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Identifying Factors Associated with Terrorist Attack Locations by 

Data Mining and Machine Learning 

Abstract 

While studies typically investigate the socio-economic factors of perpetrators to comprehend 

terrorism motivations, there was less emphasis placed on factors related to terrorist attack 

locations. Addressing this knowledge gap, this study conducts a multivariate analysis to 

determine attributes that are more associated with terrorist attacked locations than others. To 

tackle the challenge of identifying pertinent attributes, the methodology merges a global 

terrorism database with relevant socio-economic attributes from the literature. The workflow 

then trains 11 machine learning models on the combined dataset. Among the 75 attributes 

assessed, 10 improved the predictability of targeted locations, with population and public 

transportation infrastructure being key factors. After optimizing hyperparameters, a multi-layer 

perceptron—a type of artificial neural network—exhibited superior predictive performance, 

achieving an AUC score of 89.3%, classification accuracy of 88.1%, and a harmonically 

balanced precision and recall score of 87.3%. In contrast, support vector machines demonstrated 

the poorest performance. The study also revealed that race, age, gender, marital status, income 

level, and home values did not improve predictive performance. The machine learning workflow 

developed can aid policymakers in quantifying risks and making objective decisions regarding 

resource allocation to safeguard public health. 

Keywords: Counterterrorism; Data Fusion; Exploratory Spatial Data Analysis; Feature 

Relevance Scoring; Multivariate Analysis; Population Demographics; Predictive Models; 

Transportation Security 
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1 Introduction 

Although research frequently explores the socio-economic factors of perpetrators to understand 

terrorism motivations, there has been less attention to factors associated with terrorist attack 

locations. Mass shootings, particularly in the United States, often prompt questions about the 

reasons behind terrorists targeting specific locations (Metzl and MacLeish 2015). One might 

assume that perpetrators consistently choose large cities with numerous targets such as public 

transportation, resulting in severe consequences. However, due to terrorism's adaptive nature and 

multifaceted motives (Bridgelall 2022), targeted locations can vary widely. Applied intelligence 

to identify attributes more closely related to attacked locations can assist policymakers in 

prioritizing risk mitigation and countermeasure resources for locations at elevated risk. It is 

essential to note that a statistical association between attributes and targeted locations does not 

necessarily imply latent or causal relationships. 

The objective of this research was to leverage data mining (DM) and machine learning (ML) 

methods to identify statistical associations of various attributes with attacked locations. The 

approach was to mine the literature on terrorism to identify plausible attributes, combine various 

datasets that contain those attributes, and then train predictive ML models on the combined 

dataset. Developers of the Global Terrorism Database (GTD)™ define terrorism as “the 

threatened or actual use of illegal force and violence by a non-state actor to attain a political, 

economic, religious, or social goal through fear, coercion, or intimidation.” (START 2020). To 

control for attribute heteroscedasticity due to political variations across large regions, the case 

study focused on data about populated places within the United States. 

A few studies investigated attributes that are associated with terrorist attack locations. For 

example, Nussio et al. (2021) provided evidence that terrorists seek locations that maximize 
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attention getting (Nussio, Bohmelt and Bove 2021). Blomberg et al. (2013) found that terrorism 

is mostly unrelated to the economic conditions of attacked locations (Blomberg, Fernholz and 

Levin 2013). Korotayev et al. (2019) found that terrorist attack intensity decreased in more 

developed locations that promoted education (Korotayev, Vaskin and Tsirel 2019). More 

terrorism occurred in locations that restricted economic freedom (Gassebner and Luechinger 

2011), and locations in early stage democracy (Iheonu, et al. 2021). Terrorists also tend to target 

locations with major international gateways such as ports because of the potential for massive 

disruptions in the supply chain (Young and Gordon 2020). Terrorists also targeted transportation 

systems to disrupt mobility, especially in landlocked countries (Mlepo 2022). 

Only recently has data science methods such as ML begun to creep into studies involving 

psychology and human behavior (Grimm and Jacobucci 2021). Nevertheless, Canhoto (2021) 

found that the key challenge is a lack of datasets that can leverage ML techniques to help in the 

fight against terrorism (Canhoto 2021). In related work, Huamaní et al. (2020) applied tree-based 

ML models to predict attack frequency within 12 regions of the world and found that Random 

Forest (RF) provided the best performance with a predictive accuracy of 89.5% (Huamaní, Alicia 

and Roman-Gonzalez 2020). Ding et al. (2017) applied RF, Artificial Neural Networks (ANN), 

and Support Vector Machines (SVM) to a database of global terrorism and predicted attack 

regions with an accuracy of 96.6% (Ding, et al. 2017). Hao et al. (2019) found that RF coupled 

with a geographical information system (GIS) provided good prediction of location within the 

Indochina Peninsula (Hao, et al. 2019). Li et al. (2021) used k-means clustering, an unsupervised 

ML approach, to classify terrorist activities by region, attack type, target type, and weapon type 

(Li, et al. 2021). Overall, there was a scarcity of studies that utilized data science methods to 

identify characteristics or attributes of terrorist attack locations. 
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Contributions of this work are as follows: 

1. A hybrid DM and ML workflow that policy makers can use to generalize and replicate 

the analysis (Section 3). 

2. A list of relevant datasets and their sources to support further analysis by the research or 

counterterrorism community (Section 3.2). 

3. A detailed chronicle of the dataset preparation to substantially reduce the time that 

analysts would spend when using the same data (Section 3.2). The impact of this 

contribution is based on the finding that data scientists spend an average of 60% of their 

time cleaning and organizing data (Ilyas and Chu 2019). 

It is difficult to know which ML method works best for a given application (James, et al. 2013). 

Therefore, this work evaluated 11 of the most mature types of ML models on the uniquely fused 

dataset to compare their predictive performance. 

The organization of the rest of this paper is as follows: Section 2 describes the selection of 

attributes and datasets, model types, attribute engineering, methods to compare the ML 

performance, and methods to rank the relevance of attributes selected. Section 3 presents the 

specific models used, their results, and attribute ranking. Section 4 discusses the significance of 

the results. Section 5 concludes the work and outlines future work that will apply the workflow 

to data from other regions of the world for comparison. 

2 Methods and Data 

Figure 1 shows the workflow developed to identify a heterogenous set of attributes that are 

associated with terrorist attack locations. The ML models represented data on historical attack 

locations. Hence, evaluating the predictive performance of a ML model explains the relative 

degree to which each attribute is associated with attack locations. The next subsections describe 
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the main procedures within the workflow, which the author coded in software. Those procedures 

include attribute initialization, data fusion, attribute engineering, ML, predictive performance 

evaluation, and attribute relevance scoring. 

The workflow shows that there were iterations between the data preparation and ML layers in 

two optimization loops to facilitate data cleaning and ML model adjustments. The first loop back 

to the data fusion procedures adjusted the data extraction and data cleaning actions based on the 

results of the data merging. For example, some of the merge keys had different spellings or 

formats that needed correcting. The second loop was from the ML to the data fusion procedures. 

The adjustments included aspects of the data cleaning, attribute engineering, attribute selection, 

and hyperparameter tuning to maximize the predictive performance. 

The subsections that follow provide more details on all the workflow procedures shown in 

Figure 1. Subsection 3.1 discusses the EDA and DM to identify an initial set of relevant 

attributes. Subsection 3.2 describes the datasets used. Subsection 3.3 discusses the attribute 

engineering to maximize information gain. Subsection 3.4 describes the different ML methods 

evaluated. Subsection 3.5 describes the metric to evaluate ML predictive performance. Finally, 

subsection 3.6 describes the methods used to score the relevance of attributes. 

2.1 Attribute Initialization 

The selection of an initial set of attributes to test for relevance in improving the predictive 

performance of each ML method was based on two strategies. The first strategy was to apply 

EDA on the GTD to derive spatial or physical attributes that were associated with frequent attack 

targets. The second strategy was to review the existing body of knowledge on terrorism to 

empirically identify common underlying socio-economic factors of locations where terrorism 

tends to occur. 
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Figure 2 shows the EDA result for frequency of attacked targets in the United States. The 

numbers and percentages shown next to each bar indicates the amount and proportion of the data 

that each accounted for. The split color bars show the relative proportion of failed attacks for that 

category. The distribution shown in Figure 2 revealed that businesses, private citizens, and 

general governments were the top three categories of targets, which accounted for more than half 

(51.2%) of the total attacks. The color coding in the chart shows the relative proportion of attacks 

that succeeded in each target category. Further EDA revealed that the most frequently attacked 

places in the business targets were banks and their branches. The next dominant category was 

“private citizens & property” which suggested that characteristics of both the environment and 

the people at a location were influential attributes. Table 1 summarizes the spatial (location 

sensitive) attributes selected from the EDA process and the rationale for their selection. Table 2 

summarizes the demographic attributes considered and the hypotheses for their selection. 

2.2 Dataset Selection 

Informed by the attribute initialization, Table 3 summarizes the datasets used and lists their 

dimensions and sources. The extracted FTA, APTA-F, and APTA-V datasets are available from 

the Federal Transit Administration (FTA), American Public Transportation Association (APTA) 

facility database, and the APTA vehicle database, respectively. The population and TIGER® 

geographic feature datasets are available from the Bureau of Transportation Statistics (BTS) and 

the U.S. Census Bureau (USCB), respectively. At the time of acquisition, the GTD contained 

records of terrorism events from 1970 to 2018. The separate GTD dataset for 1993 was a 

reconstruction of previously missing data for that year. The author licensed the “People” data set 

from Pareto Software, which is a compilation of publicly available U.S. demographic datasets 
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from various government organizations and census. The “Worship” dataset is available from the 

Association of Statisticians of American Religious Bodies (ASARB). 

The “Parks” dataset is available from the U.S. Geological Survey (USGS). The next nine 

datasets from “Banks” through “Airports” are available from the Homeland Infrastructure 

Foundation-Level Data (HIFLD). The last two datasets on energy profile are available from the 

National Renewable Energy Laboratory (NREL). The subsections that follow chronicle the data 

extraction, cleaning, merging, and imputation applied to each dataset. 

2.2.1 Public Transit Datasets 

Table 7 (appendix) summarizes the operations applied to each of the three public transit datasets 

before merging them. 

FTA: The “Facility Type” subset of the “Facilities and Stations” dataset from the “2019 Annual 

Data Tables” contained 2,779 agency records with 31 attributes describing the number and types 

of facilities including maintenance stations, fueling facilities, administrative offices, passenger 

stations and passenger stops. The records also listed the number of passenger vehicles that 

operated to provide maximum system capacity. The selected attributes were the number of 

passenger stations aggregated from several types such as elevated, at-grade, underground, grade-

separated, ferryboat, and bus transfer stations. The initial merge attempt revealed records with 

duplicate city names due to inconsistent or incorrect spelling. Examples include “Swan Quarter” 

versus “Swans Quarter” and “Sault Sainte Marie” or “Sault Ste. Marie” versus “Sault Ste Marie” 

which a cleaning strategy of sorting after each merge revealed as orphaned neighbors. 

APTA-F: The “Station Data” subset of the “Infrastructure Database” contained 501 agency 

records with 43 attributes describing their facility types and amenities such as security cameras, 
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concessions, and elevators. The selected attributes were the number of passenger stations and 

passenger stops, aggregated by agency. 

APTA-V: The “Active Vehicles” subset of the “US Fleet” database contained 6,936 records of 

each passenger vehicle type. There were 36 attributes describing the vehicle characteristics such 

as fuel type, size, make, model, year built, handicap accessibility equipment, and purchase price. 

The selected attributes were the number of vehicles of any type that each agency operated. 

Merge-T: A pivot table operation for each dataset aggregated the attributes by all agencies 

operating in unique U.S. cities. The dataset was missing a Federal Information Processing 

Standard (FIPS) code to uniquely identify each city. Therefore, the merge procedure created a 

unique key by concatenating the city name and the state abbreviation. The merge resulted in 

discrepancies in the number of stations and vehicles for some cities. The resolution was to take 

the maximum value. The merge operation helped to reduce the number of missing values for 

stations and vehicles for 46 and 2 cities, respectively. 

Transit: The attribute that represented accessibility (Table 2) was the number of passenger 

transit stops in each populated place. Values were missing for 2,006 cities after merging the 

transit datasets. The strategy to impute the number of stops was a two-layer estimate based on 

the number of vehicles and the number of stations. The first imputation layer filled missing 

values for stops by computing the average number of stops per operating vehicle from cities 

where those valuables were present. The average was 8.5, so the estimated number of stops for 

places where the number of vehicles was available was the ceiling of 8.5 times the number of 

vehicles. The second imputation layer filled the remaining missing values for stops by computing 

the average number of stops per station where those values were present. The average was 

137.24 so the imputed number of stops for places where the number of stations was present was 
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the ceiling of 137.24 times the number present. Finally, the procedure dropped 380 records that 

had no data. Hence, the final transit dataset contained 1,911 U.S. cities with the number of stops 

present or estimated. 

2.2.2 Populated Places 

The BTS dataset described in Table 3 contained the 2010 census population and the average 

elevation for 38,186 places in the United States. However, the population was missing for 11,125 

cities. There were also 241 cities with the same name in a state. The duplicate city and state 

names prevented the creation of a unique key for merging with the combined transit dataset. 

Hence, combining records of the duplicate cities facilitated the merge. The merge and sort 

cleaning strategy revealed 92 records in the combined transit dataset with city names that did not 

match those in the BTS dataset for several reasons. Table 8 (appendix) summarizes the reasons 

for those mismatches into six categories of data cleaning. After manually correcting the city 

names, the repeated merge-sort cycles revealed that the BTS was missing 37 cities in the 

combined transit dataset. A manual Internet search created those missing records. 

The attributes selected from the BTS dataset to merge with the combined transit dataset were 

the average elevation, the population from the 2010 census, the county name, and the FIPS code. 

Table 9 (appendix) summarizes the merging and cleaning operations that created the fused 

dataset in the data preparation layer of the workflow. There were no missing values for the 1,911 

locations after the final merge-sort iteration. 

2.2.3 Global Terrorism Database 

The next merge iteration added the target attribute (dependent variable), which was a binary flag 

indicating whether a city ever experienced a terrorist attack. Table 10 (appendix) chronicles the 

operations used to complete the merge. The first step was to extract records for attacks in U.S. 
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cities. The second step was to append the reconstructed records for the year 1993. This time, the 

first merge attempt revealed that there were 26 cities with mismatched spelling. The spelling 

errors encountered fell within the categories listed in Table 8 (appendix), for example, “De Witt” 

versus “DeWitt” versus “Dewitt” and “Saint Charles” versus “St. Charles” and others. Finally, a 

pivot table operation summarized the number of attacks within each city and added the unique 

merge key. The merge revealed that terrorist attacks never occurred in 1,563 (81%) cities in the 

transit dataset. The iterative process of the data fusion continued with the addition of attributes 

selected from the other datasets as described in the next subsections. 

2.2.4 City Demographics 

The author purchased a comprehensive “People” dataset that contained the demographics of 

more than 108,000 U.S. cities (SimpleMaps 2020). The curator combined information from the 

United States Geological Survey and the 2018 American Community Survey completed by the 

United States Census Bureau. This analysis used the cleaned dataset released on November 18, 

2020. Once again, the next merge iteration revealed 41 mismatched city names and some 

mismatched FIPS code in the previously fused transit and GTD datasets. After correcting the 41 

records, the procedure selected the attributes listed in Table 11 (appendix) from the “People” 

dataset. The table indicates the number of missing values per attribute after the merge. There was 

a total of 61 attributes across the 23 categories listed in the table. That is, some of the categories 

listed are aggregates of their sub-category stratifications. For example, “Education” was 

available as separate attributes for the population proportion that completed high school, college, 

and graduate school. 
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2.2.5 County Datasets 

The next 14 data merge operations used the FIPS code that was either available or spatially 

derived for each of the remaining datasets listed in in Table 3. It was possible to derive the FIPS 

code for datasets that did not include them only if they included a geospatial coordinate that 

represented the centroid a location. For those cases, a GIS spatial join procedure with the 

TIGER/Line® shapefile for U.S. counties (USCB 2019) merged the FIPS code. 

2.3 Model Selection 

Several textbooks describe the theories of operation for each of the model type selected. Géron 

(2017) discusses the decision tree (DT), random forest (RF), AdaBoost (AB), logistic regression 

(LR), support vector machine (SVM), stochastic gradient descent (SGD), and multi-layer 

perceptron (MLP) models and demonstrates their operation using the Python programming 

language (Géron 2017). James et al. (2013) explains naïve Bayes (NB), k-nearest-neighbors 

(kNN), and tree-based bagging and boosting methods (James, et al. 2013). Hastie et al. (2016) 

discusses how to train models to improve their generalized performance (Hastie, Tibshirani and 

Friedman 2016). Murphy (2012) shares insights about model operation from a probabilistic 

perspective (Murphy 2012). James et al. (2013) describes how the process of k-fold cross 

validation prevents the training process from overfitting or underfitting to improve their 

predictive performance (James, et al. 2013). 

2.4 Attribute Engineering 

The next subsections describe three methods of attribute engineering that improved the ML 

predictive performance. They were attribute selection based on the data fusion, attribute 

transformation, and attribute normalization. 
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2.4.1 Attribute Transformation and Normalization 

Some of the ML methods require or assume that the attributes have a normal distribution. 

However, the distribution of several attributes such as population and the number of stops for 

public transit had a heavy right skew. Conversely, some of the other distributions such as “Race” 

skewed heavily to the left. A shifted natural logarithm, LN(1 + x) where x is the attribute value, 

reduced the right skew and a squared transformation reduced the left skew. The transformed 

attributes improved the ML predictive performance over the non-transformed versions of those 

attributes. 

The performance of some algorithms such as gradient descent improves when all attributes 

have a comparable range (Géron 2017). Therefore, the workflow normalized all attributes x, 

including the transformed ones, to the [0, 1]. 

2.4.2 Attribute Selection 

Some of the attributes such as the number of places of worship, banks, and colleges did not 

improve the ML predictive performance until normalized by other attributes. In particular, the 

spatial density or inverse spatial density improved the ML predictive performance for some 

attributes, but not all of them. The inverse spatial density improved predictive performance for 

places of worship, college campuses, banks, government buildings, Department of Defense 

(DoD) facilities, Environmental Protection Agency (EPA) facilities, parks, housing units (HU), 

and vehicle miles traveled (VMT). Conversely, the inverse spatial density decreased predictive 

performance for police facilities, courts, Fortune 500 campuses, hospitals, and airports. 

Table 4 summarizes the new attributes evaluated and the number of missing values. 

Attributes with more than 50% missing values decreased the ML predictive performance so the 

procedure dropped those. Missing values imputed from the mean value did not change the ML 
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predictive performance for attributes with a small proportion of missing values. Other attributes, 

not listed, such as the land-to-water area ratio and the elevation-to-population ratio also 

decreased ML predictive performance, so the workflow eliminated those in the optimization 

loop. 

2.5 Predictive Performance 

The literature offers several metrics to measure the predictive performance of classification 

models. The most common are classification accuracy (CA), precision, and recall. CA is simply 

the ratio of the number of correctly classified instances to the total number of instances. The 

main disadvantage of CA is that it can be misleading when the dataset is highly imbalanced in 

class representation (Krawczyk 2016). That is, a no-skill classifier that predicts the dominant 

class every time can appear to perform better. 

To understand all performance metrics, it is helpful to think of them in terms of a radio 

receiver that must distinguish a signal pulse from a noise pulse. Precision is a measure of how 

precise the classifier is at predicting positive instances. That is, precision = TP/(TP + FP) where 

TP and FP represent the number of true positives and false positives, respectively. Hence, a low 

detection threshold might increase precision by detecting weak signals. However, the receiver 

may also misclassify noise pulses as signal pulses (false positive) if the threshold is too low, thus 

reducing precision. Recall is a measure of the classifier’s ability to correctly predict all the 

positive samples. That is, recall = TP/(TP + FN), where FN represents the number of false 

negatives, which are the missed positives. Hence, a threshold that is too far above the noise level 

may reduce FP but miss true signals, thus reducing the recall rate. The F1 score is a balanced 

measure of precision and recall as their harmonic mean where 
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𝐹1 =
𝑇𝑃

𝑇𝑃 + (
𝐹𝑃 + 𝐹𝑁

2 )
 (1) 

The CA, precision, recall, and F1 scores can produce misleading results when the data is 

highly imbalanced. A more suitable metric is the area under the curve (AUC) of the receiver 

operating characteristic (ROC). The curve is a plot of the TP rate against the FP rate, both as a 

function of the classifiers output of class membership probability (Fawcett 2006). A no-skill 

classifier will produce an AUC score near 0.5 whereas the best performing models will have 

AUC scores approaching 1.0. 

2.6 Relevance Scoring 

The relevance of an attribute in helping to distinguish among target classes is proportional to the 

amount of separation in the distributions of that attribute for each class (Agresti 2018). For 

example, the distribution of neck length in a sample population of animals in a large zoo will 

have little overlap between those of the adult giraffes and those of the adult elephants. Two 

effective measures of the statistical difference between distributions are the Pearson’s χ2 (Chi-

Squared) statistic and the Cohen’s d effect size. The χ2 statistic is associated with a p-value from 

the chi-squared distribution that determines if there is a statistically significant difference 

between two distributions (Agresti 2018). The χ2 statistic is 

𝜒2 =∑
(𝑢𝑖 − 𝑣𝑖)

2

𝑣𝑖

𝑁

𝑖=1

 (2) 

where ui and vi are values for an attribute in the first and second classes, respectively. A statistic 

value of zero means that the distributions are identical, and larger values indicate greater 

differences. 

The Cohen’s d effect size (Sawilowsky 2009) is a simpler measure that uses the mean and 

standard deviation of the attribute within each class. The statistic is 
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𝑑 =
|𝜇1 − 𝜇2|

√𝜎1
2 + 𝜎2

2

2

 
(3) 

where μ1 and μ2 are the mean values of the distributions of the first and second classes, 

respectively. The standard deviations of the two distributions are σ1 and σ2. Sawilowsky (2009) 

established a “rule of thumb” that values greater than 0.8 and lower than 0.2 indicate large and 

slight differences, respectively. 

3 Results 

The next two subsections discuss the results of the predictive performance measures for the 11 

different models and the relevance scoring for those attributes that improved predictive 

performance. 

3.1 Predictive Performance 

Table 5 lists the 11 models and the five predictive performance metrics calculated for each in the 

order of their AUC score. There were differences in the predictive performance of each ML 

model. Seven of the models provided both an AUC score and classification accuracy above 0.86. 

MLP and XGB were the best-performing models. However, MLP had the edge with respect to 

the F1 score. The MLP model exhibited the highest AUC score (0.893), classification accuracy 

(0.881), and F1 score (0.873). The MLP also demonstrated strong precision (0.872) and recall 

(0.881) metrics. This indicated that the MLP model had the best overall predictive performance. 

Both the MLP and XGB models can adeptly deal with attribute nonlinearities and noisy datasets. 

However, MLP has the disadvantage of a longer training time, which can become 

computationally expensive as the size and dimensionality of the data grows. As expected, the no-

skill classifier had the lowest AUC score, and the CA is equal to the class imbalance, which 

reflected that there were no attacks in 81.8% of the locations. 
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The SVM model displayed the lowest AUC score (0.677) and classification accuracy (0.578). 

However, it achieved relatively high precision (0.792), while its recall score remained low 

(0.578). An intuitive explanation for why SVM performed poorly is that the model seeks clean 

hyperplanes in multidimensional datasets to separate classes. Therefore, SVM will perform 

poorly when the dataset is noisy and the distribution of attribute values within each class has 

large overlap. Figure 3 illustrates that there was a high degree of overlap among the distributions 

of the relevant attributes. The height of the bars indicates the relative frequency of the values on 

the horizontal axis, within a nominal fixed bin size. The bars split the frequency of each value 

bin by the target class. That is, class 1 and class 0 indicate attacks and no attacks, respectively, 

for each value bin. The line curves are Gaussian distributions with the same means and standard 

deviations as those of the attribute within each class. The high overlap increases the difficulty of 

classification. 

3.2 Relevance Scoring 

Table 6 lists only those attributes that improved the predictive performance of the top models, in 

the order of their effect size. That is, the listed attributes improved the performance of the MLP 

and XGB models. The χ2 and d columns of the table lists the Chi-squared statistics and the effect 

sizes, respectively. The average effect size was 0.93, which the literature considers to be large. 

The correlation between the effect size and the Chi-squared statistic was 0.903, which indicates 

good agreement in the ranking of attribute relevance. The “Attacked” column indicates the 

direction of the attribute value range that was associated with attacked locations, where “H” and 

“L” indicates high and low values, respectively. For example, the probability that a location 

would experience an attack increased with its population size, the number of access points 
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(stops) to public transportation, and the vehicle traffic density. The discussion section below 

further interprets the relevance scorings and their implications. 

Figure 3 shows the distribution of the two highest ranking attributes by effect size. The 

curves serve only to help visualize the amount of separation between the distributions. 

Figure 4 are visualizations of the effect size for two of the attributes that did not improve the ML 

classification performance. Their effect sizes were two to three times smaller than the average 

effect size for those attributes that did contribute towards improving the ML classification 

performance. 

4 Discussion 

The results of this work suggest that ML models can represent the location of terrorist attacks 

with reasonable accuracy if there are enough relevant attributes. The workflow demonstrated that 

a specific ordering of procedures with iterative cycles to manipulate the data and tune the models 

is necessary to maximize performance. That is, the procedures must appropriately clean, 

transform, normalize, and impute missing data for the models to be effective. Furthermore, the 

process showed that the art of attribute engineering to identify relevant attributes and to derive 

new attributes by combining irrelevant attributes is an important requirement. The interpretation 

of attributes that reduced classification accuracy is that they manifest as noise in the dataset and 

do not contribute to any discernable structure or pattern. 

Only 10 of the 75 attributes evaluated helped to improve the predictive performance of the 

best models. A key finding was that population size, the number of access points for public 

transit, and traffic density were more significantly associated with attacked locations. This 

finding validates the intuition that larger, busier, and more accessible cities would be more 

attractive to perpetrators than sparsely populated places. This finding supports the recent results 
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from Nussio et al. (2021) (Nussio, Bohmelt and Bove 2021). Another finding that was consistent 

with historic attacks in the United States is that attacked locations had a higher density of 

hospitals, places of worship, and banks. 

An interesting finding was that attacked locations tended to have a larger proportion of the 

population with education levels beyond college. An unexpected finding was that places where 

people spoke limited English had a higher probability of attack than places with large non-white 

or migrant populations. A possible explanation is that people in United States territories where 

attacks occurred likely speak less English than places in the continental United States with large 

non-white or migrant populations where no attacks occurred. 

There were several surprising results for the U.S. case study that were contrary to findings 

that compared different countries. Demographic attributes that did not improve the predictive 

performance of the ML models included race, age, gender, marital status, family size, income 

level, home ownership levels, and home values. A possible explanation is that the literature 

generally examined the socio-economic situations of perpetrators or their homeland rather than 

those of locations that experienced terrorist attacks. This is an important distinction that points to 

the value of studying characteristics of the perpetrators and their homelands, as well as attributes 

of the targeted locations. 

Limitations of using DM and ML methods to represent attack locations based on significant 

attributes are the potential for a high number of false positives and a high number of false 

negatives. Both types of errors can result in either unnecessary expenditure to bolster security or 

complacency that could increase attack risks. Furthermore, the workflow is difficult to automate 

for ongoing predictions based on new data. For example, a data scientist must identify relevant 

attributes and tune the hyperparameters of each model to maximize their predictive performance. 
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The data preparation procedures of the workflow were the most time-consuming steps. Examples 

of hyperparameters are the type of regularization, the number estimators in ensemble models, the 

learning rate in boosting models, and the network configuration of the MLP. Incidentally, the 

MLP tuned in this analysis performed best with 30 nodes in a single hidden layer. In general, 

approaches that use some form of artificial intelligence require multidisciplinary experts with 

both data science and counterterrorism knowledge to select relevant attributes, to optimize each 

model, to select the best models, to interpret the results, and to synthesize appropriate 

recommendations. Therefore, risk managers should understand these limitations when 

considering the workflow for use in their organizations or cities. 

5 Conclusion 

Building artificial intelligence through data mining and machine learning can effectively identify 

patterns in data to inform strategies and policies to protect public health. The data mining and 

machine learning workflow developed in this study evaluated 61 demographic and 14 physical 

attributes for their relevancy in representing terrorist attack locations based on the model’s 

predictive performance. Of the 75 total attributes evaluated, the workflow identified 10 that 

improved the predictive performance of the top ML models. The most relevant attribute was the 

population of the location, which was either a city, town, village, or municipality. 

The next most important attributes were related to transportation. Those attributes were the 

number of stops for public transit and the traffic density, measured as the accumulated travel 

distance of vehicles per unit area of land in the county of the populated place. The other 

important attributes were physical or spatial features, which were the number of hospitals, the 

number of law enforcement facilities, the density of banks, and the density of places of worship. 

Of the 61 demographic attributes evaluated, only two were relevant; they were the proportion of 
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the population that spoke limited English and the proportion of the population that had greater 

than college-level education. Other demographic attributes such as the distribution of race, age, 

gender, marital status, family size, income level, home ownership levels, and home values did 

not improve the predictive performance of the classification models. 

Seven of the ML models provided good predictive performance with an AUC score better 

than 0.87. Multi-layer perceptron (MLP), which is a type of artificial neural network, provided 

the best overall predictive performance with an AUC score of 0.893, a classification accuracy of 

88.1%, and an F1 score of 87.3%. 

The implications of the findings of this research are that analysts can leverage the potential of 

artificial intelligence and machine learning in informing counter-terrorism strategies and 

policies, helping to allocate resources efficiently and protect public health. The importance of the 

population attribute suggests that policymakers should pay particular attention to densely 

populated areas, such as cities, towns, villages, or municipalities, when allocating resources to 

counter terrorism threats. The significance of transportation-related attributes suggests that 

analysts should consider public transit infrastructure and traffic density when developing 

counter-terrorism strategies. The relevance of features such as hospitals, law enforcement 

facilities, banks, and places of worship, implies that these locations may require heightened 

security measures. 

The best configuration for the MLP on the fused dataset was 30 nodes in a single hidden 

layer. This result suggests that deep learning with more complex artificial neural networks 

architectures can potentially improve the predictive performance when using much larger 

datasets with even more attributes. Hence, future work will investigate the performance of 
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various deep learning models on datasets from other regions of the world for comparison of the 

results. 
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6 Figures and Tables 

 

Figure 1: Workflow for data fusion, machine learning, and attribute selection. 
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Figure 2: Distribution of U.S. attack targets (1970 – 2018). 

Figure 3: Effect size of the top two attributes. 
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Figure 4: Effect size of two of the attributes that reduced the ML accuracy. 

Table 1: Spatial Attribute Selection Based on EDA of the GTD. 

Attribute Rationale 

Banks Most frequently attacked target in the top category of “Business” 

Fortune500 Several large companies were direct targets of previous attacks 

Airports A frequent target of attacks 

Government Government buildings are associated with attacks on governments 

Military Previous attacks on military or related facilities 

Police Previous attacks on law enforcement or related facilities 

Courts Previous attacks on courthouses or related judicial facilities 

Worship Previous attacks on places of worship 

Colleges Previous attacks on educational institutions 

Hospitals Previous attacks on healthcare facilities and related clinics 

EPA Attacks incited by Environmental Protection Agency (EPA) actions 

Parks Previous attacks related to the environment or animal rights 
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Table 2: Socio-Economic Attribute Selection from U.S. City Demographic Data 

Attribute Hypothesis 

Accessibility Number of transit access points can reduce reach to targets and escape options. 

VMT Busy target locations may divert attention from suspicious activities. 

Commute Time Commute time is a proxy measure of the degree of urbanization. 

Housing Units Residential density is proportional to the potential harm. 

Age Distribution Age demographic may be associated with target selection. 

Race Distribution Race demographic may be associated with target selection. 

Gender Gender demographic may be associated with target selection. 

Limited English Language demographic may be associated with target selection. 

Disabled Disability demographic may be associated with target selection. 

Marital Status Family demographic may be associated with target selection. 

Family Size Family demographic may be associated with target selection. 

Veteran Veteran demographic may be associated with target selection. 

Education Education demographic may be associated with target selection. 

Income Income demographic may be associated with target selection. 

Employed Employment demographic may be associated with target selection. 

Home Ownership Home ownership levels may be associated with target selection. 

Home Value Home values may be associated with target selection. 

Rent Rent burden may be associated with target selection. 

Health Insured Level of health insured may be associated with target selection. 

Incorporated A municipality with elected officials can lead to local grievances.  

Township A rural settlement with a local governance can lead to local grievances. 

Average Elevation Terrain or proximity to shores may be a spatial characteristic. 

 

Table 3: Datasets and Sources 

Dataset Description Records Fields Source 

FTA Facilities and vehicles by transit agencies 2,779 31 (FTA 2020) 

APTA-F Facilities maintained by transit agencies 501 43 (APTA-V 2020) 

APTA-V Vehicles maintained by transit agencies 6,936 36 (APTA-I 2018) 

BTS Population (2010) of U.S. cities and towns 38,186 19 (BTS 2019) 

TIGER® Shapefiles of U.S. county geographic 3,233 20 (USCB 2019) 

GTD Global Terrorism Database (1970 to 2018) 191,464 135 (START 2020) 

GTD1993 Global Terrorism Database (1993) 748 135 (START 2020) 

People Demographics of U.S. cities and towns 108,796 81 (SimpleMaps 2020) 

Worship Places of worship in U.S. counties 49,328 39 (ASARB 2020) 

Parks Protected Areas Database 179,503 40 (USGS 2018) 

Banks Insured financial institutions and branches 87,847 30 (FDIC 2021) 

Colleges College and university campuses 5,865 27 (HIFLD 2017) 

Courts Courthouse locations in U.S. counties 3,719 26 (HIFLD 2017) 

Government Government buildings in U.S. counties. 1,378 24 (HIFLD 2017) 

Police Law enforcement locations in U.S. counties 23,486 36 (HIFLD 2017) 

Fortune500 Headquarters of Fortune500 companies 500 22 (HIFLD 2017) 

DoD DoD facility locations in U.S. counties 664 9 (HIFLD 2017) 

EPA EPA facility locations in U.S. counties 77 14 (HIFLD 2017) 

Hospitals Hospital locations in U.S. counties 7,596 13 (HIFLD 2017) 

Airports Airport locations in U.S. counties 940 11 (HIFLD 2017) 

NREL-T Energy profile of U.S. counties (VMT) 3,142 44 (Ma, et al. 2019) 

NREL-HU Energy profile of U.S. counties (Housing) 3,142 44 (Ma, et al. 2019) 
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Table 4: Spatial attributes considered for the ML classification process. 

Attribute Description Missing 

Land_p_Worship Density of places of worship in the county 152 (7%) 

Land_p_College Density of colleges in the county 487 (25%) 

Land_p_Bank Density of banks in the county 10 (0%) 

Hospitals Number of hospitals in the county 143 (7%) 

VMT_p_Land Vehicle-miles-traveled per square-mile of county land 53 (2%) 

Police Number of law-enforcement sites in the county 8 (0%) 

HU_p_Land Housing unit density (per square-mile) 0 (0%) 

Courts Density of courts in the county 18 (0%) 

Parks_SQMI Number of parks per square-mile in the county 230 (12%) 

Land_p_Govt Density of government buildings in the county 1,703 (89%) 

F500 Number of Fortune 500 headquarters in the county 1,632 (85%) 

Land_p_DoD Density of DoD facilities in the county 1338 (70%) 

Land_p_EPA Density of EPA facilities in the county 1862 (97%) 

Airports Number of hospitals in the county 1,140 (59%) 

 

Table 5: Predictive Performance Scores for Models Evaluated. 

Model AUC CA F1 Precision Recall 

MLP 0.893 0.881 0.873 0.872 0.881 

XGB 0.889 0.877 0.590 0.752 0.492 

GB 0.884 0.872 0.597 0.703 0.528 

LR 0.882 0.878 0.866 0.869 0.878 

RF 0.880 0.878 0.865 0.869 0.878 

SGD 0.877 0.872 0.863 0.862 0.872 

kNN 0.870 0.864 0.846 0.853 0.864 

DT 0.842 0.869 0.860 0.859 0.869 

NB 0.839 0.789 0.805 0.836 0.789 

ADB 0.709 0.818 0.821 0.824 0.818 

SVM 0.677 0.578 0.625 0.792 0.578 

No-skill 0.497 0.818 0.736 0.669 0.818 

 

Table 6: Attributes that contributed towards distinguishing the target class. 

Attribute χ2 d Attacked 

POP_LN 336.662 1.56 H 

Stops_LN 193.519 1.16 H 

VMT_p_Land_LN 179.867 0.93 H 

Land_p_Bnk_LN 173.644 0.94 L 

Hosp_LN 218.496 0.85 H 

Land_p_Worship_LN 151.900 0.85 L 

Limited_English_LN 156.542 0.83 H 

Police_LN 154.506 0.76 H 

Land_p_Coll_LN 90.005 0.75 L 

Education_College+ 108.602 0.66 H 
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7 Appendix 

Table 7: Merging of Public Transit Datasets 

   Missing Data for Cities 

Dataset Operation Cities Stations Stops Vehicles 

FTA Extract and aggregate stations, vehicles. 2,291 1,789 N/A 395 

APTA-F Extract and aggregate stations, stops. 349 49 17 N/A 

APTA-V Extract and aggregate vehicles. 294 N/A N/A 0 

Merge-T Combine FTA and APTA datasets by city. 2,291 1,743 2,006 393 

Impute 1 Average stops/vehicle = 8.5 2,291 380 393 393 

Impute 2 Average stops/station = 137.2 2,291 380 380 393 

Transit Drop records with no transit data defined 1,911 0 0 13 

 

Table 8: Categories of Data Cleaning City Names 

Category Examples 

Abbreviated “Ft.” vs. “Fort”, “Mt.” vs. “Mount”, “St.” vs. “Saint” 

Case Mix Mixed case spellings (“Lagrange” vs. “LaGrange”, “La Place” vs. “LaPlace”) 

Spelling Incorrect spellings (“Tamarac” vs. “Taramac”, “Bellefontaine” vs. “Bellefonatine” 

Extensions Extra words such as “City of” or “Island of”, “Zuni Pueblo” vs. “Zuni” 

Encoding Names with non-English characters (“Española” vs. “Espanola”) 

Alternate Alternate names (“New York City” vs. “Manhattan”) 

 

Table 9: Chronicle of Merging the Transit and Populated Places Datasets 

   Missing Values 

Data Operation Cities POP2010 Elevation 

BTS Extract city, county, state, FIPS, elevation, population. 38,186 11,125 0 

De-Dupe Merge records with duplicate city and state names 37,956 10,983 0 

I-Search Population of transit cities missing in the BTS  37 0 0 

Merge Fill missing population data. 37,956 10,946 0 

Transit Correct city names and merge with cleaned BTS 1,911 0 0 

 

Table 10: Chronicle of Merging the GTD Dataset 

Operation Description Cities 

GTD Extract city and state for all “United States” records 2,926 

GTD1993 Extract city and state for all “United States” records 37 

Stack Append the GTD1993 records to the GTD records 2,963 

Merge I Merge the state abbreviation to form a unique key 2,963 

Defined Drop records for states that are “unknown” 2,957 

Clean Correct spelling of 26 city names 2,957 

Aggregate Group records by number of attacks in unique cities 819 

Key Create a unique key of city and state name 819 

Merge II Merge the county name and FIPS from BTS 819 

Merge III Merge with the combined transit and population data 1,911 
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Table 11: Attributes Selected from the “People” Dataset. 

Attribute Description Missing 

CITY U.S. city name 0 

COUNTY U.S. county name 0 

ST State abbreviation 0 

FIPS5 FIPS code (5 digits) uniquely identifying each county 0 

Incorporated “Y” if the place is incorporated, “N” otherwise 9 (0%) 

Township “Y” if the place is a township, “N” otherwise 9 (0%) 

Military “Y” if the place has a military related facility, “N” otherwise 9 (0%) 

Commute Time Average commute time in minutes 41 (2%) 

Age Distribution 9 categories (Under 10, 10-19, 20’s, 30’s, etc.) 34 (1%) 

Race Distribution 8 categories (Hispanic, Asian, Black, Multiple, Native, etc.) 80 (4%) 

Gender Male and Female proportion 80 (4%) 

Limited English Proportion of population considered to speak limited English 34 (1%) 

Disabled Percentage of population classified as “disabled” 34 (1%) 

Marital Status 4 categories (Divorce, Married, Never Married, Widowed) % 80 (4%) 

Family Size Average number of family members in a household 34 (1%) 

Veteran Proportion of population that are veterans 34 (1%) 

Education 7 categories (high school, bachelors, graduate, some, etc.) % 80 (4%) 

Income 16 categories (poverty, dual, household, 10K, 100K+, etc.) % 36 (1%) 

Employed 2 categories (labor force participation and unemployment rate) 36 (1%) 

Home Ownership Proportion of population owning a home 34 (1%) 

Home Value Average value of a home 77 (4%) 

Rent 2 categories (Median Rent, Proportion of household income) 47 (2%) 

Health Insured Proportion of population with health insurance 34 (1%) 
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