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Abstract: Electric and autonomous aircraft (EAA) are set to disrupt current cargo-shipping models.
To maximize the benefits of this technology, investors and logistics managers need information on
target commodities, service location establishment, and the distribution of origin–destination pairs
within EAA’s range limitations. This research introduces a three-phase data-mining and geographic
information system (GIS) algorithm to support data-driven decision-making under uncertainty. Ana-
lysts can modify and expand this workflow to scrutinize origin–destination commodity flow datasets
representing various locations. The algorithm identifies four commodity categories contributing to
more than one-third of the value transported by aircraft across the contiguous United States, yet only
5% of the weight. The workflow highlights 8 out of 129 regional locations that moved more than 20%
of the weight of those four commodity categories. A distance band of 400 miles among these eight
locations accounts for more than 80% of the transported weight. This study addresses a literature
gap, identifying opportunities for supply chain redesign using EAA. The presented methodology can
guide planners and investors in identifying prime target markets for emerging EAA technologies
using regional datasets.

Keywords: electric and autonomous aircraft; cargo shipping disruption; data-mining techniques;
sustainable supply chain; supply chain redesign

1. Introduction

Efficient and reliable freight movement is fundamental to successful supply chain man-
agement. Emerging technologies like electrified autonomous trucks (EATs) and electrified
autonomous aircraft (EAA) hold potential to disrupt traditional logistics paradigms. While
EATs share roadways with other vehicles, EAA can bypass ground traffic and take more
direct routes, providing a door-to-door service via vertical takeoff and landing (VTOL) on
redesigned roofs or vertiports of distribution centers, sorting facilities, and retail stores [1].

From the supply perspective, ongoing truck driver shortages, railroad strike threats,
fuel price hikes, and the scarcity of good-condition roadways have prompted shippers to
explore alternatives [2]. Factors such as traffic congestion, deteriorating roads and bridges,
and weather events escalate the cost of truck shipments [3]. Analysts forecast that the
number of vehicles on the road will more than double between 2020 and 2050 [4], making
it unsustainable to add more trucks to already-congested roadways [5].

From the demand perspective, air transport, considered the safest and most secure
mode of transportation [6], is especially suitable for high-value, low-weight, and time-
sensitive goods [7]. All EAA manufacturers prioritize safety over all other aspects [8].
The growth of e-commerce and the push for same-day and next-day deliveries will also
accelerate the demand for air transport. Analysts forecast that the demand for shipments
delivered by air will more than double between 2019 and 2039 [9].

Electrified autonomous aircraft (EAA) play a crucial role in urban air mobility (UAM)
and regional air mobility (RAM) initiatives, providing “last mile” and “middle mile” trans-
port services, respectively [1]. Environmental stewardship and sustainability also contribute
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to EAA utilization, as they can help reduce the adverse effects of traffic congestion [10]
and protect the environment from dangerous cargo spills [11]. However, commercial
EAA services face uncertainties due to current federal regulations restricting their use [12].
Nevertheless, the goal of this research is to provide data-driven answers to the following
research questions:

1. Which commodities are best suited for air transport?
2. What should EAA deployments focus on to meet the highest demand?
3. What is the distribution of origin–destination pairs that fall within EAA flight range

capabilities?

This research contributes a practical data-mining workflow with algorithms that
logistical planners and investors can leverage to analyze available commodity flow data
for any region of interest. Using comprehensive commodity flow data from the United
States, the authors illustrate the developed workflow, highlighting its utility in answering
the research questions.

The organization of the rest of this paper is as follows: Section 2 reviews literature
on middle-mile deliveries using EAAs. Section 3 outlines the developed data-mining
algorithms to address the research questions. Section 4 discusses the analysis results
and their implications for stakeholders like supply chain managers, shippers, and urban
planners. Section 5 concludes the research and proposes future work to evaluate the
sensitivity of mode shifts relative to adoption time horizons for EAAs and EATs.

2. Literature Review

Though ‘last-mile’ is a frequently used term in transport logistics, ‘middle-mile’,
denoting cargo movement between intermediary facilities, is less prevalent [13]. Amazon
cautions that inefficiencies in the middle-mile can significantly affect last-mile deliveries to
end customers [14]. The United States Department of Transportation’s (USDOT’s) national
freight strategic plan anticipates a faster growth rate in overall transport demand for low-
weight, high-value commodities than for high-weight, low-value commodities [15]. Such a
trend could trigger shifts from trucks to air modes, particularly if significant reductions in
operating costs and safety risks can occur through electrification and automation [16,17].
This has resulted in increasing interest in heavy-lift EAAs for middle-mile services [18].

Recent studies identify reductions in delivery time, cost efficiency, and increased
flexibility as primary reasons for cargo EAA adoption [19]. For instance, FedEx is exploring
cargo EAAs as potential skyway conveyor belt equivalents among hubs, ramps, and
stations [20]. Similarly, UPS has announced plans to utilize EAA for expedited deliveries
of time-sensitive commodities [21]. Maersk, the world’s largest container shipping line,
announced that it will launch an air cargo business to reduce the effects of supply chain
disruptions from port logjams, COVID-19 lockdowns, and the crisis in Ukraine [22].

Autonomous trucks can provide a much-needed solution to an industry that has
grappled with high driver turnover for nearly five decades [23,24]. Despite these prospects,
the trucking industry faces challenges such as poor roadway conditions, traffic congestion,
accidents, weather events, and pressure to decrease pollutive emissions [3,25]. Therefore,
the cost reduction and ongoing performance enhancement of EAA will encourage compa-
nies to expand their markets for next-day and same-day deliveries using cargo EAAs [26].
For instance, Amazon aims to extend its one-day or same-day service beyond the 72% of
the U.S. population it currently serves [1]. Despite these commercial developments, a recent
literature review found a lack of studies on the potential utilities and challenges of cargo
EAAs [19].

Much of the literature focuses on short-range EAA applications like monitoring trans-
portation assets [27], providing on-demand air mobility for passengers [28], managing
healthcare logistics [29], and conducting direct urban package deliveries [30]. However, the
literature offers minimal analysis on the potential utility of EAAs for middle-mile deliveries
over extended distances.
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The literature has explored the broader influences and impacts of EAA adoption in the
logistics sector. Huang et al. (2022) found that safety is a main hindrance in the adoption of
new transportation technologies [31]. Raj and Sah (2019) found that technological advance-
ments and government regulations are the most influential factors in EAA adoption [32].
Kwon et al. (2017) applied text mining to study the social impacts and acceptance of EAA
deployments [33]. Goodchild and Toy (2018) studied how EAA deployments could affect
carbon dioxide emissions [34]. Reiche et al. (2021) examined how weather might affect
EAA delivery services [35]. Bauranov and Rakas (2021) provided some recommendations
for urban airspace design to address concerns of noise, safety, capacity, and privacy [36].
Table 1 summarizes the key contributions of these papers and lists the gaps identified
relative to the contributions of this study.

Table 1. Key contributions and gaps in the literature.

Paper Key Contributions Identified Gaps

[31] Examined safety, finding it to be a main hindrance to
innovative technology adoption.

Did not provide a data-driven approach to optimize
cargo shipping with EAA.

[32]
Found that the most influential factors in EAA
adoption are technological advancements and
government regulations.

Did not specifically focus on the safety and reliability
of EAA.

[34] Focused on how EAA deployments could affect
carbon dioxide emissions.

Did not analyze the potential of EAA for
cargo shipping.

[35] Explored how weather might affect EAA
delivery services.

Did not consider the potential of EAA in optimizing
cargo shipping.

[36] Suggested some urban airspace designs to address
concerns of noise, safety, capacity, and privacy.

Did not provide a practical data-mining workflow for
logistical planners and investors.

[33] Employed text mining in the study of social impacts
and acceptance in EAA deployments.

Did not focus on the logistics sector and the potential
of EAA for cargo shipping.

Anticipating profitable markets for EAA cargo services, numerous aircraft manufac-
turers have garnered billions in investment to commercialize their designs [37,38]. Joint
research by Deloitte Consulting LLP and the Aerospace Industries Association revealed
that the U.S. market for Advanced Air Mobility (AAM) could equal 30% of the U.S. com-
mercial aerospace market in 2019 by 2035, reaching USD 115 billion [39]. Similarly, Morgan
Stanley believes that the global market for autonomous aircraft will reach USD 1.5 trillion
by 2040 [40]. However, obstacles to current adoption include factors such as public ac-
ceptance [41], affordability [41], environmental impact [42], safety [43], integration with
the Internet of Things [44], and the buildout of support infrastructures such as vertiports
and fast-charging facilities [39]. Manufacturers continue to investigate various aircraft
design and electrification options to address the potential urban transportation market [45].
Furthermore, there are still many unresolved risks for the safe integration of EAAs into the
national airspace system [46].

The existing literature offers limited insights on optimizing middle-mile cargo EAA
operations for supply chain improvement. Significant alterations to supply chain design can
result from disruptive technologies, necessitating new skills and processes [47]. Previous
studies have assessed the impact of other disruptive technologies such as blockchain, 3D
printing, IoT, and AI on the supply chain [48]. This study aims to bridge this gap by
pinpointing opportunities to bolster supply chain efficiency and reliability using EAAs.

3. Methodology

The methodology to answer the research questions included a three-stage data mining
and GIS workflow. Each stage applied data filters to (1) identify truck and air commodity
demand clusters and their intersections, (2) recognize the regional demand distribution for
the selected commodity clusters, and (3) determine a truncated distribution of geodesic
distance bands suitable for cargo EAAs among the selected regions. Figure 1 illustrates
the three stages as “What”, “Where”, and “How” in terms of what commodities to target,
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where to initiate service, and how to select the origin–destination pairs from the subset
based on distance constraints, respectively.
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Figure 1. Three-stage data-mining workflow.

The data-mining methodology depends on the availability of a robust dataset of
commodity flows by air and truck. The author selected the Freight Analysis Framework
(FAF) dataset as it is the most comprehensive source of multimodal freight movements
available within the United States. This dataset combines data from various sectors,
including agriculture, extraction, utility, construction, and service [49]. Each row of the
FAF version 5.5 dataset lists a commodity category moved between pre-defined zones by
mode, weight in thousand-ton units, and value in million U.S. dollar (USD) units. The
next three subsections describe each phase of the analytical workflow. The dataset had
2.4 million records.

3.1. Demand Cluster Intersection

The first stage of the workflow answered the research question, “Which commodities
have the best propensity for transport by air?”. Initially, it identified significant value and
weight associations in clusters of commodity categories transported by air and using trucks.
Then, the algorithm empirically detected intersecting commodity categories among the
selected clusters for truck and air transport.
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The analysis compared results from three mature unsupervised machine learning
(UML) methods: k-means, Louvain, and density-based spatial clustering of applications
with noise (DBSCAN). The algorithm labeled the clusters for visual display in a scatterplot
of the value-weight feature space. Table 2 summarizes the theory of operations of the three
clustering algorithms, their hyperparameters, and a reference that explains their operation
in greater detail.

Table 2. Unsupervised machine learning algorithms compared for cluster detection.

Algorithm Theory of Operations, Advantages (A), and Disadvantages (D) Hyperparameters

k-means

Initially selects representative points randomly for each of the
number of specified clusters. It then iteratively reassigns points to
clusters with the nearest centroid. Next, it recalculates the cluster
centroid until convergence to the lowest within-cluster distance
variance or when points cease switching clusters. The procedure
stops after a specified number of iterations. Each rerun produces
a different random initialization. The procedure also calculates a
silhouette score for each point, with the highest average score
representing the best clustering result. The silhouette score is a
measure of within cluster similarity and outside cluster
separation.
A: well-studied and easy to apply to exceptionally large datasets.
D: requires specification of the number of clusters and works best
when clusters are symmetrical.

Feature normalization, number of clusters,
initialization (k-means ++, random),
number of reruns, number of
iterations [50].

Louvain

Extracts communities from networks by constructing a k-nearest
neighbor graph and weighing the edges through the number of
shared neighbors. Defines clusters based on the density of edges
inside communities relative to between communities. The
resolution parameter affects the size of the identified clusters.
A: efficient with exceptionally large networks.
D: difficulty in detecting small communities.

Feature normalization (no), PCA
preprocessing (no), distance metric
(Euclidean, Manhattan, Cosine), number of
neighbors (6), resolution (2.7). Air:
Identified five clusters with C5 containing
the six selected items [51].

DBSCAN

Density-based spatial clustering of applications with noise
(DBSCAN). Groups together densely packed points and considers
outlier points that lack close neighbors as noise. It defines a point
to be core if k neighbors within a certain specified distance
surround it. A set of core points defines a cluster. Non-core points
may be parts of other clusters.
A: finds non-linearly separable clusters.
D: requires specification of the number of core point neighbors
and the distance radius, which can be intractable for large feature
spaces.

Feature normalization (y), core point
neighbors (4), neighborhood distance (0.87),
distance metric (Euclidean, Manhattan,
Cosine). Air: Identified one core cluster
and six outliers that were the six selected
items [51].

The scatter plot visualization helped with tuning the hyperparameters by providing
feedback to the analyst.

In preparation for the cluster identification, the workflow extracted commodity flows
from the FAF dataset by truck and then aggregated the weight and value by each commodity
category. The workflow repeated the process for commodity flows by air. The output of
this workflow stage comprised high-value, low-weight clusters common to trucks and
air transport.

3.2. Regional Demand Distribution

This stage of the methodology addressed the second research question, “Where would
EAA deployments likely serve the largest demands?”. The zones defined in the FAF dataset
encompassed areas that are metropolitan statistical areas (MSAs) and areas outside of
MSAs, such as the remainder of a state, or entire states. The objective involved selecting
MSAs as location candidates because of their high population density, significance to
trade, and spatial localization. The empirical strategy to distinguish MSAs from other
FAF zones was to detect where their metadata description contained the words “area” or
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“part”. Consequently, the procedure identified 83 MSAs among the 129 FAF zones in the
contiguous United States (CONUS).

A pivot table algorithm compiled the MSA arrival and departure weights for each com-
modity category selected in the previous stage. A histogram of the pivot table output then
presented the MSA distribution by weight moved. The distribution identified single MSAs
that moved the most weight using trucks as target locations to serve the highest demands.

3.3. Distance Band Truncation

This stage of the methodology addressed the third research question, “What is the
distance distribution of origin–destination pairs that would be within EAA flight range
capabilities?”. Without knowledge of future EAA port locations, the distance distribution of
ports between FAF zone pairs spans the distance between the closest and furthest borders of
the FAF zone pair. Hence, the geodesic distance between centroids of FAF zones provided
an estimate for the mean distance between pairs of FAF zones. Subsequently, the workflow
first located the centroids of each FAF zone by using a geographic information system
(GIS) tool and then generated a distance matrix of all the pairwise combination of centroids.
Hence, the matrix contained distances between the 16,512 (1292 − 129) centroid pairs,
based on the ESRI 102005 “Contiguous Equidistant Projection” coordinate reference system.
The GIS tool naturally produced zero for flight distances within a FAF zone, which was
undesirable. The remedy was to estimate the nominal flight distance within a FAF zone
as half the diagonal of a square with area equal to that of the FAF zone. The algorithm
estimated the length of a side of the square by taking the square root of the area of the
FAF zone.

To determine the area of the FAF zone, a GIS algorithm dissolved all CONUS counties
within a FAF zone with the land and water areas. The algorithm used the GIS shapefile
from the USCB TIGER® database, which contains both the land and water areas of all U.S.
counties [52]. The algorithm used the USCB 2017 commodity flow survey geographies
database, which contained a FAF zone identifier for each U.S. County [53]. The workflow
merged the TIGER® shapefile with data from the FAF geographies database by using
the federal information processing (FIP) code for each county as the merge key. The
CFS07_DDESTGEO field of the FAF geographies database matched the FAF zone codes
except for 16 of them, which the author discovered by iterating the merging procedure and
identifying missing values. Table 3 summarizes the FAF zone code revisions needed to
complete the merge. Figure 2 illustrates the final GIS dissolve that resulted in 83 MSAs
and 46 other FAF zones, along with their geospatial centroids. The assorted colors in the
figure serve only to help more clearly distinguish between the regions and, particularly,
adjacent regions.

Table 3. Mismatched FAF zone codes in the CFSG database.

CFS
Area Name

CFS Code
Replaced

FAF Code
Substituted

Fresno-Madera, CA CFS Area 69 65
Philadelphia-Reading-Camden, PA-NJ-DE-MD (DE Part) 100 101
Philadelphia-Reading-Camden, PA-NJ-DE-MD (NJ Part) 349 342
Remainder of Delaware 100 109
Fort Wayne-Huntington-Auburn, IN 189 183
Wichita-Arkansas City-Winfield, KS 209 202
Louisville/Jefferson County-Elizabethtown-Madison, KY-IN
(KY Part) 211 212

Cincinnati-Wilmington-Maysville, OH-KY-IN CFS Area
(KY Part) 219 211

Omaha-Council Bluffs-Fremont, NE-IA (NE Part) 310 311
Remainder of Nebraska 310 319
Boston-Worcester-Providence, MA-RI-NH-CT (NH Part) 330 331
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Table 3. Cont.

CFS
Area Name

CFS Code
Replaced

FAF Code
Substituted

Remainder of New Hampshire 330 339
New York-Newark, NY-NJ-CT-PA (PA Part) 429 423
New York-Newark, NY-NJ-CT-PA (NJ Part) 349 341
Knoxville-Morristown-Sevierville, TN 479 473
Portland-Vancouver-Salem, OR-WA (WA Part) 539 532
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4. Results and Discussions

The subsections of this section reflect those of the methodology section to align the
results of each data filter stage of the data-mining workflow.

4.1. Demand Cluster Intersection

Figure 3 shows the results from the three clustering algorithms. The first and second
rows of the figure are weight–value scatter plots for air and trucks, respectively. In the air
analysis, Louvain and k-means discerned similar points in cluster 5 (C5) and cluster 2 (C2),
respectively, except for one noticeable outlier in the top right of the chart. For trucks,
Louvain and k-means agreed on some points within cluster 3 (C3) and cluster 1 (C1),
respectively. DBSCAN tended to isolate the outlier and cluster the remaining points
together. Overall, k-means clustering provided the most logically attractive groupings of
high-value, low-weight and low-value, high-weight commodities.

Figure 4 points to the commodity categories in the k-means high-value, low-weight
clusters that have the best propensity for air transport. The selected commodity categories
were mixed goods, electronics, machinery, and pharmaceuticals due to their high market
value that EAAs can capture from trucks. The remaining unselected commodity categories
were both lower in value and much less frequently transported by air.
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The selected commodity categories represent time-sensitive and high-value items. The
selected commodity categories represent time-sensitive and high-value items. The time ur-
gency of orders for these items could significantly influence the distribution of EAA usages.
For example, the machinery category includes replacement parts to keep manufacturing
lines moving; the mixed goods category includes fresh supplies for restaurants; and the
pharmaceutical category includes urgently needed medical items. Electronics emerged
as a high-value outlier in both air and truck transport, with a more extreme disparity in
air transport. Figure 5 ranks the commodity categories transported by value proportion
and maps the intersection of each high-value, low-weight cluster for trucks (cluster 3)
and air (clusters 1 and 3). There is a point of diminishing returns in value proportion for
commodity categories outside of each high-value, low-weight cluster.
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Electronics, machinery, and pharmaceuticals were common categories in both high-
value clusters for truck and air. The commodity category of mixed goods was the highest
in value proportion moved using trucks. This indicates its potential for mode shift to
cargo EAAs even though it is mapped outside of the high-value, low-weight cluster for
air transport.

Table 4 presents a summary of the representative composition of each selected com-
modity category [54]. Table 5 summarizes the weight, value, and rank of the four selected
commodities that have the highest propensity for mode shift to cargo EAAs. To provide a
perspective on the weight, a typical North American semi-trailer truck (18-wheeler/big rig)
carries 45,000 pounds (22.5 tons) of cargo [55]. The table shows that the four commodity cate-
gories moved among all FAF zones in 2017 required the equivalent of 28,268,257 (28 million)
semi-trailer trucks (truckload equivalent). Based on growth estimates from the NFSP, truck
transport will increase 35% by 2040 [15]. The four selected commodities comprised 30.7%
of the value proportion of all commodities moved in the CONUS but only 5% of the weight.

Table 4. Representative content of the selected commodity categories.

Commodity
Category Representative Content

Mixed Goods (43)
Food for grocery and convenience stores, supplies and food for
restaurants and fast-food chains, hardware or plumbing supplies,
and office supplies.

Electronics (35)

Cell phones, batteries, electronic entertainment products, electric
cooking appliances, computers, office equipment, recorded media,
computer software, electronic components and circuit boards,
semiconductor manufacturing machinery, electric motors and
generators, cooking appliances, domestic appliances, telephone, and
communications equipment.

Machinery (34)

Non-electric motors and parts, pumps, compressors, fans, parts for
air conditioning and refrigeration, dishwashers, manufacturing
machines and tools, powered hand tools and apparatus, gears, and
bearings for manufacturing equipment.

Pharmaceuticals (21)
Chemical mixtures for medical use, biological products, bandages,
sutures, dental fillings, bone reconstructive cements, and other
chemical preparations for medical use.

Table 5. Commodity categories selected for spatial demand analysis.

Commodity Million
Tons

Trillion
Dollars

%
KTons

%
USD M

Rank
Truck

Rank
Air

Truckload
Equivalent

Mixed Goods 424.2 1.44 3.3% 10.6% 1 11 18,851,782
Electronics 73.2 1.12 0.6% 8.2% 3 1 3,253,678
Machinery 118.8 0.97 0.9% 7.1% 4 4 5,280,730
Pharmaceuticals 19.8 0.65 0.2% 4.8% 6 5 882,067

Total 636.0 4.2 5.0% 30.7% 28,268,257

All Commodities 12,669.0 13.6 563,065,851

4.2. Regional Demand Distribution

Figure 6 shows the MSA distribution by weight moved in thousand tons (KTons) for
each of the four commodity categories selected in the previous stage of the data-mining
workflow. Each colored box represents an MSA. The figure presents the outlier MSAs
for the movement of commodity categories using trucks. Trucks in the Los Angeles (LA),
California (CA), MSA transported the majority of the top three commodity categories by a
significant margin.
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Trucks in the Texas (TX) MSAs of Dallas–Fort Worth (DFW) and Houston moved the
next largest amount of the four commodity categories. Table 6 summarizes the weight of
the four commodity categories moved in the top eight MSAs. The four selected commodity
categories moved in the eight MSAs accounted for 20.1% of the weight moved in the
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CONUS. Electronics was the largest proportion by weight (28%) moved using trucks among
the top eight MSAs. Additionally, electronics is by far the top commodity category moved
by air. Therefore, it has the greatest propensity for mode shift from trucks, especially for
time-sensitive orders that could benefit from the faster delivery times offered by EAA. This
mode shift could potentially lead to significant changes in the logistics industry, including
changes in delivery times, cost structures, and operational efficiencies. Future research
should explore these potential impacts in more detail.

Table 6. Commodity weight moved in the top MSAs.

MSA Pharmaceuticals Machinery Electronics Mixed Goods Total KTons

Los Angeles CA, USA 2725.7 14,866.3 15,523.6 32,170.3 65,286.0
San Francisco CA, USA 4441.2 3331.6 3707.0 19,142.1 30,622.0
Tampa FL, USA 12,360.8 759.9 1040.1 7532.0 21,692.8
Atlanta GA, USA 411.1 5975.9 3195.6 18,506.3 28,088.8
Chicago IL, USA 3026.0 7069.2 4867.2 23,411.6 38,374.0
New York NY, USA 8794.0 3132.8 2646.3 26,132.2 40,705.3
Dallas–Fort Worth TX, USA 3061.4 5071.5 5716.2 30,506.5 44,355.6
Houston TX, USA 8724.7 9928.9 4367.9 16,874.2 39,895.7

Total 43,545.0 50,136.1 41,064.0 174,275.2 309,020.2
CONUS 302,783.0 237,632.8 146,415.5 848,330.2 1,535,162
Top MSA % 14.4% 21.1% 28.0% 20.5% 20.1%

4.3. Distance Band Truncation

Table 7 displays the truckload equivalents transported among the top eight MSAs
in four distance bands for each of the four commodity categories selected. Movements
across all distances (not shown in the table) required 8,604,968 truckload equivalents in
2017, which accounted for 30.4% of the truckloads in the CONUS. The number of truckload
equivalents will raise by 35% by 2040 even though the proportion of truckloads will remain
similar [15].

Table 7. Truckload equivalent flows between the top MSAs.

Miles Band Mixed Goods Electronics Machinery Pharma Total % % Acc

100 2,583,396 299,612 419,312 80,519 3,382,840 39.3% 39.3%
200 1,357,662 257,587 288,219 44,434 1,947,902 22.6% 61.9%
300 591,588 154,589 236,029 46,440 1,028,646 12.0% 73.9%
400 326,591 122,995 98,965 14,829 563,380 6.5% 80.5%

Totals 4,859,238 834,782 1,042,526 186,222 6,922,768 80.5%

Figure 7 shows the distribution of truckload equivalents across all distance bands. In
summary, truck transport within 100 miles accounted for 39.3% of the truckload equivalents
for the four selected commodity categories. The accumulated proportion (% Acc) moved
was 80.5% within a 400-mile distance band. Hence, 400 miles represented a point of
diminishing returns for transporting those commodities by air. Current projections based
on the anticipated improvements of battery technology suggest that cargo EAAs will exceed
those ranges well before 2050 [26].

In a comparison with the existing literature, the results of the data-driven approach
to optimizing cargo shipping with EAA provide a unique contribution to the field. While
previous studies have explored the potential of EAA in various contexts, as summarized
earlier in Table 1, none have specifically focused on using a data mining and GIS workflow
to optimize cargo shipping with EAA. The findings of this study align with a key observa-
tion by the USDOT’s national freight strategic plan, which anticipates a faster growth rate
in overall transport demand for low-weight, high-value commodities than for high-weight,
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low-value commodities. The finding that a distance band of 400 miles among eight regional
locations accounts for more than 80% of the transported weight provides a practical guide
for planners and investors in identifying prime target markets for EAAs, a gap that previous
studies did not address. While these findings are consistent with the broader literature on
the potential of EAA for cargo shipping, this contribution of a data-driven approach to
optimize cargo shipping with EAA is unique.
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4.4. Limitations

EAA transport may not suit all goods within the identified commodity categories.
As the EAA technology evolves, logisticians must reconsider factors such as bulkiness,
packaging limitations, cost, and relative demand. Even though manufacturers aim to
augment EAA payload, there will be a capacity limit, making it challenging to transport
certain kinds of bulky goods with EAAs. On the other hand, as EAA technologies continue
to evolve, and systems can manage larger autonomous fleets at all hours and at a lower cost,
it will become more profitable to carry certain high-demand, high-value, and light-weight
goods. The International Air Transport Association (IATA) suggests that smartphones,
tablets, laptops, gaming electronics, pharmaceuticals, medical items, and urgently needed
factory parts or tools are some examples of items that are suitable for air transport [56].

While this study provides valuable insights into identifying commodity categories and
locations that would be economically desirable for transport by EAAs, further assessment is
necessary to determine the specific types of goods within these categories that are suitable.
Consequently, this study forms a foundation for logisticians to initiate a more detailed
assessment of the types of goods within the identified commodity categories and locations
that would be most economically desirable for transport by EAAs.

5. Conclusions

Predictions indicate that the emerging electrified autonomous aircraft (EAA) will
reduce air cargo transportation costs and potentially expedite the delivery of time-sensitive
orders, prompting major shippers to invest in customizing technology and infrastructure.
This research established a three-stage data mining and GIS workflow that identified four
commodity categories and eight metropolitan statistical areas (MSAs) that could yield
the highest initial demand for air transport, thereby optimizing logistics operations. The
workflow and algorithms revealed that transport within the current range capability of
400 miles accounted for 80.5% of the truckload equivalents of the four selected commodity
categories transported among the eight MSAs.

Shifting from trucks to EAA transportation holds potential for achieving the United Na-
tions’ sustainable development goals. This shift can bring about benefits such as emission
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reduction and improved infrastructure longevity. It can also decrease risks in dangerous
cargo transportation. Additionally, it could potentially offer faster delivery times for time-
sensitive orders. Overall, this represents a significant mode shift in the logistics industry.
This shift could lead to EAAs replacing trucks or air delivery or creating another option
for delivery. The potential changes to the logistics industry associated with this mode shift
warrant further investigation. Applying this data mining and GIS workflow to similar
datasets can identify potential markets and optimize logistics operations, promoting afford-
able and sustainable transportation. Future studies will explore the influence of economic
factors, truck automation, and other vehicle technologies on the transition towards EAAs
over various adoption timeframes.
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