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ABSTRACT 

Kranda, Daniel Joseph, M.S., Department of Mathematics, College of Science 
and Mathematics, North Dakota State University, October 2011. The Square of 
Adjacency Matrices. Major Professor: Dr. Warren E. Shreve. 

It can be shown that any symmetric (0, 1)-matrix A with tr A = 0 can be 

interpreted as the adjacency matrix of a simple, finite graph. The square of an 

adjacency matrix A2 = (si1) has the property that Sij represents the number of 

walks of length two from vertex i to vertex j. With this information, the motivating 

question behind this paper was to determine what conditions on a matrix S are 

needed to have S = A(G) 2 for some graph G. Structural results imposed by the 

matrix S include detecting bipartiteness or connectedness, counting four cycles and 

determining plausible neighborhoods of vertices. Some characterizations will be given 

and the problem of when S represents several non-isomorphic graphs is also explored. 

lll 



_.ii. 

ACKNOWLEDGMENTS 

I would like to thank Dr. Warren Shreve for his many hours of guidance provided 

to me during the writing of this thesis. 

IV 



TABLE OF CONTENTS 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

ACKNOWLEDGMENTS ............................................ IV 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vl 

CHAPTER 1. INTRODUCTION..................................... 1 

1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.2. Square Graphic Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.3. Preliminary Structure Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

CHAPTER 2. REMOVING VERTICES ............................... 22 

2.1. Full and Null Degree ........................................ 22 

2.2. Row and Column Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

2.3. More Removal Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

CHAPTER 3. CHARACTERIZATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

3.1. Empty, Complete and Complete Bipartite Graphs .............. 35 

3.2. One- and Two-Regular Graphs ............................... 38 

3.3. Paths ..................................................... 47 

CHAPTER 4. DUPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

CHAPTER 5. CONCLUSION AND FURTHER RESEARCH ............ 62 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

V 



LIST OF FIGURES 

Figure Page 

1 C3 u C3 ....................................................... 10 

2 c6 ............................................................ 10 

3 G; a subdivision of K 1,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

4 H =C3 u { V4, . .. 'V7} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

5 P and C ....................................................... 16 

6 B; a candidate for S = A(B)2 
........•...................••...... 34 

7 Graph G ...................................................... 61 

8 Graph H ...................................................... 61 

vi 



CHAPTER 1. INTRODUCTION 

This thesis will aim to determine necessary and sufficient conditions for a 

matrix to represent the square of the adjacency matrix of a graph. Beginning with 

some background in graph theory and a motivating problem, we will continue with 

immediate necessary conditions. 

Throughout this paper, examples will be provided either as a showcase of the 

results or to show why certain conditions are not both necessary and sufficient. We 

will prove several results about the necessary structure of graphs given conditions on 

the square of the adjacency matrix. 

The process of removing vertices of certain degrees and the effect this has on 

the square of the adjacency matrix is explored. 

We will prove characterizations of the squares of the adjacency matrices of 

several classes of graphs including paths and unions of cycles. Lastly, the problem 

of determining when a matrix represents several non-isomorphic graphs is explored 

with a result on constructing such matrices. 

A thorough study of the square of the adjacency matrix of a graph has not been 

addressed previously in the literature, as was determined by an extensive search of 

MathSciNet and the internet. However, we expect the graph theory community will 

find this to be a topic of interest. 

1. 1. Background 

Throughout this paper, we will consider only simple, undirected graphs; that 

is, we will only concern ourselves with graphs that have no loops or multiedges and 

whose edges have no direction assigned to them. Under these assumptions, we have 

the following definition. 
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Definition 1.1. For a graph G on n vertices {v1 , V2, ... Vn}, the adjacency matrix of 

G, denoted A(G) = (aij), is then x n (0, 1)-matrix with 

With a simple, undirected graph G, we must have that tr A(G) = 0 and that 

A(Gf = A(G). The trace must be zero because we do not allow loops in our graph; 

that is, vivi (/. E( G) for all i and hence, aii = 0 for all i. The matrix must be symmetric 

because all edges are undirected; that is, vivj E E(G) if and only if VjVi E E(G) and 

hence, aij = aji. 

Definition 1.2. A (0, 1 )-matrix A is graphic if there exists a simple undirected graph 

G such that A= A(G). 

Theorem 1.3. A (0, l)-matrix A is graphic if and only iftr A= 0 and AT= A. 

Proof. We have already proven the necessity, so suppose A is an n x n, symmetric, 

(0, 1 )-matrix such that tr A = 0. Let G be a graph on n vertices { v1 , v2 , ... , vn} such 

that vivj E E( G) if and only if aij = a1i = l. Then by construction G is a simple 

undirected graph with A(G) = A, and hence, A is graphic. □ 

Theorem 1.4. (see Merris, (6}, e.g.) Suppose A= (ai1) = A(G) and B = (bij) = 

A(H) for some graphs G and H. Then G ~ H if and only if A= p-1 BP for some 

permutation matrix P. 

Proof. Without loss of generality, let V( G) = V(H) = { v1, v2 , ... , vn}- If G ~ H then 

there exists</>: V(G)--+ V(H) such that vivj E E(G) if and only if V,p(i)V¢(j) E E(H) 

and so aij = b,p(i)¢(j). Let 
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where ei is the ith column of the n x n identity matrix. Notice that p- 1 = pT and 

so 

On the other hand, suppose there is a permutation matrix P such that A = 

p- 1 BP. Since Pa permutation matrix, there is¢ E Sn such that 

Now vivi E E(G) if and only if 1 = aii = bct,(i)ct,(i) if and only if Vct,(i)Vct,(j) E E(H). 

Therefore, ¢ is an isomorphism between G and H. □ 

With this background on the adjacency matrix of a graph, we now present 

an important theorem connecting the square of the adjacency matrix of a graph 

to properties of the graph. This theorem helps motivate the idea that there is a 

connection between the squares of adjacency matrices of graphs and properties of the 

corresponding graphs. 

Definition 1.5. In a graph G, a walk is an alternating sequence of vertices and edges 

in G, beginning and ending with vertices so that each vertex is incident to the edges 

that precede and follow it in the sequence and where the vertices that precede and 

follow an edge in the sequence are the end vertices of that edge. 

In this paper, the length of a walk will be determined by the number of edges 

in the walk. 

Theorem 1.6. Let A= (aij) = A(G) for some simple undirected graph G and define 

S = (sii) = A2
. Then for every i and j, sii represents the number of two-walks (walks 

of length two) from vertex vi to Vj in G. 
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Proof. Consider the entry Sij in S. By definition, Sij = I:;=1 aikakj and so one is 

contributed to the sum only when aik and akj are 1. That is, when the edges vivk 

and vkvj are in G, which corresponds to the two-walk from vi to Vj through vk. □ 

It should be noted that this theorem can be extended in the following sense: 

if A is the adjacency matrix of a graph G and k is some positive integer, then the 

( i, j)-entry of the matrix A k represents the number of walks of length k from vi to vi. 

This result can be found in many books on graph theory; see Chartrand and Lesniak, 

[2], for example. 

1.2. Square Graphic Matrices 

Definition 1. 7. A matrix S is square graphic if there is a simple, undirected graph 

G such that S = A( G)2
. 

We have seen a characterization of graphic (0, 1)-matrices with two simple 

conditions from Theorem 1.3. With this characterization and the previous definition, 

the question of determining when a matrix is square graphic is a natural one. 

However, there are several immediate necessary conditions for a matrix to be 

square graphic, that fail to be sufficient conditions. Some of these necessary conditions 

are listed in the following proposition. First, we introduce some background on the 

spectra of graphs. 

The following theorems are well known from matrix and graph theory and hence 

the proofs are omitted. 

Theorem 1.8. (Spectral Mapping Theorem)(see Roman, (7/, e.g.) If A is an n x n 

matrix and pis a polynomial, then the eigenvalues of p(A) are p(>.1),p(>.2 ), ... ,p(>.n) 

where >-1, >-2, ... , An are the eigenvalues of A. 
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Theorem 1.9. (/7], e.g.) If A is an n x n matrix with eigenvalues Ai, A2, ... , An then 

n n 

det A = IT Ai and tr A = L Ai. 
i=i i=i 

Theorem 1.10. {see Marcus and Mine, /5], e.g.) If A is a real, symmetric n x n 

matrix then all of the eigenvalues of A are real numbers. 

Theorem 1.11. {Perron-Frobenius Theorem){see Beineke and Wilson, /1], e.g.) If 

A is a real, symmetric n x n matrix whose entries are all non-negative, then Ai ?: I-Ail 

for i = l, ... , n and where Ai ?: A2 ?: · · · ?: An are the eigenvalues of A. 

Definition 1.12. For a vertex v in a graph G, the degree of v, denoted deg v, is the 

number of vertices adjacent to v in G. 

Theorem 1.13. {First Theorem of Graph Theory){see Chartrand and Lesniak, /2], 

e.g.) IfG is a graph with V(G) = {vi,v2 , ... ,v11 } then 

n 

Ldegvi = 2m 
i=i 

where m is the number of edges in G. 

Proposition 1.14. If S = A( G) 2 = ( Sij) for some simple, undirected graph G then 

we have the following: 

{ii) sii = deg( vi) and O ~ sii ~ n - l for all i 

{iii) Sij ~ min{sii, Sjj, n - 2} for all i-/- j 

{iv) tr(S) = 2m where m = IE(G)I and so O ~ m ~ n(n - 1) 

{v) If A is an eigenvalue of S then A?: 0 
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(vi) There exist ei E {-1, 1} for i = 2, ... , n such that~+ ~~=2 eiA = 0 where 

.\1 ~ >-2 ~ • • • ~ >-n are the eigenvalues of S. 

Proof. Let A= (ai1) = A(G). 

(i) We have sr = (A2f = AT AT= A2 = S since A is symmetric. 

(ii) The number of two-walks from vertex vi to itself is exactly the degree of vi. Since 

at most, it can be adjacent to all other vertices in G, we have deg Vi = sii ~ n- l. 

(iii) Suppose i #- j. The number of two-walks from vi to Vj is the number sij· A 

two-walk between vi and v1 corresponds to a shared neighbor of each vertex, of 

which, there are at most min{degvi,degv1} = min{sii,s11 }. Since a vertex is 

never its own neighbor, the greatest number of vertices shared by Vi and v1 is 

n - 2. Therefore, sij ~ min{sii, s11 , n - 2}. 

(iv) Since sii = degvi for each i, we have tr(S) = ~deg(v). The result follows from 

Theorem 1.13. 

(v) Since A is a real, symmetric matrix, we know that every eigenvalue of A is a 

real number. By Theorem 1.8, if ,\ is an eigenvalue of A then >.2 must be an 

eigenvalue of S. Since ,\ was real, the square must be nonnegative. 

(vi) By Theorem 1.8, if >. is an eigenvalue of S then y), or -y}, must be an 

eigenvalue of A. By Theorem 1.9, we have 

n n 

0 = tr A= Lµi = I:e1J:½" 
i=l j=l 

where 11,1, /l2, ... , Jln are the eigenvalues of A. The values of the ei correspond 

to the sign needed to recover the eigenvalues of A from the square root of those 

from S. 
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Since, by Theorems 1.9 and 1.11, the largest eigenvalue of A must be positive, 

it must be the case that e1 = 1. Thus, 

n 

A+I::enA=O. 
i=2 

□ 

Theorem 1.15. If S1 is square graphic, then so is S2 = p-1s1P for any permutation 

matrix P. 

Proof. Suppose S1 = (sij) = A(G) 2 for some graph G on vertices {v1, v2 , ... , vn}. If 

P is a permutation matrix, then there exists 7f E Sn such that 

P = ( e1r(1) e1r(2) · · · e,r(n) ) 

where ei is the ith column of the n x n identity matrix. Now, 

Consider a renumbering of the vertices of G given by vi f--t V1r(i)· To avoid 

confusion, denote this graph with G' and let S2 = (bij) = A( G') 2
. We claim now that 

S2 = p- 1s1P, but this is immediate, since by definition, bij = s1r(i)1r(j) for all i and j. 

That is, the number of two-walks from vertex V1r(i) to v1r(j) in G' equals the number 

of two-walks from vi to Vj in G. Thus, since p-1s1P = S2 = A(G')2, we have that 

p-1s1? is square graphic. □ 

Since the number of two-walks from a vertex to itself corresponds exactly to 
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the degree of that vertex, the main diagonal of the square of an adjacency matrix 

will represent the degree sequence of the graph under an appropriate permutation if 

necessary. 

This means that we inherit, as necessary conditions, all the conditions for a 

degree sequence to be graphic. For example, we have the theorems of Havel-Hakimi 

and Erdos-Gallai which can be found in many books on graph theory; see Chartrand 

and Lesniak, [2], for example. 

Definition 1.16. We will say S 1 and S2 are similar if there is a permutation matrix 

P such that S2 = p-1s1P. In this case, we write S1 ~ S2 . 

Remark 1.17. It can be shown that being similar is an equivalence relation. 

Notice by Theorem 1.15, if S 1 ~ S2 then S1 is square graphic if and only if S2 

is square graphic. 

Remark 1.18. There are matrices that satisfy the conditions from Proposition 1.14 

that fail to be square graphic. 

Example 1.19. Consider the square matrix 

3 2 1 1 1 1 

2 3 1 1 1 1 

1 1 3 2 1 1 
S= 

1 1 2 3 1 1 

1 1 1 1 3 2 

1 1 1 1 2 3 

Certainly, S is a real, symmetric matrix. The trace of S is 18, which is even. The 

eigenvalues of S, listed with multiplicity, are {9, 3, 3, 1, 1, 1, 0, 0, 0}. Finally, we have 

3+V3-V3-1-1-1+0+0+0=0 
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and hence, condition (vi) is satisfied. However, the only 3-regular graphs on 6 vertices 

are K3,3 and K3 x K2 (see Harary, /4], e.g.) whose adjacency matrices squared are 

3 3 3 0 0 0 

3 3 3 0 0 0 

A(K3,3)2 ~ 
3 3 3 0 0 0 

0 0 0 3 3 3 

0 0 0 3 3 3 

0 0 0 3 3 3 

and 

3 2 0 1 1 2 

2 3 1 0 2 1 

A(K3 X K2)2"' 
0 1 3 2 2 1 

1 0 2 3 1 2 

1 2 2 1 3 0 

2 1 1 2 0 3 

Since each has entries of zero, it is clear that S is not similar to either matrix, and 

hence, is not square graphic. 

Remark 1.20. Note that Theorem 1.15 and Definition 1.16 do not say anything about 

isomorphisms of graphs. The proof differs from Theorem 1.4 as we are not dealing 

with adjacency matrices and so we cannot say anything directly about when vertices 

are adjacent. 

The theorem is still important, as it allows us to take a given matrix and permute 

it into a different form if it is convenient. If we can show the permuted matrix is 

graphic, then we know the original matrix must be graphic. However, there are 

graphs such that A(G) 2 ~ A(H) 2 and G ~ H. 
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Example 1.21. Consider the two graphs from Figures l and 2, each on six vertices 

with six edges. 

Figure 1. C3 U C3 

/"' ."\ 
."\ /"' 

•v6 •v2 

Figure 2. c6 

Note that we have 

2 1 1 0 0 0 

1 2 1 0 0 0 

A( C5) 2 = A( C3 U C3)2 = 
1 1 2 0 0 0 

0 0 0 2 1 1 

0 0 0 1 2 1 

0 0 0 1 1 2 

but C5 ';/- C3 U C3 

In many of the results to follow, we will be considering matrices with blocks 

consisting of all zeros. In order to avoid cumbersome notation, a bold zero will 



represent a matrix consisting of all zeros of the appropriate size according to the 

context. 

Proposition 1.22. If S1 = A(G) 2 and S2 = A(H) 2 for some graphs G and H then 

Proof. Consider the graph GU H and a labeling such that the first n vertices belong 

to the component of G U H consisting of G and the next m vertices belong to the 

component of GU H consisting of H. Then certainly there are no new two-walks 

between G and H when viewed as components of the graph GU H. And the two

walks of G and H as components of GU H are exactly those of G and H, respectively. 

That is, 

□ 

Definition 1.23. We define Jmxn to be the m x n matrix whose entries are all one. 

We will shorten Jnxn to Jn. 

Definition 1.24. The join of two graphs G and H on distinct vertex sets V ( G) 

and V(H) is the graph G + H with V(G + H) = V(G) u V(H) and E(G + H) = 

E(G) U E(H) U {e = uv I u E V(G), v E V(H)}. 

Proposition 1.25. Let S1 = (s~j) = A(G) 2 and S2 = (s~J) = A(H)2 for some graphs 

G and H on n and m vertices, respectively. Then 
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where S = ( sij) is the n x m matrix with Sij = s~i + s'ji J or all i and j. 

Proof. Consider the graph G + H and a labeling such that the first n vertices cor

respond the vertices originating from G and the next m vertices correspond to the 

vertices originating from H. 

By definition of the join operation, we add every edge starting at a vertex in G 

and ending at a vertex in H. Thus, 

A( G + H) ~ ( A( G) lnxm ) . 
Jmxn A(H) 

And hence, 

2 ( A(G)
2 + mJn 

A(G + H) ~ 
JmxnA(G) + A(H)Jmxn 

A(G)Jnxm + JnxmA(H) ) . 

A(H)2 + nJm 

Now we only need to show that the (i,j)-entry of A(G)Jnxm+lnxmA(H) = (sij) 

is exactly s~i + s'ji. Consider the entry Sij, it corresponds to the sum of the ( i, j)

entries from A( G) Jnxm and JnxmA( H). But the ( i, j)-entry of A( G) Jnxm is exactly 

the sum of the elements in the ith row of A( G). As this counts the vertices adjacent 

to vertex vi in G, this term is exactly s~i• Similarly, the (i, j)-entry of lnxmA(H) is 

the sum of the elements in the jth column of A(H). This corresponds to s'jj, and 

hence, sii = s~i + s'Jj· 

Therefore, A(G)Jnxm + JnxmA(H) =Sas desired and so, 

□ 
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Remark 1.26. The previous result can also be proven by counting two-walks in the 

graph G + H. As it is slightly less elegant, that proof was omitted in favor of the one 

given. 

Proposition 1.27. Let A(G) 2 = (s:i) and H be a subgraph of G. If A(G \ {e rt, 

E(H)})2 = (s:'.i) then s~1 ~ s:J for all i and j. 

Proof. First notice that the graph H = G \ { e (J. E(H)} corresponds to the subgraph 

H U { v E V ( G) \ V ( H)} in G. The reason for this construction and not looking at 

the subgraph H directly is so we are able to compare matrices of the same size. 

Notice, since edges are only removed from G to obtain H, the number of two

walks among any vertices in H is not increased. Thus, we have the desired result. □ 

Example 1.28. The converse of Proposition 1.27 is false. That is, if A( G)2 = (s:j) 

and A(H) 2 = (s:'.i) for some graphs G and H and s:'.i ~ s:i for all i and j then H is 

not necessarily a subgraph of G. 

Consider, for example, the graphs in Figures 3 and 4 and their corresponding 

adjacency matrices squared. 

Figure 3. G; a subdivision of 
K1,3 
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We have 

2 1 1 0 0 0 0 

1 2 1 0 0 0 0 

1 1 2 0 0 0 0 

A(G) 2 
= (s~i) = 0 0 0 3 1 1 1 

0 0 0 1 1 0 0 

0 0 0 1 0 1 0 

0 0 0 1 0 0 1 

and 

2 1 1 0 0 0 0 

1 2 1 0 0 0 0 

1 1 2 0 0 0 0 

A(H)2 
= (s~J) = 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

Thus, s~1 ::; s~i for all i and j, but H is not a subgraph of G. 
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1.3. Preliminary Structure Results 

The following results relate the structure of the square of the adjacency matrix 

of a graph with the structure of that graph. 

with O < k < n. 

Proof. First suppose that G is disconnected with a connected component H on k 

vertices with O < k < n. Then there are no two-walks from any vertex of H to any 

vertex of G \ H. Therefore, renumbering the vertices of G if necessary, we have 

A( G)2 ~ ( A(OH)2 0 ) 
A(G \ H) 2 . 

Setting B1 = A(H)2 and B2 = A(G \ H)2, it is clear A(G)2 has the desired form. 

Now, suppose G is bipartite with partite sets X and Y and that A(G) 2 = (sij)

Without loss of generality, we have X = { v1 , v2 , ... , vk} ( otherwise, relabel the graph 

accordingly). Since G is bipartite, every two-walk must begin and end in the same 

partite set. If there is a two-walk vivjvk with vi E X and vk E Y, then since Vj E X 

or VJ E Y we must have an edge among the vertices of a partite set, which is a 

contradiction. Hence, sij = SJi = 0 for all i = 1, 2, ... , k and j = k + l, ... , n. 

Therefore, 

where B1 is k x k with O < k < n. 

To prove the sufficiency of the statement, assume by the contrapositive that G 
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is connected and nonbipartite. By contradiction, assume 

where B1 is k x k with O < k < n. Let Vi= {v1 ,v2, ... ,vk} and Vi= {vk+l, ... ,vn}

Under these assumptions, we must have sij = Sji = 0 for all i = 1, ... , k and j = 

k + 1, ... ,n. 

Since G is nonbipartite, there is an odd cycle C in G of length t. Without loss 

of generality, there is av E V(C) n Vi- We now claim that V(C) ~ Vi. 

Write C = Ve0 Vci ... Vet-i Ve0 where the indices are Ci with i mod t. Then 

without loss of generality, v = Ve0 E Vi. Notice that we must have Ve;+ 2 E V1 

whenever Ve; E Vi. Otherwise, if Ve; E V1 and Vei+ 2 E Vi then Se;e;+2 =/= 0 which is a 

contradiction, because ci E {1, ... , k} and ci+2 E {k + 1, ... , n }. Therefore, Ve2p E V1 

for p = 0, 1, 2, ... , t - 1. But since C is of odd length, this forces V ( C) ~ V1 , proving 

the claim. 

Now, if there is a vertex u E V(G\ C) then since G is assumed to be connected, 

there exists a path P from u to a vertex v on C so that P n C = { v} (see Figure 5). 

p 

Figure 5. P and C 

•w ___, • 

C 

If P is of even length, then since every second vertex from v on P must also be 

in Vi, we have that u E Vi. If a vertex of even distance from v is not in Vi, we would 
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contradict the assumption that there are no two-walks starting in V1 and ending in 

If P is of odd length, consider a neighbor w of v, such that w E V ( C) <;: V1 . 

Then wvPu is a path of even length, and the argument from above forces u E ½. 

Therefore, every vertex of G must be in½, making l½I = n and !Vil = 0 which 

is a contradiction. Therefore, we have proven the claim by contrapositive. That is, 

if G is nonbipartite and connected, then A( G)2 is not similar to a block diagonal 

matrix. □ 

Definition 1.30. The neighborhood of a vertex v in a graph G is the set r( v) = { u E 

V(G) such that uv E E(G)}. 

Corollary 1.31. Suppose S = A( G) 2 is an n x n matrix such that S ~ ( Bi O ) 
O B2 

where B1 is a k x k matrix with O < k < n. Then we have the following: 

(i) If B 1 or B2 is similar to a block diagonal matrix with two or more blocks, then 

G is disconnected. 

(ii) If tr B1 or tr B2 is odd, then G is bipartite or has a bipartite component. 

(iii) If tr B1 =/- tr B2 , then G is disconnected. 

Proof. (i) By the previous theorem, we know G is disconnected or bipartite. 

Suppose, without loss of generality, that 

where B11 is size l x l with O < l < k. 

17 



Assume by contradiction, that G is connected. This implies G is a connected, 

bipartite graph such that 

A(G)2 ~ 

Let the partite sets of G be X and Y. 

First, we claim that for any proper, nonempty subset E C X there exists a 

two-walk from some u in E to some v in X \ E. To prove the claim, suppose by 

contradiction there is a subset E C X such that there is no two-walk between every 

u in E and every v in X \ E. This gives us that 

{f(u) I u EE} n {r(v) Iv Ex\ E} = 0 

which implies G must be disconnected, which is a contradiction. 

Define the sets following sets of vertices: ½ = { v1, ... , Vt}, ½ = { Vt+ 1, ... , vk} 

and Vi = { Vk+l, . .. , vn}. By the previous claim, we now have that vertices from 

distinct vertex sets ½ and ½ must be in distinct partite sets. However, since there 

are only two partite sets and three sets of vertices without two-walks between them, 

there must be au and v in the same partite set from distinct sets of vertices ½ and 

½. This contradicts G being connected; therefore, G must have been disconnected 

to start. 

(ii) By the previous theorem, G must be disconnected or bipartite. Suppose, 

without loss of generality, that tr B 1 is odd and that G is not bipartite and has no 

bipartite component. Then G must be disconnected and each connected component 

must be nonbipartite. Then if H is a connected component of G, by the previous 
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theorem, H is not similar to a block diagonal matrix. 

Let H1 , ... , Hk be the distinct connected components of G and relabel G so that 

so on. Then we have 

0 

S ~ A(G)2 ~ 

0 

Therefore, there is a set E c { 1, 2, ... , k} such that B1 is similar to a block 

diagonal matrix whose blocks are A(Hi)2 with i E E. Thus, 

tr B1 = I: tr A(Hi)2 

iEE 

but each A(Hi)2 is graphic; hence, tr A(Hi)2 is even for each i. Therefore, tr B1 must 

be even, which is a contradiction. Thus, G must be bipartite or have a bipartite 

component. 

(iii) By the previous theorem, we know G must be disconnected or bipartite. 

Suppose tr B1 i- tr B2 and by contradiction, that G is connected. Relabel G so that 

the partite sets of vertices are X = { v1, v2, ... , vk} and Y = { Vk+l, Vk+2, ... , vn}

Then since the only two-walks in G are from one partite set to itself, we must have 

that, without loss of generality, entries of B1 correspond to the number of two-walks 

among vertices in X and entries of B2 to those among vertices in Y. A similar 

argument from ( i) shows that the partite sets cannot be split among the vertices 

corresponding to the blocks B 1 and B2 . 
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Now every edge in G must go between the partite sets X and Y. Thus, if we 

wish to count the edges in G, it would be enough to add the degrees of the vertices in 

one partite set. Since the number of edges in a graph is fixed, we can add the degrees 

of the vertices from one partite set and we must get the same result as when we add 

the degrees of the vertices from the other partite set. 

Since the degrees of the vertices of G lie on the main diagonal of S, by our 

labeling of G we have tr B1 = tr B2 , which is a contradiction. Therefore, G must have 

been disconnected to start. □ 

Example 1.21 shows that it will be impossible, in general, to detect connectivity 

from the square of the adjacency matrix of a graph. However, an optimistic point 

of view could be that there are multiple graphs associated to a given matrix, thus 

making the task of determining if a matrix is square graphic possibly easier. 

Theorem 1.32. If S = (sij) = A(G) 2 for some graph G, then 

is the number of distinct cycles of length four in G. 

Proof. First, we claim that, for i i= j, (8:?) counts the number of distinct cycles 

of length four on which vertices vi and Vj sit opposite. To prove the claim, let 

vi, Vj E V(G) and notice every two-walk from Vi to Vj corresponds to a shared neighbor 

of the two. Now, a cycle of length four on which vi and Vj sit opposite occurs when 

there is a two-walk from vi to Vj and a different two-walk from Vj to vi. In other words, 

vi and Vj sit opposite on a cycle of length four when we can choose two distinct vertices 

u and v that are neighbors of both vi and Vj. Since the number of shared neighbors 

of vi and Vj is exactly Sij, the number of cycles of length four on which vi and Vj sit 

opposite is ( 8!}) . 
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Consider a cycle of length four in G: uvwxu. In the sum Lih (s2i), this cycle is 

counted once by each of (8;w), ( 8~"), ( s~x), and ( s;v). Thus, to count each four cycle 

in G exactly once, we divide this sum by four. □ 

Remark 1.33. A necessary condition for a matrix S to be graphic that can be taken 

from Theorem 1.32 is that the number Lih (82i) must be divisible by four. 

Example 1.34. Considering again the matrix from Example 1.19 that satisfied all 

the conditions from Proposition 1.14, we can now use the previous theorem to detect 

the fact that it is not square graphic. We have 

3 2 1 1 1 1 

2 3 1 1 1 1 

1 1 3 2 1 1 
S= 

1 1 2 3 1 1 

1 1 1 1 3 2 

1 1 1 1 2 3 

and thus, L (s~j) = 6, which is not divisible by four, meaning S is not graphic. 
i#j 
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CHAPTER 2. REMOVING VERTICES 

The following are several results dealing with the removal of vertices of certain 

degrees and the effect on the square of the adjacency matrix. 

2.1. Full and Null Degree 

The following definition will be needed in future results. It can be used as a 

way to reduce the size of the square of an adjacency matrix and corresponds to the 

removal of vertices from the graph. 

Definition 2.1. If A is an n x n matrix, let Aij be the (n - 1) x (n - 1) matrix 

formed by deleting the ith row and jth column from A. 

We start our exploration of the removal of vertices with the removal of vertices 

with 'full' and 'null' degrees. That is, vertices adjacent to all other vertices in the 

graph and vertices adjacent to no other vertices in the graph. 

Lemma 2.2. Suppose S = (siJ) is an n x n matrix such that Spp = n - l for some p. 

If S is square graphic, then so is Spp - J(n-l) · Also, if S' = ( s~J) is an n x n square 

graphic matrix, then 

is an ( n + l) x ( n + l) square graphic matrix. 

Proof. Assume S = A( G) 2 for some graph G and that, without loss of generality, 

Snn = n - 1. If Spp = n - l, then the permutation simultaneously swapping row and 
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column p with row and column n results in Snn = n - l. Then deg( vn) = n - l 

and vertex Vn is adjacent to each vertex vi for i = 1, 2, ... , n - l. Now for all i and 

j between 1 and n - l, not necessarily distinct, we have the two-walk vivnvj which 

contributes a one to Sij· Every other two-walk from vi to v1 must go through a vertex 

different from Vn. Thus, the removal of vertex Vn from G decreases Sij by exactly one 

for all i and j between 1 and n - l. Since all other two-walks are preserved, we have 

A( G \ { Vn} )2 = Snn - J(n-1) · Hence, Snn - J(n-1) is square graphic, as, in general, is 

Spp - J(n-1)• 

Now, suppose S' = (s~i) is an n x n graphic matrix such that S' = A(G)2 for 

some graph G on the vertices { v1, v2 , ••• , vn}, Consider the graph G + { Vn+1}. Since 

A( { Vn+l} ) 2 = (0), by Proposition 1.25 we have 

A(G + {v})2 = 

n 

and hence, is square graphic. □ 

Lemma 2.3. Let S = (sij) be an n x n matrix such that Spp = n - l for some p. If 

S is square graphic then spq = Sqp = Sqq - l for all q i= p. 

Proof. Suppose S = A(G)2 for some graph G. Then in G, deg(vp) = n - l implies 

that vpvq E E( G) for all q i= p. For each neighbor v of vq with v i= vP ( of which 

there are deg(vq) - 1) we get the two-walk VpVVq, Since every two-walk from Vp to 

any vertex Vq must have this form, there are deg( vq) - l two-walks from vP to Vq. 

Thus, Spq = deg( Vq) - 1 = Sqq - l for all q i= p. Also, by symmetry, it follows that 

Sqp = Sqq - l, proving the claim. □ 
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Theorem 2.4. Let S = (sij) be an n x n matrix such that Spp = n - l for some p 

and Spq = Sqp = Sqq - 1 for all q -=J p then S is square graphic if and only if Spp - Jn-I 

is square graphic. 

Proof. Apply Lemma 2.2 and Lemma 2.3. □ 

Theorem 2.5. Suppose S = (sij) is an n x n matrix such that sPP = 0 for some p 

and that Spq = Sqp = 0 for all q -=J p. Then S is square graphic if and only if Spp is 

square graphic. 

Proof. Suppose S = A(G) 2
. Then in G, vP corresponds to a degree zero vertex; that 

is, an isolated vertex. Therefore, there are no two-walks to, from, or through vertex 

vP. The removal of this vertex results in the graph G \ { vp} with A( G \ { vp} )2 = SPP

Therefore, SPP is square graphic. 

For the converse, consider the ( n - l) x ( n - l) matrix Spp = A( G)2
. Then 

the addition of an isolated vertex Vn results in no additional two-walks among any 

vertices of G. Then we have 

0 

0 
~S. 

0 0 0 

Therefore, S must also be square graphic. □ 

By Theorem 2.4 and 2.5, when deciding if an n x n matrix S is square graphic, 

if the off-diagonal elements satisfy the proper hypotheses, we can reduce the problem 

to looking at the matrix formed from S by removing any rows and columns whose 

diagonal element is zero or n - l. 
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Example 2.6. This example will illustrate the use of the previous two results to 

determine if a matrix is square graphic. Consider the matrix 

4 3 2 0 2 2 2 3 

3 4 2 0 2 2 2 3 

2 2 4 0 2 2 2 3 

0 0 0 0 0 0 0 0 
S= 

2 2 2 0 4 2 2 3 

2 2 2 0 2 4 3 3 

2 2 2 0 2 3 4 3 

3 3 3 0 3 3 3 6 

By Theorem 2.5, S is square graphic if and only if 

4 3 2 2 2 2 3 

3 4 2 2 2 2 3 

2 2 4 2 2 2 3 

844 = 2 2 2 4 2 2 3 

2 2 2 2 4 3 3 

2 2 2 2 3 4 3 

3 3 3 3 3 3 6 

is square graphic. 

Notice, there is a diagonal entry corresponding to a vertex of full degree and that 

the off-diagonal entries satisfy the proper hypotheses. 

By Theorem 2.4, S44 is square graphic if and only if the following matrix is 

square graphic, which by Examples 1.19 and 1.34, is not. 
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3 2 1 1 1 1 

2 3 1 1 1 1 

1 1 3 2 1 1 
(S44)11 - J5 = 

1 1 2 3 1 1 

1 1 1 1 3 2 

1 1 1 1 2 3 

Therefore, S is not square graphic. 

2.2. Row and Column Sums 

While at first it may appear off-topic, the following results give an interpretation 

of the row and column sums of the square of an adjacency matrix. This interpretation 

will be useful later in this section in providing more results on the removal of vertices. 

Theorem 2.7. If S = (sij) = A(G) 2 for some graph G then 

and thus, if sii =/ 0 

n n 

I>ij = Lsii = L deg(v) 
j=l j=l 

1 n 

-'"""'Sij 
s·L 

ii j=l 

gives the average degrees of the neighbors of vi, 

Proof. Consider vi E G and some v E r(vi), Then there are exactly degv two-walks 

of the form vivu. Since every two-walk starting at vi must go through some neighbor 

of vi, by taking the sum of the degrees of the neighLors of vi, we will have counted 

all possible two-walks from vi. On the other hand, I:
1 

Sij gives the total number of 
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two-walks starting at vi. Thus, 

n 

L Sij = L deg(v). 
j=l vEf(v;) 

The number of summands on the right hand side is exactly !f(vi)I = deg(vi) = 

Sii· Dividing across gives the desired result. □ 

Corollary 2.8. If S = (sij) = A(G) 2 for some graph G then for each i there is 

Ei ~ {s11,s22,•• .,snn} \ {sii} (viewed as a multiset if necessary) such that !Eil = Sii 

and 
n 

LS= LSij· 
sEE; j=l 

Proof. We have 
n 

Lsij = L deg(v) 
j=l vEf(v;) 

and since !f(vi)I = deg(vi) = sii, the number of summands on the right hand side of 

this equation is Sii· For each Vj E f(vi), we have deg(vj) = SJJ· Taking Ei = {sJJ 

such that vi E r( vi)} gives the desired result. D 

Corollary 2. 9. If S = ( siJ) = A( G)2 where G is a k-regular graph, then 

n n 

L Sij = L s ji = k2. 
j=l j=l 

Proof. We have 
n 

L siJ = L deg( v) = L k = k
2 

j=l vEl'(v;) 

since if(vi)I = deg(vi) = k for all i. □ 

It should be noted that, the previous results can be used to determine if a matrix 

S is square graphic as shown in the next example. 
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Example 2.10. Consider the matrix 

2 1 1 0 

1 2 1 1 
S= 

1 1 1 0 

0 1 0 1 

Then by the previous results, if S were square graphic, then the average degree of the 

neighbors of v2 would be 

1 4 

( 1) 5 - I: S2i = - ( 5) = - . 
S22 i=l 2 2 

This implies that v
2 

must have a neighbor of degree at least 3, which is impossible 

given the diagonal of S. Therefore, S cannot be square graphic. 

2.3. More Removal Results 

Theorem 2.11. Suppose S = (sii) is square graphic. If Spp 

there exists q i= p such that Spq = Sqp = O; Sqq = Z::~=l Spi,' and 

Sn 

Sql Sqq - 1 Sqn 

Snn 
PP 

is also square graphic. 

1 for some p then 

Proof. Assume S = (sij) = A(G) 2 for some graph G and that Spp = 1. Then we have 

deg( vp) = 1; that is, there is exactly one q such that Vp is adjacent to vq, If Spq i= 0 

then there is a two-walk VpVVq for some vertex vi= Vq· But deg(vp) = 1, therefore, 

this is a contradiction. Thus, Spq = Sqp = 0 
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Now, by Theorem 2.7, 

n 

~ Spi = Z:: deg( v) = deg( vq) = Sqq 

i=l vEr(vp) 

Finally, since the only two-walk through vertex Vp is VqVpVq, when vertex Vp is 

removed from G, deg(vq) is reduced by one and all other two-walks among vertices 

in G \ { Vp} are preserved. Therefore, 

sn 

Sql Sqq - l Sqn 

Snl PP 

and hence, is square graphic. □ 

Theorem 2.12. Suppose S = (si1) is an n x n square graphic matrix with n 2 2. If 

Spp = n - 2 for some p then there exists q =I- p such that Sqq = tr S - Spp - I:~=l Spi; 

Spq = Sqp = Sqq; Sij > 0 for all i,j E {1, ... , n} \ {p, q}; and if S' = (s~1) where 

s'- = {Sij -1 ifi,j E {1, ... ,n} \ {q} 
tJ 

sij else 

then S~P is also square graphic. 

Proof. Assume S = (sij) = A(G)2 for some graph G and that Spp = n - 2. Then in 

G, vertex Vp is adjacent to all but one vertex, call it Vq. By Theorem 2.7, the sum of 

the entries of the pth row of S is the same as the sum of the degrees of the neighbors 
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of Vp· Thus, we have 
n n 

L Spi = ( L Sjj) - Sqq - Spp 
i=l j=l 

since Vp is adjacent to all vertices in G except Vq and itself. Rewritten, we have 

n 

L Spi = tr S - Sqq - sPP 
i=l 

which gives us the following equation for the degree of vq: 

n 

deg( vq) = Sqq = tr S - sPP -· L spi· 
i=l 

Next, notice for every pair of distinct vertices vi,Vj E V(G) \ {vp,vq}, Vp is a 

common neighbor. That is, there is the two-walk vivpvj in G, and hence, Sij > 0 for 

all i,j E {1, ... ,n} \ {p,q}. 

Now, every two-walk from vP to Vq must go through a shared neighbor. Since 

vp is adjacent to all the neighbors of Vq, each will contribute exactly one two-walk. 

Therefore, Spq = Sqp = deg(vq) = Sqq· 

Finally, the removal of vertex vP from G will decrease the degree of every vertex 

by one except that of vq, since vp is adjacent to all vertices but Vq- Also, since for each 

vertex vi and v1 adjacent to Vp we have the two-walk ViVpVj, the removal of vertex Vp 

will result in the decrease of sij and s1i by one. This occurs for every pair of vertices 

except any containing Vq. That is, Sij is decreased by one for all i, j E { 1, ... , n} \ { q} 

after the removal of vertex Vp· 

Therefore, A( G \ { vp} )2 = s;P as described, and hence is square graphic. □ 

Theorem 2.13. Suppose S = (si1) is an n x n square graphic matrix with n 2". 3. If 

sPP = 2 for some p then there exist distinct q, r E { 1, ... , n} \ {p} (say q < r without 

loss of generality) such that Sqq+ Srr = L~=l Spi,' Spq = Spr E {O, 1}; Sqr = Srq > O; 
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and 

Su 

Sqq - 1 Sqr - 1 

Srq - 1 

pp 

is also square graphic. 

Proof. Assume S = (sij) = A(G) 2 for some graph G and that Spp = 2. Then we have 

that deg(vp) = 2; that is, there are two vertices Vq and Vr adjacent to vP. 

By Theorem 2.7, 

n 

L Spi = L deg(v) = deg(vq) + deg(vr) =Sqq+ Srr 

i=l vEr(vp) 

since f(vp) = {vq,Vr}-

Now, either VqVr E E( G) or VqVr rf. E( G). If VqVr E E( G) then we have the 

two-walks VpVqVr and VpVrVq in G. Hence, if VqVr E E(G) then Spr = Spq = 1. 

If VqVr rf. E(G) then there is not two-walk from Vp to either Vq or Vr. Hence, if 

VqVr r/. E(G) then Spr = Spq = 0. 

Next, we know Sqr = Srq > 0 since there is at least the two-walk VqVpVr between 

The removal of vertex vp from G decreases the degrees of Vq and Vr by one. That 

is, Sqq and Srr are reduced by one after the removal of Vp. Since vP is only adjacent 

to these two vertices, all other degrees arc unaff cctcd. 

Also, the only two-walk through Vp is VqVpVr (by symmetry, VrVpvq)- Thus, Sqr 
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and Srq are both decreased by one, and all other off-diagonal entries are unaffected 

after the removal of vertex vp. 

Therefore, 

Sql Sqq - l Sqr - l 

Srq - l Srr - l Srn 

Snq Snn pp 

and hence, is square graphic. □ 

Theorem 2.14. Suppose S = (sij) is an n x n square graphic matrix with n ~ 3. If 

sPP = n - 3 for some p then there exist q, r E {1, ... , n} \ {p} such that Sqq+ Srr = 

tr S - Spp - :E~=l Spi," siJ > 0 for all i, j E { 1, ... , n} \ {p, q, r}; and if S' = ( s~1) where 

s'- _ = { siJ - 1 if i, j E { 1, ... , n} \ { q, r} 
tJ 

sij else 

then s;P is also square graphic. 

Proof. Assume S = (si1) = A(G) 2 for some graph G and that Spp = n - 3. Then in 

G, vertex Vp is adjacent to all but two vertices, call them Vq and Vr· 

By Theorem 2.7 and a similar argument as in Theorem 2.12, we have 

n 

Sqq+ Srr = tr s - Spp - L Spi· 
i=l 
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Next, notice for every pair of distinct vertices vi, vi E V( G) \ { vp, Vq, Vr }, Vp is a 

common neighbor. That is, there is the two-walk vivpvj in G, and hence, Sij > 0 for 

all i,j E {1, ... ,n} \ {p,q,r}. 

Finally, the removal of vertex vP from G will decrease the degree of every vertex 

by one except vertices Vq and Vr. That is, sii is reduced by one for all i E {1, ... ,n} \ 

{p, q, r} after the removal of vertex Vp. Since we have the two-walk ViVpVj for all Vi 

and v 1 adjacent to vp, the removal of vP from G reduces Sij and Sji by one. That is, 

Sij is decreased by one for all i, j E {1, ... , n} \ {p, q, r} after the removal of vertex 

Therefore, A( G \ { vp} )
2 = S~P as described and hence, is square graphic. □ 

Remark 2.15. It is possible to use the results from the previous sections to help 

determine plausible neighborhoods given a matrix. These techniques can help build 

a candidate graph for a given matrix. This process is highlighted in the following 

example. 

Example 2.16. Consider the matrix 

4 1 1 1 1 1 1 

1 1 0 0 1 0 0 

1 0 1 1 0 0 0 

S = (sij) = 1 0 1 3 1 1 1 

1 1 0 1 3 1 1 

1 0 0 1 1 2 1 

1 0 0 1 1 1 2 

Notice that s11 = 7 - 3 = 4. Thus, if S = A( G) 2 for some graph G then v1 is 
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not adjacent to two vertices vq and Vr. By Theorem 2.14, we know 

7 

Sqq + Srr = tr s - Sn - L S1i = 16 - 10 - 4 = 2. 
i=l 

The only choice for q and r is 2 and 3. That is, if G exists, vertex v1 is adjacent 

to all vertices except v2 and v3 . 

Continuing by looking at vertices v2 and v3 and using ideas from Theorem 2.11, 

we see that each must be adjacent to a vertex of degree 3. Since s25 -/- 0, we know v2 

is adjacent to v4 . Similarly, since s34 -/- 0, we know v3 is adjacent to V5. 

Next, by Theorem 2.7, 

7 7 

I:s4i = I:::ssi = 8 
i=l i=l 

tells us the sum of the degrees of the neighbors of each vertex. Since each V4 and vs 

is already adjacent to a vertex of degree 4 and of degree 1, we know each must be 

adjacent to a vertex of degree 3. That is, V4 must be adjacent to Vs. 

By a similar argument, we see that v6 and v7 must be adjacent to each other. 

This gives us one plausible graph B (see Figure 6} with the forced adjacencies occur-

ring. 

Figure 6. B; a candidate for 

S = A(B)2 

To determine that S is indeed square graphic, we check to see that S = A(B)
2 

as desired. 
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CHAPTER 3. CHARACTERIZATIONS 

There are several classes of graphs of which the square of the adjacency matrix 

determines the graph. The graphs included next are the empty graph on n vertices, 

the complete graph on n vertices, the complete bipartite graph with partite sets of 

size m and n, then-point star, 1-regular graphs, 2-regular graphs and paths. 

3.1. Empty, Complete and Complete Bipartite Graphs 

Theorem 3.1. We have S ~ A(Kn)2 if and only if S is then x n matrix consisting 

of all zeros. 

Proof. First, suppose S = ( Sij) ~ A( Kn)2. Since Kn has no edges, there are no 

two-walks between any vertices vi and VJ, distinct or otherwise. That is, for all i and 

j, we have sii = 0. Hence, S is the n x n matrix consisting of all zeros. 

On the other hand, suppose S = ( sii) such that Sij = 0 for all i and j. In 

a labeled Kn, there are no two-walks between any vertices vi and vj, distinct or 

otherwise. That is, A(Kn)2 is the n x n matrix consisting of all zeros. Hence, S = 

A(Kn)2
. 

It should be noted that this is indeed a characterization of this matrix. Let S 

be the n x n matrix consisting of all zeros. If S = A( G)2 for some G, then, by the 

main diagonal of S, we know the degree sequence of G must be 0, 0, ... , 0. Therefore, 
'-v-' 

n 

if S = A( G) 2
, then G = Kn, Since we have shown S is square graphic, we now know 

that S uniquely determines A(Kn)2. □ 

Theorem 3.2. For n 2'. 2, we have S ~ A(Kn)2 if and only if S = (n - 2)Jn + In. 

Proof. First, suppose S = (sij) ~ A(Kn)2 and consider vi in Kn. Since vi is adjacent 

to all other vertices, we must have sii = n - l. Now, if VJ is some other vertex, then 
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l 
! 

vi and Vj have all other vertices as common neighbors. That is, Vk is adjacent to both 

vi and vi, for all k E { 1, 2, ... , n} \ { i, j}. Through each of these shared neighbors, 

vk, is the two-walk vivkvi from vi to vi. Since there are n - 2 choices for vk, we must 

have Sij = n- 2 for all i =/- j. Therefore, S = (n - 2)Jn + In. 

On the other hand, suppose S = (si1) = (n - 2)Jn + In. In a labeled Kn, every 

vertex Vi is adjacent to all other vertices in Kn, of which there are n - 1. That is, all 

entries on the main diagonal of A(Kn) 2 must be n-1. Through a similar argument as 

above, there are n - 2 two-walks between any two distinct vertices vi and Vj· Hence, 

every off-diagonal entry of A(Kn)2 must be n - 2. Therefore, S = A(Kn)2. 

Note that this is indeed a characterization of this matrix. Let S = (n-2)Jn + In. 

If S = A(G) 2 for some G, then the main diagonal of S would force G = Kn. Since we 

have shown Sis square graphic, we now know that S uniquely determines A(Kn)2. □ 

Definition 3.3. A symmetric matrix S is called reducible if it can be placed into 

block diagonal form by a series of simultaneous row/ column permutations. That is, 

S is reducible if it is similar to a block diagonal matrix. A matrix is called irreducible 

otherwise. 

Theorem 3.4. Let S = (sii) be an (m + n) x (m + n) matrix with m, n ~ 1. We 

have S ~ A(Km,n)2 if and only if there is E ~ {l, 2, ... , m + n} such that IEI = m 

and 

n when i, j EE 

sii = m when i, j E { 1, 2, ... , m + n} \ E 

0 otherwise. 

Proof. Suppose S ~ A(Km,n)2 = (si1) and let X, Y ~ V(Km,n) be the partite sets of 

the graph such that IXI = m and IYI = n. Let E = {i I vi E X} and notice that 

!El = !XI = m. Now, if vi is in X, then vi is adjacent to exactly those vertices not in 
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X, of which there are n. Therefore, deg( vi) = n for all vi in X and hence, Sii = n for 

all i in E. 

Next, if vi and Vj are distinct vertices from E, then each is adjacent to every 

vertex in Y. Thus, there are n two-walks between vi and Vj, one for each of the n 

neighbors Vi and Vj share. Hence, Sij = Sji = n for all i and j in E. 

Now, if Vi is in X and vi is in Y, then there are no two-walks from vi to Vj or 

vice versa. Hence, sii = sii = 0 for all i in E and all j in {1, 2, ... , m + n} \ E. 

Finally, by a similar argument as before, if vi and Vj are distinct vertices in Y, 

then deg(vi) = m and there are m two-walks between vi and Vj, Hence, sii = Sij = 

sji = m for all i and j in {1, 2, ... , m + n} \ E. 

Putting all of this together and using the above definition for the set E, we see 

that the entries of S have the desired form. 

To prove the converse, consider a matrix S and a set E such that the entries of 

S satisfy the given conditions. Consider a labeling of Km,n with partite sets X and 

Y by defining X = { Vi I i E E} and Y = { Vj I j tf, E}. Then, under this labeling, a 

similar argument as above shows that we have A(Km,n)2 = S. 

Consider a matrix S and a set E such that the entries of S satisfy the given 

conditions and suppose that S = A(G()
2
n~~ so:c g)ra.ph G. Through an appropriate 

series of permutations, we have S ~ 
0 mJn 

By Theorem 1.29, we know that G would have to be bipartite or disconnected. 

But since each block is irreducible, if G were disconnected then each block would 

represent a nonbipartite, connected component. However, by Proposition 1.14, the 

off-diagonal entries of each block would have to be at most one less than each diagonal 

entry if they were to be graphic. Since this is not the case, each block by itself is not 

graphic and hence, G must be bipartite and connected. 

By a similar argument as in Corollary 1.31. (i), the partite sets of G must be 
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X = {vl,···,vm} and Y = {vm+l,···,Vm+n}- Since no two vertices from the same 

partite set are adjacent and deg ( u) = n for u E X and deg( v) = m for v E Y, it must 

be that every vertex from X is adjacent to every vertex in Y. Therefore, G must be 

□ 

Remark 3.5. The n-point star is a special case of the complete bipartite graph with 

partite sets of size m and n, where we take m = 1. Thus, then-point star is uniquely 

determined and has the following form: 

3.2. One- and Two-Regular Graphs 

Theorem 3.6. We have S ~ A(LJ7=l K2)2 if and only if S = hk-

Proof. First, suppose S ~ A(U7=l K2 )
2

. Then all of the 2k vertices have degree one 

and there are no two-walks between any two distinct vertices. Therefore, S = 12k. 

Now, suppose S = 12k. If S = A(G) 2 for some graph G, then since the main 

diagonal of S determines the degrees of the vertices of G, G would have to be 1-

regular. As the size of S determines the order of G, G would have 2k vertices. 

Finally, as there are no nonzero, off-diagonal entries, this implies that G would have 

no two-walks between any two distinct vertices. Therefore, G = U7=1 K 2 . □ 

Before giving the characterization of 2-regular graphs, some lemmas are needed. 

Lemma 3.7. If S = (si1) is an n x n irreducible matrix with n 2 3, such that: 

(i} S is symmetric, 

(ii} sii = 2 for all i = 1, ... ,n, 
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(iii) '°'n 4 1 ll wj=l = JOT a i = l, ... , n, 

{iv) sij E {O, 1} for all i =I= j 

then S ~ Tn where Tn = (tiJ) is then x n matrix defined as follows: 

{i) tii = 2 for i = 1, ... , n 

{ii) t(i+)i = ti(i+n = 1 for i = 1, ... , n - l 

{iii} tin = tnl = 1 

{iv) tij = 0 otherwise. 

That is, 

2 1 

1 2 

0 1 

0 

0 0 

0 

1 

2 

1 0 0 

0 0 1 

2 

1 

0 

0 0 

0 

1 0 

2 1 

1 2 

Proof. Suppose Sis an n x n irreducible matrix that satisfies the four conditions from 

the hypothesis. Assume by contradiction that S ,f Tn; that is, p- l SP =/= Tn for all 

permutation matrices P. Then, working from the top left corner of S, down and to 

the right, swapping rows and columns as needed to permute S into Tn, there must be 

some k < n such that Sij = tij and Sji = tJi for i = 1, ... , k - 1 and j = 1, ... , n, but 

there is no permutation swapping rows/columns to complete the next step to permute 
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S into Tn. Otherwise, we could continue this process for the n rows and columns and 

permute S into Tn which would contradict our assumption. 

It should be noted that such a process can be started, as the first row/ column 

of S must have sn = 2 and exactly two other entries equal to 1, say in positions s1i 

and S1j • A permutation changing this first row/ column of S to the first row/ column 

of Tn corresponds to the permutation 7f = (i2)(jn). Thus, the first row and column 

of P;; 1 S Prr are those of Tn 

Note that another permutation changing the first row/ column of S to that of 

Tn is 7f = (in)(j2). The same argument will work for either case, so, without loss 

of generality, choose the permutation for which the most rows/columns of S can be 

permuted to those of Tn. 

Since each row/ column sum is four, sii = 2 and sij E { 0, 1} for each i -=I- j, we 

must have two ones off of the main diagonal in each row and column. By assumption, 

we have permuted the first k - 1 rows/columns of S into those of Tn. Therefore, 

we must have Sk(k-l) = S(k-l)k = 1 and the other nonzero, off-diagonal entry from 

row/column k must be in position Skt (stk, respectively) where k+l ~ l ~ n. However, 

if sk(k+l) = S(k+l)k = 1 then row /column k matches that of Tn which is a contradiction. 

Thus, l > k + 1. 

If k + 1 < l < n then Skt = 1 and sil = 0 for i = 1, ... , k - 1 by assumption 

(similarly, Stk = 1 and Sti = 0 for i = 1, ... , k-1). Therefore, a permuting row /column 

l with row /column k + 1 does not affect the rows/ columns already moved into the 

proper positions. Thus, such a permutation can be carried out to permute the first k 

rows/columns of S into those of Tn, which is a contradiction (consider, 7f = (l (k+ 1)) 

for example). 

Hence, l = n and the two nonz:ero, off-diagonal entries of row k are Sk(k-l) and 

skn· Similarly, the two nonzero, off-diagonal entries of column k are S(k-l)k and snk· 
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Therefore, we have 

2 1 0 0 0 0 ... 0 1 

1 2 1 0 

0 1 2 

0 

0 2 1 0 
S~ 

0 ... . .. 0 1 2 0 . .. 0 1 

0 0 2 0 

0 0 2 0 

1 0 . . . ... 0 1 0 . .. 0 2 

where the upper left corner highlighted with vertical and horizontal bars is size k x k. 

Hence, after permuting row/column n with row/column k + l we have: 

2 1 0 

1 2 1 

0 1 2 

S~ 0 0 

1 0 

0 

0 

0 0 

0 0 1 0 ... 0 0 

0 0 

0 

2 1 0 0 

1 2 1 0 0 

0 1 2 0 0 

0 0 2 

2 0 

0 0 0 · · · · · · 0 2 
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Notice now that S has been decomposed into block diagonal form with at least 

two blocks: one in the upper left corner of size (k + 1) x (k + 1) and possibly more 

further down and to the right in the matrix. These blocks are highlighted using the 

vertical and horizontal bars in the matrix. However, S was assumed to be irreducible, 

so this is a contradiction. Since this case is forced by the assumption that Sf Tn, that 

assumption must have been false to begin with. That is, under the given hypotheses, 

S is similar to Tn. □ 

Lemma 3.8. Let Tn be defined as in Lemma 3.7. If n is odd and at least 3 then 

Tn ~ A(Cn)2. 

Proof. Consider an unlabeled Cn. Choose a vertex and label it vertex 1. Label every 

other vertex with 2, ... , n moving around the cycle. Since n is odd, this process labels 

the graph without labeling any vertex twice or missing a label on any vertex. 

We claim now that a two-walk exists between two vertices if and only if they 

form the neighborhood of a vertex. To see this, suppose there is a two-walk between 

vertices i and j. Then there is a vertex k such that ikj is in Cn. That is, { i, j} ~ r ( k). 

But since lf(k)I = 2, we have f(k) = { i, j}. On the other hand, if f(k) = { i, j}, then 

there is the two-walk ikj in Cn, thus proving the claim. 

Now, by the way we have labeled Cn, the only possible neighborhoods are of 

the form {i,i + 1} for i = 1,2, ... ,n -1 and {n,1}. Thus, in A(Cn)2 = (sij), 

we have si(i+l) = S(i+l)i = Sn1 = s1n = 1 for i = 1, 2, ... , n - 1. Since there are 

no other possible two-walks between distinct vertices, every other off-diagonal entry 

must be zero. Also, since the degree of every vertex is 2, we must have sii = 2 for 

i = 1, 2, ... , n. 

Therefore, under this labeling, A( Cn)2 = Tn and in general, A( Cn)2 ~ Tn- □ 

Lemma 3.9. Let Tn be defined as in Lemma 3.7. If n = 2q where q is an integer 
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( 
Tq O ) greater than 2, then A( Cn) 2 ~ . 
0 Tq 

Proof. Consider an unlabeled Cn. Choose a vertex and label it vertex 1. Label every 

other vertex with 2, 3, ... , q moving around the cycle. Since n is even, Cn is bipartite 

with partite sets both of size q. We have that every two-walk beginning in one partite 

set ends in the same partite set; hence, the labeling of the first q vertices as described 

labels one partite set completely. 

Next, choose an unlabeled vertex from the other partite set and label it vertex 

q + 1. Label every other vertex with q + 2, ... , 2q moving around the cycle. Again, 

since the remaining unlabeled vertices are all in the same partite set, such a labeling 

will work. 

By a similar argument from the proof of Lemma 3.8, a two-walk exists between 

vertices i and j with i -/- j if and only if r ( k) = { i, j} for some vertex k. Let 

A(Cn) 2 = (sij)- Since the only possible neighborhoods are of the form {i,i + 1} for 

i = 1, ... , q - 1, q + 1, ... , 2q - l; and the sets { q, 1} and {2q, q + 1 }, we must have 

and all other off-diagonal entries must be zero. Also, since the degree of every vertex 

is 2, we must have Sii = 2 for i = 1, 2, ... , n. Therefore, under this labeling, 

and, in general, the two matrices are similar. □ 

Remark 3.10. If we define T2 

(2
2 22), then the previous lemma extends to 
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n = 2q where q is an integer at least 2. When q = 2 then we have exactly the square 

of the adjacency matrix of a C4 . 

2 2 0 0 

2 2 0 0 

0 0 2 2 

0 0 2 2 

That is, the squares of the adjacency matrices of C2q and Cq U Cq are indistin

guishable. This generalizes Example 1.21. 

Remark 3.12. Note that when n is even, Tn is not square graphic. To see this, 

suppose it were, then by the main diagonal of Tn, it would have to be the square of 

the adjacency matrix of a union of cycles. Also, since it is irreducible, by Theorem 

1.29, if Tn ~ A( G)2 then G must be connected and nonbipartite. These two conditions 

force Tn ~ A(Cn)2; however, Cn is bipartite because n is even. Therefore, Tn is not 

square graphic. 

We are now prepared to characterize the squares of the adjacency matrices of 

2-regular graphs. 

Theorem 3.13. We have S ~ A(LJ!=i Ck; )
2 if and only if S = ( Sij) is an n x n 

symmetric matrix such that 
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(i) sii = 2 for all i 

(iii) if 

0 

S~ 

0 

0 

with each Si irreducible, then each block of even size appears an even number of 

times. 

Proof. First, suppose S ~ A(U~=I Cki )2
. Consider a relabeling of the graph so that 

the vertices so that V(CkJ = {1, ... , k1}, V(Ck2 ) = {k1 + 1, ... , k1 + k2} and so on. 

Then we have 

A(Ck1)2 0 ... . .. 0 

0 A(CkJ2 

l 

S ~ A(LJ CkJ
2 ~ 

i=l 
0 

0 0 A(Ck1)2 

By Lemmas 3.8 and 3.9, each of A(Ck;) 2 ~ Tk; when ki is odd and at least 3 

( 

Tqi O ) and A( CkJ2 ~ when ki = 2qi for some integer qi at least 2. 

O Tqi 

Notice, the definition of each Tn; guarantees each diagonal element is 2 and 

every row and column sum is 4. 

Thus, after a renumbering, we have 
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Tm 1 0 0 

0 Tm2 

S~ 

0 

0 0 T mv 

Note that by Remark 3.12, whenever mi is even, there must be some j such that 

mi = mi. That is, each block of even size shows up as a pair; that is, every block of 

even size shows up an even number of times. If not, then S would not be graphic, 

which is a contradiction. Also, each Tmi is irreducible by construction, and so S has 

the desired form. 

On the other hand, suppose 

S1 0 0 

0 S2 

S~ 

0 

0 0 Sm 

where each Si is irreducible and every block of even size shows up an even number 

of times. Notice that we must have the size of each Si be at least 2 x 2. Otherwise, 

we would not satisfy the conditions that all diagonal elements are two and row sums 

and column sums are four. 

Now, each Si satisfies the conditions of Lemma 3.7, and hence, Si ~ Tni for 

some ni. 

If Si ~ Tn; with ni odd, then by Lemma 3.8, Tn; ~ A( Cn; )2
. 

If Si ~ Tn; with ni even, then by assumption there is a matching Si ~ Tn
1 

where 
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nj = ni. Then by Lemma 3.9, we have 

Therefore, there exists a union of cycles so that the square of the adjacency 

matrix gives S. That is, S ~ A(LJ!=I CkJ 2 for some integers ki at least 3. □ 

Remark 3.14. For the converse in the previous theorem, it should be noted that the 

graph associated to S is not necessarily unique. As seen in Remark 3.11, every pair of 

irreducible blocks of size q x q with q odd can be viewed as the square of the adjacency 

matrix of Cq U Cq or as the square of the adjacency matrix of C2q. In either case, 

however, S is the square of the adjacency matrix of a union of cycles. 

The use of characterization differs in the previous result from other results in 

this section in that, there are multiple, non-isomorphic graphs that might have the 

same matrix as the square of their adjacency matrix. However, all of these graphs 

must be the union of cycles. With more restrictive conditions in Theorem 3.13, we 

could force uniqueness of the associated graph. 

3.3. Paths 

This section is broken up into two parts. The first part of this section deals 

with paths on an even number of vertices and the second deals with those on an odd 

number of vertices. Before giving the characterization of paths on an even number of 

vertices, some notation will be introduced and some lemmas will be needed. 

Because of the discrepancies among texts in the notation used in describing 

paths of a certain length, the author would like to make a special note here that Pn 

will be used to denote paths on n vertices. 

Lemma 3.15. Let S = (sij) be an n x n irreduciblr matrix with n 2:: 3 such that: 
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{i) S is symmetric 

{ii) sij E {0, l} for all ii= j 

{iii) there exists some r such that Srr = 1 and Sii = 2 for all i i= r 

n 

{iv) there exists some t i= r such that L Sit 
i=l 

n 

{ 1, ... , n} \ { r, t} we have L sij = 4. 
i=l 

n 

3, L Sir = 2, and for all j E 
i=l 

Then S ~ Wn where Wn = ( wij) is the n x n matrix defined as follows: 

{i) Wu = 1 and wii = 2 for i = 2, ... , n 

{ii) Wi(i+l) = W(i+l)i = 1 for i = 1, ... , n - 1 

{iii) Wij = 0 otherwise. 

That is, 

1 1 

1 2 

0 1 

0 

0 0 

0 0 

0 

1 

2 

0 

0 

2 

1 

0 

0 0 

0 0 

0 

1 0 

2 1 

1 2 

Proof. Suppose Sis an n x n irreducible matrix that satisfies the four conditions from 

the hypothesis. Assume by contradiction that S ,f Wn; that is, p- 1sp i= Wn for all 

permutation matrices P. Then, working from the top left corner of S, down and to 
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the right, swapping rows and columns as needed to permute S into Wn, there must be 

some k < n such that S;j = W;j and Sji = Wji for i = 1, ... , k-1 and j = 1, ... , n, but 

there is no permutation swapping rows/columns to complete the next step to permute 

S to Wn· Otherwise, we could continue this process for the n rows and columns and 

permute S into Wn which would be a contradiction. 

It should be noted that such a process can be started. First recall that Srr = 1 

for some r, and apply the permutation changing row/column 1 with row/column r. 

Thus, S is similar to a matrix S' = (s~j) where s~ 1 = 1. By assumption, there is 

some entry s~j = s.i1 = 1 and s~k = s~1 = 0 fork E {2, ... ,n} \ {j}. Now, there is 

a permutation changing the jth row/column of S' to the second row/column of S'. 

That is, there is some permutation matrix P so that the first row of p- 1sP is 

(110 ... oo). 

Now, we must have skk = 2 and the kth row/column sum is either 3 or 4 by 

assumption. If the kth row/ column sum is 3, then since the first k - l rows and 

columns are assumed to be those of Wn, the nonzero off-diagonal entries of row and 

column k are S(k-I)k = Sk(k-I) = 1. Therefore, we have 

1 1 0 0 0 ... 0 

1 2 

0 0 

2 1 
S~ 

0 0 1 2 0 0 

0 0 2 

0 0 2 
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That is, S can be decomposed into block diagonal form with at least two blocks: 

one in the upper left corner of size k x k and possibly more further down and to the 

right in the matrix. These blocks are highlighted using the vertical and horizontal 

bars in the matrix. This implies that S is reducible, which is a contradiction. 

Therefore, the kth row /column sum must be 4 and so the nonzero off-diagonal 

entries of row and column k are s(k-l)k = sk(k-l) = 1 and skl = Stk = l for some 

k + l ::; l :Sn. But notice, if l = k + l then row /column k matches that of Wn which 

is a contradiction. Thus, l > k + l. 

If k + l < l :S n then since Sit = s1i = 0 for i = 1, ... , k- l by assumption, there 

is a permutation moving row/column l to row/column k+ l which docs not affect the 

rows/columns already moved into the proper positions. Thus, such a permutation 

can be carried out to permute the first k rows/columns of S into those of Wn, which 

is a contradiction. 

Since in every case we reach a contradiction, our assumption that S f Wn must 

have been false to begin with. That is, under the given hypotheses, S is similar to 

Lemma 3.16. Let n =( :kfor ;om)e· integer k 2: 2 

3.15. Then A(Pn) 2 ~ 
0 Wk 

□ 

and Wk be as defined in Lemma 

Proof. Consider an unlabeled Pn. Choose an end vertex and label it vertex 1. Moving 

towards the other end vertex, label every other vertex with 2, ... , k, ending on the 

vertex next to the other end vertex. Since Pn is bipartite with partite sets both of 

size k, we have labeled one partite set completely. 

Next, choose the unlabeled end vertex and label it vertex k + l. As before, 

moving towards the other end vertex, label every other vertex with k + 2, ... , 2k. 

This completely labels the second partite set of Pn. 
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If A(Pn)2 = (sij) then we have s 11 = S(k+l)(k+l) = 1 and Sii = 2 for i E 

{ 1, ... , n} \ { 1, k + l}. Note that two-walks only exist between vertices in the same 

partite set, thus by construction, sij = sji = 0 for all i = 1, ... , k and j = k+ l, ... , 2k. 

As for two-walks among vertices in the same partite set, this labeling of Pn gives 

us that Si(i+l) = S(i+l)i = 1 for i = 1, ... , k - l and i = k + l, ... , 2k - 1. These 

are in fact, the only nonzero off-diagonal elements. Therefore, under this labeling 

A(Pn) 2 = ( Wk O ) and in general, the two matrices are similar. D 
0 Wk 

Theorem 3.17. Let n = 2k for some integer k > 2 and S 

symmetric matrix such that: 

(i) sij E {O, 1} for all i =/ j 

l and Sii = 2 for i E 

(iii) there are t 1 ,t2 E {1, . .. ,n} \ {r1 ,r2 } such that the t 1 and t 2 row and column 

sums are 3; the r 1 and r 2 row and column sums are 2 and every other row and 

column sum is 4. 

(iv) there is E ~ {l, ... , n} such that IEI = k with r 1 E E and r2 (/. E and either 

t 1 E E and t2 (/. E or t 1 (/. E and t2 E E. For every i E E and j (/. E, sij = 0. 

Also, for every C ~ E there is some i E C and j E E \ C such that sij =/ 0 and 

for every C ~ Ec there is some i E C and j E Ec \ C such that sij =/ 0. 

Then S ~ A(Pn)2. 

Proof. Suppose S is an n x n symmetric matrix that satisfies the four conditions from 

the hypothesis. Then by simultaneously permuting the rows and columns of S whose 

indices are in the set E to the first k rows and columns, we see that S is similar to 
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a block diagonal matrix with two blocks on the main diagonal, both o(f ::e k
0 

x )k .. 

Thus, without loss of generality, we assume E = {1, ... , k} and so S = 
O B2 

Next, notice again by condition (iv), that B 1 and B2 are irreducible. To see this, 

suppose by contradiction that B 1 was not irreducible. Then B 1 can be decomposed 

into block diagonal form. That is, there is C ~ {1, ... , k} such that for all i E C and 

j E {1, ... , k} \ C we have S;j = 0. However, this is a contradiction, so B1 must be 

irreducible. A similar argument shows B2 is also irreducible. 

In order to characterize paths of odd length, we go through similar steps as with 

paths of even length. However, the process is slightly more cumbersome as we are 

unable to use the symmetries we did in the even length case. 

Lemma 3.18. Let S = (s;j) be an n x n irreducible matrix with n 2': 2 such that: 

(i) S is symmetric 

(ii) S;j E {0, 1} for all i =/ j 

(iii) there exist distinct r1 and r2 such that Sr1 ri = s1'2r2 l and s;; = 2 for all 

n n 

(iv) we have L Sir1 = L s;r2 = 2, and for all j E {1, ... , n} \ {r1, r2} we have 
i=l i=l 

n 

Lsij = 4. 
i=l 

Then S ~ W~ where W~ = ( w:J is the n x n matrix defined as follows: 

(i) w~ 1 = w~m = 1 and w~i = 2 for i = 2, ... , n - l 
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(ii) I I f 
wi(i+l) = w(i+l)i = 1 JOT i = 1, ... , n - l 

(iii) w:1 = 0 otherwise. 

Lemma 3.19. Let S = (si1) be an n x n irreducible matrix with n ~ 2 such that: 

(i) S is symmetric 

(ii) Sij E {0, 1} for all i-/= j 

(iii) sii = 2 for all i 

n 

(iv) there exist distinct r 1 and r 2 such that L sir
1 

i=l 
n 

j E {1, ... , n} \ {r1 , r2} we have L Sij = 4. 
i=l 

3, and for all 

Then S ~ wi where wi = (w~i) is then x n matrix defined as follows: 

(i) w:: = 2 for all i 

( ~~) II II l f . l 1 .. wi(i+l) = w(i+l)i = JOT i = ' ... 'n -

(iii) w;i = 0 otherwise. 

Remark 3.20. The proofs for Lemmas 3.18 and 3.19 are omitted to avoid redundancy. 

A similar argument as performed in the proofs of Lemmas 3. 7 and 3.15 forces the 

above matrices to be similar to the described matrices. 

Lemma 3.21. Let n = 2k + l for some integer k ~ 2. Let W~+l and Wf be as 

described in Lemma 3.18 and 3.19, respectively. Then A(Pn) 2 ~ . 
( 

W~+l O ) 

O W 11 
k 

Proof. Consider an unlabeled Pn. Choose an end vertex and label it vertex 1. Moving 

towards the other end vertex, label every other vertex with 2, ... , k, k + l, ending on 

the other end vertex. This labels one partite set completely. 
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Next, choose the unlabeled vertex adjacent to vertex 1 and label it vertex k + 2. 

Moving towards vertex k + 1, label every other vertex with k + 3, ... , 2k + 1, ending 

on the vertex adjacent to vertex k + I. This labels the other partite set completely. 

If A(Pn)2 = (sij) then we have s 11 = S(k+i)(k+i) = 1 and sii = 2 for i E 

{ 1, ... , n} \ { 1, k + 1}. As there are no two-walks between vertices from distinct 

partite sets, we have SiJ = 0 for all i = 1, ... , k + 1 and j = k + 2, ... , 2k + 1. 

For two-walks among vertices in the same partite set, under this labeling we have 

si(i+i) = S(i+i)i = 1 for i = 1, ... , k and i = k+2, ... , 2k. As these are(th~:'.y n:nzc)ro· 

off-diagonal clements, under this labeling of Pn, we have A(Pn)2 = 
o w; 

In general, the two matrices are similar. D 

Theorem 3.22. Let n = 2k + 1 for some integer k 2:'.: 2 and S = (siJ) be an n x n 

symmetric matrix such that: 

(i) SiJ E {0, 1} for all i-/: j 

(ii} there exist distinct ri and r2 such that Srir1 = Sr2r2 1 and Sii = 2 for i E 

{ 1, ... , n} \ { ri, r2} 

(iii} there are ti, t2 E { 1, ... , n} \ { ri, r2} such that the ti and t2 row and column 

sums are 3; the ri and r 2 row and column sums are 2 and every other row and 

column sum is 4. 

(iv} there is E C:: {1, ... , n} such that IEI = k + 1 with ri, r2 E E and ti, t2 </. E. 

For every i E E and j </. E, sij = 0. Also, for every C C:: E there is some i E C 

and j E E \ C such that Sij -/: 0 and for every C C:: Ec there is some i E C and 

j E Ec \ C such that SiJ -/: 0. 
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Proof. Suppose S is an n x n symmetric matrix that satisfies the four conditions from 

the hypothesis. Then by simultaneously permuting the rows and columns of S whose 

indices are in the set E to the first k + I rows and columns, we see that S is similar 

:: :e:::i:,::n:s:•::i: :t;
1 
~~o ,b~o~k: }o:n::

0

m;i: rr::r without loss 
By a similar argument from the proof of Theorem 3.17, both B1 and B2 are 

irreducible. 

Now, B 1 satisfies the conditions from Lemma 3.18 and B 2 satisfies the conditions 

from Lemma 3.19 and hence, B1 ~ W{+1 and B2 ~ W{'. Therefore, 

by Lemma 3.21. □ 
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CHAPTER 4. DUPLICATION 

Determining when a given matrix was square graphic lead to the interesting 

problem of determining when a matrix represented the square of the adjacency matrix 

of several non-isomorphic graphs. It has already been shown in Example 1.21 that this 

can occur and was further generalized in Lemma 3.9 and the following Remark 3.11. 

In a sense, such matrices are a sort of dual for matrices which uniquely determine a 

graph, as was explored in the previous chapter. 

The following theorem serves as a starting point for the construction of squares 

of adjacency matrices corresponding to several non-isomorphic graphs. 

Theorem 4.1. We have 

if and only if G is bipartite. 

Before the proof of this theorem is given, we first need the following fact from 

graph theory, stated without proof here. 

Lemma 4.2. We have G is bipartite if and only if A(G) ~ (BO BOT)· 

Proof of Theorem 4.1. Suppose G is bipartite. Then A(G) = 
(B

O BOT) for some 

m x n matrix B. Consider the permutation matrix 

0 0 In 0 

0 Im 0 0 
P= 

In 0 0 0 

0 0 0 Im 
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Then we have 

0 0 0 BT 0 BT 0 0 

p-l 0 0 B 0 B 0 0 0 
P= 

0 BT 0 0 0 0 0 BT 

B 0 0 0 0 0 B 0 

and so 

( A( G) O ) ~ ( o A( G) ) 

O A(G) A(G) O 

On the other hand, suppose G is nonbipartite. Then 

(
A(G) o )=A(GuG) 

O A(G) 

and thus, is the adjacency matrix of a disconnected, nonbipartite graph H 1. On the 

other hand, if B = A( G) then 

( 

0 A(G) ) ( O BT ) 
A(G) O B O 

and thus, is the adjacency matrix of a bipartite graph H2 by Lemma 4.2. Therefore, 

H 1 ';/- H2 and hence, A(H1 ) f A(H2) by Theon~m 1.4. □ 

Remark 4.3. By the previous theorem, given any nonbipartite graph G, the graphs 

whose adjacency matrices are 

A(H1) = ( A(G) 0 ) 

O A(G) 
and A(H2 ) = ( O A(G) ) 

A(G) 0 
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are non-isomorphic graphs with A(H1 ) 2 = A(H2 )2. 

It should be noted that H1 ~ GU G and H 2 is known as the bipartite double 

cover graph of G or the Kronecker cover of G. 

This result can be used to build matrices S with arbitrarily many non-isomorphic 

graphs whose adjacency matrix squared is S. This process is described in the following 

theorem. 

Theorem 4.4. For every positive integer k and integer n :2: 3, there exists a matrix 

S of size (2kn) x (2kn) such that A(Gi) 2 = S for k + l non-isomorphic graphs 

Proof. Let G be a nonbipartite graph on n vertices. Note, n :2: 3 since we must have 

an odd cycle in G the smallest of which is length 3. Let A be the block diagonal 

matrix with 2k copies of A( G) on the main block-diagonal. That is, 

A(G) O 0 

A= 
O A(G) 

0 

0 O A(G) 

If we define S = A2
, then Sis square graphic since S = A(LJ;~ 1 G) 2 . 

Let H be the bipartite double cover graph of G; that is, the graph H such that 

A(H) = ( 0 A(OG) ) 
A(G) 

and define the permutation 1r2t = (12)(34) · · · (2(t - 1) 2t) for each t = l, 2, ... , k. 

For each permutation, let P1r2 t be the block permutation matrix of size (2kn) x (2kn) 

swapping n rows of I2kn at a time according to the permutation 1r2t, 
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For example, 

0 In 0 0 

In 0 0 

P1r2 = 0 0 In 

0 

0 0 In 

Then, for every t = l, 2, ... , k we have 

A(H) 0 0 0 0 

0 A(H) 

0 

P1r2tA = 0 0 A(H) 0 0 

0 0 A(G) 

0 

0 0 0 A(G) 

where there are t copies of A(H) and 2(k - t) copies of A(G) on the main block 

diagonal. Next, define the graphs Gt by 

2(k-t) 

A(Gt) = P1r2tA = A((LJ H) U ( LJ G)). 
i=l j=l 

Since G is nonbipartite, we have Gi ';/- G1 for i =/- j; however, A(Gt) 2 = S for all 

t = l, 2, ... , k by Theorem 4.1 and Remark 4.3. 

Therefore, S is (2kn) x (2kn) and the square of the adjacency matrix for the 

k + l non-isomorphic graphs: G1, ... , Gk-1, Gk and U;~1 G. □ 

Example 4.5. When n = 3 we have the unique nonbipartite graph K3 . Thus, if 

k = 3, then a matrix S of size 18 x 18 that is the square of the adjacency matrix of 
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four non-isomorphic graphs is 

A(K3)2 0 0 0 0 0 

0 A(K3) 2 0 0 0 0 

0 0 A(K3)2 0 0 0 
S= 

0 0 0 A(K3)2 0 0 

0 0 0 0 A(K3)2 0 

0 0 0 0 0 A(K3)2 

The four non-isomorphic graphs with S as the square of the adjacency matrix 

are: u~=l K3, c6 U ( U;=l K3), ( u;=l C6) U ( U;=l K3) and Ui=l C5. 

The previous result had stood for several months as the only way to construct 

non-isomorphic groups of similar graphs. Because of this, the author proposed the 

following conjecture: 

Conjecture 4.6. If G and Hare both nonbipartite, connected, non-isomorphic graphs 

then it must be the case that A(G) 2 f A(H)2
. 

This was until the following counterexample was found. 

Example 4. 7. The graphs G and H from Figures 7 and 8, respectively, are nonbipar

tite, connected, non-isomorphic graphs whose adjacency matrices squared are similar. 

Note that in each graph, the vertices labeled v1 are identified; and so, G and H 

are both 4-regular. 

Also note that these graphs are cospectral; that is, the spectra of each adjacency 

matrix is the same. These graphs were found in /3/. 
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Figure 7. Graph G 

Figure 8. Graph H 

With this example, it appears to the author that the problem of duplication is 

more complicated than initially suspected and will require further study. 
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CHAPTER 5. CONCLUSION AND 

FURTHER RESEARCH 

While a true characterization of the squares of adjacency matrices remains 

unknown, we have given several nontrivial necessary conditions. We have also given 

several characterizations of classes of graphs. 

Through the study of the removal of vertices and the effect on the square of the 

adjacency matrix, new techniques in determining when a matrix is square graphic were 

found and demonstrated. These approaches have proven to be effective in finding a 

plausible set of graphs for a given matrix. 

The final section of this paper was aimed at the question of determining when a 

matrix is the square of the adjacency matrix of several non-isomorphic graphs. It was 

shown, that for a given positive integer n, there is a matrix Sand n+ l non-isomorphic 

graphs, so that S is the square of the adjacency matrix of these graphs. 

The motivating question behind this paper has been to determine when a matrix 

is square graphic. This question remains unanswered in the general case. Further 

research into these matrices and their properties can be done in order to better answer 

this question. 

Determining other properties imposed on the graph by the matrix, and vice 

versa, is one direction to be further explored. 

As a way to further our understanding of square graphic matrices, additional 

study may include finding characterizations of other classes of graphs. For example, 

what other conditions on a matrix S with a diagonal consisting of all k's must we 

have so that S is the square of the adjacency matrix of a k-regular graph, where k is 

an integer at least 3? 

Certainly, further research can be done in the area of determining exactly when a 

matrix represents several non-isomorphic graphs. This problem appears to the author 
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be more complex than initially supposed as is indicated by the pair of non-isomorphic, 

nonbipartite, connected graphs whose adjacency matrices squared are similar. 
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