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Abstract: Advanced air mobility (AAM) is a sustainable aviation initiative to deliver cargo and
passengers in urban and regional locations by electrified drones. The widespread expectation is that
AAM adoption worldwide will help to reduce pollution, reduce transport costs, increase accessibility,
and enable a more reliable and resilient supply chain. However, most countries lack regulations that
legalize AAM. A fragmented regulatory approach hampers the progress of business prospectors
and international organizations concerned with human welfare. Therefore, amidst high uncertainty,
knowledge of indicators that can predict the propensity for AAM adoption will help nations and
organizations plan for drone use. This research finds predictive indicators by assembling a unique
dataset of 36 economic, social, environmental, governance, land use, technology, and transportation
indicators for 204 nations. Subsequently, the best of 12 different machine learning models ranks
the predictive importance of the indicators. The gross domestic product (GDP) and the regulatory
quality index (RQI) developed by the Worldwide Governance Indicators (WGI) project were the two
top predictors. Just as importantly, the poor predictors were as follows: the social progress index
developed by the Social Progress Imperative, the WGI rule-of-law index, land use characteristics
such as rural and urban proportions, borders on open waterways, population density, technology
accessibility such as electricity and cell phones, carbon dioxide emission level, aviation traffic, port
traffic, tourist arrivals, and roadway fatalities.

Keywords: social progress index; sustainable aviation; rule-of-law; regulatory quality index; government
effectiveness index; political stability index; logistics performance index

1. Introduction

International agreements on planetary accountability such as the Paris Climate Accords
highlighted the urgent need for policies to limit pollutants that can harm humanity [1].
Responsive policies focus on decarbonizing transportation by electrifying road vehicles and
promoting cleaner methods of energy production [2]. Consequently, nations are electrifying
ground vehicles but there is less progress in aviation [3].

Advanced air mobility (AAM) is a more recent sustainable transportation initiative
that seeks to use drones, which are small, electrified aircraft, to move cargo and passengers
between high population areas [4]. Key enablers of AAM are the convergence and cost
reduction of technologies such as distributed electric propulsion, artificial intelligence
in robotics, and network-enabled on-demand transportation services [5]. The primary
motivations for AAM are shorter trips by air, avoidance of road congestion, and the
reduction of pollutants [6].

Drones provide other benefits such as supporting the United Nations’ sustainable
development goals by lowering the cost to deliver humanitarian aid, food, medicine, and
disaster relief [7]. Drones can help to increase the resilience and reliability of supply chains
by using the third dimension of travel to speed up deliveries [8]. Additionally, nations
can use drones to more safely and efficiently monitor forest health, wildlife, farms, critical
infrastructure, and post-disaster sites to justify aid.
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Despite the potential widespread benefits of AAM, only developed nations like the
United States, China, and some European countries are working on technologies and
regulations to safely integrate drones into the general aviation airspace [9]. Countries
that are advancing drone regulations will attract new markets. Therefore, policy laggards
could be at an economic and trade disadvantage that may keep the global supply chain
unbalanced. Furthermore, non-uniform policies and regulations worldwide can impede
the agenda of international organizations concerned with human welfare. Hence, the
identification of indicators that are predictors of potential AAM success can help nations,
business developers, and international organizations guide policymaking, evaluate policy
impacts, take corrective action, and benchmark progress internationally.

The goal of this research was to identify well-established social indicators that are ef-
fective predictors of international success in AAM adoption. The strategy was to define the
target feature of prediction as 2022 national-level regulations that legalize drone operations
under a common set of rules. The rationale was that nations that have already defined rules
to allow drone use are more likely to have the wherewithal to adjust them for compliance
with emerging international AAM standards.

The contribution of this work is a three-stage data mining and machine learning (ML)
framework developed to achieve the above stated goal. The first stage of the framework
was a computational workflow to assemble a comprehensive and unique dataset of relevant
social indicators. The second stage compared the effectiveness of 12 mature ML models in
representing the dataset. The third stage selected the best ML model to rank the predictive
importance of indicators based on their association with the target feature.

Technology developers, market prospectors, and international organizations con-
cerned with human welfare can benefit from the insights of this research. International
organizations may include the United Nations, the World Bank Group, International Devel-
opment Law Organization, International Standards Organization, International Civil Avia-
tion Organization, International Air Transport Association, International Energy Agency,
and the World Trade Organization.

The organization of the rest of this work is as follows: Section 2 conducts a literature
review that focuses on related work at the intersection of international AAM developments
and drone regulatory progress. Section 3 describes the framework that includes data
acquisition, feature engineering, feature selection, model selection, and attribute importance
ranking. Section 4 presents the results and discusses insights about the outcome and
limitations. Section 5 concludes the work by reflecting on the motivation, significance,
outcome, and contributions of the work.

2. Literature Review

Walmart and Amazon, the world’s two largest retailers, recently began drone delivery
services in the United States. Walmart is expanding drone deliveries to 34 sites in six U.S.
states (Arizona, Arkansas, Florida, Texas, Utah, VA, USA) and expects to reach four million
households by the end of 2022 [10]. According to Amazon, the city of Lockeford, California,
will be the first to receive its drone delivery service in 2022 [11]. FedEx, DHL, and UPS
are large package shipping companies that have partnerships with drone manufacturers
to launch air delivery services by 2024 [12]. Despite the evidence of ongoing commercial
adoption, the current literature has barely analyzed progress worldwide in advancing
regulations and policies to enable and encourage AAM adoption. The small body of
literature that discussed drone regulations worldwide fell into three categories: common
factors in regulations, hindrances to rule making, and the interplay between drone utility
and rulemaking. The next three subsections describe those findings.

2.1. Common Factors

The Technical Centre for Agricultural and Rural Cooperation (CTA) was one of the
first to examine regulations and policies in 79 countries [13]. CTA, an organization seeking
to advance food security and inclusive economic growth in poor nations, found that in 2016,
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77% of African and 39% of Caribbean countries did not have any specific rules for drone use.
In the same year, Ravich (2016) found that although drone laws varied among nations, the
common unifying concerns were safety, privacy, and national security [14]. One year later,
the RAND Corporation published a report that summarized commercial drone regulations
worldwide [15]. RAND found that the level of regulation restrictiveness reflected whether
the nation favored safety over promoting recent technology. The same year, Cracknell
(2017) found a trend of requiring the pilot to complete a training program and keeping a
log of all flights [16]. Tsiamis et al. (2019) compared drone regulations across 35 countries
of the Organization for Economic Co-operation and Development (OECD) and found that,
although there were many variations in legal framework, common considerations were the
vehicle size and weight, flight altitude, and purpose of use [17]. That same year, Coops et al.
(2019) found that one-quarter of countries had strict laws regulating drone use, one-third
lacked regulations, and six countries simply banned drones [18]. A recent analysis found
there was no central European repository for data related to remote pilots, legal entities,
and operational approvals that could help with monitoring and enforcement [19].

2.2. Rulemaking Hindrances

Ayamga et al. (2021) found that the lack of skilled personnel, processes, and resources
were the main factors hindering the implementation and enforcement of drone regulations
in Africa [20]. Sah et al. (2021) assessed that threats to privacy and security were critical
barriers to implementing drone regulations in the logistics sector [21]. Tran et al. (2022) com-
pared regulatory considerations across the United States, United Kingdom, Canada, China,
Singapore, Thailand, Cambodia, and Vietnam and discovered that rules varied in their
requirements for flight permits, pilot qualifications, and operating constraints such as main-
taining visual line-of-sight, altitude limits, flying at night, and proximity to airfields [22].
More generally, some in developing nations fear that technological advancements will
lower worker wages [23].

2.3. Drone Utility

A literature review by Chauhan (2019) found that publications from 1968 to 2017
about drone utility increased at a rate of 16% annually [24]. In 2015, Oxford Analytica
suggested that a push to commercialize drones will help to advance drone regulations and
that a comprehensive regulatory framework will accelerate applications [25]. Kitonsa et al.
(2018) suggested that drone technology can help to achieve the United Nations’ sustainable
development goals in matters such as addressing issues in agriculture, e-commerce, and
healthcare [7]. Schulzke (2019) pointed out that drone technology advancements for civilian
applications could also increase their attractiveness for military use [26]. Calandrillo et al.
(2020) criticized the slow pace of U.S. regulations for stalling drone applications and forcing
innovation efforts to move abroad [27].

Research suggests that AAM will complement various forms of ground transportation
such as autonomous vehicles and ridesharing [28]. Drones can replace long portions of
ground trips to help reduce congestion and pollution [29]. For example, the Uber Elevate
use case suggests that riders can book complete door-to-door trips by taking ground ride
share to vertiports where drones will more quickly complete the long-haul portion of a
regional trip [30]. That is, passenger drones can take more direct air routes between cities
to provide immense time savings under affordable conditions [31]. Similarly, cargo drones
can bypass ground traffic to speed up package delivery in both middle-mile and last-mile
operations [32].

At the time of this writing, there was no other recent evaluation of worldwide drone
laws or their relationship to any social indicators. This research filled that gap by evaluating
the state of drone regulations in 222 nations and the degree to which they might be
associated with social indicators that span economic, social, environmental, governance,
land use, technology, and transportation characteristics. The 222 nations included the more
than 190 United Nations member states plus nations under their dependencies.
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3. Methodology

The next subsections describe the data and framework to select relevant attributes,
engineer features, train the ML models, and rank attribute importance.

3.1. Data Acquisition

A literature review yielded 36 relevant indicators or attributes for evaluation of their
potential association with the target feature. Table 1 lists the economic, environmental, and
governance attributes selected based on their availability for a majority of the 222 nations.
Table 2 lists attributes that reflect the land use, technology (Tech.), and transportation
characteristics of those nations. Both tables describe the attributes, their units, their data
source, the most recent year that data was available for most nations, and the number of
entries (N) in the source dataset. LN in the attribute name indicates that the ML models
used the natural log transformation of that attribute for reasons described later in the
subsection on feature engineering. The sources of the datasets shown in the two tables are
as follows:

• Vertical Flight Society (VFS) [33]
• World Bank Global Economic Prospects (WB-GEP) [34]
• World Bank World Development Indicators (WB-WDI) [35]
• Worldwide Governance Indicators (WGI) [36]
• World Bank Sustainable Development Goals (WB-SDG) [37]
• World Bank Jobs (WB-J) [38]
• World Bank Doing Business (WB-DB) [39]
• Social Progress Index (SPI) [40]

Table 1. Drones, economic, social, environmental, and governance attributes selected.

Attribute Description Dataset Year N

Drones
Fly Drone use regulated (target feature) CAA Web 2022 222
Designs_LN Number of drone designs VFS 2022 222

Economic

POP_M_LN Population in millions (LN) UN-WPP 2022 237
POP_Gr Population growth (annual %) WB-PI 2021 222
GDP_B_LN GDP in $billion (LN) (current US$) WB-WDI 2021 217
GDPP_LN GDP per capita (LN) (current US$) WB-WDI 2021 217
GDP_Gr GDP growth (% since 2015 US$) WB-GEP 2021 217
Unemploy_LN Unemployment (% of labor force) WB-SDG 2020 261
Arrivals_LN Number of tourism arrivals WB-WDI 2020 266

Environment
SPI Social progress index SPI 2021 168
EQI-SPI Environmental quality index SPI 2021 168
CO2_KT_LN CO2 emissions (kilotons), LN WB-WDI 2019 266

Governance

Gov_Eff Governance effectiveness index WGI 2019 214
Polit_Stab Political stability index WGI 2019 214
Reg_Qual Regulatory quality index WGI 2019 214
Laws Rule-of-law index WGI 2019 214

The International Civil Aviation Organization (ICAO) [41] and the International Air
Transport Association (IATA) [42] websites provided links to the civil aviation authority
(CAA) of each nation. The target value was Fly = 1 if a nation’s CAA specified a set of
rules to allow civilian drone operations; otherwise, the target value was Fly = 0. Although
rules varied, there were common specifications, such as aircraft registration procedures
and maintaining visual line-of-sight, and limitations on flying at night, over people, over
traffic, near government facilities, and over private property. The more restrictive rules
imposed additional limitations such as maximum flight altitude, maximum distance from
the pilot, number of drones per pilot, minimum age of the pilot, and minimum distance
from an airport or airfield. The target value for nations that banned drones was Fly = 0.
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Table 2. Land use, technology, and transportation attributes selected.

Attribute Description Dataset Year N

Land Use

Land_SqKM Land area (sq. km) WB-WDI 2019 268
Urban_SqKM_LN Urban area (sq. km), LN WB-WDI 2010 268
UrbanPop Urban population (% of total) WB-SDG 2020 261
UrbanGr Urban population growth (annual %) WB-SDG 2020 261
Rural_SqKM Rural area (sq. km) WB-WDI 2010 266
Ag_SqKM Agricultural land (sq. km) WB-WDI 2018 266
Rural_r Rural/land area ratio Derived 2010 266
Urban_r_LN Urban/land area ratio Derived 2010 268
Ag_r_LN Agricultural/land area ratio Derived 2010 266
Forest_PCT_LN Forest/land area ratio WB-WDI 2019 266
POP_SqKM Population density (persons/sq-km) WB-J 2016 242

Land_Type Landlocked (L), open ocean border (W),
island (I) Google 2022 222

Tech.

Electric_Cost Cost to get in % of income per capita WB-DB 2019 191
ATM100K_LN ATMs per 100,000 adults WB-J 2016 242

Phone100 Mobile phone subscriptions per
100 person WB-J 2016 242

Transportation

LPI Logistics performance index WB-WDI 2018 266
Infr_Qual Infrastructure quality index WB-WDI 2018 266
Air_Cargo_LN Air freight (million ton-km), LN WB-WDI 2019 266
Air_Pax_LN Air passengers (year) WB-WDI 2019 266
Port_TEU_LN Port traffic, 20 ft equivalent units (TEU) WB-WDI 2019 266
Road_Deaths Road traffic mortality (per 100,000) WB-WDI 2019 266

The gross domestic product (GDP) and its variations, such as GDP per capita, reflected
economic progress but not necessarily other important aspects of human welfare [43]. The
other attributes that reflected economic progress were the unemployment rate, number of
tourist arrivals, and variations of measures involving population.

There are dozens of indicators of human welfare, but few incorporate sustainable
developments [44]. The framework used the social progress index (SPI) to represent the en-
vironmental category because of its maturity and inclusion of sustainable developments [45].
Updated annually since 2014 by the Social Progress Imperative organization [40], the SPI
reflects how much a country provides for the social and environmental needs of its people
but without considering economic factors [46]. The index is based on a combination of 54
indicators of basic human needs, wellness, equality, inclusion, and personal freedom [47].
The environmental quality index (EQI) is a component of the SPI that had a low correlation
(R2 = 0.675) with the composite index. Therefore, splitting it out added another dimension
of information to the environmental category. The framework included the amount of
carbon dioxide (CO2) emissions as an indicator of progress in the environmental category.

The worldwide governance indicators (WGI) represented the governance category
because of its maturity and use since 1996 [36]. The WGI project created six governance
indicators for more than 200 nations from 1996 to 2021 [48]. The indices are based on surveys
of public, private, and non-governmental organization experts throughout the world. The
score assigned to each nation ranged from −2.5 to 2.5 of a standard normal distribution
among the nations surveyed. Two of the WGI indicators (voice & accountability, control of
corruption) lacked rankings for most countries so the workflow dropped those. The WGI
project defined the other four indicators as follows [48]: The government effectiveness index
“captures perceptions of the quality of public services, the quality of the civil service and
the degree of its independence from political pressures, the quality of policy formulation
and implementation, and the credibility of the government’s commitment to such policies”.
The political stability index “measures perceptions of the likelihood of political instability
and/or politically-motivated violence, including terrorism”. The regulatory quality index
“captures perceptions of the ability of the government to formulate and implement sound
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policies and regulations that permit and promote private sector development”. The rule-
of-law index “captures perceptions of the extent to which agents have confidence in and
abide by the rules of society, and in particular the quality of contract enforcement, property
rights, the police, and the courts, as well as the likelihood of crime and violence”.

For the land use category, attributes included measures of land area, proportion
by land type (urban, rural, agricultural, forestry, landlocked), population growth, and
population density. The technology category included attributes that reflected accessibility
to electricity, automated teller machines (ATMs), and cell phones (Phone100).

The logistics performance index (LPI) of the transport category represented how
efficiently a country moved goods across and within its borders to connect firms to mar-
kets [49]. The LPI is a five-point scale that the World Bank Group has been updating since
2008. The LPI used principal component analysis (PCA) to aggregate views reflected from
six components of logistics: customs, infrastructure, ease of arranging shipments, quality of
logistics services, timeliness, and tracking/tracing. The rating of each component (1–5) re-
flected views of logistics, freight-forwarding, and express carrier professionals throughout
the world that traded with the nation.

The infrastructure quality index (Infr_Qual) isolated the infrastructure quality compo-
nent of the LPI aggregate score to separate views about the quality of the transportation
infrastructure such as ports, railroads, roads, and information technology. The rationale
to isolate the Infr_Qual component was that while the LPI remained mostly unchanged
since 2008, the 2018 results revealed a greater improvement in infrastructure quality for
the poorest nations than for the richest ones. Hence, isolating the infrastructure quality
component prevented the composite LPI from masking the larger differences among poorer
nations. Other attributes associated with transportation activity were the amount of air
cargo, air passengers, port container traffic, and the road traffic fatality rate.

3.2. Feature Engineering

Figure 1 illustrates the workflow developed as a key aspect of the method to achieve
the research goal defined in the introduction section. The workflow had three sections:
feature engineering, feature selection, and machine learning. The method to rank attribute
importance was based on the best performing ML model. The feature identification
task of the feature engineering section started with population data from the United
Nations World Population Prospects (UN-WPP) [50]. This resulted in data for 222 nations.
Next, the procedure merged attributes from the datasets listed in Tables 1 and 2. The
merge procedure revealed that datasets with more than 222 instances included aggregated
regions, hence, the workflow removed those as redundant records. Datasets with less than
222 locations resulted in records with missing values for those attributes.

To prevent a multicollinearity problem when training the ML models, the “Remove
High Correlates” procedure removed attributes that were highly correlated with others.
Removing highly correlated attributes also prevented them from splitting their predictive
importance instead of adding different information to improve predictive performance.
Attributes selected for removal had the Pearson correlation coefficient R2 > 0.90 [51].
Altogether, the process identified 36 relevant attributes.

The “Transform Features” procedure applied the natural log, LN(1 + x), to reduce
the skew of its value distributions, which improved the predictive performance of the ML
models. To remove duplication, the procedure dropped the version of the attribute that
produced the least target class separation. The measure of target class separation was the
t-statistic from a t-test for statistical difference between the mean value of the attributes by
target category (Fly = 1 versus Fly = 0).
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Next, the “Impute Missing Values” procedure did so by assigning them the mean of
their non-missing values. Using the mean value for imputation allows the value of other
attributes for that instance to contribute toward predictive performance without influence
from the imputed value. The “Normalize Attributes” procedure did so by mathematically
mapping them to the [0, 1] value range. Attribute normalization reduces the effect of
importance bias when training some types of ML models, especially those that rely on
finding gradients [52].

3.3. Feature Selection

The mature methods of predictive performance scoring are classification accuracy
(CA), precision (Pr), recall (Rc), F1 score, and AUC [48]. CA is simply the proportion of
predictions that were correct. However, CA can be misleading for several reasons. First,
a “no-skill” classifier that simply predicts the dominant class each time could appear to
perform better than a skilled classifier. Second, CA does not reflect the false positive (FP)
and false negative (FN) error rates of a classifier. Therefore, including the four other scoring
methods provided a more complete assessment of model performance. Precision is the
proportion of positive predictions that were correct while recall is the proportion of positive
outcomes that the model correctly predicted. The difference between precision and recall
is subtle but important. Precision assesses a classifier’s tendency to not mislabel negative
outcomes while recall assesses its tendency to not mislabel positive outcomes. There is
an inherent tradeoff between the FP and FN rates, and the precision and recall scores,
respectively, reflect that [52]. The F1 score reflects the balance between precision and recall
scores as their harmonic mean.

The AUC is a score that supplies a robust measure of the ability of a classifier to
maximize precision at the expense of a higher error rate by optimizing the probability
threshold of class membership. AUC is an acronym for area under the curve, where
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the curve is a plot of the classifier’s true positive rate (TP) against its FP rate, both as a
function of the threshold in class membership probability [49]. As the threshold changes,
the classifier increases its TP rate at the expense of a higher FP rate. The optimization is
to achieve the maximum increase in TP rate for the least increase in FP rate. The first part
of the workflow used the AUC score to select the best model for optimization. The final
model selection was based on the average of the five scores.

The framework used the permutation feature importance (PFI) method to rank the
predictive importance of attributes. The key benefits achieved from using PFI were that it
is agnostic to the type of model evaluated, accounts for interactions with other attributes,
and does not require retraining a model [51]. The PFI measured the mean and standard
deviation of the decrease in AUC after permuting (shuffling) the attribute values a specified
number of times. The permutation broke the association between the attribute and the
target. Therefore, the mean reduction in the AUC score reflected how much the model
depended on that attribute.

After selecting the model with the highest AUC score and saving the value, shown
as A = AUC, the workflow iteratively removed attributes with the most missing values
and lowest importance ranking. As the iterations removed attributes, the AUC increased
from its initial value A because low importance attributes that also have missing values
is like having noise in the data. The iteration continued until just before the AUC score
decreased below the initial value A. Next, the “Remove Sparse Instances” procedure
removed instances with attributes having the most missing values and lowest importance
rank. The workflow then stored the updated AUC as B = AUC based on the reduced dataset
and then imputed the remaining missing values. The next procedure repeated the earlier
iteration of removing attributes with the next most missing values and lowest importance
rank, just before the AUC declined below B.

The “Remove Instances II” procedure removed all instances with missing values for
the remaining top-ranking attributes. The effect was a minimization of the number of
missing values in the overall dataset because the lower ranking attributes of those instances
removed also tended to have missing values. The procedure then stored the AUC at that
stage as C = AUC. Even though removing instances with missing values reduced the
size of the dataset, minimizing the number of instances with missing values also yielded
more reliable ML model performance and attribute importance ranking. Subsequently,
a procedure iterated the removal of the lowest ranking attributes just before the AUC
declined below C. A final procedure evaluated the refined data using all the ML models
and selected the best model to evaluate the ranking of attributes. The best model had the
highest average of all five performance indicators.

3.4. Machine Learning

Data scientists established that no single ML model can best represent all types of
datasets [52]. Therefore, the workflow trained 12 mature ML models and selected the best
one to refine the attribute selection and to rank their importance in predictive performance.
There are four categories of supervised ML models: decision trees, statistical learning,
decision boundaries, and learned functions [52]. The models selected from the decision tree
category were single decision trees (DT), random forest (RF), AdaBoost, gradient boosting
(GB), Catboost, and extreme gradient boosting (XGB). The statistical models selected were
k-nearest neighbor (kNN) and naïve Bayes (NB). The decision boundary models selected
were logistic regression (LR) and support vector machine (SVM). The learned function
models selected were linear multivariate fitting with stochastic gradient descent (SGD) and
artificial neural network (ANN). The workflow added a “no skill” classifier to benchmark
against five performance scores and their mean value. The no skill classifier simply selects
the majority class for every prediction. The workflow averaged each of the five performance
scores by using a 10-fold cross validation procedure [48].

The selected models are mature—only the outcome of their application to the unique
dataset developed in this work was of interest. Textbooks by Aggarwal [49], Burkov [48],
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Géron [50], and Kelleher et al. [52] provide complete explanations and examples of how the
selected ML models work and how k-fold cross validation provides reliable performance
scores by minimizing overfitting and underfitting. Hence, there is no need to duplicate the
description of those techniques here.

4. Results and Discussion

The workflow started by populating the target feature for 222 nations, which required
visiting each CAA site to evaluate any drone regulations that existed. Subsequently,
merging the other 36 indicators resulted in missing values for more than 10% of the data.
The feature selection stage of the workflow effectively refined the dataset by removing
attributes that ranked lowest and had the most missing values. The result was retention of
seven indicators and 204 instances without missing values.

Table 3 lists the five predictive performance scores and their mean value for each
model. A value of 1.0 is perfect predictive performance. A value of 0.5 suggests that the
classification was no better than random guessing. Eight of the models had mean scores
above 0.850, which is a widely accepted threshold for “good” performance [51]. ANN
provided the best overall performance while the decision tree method provided the worst.
The T&T column lists the multiples of time needed for training and testing relative to the
“Constant” model. ANN was the best performer based on the average of the five scores,
but it was also the most computationally intensive by a large margin.

Table 3. ML model performance scores.

Model AUC CA F1 Pr Rc Mean T&T

ANN 0.923 0.886 0.884 0.882 0.886 0.892 113.6
LR 0.912 0.873 0.864 0.867 0.873 0.878 6.5

SVM 0.885 0.867 0.861 0.860 0.867 0.868 10.0
NB 0.926 0.843 0.852 0.874 0.843 0.868 3.9

kNN 0.870 0.861 0.859 0.857 0.861 0.862 9.3
RF 0.889 0.855 0.850 0.848 0.855 0.859 47.0

Catboost 0.871 0.849 0.849 0.848 0.849 0.853 53.9
XGB 0.876 0.849 0.845 0.842 0.849 0.852 41.5
SGD 0.782 0.861 0.861 0.860 0.861 0.845 6.4
GB 0.853 0.837 0.835 0.832 0.837 0.839 36.9

AdaBoost 0.733 0.801 0.808 0.817 0.801 0.792 11.0
DT 0.658 0.795 0.793 0.791 0.795 0.766 6.1

No Skill 0.459 0.795 0.704 0.632 0.795 0.677 1.0

Figure 2 charts the importance ranking of the seven attributes left after feature refine-
ment. The bars show the mean decrease in AUC for the ANN model after permutating the
value of each attribute 100 times.

The lines at the right edge of each bar shows the proportional variation in AUC
decrease across permutations. The results suggest that the GDP and regulatory quality
rating were the two best predictors of nations that will adopt AAM. The plot indicates that
each of the top two attributes account for 4% to 8% improvement in the model’s predictive
performance. Each of the other five attributes shown account for less than 5% improvement
in predictive performance, which may be insignificant in statistical terms [52].

Figure 3 is a visualization of the relative adoption likelihood for each nation based on
their position along the dimensions of the top two predictors. The scale of each attribute is
their transformed and normalized values. Nations positioned in the upper right quadrant
are more likely to adopt AAM based on the defined target. Conversely, nations in the lower
left quadrant are least likely to adopt AAM based on the defined target.
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Figure 2. ANN feature ranking by AUC reduction.

The data had a large class imbalance because 48 of the 204 nations (23.5%) did not
regulate drone operations as of 2022. A large class imbalance increases the difficulty of
training ML models, which also leads to a reduction in classification performance. To
reduce the impact of class imbalance, the k-fold cross validation stratified the data to even
out the distribution of the minority class across folds.

Figure 3 shows there was no clear boundary to separate nations that allow drone usage
under a set of rules versus those that did not. However, there is a clear clustering of nations
in the lower left quadrant that do not regulate drone usage. This result suggested that as
the best performer, the ANN model found a more complex hyperplane that best separated
the target values in the refined feature space. Hence, those nations on the opposite side of
the predicted boundary reduced the classification performance.

Figure 3 also shows that the United States and China were clear outliers in regulating
drone operations. Indeed, as of 2022, manufacturers were testing more than 75% of all
known designs in those two countries. Outliers in the opposite extreme of the chart that did
not regulate drone operations were less developed African nations such as South Sudan,
Eritrea and Somalia, and poor island nations such as Micronesia, Tuvalu, Kiribati, and the
Marshall Islands.

The above findings align with the expectation that richer nations are more likely
to be early adopters of AAM than poorer nations. The findings also aligned with the
regulatory quality index, which supports the effectiveness of the WGI surveys. Equally
important is the finding that attributes not associated with the target included SPI, land use
characteristics, carbon dioxide emissions, tourism, population density, rule-of-law index,
technology access, air transportation, traffic fatalities, and port traffic. For example, the ML
outcome did not support a hypothesis that nations with a high SPI will likely to be early
adopters of AAM.
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A limitation of the data is that it may have misrepresented countries that are working
on regulations but did not publish related information online at the time of accessing the
CAA website. Also, the data may have misrepresented countries that are keeping the
status of their developing regulations secret for whatever reason. Finally, countries that
ban the public use of drones may still allow them for military use only, or for use only
by their citizens. The ML approach also has a few limitations. The first is that feature
importance depends on the target definition. Hence, the strategy was to use a known
target value, which is whether a country regulated drone use. The rationale was that
regulating drone use is an important early and necessary step towards AAM adoption. The
second limitation of ML models is that a weak association with the target value means
that the feature is a poor predictor but that does not necessarily mean that the feature is an
inherently poor indicator.

5. Conclusions

Advanced Air Mobility (AAM) has the potential to change transportation as we know
it. The benefits widely expected from adopting AAM are pollution reduction, greater ac-
cessibility, lower transport costs, and quicker trips in and between highly populated areas.
However, most nations are not yet advancing regulations to enable AAM. The fragmenta-
tion and non-uniformity of regulations in different regions of the world could hamper the
humanitarian initiatives of international organizations and prevent commercial opportuni-
ties for technology developers. Therefore, knowledge of key indicators that are predictors
of AAM adoption will help focus resources and guide decision making. To that end,
this research conducted a comprehensive assessment of attributes and their association
with progress in drone rulemaking, which is a necessary precursor to AAM develop-
ment and standardization. The methodology developed compared the predictive perfor-
mance of 12 machine learning models on a uniquely assembled dataset of 36 indicators for
204 nations.

The research findings were that gross domestic product (GDP) and the regulatory
quality indictor (RQI) were the best predictors of AAM adoption, based on their association
with the target. Artificial neural network was the best performing model with an AUC
score of 92.3% and an average composite score of approximately 90%. As a top predictor,
the GDP supported an expectation that richer nations are more likely to lead in AAM
adoption and reap its benefits sooner than poorer nations. RQI aligned with the WGI
indicator for effective policymaking. In general, nations with a low RQI had no drone
regulations or simply banned drone usage altogether. Just as importantly, attribute ranking
for the top performing ML models revealed indicators that were poor predictors. Those
included the social progress index, the WGI rule-of-law index, land use characteristics such
as rural and urban proportions, direct access to open waterways, population density, access
to technology such as electricity and cell phones, the level of carbon dioxide emissions, air
transportation, traffic fatalities, port traffic, and tourism.

Future work will examine the correlation of indicators to find latent characteristics
based on principal component analysis and to evaluate their effectiveness in explaining the
transportation infrastructure quality of a nation
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