for the most part. In case C0085 (Figure 3.35),

the corkscrew-like motion shown in Figure 3.13 can also be seen in the DMD modes. The flow,

in this case, appears to be stable with the primary mode capturing the majority of the fluid flow.

Case C0088b (Figure 3.36) inflow jet hits the distal wall of the aneurysm near where the outflow

jet is located as a result the aneurysm is only partially filled. Unlike any of the other aneurysms

mentioned in this report, C0088b is one of two aneurysms for this patient, therefore, it is unclear

what effect the other aneurysm has on this one making any conclusions made here inaccurate.

For each case, three dominant modes show that the inflow jet first impinges on the distal

wall and then follows the wall curvature to return to the proximal neck. Thus, the spatial coverage

of DMD modes is useful in characterizing the overall three-dimensional structures of the inflow jet.

Additionally, the location of where the inflow jet hits the distal wall affects the behavior of the

outflow.
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3.3.1. DMD Spectra

For each aneurysm case, the frequency of their modes was computed. This computation was

done using the following code in the Matlab console.

% modal f r e q computation

load (" Analys i s_Results . mat " ) ;

load (" Spectrum .mat " ) ;

spe c t ra = Spectrum {1 ,1} . sigma ;

% Spectrum{1 ,1} i s where the spectrum data fo r L=1 i s s to red . L=2 can be ignored

% sigma i s the f r e quenc i e s

spec t ra=sort ( spe c t ra ) ;

% d i s p l a y s the f r e quenc i e s o f the f i r s t t h ree modes

spec t ra ( 1 : 3 )

% 1:3 r e f e r to modes 1−3.

The results of this code are listed in the table below.

Table 3.1. Modal frequencies generated from Matlab code. Primary mode, secondary mode, and
tertiary mode correspond to modes 1, 2, and 3 respectively.

Patient ID Primary Mode Secondary Mode Tertiary Mode Ruptured
C0002 0.7599 Hz 0.8524 Hz 0.8769 Hz No
C0006 2.1416 Hz 3.2146 Hz 4.6010 Hz No
C0014 2.4828 Hz 5.0205 Hz 6.1727 Hz No
C0034 1.6250 Hz 2.8206 Hz 3.1142 Hz No
C0036 3.9510 Hz 5.8047 Hz 6.1111 Hz No
C0042 0.8319 Hz 0.8884 Hz 1.0660 Hz No
C0067 0.2171 Hz 0.4398 Hz 0.5370 Hz No
C0075 6.8569 Hz 13.6171 Hz 17.3059 Hz No
C0085 2.6517 Hz 3.5862 Hz 3.6765 Hz Yes
C0088b 0.0437 Hz 0.0483 Hz 0.1076 Hz No
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4. CONCLUSIONS

Intracranial aneurysm is a common cerebrovascular disorder that causes swelling in the blood

vessels of the brain [32]. This disorder is thought to be present in approximately 2% to 5% of adults

worldwide [32]. Nearly all aneurysms are discovered purely by accident. Brain aneurysms cause

problems such as pressing up against cranial nerves or hemorrhaging [13, 23, 24]. Aneurysms can

also leak blood into the brain or rupture which can cause hemorrhaging [13, 23]. If an aneurysm

ruptures, it can pose life-threatening consequences. Therefore, rupture risk analysis of existing

aneurysm(s) in a patient is crucial.

Current risk factor calculators take into account the patient’s history, the configuration of

the aneurysm in space, and its complexity [12, 13]. Due to the complexity of some aneurysms,

finding the right treatment can be a challenge. Ultimately, treatment decisions are often based on

a neurosurgeon’s preference and intuition as the treatment process is often challenging due to the

microsurgeries that are required [24]. This approach is not very patient-specific.

Medical imaging already is being used to compute blood flow in brain aneurysms using

medical images such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) [5,

24, 35, 36], which allows the computation of velocity and pressure fields to be expressed in great

detail. Additionally, it has been shown that wall shear stress is associated with the growth and

rupture of an intracranial aneurysm which in turn can be indirectly captured by hemodynamics

using image-based CFD [29, 38]. And yet, risk factor calculators lack necessary data related to

intra-aneurysmal blood flow dynamics [24]. Despite this, there is a large gap between numerical

simulation and clinical practice [4, 39] because it is challenging to analyze blood flow dynamics in

complex geometries of brain aneurysms.

Even though there is a great need for analyzing inflow jet dynamics in clinical practice,

data summarized in DICOM files are usually limited to the geometrical view of the aneurysm.

This approach is essentially what is called a black-box approach in that you can only measure the

anatomy and not the blood flow dynamics; thus, it cannot account for internal hemodynamics.

In our work, computational fluid dynamics simulations were run to produce reliable and

invaluable data for analysis of the fluid flow in patient-specific models of aneurysms. Then, DMD
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was used to identify the dominant features of the blood flow in brain aneurysms. Our results

show that DMD is an essential tool for analyzing blood flow patterns of brain aneurysms because

DMD can provide great details of the flow including the dominant frequencies. It is evident that

aneurysm geometry has a dominating effect on the resulting frequencies of the jet. Our results

suggest that these dominating frequencies might be used to identify the transition of the incoming

jet to turbulence in the neck region. Therefore, the use of DMD for analyzing blood flow patterns

should be considered in future works.
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