IMPEDANCES OF A CUBICAL OUAD ANTEITIA

A Thesis
Submitted to the Graduate Faculty
of the
North Dakota State University of Agriculture and Applied Science

by

Tsi-lung Choong

In Partial Fulfillment of the Requirements For the Degree of Master of Science

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been removed from the digital version of this document.

ACKNOWLEDGMENT

The author wishes to express his sincere gratitucle
to Professor E. G. Anderson of the Electrical Engineering

Department, North Dakota State University, for his
helpful guidance and supervision without which this thesis would not have been possible.

TABLE OF CONTENTS

CHAPTER
PACE
INTRODUCTION 1

CALCULATION OF MUTUAL IMPEDANCE2

1-1 Current Distribution on a Radiating Loop of the Cubical Antenna3
1-2 Retarded Scalar Potential 5
1-3 Retarded Vector potential 8
1-4 Induced EMF on the Reflecting Loop 10
1-5 Induced EMF in the Z Direction Due to a Current Element in the Z Direction 12
1-6 Induced EMF in the X Direction Due to a Current Element in the X Direction 18
1-7 Induced EMF in the X Direction at a Point P Due to Charges Distributed along the Z Direction 21
1-8 Induced EMF in the Z Direction at a Point P Due to Charges Distributed along the X Direction 26
1-9 Total Tangential Induced EMF at a Point P ○ L_{I} 29
1-10 Total Tangential Induceá EMF at a Point P on $L_{I I}$ 33
1-11 Total Tangential Induced EMF at a Point P on $L_{\text {III }}$ 37
1-12 Total Tangential Induced EMF at a Point P on $L_{I V}$ 41
1-13 Derivation of the Mutual Impedances equation 45
1-14 A Computer Program For Evaluating The Mutual Impedance equation 48
II EXPERIMENTAL MEASUREMENT OF THE MUTUAL
IMPEDANCE 53
2-1 General Considerations 53
2-2 Four Terminal Networks 55
2-3 Equipment Used 59
2-4 Experimental Results and the Corresponding Calculations 60
2-5 Discussion 70
III CONCLUSIONS AND SUGGESTIONS FOR EURTHER
STUDY 71
3-1 Conclusions and Discussion 71
3-2 Suggestions for Further Study 72
APPENDIX I 75
APPENDIX II 77
BIBLIOGRAPHY 78

INTRODUCTIOIJ

Rectangular loop antennas and chort electric dipoles are two of the oldest antennas in existance. In 1888, twenty years after Maxwell invented his famous Maxwell'r equations, Hertz used these two antennas to prove that high frequency electric energy source could radiate electromagnetic waves.

The "Cubical Quad" or, simply, "Quad" antenna is a development of the rectangular loop antenna. It consists of a pair of equare loops, one-guarter wavelencth on a side or one wavelength around the periphery; one loop being driven and the other used as a parasitic reflector. The separation between the two is usually of the order of 0.15 to 0.2 wavelength, with the planc: of the loops parallel. While studying the properties of this antenna, it was discovered that little had been done to develop it from a theoretical aspect. The purpose of this theris is to obtain values of the self and mutual impedances existing in such an antenna array. The values are obtained from mathematical analysis and experimental measurements and may be used in field pattern and gain calculations.

[^0]
CHAPTER I

CALCULATIOI OI MUTUNL IMPTDAIICE

Before doing any mathematical analysis some aseumptions, that connot be realized in ihe pracical fyetem, must be described. They are:
(1) The antenna is locuted at a place which is completcly free from obstructions in all diroctions.
(2) The gap between the two input terminals is infinitely small.
(3) The ohmic losser along the antenna aro negligisle. The following analysis is based on ideal situationso

In the derivation of the mutual impedance between two loops it is necossary, first of all, to derive an expres ion for the current distribution along one loop. Then, the inducer electric field intensity at any point P elone the sec nd loop, which is produced by the retarded charges and currents on the first loop, can be determined. The power reauired to produce current against the opposition of the inducod emf on the first loop is computed for each infinitelysmall element. The totel power is obteined by integrating over the whole longth of the first loop. This gives totel power, real and reactive, required to establish the curront against the induced emf ind from this the mutual impedance may be calculated. This method is well known as the "induced emf method".

1-1 Current Distribution on the Radiating Loop of the Cubical Quaci Antenna

The square radiating loop is one-cuarter wavelenqth on a side or one wavelength around the periphery. If it is fed by a balanced two wire line, the potential of one wire must be equal and opposite to that of the other with respect to the ground and equal out-of-phase currents must flow at the feed point. Assuming the conductivity of the loop is infinite, it can be viewed as a lossless transmission line short-circuited at the point "e" (see fig. 1-1). Moreover, if the balanced two wire line transmits a sinusoidal wave to the input terminals of the loop the current of the incident wave may be expressed as

$$
I_{i} e^{j(w t+\beta D)}
$$

where $\quad I_{i}=$ maximum incident $r . m . s$. current.
$=2 \pi / \lambda$ phase constant
D =reference distance. Taken as zero at the short circuit point.

The expression for current of the reflected wave will be

$$
\begin{equation*}
I_{r} e^{j(w t-\beta D)} \tag{1-2}
\end{equation*}
$$

where
$I_{r}=$ maximum reflected r.m.s. current.

1
Skilling, Flectric Transmission Lines, McGraw-Hill Book Company, Inc., p. 93. 1961.

Krause, Antennas, McGraw-Hill Book Company, Inc., p. 415, 1950.

At the short circuited point "e", $I_{i}=I_{r}$ hence, the total current will be

$$
\begin{align*}
I_{t}(l) & =I_{i} e^{j(w t+B D)}+I_{r} e^{j(w t-\beta D)} \\
& =2 I_{i} \cos (\beta D) e^{j w t} \tag{1-3}
\end{align*}
$$

Equation (1-3) shows that the incident and reflected waves combine to produce a standing wave which does not progress. The current distribution curves are shown in fig. 1-1 and fig. $1-2$.

Fig. 1-1
In fig. 1-1, the four sides of the loop are marked L_{1}. L_{2}, L_{3}, L_{4} respectively. The arrows indicate the instantaneous current directions and the dots indicate the locations of the curront minima. For convenionce, it is better to shift the $D=0$ point from " e " to "o" such that:

$$
\begin{align*}
& D=l-\frac{\lambda}{2} \\
& I(\ell)=2 I_{i} \cos \left[\beta\left(\ell-\frac{\lambda}{2}\right)\right] e^{j w t} \tag{1-4}\\
& \quad=-2 I_{i} \cos (\beta l) e^{j w t}
\end{align*}
$$

Where ℓ is the distance along the radiating loop
measured from point "a", defined as follows:

$$
\begin{aligned}
\ell & =\frac{\mathrm{n} \lambda}{8} \pm \mathrm{h} \\
\mathrm{n} & =0,1,3,5,7,9 \ldots
\end{aligned}
$$

Referring to fig. $1-1$ and fig. $1-2, n$ is equal to 1,3 ,
5. 7 for $L_{1}, L_{2}, L_{3}, L_{4}$ respectively. The distance h, in wavelengths is measured from the point b, d, f or i in the clockwise direction.

1-2 Retarded Scalar Potential

The electric scalar potential due to a point charge is a linear function of the value of its charge. It follows that the potentials of more than one point charge are linearly superposable by scalar addition. In static electric fields, the potential at $P(\therefore, y, z)$ due to distribution charges along a line is

$$
\begin{equation*}
v=\frac{1}{4 \pi \epsilon_{0}} \int \frac{p_{L}}{r} d h \tag{1-6}
\end{equation*}
$$

where $\quad P_{L}=$ linear charge density (coulomb/meter)

$$
\begin{aligned}
\epsilon_{0} & =\text { permittivity (dielectric constant for vacuum) } \\
& =\frac{1}{36 \pi 10^{9}} \\
r & =\sqrt{x^{2}+y^{2}+(z-h)^{2}} \quad \text { (farad/meter) } \\
d h & =\text { element of length of line in meters }
\end{aligned}
$$

The integration is carried out wherever P_{L} has value.

Fig. 1-3
In time-changing fields, P_{L} is changing with time.
Its expression can be deduced from the continuity relation between current and charge density. The continuity of current states that a net flow of current out of a volume (positive current flow: must be equal to the negative rate of change of charge with respect to time.

$$
\begin{equation*}
\int_{S} \vec{J} \cdot d \vec{s}=-\frac{\partial \rho}{\partial t} \Delta v \tag{1-7}
\end{equation*}
$$

or

$$
\nabla \cdot \vec{J}=-\frac{\partial P}{\partial t}
$$

Now I is everywhere in the h direction (in fig. $1-3, z$ and h are in the same direction). The above expression becomes

$$
\begin{equation*}
\nabla \cdot I=-\frac{\partial I D}{\partial h}=-\frac{\partial L_{L}}{\partial t} \tag{1-8}
\end{equation*}
$$

or

$$
\begin{gather*}
\frac{\partial I h}{\partial h}=-\frac{\partial \mathcal{L}_{L}}{\partial t} \tag{1-9}\\
P_{L}=-\frac{\partial I h}{\partial h} d t \tag{1-10}
\end{gather*}
$$

where $I_{h}=$ current in the wire (amps)

$$
\begin{array}{r}
P_{L}=\text { linear charge density along the antenna } \\
\text { (coulomb /meter) }
\end{array}
$$

Substituting equation (1-4) into equation (1-10)

$$
\begin{aligned}
P_{L} & =2 I_{i} \int \frac{\partial}{\partial h}\left\{\cos \left[\beta\left(\frac{n \lambda}{8}+h\right)\right] e^{j \omega t}\right\} d t \\
& =-2 I_{i} \int \sin \left[\beta\left(\frac{n \lambda}{8}+h\right)\right] e^{j w t} d t \\
& =\frac{2 j I_{i} \sin \left[\beta\left(\frac{n}{8} \lambda+h\right)\right]}{w} e^{j w t}+c
\end{aligned}
$$

The constant of integration C indicates : linear
charge density independent of t could be present. Since such a charge distribution, if i: iou exist, will no wontribute to radiation its existance will be ignored.
Hence $\quad P_{L}=\frac{2 I_{i} \sin \left[\beta\left(\frac{n \lambda}{8}+h\right)\right]}{w} e^{j\left(w t+\frac{\pi}{2}\right)}$

The space charge distribution curve is shown in fig. 1-4.

Fig. l-4

In time-chonging fields the effect of charge is not felt instantaneously at the point p, but only after an interval equal to the time required for the disturbance to propagate over the distance r; this time interval is

$$
\frac{r}{c} \text { seconds }
$$

where $c=$ velocity of light $\left(=3 \times 10^{8}\right.$ moters/sec.) We can introduce this time of propagation, called the time of retardation, and write

$$
\begin{align*}
{\left[\rho_{L}\right] } & =-2 I_{i} \beta \int \sin \left[\beta\left(\frac{n \lambda}{8}+h\right)\right] e^{j \omega\left(t-\frac{x}{c}\right)} d t \\
& =\frac{2 j I_{i} \beta \sin \left[\beta\left(\frac{n \lambda}{8}+h\right)\right] e^{j \omega\left(t-\frac{r}{c}\right)}}{w} \tag{1-12}
\end{align*}
$$

$\left[P_{L}\right]$ is called the retarded charge density. Substituting it into equation (1-6) gives

$$
\begin{align*}
{[V] } & =\frac{j I_{i} e^{j \omega t}}{2 \pi \epsilon_{o} W} \int\left[\frac{\sin \left[\beta\left(\frac{n}{8} \lambda+h\right)\right]}{r} e^{-j \beta r}\right] d h \\
& =\frac{j I_{i} e^{j \omega t}}{2 \pi \epsilon_{o} c} \int \frac{\sin \left[\beta\left(\frac{n}{8} \lambda+h\right)\right] e^{-j \beta r}}{r} d h \tag{1-13}
\end{align*}
$$

$[V]$ is called the retarded scalar potential.
1-3 Retarded Vector Magnetic Potential

In static magnetic fiolds, the vector potential can be expressed in the form ${ }^{2}$

[^1]\[

$$
\begin{equation*}
\vec{A}=\frac{\mu_{2}}{4 \pi} \iiint \frac{\vec{J}}{r} d v \quad \text { (Webers/meter) } \tag{1-14}
\end{equation*}
$$

\]

Where $\vec{A}=$ vector magnetic potential at point P

$$
\mu_{0}=\text { pormeability of vacuum (henrys/meter) }
$$

$$
\vec{J}=\text { current density at volume element (amp/meter }{ }^{2} \text {) }
$$

$$
d_{v}=\text { volume element } \quad\left(\text { meter }{ }^{3}\right)
$$

$$
\begin{aligned}
r= & \text { distance from each volume element to the } \\
& \text { point } P \text { (meters). }
\end{aligned}
$$

If \vec{J} is confined in a thin wire as stated in $\oint 1-2, \vec{J}$ is everywhere in some particular direction h and also is uniform. Thus

$$
\vec{J}=\vec{a}_{h} J_{h}
$$

Then

$$
\begin{equation*}
\iiint J d v=\vec{a}_{h} \iiint J_{h} d s d h=a_{h} \int I d h \tag{1-15}
\end{equation*}
$$

Where

$$
\begin{aligned}
\mathrm{t}_{\mathrm{h}} & =\text { unit vector in } \mathrm{h} \text { direction } \\
\mathrm{d} s & =\text { area element } \\
\mathrm{d} h & =\text { length element } \\
I & =J_{\mathrm{h}} \mathrm{a}=\text { current in wire }
\end{aligned}
$$

Substituting (1-15) into (1-14) gives

$$
\begin{equation*}
\vec{A}=\frac{\vec{a}_{1} \mu_{0}}{4 \pi} \int \frac{I}{r} d h \tag{1-16}
\end{equation*}
$$

As stated in $\$ 1-2$, in time-changing fields, the effect of curront changes on the antenna are not felt
instantaneously at the point P, but only after an interval equal to the time required for the radiated wave to reach a distance r from the radiating element. This time internal is

$$
\frac{r}{c} \text { seconds }
$$

Hence, equation (1-16) must be modified by a time factor.

$$
\begin{equation*}
[\vec{A}]=\frac{\vec{a}_{h} \mu_{0}}{4 \pi} \int \frac{I e^{-j w\left(\frac{r}{c}\right)}}{r} d h \tag{1-17}
\end{equation*}
$$

$[\vec{A}]$ is called the retarded vector magnetic potential. Substituting equation (l-4), the current in the antenna, into equation (1-17) gives

$$
\begin{align*}
{[\vec{A}] } & =\frac{-I_{i} \vec{a}_{h} \mu_{0}}{2 \pi} \int \frac{\cos \left[\beta\left(\frac{n \lambda}{8}+h\right)\right] e^{j w\left(t-\frac{r}{c}\right)}}{r} d h \\
& =\frac{-I_{i} \vec{I}_{h} \mu_{0}}{2 \pi} \int \frac{\cos \left[\beta\left(\frac{n}{8} \lambda+h\right)\right] e^{j(w t-B r)}}{r} d h \tag{1-13}
\end{align*}
$$

1-4 The Induced EMF on the Reflecting Loop

Set the cubical antenna in rectingular coordinates with the two identical loops parallel and with their centers on the same axis, as shown in fig. 1-5. The four sides of the radiating loop are marked $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}$ respectively, while the four sides of the reflecting loop are marked $\mathrm{L}_{\mathrm{I}}, \mathrm{L}_{\text {II' }} \mathrm{L}_{\text {III' }} \mathrm{L}_{\mathrm{IV}}$.

Fig. 1-5

The current and charge distribution on the radiating loop have been shown in fig. 1-1 and fig. 1-4. The points a, b, c, d, e, f, g and i on the loop are the same as those of fig. 1-1 and fig. 1-4.

Knowing the current and charge distribution, the retarded vector potential \vec{A} and the retarded scalar potential V may be obtained by equations (1-13) and (1-10). Knowing the retarded scalar potential and retarded vector potential, the electric field is everywhere obtainable from the relation

$$
\begin{equation*}
\vec{E}=-\nabla V-\frac{\partial \vec{A}}{\partial t} \tag{1-19}
\end{equation*}
$$

where

$$
\nabla=\vec{a}_{x} \frac{\partial}{\partial X}+\vec{a}_{y} \frac{\partial}{\partial y}+\vec{a}_{z} \frac{\partial}{\partial z}
$$

Since the field intensities are superposable by vector addition, the four sides of the radiating loop can be treated as four radiating elements. Each clement induces an emf at a point on the reflecting loop. The vector sum of the four emfs will be the total eaf duo to the radiating loop. The following sections deal with this kind of derivation.

1-5 The Induced EMF in the z Diroction Due to the Current Element in the 2 Direction

In the following derivation let the current clement be coincident with the z-axis. A point on the curront element is designated h. A point in space is given in rectangular coordinates by $P(x, y, z)$. The electric field intensity at $P(x, y, z)$ is

$$
\begin{equation*}
\vec{E}=-\nabla V-\frac{\partial \vec{A}}{\partial t} \tag{1-19}
\end{equation*}
$$

where

$$
\begin{aligned}
\nabla V= & \text { The gradient of retarded scalar potential } \\
& \text { at point } P(x, y, z) \\
\nabla V= & \vec{a}_{x} \frac{\partial V}{\partial x}+\vec{a}_{Y} \frac{\partial V}{\partial Y}+\vec{a}_{z} \frac{\partial V}{\partial z} \\
\vec{A}= & \text { The retarded vector potential at point } \\
& P(x, y, z)
\end{aligned}
$$

Wen only the z component of the electric field is required equation (1-19) reduces to

$$
\begin{equation*}
E_{z}=-\frac{\partial V}{\partial z}-\frac{\partial A_{z}}{\partial t} \tag{1-20}
\end{equation*}
$$

Fig. 1-6
Introducing the retarded scalar potential V and the retarded vector potential \vec{A} into equation (1-20)

$$
\begin{aligned}
& -\frac{\partial A_{z}}{\partial t}=\frac{j w I_{i} \mu_{0}}{2 \pi} \int \frac{\cos \left[B\left(\frac{n \lambda}{8}+h\right)\right]_{e}^{j(w t-\beta r)}}{r} d h \\
& \because \sin \left[\beta\left(\frac{n}{8} \lambda+h\right)\right]=\frac{1}{2 j}\left[e^{j \beta\left(\frac{n \lambda}{8}+h\right)}-e^{-j \beta\left(\frac{n}{8} \lambda+h\right)}\right] \\
& \cos \left[\theta\left(\frac{n}{8} \lambda+h\right)\right]=\frac{1}{2}\left[e^{j \theta\left(\frac{n \lambda}{8}+h\right)}+e^{-j \theta\left(\frac{n}{8} \lambda+h\right)}\right]
\end{aligned}
$$

$$
\begin{align*}
& -\frac{\partial A_{z}}{\partial t}=\frac{i w I_{j} \mu_{0}}{4 \pi} e^{j w t} \int \frac{e^{j \beta(\ell-r)}+e^{-j B(\ell+r)}}{r} d h \tag{1-21}
\end{align*}
$$

Substituting equations (1-21) and (1-22) into equation (1-20) yields

$$
E_{z}=-\frac{\partial V}{\partial z}-\frac{\partial A_{z}}{\partial t}
$$

$$
\begin{align*}
E_{z}= & -\frac{I i e^{j w t}}{4 \pi \epsilon_{0} C} \int \frac{\partial}{\partial z}\left[\frac{e^{j \beta(\ell-r)}-e^{-j \beta(\ell+r)}}{r}\right] d h \\
& +\frac{j w I_{i} \mu_{0} e^{j w t}}{4 \pi} \int \frac{e^{j \beta(\ell-r)}+e^{-j \beta(\ell+r)}}{r} d h \tag{1-23}
\end{align*}
$$

where $\ell=\frac{n \boldsymbol{\lambda}}{8}+h$ it is defined in equation (1-5)

$$
\begin{equation*}
w \mu_{0}=2 \pi f \frac{1}{c^{2} \epsilon_{0}}=\frac{2 \pi}{\lambda c \epsilon_{0}}=\frac{\beta}{\epsilon_{0} C} \tag{1-24}
\end{equation*}
$$

Substituting equation (1-24) into equation (1-23) yields

$$
\begin{align*}
E_{z}= & -\frac{I j e^{j w t}}{4 \pi \epsilon_{0} C} \int \frac{\partial}{\partial z} \frac{e^{j \beta(\hat{\ell}-r)}-e^{-j \beta(\ell+r)}}{r} d h \\
& +\frac{j I_{i} e^{j w t}}{4 \pi \epsilon_{0} C} \int \frac{e^{j \beta(\ell-r)}+e^{-j \beta(\ell+r)}}{r} d h \tag{1-25}
\end{align*}
$$

Equation (1-25) represents the field intensity at P due to the retarded charges and current. The integration of equation (1-25) is carried out everywhere along the Z axis. The total field intensity due to all the retarded charges and current distributed on the element of length H will be

$$
\begin{align*}
E_{z}=+ & \frac{I_{i} e^{j w t}}{4 \pi \epsilon_{0} C}\left\{\int_{0}^{H} \frac{\partial}{\partial z}\left[\frac{e^{-j \beta(\ell+r)}-e^{+j \beta(\ell-r)}}{r}\right] d h\right. \\
& \left.+j \beta \int_{0}^{H} \frac{e^{-j \beta(\ell+r)}+e^{j \beta(\ell-r)}}{r} d h\right\} \tag{1-26}
\end{align*}
$$

One can prove ${ }^{3}$

$$
\begin{equation*}
E_{z}=\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} C}\left[\frac{e^{j \beta(\ell-r)}}{r}-\frac{e^{-j \beta(\ell+r)}}{r}\right]_{0}^{H} \tag{1-27}
\end{equation*}
$$

r is a function of x, y, z, and $h ; l$ is a function of n and h.

$$
\begin{aligned}
& r=r(x, y, z, h) \\
& \ell=\ell(n, h)=\frac{n \pi}{8} \pm h
\end{aligned}
$$

When $h=H$, set

$$
r=r(x, y, z, I I)=r_{H}
$$

and

$$
\ell=\ell(\mathrm{n}, \mathrm{H})=\ell_{\mathrm{H}}
$$

when $h=0$, set

$$
\begin{align*}
& r=r(x, y, z, 0)=r_{0} \tag{1-28}\\
& \ell=\ell(n, 0)=\ell_{0}
\end{align*}
$$

Expanding equation (1-27) yields

$$
\begin{aligned}
E_{z} & =\frac{I_{j} e^{j \omega t}}{4 \pi \epsilon_{0} c}\left[\frac{e^{j \beta\left(\ell_{H}-r_{H}\right)}}{r_{H}}-\frac{e^{-j \beta\left(\ell_{H}+r_{H}\right)}}{r_{H}}-\frac{e^{j \beta\left(\ell_{0}-r\right)}}{r_{O}}+\frac{e^{-j \beta\left(\ell_{0}+r_{0}\right)}}{\Delta}\right] \\
& =\frac{I_{0} e^{j \omega t}}{4 \pi \epsilon_{0} c}\left[\frac{e^{-j \beta r_{H}}}{r_{H}}\left(e^{j \beta \ell_{H}}-e^{\left.-j \beta \ell_{H}\right)}+\frac{e^{-j B r_{0}}}{r_{0}}\left(e^{-j \beta \ell_{0}}-e^{j \beta l_{0}}\right)\right]\right.
\end{aligned}
$$

or $\quad E_{z L_{1}}=\frac{j I_{i} e^{j \omega t}}{2 \pi \epsilon_{0} C}\left[\frac{e^{-j \beta r_{H}}}{r_{H}} \sin \left(\beta \ell_{H}\right)-\frac{e^{-j \beta r_{0}}}{r_{0}} \sin \left(\beta \ell_{O}\right)\right]$

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}+(z-h)^{2}} \tag{1-29}
\end{equation*}
$$

$$
\ell_{\mathrm{H}}=\frac{\lambda}{8}+\mathrm{H} \quad, \ell_{0}=\frac{\lambda}{8}
$$

$E_{z L_{1}}$ is the induced emf in z direction due to the current and charges on L_{1}. Now if the point P is brought to the surface of L_{I} or $L_{\text {III }}$ equation (1-29) represents the tangential field intensity at P due to time-changing current distributed on L_{1}. For the field intensity due to current element L_{3}, it is necessary to consider the field due to the charges and the field due to the current separately.

Fig. 1-7

Looking back to the equation (1-26), it is understood that the first integral was the result of the retarded charges, while the second integral was the result of the retarded current. Charges on the side L_{3} were given by the equation (1-11) which is

$$
\begin{aligned}
& \text { ion (1-11) which is } \\
& P_{L}=\frac{2 I i \beta \sin \left[\beta\left(\frac{5 \lambda}{8}+h\right)\right] e^{j\left(w t+\frac{\pi}{2}\right)}}{w}
\end{aligned}
$$

where the positive h direction is in the negative z direction when the antenna is located as shown in fig. 1-7. Now if the positive h direction is changed to the positive z direction, the charge distribution on L_{3} can be expressed as

$$
\begin{equation*}
P_{I}=\frac{2 I_{i} \beta \operatorname{Sin}\left[\beta\left(\frac{7 \lambda}{8}-h\right)\right] e^{j\left(w t+\frac{\pi}{2}\right)}}{w} \tag{1-30}
\end{equation*}
$$

Hence, if $\ell=\frac{7 \lambda}{8}-h$ the first integral of the equation (1-26) represents the field intensity due to the charges on the side L_{3}.

In Fig. 1-2, the current on the side $i-g-f$ is flowing in the same direction as in b-c-d. However, in fig. 1-1, the current in $i-g-f$ is flowing in the reverse direction to that in $b-c-d$. Hence equation (1-4) requires a sign change when it is used in conjunction with L_{3}.

$$
I(l)=2 I_{i} \cos \left[\beta\left(\frac{5 \lambda}{8}+h\right)\right] e^{j w t}
$$

where the positive "h" direction is in the negative z direction. Now if the positive "h" direction is changed to the positive z direction, the current expression on L_{3} can be expressed as

$$
\begin{equation*}
I(\ell)=2 I_{i} \cos \left[\beta\left(\frac{Z \lambda}{8}-h\right)\right] e^{j \omega t} \tag{1-31}
\end{equation*}
$$

For the z direction field intensity due to the current element L_{3}, equation (1-26) can be used if

$$
\ell=\frac{7 \lambda}{8}-h
$$

and the sign of the second integral is chanted

$$
\begin{align*}
E_{z}= & \frac{I_{i} c^{j w t}}{4 T E_{0} C}\left[\int_{0}^{H} \frac{\partial}{\partial z} \frac{e^{-j \beta(\ell+r)}-e^{j \beta(\ell-r)}}{r} d h\right. \\
& \left.-j \beta \int_{0}^{H} \frac{e^{-j \beta(\ell+r)}+e^{j B(\ell-r)}}{r} d h\right] \tag{1-32}
\end{align*}
$$

It can be proved that ${ }^{4}$

$$
\begin{aligned}
& E_{z}=\frac{I}{4} \pi \frac{e^{j \omega t}}{\epsilon_{0} C}\left[\frac{e^{j \beta(\ell-r)}}{r}-\frac{e^{-j \beta(\ell+r)}}{r}\right]_{0}^{4} \\
& =\frac{I_{j} e j w t}{4 \pi \epsilon_{0} C}\left\{\left[\frac{e^{j \beta\left(\ell_{H}-\sum_{I I}\right)}}{r_{H}}-\frac{e^{-j \beta\left(\ell_{H}+r_{H}\right)}}{r_{H}}\right]\right. \\
& \left.-\left[\frac{e^{j \beta\left(\hat{l}_{0}-r_{0}\right)}}{r_{0}}-\frac{e^{-j \beta\left(\ell_{0}+r_{0}\right)}}{r_{0}}\right]\right\} \\
& =\frac{j I_{i} e^{j w t}}{2 \pi \varepsilon_{0} C}\left[\frac{e^{-j \beta r_{H}}}{r_{H}} \sin \left(\beta \ell_{I I}\right)-\frac{e^{-j \beta r_{0}}}{r_{O}} \sin \left(\beta L_{0}\right)\right]
\end{aligned}
$$

or

$$
\begin{aligned}
E_{z L_{3}} & =\frac{i I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left[\frac{e^{-j \beta r_{H}}}{r_{H}} \sin \left(\beta l_{H}\right)-\frac{\rho^{-j \beta r_{O}}}{r_{O}} \sin \left(\beta l_{0}\right)\right] \\
\text { where } r & =\sqrt{(x-H)^{2}+y^{2}+(z-h)^{2}} \\
\ell & =\frac{7 \lambda}{8}-h
\end{aligned}
$$

$E_{z L_{3}}$ is the induced emf in the z direction due to tho current and chases on L_{3}.

If point P is brought to the surface of L_{I} or $L_{\text {III }}$ equation (1-33) represents the induced emf on L_{I} or $L_{\text {III }}$ due to the charges and current on L_{3}.

4 in X Direction.

The induced emf at point P has been given by

$$
\vec{E}=-\nabla v-\frac{\partial \vec{A}}{\partial t}
$$

Particularly, if only the x componont of the electric ficld is required

$$
\begin{equation*}
E_{\mathbf{x}}=-\frac{\partial V}{\partial x}-\frac{\partial A_{x}}{\partial t} \tag{1-34}
\end{equation*}
$$

Exactly following the derivation of the last section, equation (1-34) can be expressed in the following form

$$
\begin{align*}
E_{x}= & \frac{I_{i} e^{j v t}}{4 \pi \epsilon_{0} C}
\end{align*}\left\{\begin{array}{l}
\left\{\int_{0}^{H} \frac{\partial}{\partial x}\left[\frac{e^{-j \beta(\ell+r)}-e^{j \beta(\ell-r)}}{r}\right] d h\right. \\
\left.\quad+j \beta \int_{0}^{H} \frac{e^{-j \beta(\ell-r)}+e^{+j \beta(\ell-r)}}{r} d h\right\} \tag{1-35}
\end{array}\right.
$$

Where the first integral is the result of the retarded scalar potential and the second integral is the result of the retarded vector potential. As was shown in §1-5, equation (1-35) becomes:

$$
\begin{gather*}
E_{X L_{2}}=\frac{j I_{i e^{j w t}}^{2 \pi \epsilon_{0} C}}{2}\left[\frac{e^{-j \beta r_{H}}}{r_{H}} \sin \left(\beta \ell_{H}\right)-\frac{e^{-j B r_{O}}}{r_{O}} \sin \left(\beta \ell_{0}\right)\right] \\
\text { where } r=\sqrt{(x-h)^{2}+y^{2}+(z-H)^{2}} \tag{1-36}\\
\ell_{H}=\frac{3}{8} \lambda+H \quad ; \quad \ell_{O}=-\frac{3}{8} \lambda
\end{gather*}
$$

If the point P is brought to the surface of $L_{I I}$ or $L_{I V}$, equation (1-36) represents the tangential induced emf on $L_{\text {II }}$ or $L_{I V}$ due to the current and charges on L_{2}.

For the field intensity due to the current element L_{4} equation (1-35) can be used, but requires some changes. Charges on the side L_{4} were given by equation (1-11) which is

$$
P_{L}=\frac{2 I_{i} \beta \sin \left[\beta\left(\frac{7 \lambda}{8}+h\right)\right] e^{j\left(w t+\frac{\pi}{2}\right)}}{w}
$$

Where the positive h direction is in the negative x direction. If the positive h direction is changed to the positive x direction, the charge distribution on L_{4} can be expressed as

$$
P_{L}=\frac{2 j I_{i} \beta \sin \left[\beta\left(\frac{\lambda}{8}-h\right)\right] e^{j w t}}{w}
$$

Hence, if

$$
\ell=\frac{\lambda}{8}-h
$$

the first integral of equation (1-35) represents the x
direction field intensity due to the charges on L_{4}.
In fig. 1-2 it was shown that the current on sides d-e-f and b-a-i flow in the opposite directions; while in fig. l-1 the currents flow in the same direction, Hッnce, the
expression for current on L_{4} must be changed in sign.

$$
I(l)=2 I_{i} \cos \left[\theta\left(\frac{7 \lambda}{8}+h\right)\right] e^{j w t}
$$

where the positive h direction is in the negative x direction, If the positive h direction is changed to the positive x direction, the current expression on L_{4} can be expressed as

$$
I(\ell)=2 I_{i} \cos \left[\theta\left(\frac{\lambda}{8}-h\right)\right] e^{j w t}
$$

If the sign of the second integral of equation (1-35)
is changed and ℓ is specified as

$$
\ell=\frac{\lambda}{8}-h
$$

The second integral of equation (1-35) represents the x direction field intensity due to the current on L_{4}. The x direction field intensity due to the current element L_{4} will be

$$
\begin{align*}
& E_{X L_{4}}=\frac{I i e^{j \omega t}}{4 \pi \epsilon_{0} C}\left\{\int_{0}^{H} \frac{\partial}{\partial x}\left[\frac{e^{-j \beta(\ell+r)}-e^{j \beta(\ell-r)}}{r}\right] d h\right. \\
& \left.-j \beta \int_{0}^{H} \frac{e^{-j \beta(\ell+r)}+e^{j \beta(\ell-r)}}{r} d h\right\} \tag{1-37}
\end{align*}
$$

Fig. 1-9

Observing that equations $(1-32)$ and (1-37) are of the same form. $\mathrm{E}_{\mathrm{XL}_{4}}$ can be witten:

$$
\begin{align*}
& E_{x L A}=\frac{i I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left[\frac{e^{-j \beta r_{H}}}{r_{H}} \sin \left(\beta l_{H}\right)-\frac{e^{-j \beta r_{O}}}{r_{O}} \sin \left(\beta l_{O}\right)\right] \\
& \text { where } r=\sqrt{(x-h)^{2}+y^{2}+z^{2}} \tag{1-38}\\
& \text { and } \quad \ell=\frac{\lambda}{8}-h
\end{align*}
$$

$$
\text { If the point } P \text { is brought to the surface of } L_{I I} \text { or } L_{I V}
$$

the equation (1-38) represents the tangential induced emf
on $L_{I I}$ or $L_{\text {IV }}$.
1-7 The Induced EMF in the x Direction at Point P Duc to

Charges Distributed along the z direction.

Fig. 1-10
The induced emf at a point P is given by equation (1-19).
In rectangular coordinates:

$$
\vec{E}=-\left(\vec{a}_{x} \frac{\partial v}{\partial x}+\vec{a}_{y} \frac{\partial v}{\partial y}+\vec{a}_{z} \frac{\partial v}{\partial z}\right)-\frac{\partial}{\partial t}\left(\vec{a}_{x} A_{x}+\vec{a}_{Y} A_{y}+\vec{a}_{z} A_{z}\right)
$$

If only the x direction field intensity is required,

$$
E_{x}=-\frac{\partial v}{\partial x}-\frac{\partial A_{x}}{\partial t}
$$

$A_{x}=0$, since the current element is in the z direction.
Hence $E_{x}=-\frac{\partial V}{\partial x}$
Equation (1-39) shows that the x direction field intensity at P is a function of only the charges on the current element. Introducing equation (1-13) into equation (1-39) with the limits of the integration from $h=0$ to $h=H$ yields.

$$
\begin{align*}
E_{x} & =-\frac{j^{I_{i} e^{j w t}}}{2 \pi \epsilon_{0} C} \int_{0}^{H} \frac{\partial}{\partial x}\left[\frac{\sin \left[\beta\left(\frac{n \lambda}{\delta}+h\right)\right]}{r} e^{-j \beta r}\right] d h \\
& =\frac{-j^{I} e^{j w t}}{2 \pi \epsilon_{0} C} \int_{0}^{H} \sin \left[\beta\left(\frac{n \lambda}{8}+h\right)\right] \frac{\partial}{\partial x}\left(\frac{e^{-j \beta r}}{r}\right) d h \tag{1-40}
\end{align*}
$$

where $r=\sqrt{\left(x-x_{1}\right)^{2}+y^{2}+(z-h)^{2}}$

$$
\begin{align*}
& \frac{\partial}{\partial x}\left(\frac{e^{-j \beta r}}{r}\right)=-\frac{j \beta\left(x-x_{1}\right) e^{-j \beta r}}{r^{2}}-\frac{\left(x-x_{1}\right) e^{-j \beta r}}{r^{3}} \tag{1-41}\\
& \sin \left[\beta\left(\frac{n \lambda}{8}+h\right)\right]=\sin (\beta \ell) \\
&=\frac{e^{j \beta \ell}-e^{-j \beta \ell}}{2 j} \tag{1-42}
\end{align*}
$$

Substituting equations (1-41) and (1-42) into equation (1-40)

$$
E_{x}=\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} c} \int_{0}^{H}\left(e^{i \beta(}-e^{-j \beta l}\right)\left[\frac{i \beta\left(x-x_{1}\right)}{r^{2}}+\frac{\left(x-x_{1}\right)}{r^{3}}\right] e^{-j \beta r} d h
$$

$$
\begin{align*}
E_{x}= & \frac{I_{j} e^{j w t}}{4 \pi \epsilon_{0} C}\left(x-x_{1}\right)\left[\int_{0}^{H} e^{j \beta(\ell-r)}\left(\frac{j \beta}{r^{2}}+\frac{1}{r^{3}}\right) d h-\int_{0}^{H} e^{-j \beta(\ell+r)}\left(\frac{j \beta}{4^{2}}+\frac{1}{r^{3}}\right) d h\right] \\
= & \frac{I_{j} e^{j w t}}{4 \pi \epsilon_{0} C}\left(x-x_{1}\right)\left[e^{j \beta \frac{n \lambda}{8}} \int_{0}^{H}\left(\frac{j \beta}{r^{2}}+\frac{1}{r^{3}}\right) e^{j \beta(h-r)} d h\right. \\
& \left.\left.-e^{-j \beta \frac{n \lambda}{3}} \int_{\left(\frac{j \beta}{H}\right.}^{r^{2}}+\frac{1}{r^{3}}\right) e^{-j \beta(h+r)} d h\right] \tag{1-43}
\end{align*}
$$

Equation (1-43) represents the x direction field intensity at P due to time-changing charges distributed on the current element of length H set in the z direction.

The first integrand of equation (1-43) turns out to be a perfect differential of the form ${ }^{5}$:

$$
\begin{equation*}
\frac{d}{d h} \frac{e^{j \beta(h-r)}}{r(r-h+z)} \tag{1-44}
\end{equation*}
$$

Also the second integrand of equation (1-43) turns out to be a perfect differential of the form ${ }^{6}$:

$$
\begin{equation*}
\frac{d}{d h}\left[-\frac{e^{-j \beta(h+r)}}{r(r+h-z)}\right] \tag{1-45}
\end{equation*}
$$

Thus equation (1-43) becomes

$$
\begin{align*}
E_{x}= & \frac{I_{i} e^{j w t}}{4 \pi \epsilon_{0} C}\left(x-x_{1}\right)\left\{e^{j \beta \frac{n \lambda}{8}}\left[\frac{e^{j \beta\left(H-r_{H}\right)}}{r_{H}\left(r_{H}-H+z\right)}-\frac{e^{j \beta r_{o}}}{r_{O}\left(r_{0}+z\right)}\right]\right. \\
& \left.+e^{-j \beta \frac{n \lambda}{8}}\left[\frac{e^{-j \beta\left(H+r_{H}\right)}}{r_{H}\left(r_{H}+H-z\right)}-\frac{e^{-j \beta r_{o}}}{r_{O}\left(r_{O}-z\right)}\right]\right\} \tag{1-46}
\end{align*}
$$

referring to fig. 1-9

$$
\begin{align*}
& r_{H}=\sqrt{\left(x-x_{1}\right)^{2}+y^{2}+(z-H)^{2}} \\
& r_{O}=\sqrt{\left(x-x_{1}\right)^{2}+y^{2}+z^{2}} \tag{1-47}
\end{align*}
$$

5,6, Appendix IT

Now if the current element is brought to coincide with I_{1}, in equation $(1-46), \mathrm{n}$ and x_{1} must be:

$$
\begin{aligned}
& n=1 \\
& \mathrm{x}_{1}=0 \\
& E_{x L_{1}}=\frac{I i^{j} e^{j \omega t}(x)}{4 \pi \epsilon_{0} C}\left\{e^{j \beta \frac{\lambda}{8}}\left[\frac{e^{j \beta\left(H-r_{H}\right)}}{r_{H}\left(x_{H}-H+z\right)}-\frac{e^{-j \beta r_{0}}}{r_{0}\left(r_{0}+Z\right)}\right]\right. \\
& \left.+e^{-j \beta \frac{\lambda}{8}}\left[\frac{e^{-j \beta\left(H+r_{H}\right)}}{r_{H}\left(r_{H}+\bar{H}-z\right)}-\frac{e^{-j \beta r_{o}}}{r_{0}\left(r_{0}-z\right)}\right]\right\} \\
& \text { where } \quad r=\sqrt{x^{2}+y^{2}+(z-h)^{2}}
\end{aligned}
$$

If the point P is brought to the surface of L_{II} or $\mathrm{I}_{I V}$ of the reflecting loop, equation (1-48) represents the tangential induced emf on $L_{I I}$ or $L_{I V}$ due to charges on L_{1}. If the current element is brought to coincide with L_{3} as shown in fig. 1-11 equation (1-43) is still valid, but x_{1} and r must be changed to

$$
\begin{aligned}
\mathrm{x}_{1} & =\mathrm{H} \\
r & =\sqrt{(x-H)^{2}+y^{2}+(z-h)^{2}}
\end{aligned}
$$

and ℓ must be changed to

$$
\ell=\frac{7 \lambda}{8}-h
$$

as was stated in section 1-5.

Fic. 1-11

Hence equation (1-43) becomes:

$$
\begin{align*}
E_{x L_{3}}= & \frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} C}(x-I)\left\{e^{j \beta \frac{2 \lambda}{\beta}} \int_{0}^{H}\left(\frac{j \beta}{r^{2}}+\frac{1}{r^{3}}\right) e^{-j \beta(h+r)} d h_{1}\right. \\
& \left.-e^{-j \beta \frac{7 \lambda}{8}} \int_{0}^{H}\left(\frac{j \beta}{r^{2}}, \frac{1}{r^{3}}\right) e^{j \beta(h-r)} d h\right\} \tag{1-43a}
\end{align*}
$$

The first integrand of the equation (1-43a) turns out to to be a porfect differential of the form ${ }^{7}$:

$$
\begin{equation*}
\frac{d}{d h}\left[-\frac{c^{j B(h+r)}}{r(r+h-z)}\right] \tag{1-49}
\end{equation*}
$$

and the second integrand of the equation (1-43a) turns ont to be a perfect differential of the form ${ }^{6}$:

$$
\begin{equation*}
\frac{d}{d h}\left[\frac{e^{j \beta(h-r)}}{r(r-h+z)}\right] \tag{1-50}
\end{equation*}
$$

Thus equation (1-43a) becomes

$$
\begin{aligned}
E_{x}=\frac{I_{j} e^{j \omega t}}{4 T \epsilon_{n} C}(x-H)\left\{e^{j \beta \frac{7 \lambda}{8}}\right. & {\left[-\frac{e^{-j \beta(h+r)}}{r(r+h-z)}\right]_{0}^{H} } \\
& \left.-e^{-j \beta \frac{\eta \lambda}{8}\left[\frac{e^{j \beta(h-r)}}{r(r-h+z)}\right]_{0}^{H}}\right\}
\end{aligned}
$$

or

$$
\begin{align*}
& E_{x L_{3}}=\frac{I_{i c^{j \omega t}}}{4 \pi \varepsilon_{0} C}(x-H)\left\{e^{j \beta \frac{7 \lambda}{8}}\left[-\frac{e^{-j \beta\left(H+r_{H}\right)}}{r_{H}\left(r_{H}+H-z\right)}+\frac{o^{-j \beta r_{0}}}{r(r-h+z)}\right]\right. \\
& \left.+o^{-j \beta \frac{\lambda \lambda}{8}}\left[-\frac{e^{j \beta\left(\mathrm{I}-r_{H}\right)}}{r_{\mathrm{HI}}\left(r_{\mathrm{H}}-\mathrm{H}+z\right)}+\frac{\mathrm{o}^{-j \beta r_{o}}}{r_{\mathrm{O}}\left(r_{\mathrm{O}}+z\right)}\right]\right\} \tag{1-51}
\end{align*}
$$

where $r=\sqrt{(r-I I)^{2}+y^{2}+(z-h)^{2}}$
If the point p is brought to the surface of $L_{I I}$ or $L_{I V}$,
the equation (l-5l) represents the tangential induced emf on $L_{\text {II }}$ or $L_{I V}$ due to the charges on L_{3}.

1-8 The Induced EMF in the z Direction at Point P Due to

Charges Distributed Along the x Direction

The induced emf at point P is given by

$$
\begin{aligned}
\vec{E} & =-V V-\frac{\partial \vec{A}}{\partial t} \\
& =-\left(\vec{a}_{x} \frac{\partial v}{\partial x}+\vec{a}_{Y} \frac{\partial v}{\partial Y}+\vec{a}_{z} \frac{\partial V}{\partial z}\right)-\frac{\partial}{\partial t}\left(\vec{a}_{x} A_{x}+\vec{a}_{Y} A_{Y}+\vec{c}_{z} A_{z}\right)
\end{aligned}
$$

If only the z direction field intensity is required

$$
E_{z}=-\frac{\partial V}{\partial z}-\frac{\partial A z}{\partial t}
$$

Since $A_{Z}=0$

$$
\begin{equation*}
\therefore \quad E_{z}=-\frac{\partial v}{\partial z} \tag{1-52}
\end{equation*}
$$

Equation (1-52) shows that the z direction field intensity is caused by charges only. Introducing equation (1-13) into equation (1-52)

$$
\begin{equation*}
E_{z}=-\frac{j_{i} c^{j \omega t}}{2 \pi \epsilon_{6} c} \int \sin \beta\left(\frac{n \lambda}{\beta}, 1 .\right) \frac{\partial}{\partial z}\left(\frac{c^{-j \beta r}}{r}\right) d h \tag{1-53}
\end{equation*}
$$

where $:=\sqrt{(y-h)^{2}+y^{2}+\left(z-z_{1}\right)^{2}}$

$$
\begin{align*}
& \frac{\partial}{\partial z}\left(\frac{a^{-i \beta r}}{r}\right)=-\frac{j \beta\left(z-z_{1}\right) e^{-i \beta r}}{r^{2}}-\frac{\left(z^{\left.-z_{1}\right)} e^{-j \beta r}\right.}{r^{3}} \tag{1-54}\\
& \begin{aligned}
\sin \left[\beta\left(\frac{n \lambda}{\beta}+h\right)\right] & =\sin (\beta \ell) \\
& =\frac{e^{j \beta \ell}-c^{-j \beta \ell}}{2 j}
\end{aligned}
\end{align*}
$$

Substituting equations (1-54) and (1-55) into equation (1-53) yiclds

$$
\begin{align*}
E_{z} & =\frac{I_{j} e^{j w t}}{4 \pi \epsilon_{0} C} \int\left(e^{j \beta \ell}-e^{-j \beta \ell}\right)\left(\frac{j \beta\left(z-z_{l}\right) e^{-j \beta r}}{r^{2}}+\frac{\left(z-z_{1}\right) e^{-j \beta r}}{r^{3}}\right) d h \\
= & \frac{I_{j} o^{j \omega t}}{4 \pi \epsilon_{0} C}\left(z-z_{1}\right)\left[\int e^{j \beta(\ell-r)}\left(\frac{j \beta}{r^{2}}+\frac{1}{r^{3}}\right) d h\right. \\
& \left.-\int e^{-j \beta(\ell+r)}\left(\frac{j \beta}{r^{2}}+\frac{l}{r^{3}}\right) d h\right](1-56) \tag{1-56}
\end{align*}
$$

The field intensity due to the time-changing charges distributed on the current element of loneth if will be

$$
\begin{array}{r}
E_{z}=\frac{I j^{j w t}}{4 \pi=0 C}\left(z-z_{1}\right)\left\{e^{j \beta \frac{n \lambda}{3}} \int_{0}^{H}\left(\frac{j \beta}{r^{2}}+\frac{1}{r^{3}}\right) e^{j \beta(1-r)}\right. \\
-e^{-j \beta \frac{n \lambda}{3} \int_{0}^{H}\left(\frac{j \beta}{r^{2}}+\frac{1}{r^{3}}\right) n^{-j \beta(1+r)} \text { dn }} . \tag{1-57}
\end{array}
$$

The first ind the second int grares of equation (1-57) aro two perfoct differontial: as shom in section $1-6$

Honce, equation (1-57) becomes

$$
\begin{align*}
& =\frac{I_{i} c^{j \omega t}}{4 \pi \epsilon_{0} C}\left(z-z_{1}\right)\left\{j \beta \frac{n \lambda}{8}\left[\frac{e^{j \beta\left(H-r_{H}\right)}}{r_{H}\left(r_{H} H+x\right)}-\frac{e^{-j \beta r_{0}}}{r_{0}\left(r_{0}+x\right)}\right]\right. \\
& \left.+\left[\frac{c^{-j \beta\left(H+r_{H}\right)}}{r_{I I}\left(r_{H}+H-x\right)}-\frac{e^{-j \beta r_{0}}}{r_{0}\left(r_{0}-x\right)}\right] e^{-j \beta \frac{n \lambda}{8}}\right\} \tag{1-58}
\end{align*}
$$

Now if the current element is brought to coincide with L_{2} and the point P is brought to the surface of L_{I} or $L_{\text {III }}$, equation (1-33) becomes

$$
\begin{align*}
& \left.+\left[\frac{c^{-j \beta\left(H+r_{H}\right)}}{r_{H}\left(x_{H}+H-x\right)}-\frac{c^{-j \beta r_{o}}}{r_{o}\left(r_{o}-x\right)}\right] e^{-j \beta \frac{3 \lambda}{8}}\right\} \tag{1-50}
\end{align*}
$$

where

$$
r=\sqrt{(x-h)^{2}+y^{2}+(z-H)^{2}}
$$

Equation ($1-59$) represents the tangential induced emf on L_{I} or $L_{\text {III }}$ due to the charges distributed along L_{2}.

Now if the current element is brought to coincide with L_{4}, as shown in fig. 1-9, equation (1-57) is still valid, but y and z_{1} must be specified to

$$
r=\sqrt{(x-h)^{2}+y^{2}+z^{2}} \quad ; \quad z_{1}=0
$$

and ℓ must be changed to

$$
\ell=\frac{\lambda}{8}-h
$$

as was stated in section $1-6$. Substituting those conditions into equation (1-57) yields

$$
\begin{align*}
& E_{z L_{4}}=\frac{I_{i c} j w t}{4 \pi \epsilon_{0} C}(z)\left\{e ^ { j \beta \frac { \lambda } { 8 } } \int _ { 0 } ^ { H } \left(\frac{j \beta}{r^{2}}+\frac{1}{r^{3}}, e^{-j \beta(h+r)} d h\right.\right. \\
& \left.-e^{-j \beta \frac{\lambda}{8}} \int_{0}^{h}\left(\frac{j \beta}{r^{2}}+\frac{1}{r^{3}}\right) c^{j \beta(h-r)} d h\right\} \tag{1-60}
\end{align*}
$$

If the point P is brought to the surface of L_{I} or $L_{\text {III }}$, equation (1-62) represents the tangential induced emf on L_{I} or $L_{\text {III }}$ due to the charges on L_{4}.

1-9 The Total Tangential Induced EMF at a Point P on L_{I}

Fig. 1-13
Reforming to fig. $l-13$, the distances r_{1}, r_{2}, r_{3} and r_{1}
are given by the following equations:

$$
\begin{align*}
& r_{1}=\sqrt{y^{2}+z^{2}} \\
& r_{3}=\sqrt{\mathrm{H}^{2}+y^{2}+z^{2}}
\end{align*}
$$

$$
r_{2}=\sqrt{y^{2}+(e-I I)^{2}}
$$

$$
s_{4}=\sqrt{H^{2}+y^{2} \div(\mathrm{Fl}-z)^{2}}
$$

$$
\begin{align*}
& E_{z L_{4}}=\frac{I_{j} c^{j w t}}{\lambda \pi \epsilon_{0} C}(z)\left\{e^{j \beta \frac{\lambda}{C}}\left[\frac{c^{-j \beta\left(I I+r_{I I}\right)}}{r_{I I}\left(r_{H}+I I-\lambda\right)}+\frac{c^{-j \beta r_{0}}}{r_{0}\left(r_{0}-i\right)}\right]\right. \tag{1-6.1}\\
& +e^{-j \beta \frac{\lambda}{3}}\left[-\frac{e^{j \beta\left(H-r_{H}\right)}}{r_{H}\left(r_{H}-H+x\right)}+\frac{e^{-j \beta r_{O}}}{r_{O}\left(r_{O}+x\right)}\right] ? \tag{1-62}
\end{align*}
$$

where $I=\frac{\lambda}{4}$ for the cubical quad antenna.
Define

$$
\begin{aligned}
& \begin{aligned}
E_{I_{I}} L_{1}= & \text { the induced emf on the side } L_{I} \text { due to the } \\
& \text { charges and the current on } L_{1}
\end{aligned} \\
& \begin{aligned}
& E_{L} I_{L 2}= \text { the induced emf on the side } L_{I} \text { due to the } \\
& \text { charges on } L_{2}
\end{aligned} \\
& \text { charges on } L_{2} \\
& \begin{aligned}
\mathrm{E}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}_{3}}= & \text { the induced emf on the side } \mathrm{L}_{\mathrm{I}} \text { due to the } \\
& \text { charges and the current on } \mathrm{L}_{3}
\end{aligned} \\
& \begin{aligned}
\mathrm{E}_{\mathrm{LI}_{\mathrm{I}}} \mathrm{~L}_{4}= & \text { the induced emit on the spice } \mathrm{L}_{\mathrm{I}} \text { due to the } \\
& \text { charges on } \mathrm{L}_{4}
\end{aligned}
\end{aligned}
$$

The expression for $E_{L^{\prime}} \mathrm{L}_{1}$ is given by equation (1-29). In
this case $x=0, r_{H}=r_{2}, r_{0}=r_{1}$
$\therefore \quad E_{L_{I} L_{l}}=\frac{j I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left[\frac{\sin \left[\left(\beta \frac{3 \lambda}{8}\right)\right] e^{-j \beta r} 2}{r_{2}}-\frac{\sin \left(\beta \frac{\lambda}{8}\right) e^{-j \beta r_{1}}}{r_{1}}\right]$
Separating the real and the imaginary parts

$$
\begin{aligned}
& E_{L_{I} L_{l}}=\frac{j I_{i} e^{j w t}}{2 \pi \epsilon_{0} c}\left\{\frac{\sin \left(\beta \frac{3 \lambda}{8}\right) \cos \left(\beta r_{2}\right)}{r_{2}}-\frac{\sin \left(\frac{\beta \lambda}{\delta}\right) \cos \left(\beta r_{1}\right)}{r_{1}}\right. \\
& \left.+j\left[\frac{-\sin \left(\beta \frac{3 \lambda}{8}\right) \sin \left(\beta r_{2}\right)}{r_{2}}+\frac{\sin \left(\frac{\beta \lambda}{8}\right) \sin \left(\beta r_{1}\right)}{r_{1}}\right]\right\} \\
& = \\
& \\
& \quad \frac{I_{i} c j \omega t}{2 \pi \epsilon_{c} c}\left\{\frac{\left(\sin \left(\beta \frac{3 \lambda}{8}\right) \sin \left(\beta r_{2}\right)\right.}{r_{2}}-\frac{\sin \left(\frac{\beta \lambda}{8}\right) \sin \left(\beta r_{1}\right)}{r_{1}}\right. \\
& \\
& \left.\quad+j\left[\frac{\sin \left(\beta \frac{3 \lambda}{8}\right) \cos \left(\beta r_{2}\right)}{r_{2}}-\frac{\sin \left(\frac{\beta \lambda}{8}\right) \cos \left(\beta r_{1}\right)}{r_{1}}\right]\right\}(1-64)
\end{aligned}
$$

The expression for $E_{L_{I}} L_{3}$ is given by equation (1-3j).
In this case $x=0, r_{H}=r_{4}, r_{0}=r_{3}$

$$
E_{L_{I} L_{3}}=\frac{j I_{i} \epsilon^{j w t}}{2} \frac{\epsilon_{0} C}{}\left[\frac{e^{-j \beta r_{4}}}{r_{4}} \sin \left(\beta \frac{5 \lambda}{8}\right)-\frac{e^{-j \beta r_{3}}}{r_{3}} \sin \left(\beta \frac{7 \lambda}{8}\right)\right.
$$

Separating the real and the imaginary parts

$$
=\frac{I_{i} \mathrm{e}^{j \dot{\omega} t}}{2 \pi \epsilon_{0} r}\left[\left(\frac{\sin \left(\beta \frac{5 \lambda}{8}\right) \sin \left(\beta r_{4}\right)}{r_{4}}-\frac{\sin \left(\beta \frac{7 \lambda}{8}\right) \sin \left(\beta r_{3}\right)}{r_{3}}\right)\right.
$$

$$
\left.+j\left(\frac{\sin \left(\frac{\beta 5 \lambda}{3}\right) \cos \left(\beta r_{4}\right)}{r_{4}}-\frac{\sin \left(\frac{\beta 7 \lambda}{8}\right) \cos \left(\beta r_{3}\right)}{r_{3}}\right)\right]
$$

The expression for $\mathrm{E}_{\mathrm{L}_{\mathrm{I}} \mathrm{L}_{2}}$ is given by equation (1-59). In this cir ac

$$
\begin{aligned}
& \mathrm{x}=0, r_{\mathrm{FI}}=r_{4}, r_{0}=r_{2} \\
& E_{L_{I} L_{2}}=\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{c} C}(z-H)\left\{e^{j \beta \frac{3 \lambda}{8}}\left(\frac{e^{j \beta\left(H-r_{4}\right)}}{r_{4}\left(r_{4}-H\right)}-\frac{e^{-j \beta r_{2}}}{r_{2}^{2}}\right)\right. \\
& +e^{-j \beta \frac{3 \lambda}{8}}\left(-\frac{e^{-j \beta\left(\left[r_{4}\right)\right.}}{r_{4}\left(r_{4}+\mathrm{H}\right)}-\frac{e^{-j \beta r_{2}}}{r_{2}^{2}}\right), \\
& =\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} C}(z-H)\left[\frac{c^{j \beta\left(\frac{5 \lambda}{3}-r_{A}\right)}}{r_{4}\left(r_{4}-H\right)}+\frac{e^{-j \beta\left(\frac{5 \pi}{8}+r_{A}\right)}}{r_{4}\left(r_{4}+H\right)}\right. \\
& \left.-\frac{2 e^{-j \beta r_{2}}}{r_{2}^{2}} \cos \left(\beta \frac{3 \lambda}{8}\right)\right] \\
& =\frac{I_{j} e^{j \omega t}}{4 \pi \epsilon_{0} C}(z-H)\left\{c^{-j \beta r_{4}}\left(\frac{\left.e^{j \beta \frac{5 \lambda}{3}\left[r_{4}+I f\right.}\right]+0^{-j \beta \frac{5 \lambda}{8}}\left[r_{4}-H\right]}{r_{4}\left(r_{4}^{2}-H^{2}\right)}\right)\right. \\
& \left.-\frac{2 r^{-i \beta r} 2}{r_{2}^{2}} \cos \frac{3 \beta \lambda}{8}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{L}_{\mathrm{I}} \mathrm{~L}_{3}}=\frac{j I_{i} c^{j w t}}{2} \pi \epsilon_{c} \mathrm{E}\left\{\frac{\sin \left(\frac{\beta 5 \lambda}{8}\right)\left[\cos \left(\beta r_{4}\right)-j \sin \left(\beta r_{4}\right)\right]}{r_{4}}\right. \\
& \left.-\frac{\sin \left(\beta \frac{7 \lambda}{\theta}\right)}{r_{3}}\left[\cos \left(\beta r_{3}\right)-j \sin \left(\beta r_{3}\right)\right]\right\} \\
& =\frac{j I_{i c}{ }^{j} \omega t}{2 \pi \epsilon_{0} c}\left\{\frac{\sin \left(\beta \frac{5 \lambda}{8}\right) \cos \left(\beta r_{4}\right)}{r_{4}}-\frac{\sin \left(\frac{\beta 7 \lambda}{8}\right) \operatorname{coc}(\beta:-j)}{r_{3}}\right) \\
& \left.-j\left(\frac{\sin \left(\beta \frac{5 \lambda}{8}\right) \sin \left(\beta r_{4}\right)}{r_{4}}-\frac{\sin \left(\beta \frac{7 \lambda}{8}\right) \sin \left(\beta r_{3}\right)}{r_{3}}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& E_{L_{I} L_{2}}=\frac{I_{i} j v t}{4 \pi \epsilon_{0} C}(:-H)\left\{e^{-j \beta r_{4}\left(\frac{2 r_{4} \cos \left(\beta \frac{5 \lambda}{8}\right)+2 j H \sin \left(\beta \frac{5 \lambda}{3}\right.}{r_{4}\left(r_{4}^{2}-I^{2}\right)}\right)}\right. \\
& \left.-\frac{2 e^{-j \beta r_{2}}}{r_{2}^{2}} \cos \left(\frac{3 \beta \lambda}{8}\right)\right\} \\
& =\frac{I_{1} C^{j \% t}}{2 \pi t_{n} C}(\cdots-I)\left\{\begin{array}{l}
r_{4} \cos \left(\beta r_{4}\right) \cos \left(\frac{5 \beta \lambda}{8}\right)+H \sin \left(\beta r_{4}\right) \sin \left(\frac{5 \beta \lambda}{8}\right) \\
r_{4}\left(r_{4}^{2}-H^{2}\right)
\end{array}\right. \\
& \left.-\frac{\cos \left(\frac{3 \beta \lambda}{8}\right) \sin \left(\beta r_{2}\right)}{r_{2}^{2}}\right) \\
& +j \frac{H \sin \left(\frac{5 \beta \lambda}{8}\right) \cos \left(\beta r_{2}\right)-r_{4} \cos \left(\frac{5 \beta \lambda}{8}\right) \sin \left(\beta r_{4}\right)}{r_{4}\left(r_{4}^{2}-H^{2}\right)} \\
& \left.\left.+\frac{\cos \left(\frac{3 \beta \lambda}{8}\right) \sin \left(\beta r_{2}\right)}{r_{2}^{2}}\right)\right\} \tag{1-66}
\end{align*}
$$

The expression for $\mathrm{E}_{\mathrm{L}_{\mathrm{I}} \mathrm{L}_{4}}$ is given by equation (1-62). In this case

$$
\begin{aligned}
& x-0, r_{H}=r_{3}, r_{0}=r_{1} \\
& E_{L_{I} L_{A}}=\frac{I_{i} e^{j \omega t}}{4 \pi} \epsilon_{0} C(.)\left\{e^{j \beta \frac{\lambda}{8}}\left[-\frac{e^{-j \beta\left(H+r_{3}\right)}}{r_{3}\left(r_{3}+[1)\right.}+\frac{e^{-j \beta r_{1}}}{r_{1}^{2}}\right]\right. \\
& \left.+0-j \beta \frac{\lambda}{3}\left[-\frac{j \beta\left(H-r_{2}\right)}{r_{3}\left(r_{3}-I I\right)}+\frac{-i \beta r_{1}}{r_{1}^{2}}\right]\right\} \\
& =\frac{I_{1} e^{j w t}}{4 \pi \epsilon_{0} C}(:)\left\{-\left(\frac{e^{-j \beta\left(r_{3}+\frac{\lambda}{8}\right)}}{r_{3}\left(r_{3}+I I\right)}+\frac{e^{j \beta\left(\frac{\lambda}{6}-r_{3}\right)}}{r_{3}\left(r_{3}-1\right)}\right)\right. \\
& {\left[\frac{20^{-j \beta r} 1}{r_{1}^{2}} \cos \left(\frac{\beta \lambda}{0}\right)\right\}}
\end{aligned}
$$

$$
\begin{align*}
& E_{L_{I} L_{4}}=\frac{I_{j e} e^{j \omega t}}{4 \pi \epsilon_{6} C}(z)\left\{-e^{-j \beta r_{3}}\left[\frac{\left(r_{3}-H\right)^{-j \beta \frac{\lambda}{8}}+\left(r_{3}+H\right)^{j \beta \frac{\lambda}{8}}}{r_{3}\left(r_{3}^{2}-H^{2}\right)}\right]\right. \\
& +\frac{2 e^{-j \beta r_{1}}}{r_{1}^{2}} \cos \left(\beta \frac{\lambda}{\beta}\right) ; \\
& =\frac{r_{i} e^{j v t}}{4 \pi \epsilon_{o} C}(z)\left\{-e^{-j \beta r_{3}} \frac{2 r_{3} \cos \left(\frac{\beta \lambda}{8}\right)+2 H j \sin \left(\frac{\beta \lambda}{\prime}\right)}{r_{3}\left(r_{3}^{2}-H^{2}\right)}\right. \\
& \left.+\frac{2 e^{-j \beta r_{1}}}{r_{1}^{2}} \cos \left(\beta \frac{\pi}{8}\right)\right\} \\
& =\frac{I_{i c j} v t}{2 \pi \epsilon_{0} C}(z)\left\{-\frac{r_{3} \cos \left(\beta r_{3}\right) \cos \left(\frac{\beta \lambda}{\delta}\right)+H \sin \left(\beta r_{3}\right) \sin \left(\frac{\beta \lambda}{\delta}\right)}{r_{3}\left(r_{3}^{2}-H^{2}\right)}\right. \\
& +\frac{\cos \left(\beta r_{1}\right) \cos \left(\frac{\beta \lambda}{8}\right)}{r_{1}^{2}} \\
& +j\left[\frac{r_{3} \sin \left(\beta r_{3}\right) \cos \left(\frac{\beta \lambda}{8}\right)-H \cos \left(\beta r_{3}\right) \sin \left(\beta \frac{\lambda}{8}\right)}{r_{3}\left(r_{3}^{2}-H^{2}\right)}\right. \\
& \left.\left.-\frac{\sin \left(\beta r_{1}\right) \cos \left(\beta \frac{\pi}{8}\right)}{r_{2}^{2}}\right]\right\} \tag{1-67}
\end{align*}
$$

$E_{L_{I}}=$ the total tangential induced emf at a point P on L_{I}

$$
\begin{equation*}
=E_{L_{L_{1}} L_{1}}+E_{L_{I_{2}} L_{2}}+E_{L_{I^{\prime}}}+E_{L_{I^{\prime}} L_{\Lambda}} \tag{1-68}
\end{equation*}
$$

1-10 The Total Tangential Induced EMF at a point P on $I_{I I}$

Fid. 1-14

Referring to fig. 1-14, the distances r_{5}, r_{6}, r_{7} and r_{8} are given by the following carnations.

$$
\begin{array}{ll}
r_{5}=x^{2}+y^{2} & r_{6}=\sqrt{(I-x)^{2}+y^{2}} \\
r_{7}=\sqrt{x^{2}+y^{2}+H^{2}} & r_{8}=\sqrt{(x-I 1)^{2}+y^{2}+H^{2}}
\end{array}
$$

Define $\quad E_{L_{I I} L_{1}}=\begin{aligned} & \text { the tangential induced emf on } L_{I I} \text { due to }\end{aligned}$

$$
\mathrm{E}_{\mathrm{L}_{\mathrm{II}} \mathrm{~L}_{2}}=\text { the tangential induced emf on } \mathrm{L}_{\mathrm{II}} \text { due to }
$$

$$
\mathrm{E}_{\mathrm{L}_{\mathrm{II}} \mathrm{~L}_{3}}=\begin{aligned}
& \text { the tangential induced emf on } \\
& \text { charges on } \mathrm{L}_{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{L}_{\mathrm{II}} \mathrm{~L}_{4}}= & \text { the tangential induced emf on } L \text { charges and the current on } L_{4}
\end{aligned}
$$ The expression for $E_{L_{I I} L_{1}}$ is given by equation (1-48) where

$$
\begin{aligned}
Z= & H_{1 I}=r_{5}, r_{0}=r_{7} \\
E_{L_{I I} L_{1}}= & \frac{I_{i} e^{j \omega t}}{4 \pi E_{0} C}(x)
\end{aligned} \begin{aligned}
&\left\{e^{j \beta \frac{\lambda}{8}}\left[\frac{e^{j \beta\left(I-r_{5}\right)}}{r_{5}^{2}}-\frac{e^{-j \beta r_{7}}}{r_{7}\left(r_{7}+H\right)}\right]\right. \\
&\left.+e^{-j \beta \frac{\lambda}{8}}\left[\frac{e^{-j \beta\left(H+r_{5}\right)}}{r_{5}^{2}}-\frac{e^{-j \beta r_{7}}}{r_{7}\left(r_{7}-H\right)}\right]\right\}
\end{aligned}
$$

Soparoting the real and the imaninary parts

$$
\begin{aligned}
& E_{L_{I I} L_{1}}=\frac{I_{i} c^{j v t}}{4} \pi \epsilon_{0} C(x)\left\{\frac{2 e^{-j \beta r_{5}}}{r_{5}^{2}} \cos \left[\beta\left(\frac{\lambda}{8}+H\right)\right]\right. \\
& \left.-\mathrm{e}^{-j \beta r_{7}}\left[\frac{2 r_{7} \cos \left(\beta \frac{\lambda}{8}\right)-2 j H \sin \left(\beta \frac{\lambda}{3}\right)}{r_{7}\left(r_{7}^{2}-A^{2}\right)}\right]\right\} \\
& =\frac{I_{i c j \omega t}}{2 \pi \epsilon_{0} C}(x)\left\{\frac{e^{-j \theta r_{5}}}{r_{5}^{2}} \cos \left(8 \frac{3 \lambda}{3}\right)\right. \\
& \left.-e^{-j \operatorname{Rr}} 7\left[\frac{r_{7} \cos \left(8 \frac{\lambda}{8}\right)-j 11 \sin \left(3 \frac{\lambda}{\lambda}\right)}{r_{7}\left(r_{7}^{2}-H^{2}\right)}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
E_{L_{I I} L_{I}}=\frac{I_{i c} j w t}{2 \pi \epsilon_{0} C}(x)\{ & \left(\frac{r_{7} \cos \left(\beta r_{7}\right) \cos \left(\beta \frac{\lambda}{\beta}\right)}{r_{7}\left(r_{7}^{2}-I^{2}\right)}\right. \\
& \left.+\frac{\cos \left(\beta r_{7}\right) \cos \left(\beta \frac{3 \lambda}{\beta}\right)}{r_{5}^{2}}\right) \sin \left(\beta \frac{\lambda}{\beta}\right)
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.-i \frac{r_{7} \sin \left(\beta r_{7}\right) \cos \left(\beta \frac{\lambda}{8}\right)+H \cos \left(\beta r_{7}\right) \sin \left(\beta \frac{\lambda}{8}\right)}{r_{7}\left(r_{7}^{2}-H^{2}\right)}-\frac{\sin \left(\beta r_{5}\right) \cos \left(\beta \frac{3 \lambda}{8}\right)}{r_{5}^{2}}\right]\right\} \tag{1-69}
\end{equation*}
$$

The expression for $E_{L_{I I}} L_{2}$ is given Bi $_{2}$ equation (1-36) Where

$$
\begin{align*}
Z=H, & r_{H}=r_{6}, r_{0}=r_{5} \\
E_{L_{I I} L_{2}} & =\frac{j I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left\{\frac{e^{-j \beta r_{6}}}{r_{6}} \sin \left[\beta\left(\frac{3 \lambda}{8}+H\right)\right]-\frac{e^{-j \beta r_{5}}}{r_{5}} \sin \left(\frac{3 \lambda}{8} \beta\right)\right\} \\
= & \frac{j I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}
\end{align*}\left\{\begin{array}{l}
\left(\frac{\sin \left(\beta \frac{5 \lambda}{8}\right) \cos \left(\beta r_{6}\right)}{r_{6}}-\frac{\sin \left(\beta \frac{3 \lambda}{8}\right) \cos \left(\beta r_{5}\right)}{r_{5}}\right) \\
= \\
\frac{I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left\{\left(\frac{\sin \left(\beta \frac{5 \lambda}{8}\right) \sin \left(\beta r_{6}\right)}{r_{6}}-\frac{\sin \left(\beta \frac{5 \lambda}{8}\right) \sin \left(\beta r_{6}\right)}{r_{6}}+\frac{\sin \left(\beta \frac{3 \lambda}{8}\right) \sin \left(\beta r_{0}\right)}{r_{5}}\right)\right\} \\ \tag{1-70}
\end{array}\right.
$$

The expression for $\mathrm{E}_{\mathrm{L}_{I I} \mathrm{~L}_{3}}$ is given by equation (1-5I) where

$$
Z=H, r_{H}=r_{6}, r_{0}=r_{8}
$$

$$
\begin{align*}
& E_{L_{I I} L_{3}}=\frac{I_{i} e^{j w t}}{4 \pi E_{6} C}(\gamma-H) \quad\left\{e^{j \beta \frac{7 \lambda}{8}}\left[-\frac{e^{-j \beta\left(11+r_{6}\right)}}{r_{6}^{2}}+\frac{e^{-j \beta r_{8}}}{r_{8}\left(r_{8}-H\right)}\right]\right. \\
& \left.+e^{-j \beta \frac{7 \lambda}{8}}\left[-\frac{e^{j \beta\left(H-r_{6}\right)}}{r_{6}^{2}}+\frac{e^{-j \beta r_{8}}}{r_{8}\left(r_{8}+H\right)}\right]\right\} \\
& =\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} C}(x-F)\left[e^{-j \beta r_{2}}\left[-\frac{e^{j \beta \frac{5 \lambda}{8}}+e^{-j \beta \frac{5 \lambda}{8}}}{r_{6}^{2}}\right]\right. \\
& \left.+e^{-j \beta r_{8}}\left[\frac{\left(r_{8}+H\right) e^{j \beta \frac{7 \lambda}{8}+\left(r_{8}-H\right)} e^{-j \beta \frac{7 \lambda}{8}}}{r_{8}\left(r_{8}^{2}-H^{2}\right)}\right]\right\} \\
& =\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} C}(x-H)\left\{\frac{-2 \cos \left(\frac{5 \beta \lambda}{8}\right)^{-j \beta r_{6}}}{r_{6}^{2}}\right. \\
& +c^{-j \beta r_{8}}\left(\frac{2 r_{8} \cos \left(\beta \frac{7 \lambda}{8}\right)+2 j H \sin \left(\beta \frac{7 \lambda}{8}\right)}{r_{8}\left(r_{8}^{2}-H^{2}\right)}\right) \text { ? } \\
& =\frac{I_{i} c^{j w t}}{2 \pi s_{c} C}(x-H)\left\{\frac{\cos \left(\beta \frac{5 \lambda}{8}\right) \cos \left(\beta r_{6}\right)-j \cos \left(\beta \frac{5 \lambda}{8}\right) \sin \left(\beta r_{6}\right)}{r_{6}^{2}}\right. \\
& +\frac{r_{8} \cos \left(\beta \frac{7 \lambda}{8}\right) \cos \left(\beta r_{8}\right)+H \sin \left(\beta \frac{7 \lambda}{8}\right) \sin \left(\beta r_{8}\right)}{r_{8}\left(r_{8}^{2}-H^{2}\right)} \\
& +j\left(-r_{8} \cos \left(\beta \frac{7 \lambda}{8}\right) \sin \left(\beta r_{8}\right)+H \sin \left(\beta \frac{7 \lambda}{8}\right) \cos \left(\beta r_{8}\right),\right\rangle \\
& =\frac{I_{i c^{j}}{ }^{j \omega t}}{2 \pi \epsilon_{0} c}(x-1)\left[-\frac{\cos \left(\beta^{\frac{5 \lambda}{8}}\right) \cos \left(\beta r_{6}\right)}{r_{6}^{2}}\right. \\
& +\frac{r_{8} \cos \left(\beta \frac{7 \lambda}{8}\right) \cos \left(\beta r_{8}\right)+H \sin \left(3 \frac{7 \lambda}{8}\right) \sin \left(\beta r_{8}\right)}{r_{8}\left(r_{8}^{2}-H^{2}\right)} \\
& +j\left(\frac{\cos \left(\beta \frac{5 \lambda}{8}\right) \sin \left(\beta r_{6}\right)}{r_{6}^{2}}\right. \\
& \left.\left.-\frac{r_{8} \cos \left(\beta \frac{7 \lambda}{8}\right) \sin \left(\beta r_{8}\right)-\mathrm{F}: \operatorname{in}\left(\beta \frac{7 \lambda}{8}\right) \cos \left(\beta r_{8}\right)}{r_{8}\left(r_{8}^{2}-H^{2}\right)}\right)\right\} \tag{1-71}
\end{align*}
$$

$$
\text { Thio opression for } \dot{E}_{\mathrm{L}_{I I} L_{t_{5}}} \text { is wiven by equation (1-38) }
$$

where

$$
z=\mathrm{H}, \mathrm{r}_{\mathrm{fi}}=\mathrm{r}_{8}, r_{0}=r_{?}
$$

$$
\begin{aligned}
& E_{L_{I I} L_{i}}=\frac{j I_{i c} C^{j W}}{2 \pi \epsilon_{0} C}\left\{\frac{e^{-j \beta r}}{r_{B}} \sin \left(\frac{7 B \lambda}{8}\right)-\frac{e^{-j B r_{y}}}{r_{\gamma}} \sin \left(\frac{\beta \lambda}{8}\right)\right\} \\
& =\frac{j I_{i} e^{j v t}}{2 \pi \epsilon_{0} C}\left\{\frac{\sin \left(\frac{\beta 7 \lambda}{R}\right)}{8}\left[\cos \left(\beta r_{0}\right)-i \sin \left(\beta r_{0}\right)\right]\right. \\
& \left.-\frac{\sin \left(\beta \frac{\lambda}{r_{7}}\right)}{7}\left[\cos \left(\beta r_{7}\right)-j \sin \left(\beta r_{7}\right)\right]\right\} \\
& =\frac{j I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left\{\left(\frac{\sin \left(\beta \frac{7 \lambda}{8}\right) \cos \left(\beta r_{8}\right)}{r_{8}}-\frac{\sin \left(\beta \frac{\lambda}{8}\right) \cos \left(\beta r_{7}\right)}{r_{7}}\right)\right. \\
& \left.-j\left(\frac{\sin \left(\beta \frac{7}{8}\right) \sin \left(\beta r_{8}\right)}{r_{3}}-\frac{\sin \left(\beta \frac{\lambda}{8}\right) \sin \left(\beta r_{7}\right)}{r_{7}}\right)\right\} \\
& =\frac{I_{i c} j w t}{2 \pi \epsilon_{0} C}\left\{\frac{\sin \left(\beta \frac{7 \lambda}{\delta}\right) \sin \left(\beta r_{\beta}\right)}{r_{\beta}}-\frac{\sin \left(\beta \frac{\lambda}{\delta}\right) \sin \left(\beta r_{7}\right)}{r_{7}}\right. \\
& \left.+j\left(\frac{\sin \left(\beta \frac{7 \lambda}{\beta}\right) \cos \left(\beta r_{\Omega}\right)}{r_{8}}-\frac{\sin \left(\beta \frac{\lambda}{8}\right) \cos \left(\beta r_{7}\right)}{r_{7}}\right)\right\}
\end{aligned}
$$

$$
\begin{equation*}
E_{L_{I I}}=E_{L_{I I} L_{I}}+E_{L_{I I} L_{2}}+E_{L_{I I} L_{3}}+E_{L_{I I}} L_{4} \tag{1-73}
\end{equation*}
$$

1-11 The Total Tincontial Induced EMF at a point P on SII

Define $E_{L_{\text {III }} L_{1}}=\begin{aligned} & \text { the induced emf on } \\ & \text { and the current on } \\ & L_{L I I}\end{aligned}$ ${ }^{\mathrm{E}_{\mathrm{LIII}^{\mathrm{L}}}}{ }=$ the induced emf on $\mathrm{L}_{\text {III }}$ due to the cirarcies on ${ }^{E_{L_{\text {III }}}} \mathrm{L}_{3}=$ the induced em on $\mathrm{L}_{\text {III }}$ and the current on L_{3} die the charges ${ }^{\mathrm{E}_{\mathrm{L}_{\text {III }}} \mathrm{L}_{4}=\text { the induced emf on } \mathrm{L}_{\text {III }} \text { on } \mathrm{L}_{4}}$ due to the charges The expression for $E_{L_{I I I}} L_{1}$ is given by equation (1-29) where

$$
\begin{align*}
& \mathrm{X}=\mathrm{H}, \mathrm{r}_{\mathrm{HI}}=\mathrm{r}_{4} \text {, or } \mathrm{r}_{\mathrm{O}}=r_{3} \\
& E_{L_{I I I} L_{1}}=\frac{j I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left[\frac{e^{-j \beta r_{4}}}{r_{4}} \sin \left(\beta \frac{3 \lambda}{\beta}\right)-\frac{c^{-j \beta r_{3}}}{r_{3}} \sin \left(\beta \frac{\lambda}{n}\right)\right] \\
& =\frac{j I_{i} e^{j \omega t}}{2 \pi \epsilon_{0} C}\left[\frac{\sin \left(\frac{\beta j \lambda}{\delta}\right)\left[\cos \left(\beta x_{2}\right)-j \sin \left(B r_{i}\right) j\right.}{r_{4}}\right. \\
& \left.-\frac{\sin \left(\frac{\beta \lambda}{8}\right)\left[\cos \left(\beta r_{3}\right)-j \sin \left(\beta r_{3}\right)\right]}{r_{3}}\right] \\
& =\frac{j^{I_{i}} c^{j \operatorname{lnt}}}{2 \pi \epsilon_{0} c}\left\{\left(\frac{\sin \left(\beta \frac{3 \lambda}{8}\right) \cos \left(\beta r_{A}\right)}{r_{4}}-\frac{\sin \left(\beta \frac{\lambda}{8}\right) \cos \left(\beta r_{3}\right)}{r_{3}}\right)\right. \\
& \left.-j\left(\frac{\sin \left(\beta \frac{3 \lambda}{\tau}\right) \sin (\beta r 4)}{r_{4}}-\frac{\sin \left(\beta \frac{\lambda}{8}\right) \sin \left(\beta_{3}\right)}{3}\right)\right\} \\
& =\frac{I_{i} \mathrm{e}^{j \omega t}}{2 \pi \epsilon_{0} C}\left\{\left(\frac{\sin \left(\beta \frac{3 \lambda}{\sigma}\right) \sin \left(\beta^{r}{ }_{4}\right)}{r_{1}}-\frac{\sin \left(\beta \frac{\lambda}{c}\right) \sin \left(\beta^{r}\right)}{r_{3}}\right)\right. \\
& \left.-j\left(\frac{\sin \left(\beta \frac{3 \lambda}{\delta}\right) \cos \left(\beta r_{4}\right)}{r_{4}}-\frac{\sin \left(\beta \frac{\lambda}{8}\right) \cos \left(\beta r_{3}\right)}{r_{3}}\right)\right\} \tag{1-74}
\end{align*}
$$

$$
\text { The expression for } E_{L_{I I I}} L_{2} \text { is ;iven by equation (1-59) }
$$

where

$$
\mathrm{x}=\mathrm{H}, \quad \mathrm{r}_{\mathrm{H}}=\mathrm{r}_{2}, \quad \mathrm{r}_{\mathrm{o}}=\mathrm{r}_{4}
$$

$$
\begin{align*}
& E_{L_{I I I} L_{2}}=\frac{I_{j} e^{j w t}}{4 \pi \epsilon_{0} C}(z-H)\left\{e^{j\left(\frac{\beta 3 \lambda}{8}\right)}\left[\frac{e^{j \beta(1-r)}}{r_{3}^{4}}-\frac{e^{-j \beta r_{4}}}{I_{i n}^{(2+I I)}}\right]\right. \\
& +0^{-j \frac{33 \lambda}{V}}\left[\frac{e^{-i \beta(r+\cdots 2)}}{r_{2}^{2}}-\frac{e^{-j \beta r_{4}}}{r_{4}\left(r_{4}-I\right)}\right] \text {, } \\
& =\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} c}(z-H)\left[e^{-j \beta r_{2}}\left[\frac{e^{j \frac{\beta 5 \lambda}{8}}+e^{-j \frac{\beta 5 \lambda}{8}}}{r_{2}^{2}}\right]\right. \\
& \left.-e^{-j \beta r_{4}}\left[\frac{\left(r_{4}-H\right) e^{j \frac{\beta 3 \lambda}{8}}+\left(r_{4}+H\right) e^{-j \frac{\beta 3 \lambda}{8}}}{r_{4}\left(r_{4}^{2}-H^{2}\right)}\right]\right\} \\
& =\frac{I_{j} e^{j w t}}{4 \pi \epsilon_{n} C}(z-H)\left\{\frac{2 e^{-j \beta r_{2} \cos \left(\beta \frac{5 \lambda}{8}\right)}}{r_{2}^{2}}\right. \\
& \left.-e^{-j \beta r_{4}}\left[\frac{2 r_{4} \cos \left(\frac{\beta 3 \lambda}{8}\right)-2 j H \sin \left(\frac{\beta 3 \lambda}{8}\right)}{r_{4}\left(r_{4}^{2}-H^{2}\right)}\right]\right\} \\
& =\frac{I_{i} e^{j w t}}{4 \pi \epsilon_{0} C}(z-H)\left\{\frac{-r_{4} \cos \left(\beta r_{4}\right) \cos \left(\frac{\beta 3 \lambda}{8}\right)+H \sin \left(\beta r_{4}\right) \sin \left(\beta \frac{3 \lambda}{8}\right)}{r_{4}\left(r_{4}-H^{2}\right)}\right. \\
& \left.+\frac{\cos \left(\beta r_{2}\right) \cos \left(\beta \frac{5 \lambda}{8}\right)}{r_{2}^{2}}\right) \\
& +j\left(\frac{r_{4} \sin \left(\beta r_{4}\right) \cos \left(\beta \frac{3 \lambda}{3}\right)+H \cos \left(\beta r_{4}\right) \sin \left(\beta \frac{3 \lambda}{3}\right)}{r_{4}\left(r_{4}^{2}-H^{2}\right)}\right. \\
& \left.\left.-\frac{\sin \left(\beta r_{2}\right) \cos \left(\beta \frac{5 \lambda}{8}\right)}{r_{2}^{2}}\right)\right\} \tag{1-75}\\
& \text { The expression for } E_{L_{I I I} L_{3}} \text { is given by equation (1-33) } \\
& \mathrm{X}=\mathrm{H}, \quad \mathrm{r}_{\mathrm{H}}=\mathrm{r}_{2}, \mathrm{r}_{\mathrm{O}}=\mathrm{r}_{1} \\
& E_{L_{I I I} L_{3}}=\frac{j I_{j c}{ }^{j w t}}{2 \pi \epsilon_{0} C}\left\{\frac{c^{-j \beta r_{2}}}{r_{2}} \sin \left(\frac{5 \beta \lambda}{8}\right)-\frac{c^{-j \beta r_{1}}}{r_{1}} \sin \left(\frac{7 \beta \lambda}{8}\right)\right\}
\end{align*}
$$

where
$\mathrm{E}_{\mathrm{LIII}_{3} L_{3} \frac{\pi_{1} o^{j=t}}{2 \pi \epsilon_{0} C}}\left[\frac{\sin \left(\beta \frac{5 \lambda}{8}\right)\left[\cos \left(\beta r_{2}\right)-j \sin \left(\beta r_{2}\right)\right]}{r_{2}}-\frac{\sin \left(\beta \frac{7 \lambda}{8}\right)\left[\cos \left(\beta r_{1}\right)-j \sin \left(\beta r_{1}\right)\right]}{r_{1}}\right\}$

$$
\begin{aligned}
-\frac{I_{i} e^{j+1}}{2 \pi \epsilon_{0} c} & \left\{\frac{\sin \left(\beta \frac{5 \lambda}{\gamma}\right) \cos \left(3 r_{2}\right)}{r_{2}}-\frac{\sin \left(\beta \frac{7 \lambda}{\delta}\right) \cos \left(\beta r_{1}\right)}{r_{1}}\right. \\
& \left.-i\left(\frac{\sin \left(\beta \frac{5 \lambda}{\delta}\right) \sin \left(\beta r_{2}\right)}{r_{2}}-\frac{\sin \left(\beta \frac{7 \lambda}{\delta}\right) \sin \left(\beta r_{1}\right)}{r_{1}}\right)\right\}
\end{aligned}
$$

$$
=\frac{I_{i} e^{j v t}}{2 \pi \epsilon_{0} \sigma} ;\left(\frac{\sin \left(\beta \frac{5 \lambda}{\zeta}\right) \sin \left(\beta r_{2}\right)}{r_{2}}-\frac{\sin \left(\beta \frac{\lambda}{\gamma}\right) \sin \left(\beta r_{1}\right)}{r_{1}}\right)
$$

$$
\begin{equation*}
\left.+j\left(\frac{\sin \left(\beta \frac{5 \lambda}{8}\right) \cos \left(\beta r_{2}\right)}{r_{2}}-\frac{\sin \left(\beta \frac{7 \lambda}{8}\right) \cos \left(\beta r_{1}\right)}{r_{1}}\right)\right\} \tag{1-76}
\end{equation*}
$$

The expression for $E_{L_{I I I}} L_{4}$ is given by equation (1-52)
whore

$$
\begin{aligned}
& X=H, r_{I I}=r_{1}, r_{0}=r_{3} \\
& E_{L_{I I I} L_{4}}=\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} C}(z)\left\{e^{j \beta \frac{\lambda}{8}}\left[\frac{e^{-j \beta r_{3}}}{r_{3}\left(r_{3}-i i\right)}-\frac{e^{-j \beta\left(r_{1}+H\right)}}{r_{1}\left(r_{I}\right)}\right]\right. \\
& \left.+e^{-j \beta \frac{\lambda}{\delta}}\left[\frac{e^{-j \beta r_{3}}}{r_{3}\left(r_{3}+H\right)}-\frac{e^{+j \beta\left(H-r_{1}\right)}}{r_{1}^{2}}\right]\right\} \\
& =\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} C}(z)\left[e^{-j \beta r_{3}} \cdot\left(\frac{\left(r_{3}+H\right) e^{j \beta \frac{\lambda}{8}}+\left(r_{3}-I I\right) c^{-j \beta \frac{\lambda}{8}}}{r_{3}\left(r_{3}^{2}-H^{2}\right)}\right)\right. \\
& \left.-e^{-j \beta r} I \cdot\left(\frac{e^{-j \beta \frac{\lambda}{\beta}}+e^{j \beta \frac{\lambda}{\beta}}}{r_{1}^{2}}\right)\right\} \\
& =\frac{I_{i} e^{j w t}}{4 \pi \epsilon_{0} C}(a)\left\{e^{-j \dot{\beta} r_{3}}\left(\frac{2 r_{3} \cos \left(\beta \frac{\lambda}{8}\right)+2 j H \sin \left(\beta \frac{\lambda}{8}\right)}{r_{3}\left(r_{3}^{2}-I^{2}\right)}\right)\right. \\
& \left.-\frac{2 e^{-j \beta r_{1} \cos \left(\beta \frac{\lambda}{\delta}\right)}}{r_{1}^{2}}\right\} \\
& =\frac{I_{i} e^{j \omega t}}{2 \pi \epsilon_{0} C}(z)\left\{\frac{r_{3} \cos \left(\beta r_{3}\right) \cos \left(\frac{\beta \lambda}{\varepsilon}\right)+1!\sin \left(\beta r_{3}\right) \sin \left(\beta \frac{\pi}{\varepsilon}\right)}{r_{3}\left(r_{3}^{2}-H^{2}\right)}\right. \\
& \frac{\cos \left(\beta r_{1}\right) \cos \left(\beta \frac{\lambda}{8}\right)}{r_{1}^{2}}
\end{aligned}
$$

$$
\begin{gather*}
+j\left(\frac{H \cos \left(\beta r_{3}\right) \sin \left(\frac{\beta \lambda}{\beta}\right)-r_{3} \sin \left(\beta r_{3}\right) \cos \left(\beta \frac{\lambda}{\Omega}\right)}{r_{3}\left(r_{3}^{2}-H^{2}\right)}\right. \\
\left.\left.+\frac{\sin \left(\beta r_{1}\right) \cos \left(\beta \frac{\lambda}{8}\right)}{r_{1}^{2}}\right)\right\} \tag{1-77}
\end{gather*}
$$

$$
\mathrm{E}_{\mathrm{L}_{\text {III }}}=\text { the total tangential induced emf at a point } P \text { on } \mathrm{L}_{\text {III }}
$$

$$
\begin{equation*}
=\mathrm{E}_{\mathrm{L}_{I I I} \mathrm{~L}_{1}}+\mathrm{E}_{\mathrm{L}_{I I I} \mathrm{~L}_{2}}+\mathrm{E}_{\mathrm{L}_{I I I} \mathrm{~L}_{3}}+\mathrm{E}_{\mathrm{L}_{I I I} \mathrm{~L}_{4}} \tag{1-78}
\end{equation*}
$$

1-12 The Total Tangential Induced EMF at a Point P on $L_{I V}$

Define $E_{L_{I V} L_{1}}=$ the induced emf on $L_{I V}$ due to tho chargers on L_{1}
$\mathrm{E}_{\mathrm{L}_{\mathrm{IV}} \mathrm{L}_{2}}=\begin{aligned} & \text { the induced emend on } \\ & \mathrm{L}_{\mathrm{L}}\end{aligned}$ due to the charges ind tic
$\mathrm{E}_{\mathrm{L}_{\mathrm{IV}^{\mathrm{L}}}}=$ the induced emf on L_{IV} due to the charcos on $\mathrm{L}_{\text {, }}$
$\mathrm{E}_{\mathrm{L}_{\mathrm{IV}} \mathrm{L}_{4}}=\begin{aligned} & \text { the induced emf en on } \\ & \text { current on } \mathrm{L}_{4}\end{aligned}$ due to the charges and the

The expression for $E_{L_{I V} L_{1}}$ is given by equation (1-48)
where

$$
z=0, \quad r_{\mathrm{E}}=r_{7}, r_{0}=r_{5}
$$

$$
\begin{aligned}
& E_{L_{I V} L_{1}}=\frac{I_{i} e^{j w t}}{\pi \epsilon_{0} C}(x)\left\{e^{j \beta \frac{\lambda}{\beta}}\left[\frac{e^{j \beta\left(H-r_{7}\right)}}{r_{7}\left(r_{7}-H\right)}-\frac{e^{-j \beta r_{5}}}{r_{5}\left(r_{5}\right)}\right]\right. \\
&\left.+e^{-j \beta \frac{\lambda}{\beta}\left[\frac{e^{-j \beta\left(H+r_{7}\right)}}{r_{7}\left(r_{7}+H\right)}-\frac{e^{-j \beta r_{5}}}{r_{5}^{2}}\right]}\right\}
\end{aligned}
$$

or

$$
\begin{align*}
& \begin{aligned}
E_{L_{I V} L_{1}}=\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} C}(v) & \left\{\frac{e^{j \beta\left(\frac{3 \lambda}{8}-r_{7}\right)}}{r_{7}\left(r_{7}-I I\right)}+\frac{e^{-j \beta\left(\frac{3 \lambda}{8}+r_{7}\right)}}{r_{7}\left(r_{7}+I I\right)}\right. \\
& \left.-\frac{2 e^{-j \beta r_{5}}}{r_{5}^{2}} \cos \left(\beta \frac{\lambda}{8}\right)\right\}
\end{aligned} \\
& =\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} c}(x)\left\{e^{-j \beta r_{7}}\left(\frac{2 r_{7} \cos \left(\frac{\beta 3 \lambda}{8}\right)+2 j \operatorname{Hsin}\left(\frac{\beta 3 \lambda}{8}\right)}{r_{7}\left(r_{7}^{2}-H^{2}\right)}\right)\right. \\
& \left.-\frac{2 e^{-j \beta r_{5}}}{r_{5}^{2}} \cos \left(\frac{3 \lambda}{3}\right)\right\} \\
& =\frac{I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}(x)\left\{\frac{r_{7} \cos \left(\beta r_{7}\right) \cos \left(\beta \frac{3 \lambda}{8}\right)+H \sin \left(\beta r_{7}\right) \sin \left(\beta \frac{3 \lambda}{8}\right)}{r_{7}\left(r_{7}^{2}-H^{2}\right)}\right. \\
& \left.-\frac{\cos \left(\beta r_{5}\right) \cos \left(\beta \frac{\lambda}{\theta}\right)}{r_{5}^{2}}\right) \\
& +j\left(\frac{\operatorname{Hcos}\left(\beta r_{7}\right) \sin \left(\frac{\beta 3 \lambda}{8}\right)-r_{7} \sin \left(\beta r_{7}\right) \cos \left(\frac{\beta 3 \lambda}{8}\right)}{r_{7}\left(r_{7}^{2}-H^{2}\right)}\right. \\
& \left.\left.+\frac{\sin \left(\beta r_{5}\right) \cos \left(B \frac{\lambda}{8}\right)}{r_{5}^{2}}\right)\right\} \tag{1-79}
\end{align*}
$$

The expression for $\mathrm{E}_{\mathrm{L}_{\mathrm{IV}} \mathrm{L}_{2}}$ is given by equation (1-36) where

$$
z=0, r_{H}=r_{8}, r_{0}=r_{7}
$$

$$
\begin{aligned}
E_{L_{I V} L_{2}}= & \frac{j I_{i} e^{j \omega t}}{2 \pi \epsilon_{0} C}\left[\frac{e^{-j \beta r_{\beta}}}{r_{8}} \sin \left(\beta \frac{5 \lambda}{8}\right)-\frac{e^{-j \beta r_{7}}}{r_{7}} \sin \left(\beta \frac{3 \lambda}{\delta}\right)\right] \\
= & \frac{j I_{i} e^{j \omega t}}{2 \pi \epsilon_{0} C}\left[\left(\frac{\sin \left(\frac{5 \beta \lambda}{8}\right) \cos \left(\beta r_{8}\right)}{r_{8}}-\frac{\sin \left(\frac{3 \beta \lambda}{8}\right) \cos \left(\beta r_{7}\right)}{r_{7}}\right)\right. \\
& \left.-j\left(\frac{\sin \left(\frac{5 \beta \lambda}{8}\right) \sin \left(\beta r_{8}\right)}{r_{8}}-\frac{\sin \left(\frac{\beta 3 \lambda}{8}\right) \sin \left(\beta r_{7}\right)}{r_{7}}\right)\right] \\
= & \frac{I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left[\left(\frac{\sin \left(\frac{5 \beta \lambda}{8}\right) \sin \left(\beta r_{8}\right)}{r_{8}}-\frac{\sin \left(\frac{3 \beta \lambda}{8}\right) \sin \left(\beta r_{7}\right)}{r_{7}}\right)\right. \\
& \left.+j\left(\frac{\sin \left(\beta \frac{5 \lambda}{8}\right) \cos \left(\beta r_{8}\right)}{r_{8}}-\frac{\sin \left(\frac{\beta 3 \lambda}{8}\right) \cos \left(\beta r_{7}\right)}{r_{7}}\right)\right](1-80)
\end{aligned}
$$

The expression for $E_{L_{I V}} L_{3}$ is given by equation (1-51) where

$$
\begin{aligned}
& Z=0, r_{H}=r_{8}, r_{0}=r_{6} \\
& E_{L_{I V} L_{3}}=\frac{I_{i e} e^{j w t}}{4}(x-H)\left\{e^{+j \beta \frac{7 \lambda}{8}}\left[-\frac{e^{-j \beta\left(H+r_{8}\right)}}{r_{8}\left(r_{\beta}+H\right)}+\frac{e^{-j \beta r_{6}}}{E_{6}^{2}}\right]\right. \\
& \left.+e^{-j \beta \frac{7 \lambda}{8}}\left[-\frac{\mathrm{e}^{+j \beta\left(H-r_{6}\right)}}{r_{8}\left(r_{8}^{2}-H\right)}+\frac{e^{-j \beta r_{6}}}{r_{6}^{2}}\right]\right\} \\
& =\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} C}(x-H)\left[-e^{-j \beta r_{8}}\left[\frac{\left(r_{8}-I\right) e^{j \beta \frac{5 \lambda}{8}}+\left(r_{8}+H\right) e^{-j \beta \frac{5 \lambda}{8}}}{r_{8}\left(r_{8}^{2}-H^{2}\right)}\right]\right. \\
& \left.+\frac{2 e^{-j \theta r} 8}{r_{6}^{2}} \cos \left(\beta \frac{7 \lambda}{8}\right)\right\} \\
& =\frac{I_{1} e^{j \omega t}}{4 \pi \varepsilon_{6} C}(x-H)\left\{-e^{-j \beta r_{8}}\left(\frac{2 r_{8} \cos \left(\beta \frac{5 \lambda}{\beta}\right)-2 j H \sin \left(\beta \frac{5 \lambda}{8}\right)}{r_{8}\left(r_{8}^{2}-I^{2}\right)}\right)\right. \\
& \left.+\frac{2 e^{-j \theta r}}{r^{2}} \cos \left(\frac{7 \lambda}{8}\right)\right\}
\end{aligned}
$$

$E_{L_{I V} L_{3}}=\frac{I_{i \in j w t}}{2 \pi \epsilon_{0} C}(x-H)\left\{\frac{-r_{8} \cos \left(\beta r_{8}\right) \cos \left(\beta \frac{5 \lambda}{8}\right)+\operatorname{Hin}\left(\beta r_{8}\right) \sin \left(\beta \frac{5 \lambda}{8}\right)}{r_{8}\left(r_{8}^{2}-H^{2}\right)}\right.$

$$
\begin{align*}
& +\frac{\cos \left(\beta r_{6}\right) \cos \left(\beta \frac{7 \lambda}{8}\right)}{r_{6}^{2}} \\
& +j\left(\frac{r_{8} \sin \left(\beta r_{8}\right) \cos \left(\frac{5 \beta \lambda}{8}\right)}{r_{8}\left(r_{8}^{2}-H^{2}\right.}\right. \tag{1-81}\\
& \left.\left.-\frac{\sin \left(\beta r_{8}\right) \cos \left(\beta \frac{7 \lambda}{8}\right)}{r_{6}^{2}}\right)\right\}
\end{align*}
$$

$$
+j\left(\frac{r_{8} \sin \left(\beta r_{8}\right) \cos \left(\frac{5 \beta \lambda}{8}\right)+H \cos \left(\beta r_{8}\right) \sin \left(\beta \frac{5 \lambda}{8}\right)}{r_{8}\left(r_{8}^{2}-H^{2}\right)}\right.
$$

The expression for $E_{L_{I V} L_{4}}$ is given by equation (1-38) where

$$
\begin{aligned}
& Z=0, r_{H}=r_{6}, r_{0}=r_{5} \\
& E_{L_{I V} L_{4}}=\frac{j I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left[\frac{e^{-j \beta r_{6}}}{r_{6}} \sin \left(\beta \frac{7 \lambda}{8}\right)-\frac{e^{-j \beta r_{5}}}{r_{5}} \sin \left(\beta \frac{\lambda}{8}\right)\right] \\
&= \frac{j I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left[\left(\frac{\cos \left(\beta r_{6}\right) \sin \left(\frac{\beta 7 \lambda}{8}\right)}{r_{6}}-\frac{\cos \left(\beta r_{5}\right) \sin \left(\beta \frac{\lambda}{8}\right)}{r_{5}}\right)\right. \\
&= \frac{I_{i} e^{j w t}}{2 \pi \epsilon_{0} C}\left[\left(\frac{\sin \left(\beta r_{6}\right) \sin \left(\beta \frac{7 \lambda}{8}\right)}{r_{6}}-\frac{\sin \left(\beta r_{5}\right) \sin \left(\beta \frac{7 \lambda}{8}\right)}{r_{5}}-\frac{\sin \left(\beta r_{5}\right) \sin \left(\beta \frac{\lambda}{8}\right)}{r_{5}}\right)\right] \\
&+j\left(\beta \frac{\lambda}{8}\right) \\
&\left.\left(\frac{\sin \left(\frac{7 \beta \lambda}{8}\right) \cos \left(\beta r_{6}\right)}{r_{6}}-\frac{\sin \left(\frac{\beta \lambda}{8}\right) \cos \left(\beta r_{5}\right)}{r_{5}}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
\mathrm{E}_{L_{I V}} & =\text { The total tangential induced emf at a point on } L_{I V} \\
& =E_{L_{I V}} L_{1}+E_{L_{I V} L_{2}}+E_{L_{I V} L_{3}}+E_{L_{I V}} L_{4} \tag{1-83}
\end{align*}
$$

1-13 The derivation of the Mutual Impedance

Fig. 1-17
The mutual impedance of the cubical quad antenna is defined as

$$
\begin{equation*}
Z_{21}=\frac{V_{21}}{I_{1}} \tag{1-84}
\end{equation*}
$$

where V_{21} is the open-circuit voltage at the terminals of the reflecting loop due to a base current. I_{1}, in the radiating loop. Now, the electric field intensity at all points along the reflecting loop has been calculated, and the problem is that of determining the open-circuit voltage at the terminals of the reflecting loop. This voltage is the resultant of the voltages induced in all the elemental longths of the loop. The result may be obtained by an application of the reciprocity theorem.

Consider the reflecting loop with the radiating loop in place, but not radiating. A voltage $V_{2}=I_{2}(0) Z_{2}$ applied at the terminals will produce a terminal current $I_{2}(0)$ and a current at any point, designated as $I_{2}(\ell)$. The impedance Z_{2} is the impedance looking into the terminals of the reflecting loop. The reciprocity theorem states that if a voltage $I_{2}(\circ) Z_{2}$, applied at the terminals, produces a current $I_{2}(\ell)$ at a point along the reflecting loop, then a voltage $E(\ell) d h$, induced at ℓ, will produce a short circuit current at the terminals.

$$
\begin{equation*}
d I_{s o}=\frac{E(f) d h}{I_{2}(0) Z_{2}} I_{2}(\ell) \tag{1-85}
\end{equation*}
$$

The total short-circuit current at the terminals, due to the induced emf along the entire longth of the reflecting loop, will be

$$
\begin{equation*}
I_{s C}=\frac{1}{I_{2}(0) Z_{2}} \int E(\hat{\ell}) I_{2}(\hat{l}) d h \tag{1-86}
\end{equation*}
$$

By Thevenin's theorem the open-circuit voltage at the terminals will be

$$
\begin{align*}
V_{21} & =-I_{s c} Z_{2} \\
& =\frac{-1}{I_{2}(0)} \int E(\ell) I_{2}(\ell) d h \tag{1-87}
\end{align*}
$$

the minus sign results from the fact that either $I_{s c}$ or V_{21} will be opposite to the assumed positvo direction when the reflecting loop is short-circuited. The expres:ion for tho mutual impedance of the cubical guad antenna is

$$
\begin{equation*}
Z_{21}=\frac{V_{21}}{I_{1}(0)}=-\frac{1}{I_{1}(0) I_{2}(0)} \oint E(f) I_{2}(\ell) d h \tag{1-88}
\end{equation*}
$$

where $I_{l}(0)=$ the terminal current of the radiating loop
$I_{2}(0)=$ the terminal current of the reflecting loop $I_{2}(\ell)=$ the current distribution along the reflecting loop when fed by a voltage at the terminals and with the terminals of the radiating loop open-circuited.
$E(t)=$ the induced emf along the reflecting loop due to the time-changing current in the radiating loop.

Since the radiating and the reflecting loops are identical, $I_{2}(\ell)$ may be expressed as

$$
\begin{equation*}
I_{2}(k)=-2 I_{i}^{\prime} \cos \left[f\left(\frac{n \lambda}{8}+h\right)\right] e^{j w t} \tag{1-89}
\end{equation*}
$$

In equation (1-89), h is equal to z when the current element is set in the z direction; h will be equal to x when the current element is set in the x direction. As was stated in section $1-5$, the current in $L_{\text {III }}$ may be expressed as

$$
I_{2}(l)=2 I_{i}^{\prime} \cos \left[\beta\left(\frac{7 \lambda}{8}-z\right)\right] e^{j \omega t}
$$

and the current in $L_{I V}$ may be expressed or

$$
I_{2}(l)=2 I_{i}^{\prime} \cos \left[\beta\left(\frac{\lambda}{8}-x\right)\right] e^{j w t}
$$

$E(\ell)$ has been givon by cquations (1-68), (1-73), (1-78) and (1-83). Introducing thoce expressions into cquation (1-88) yields

$$
\begin{aligned}
Z_{21} & =\frac{2 I_{i}^{\prime} c^{j \omega t}}{I_{1}(0) I_{2}(0)}\left\{\int_{0}^{H} E_{L_{I}}^{H} \cos \left[\beta\left(-\frac{\lambda}{\beta}+z\right)\right]+\int_{0}^{H} E_{L_{I I}} \cos \left[\beta\left(\frac{3 \lambda}{8}+x\right)\right] d x\right. \\
& \left.-\int_{0}^{H} E_{L_{I I I}} \cos \left[\beta\left(\frac{7 \lambda}{3}-z\right)\right] d z-\int_{0}^{H} E_{L_{I V}} \cos \left[\beta\left(\frac{\lambda}{8}-x\right)\right] d x\right\}(1-90)
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1}(0)=2 I_{i} e^{j w t} \\
& I_{2}(0)=2 I_{i}^{\prime} e^{j \omega t}
\end{aligned}
$$

Equation (1-90) can be simplified to the form

$$
\begin{aligned}
z_{21} & =\frac{1}{I_{1}(0)}\left\{\int_{0}^{H} \operatorname{E} L_{I} \cos \left[\beta\left(\frac{\lambda}{8}+\angle\right)\right] d z+\int_{0}^{H} E_{I I} \cos \left[\beta\left(\frac{3 \lambda}{\beta}+x\right)\right] d x\right. \\
& -\int_{0}^{H} E_{L_{I I I}} \cos \left[\beta\left(\frac{7 \lambda}{8}-z\right)\right] d z-\int_{0}^{H} E_{L_{I V}} \cos \left[\beta\left(\frac{\lambda}{8}-x\right)\right] d x \quad(1-91)
\end{aligned}
$$

The integrals of equation (1-91) can best be evaluated by means of numerical integration.

1-14 A Computer Program For Evaluating The Mutual Impedance
A fortran II program was used to evaluate equation (1-91). The approximation method uscd in the program is called Simpson's rulc. In the program the interval, $I=\frac{\lambda}{4}$. was divided into 50 equal parts. Each part was 0.005 wavelensth, 0.5 cm , long. The output of the program represents the real part and the imacinary part of the mutual impedance.

The computer program is shown on the iollowire pages.

C REAL pART OL THE MUTUAL IMPEDLNCE OF THE CUBICAL QUAD ANTMENA
C IMAGINARY PART OF IIIE MUTUAL IMPEDANCE OF TfIE CUBICAL QUAD
C ANTENNA
DIMENSION VR1(51), VR2(51), VR3(51), VR4(51)
DIMENSION V11(51), VI2(51), V13(51), V14(51)
$\mathrm{Y}=0.01$
1
$\mathrm{X}=0.0$
$\mathrm{Z}=0.0$
DO $2 \quad \mathrm{I}=1$, 51
$A=\operatorname{SINF}(0.7854)$
$B=\operatorname{SINF}(3.92698)$
$\mathrm{C}=\operatorname{cosF}(0.7854)$
$D=\operatorname{CosF}(2.35619)$
$Q=6.28318$
$\mathrm{RI}=5 \mathrm{QRTF}(\mathrm{Y} * * 2+\mathrm{Z} * * 2)$
$\mathrm{R} 2=\operatorname{SQRTF}(\mathrm{Y} * * 2+(\mathrm{Z}-0.25) * * 2)$
R3 $=$ SORTF ($0.0625+\mathrm{Y} * * 2+\mathrm{Z} * * 2$)
R4 $=\operatorname{SQRTF}(0.0625+Y * * 2+(Z-0.25) * * 2)$
$\mathrm{R} 5=\mathrm{SQRTF}(\mathrm{X} * * 2+\mathrm{Y} * * 2)$
R6 $=$ SQRTE $\left((X-0.25) * * 2+Y^{* *} 2\right)$
$\mathrm{R} 7=\operatorname{SQRTE}(\mathrm{X} * * 2+\mathrm{Y} * * 2+\mathrm{Y} * * 2+0.0625)$
$R 8=\operatorname{SQRTF}((X-0.25) * * 2+Y * * 2+0.0625$
Q1=Q*R1
Q2 $=$ Q*R2
Q3 $=$ Q*R3
$Q 4=Q * R 4$
$\mathrm{Q} 5=\mathrm{Q} * \mathrm{R} 5$
$Q 6=Q^{*} R 6$
Q7 $=0$ *R7
$Q 8=Q * R 8$
SQl=SINF (Q1)
$\mathrm{SQ} 2=\mathrm{SINF}(\mathrm{Q} 2)$
$S Q 3=S I N F(Q 3)$
$S Q 4=S I N F(Q 4)$
$S Q 5=S I N F(Q 5)$
$S Q 6=5 I N E(Q 6)$
$S Q 7=S$ INF (07)
$S Q 8=S \operatorname{INF}(Q 8)$
$\mathrm{CQ1}=\operatorname{COSF}(\mathrm{Q1})$
$\operatorname{CQ2}=\operatorname{CosF}(Q 2)$
$\mathrm{CQ} 3=\operatorname{COSF}(\mathrm{Q} 3)$
$\operatorname{CQ4}=\operatorname{COSF}(\mathrm{Q4})$
$\mathrm{CQ}=\operatorname{COSF}(\mathrm{Q5})$
$\operatorname{co6}=\operatorname{cose}\left(Q^{6}\right)$
$\mathrm{CQ7}=\operatorname{cose}(Q 7)$
$\operatorname{CQB}=\operatorname{COSF}(Q 0)$

```
OVR1 \((I)=+30.0 *(+S Q 2 * A / R 2-S Q 1 * A / R 1+B * S Q 4 / R 4-B * S Q 3 / R 3+(Z-0.25)\)
    * ( \((+\mathrm{R} 4\)
```

1*CQ4*D+0. $25 * \mathrm{SQ} 4 * \mathrm{~B}) /(\mathrm{R} 4 *(\mathrm{RA} * * 2-0.0625))-\mathrm{CQ} 2 * \mathrm{D} / \mathrm{R} 2 * * 2)+\mathrm{Z} *((-\mathrm{R} 3 *$
$2 \mathrm{CQ} 3 * \mathrm{C}-0.25 * \mathrm{SQ} 3 * \mathrm{~A}) /(\mathrm{R} 3 *(\mathrm{R} 3 * * 2-0.0625))+\mathrm{CQ1*C} / \mathrm{R} 1 * * 2))$
$3 * \operatorname{cosF}(0.7854+Q * Z)$
OVR2 $(\mathrm{I})=+30.0 *(-\mathrm{SQ} 7 * A / R 7+\mathrm{R} 7+\mathrm{SQ8} * \mathrm{~B} / \mathrm{R} 3-\mathrm{SQ} 5 * A / \mathrm{R} 5+\mathrm{SQ} 6 * \mathrm{~B} / \mathrm{R} 6+\mathrm{X} *((-\mathrm{R} 7$

* $\mathrm{CQ} 7^{*} \mathrm{C}$
$1+0.25 * \mathrm{SQ} 7 * \mathrm{~A}) /(\mathrm{R} 7 *(\mathrm{R} 7 * * 2-0.0625))+\mathrm{CQ} 5 * \mathrm{D} / \mathrm{R} 5 * * 2)+(\mathrm{X}-0.25) *((+\mathrm{R} 8$
$2 * \mathrm{CQ} 8 * \mathrm{C}+0.25 * \mathrm{SQ} 8 * \mathrm{~B}) /(\mathrm{RB} *(\mathrm{R} 8 * * 2-0.0625))-\mathrm{CQ} 6 * \mathrm{D} / \mathrm{R} 6 * * 2))$
3*COSF (2.35619+Q*X)
OVR3 $(I)=-30 . *(A *(S Q 4 / R 4-S Q 3 / R 3)+B *(S Q 2 / R 2-S Q 1 / R 1)+Z *((0.25 * A$
$1 * S Q 3+C * R 3 * C Q 3) /(R 3 *(R 3 * * 2-0.0625))-C * C Q 1 / R 1 * * 2)+(Z-0.25) *((-D * R 4$
$2 * \mathrm{CQ} 4+0.25 * \mathrm{~A} * \mathrm{SQ} 4) /(\mathrm{R} 4 *(\mathrm{R} 4 * * 2-0.0625))+\mathrm{D} * \mathrm{CQ} 2 / \mathrm{R} 2 * * 2))$
$3^{*} \operatorname{COSF}\left(5.49778-Q^{*} Z\right)$
OVR4 $(I)=-30.0 *(B * S Q 6 / R 6-S Q 5 * A / R 5-A * S O 7 / R 7+B * S Q 8 / R 8+X *((+R 7 * C Q 7 * D$
$1+0.25 * \mathrm{SQ} 7 * \mathrm{~A}) /(\mathrm{R} 7 *(\mathrm{R} 7 * * 2-0.0625))-\mathrm{CQ} 5 * \mathrm{C} / \mathrm{R} 5 * * 2)+(\mathrm{X}-0.25) *((-\mathrm{R} 8 *$
$2 \mathrm{CQ} 8 * \mathrm{D}+0.25 * \mathrm{SQ} 8 * \mathrm{~B}) /(\mathrm{R} 8 *(\mathrm{R} 8 * * 2-0.0625))+\mathrm{CQ} 6 * \mathrm{C} / \mathrm{R} 6 * * 2)) *$
$3 \operatorname{CosF}\left(0.7854-Q^{*} \mathrm{X}\right)$
OVII $(I)=+30.0 *(A *(+C Q 2 / R 2-C Q 1 / R 1)+B *(C Q 4 / R 4-C Q 3 / R 3)+(2-0.25) *$
$1((0.25 * \mathrm{~B} * \mathrm{CQ} 4-\mathrm{D} * \mathrm{R} 4 * \mathrm{SQ} 4) /(\mathrm{R} 4 *(\mathrm{R} 4 * * 2-0.0625))+\mathrm{D} * \mathrm{SQ} 2 / \mathrm{R} 2 * * 2)$
$2+Z *((+C * R 3 * S Q 3-0.25 * A * C Q 3) /(R 3 *(R 3 * * 2-0.0625))-S Q 1 * C / R 1 * * 2)) *$
$3 \operatorname{CosF}(0.7854+Q * Z)$
OVI2 $(I)=+30 . O^{*}\left(B^{*} \mathrm{CQ} 6 / R 6-A^{*} \mathrm{CQ} 5 / R 5-A * C Q 7 / R 7+B * C Q 8 / R O+(X-0.25) *((-C *\right.$
1R8*SQ8+0.25*B*CQ8)/(R8**R8**2-0.0625)) $+\mathrm{D} * \mathrm{SQ} 6 / \mathrm{R} 6 * * 2)+\mathrm{X} *((+\mathrm{C} * \mathrm{R} 7$
$2 * S Q 7+A * 0.25 * \mathrm{CQ} 7) /(\mathrm{R} 7 *(\mathrm{R} 7 * * 2-0.0625))-\mathrm{D} * \mathrm{SQ} 5 / \mathrm{R} 5 * * 2)) *$
$3 \operatorname{CosF}(2.35619+Q * X)$
$\operatorname{OVI} 3(\mathrm{I})=-30 * *(\mathrm{~A} *(\mathrm{CQ} 4 / \mathrm{R} 4-\mathrm{CQ} 3 / \mathrm{R} 3)+\mathrm{B} *(-\mathrm{CQ} 1 / \mathrm{R} 1+\mathrm{CQ} 2 / \mathrm{R} 2)+\mathrm{R} *((-\mathrm{C} * \mathrm{R} 3 * \mathrm{SQ} 3$
$1+0.25 * A * C Q 3) /(R 3 *(R 3 * * 2-0.0625))+C * S Q 1 / R 1 * * 2)+(Z-0.25) *((+D * R 4$
$2 * S Q 4+0.25 * A * C Q 4) /(R 4 *(R 4 * * 2-0.0625))-D * S Q 2 / R 2 * * 2)) *$
$3 \operatorname{cosF}(5.49778-Q * Z)$
OVI4 (1) $=-30.0 *(B * C Q 6 / R 6-A * C Q 5 / R 5-A * C Q 7 / R 7+B * C Q 0 / R R+(X-0.25) *((0.25 *$
$\left.\left.1 \mathrm{~B}^{*} \mathrm{CQ} 8+\mathrm{D} * \mathrm{SQ} 8\right) /(\mathrm{R} 8 *(\mathrm{R} 8 * * 2-0.0625))-\mathrm{C} * \mathrm{SQ} 6 / \mathrm{R} 6 * * 2\right)+\mathrm{X} *\left(\left(+0.25 * A^{*}\right.\right.$
$2 \mathrm{CQ} 7-\mathrm{D} * \mathrm{R} 7 * \mathrm{SQ} 7) /(\mathrm{R} 7 *(\mathrm{R} 7 * * * 2-0.0625))+\mathrm{C} * \mathrm{SQ} 5 / \mathrm{R} 5 * * 2))$
3*COSF (0.7854-Q*X)
$X=X+0.005$
$Z=Z+0.005$
CALL ZMVR (VR1)
ZMVRI = ZMVR (VR1)
ZMVR2=ZMVR (VR2)
ZMVR 3 $=$ ZMVR (VR3)
ZMVR4=ZMVR (VR4)
REZM + ZMVR1 + ZMVR $2+$ ZMVR 3 + ZMVR 4
PUNCH 4.Y, ZMVR1, ZMVR2, ZMVR3, ZMVR4, REZM
FORMAT (FG.3. 5F13.5)
CAIL ZMVI (VII)

```
    ZMVIl=ZMNI(VII)
    ZMVI2=ZMVI(VI2)
    ZMVI3=ZMVI(VI3)
    ZMVI4=ZMVI(VI4)
    ZMI=ZMVII+ZMVI2+ZMVI3+ZMVI4
    PUNCII 9, Y, ZMVIl, ZMVI2, ZMVI3, ZMVI4, ZMI
9 FORMAT (F5.2, 5F12.5)
    Y+Y+0.02
    IF(Y-0.05) 1, 1, 5
5 Y+Y+0.03
    IF(Y-0.1) 1, 1, 6
6 Y+Y+0.05
    IF(Y-1.0) 1, 1, 29
29 STOP
    END
    FUNCTION ZMVR(VRI)
    DIMENSION VRI(51), VR2(51), VR3(51), VR4(51)
    ODD=0.0
    EVEN=0.0
    DO 3 I=2, 50, 2
3 EVEN=EVEN+VRI (I)
    DO 4 J=3, 49, 2
OOD=ODD+VR1 (I)
    ZMVI=0.001.666*(VII (1) +4.0*EVEN+2.0*ODD+VII (51))
    RETURN
    END
    FUNCTION ZMVI(VII)
    DIMENSION VII(51),VI2(51), VI3(51),VI4(51)
    ODD=0.0
    EVEN=0.0
    DO }7\textrm{I}=2, 50, 
7 EVEN=EVEN+VII (I)
    DO 8 I=3, 49, 2
8 ODD=ODD+VIl (I)
    ZMVR=0.001666*(VRI (1) +4.0*EVEN+2.0*ODD+VRI (51)
    RETURN
    END
```

The output data is as follows:

Distances Botween Two Loops $\mathrm{Y}(\mathrm{cm})$	ual Inpedances (ohms)	
	Rectancrular Form	Polar Form
0.01	116.419-j137.876	$180 \quad-49.8^{\circ}$
0.03	115.567-j119.440	$166 \leq-45.9^{\circ}$
0.05	113.870-j105.523	$155 \quad-42.9^{\circ}$
0.10	106.074-j85.784	$136 \quad \underline{-39}$
0.20	77.432-j80.953	$112<-46.2^{\circ}$
0.30	37.954-j84.963	92.9 -65.90
0.40	-2.493-j78.030	78.1 $L-91.8^{\circ}$
0.50	-34.350-j56.949	$66.5 \angle-121.1^{0}$
0.60	-50.989-j 26.733	$57.4<-152.4^{\circ}$
0.70	$-50.396+j 4.232$	$50.2 /-184.8^{\circ}$
0.80	$-35.415+j 27.755$	$45.0 \quad \underline{-218.1}{ }^{\circ}$
0.90	$-12.545+j 38.575$	$40.5<-251.9^{\circ}$
1.00	$10.251+i 35.278$	$36.8 /-286.2^{\circ}$

Table 1-1
Curves of the mutual impedance will be shown in the next chapter as a comparison with those obtained from measurcments.

CHAPTER II

EXPERIMENTAL MEASUREMENT OF THE MUTUAL IMPEDANCE

The mutual impedance of the quad antenna was analyzed mathematically using a few assumptions that can not be realized in the practical system. The mathematical treatment, as was discussed in the previous chapter, is an approximation. The validity and usefulness of this approximation can best be determined by experimental means. Therefore, measurements of the mutual impedances were made to compare the results established in Chapter I.

2-1 General Considerations

Referring to fig. 2-1 the terminal impedances of two identical antennas are

$$
\begin{aligned}
& Z_{1}=Z_{\text {self }}+\frac{I_{2}}{I_{1}}-z_{\text {mutual }} \\
& z_{2}=Z_{\text {self }}+\frac{I_{1}}{I_{2}} z_{\text {mutual }}
\end{aligned}
$$

where ${ }^{Z}$ self $=$ the self-impedance of loop \#l or loop \#2

$$
\begin{aligned}
\mathrm{z}_{1}= & \text { the terminal impedance of loop \#1 when loop \#2 } \\
& \text { is in place. } \\
\mathrm{z}_{2}= & \text { the terminal impedance of loop \#2 when loop \#1 } \\
& \text { is in place. }
\end{aligned}
$$

Fig. 2-1

Z
self is further defined as the limit of Z_{1} as the current I_{2} approaches zero at the terminals of the other loop. $Z_{\text {self }}$ will in general depend on the spacing between the antennas since the current is not necessarily zero everywhere in the second loop, even though the current is zero at its terminals. ${ }^{1}$
$Z_{\text {mutual may be obtained by short-circuiting loop \#2 and }}$ measuring the terminal impedance z_{1} of loop \#l. Thus

$$
\begin{align*}
& z_{1}=Z_{\text {self }}+\frac{I_{2}}{I_{1}} z_{\text {mutual }} \\
& z_{2}=0=z_{\text {self }}+\frac{I_{1}}{I_{2}} z_{\text {mutual }} \tag{2-1}
\end{align*}
$$

Then $\left(Z_{\text {mutual }}\right)^{2}=Z_{\text {self }}\left({ }^{Z_{\text {self }}}-Z_{1}\right)$
From equation (2-1) the value of the mutual impedance can be calculated from a knowledge of only the terminal impedance and the self-impedance. However, when taking antenna measurements, it is impossible to connect a measuring meter or a signal generator directly to the terminals of the antenna; a transmission line must be used, With the transmission line in place, the impedances read in the meter are not necessarily the terminal impedances of the antenna. If the transmission line is lossless and has no attenuation, the terminal impedances can be found from the meter readings by use of a Smith chart.

[^2]If the transmission line parameters are known, transmission line equations can be used. If the line parameters are not known, other techniques should be used. One of the possible techniques treats the line as a four terminal network.

2-2 Four Terminal Network

A transmission line can be represented by a circuit consisting of two terminals where power enters the circuit and two terminals where power leaves the circuit. The circuit is said to be passive, linear, and bilateral. It is passive because it contains no sources of electric energy, linear because impedances of its elements are independent of the amount of current passing through them, and bilateral because the impedances are independent of the direction of current. It can be shown that any linear, passive, and bilateral fourterminal network can be represented by either an equivalent "T" or a " π " circuit so far as measurements at the input or output terminals are concerned.

To find the relations between the sending-end and the receiving-end quantities, of a four terminal network, let us determine the voltage and current at the sending end of the unsymmetrical T circuit of fig. 2-2 in terms of the voltage and current at the receiving end.

Fig. 2-2
The current at the sending end is

$$
\begin{align*}
I_{S} & =I_{R}+Y\left(V_{R}+I_{R} Z_{b}\right) \\
& =Y V_{R}+\left(1+Y Z_{b}\right) I_{R} \tag{2-2}
\end{align*}
$$

The voltage at the receiving end is

$$
\begin{align*}
V_{s} & =V_{R}+I_{R} Z_{b}+I_{s} Z_{a} \\
& =V_{R}+I_{R} Z_{b}+Z_{a} Y V_{R}+I_{R} Z_{a}+I_{R} Y Z_{a} Z_{b} \\
& =\left(1+Y Z_{a}\right) V_{R}+\left(Z_{a}+Z_{b}+Y Z_{a} Z_{b}\right) I_{R} \tag{2-3}
\end{align*}
$$

The above equations are simplified in form by letting

$$
\begin{array}{ll}
A=1+Y Z_{a} & C=Y \tag{2-4}\\
B=Z_{a}+Z_{b}+Y Z_{a} Z_{b} & D=1+Y Z_{b}
\end{array}
$$

If the network is symmetrical,

$$
z_{a}=z_{b}
$$

and hence $A=D$
and substituting equation (2-4) into equation (2-3)

$$
\begin{equation*}
V_{S}=A V_{R}+B I_{R} \tag{2-5}
\end{equation*}
$$

Substituting equation (2-4) into equation (2-2)

$$
\begin{equation*}
I_{S}=C V_{R}+D I_{R} \tag{2-6}
\end{equation*}
$$

Since the unsymmetrical T circuit is valid for measuring the end conditions of any passive, linear and bilateral
four terminal network, equations (2-5) and (2-6) are valid for any such network. The constants A, B, C, D are called the generalized circuit constants.

$$
\text { Solving equations }(2-5) \text { and }(2-5) \text { for } V_{R} \text { and } I_{R}
$$

$$
\begin{align*}
V_{R} & =\frac{D V_{S}-B I_{S}}{A D-B C} \tag{2-7}\\
I_{R} & =\frac{A I_{S}-C V_{S}}{A D-B C} \tag{2-8}
\end{align*}
$$

It can be shown that $A D-B C=1$. Substituting this relation into equations (2-7) and (2-8)

$$
\begin{align*}
& V_{R}=D V_{s}-B I_{S} \tag{2-9}\\
& I_{R}=-C V_{S}+A I_{S} \tag{2-10}
\end{align*}
$$

When a transmission line is chosen, the generalized circuit constants can be computed by making a few impedances measurements on the line. The impedances to be measured are:

$$
\begin{aligned}
& Z_{\text {so }}=\text { the sending-end impedance with the receiving- } \\
& \text { end open-circuit } \\
& Z_{s s}=\text { the sending-end impedance with the receiving- } \\
& \text { end short-circuit } \\
& Z_{\mathrm{Ro}}=\text { the receiving-end impedance with the sending- } \\
& \text { end open-circuit } \\
& Z_{\mathrm{Rs}}=\text { the receiving-end impedance with the sending- } \\
& \text { end short-circuit }
\end{aligned}
$$

The impedance measured from the sending-end can be determincd in terms of A, B, C, D constants from equations (2-5) and
(2-6). With $I_{R}=0$ the equations give

$$
\begin{equation*}
z_{S O}=\frac{V_{S}}{I_{S}}=\frac{A}{C} \tag{2-11}
\end{equation*}
$$

and with $V_{R}=0$

$$
\begin{equation*}
Z_{S S}=\frac{V_{S}}{I_{S}}=\frac{B}{D} \tag{2-12}
\end{equation*}
$$

To find the impedances measured from the receiving-end, equations (2-9) and (2-10) must be modified by chonging tho signs of all current terms. This change is necessary because, with the voltaç applied at the receiving-end rather than at the sending-end, the direction of current flow arsumed to be positive when measuring impedance is opposite to the direction shown in fig. 2-2 to which equations (2-9) and (2-10) apply. The equations become

$$
\begin{align*}
& V_{R}=D V_{S}+B I_{S} \tag{2-13}\\
& I_{R}=C V_{S}+A I_{S} \tag{2-1.4}
\end{align*}
$$

From equations (2-13) and (2-14) with $I_{S}=0$

$$
\begin{equation*}
Z_{R_{O}}=\frac{V_{R}}{I_{R}}=\frac{D}{C} \tag{2-15}
\end{equation*}
$$

and when $V_{s}=0$

$$
\begin{equation*}
Z_{R s}=\frac{V_{R}}{I_{R}}=\frac{B}{A} \tag{2-16}
\end{equation*}
$$

the values of the $A B C D$ constants in terms of moasured impedances are found as follows:

$$
\begin{align*}
& Z_{\mathrm{RO}}-Z_{\mathrm{Rs}}=\frac{\mathrm{AD}-\mathrm{BC}}{\mathrm{AC}}=\frac{1}{\mathrm{AC}} \\
& \frac{\mathrm{Z}_{\mathrm{RO}}-Z_{\mathrm{RS}}}{Z_{\mathrm{SO}}}=\frac{1}{\mathrm{AC}} \cdot \frac{C}{\mathrm{~A}}=\frac{1}{\mathrm{~A}^{2}} \\
& \mathrm{~A}=\frac{Z_{\mathrm{SO}}}{Z_{\mathrm{RO}}-Z_{\mathrm{Rs}}} \tag{2-17}
\end{align*}
$$

After "A" is computed, the other constants may be iound by equations (2-11), (2-12) and (2-15); and then network clements
Z_{a}, Z_{b} and Y can be computed by equation (2-4). The accuracy of such a network depends on how closely the measured data approaches the actual conditions.

2-3 Equipment Used

The antenna under test was made of copper wire with a diameter of 0.133 cm . It was formed into two squarc loops measuring 25 cm per side, in other words, its circumference is 100 cm which is one wave-length for an electromachetic wave of 300 megacycles propagating in vacuum. The antenna was fixed on a wood frame to make sure the two loops were parallel and had their centers on the same axis.

The radiating loop, which was a balanced device, was fed by a 300 -ohm balanced transmission line. The other end of this line was connected to a balun transformer, which transforms the balanced system to an unbalanced detecting system.

The balun transformer was adjusted for proper operation at 300 MC by means of adjustable stubs. This was done with the aid of an admittance meter.

The balun transformer and the admittance meter were linked by the type $874-L K$ constant-impedance adjustable line adjusted to an odd multiple of a quarter wavelength. Therefore, the admittance meter measured the resistance and reactance of
the balanced circuit.
A crystal mixer was used to combine the $300 \mathrm{M} . \mathrm{C}$. and 330 M.C. signals to produce a signal of $30 \mathrm{M} . \mathrm{C}$. which was measured by the i-f amplifier. The block diagram of the system is shown in Fig. 2-3.

2-4 Experimental Results and the Corresponding Calculations
The impedances measured on the admittance meter of
fig. 2-3 are the impedances appearing across the balun terminals; i.e. the impedances looking into the 300 ohm twin lead.

It was shown in section 2-2 that the equivalent circuit of the transmission line could be obtained by a few impedance measurements. They are:

	Impedances in ohms
$\mathrm{Z}_{\text {SO }}$	$105+j 475$
Z_{SS}	$40-j 175$
Z_{Ro}	$100+j 467.5$
Z_{RS}	$37.5-j 175$

Table 2-1
The generalized circuit constant "A" may be obtained from equation (2-17)

$$
A=\sqrt{\frac{Z_{S O}}{z_{R O}-: Z_{R S}}}
$$

Fig. 2-3. Block diagram of circuit arrangement for impedance measurements

$$
\begin{aligned}
A & =\sqrt{\frac{485 \angle 77.5^{\circ}}{62.5+j 642.5}} \\
& =\sqrt{0.754 \angle-6.92^{\circ}} \\
& =0.87 \angle-3.46^{\circ}
\end{aligned}=0.869-j 0.0525
$$

and

$$
\begin{aligned}
C & =\frac{A}{z_{\text {SO }}} \\
& =\frac{0.87 L-3.46^{\circ}}{485 L 7.5^{\circ}} \\
& =0.00179 L-80.96^{\circ} \\
& =0.000282-j 0.00177 \\
D & =C \cdot z_{\mathrm{RO}} \\
& =0.00179 L-80.96^{\circ} \cdot 477 L 77.9^{\circ} \\
& =0.854 \angle-3.06^{\circ} \\
& =0.852-j 0.0461 \\
B & =D \cdot z_{s 5} \\
& =0.854 \angle-3.06^{\circ} \cdot 179 \angle-77.1^{\circ} \\
& =152.7 \angle-80.16^{\circ}
\end{aligned}
$$

Elements of the equivalent circuit may be obtained by substituting A, C, D constants into equation (2-4). Thus,

$$
\begin{aligned}
Y & =C \\
& =0.000282-j 0.00177 \text { mho }
\end{aligned}
$$

$$
\begin{aligned}
z_{a} & =\frac{A-1}{Y} \\
& =\frac{-0.131-j 0.0525}{0.00179 L-80.96^{\circ}} \\
& =\frac{0.141 \angle 201.85^{\circ}}{0.00179 L-80.3-0} \\
& =78.8 \angle-77.190 \\
& =17.5-j 76.9 \quad \text { ohms } \\
z_{b} & =\frac{D-1}{Y} \\
& =\frac{-0.148-j 0.0461}{0.00179 L-80.96^{\circ}} \\
& =86.6 \angle 278.26^{\circ} \\
& =12.45-j 85.75 \text { ohms }
\end{aligned}
$$

The equivalent circuit diagram is shown as follows:

Fig. 2-4
When the cubical quad antenna was connected to the transmission line the impedances read from the admittance meter were as follows:

Distance Between Two Loops (cm)	Impedance		
	Resistance (ohms)	Reactance (ohms)	
∞			
100	228	-220	
90	243	-212	
80	210	-206	
70	226	-216	
60	252	-240	
50	263	-250	
40	235	-210	
30	190	-165	
20	136	-160	
10	74	-178	

Table 2-2
Those impedances are the impedances appearing across
the balun terminals. The impedances looking into the terminals of the radiating loop may be obtained by the following calculations.

Fig. 2-5

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{ab}} & =228-j 220-\mathrm{Z}_{\mathrm{a}} \\
& =228-j 22)-17.5+j 76.9 \\
& =210.5-j 143.1 \\
& =254.5 \angle-34.2^{0} \quad \text { ohms } \\
\mathrm{Y}_{\mathrm{ab}} & =\frac{1}{\mathrm{Z}_{\mathrm{ab}}}=0.003925 \angle 34.2^{\circ}
\end{aligned}
$$

$$
=0.003242+j 0.002205 \text { mho }
$$

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{ac}} & =\mathrm{Y}_{\mathrm{ab}}-\mathrm{Y} \\
& =0.003242+j 0.002205-0.000282+j 0.00177 \\
& =0.002960+j 0.003975 \\
& =0.00495 \angle 53.35^{\circ} \text { mho } \\
\mathrm{Z}_{\mathrm{ac}} & =\frac{1}{\mathrm{Y}_{\mathrm{ac}}} \\
& =202 \angle-53.35^{\circ} \\
& =121-j 162 \\
\mathrm{Z}_{\mathrm{sel}} & =\mathrm{Z}_{\mathrm{ac}}-\mathrm{Z}_{\mathrm{b}} \\
& =121-j 162-12.45+j 85.75 \\
& =108.55-j 76.25 \\
& =132.5 \angle-35.10
\end{aligned}
$$

$Z_{\text {self if }}$ the self-impedance of the single loop. Other terminal impedances may be obtained in the same way. They are tabulated below:

Distance Between Two Loops (cm)	Terminal Impedances (ohms)
∞	$108.55-j 76.25$
100	$117.85-j 77.25$
90	$112.55-j 67.75$
80	$100.45-j 67.25$
70	$99.55-j 84.75$
60	$108.55-j 95.25$
50	$128.55-j 85.75$
40	$135.37-j 50.40$
30	$109.0-j 12.65$
20	$69.67-j 19.90$
10	$22.35-j 20.45$

Table 2-3
Knowing the self-impedance and terminal impedance,
be founded by equation (2-1). The calculation of $Z_{M 30}$ is typical. By equation (2-1)

$$
\left(z_{\mathrm{M} 30}\right)^{2}=\mathrm{z}_{\operatorname{self}}\left(\mathrm{z}_{\operatorname{self}}-\mathrm{z}_{30}\right)
$$

Where $Z_{30}=$ the terminal impedance of the antenna when the distance between two loops is 30 cm .

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{M} 30}= & \text { the mutual impedance between two loops when the } \\
& \text { distance between them is } 30 \mathrm{~cm} .
\end{aligned}
$$

$Z_{\text {self }}-Z_{30}=108.55-j 76.25-109.0+j 12.65$
$=-0.45-j 63.6$
$=63.60 /-90.42^{\circ} \quad \mathrm{ohms}$

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{M} 30} & =\sqrt{132.5 \cdot 63.60 \angle-35.1^{\circ}-90.42^{\circ}} \\
& =\sqrt{8440 \angle-62.76^{\circ}} \\
& =91.90 \angle-52.76^{\circ} \\
& =42.1-j 81.6 \quad \text { ohms }
\end{aligned}
$$

Other mutual impedances may be founded in the same way. They are tabulated on the next page.

	Mutual Irpedances	(ohms:)
	Rectangular Form	Polar Form
$\mathrm{Z}_{\text {self }}$	103.55-j76.25	$132.5<-35.1^{\circ}$
$\mathrm{Z}_{\mathrm{MlO}}$	96.60-j65.10	116.6 - 340
$\mathrm{Z}_{\mathrm{M} 20}$	67.40-j67.80	$95.6<-45.15^{\circ}$
$Z_{\text {M30 }}$	$42.50-j 81.6$	92.0 -62.5°
$\mathrm{Z}_{\mathrm{M} 40}$	6.08-j70.1	$70.4<-85.05^{\circ}$
$\mathrm{Z}_{\mathrm{M} 50}$	-27.30-j46.8	$54.2 /-120.25^{\circ}$
$\mathrm{Z}_{\text {M60 }}$	-44.5-j23.1	$50.2<-152.6^{\circ}$
$\mathrm{Z}_{\text {M } 70}$	-40.5-j2.94	$40.6<-184.15^{\circ}$
$\mathrm{Z}_{\text {M80 }}$	-31.4 + j26.6	$40.1<-221.55^{\circ}$
$\mathrm{Z}_{\mathrm{M90}}$	$-8.6+j 32.5$	$33.6<-255.12^{\circ}$
$\mathrm{Z}_{\mathrm{Ml} 00}$	$13.88+\mathrm{j} 33.4$	$36.2 /-292.56^{\circ}$

Curves of the mutual impedances obtained from calculations and from measurements are drawn in fig. 2-6 and fig. 2-7.

Fig. 2-6 Real Part and Imaginary Part of Mutual Impedance Between Two Identical Loops VS Spacing Distance in Wavelength

2-5
 Discussion

The mutual impedance between two loops is a measure of the voltace induced at the terminals of the second loop for one ampere of current flow into the terminals of the first loop. As the two loops are brought closer together, the voltage induced in the second loop becomes equal to the back or self-induced emf against which the current in the first loop must be driven. Thereforc, it would be expected that the mutual impedance between two identical loops would approach the self-impedance of one as the loop spacing approaches zero. Honce, if the space between two loops is put equal to zero, the real part of the mutual impedance is equal to the radiation resistance. However, the reactance of a loop with a wire diameter of zero will bo infinity (noic: The last term of equation (1-64)). I' is evident that in computing the reactance of the antenna, its wiro diameter will have to be considered.

CHAPTER III

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

3-1 Conclusion and Discussion

The results of this thesis show that the measured values follow closely the calculated values. The slight deviations are due to the following reasons:
(a) The antenna is not located at a place which is completely free from obstructions in all directions (the antenna is not in free space).
(b) The gap between the two terminals is not infinitely small.
(c) The ohmic losses in the antenna loops are not zero.
(d) For an antenna loop with losses, the velocity of wave propagation is not exactly $\mathrm{V}_{\mathrm{p}}=\frac{1}{\sqrt{\mathrm{LC}}}$; it changes with frequency. Hence, the one meter length loop is not exactly a full wavelength around the periphery.
(e) The two loops are not exactly parallel and their centers are not exactly on the same axis.
(f) The 300 ohm twin lead is an unshielded transmission line; it effects the near fields of the antenna.
(g) The current in the radiating loop is not exactly a sinusoid.
(h) The equivalent T circuit does not exactly represent the 300 ohm line.
(A) When the line is ouen circuited, the fringing capacitance will effectively make the line appear to be longer than it really is. In the short circuited case, inductance in the short circuit strap will cause a similar error ${ }^{1}$.
(B) In measuring $Z_{R O}$ and $Z_{R S}$ the test equipment should be located at the receiving end, where the antenna is to be connected; and the open circuit and the short circuit located at the sending end. It is, however, impossible to locate the test equipment at a height corresponding to the antenna height. The data for $Z_{R O}$ and $Z_{R S}$ were, of necessity, measured before the transmission line was put in place; the result being a slight error in the equivalent T circuit.

Some of the affects listed above can be avoided or reduced.

[^3]For instance, if a completely shielded balanced line is used, errors due to terms (f) and (g) disappear. If a transmission line with low characteristic impedance is used, the reading of the admittance meter will fall into the maximum accuracy range; better results will be obtained.

The line used does not appear to be exactly symmetrical i.e. $Z_{\text {RO }} \not \boldsymbol{Z}^{Z}$ SO and ${ }^{Z_{R S}} \not{ }^{Z}$ SS. This is due to poor manufacture and capacity differences along the line to the ground. Since $Z_{R O},{ }^{Z}$ RS, ${ }^{Z}$ SO and ${ }^{Z_{S S}}$ were measured this discrepancy does not introduce any error.

3-2 Suggestions for Further Study

The field pattern and the gain of the cubical antenna can be found with the knowledge of the pattern factor of the singlo loop and the data of this thesis.

The radiation resistance of a single loop was obtained by the extension of the ${ }^{Z}$ MR curve to the vertical axis. The radiation resistance of a single loop could be obtained by integrating the radical component of the Poynting vector over a large spherical surface. Similarly, the radiation resistance of the cubical quad antenna could be obtained by integrating the radical component of the poynting vector over a large spherical surface.

The radiation loop need not necessarily be fed by a single power source or the curc ant distribution along the radiating loop need not nocessarily be a cosine wave. The kind
of the current distribution that will yield maximum radiation or the kind of current distribution that will yield a desired field pattern are worthy of study.

APPENDIX I

Prove that

$$
\left.\begin{array}{rl}
E_{Z} & =\frac{I_{i} e^{j w t}}{4 \pi \epsilon_{0} C}\left[\int_{0}^{H} \frac{\partial}{\partial z}\left[\frac{e^{-j \beta(\ell+r)}-e^{j \beta(\ell-r)}}{r}\right] d h\right. \\
& +\frac{I_{i} e^{j \omega t}}{4 \pi \epsilon_{0} c}\left\{\left[\frac{e^{j \beta(\ell-r)}+-j \beta(\ell+r)}{r} d h\right.\right. \\
r
\end{array}\right]
$$

where $\quad r=\sqrt{x^{2}+y^{2}+(z-h)^{2}} \quad, \quad l=\frac{\lambda}{8}+h$
proof:

$$
\begin{aligned}
& \frac{\partial}{\partial z}\left[\frac{e^{-j \beta(\ell+r)}-e^{+j \beta(\ell-r)}}{r}\right] \\
& =\frac{-j\left(h(z-h) e^{-j \beta(\ell+r)}\right.}{r^{2}}-\frac{(z-h) e^{-j \beta(\ell+r)}}{r^{3}} \\
& +\frac{j \beta(z-h) e^{j \beta(\ell-r)}}{r^{2}}+\frac{(z-h) e^{j \beta(\ell-r)}}{r^{3}}
\end{aligned}
$$

set

$$
\begin{align*}
\mathrm{F}_{I} & =\int_{0}^{H} \frac{\partial}{\partial z}\left[\frac{e^{-j \beta(\ell+r)}-e^{j \beta(\ell-r)}}{r}\right] d h \\
= & \int_{0}^{H} \frac{j \beta(z-h)}{r^{2}}\left[0^{j \beta(\ell-r)}-e^{-j \beta(\ell+r)}\right] d h \\
& +\int_{0}^{H} \frac{(z-h)}{r^{3}}\left[e^{j \beta(\ell-r)}-e^{-j \beta(\ell+r)}\right] d h \tag{I}
\end{align*}
$$

set $F_{2}=j \beta \int_{0}^{H} \frac{1}{r}\left[e^{j \beta(\ell-r)}+e^{-j \beta(\ell+r)}\right]$ ah
but

$$
\frac{\partial}{\partial \mathrm{h}} \frac{\mathrm{c}^{-j \beta(\ell+r)}}{\mathrm{r}}=\frac{-j \beta e^{-j \beta(\ell+r)}}{r}+\frac{j \beta(z-h) e^{-j \beta(\ell+r)}}{r^{2}}
$$

$$
\begin{equation*}
+\frac{(z-n) e^{-j \beta(\ell+r)}}{r^{3}} \tag{III}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial}{\partial h}\left(\frac{e^{j \beta(\ell-r)}}{r}\right) & =\frac{j \beta e^{j \beta(\ell-r)}}{r}+\frac{j \beta(z-h) e^{i \beta(\ell-r)}}{r^{2}} \\
& +\frac{(z-h) e^{j \beta(\ell-r)}}{r^{3}} \tag{IV}
\end{align*}
$$

Comparing (I), (II), (III) and (IV)

$$
F_{1}+F_{2}=\int_{0}^{H}\left[\frac{\partial}{\partial h}\left(\frac{e^{j \beta(\ell-r)}}{r}\right)-\frac{\partial}{\partial h}\left(\frac{e^{-j \beta(\ell+r)}}{r}\right)\right] d h
$$

$$
=\left[\frac{e^{j \beta(\ell-r)}}{r}-\frac{e^{-j \beta(\ell+r)}}{r}\right]_{0}^{H}
$$

or

$$
E_{z}=\frac{I_{i}{ }^{j w t}}{4 \pi \epsilon_{0} C}\left\{\left[\frac{e^{j \beta(\ell-r)}}{r}-\frac{e^{j \beta(\ell+r)^{H}}}{r}\right]_{0}\right\} \text { Q.E.D. }
$$

APPENDIX II

5 Expanding the perfect differential of equation (1-44)

$$
\begin{aligned}
\frac{d}{d h} \frac{e^{j \beta(h-r)}}{r(r-h+z)} & =\frac{1}{r^{2}(r-h+z)^{2}}\left\{j \beta(r-h+z) r\left(1+\frac{z-h}{r}\right) e^{-i \beta(h-r)}\right. \\
- & \left.-\left[(r-h+z) \frac{h-z}{r}+r\left(\frac{-z+h}{r}-1\right)\right] e^{j \beta(h-r)}\right\} \\
= & \frac{e^{j \beta(h-r)}}{r^{2(r-h+z)^{2}}\left\{j \beta(r-h+z)^{2}+(r-h+z)\left(\frac{r-h+z}{r}\right)\right\}} \\
= & e^{j \beta(h-r)}\left\{\frac{j \beta}{r^{2}}+\frac{1}{r^{3}}\right\}
\end{aligned}
$$

6 Expanding the differential of equation (1-45)

$$
\begin{aligned}
\frac{d}{d h} \frac{e^{-j \beta(h+r)}}{r(r+h-z)}= & -\frac{1}{r^{2}(r+h-z)^{2}}\left\{r(r+h-z)(-j \beta)\left(1+\frac{h-z}{r}\right) e^{-j \beta(h+r)}\right. \\
& \left.-\left[\frac{h-z}{r}(r+h-z)+r\left(\frac{h-z}{r}+1\right)\right] e^{-j \beta(h+r)}\right\} \\
= & -\frac{e^{-j \beta(h+r)}}{r^{2(r+h-z)^{2}}\left\{-j \beta(r+h-z)^{2}-\frac{(r+h-z)^{2}}{r}\right\}} \\
= & e^{-j \beta(h+r)}\left\{\frac{j \beta}{r^{2}}+\frac{1}{r^{3}}\right\}
\end{aligned}
$$

BIBLIOGRAPHY

1. Jasik, Antenna Engincering Handbook, McGraw-Hill Book Company, Inc., N.Y. 1961
2. Jordan, Electromagnetic Waves and Radiating Systems, Prentice-Hill, N.Y., 1950
3. Kraus, J. D., Antennas, McGraw-Hill Book Company, Inc., N.Y., 1950
4. King, W.P., Minmo, H.R., and Wing, A.H., Transmission Lines, Antennas and Wave Guides, McGraw-Hill Book Company, Inc., 1945
5. Skilling, Electric Transmission Lines, McGraw-Hill Book Company, Inc., 1951
6. Stevenson, W.D., Elements of Power System Analysis, 1955
7. The Radio Amateur's Handbook, American Radio Relay League, 39th Edition, 1962

[^0]: $1_{\text {The Radio Amatcur's Handbook, American Radio Relay Leacue, }}$ $39 t h$ Edition, 1962.

[^1]: ${ }^{2}$ Jordan derives \vec{A} from the mir <compat>...tic intensity \vec{H}, hance the expression for \vec{A} does not invol μ_{0} : while $(1-14)$ is derived from \vec{B}.

[^2]: ${ }^{1}$ Jasik, Antenna Engineering Handbook, McGraw-Hill Book Company, Inc.. N.Y., 1961.

[^3]: ${ }^{1}$ Note: In U.H.F. type $874-W N$ short circuit termination and type $874-W 0$ open circuit termination are used, but they do not fit the 300 ohm twin lead and the terminals of the balun.

