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Abstract: The transportation of dangerous goods by truck or railway multiplies the risk of harm to
people and the environment when accidents occur. Many manufacturers are developing autonomous
drones that can fly heavy cargo and safely integrate into the national air space. Those developments
present an opportunity to not only diminish risk but also to decrease cost and ground traffic congestion
by moving certain types of dangerous cargo by air. This work identified a minimal set of metropolitan
areas where initial cargo drone deployments would be the most impactful in demonstrating the safety,
efficiency, and environmental benefits of this technology. The contribution is a new hybrid data
mining workflow that combines unsupervised machine learning (UML) and geospatial information
system (GIS) techniques to inform managerial or investment decision making. The data mining and
UML techniques transformed comprehensive origin–destination records of more than 40 commodity
category movements to identify a minimal set of metropolitan statistical areas (MSAs) with the
greatest demand for transporting dangerous goods. The GIS part of the workflow determined the
geodesic distances between and within all pairwise combinations of MSAs in the continental United
States. The case study of applying the workflow to a commodity category of dangerous goods
revealed that cargo drone deployments in only nine MSAs in four U.S. states can transport 38% of
those commodities within 400 miles. The analysis concludes that future cargo drone technology has
the potential to replace the equivalent of 4.7 million North American semitrailer trucks that currently
move dangerous cargo through populated communities.

Keywords: air logistics; autonomous aircraft; data mining; electrified aircraft; sustainable transport;
transport safety

1. Introduction

The ground transport of dangerous goods or hazardous materials (hazmat) multi-
plies the risk of exposing populations and the environment to spills from handling or
transportation mishaps [1]. Therefore, this research identified potential opportunities for
future autonomous cargo drone fleets to carry hazmat. In addition to the safety benefits of
eliminating the human operator and removing the vehicle from the ground environment,
autonomous aircraft service will be faster and more efficient by avoiding ground traffic
congestion and operating continuously. External benefits to the environment would be the
reduction in road wear from heavy vehicle traffic and the reduction in road congestion,
which would also reduce greenhouse gas emissions [2]. Initial successful deployments will
encourage the public and regulators to speed up adoption by enacting new policies and
standards that will scale commercial cargo drone services worldwide. Therefore, the goal
of this research was to identify a minimal set of metropolitan areas where early cargo drone
deployments could demonstrate the greatest initial benefits.

Cargo drone developments show steadily increasing levels of automation, heavy-lift
performance [3], cost reduction [4], and enhanced safety with distributed electric propul-
sion [5] and integrated parachute systems [6]. Fleets of cargo drones can fly continuously,
autonomously, and quietly [7] to meet the freight throughput demands. Hence, shippers in
the commodity supply chain are now evaluating the potential for drones to complement or
even replace ground transport modes for some types of commodities [8].
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Despite many barriers to their adoption today [9], innovators and manufacturers
are on track to automate drones so that they can fly safely without human intervention
in beyond visual line of sight (BVLOS) conditions [10], and in all types of weather [11].
Meanwhile, manufacturers and governments are collaborating in an initiative known as
Advanced Air Mobility (AAM) to overcome the technical and regulatory hurdles of safely
integrating drones into the national airspace [12].

A contribution of this work is a new hybrid data mining (HDM) workflow that
combined unsupervised machine learning (UML) and geospatial processing (GP). The
UML part of the workflow analyzed the raw data of commodity flows to identify a minimal
set of metropolitan areas with the greatest demand for transporting dangerous goods. The
GP part of the workflow used geographical information system (GIS) techniques and spatial
data to determine the geodesic distances between and within all pairwise combinations of
metropolitan areas in the continental United States (CONUS). The technique revealed the
potential demand for moving hazmat within various distance bands. The author could not
find a similar hybrid analytical workflow within the literature.

The organization of the rest of this paper is as follows: Section 2 reviews the literature
on AAM, the classification of dangerous goods, and its transport hazards. Section 3
describes the hybrid data mining (HDM) workflow developed to address the goal of this
research. Section 4 discusses the analytical results and implications for stakeholders such as
supply chain managers, shippers, urban planners, and policy makers. Section 5 concludes
the research and suggests future work.

2. Literature Review

The three subsections of this literature review explore the status of AAM, define dan-
gerous goods, and discuss related research on the risks of transporting dangerous goods.

2.1. Advanced Air Mobility

For certain high-value or urgently needed items, shippers generally exchange the
lower cost of ground transportation for the higher speed and security of air transport [13].
The electrification and automation of drones can further reduce the operating costs and
safety risks of air transport [14]. Cost savings due to time reduction is one of the main
factors driving the drone package delivery initiative by Amazon [15]. Drones can also
transport cargo across regions with poor roads, inhospitable terrain, jungles, waterways,
or lakes [12]. Hence, cargo drones have recently been used in niche applications such as
humanitarian logistics [16], emergency response [17], and the delivery of urgent items such
as medical supplies [18] and replacement parts [19].

There has been a drastic increase in the number of articles about using drones for
transportation [20]. Many large retailers and shippers have already been using drones
for “last-mile” deliveries. For example, in 2022, Walmart announced that it is expanding
delivery services from stores to homes and has been achieving average delivery times of
30 min [21]. Similarly, Amazon, DHL, and Federal Express are evaluating the use of drones
to expand their next-day or same-day package delivery services [22]. Manufacturers are
also developing heavy-lift cargo drones to address “middle-mile” opportunities [23]. In
contrast to last-mile, middle-mile encompasses transport service between ports, transship-
ment facilities, distribution centers, sortation centers, fulfillment centers, warehouses, and
stores [24].

In 2021, the U.S. National Aeronautics and Space Administration (NASA) released
a concept of operations for Urban Air Mobility (UAM) to promote their vision of using
drones to fly passengers and cargo over dense population centers [25]. The Federal Aviation
Administration (FAA) released an accompanying concept of operations that expanded the
UAM vision as Advanced Air Mobility (AAM) to include other use cases such as public
services and recreational use [10]. Although there are still many unresolved risks for the
safe integration of drones into the national airspace system [26], there have been many
proposals [27] and safety demonstrations [28]. In anticipation of inevitable regulatory certi-
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fications, supporting infrastructure, and demand, hundreds of drone manufacturers have
attracted billions of dollars in investments to commercialize their aircraft [11,29]. Analysts
predict that the global cargo market for drones will reach $58 billion by 2035 [30,31].

FAA regulations will not allow commercial drone operations until service providers
can demonstrate their safe operation in the national airspace [10]. Therefore, once certified,
shippers will be confident that pilotless drones are safer than other modes of surface trans-
portation because of the reduced conflict with traffic in the vast three-dimensional airspace,
the impossibility of human errors, and advancements in air traffic management [12]. Sub-
sequently, shippers can encourage a policy shift towards cargo drones by demonstrating
safe operations in a few focused regions that maximize their safety, environmental, and
economic impacts [32].

2.2. Defining Dangerous Goods

The USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA) de-
fines nine classes of dangerous goods [33,34]. Table 1 summarizes the classes of hazmat,
some examples, their typical uses, and risks.

Table 1. Classification of Dangerous Goods.

Class Description and Examples Typical Uses Risks

Ex
pl

os
iv

es Substance, article, or device that can explode.
Examples: gunpowder, safety flares,
and fireworks.

War, demolition, mining, and
avalanche control [35].

Explosion triggered by heat,
radiation, vibration, or chemical
reaction.

G
as

es Non-solid and non-liquid matter. Examples:
butane, aerosols, oxygen, methane, acetylene,
carbon monoxide, and hydrogen sulfide.

Industrial uses, cooking grills,
household cleaners,
and cosmetics.

Accidental release from
pressurized containers, and
possible contact with
ignition sources.

Fl
am

m
ab

le
Li

qu
id

s

Liquids with flash points between 100 ◦F and
140 ◦F. Examples include gasoline, acetone,
toluene, diethyl ether, and alcohols.

Fuels, cleaning solutions, paints,
polishes, varnishes, adhesives,
and paint thinners.

Exposure to heat can bring a
liquid to its flash point (release of
vapor) when ignition can occur.

Fl
am

m
ab

le
So

lid
s Ignitable solids. Examples: alkali, coal, carbon,

magnesium, metallic hydrides, sulfur, cellulose
nitrate, and matches.

Battery manufacturing, cooking,
and composting.

Ignitable by heat, friction, or
contact with other substances
such as oxidants or acids.

O
xi

di
zi

ng
Su

bs
ta

nc
es

&
O

rg
an

ic
Pe

ro
xi

de
s Chemicals that oxidize other substances

and/or provide fuel to burn. Examples:
ammonium nitrate, potassium nitrate, nitric
acid, halogens, and potassium bromate.

Manufacturing of plastics and
rubbers and agricultural uses
such as fertilizers.

Unstable—prone to exothermic
decomposition [36].
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Table 1. Cont.

Class Description and Examples Typical Uses Risks

To
xi

c
an

d
In

fe
ct

io
us

Su
bs

ta
nc

es

Poisons, infectious, and irritating materials.
Examples: bacteria, blood samples, cyanide,
methyl bromide, tear gases, medical waste,
and forensic materials.

War, pesticides, medicines, fuel
additives, and disinfectants.

Accidental releases can
harm humans.

R
ad

io
ac

ti
ve

M
at

er
ia

l Materials with specific activity greater than
0.002 microcuries per gram. Examples:
Cobalt-60, Americium-241, Cesium-137,
Iridium-192, and Plutonium-239.

Weapons manufacturing, power
production, smoke alarms, and
medical imaging [37].

Accidental releases can
harm humans.

C
or

ro
si

ve
Su

bs
ta

nc
es Chemicals that destroy materials or cause

irreversible alterations of living tissue.
Examples: sulfuric acid, sodium hydroxide,
hydrofluoric acid, and some battery fluids.

Cleaning solutions, drain
unclogging, and
paint stripping.

Accidental release can cause
severe burning and irritation of
human skin.

O
th

er Examples: batteries (lithium-ion, lithium
metal), magnetized material, asbestos, dry ice.

Batteries for electric vehicles,
electronics, electric scooters,
and drones.

Known to be combustible under
certain circumstances.

2.3. Transporting Dangerous Goods

The accidental release of hazmat during transport can adversely affect human health
and damage the environment [38]. The Code of Federal Regulations (Title 49, Subtitle
B, Chapter I, Subchapter C) regulates the transport of hazmat in the United States [39].
Despite such detailed and strict regulations, the United States experienced more than
189,000 accidents (non-pipeline from 2012 to 2021) involving hazmat that resulted in 1732
injuries, 83 fatalities, and nearly $827 million in property damages [33]. Most of the hazmat
incidents occurred on roadways [40]. An external cost from accidents that involve hazmat
is the loss of traffic capacity (economic productivity) from closed links during the incident
investigation, environmental cleanup, and facility repairs.

The proximity of roadways and railways to vulnerable facilities such as gas stations,
hospitals, large buildings, and schools can multiply the potential consequences of acci-
dents involving hazmat [41]. Hazmat spills can contaminate water sources [42] and harm
wildlife [43]. Nearby communities can become contaminated in cases involving the release
of chemical, biological, radiological, or nuclear substances [44]. A recent study found that
exposure to toxic chemicals can adversely affect learning in early childhood [45]. Another
recent study found that exposure to pollution increases the risk of more severe infections
and deaths from viruses such as COVID-19 [46].

Human factors have been the dominant cause of both railroad [47] and truck acci-
dents [48]. Wei et al. (2021) found that weather, traffic signals, surface conditions, fatigue,
and the time of day have strong associations with hazmat road accidents [49]. Future
autonomous aircraft offer the potential to reduce the risk of hazmat transport by elim-
inating the vehicle operator and distancing the vehicle from populated places and the
ground environment. Yet, a recent review paper found that there have been extraordinarily
few studies of the potential to transport dangerous goods by aircraft [50]. The literature
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mainly covered risk assessment [51], traffic flow prediction [52], vehicle routing [53], tour
length optimization [54], facility locating, scheduling, aircraft loading [55], emergency
response [56], and accident cause analysis [40].

A recent survey found that there are currently no regulations that explicitly address
the transport of dangerous goods by drones [57]. A few studies examined the risks of
carrying certain types of hazmat by air. Hafeez et al. (2022) reviewed the use of drones to
apply pesticides [58]. Lukežič et al. (2010) conducted a series of experiments on hexam-
ethylenetetramine and ignition briquettes, which are chemically similar substances that had
the same recommended packing group class for air cargo [59]. They found that exposure
to elevated temperatures can cause spontaneous combustion in ignition briquettes and,
therefore, policies should increase their packaging group class. Flammable liquids will
require special containers for both ground and air transport [60]. Containers that eliminate
the possibility of an uncontrolled fire can prevent the explosion of substances such as
ammonium nitrate fertilizer [61].

The need for rapid response in emergency medicine has led to a proliferation of drone
usage to carry certain life-saving items [62]. Studies have shown that active cooling boxes
attached to drones can maintain the integrity of biological samples [63], human organs [64],
and adrenaline auto-injectors used to treat anaphylaxis [65]. Zipline in Rwanda has grown
into a service that uses drones to deliver blood and related medical products to remote
health facilities [18].

In summary, there is no other work in the literature that considered opportunities
to leverage the future capabilities of AAM to transport dangerous cargo. The literature
does not describe a similar data mining workflow that combined methods of transforming
origin–destination commodity flow data to reveal insights about outlier locations that
currently move the largest amounts of dangerous cargo. The literature does not discuss
how to select distance bands that would address the maximum potential demand in the
fewest locations that future cargo drones could serve.

3. Methodology

Figure 1 illustrates the HDM workflow with the procedures, as coded in software, and
their interactions. The data layer of the workflow used the Freight Analysis Framework
(FAF) dataset because it is the most comprehensive source of multimodal commodity flows
available for locations within the United States [66]. The FAF combines shipping data
from the Bureau of Transportation Statistics (BTS) of the U.S. Department of Transportation
(USDOT) and the U.S. Census Bureau (USCB) [67]. Each row of version 5.2 of the FAF
dataset lists a commodity category moved between pre-defined zones (FAF zone) by
transport mode category (air, rail, truck, etc.), weight in thousand-ton units, and value in
million U.S. dollar (USD) units. The generalized design of the workflow enables analysts to
apply it to any available dataset of commodity flows elsewhere in the world.

The next three subsections describe how the HDM workflow summarized the weight
of commodity categories moved in each FAF zone of the CONUS, determined a suitable
category of dangerous goods for the case study, identified clusters of demand for multiple
ground transportation modes, and created a histogram of the weight moved within a series
of distance bands.
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3.1. Pivot Table by Weight

The “Extract” procedure partitioned the data into three modal subsets of commodity
flows: truck, rail, and air. The mode category code served as a key for the software logic to
filter and separate the rows of data accordingly. The procedure “Pivot Table by Weight”
converted raw origin–destination movement data into tables that summarize the weight
by origin and destination in every FAF zone for each of the commodity categories in a
modal data subset. The origin and destination pivot tables listed 130 FAF zones along
the rows and 43 commodity categories across the columns. Movements by air had the
same number of FAF zones as for trucks and rail but two fewer (41) commodity categories.
Combining the origin and destination pivot tables produced a summary of the weight
moved by commodity category in each FAF zone. In addition to summarizing the data,
the pivot table procedure helped to detect errors such as missing values, incorrectly coded
features, and any outlier values that were incorrect.

3.2. Dangerous Goods Category

An analysis of the FAF 5 metadata description revealed that many of the items in
the commodity categories of crude oil, fuels, pharmaceuticals, and basic chemicals are
within the dangerous goods classes defined in Table 1 above. This analysis considered the
commodity category of basic chemical materials (BCMs) for the U.S. case study because
it contains most of the dangerous goods transported without pipelines. BCMs defined in
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the FAF are further subclassified as organic and inorganic chemicals. Examples of organic
chemicals include ethyl benzene, paraformaldehyde, acyclic alcohols, peroxides, hydrocar-
bons, hormones, and toners. Examples of inorganic chemicals include hydrochloric acid,
sulfuric acid, hydrogen, rare gases, alkali metals, mercury, and radioactive elements.

3.3. Regional Demand Cluster

The FAF zones include metropolitan statistical areas (MSAs) and areas outside of
MSAs, which were the remainder of states or entire states. The analysis focused on MSAs
for initial deployments because any localized disruptions in their large population centers
and trade gateways will amplify the risk of harm to society and increase the risk of supply
chain disruptions. A procedure flagged FAF zones as MSAs where the metadata description
contained the words “area” or “part” so that the “extract” procedure produced a list of
only the MSA movements by weight. The procedure identified 83 of the 130 FAF zones as
MSAs in the CONUS.

The next objective was to identify a minimal set of MSAs that moved the largest
amount of BCMs. It is not possible for humans to visually identify clusters or outliers when
a data element has more than three features. Hence, the strategy to generalize the workflow
was to apply unsupervised machine learning (UML) to detect MSA clusters and outliers
based on the weight of BCMs moved by all transport modes.

The HDM workflow used three of the most popular UML methods, which are clus-
tering algorithms: the density-based spatial clustering of applications with noise (DB-
SCAN) [68], Louvain [69], and k-means clustering [70]. Table 2 summarizes their basic
theory of operation, their advantages (A), and their disadvantages (D). The hyperpa-
rameters are algorithm parameter values that the user must provide based on cyclically
observing intermediate results from a range of settings. The table shows the values of those
hyperparameters that provided the best performance for this dataset. The next step in the
workflow extracted the demand outliers to calculate the distance band distribution.

Table 2. Unsupervised Machine Learning Algorithms Compared for Cluster Detection.

Algorithm Theory of Operations Hyperparameters

DBSCAN Density-based spatial clustering of applications with noise (DBSCAN). Separates
densely packed points from outliers. Initializes core points as those that are within
distance d of k points. Grows a cluster by randomly labeling a core point as a cluster,
and then grows that cluster by sequentially adding other core points that are within
distance d until all core points are assigned to a cluster. Finally, it assigns non-core
points to clusters that are within distance d. The unassigned points are labeled
as outliers.
A: finds clusters that linear hyperplanes cannot separate.
D: specification of d of k requires heuristics, which can be impractical for large
feature spaces.

Normalize features?
Number of points (k)
Distance (d)
Distance measure

Louvain Extracts communities from networks by constructing a k-nearest neighbor graph
with edges weighted by the number of shared neighbors. Clusters are labeled based
on edge density inside communities relative to between communities.
A: algorithms and process large networks quickly.
D: the resolution parameter adjusts the cluster size, which can make it difficult to
cluster small communities.

Normalize features?
PCA preprocess vectors
Distance measure
Number of neighbors (k)
Resolution (r)

k-means Randomly selects one point per cluster, and then iteratively recalculates centroids
while reassigning points to their nearest centroid. The algorithm converges once
cluster reassignments stops or the number of specified iterations is complete.
Produces a silhouette score, which is a measure of within-cluster similarity and
outside-cluster separation.
A: performs well when clusters are symmetrical.
D: specifying the number of clusters requires heuristics, but the silhouette score can
help the analyst.

Normalize features?
Number of clusters (k)
Initialization method
Number of reruns (n)
Number of iterations (i)
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3.4. Distance Band Creation

The GP part of the workflow determined the inter-MSA geodesic distances and esti-
mated intra-MSA distances. Establishing cargo drone hubs near the center of MSAs would
minimize the connecting first-mile and last-mile distances within the MSA. The tactic to
determine the inter-MSA distances was to utilize a dataset containing the areas of all U.S.
counties, combine the areas of counties that are part of an MSA, find the centroid of each
MSA, and then compute a distance matrix that accounted for all pairwise combinations
of the centroids. The TIGER® shapefile maintained by the USCB contains both the land
and water areas of all U.S. counties [71]. The 2017 commodity flow survey geographies
database, also maintained by the USCB, contained a FAF zone identifier for every county
in the United States [72]. The merge procedure is a data manipulation technique that adds
more variables to a record by combining data from two or more records that may be sourced
from different locations [70]. However, a successful data merge requires that each record
have a common variable called the key. In this workflow, the county code (FIPS5) served
as a key that added the FAF zone identifier to the TIGER® shapefile. That enabled a GIS
dissolve procedure to define contiguous MSAs and to aggregate the areas of their counties.
Next, a GIS centroid procedure calculated the center of each MSA as shown in Figure 2,
which then enabled a GIS distance matrix procedure to calculate the geodesic distances
among the MSA centroids.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 2. MSAs, remaining FAF Zones, and their centroids. 

4. Results and Discussions 
The following subsections discuss the results of the regional demand clustering and 

the distance band distribution of BCM weight moved. 

4.1. Regional Demand Cluster 
Figure 3 shows the results from the three clustering algorithms but using the top two 

modes for ease of visualization. The vertical and horizontal positions of each point (circle) 
in the figure represent the total weight of BCMs moved in 2017 by truck and rail, respec-
tively. Each point on the scatter plot represents an MSA that moved the indicated weight 
by the two modes. The label of each colored point in the legend indicates the cluster num-
ber to which the algorithm assigned them. Table 3 lists the tuned hyperparameter settings 
for each clustering algorithm. 

Visually, the scatter plot shows one extreme outlier in the top right (Houston, TX), 
one dense cluster in the lower left, and a set of outliers towards the middle. The outliers 
are distinctively separated from the high-density cluster in the lower left. DBSCAN cor-
rectly identified the outliers. Louvain identified nine clusters, with its C5 cluster mostly 
agreeing with DBSCAN. k-means treated the extreme outlier as its own cluster but in-
cluded a few edge points of the high-density cluster into the outlier group as a third clus-
ter. 

Table 3. Tuned Hyperparameter Settings for the Clustering Algorithms. 

Hyperparameter DBSCAN Louvain k-Means 
Features normalized Yes Yes No 

Distance Euclidean Euclidean Squared-Euclidean 
Initialization n/a PCA = 2 k-means ++ 
Parameters k = 4; d = 12.99 k = 4, r = 5.0 n = 10, i = 300 
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Unfolding the distance matrix and merging it with the commodity flow data added a
geodesic distance for flows between MSAs. However, the distance matrix cannot produce
a value for intra-MSA flows. Therefore, the tactic was to estimate an average inter-MSA
distance based on a direct proportion of the MSA size, which was half the diagonal of
a square with an area equal to that of the MSA. Figure 2 shows that the GIS dissolve
procedure produced 83 MSAs and 46 remaining FAF zones, along with their geospatial
centroids. Finally, a histogram procedure binned the weight of BCM moved into 100-mile
distance bands from 100 to 2800 miles.
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4. Results and Discussions

The following subsections discuss the results of the regional demand clustering and
the distance band distribution of BCM weight moved.

4.1. Regional Demand Cluster

Figure 3 shows the results from the three clustering algorithms but using the top
two modes for ease of visualization. The vertical and horizontal positions of each point
(circle) in the figure represent the total weight of BCMs moved in 2017 by truck and rail,
respectively. Each point on the scatter plot represents an MSA that moved the indicated
weight by the two modes. The label of each colored point in the legend indicates the cluster
number to which the algorithm assigned them. Table 3 lists the tuned hyperparameter
settings for each clustering algorithm.
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Table 3. Tuned Hyperparameter Settings for the Clustering Algorithms.

Hyperparameter DBSCAN Louvain k-Means

Features normalized Yes Yes No
Distance Euclidean Euclidean Squared-Euclidean

Initialization n/a PCA = 2 k-means ++
Parameters k = 4; d = 12.99 k = 4, r = 5.0 n = 10, i = 300

Visually, the scatter plot shows one extreme outlier in the top right (Houston, TX), one
dense cluster in the lower left, and a set of outliers towards the middle. The outliers are
distinctively separated from the high-density cluster in the lower left. DBSCAN correctly
identified the outliers. Louvain identified nine clusters, with its C5 cluster mostly agreeing
with DBSCAN. k-means treated the extreme outlier as its own cluster but included a few
edge points of the high-density cluster into the outlier group as a third cluster.

Visual validation suggested that DBSCAN provided the best performance for this
application by identifying all the outlier MSAs. The two-dimensional visualization was
effective because the weight of BCMs moved by air was substantially less than the weight
moved by trucks and rail. Figure 4 shows the proportional distribution of the total BCM
weight moved by the three modes of truck, rail, and air in each MSA. The figure shows
the MSAs by total weight moved, sorted with the highest at the bottom. As labeled in the
figure, only 9 of 83 MSA in the CONUS moved nearly half the weight (49.3%) of the BCMs.
The long distribution tail of Figure 4 further illustrates that beyond those initial 9 MSAs,
there are diminishing returns on the weight of the BCMs that cargo drone deployments can
move in each additional location.

Nine of the MSAs among the DBSCAN outliers are in only four states: California
(Los Angeles, San Francisco), Texas (Houston, Dallas-Fort Worth, Beaumont), Louisiana
(Baton Rouge, New Orleans, Lake Charles-Jennings), and Illinois (Chicago). This result is
fortuitous because focusing deployment plans within only a few states will ease the burden
of working across many jurisdictions that may initially have different constraints, policies,
and regulations for commercial cargo drone services. Focused deployments in only a few
states can also help to minimize the risk of supply chain disruptions from localized weather
events such as hurricanes, tornados, and extreme cold that can damage utilities and block
surface transportation routes.

4.2. Distance Band Distribution

To put the weight moved into perspective, a typical North American semi-trailer
truck (18-wheeler/big rig) carries 45,000 pounds (22.5 tons) of cargo [73]. Table 4 lists the
distance band distribution of truckload equivalents and their proportion for the selected
outlier MSAs, and Figure 5 plots the data for visualization. Current projections based on
the anticipated improvements in battery technology suggest that cargo drones will exceed
400-mile ranges well before 2050 [74]. As shown in Table 4, air, rail, and trucks accumulated
(acc.) to 48.9%, 53.3%, and 84.7% of all BCM movements, respectively, within 400 miles.
Figure 5 reveals that for each transport mode, there was a distinct point of diminishing
returns in the accumulated proportion after 400 miles. Therefore, cargo drones with a
robust 400-mile range have the potential to remove nearly 85% of the trucks that carry
BCMs across the nation’s roadways. Based on growth estimates from the National Freight
Strategic Plan, truck transport will increase by 35% by 2040 [75], which means that the
potential benefits will be even greater over time.
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Table 4. Truckload Equivalent and Proportion Moved by Miles Band and Mode in the Outlier MSAs.

Band Air Air Acc. Rail Rail Acc. Truck Truck Acc. 3-Modes 3-Modes Acc.

100 11.4 0.5% 239,468.1 14.5% 1,858,411.2 40.8% 2,097,890.7 33.8%
200 8.8 1.0% 217,816.7 27.7% 892,520.1 60.4% 1,110,345.6 51.7%
300 555.1 27.7% 291,106.7 45.4% 892,206.9 80.0% 1,183,868.7 70.8%
400 440.1 48.9% 130,613.3 53.3% 213,958.3 84.7% 345,011.7 76.3%
500 151.9 56.3% 29,614.7 55.1% 102,053.0 86.9% 131,819.5 78.5%
600 107.8 61.5% 54,879.4 58.4% 75,802.3 88.6% 130,789.5 80.6%
700 137.3 68.1% 65,460.3 62.4% 88,755.7 90.6% 154,353.3 83.1%
800 99.1 72.9% 71,947.0 66.8% 79,644.7 92.3% 151,690.7 85.5%
900 53.4 75.4% 63,921.1 70.6% 38,083.4 93.1% 102,057.9 87.2%

1000 99.9 80.2% 123,533.8 78.1% 66,995.1 94.6% 190,628.7 90.2%
1100 21.6 81.3% 41,494.4 80.6% 36,211.3 95.4% 77,727.3 91.5%
1200 22.1 82.4% 191,184.6 92.2% 79,192.4 97.2% 270,399.1 95.8%
1300 17.5 83.2% 69,207.6 96.4% 19,629.7 97.6% 88,854.8 97.3%
1400 9.3 83.6% 27,812.5 98.1% 33,419.6 98.3% 61,241.3 98.3%
1500 22.2 84.7% 5078.4 98.4% 12,496.8 98.6% 17,597.4 98.5%
1600 40.2 86.7% 8511.9 98.9% 15,235.8 98.9% 23,787.9 98.9%
1700 21.1 87.7% 5197.4 99.3% 10,123.7 99.1% 15,342.2 99.2%
1800 41.3 89.7% 2393.1 99.4% 10,285.0 99.4% 12,719.3 99.4%
1900 59.6 92.5% 1328.6 99.5% 11,822.8 99.6% 13,211.0 99.6%
2000 30.6 94.0% 278.9 99.5% 4089.5 99.7% 4399.0 99.7%
2100 6.1 94.3% 3991.5 99.7% 2650.4 99.8% 6647.9 99.8%
2200 18.9 95.2% 347.0 99.8% 966.8 99.8% 1332.7 99.8%
2300 16.6 96.0% 2785.5 99.9% 2669.3 99.9% 5471.4 99.9%
2400 34.7 97.7% 447.3 100.0% 4383.5 100.0% 4865.5 100.0%
2500 15.2 98.4% 431.6 100.0% 473.2 100.0% 920.0 100.0%
2600 22.5 99.5% 141.5 100.0% 1335.7 100.0% 1499.7 100.0%
2700 7.6 99.9% 39.5 100.0% 32.1 100.0% 79.2 100.0%
2800 2.7 100.0% 1.2 100.0% 2.7 100.0% 6.5 100.0%

The above results demonstrate the practical value of the workflow in providing in-
sights for decision making under high uncertainty. The data mining workflow transformed
a large origin–destination database into a tabular summary that enabled further merging
with GIS data to add geodesic distance information estimated from the spatial geometry
of maps. Logistical managers and investors can adopt the workflow without concerns
about using non-standard or unproven functions because it incorporated mature data
science methods like pivoting, extraction, merging, histogram, clustering, GIS dissolve, and
GIS centroid.

A limitation of this study is that it focused on identifying areas with significant
amounts of hazmat movements that would be worthwhile locations for drone deployments
but did not examine possible engineering limitations. For example, new policies would
need to consider the design and availability of special containers of suitable weight and
material for the proposed cargo drone applications. Engineers will need to address how
the transport system will attach and release those containers, and how to design redundant
systems that will enable safe landing in an emergency. Policymakers will also need to
determine the population density threshold and minimum altitude for routes that need to
cross populated places.

As noted above, only nine MSAs in four U.S. states accounted for 49.3% of the BCM
weight moved and 76.3% of that weight moved within a 400-mile range. Therefore, de-
ploying cargo drones in the MSAs of only four states have the potential to carry 49.3% ×
76.3% = 37.6% of all the BCM weight moved in the CONUS. The equivalent in truckloads
displaced in 2017 would have been 4.7 million.
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5. Conclusions

Autonomous cargo drones are emerging as a new mode of air transportation that has
the potential to displace the surface transportation of many types of commodities. The
removal of human operators not only reduces cost but also increases safety by eliminating
the potential for human error or harm. Based on the number of global incidences in recent
years, air transportation has been far safer than other modes of surface transportation such
as truck and rail. Federal regulations will ensure that all commercial cargo drones can
safely integrate into the national airspace. Autonomous cargo drones can fly rapidly, in all
types of weather conditions, as fleet swarms, and at all hours to support the demand for
freight capacity. Whereas surface transportation modes are subject to weather events and
accidents that can cause congestion and route closures, cargo drones can fly unimpeded
and more directly between terminals. Electrified vertical takeoff and landing (eVTOL)-type
cargo drones do not need airports because they can use vertiports atop buildings and in
small open areas in metropolitan areas. Battery-powered drones will eliminate harmful
emissions if they can charge from clean energy sources.

The future realization of advanced air mobility (AAM) presents an opportunity to
move dangerous goods by air and thus minimize the risk of harm to people and the envi-
ronment. This applied research developed a new hybrid data mining and machine learning
workflow to identify the fewest initial locations where cargo drone deployments can yield
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the greatest benefits. Logistical managers and investors can adopt the workflow to analyze
combined commodity flow and GIS datasets to produce insights for decision making under
high uncertainty. A case study of the workflow on data from the United States found that
deployments in only nine metropolitan areas in four states can move 38% of all basic chem-
icals within 400 miles. The implication is that initial success will demonstrate their safety
and efficiency benefits to guide policy making and new logistical standards for transporting
dangerous goods. Future work will utilize the generalized data mining workflow to study
the potential markets for moving other types of commodities such as pharmaceuticals and
perishable items that are vulnerable to supply chain disruptions.
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with temperature compensation mechanism for civilian and military applications. J. Adv. Transp. 2018, 2018, 2964583. [CrossRef]
7. Schäffer, B.; Pieren, R.; Heutschi, K.; Wunderli, J.M.; Becker, S. Drone Noise Emission Characteristics and Noise Effects on

Humans—A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5940. [CrossRef] [PubMed]
8. Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H. Drones for supply chain management and logistics: A review and research agenda.

Int. J. Logist. Res. Appl. 2021. [CrossRef]
9. Sah, B.; Gupta, R.; Bani-Hani, D. Analysis of barriers to implement drone logistics. Int. J. Logist. Res. Appl. 2021, 24, 531–550.

[CrossRef]
10. FAA. Urban Air Mobility: Concept of Operations, v1.0; Federal Aviation Administration (FAA): Washington, DC, USA, 2020.

Available online: https://nari.arc.nasa.gov/sites/default/files/attachments/UAM_ConOps_v1.0.pdf (accessed on 16 June 2022).
11. Cohen, A.; Shaheen, S.; Farrar, E. Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges. IEEE Trans. Intell.

Transp. Syst. 2021, 22, 6074–6087. [CrossRef]
12. GAO. Transforming Aviation: Stakeholders Identified Issues to Address for ‘Advanced Air Mobility’; Government Accountability

Office (GAO): Washington, DC, USA, 2022. Available online: https://www.gao.gov/products/gao-22-105020 (accessed on
16 June 2022).

13. ACI. Air Cargo Guide; Airports Council International (ACI): Montreal, QC, Canada, 2019; Available online: https://airportscouncil.
org/wp-content/uploads/2020/03/Air-Cargo-Guide.pdf (accessed on 16 June 2022).

14. Frachtenberg, E. Practical Drone Delivery. Computer 2019, 52, 53–57. [CrossRef]
15. Singireddy, S.R.; Daim, T.U. Technology roadmap: Drone delivery–amazon prime air. In Infrastructure and Technology Management.

Innovation, Technology, and Knowledge Management; Daim, T., Chan, L., Estep, J., Eds.; Springer: Cham, Switzerland, 2018; pp.
387–412. [CrossRef]

16. Rabta, B.; Wankmüller, C.; Reiner, G. A drone fleet model for last-mile distribution in disaster relief operations. Int. J. Disaster Risk
Reduct. 2018, 28, 107–112. [CrossRef]

17. Ayamga, M.; Akaba, S.; Nyaaba, A.A. Multifaceted applicability of drones: A review. Technol. Forecast. Soc. Chang. 2021,
167, 120677. [CrossRef]

http://doi.org/10.1061/(ASCE)0733-947X(1993)119:2(177)
http://doi.org/10.1080/15568318.2022.2076633
http://doi.org/10.3390/app112210815
http://doi.org/10.3390/app10155112
http://doi.org/10.3390/aerospace7040044
http://doi.org/10.1155/2018/2964583
http://doi.org/10.3390/ijerph18115940
http://www.ncbi.nlm.nih.gov/pubmed/34205949
http://doi.org/10.1080/13675567.2021.1981273
http://doi.org/10.1080/13675567.2020.1782862
https://nari.arc.nasa.gov/sites/default/files/attachments/UAM_ConOps_v1.0.pdf
http://doi.org/10.1109/TITS.2021.3082767
https://www.gao.gov/products/gao-22-105020
https://airportscouncil.org/wp-content/uploads/2020/03/Air-Cargo-Guide.pdf
https://airportscouncil.org/wp-content/uploads/2020/03/Air-Cargo-Guide.pdf
http://doi.org/10.1109/MC.2019.2942290
http://doi.org/10.1007/978-3-319-68987-6_13
http://doi.org/10.1016/j.ijdrr.2018.02.020
http://doi.org/10.1016/j.techfore.2021.120677


Sustainability 2022, 14, 13044 15 of 17

18. Nisingizwe, M.P.; Ndishimye, P.; Swaibu, K.; Nshimiyimana, L.; Karame, P.; Dushimiyimana, V.; Musabyimana, J.P.; Musan-
abaganwa, C.; Nsanzimana, S.; Law, M.R. Effect of unmanned aerial vehicle (drone) delivery on blood product delivery time
and wastage in Rwanda: A retrospective, cross-sectional study and time series analysis. Lancet Glob. Health 2022, 10, e564–e569.
[CrossRef]

19. Achamrah, F.E.; Riane, F.; Limbourg, S. Spare parts inventory routing problem with transshipment and substitutions under
stochastic demands. Appl. Math. Model. 2022, 101, 309–331. [CrossRef]

20. Kellermann, R.; Biehle, T.; Fischer, L. Drones for parcel and passenger transportation: A literature review. Transp. Res. Interdiscip.
Perspect. 2020, 4, 100088. [CrossRef]

21. Guggina, D. We’re Bringing the Convenience of Drone Delivery to 4 Million U.S. Households in Partnership with DroneUp.
Walmart, Producer, & Walmart. 24 May 2022. Available online: https://corporate.walmart.com/newsroom/2022/05/24
/were-bringing-the-convenience-of-drone-delivery-to-4-million-u-s-households-in-partnership-with-droneup (accessed on
4 June 2022).

22. Wang, X.; Poikonen, S.; Golden, B. The vehicle routing problem with drones: Several worst-case results. Optim. Lett. 2017, 11,
679–697. [CrossRef]

23. Pak, H. Use-Cases for Heavy Lift Unmanned Cargo Aircraft. In Automated Low-Altitude Air Delivery. Research Topics in Aerospace;
Dauer, J.C., Ed.; Springer: Cham, Switzerland, 2022. [CrossRef]

24. Waters, M. Unpacked: Is Middle-Mile Delivery a Logistics Frontier or Retail Buzzword? Modern Retail. 1 December 2020.
Available online: https://www.modernretail.co/startups/middle-mile-delivery-logistics-frontier-or-retail-buzzword/ (accessed
on 25 April 2022).

25. NASA. UAM Vision Concept of Operations (ConOps) UAM MAturity Level (UML) 4; Prepared by Deloitte Consulting LLP; National
Aeronautics and Space Administration (NASA): Washington, DC, USA, 2020. Available online: https://ntrs.nasa.gov/citations/
20205011091 (accessed on 16 June 2022).

26. NAS. Assessing the Risks of Integrating Unmanned Aircraft Systems into the National Airspace System; National Academies Press:
Washington, DC, USA, 2018. [CrossRef]

27. Gkoumas, K.; Balen, M.V.; Tsakalidis, A.; Pekar, F. Evaluating the development of transport technologies in European research
and innovation projects between 2007 and 2020. Res. Transp. Econ. 2022, 92, 101113. [CrossRef]

28. Shvetsova, S.; Shvetsov, A. Safety when flying unmanned aerial vehicles at transport infrastructure facilities. Transp. Res. Procedia
2021, 54, 397–403. [CrossRef]

29. Garrow, L.; German, B.; Leonard, C. Urban air mobility: A comprehensive review and comparative analysis with autonomous
and electric ground transportation for informing future research. Transp. Res. Part C-Emerg. Technol. 2021, 132, 103377. [CrossRef]

30. Lineberger, R.; Silver, D.; Hussain, A. Advanced Air Mobility: Can the United States Afford to Lose the Race? Deloitte Development
LLC: London, UK, 2021. Available online: https://www2.deloitte.com/us/en/insights/industry/aerospace-defense/advanced-
air-mobility.html (accessed on 16 June 2022).

31. Reed Smith LLP. Global Air Freight’s Future—The Sky Is the Limit. 2022. Available online: https://www.reedsmith.com/en/
perspectives/global-air-freight (accessed on 16 June 2022).

32. Mihir Rimjha, S.T. On-Demand Mobility Cargo Demand Estimation in Northern California Region. In 2020 Integrated Communica-
tions Navigation and Surveillance Conference (ICNS); IEEE: Herndon, VA, USA, 2020; pp. 6A2-1–6A2-10. [CrossRef]

33. PHMSA. 2020 Emergency Response Guidebook; U.S. Department of Transportation, Pipeline and Hazardous Materials Safety
Administration (PHMSA): Washington, DC, USA, 2020. Available online: https://www.phmsa.dot.gov/sites/phmsa.dot.gov/
files/2020-08/ERG2020-WEB.pdf (accessed on 16 June 2022).

34. PHMSA. Hazmat Intelligence Portal; (U. D. Transportation, Producer) Retrieved from Pipeline and Hazardous Materials Safety
Administration (PHMSA): Washington, DC, USA, 30 May 2022. Available online: https://www.phmsa.dot.gov/hazmat-program-
management-data-and-statistics/data-operations/incident-statistics (accessed on 16 June 2022).

35. McCormack, E. The Use of Small Unmanned Aircraft by the Washington State Department of Transportation; Washington State
Department of Transportation: Olympia, WA, USA, 2008. Available online: https://rosap.ntl.bts.gov/view/dot/16515 (accessed
on 16 June 2022).

36. Oxley, J.C.; Smith, J.L.; Rogers, E.; Yu, M. Ammonium nitrate: Thermal stability and explosivity modifiers. Thermochim. Acta 2002,
384, 23–45. [CrossRef]

37. Galatas, I. Prevention of CBRN Materials and Substances Getting into the Hands of Terrorists; International Centre for Counter-Terrorism
(ICCT): The Hague, Netherlands, 2020.

38. Mohammadfam, I.; Gholamizadeh, K. Developing a Comprehensive Technique for Investigating Hazmat Transport Accidents. J.
Fail. Anal. Prev. 2021, 21, 1362–1373. [CrossRef]

39. NARA. Code of Federal Regulations (Title 49, Subtitle B, Chapter I, Subchapter C); National Archives and Records Administration
(NARA): College Park, MD, USA, 11 September 2022. Available online: https://www.ecfr.gov/current/title-49/subtitle-B/
chapter-I/subchapter-C (accessed on 16 June 2022).

40. Yilmaz, Z.; Serpil, E.R.; Aplak, H.S. Transportation of hazardous materials (hazmat) a literature survey. Pamukkale Üniversitesi
Mühendislik Bilimleri Derg. 2016, 22, 39–53. [CrossRef]
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