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ABSTRACT 

Hasan, Md. Mehedi, M.S. , Department of Mechanical Engineering, College of Engineering 
and Architecture, North Dakota State University, June 2011. Numerical Methods for 
Fractional Optimal Control and Parametric Problems. Major Professor: Dr. Xiangqing 
(Annie) Tangpong. 

Fractional derivatives (FDs) or derivatives of arbitrary order have attracted 

considerable interest in the past few decades, and almost every field of science and 

engineering has applications of fractional derivatives. Since fractional derivatives have 

such property as being non-local, it can be extremely challenging to find analytical 

solutions for fractional optimization problems, and in many cases, analytical solutions may 

not exist. Therefore, it is of great importance to develop approximate or numerical 

solutions for such problems. 

The primary focus of this thesis is to develop numerical schemes to solve 

optimization problems in fractional orders. Numerical methods for integer order problems 

of Variational Calculus, using the Euler-Lagrange equation, have already been well 

established. A Fractional Variational Calculus Problem (FVCP) is a problem in which 

either the objective functional or the constraints or both contain at least one fractional 

derivative term. There is a critical need to develop numerical algorithms for solving 

FVCPs. 

The main contributions of this thesis is to develop formulations and solution methods 

for various fractional order optimization problems, including fractional optimal control 

problems, linear functional minimization problems and isoperimetric problems in fractional 

orders. The FDs are defined in terms of the Riemann-Liouville or Caputo definitions . 

Numerical schemes have been developed to obtain the numerical results for various 
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problems. For each scheme, the rate of convergence and the convergence errors are 

analyzed to ensure that the algorithm yields stable results. Various fractional orders of 

derivatives are considered and as the order approaches the integer value of I, the numerical 

solution recovers the analytical result of the corresponding integer order problem. 
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CHAPTER 1. INTRODUCTION 

1.1. HISTORY OF FRACTIONAL CALCULUS 

The concept of Fractional Calculus (FC) is not new and it is as old as calculus itself 

(Ross, 1977a). The history of FC dates back to more than 300 years ago . In 1695, Leibniz 

asked a question to de l'Hopital by ~xchanging a letter, "Can the meaning of derivatives 

with integer order be generalized to derivative with non-integer orders?" That revolutionary 

question aroused the curiosity of de l'Hopital and on 30th September 1695 he replied to 

Leibniz with another question, "What if the order will be 1/z?" Leibniz replied, "Thus it 

follows that will be equal to x'Vdx: x an apparent paradox, from which one day useful 

consequences will be drawn." Nowadays, many scientists consider 301h September 1695 as 

the birthday ofFC and Gottfried Wilhelm Von Leibniz as the father ofFC (Ross, 1977a). 

Following this nonconventional discussion, in 1730 Leonhard Euler mentioned FC 

when he studied the interpolation between integer orders of a derivative. Consequently, in 

1772, Lagrange developed the exponents for differential operators of integer order 

(Lagrange, 1849): 

.dm dn dm+n 

dxm dxn Y = dxm+n Y (I.I) 

This result can be expanded to arbitrary order. 

However, the earliest systematic studies of FC were done at the beginning of the 19th 

century. In 1812 (Laplace, 1820), Laplace defined a fractional derivative (FD) for functions 

by means of an integral and it was first documented in a text in 1819 (Lacroix, 1819). 

Starting with y = xm, where mis a positive integer, Lacroix developed the nth derivative 

·' n 
d Y m! m-n > -=--x m n 
dxn (m-n)! ' - (1.2) 



Using Legendre ' s symbol f , for the generalized factorial , he wrote 

f(m+l) m-n ---x 
f (m-n+l) 

Finally substituting m = 1 and n = 1/2, he obtained 

d 1/2y = _!S!)__ x1/2 = 2./x 
dx 112 f (3/2) ,[ii 

(1.3) 

(1.4) 

Next more general definition of fractional operation was presented by J. B. J. Fourier 

in 1822 (Fourier, 1822). Fourier ' s definition of fractional operations can be obtained from 

an integral representation of f(x): 

1 J + co f + co [ nn:] f(x) =;; - co f(a)da - co cos p(x - a)+ 2 dp (1.5) 

Using the present notation the final equation becomes 

di 1 J + co f +co · [ in:] 
-

1
. f(x) = - f(a)da p 1cos p(x - a)+ - dp 

dx 2n: - co - co 2 
(1.6) 

From the above equation Fourier stated, "The number i which appears in the above 

equation can be regarded as any quantity whatever, positive or negative." However, both 

Lacroix ' s and Fourier' s method of generalization of arbitrary order did not provide any hint 

for applications. 

It wasn ' t until 1823 before fractional operations were used in any applications. Abel 

was the first who applied FC to solve an integral equation in the formulation of the 

tautochrone problem (Abel, 1826; 1881 ). The following example describes the tautochrone 

problem and its solution briefly. 

Example: 1.1 (T.autochrone problem): The problem consists of determining the 

shape of the curve in the (x,y) plane such that the time required for an object to slide down 
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the curve to its lowest point under uniform gravity is independent of its initial position 

(x0 , y0 ) on the curve. 

If the particle slides without friction then from the principle of conservation of 

energy we can state that the loss of potential energy during the descent of the particle is 

equal to the gain of the kinetic energy of the particle. It can be written mathematically: 

1 (ds)2 
2m dt = mg(yo - y), (1.7) 

where m is the mass of the particle, s is the arc length of the particle from the starting point 

along the curve and g is the gravitational acceleration. Now equation (1.7) becomes 

ds r::;-;; 
~=-v2gdt ) 

Integrating (1 .8) from the starting point at t = 0 to time t = T gives 

(1 .8) 

(1.9) 

In that problem, the time of the slide (consider K) to reach its lowest point is constant. 

Denoting the arc lengths as a function of the height y, we gets = F(y). Taking the first 

order derivative of s, ds = F'(y)dy, changing variables Yo-+ x , y-+ t and denoting 

F' = /fg f, the tautochrone integral equation becomes 

( 1.10) 

where the function f needs to be determined. Dividing the above equation by f G) = ,vrr, 

1 

~ = J\ J;cx - t)-~f(t)dt = d ~1_ f(x), 
- dx 2 
2 

(1.11) 

. 1~ . 

And then taking d 
112 

ofboth, sides of equation (1.11), the following equation is obtained: 
dx 
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1 1 1 
1 d2 d2 d-2 
,Irr! K = ---x_ _!.f(x) = f(x) 

dx2 dx2 .dx 2 

Finally, the solution of the tautochrone problem is 

1 

1 d2 
f (x) = ,1rr-1 K, 

rr dx2 

which was the notable achievement by Abel in the FC. 

( 1.12) 

(1.13) 

The first major study of FC was done by Joseph Liouville who developed two 

different definitions of FDs in 1932. Liouville ( 1832) in his first definition, assumed that 

the arbitrary derivative of a function f(x) can be expanded in the series 

(1.14) 

is 

(1.15) 

where v is a derivative of arbitrary order that can be any number-rational, irrational or 

complex. This definition is restricted in choices ofv for which the series (1.14) converges. 

In accordance with the awareness of this restriction, Liouville ( 1832) -presented his second 

definition that does not have such restriction on v. However, in his second definition, there 

is a restriction on the type of function for which it is applicable. Liouville developed the 

definition of arbitrary order v for the functions of the type f (x) = 1
a: 

X 

Dv -a - (-l)ar(a+a) -a-a 
X - r(a) X (1.16) 

Although both of his definitions have some restrictions, Liouville (1834) provided a 

number of applications in geometrical, physical and mechanical problems. 

4 



Additionally, Liouville did remarkable work on complementary functions . He (1834) 

stated that the ordinary differential equation dny = 0 has the complementary solution 
dxn 

Ye = c0 + c1x + c2x 2 + ··· + Cn_1xn-i. Thus du~= 0 ( u is arbitrary) should have a 
dx 

corresponding solution. Later Riemann used complimentary functions and created a 

significant impact on the development of FC. 

After Liouville, G. F. Berhard Riemann developed a different theory of fractional 

integration. He used a generalization of a Taylor series and deduced the definition 

v-a f(x) = -(1 ) f\x - t)a-l f(t)dt + 'l'(x) r a c 
( 1.17) 

Because of the ambiguity of the lower limit c of the integration, Riemann introduced the 

complementary function 'l'(x). Substituting c = 0 and without the complementary 

function 'l'(x) , equation (1.17) is called the Riemann-Liouville (RL) fractional integral, the 

popular fractional integral in present days. 

Since neither Riemann nor Liouville solved the problem of additional 

complementary function, a number of famous mathematicians focused their work on 

solving -that problem. Utilizing Cauchy's integral formula, as a starting point, N. Y. Sonin 

(1869) started to reach differentiation to arbitrary order. Later, A. V. Letnikov (1872) 

extended the idea given by Sonin. They both used a close contour integral method. Using 

Cauchy's integral formula for integer order derivatives 

[Cn)(z)=~f f(t) dt 
2m C (t-z)n+l ' 

(1.18) 

they generalized the fraction5rl' order by substituting the factorial with Euler gamma 

function n! = f(n + 1). Consequently, instead of a close circuit, H. Laurent (1884) used a 
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contour given as an open circuit (Laurent loop) developed today's definition of the 

Riemann-Liouville fractional integral : 

,D;a f (x) = -(1 
) f\x - t)a-l f (t)dt, r a c 

Re(a) > 0 

(1.19) 

by the standard contour integral method. J. H. Davis ( 1924) first introduced notation 

,Dta J(x) as a fractional integral and replace a instead of - a as FDs. However, the 

change from fractional integral to FDs is not accurate and problems originate from the 

integralfc\x - t)a-i f(t)dt , which is divergent in general. By analytical continuation it 

can be shown that 

(1.20) 

which is now known as Riemann-Liouville fractional derivatives (RLFDs) (Ross, 1977a). 

Where n is the smallest integer greater than a and O < f3 = n - a < 1. ,Df is the 

ordinary differentiation operator of dnn . 
. dx 

Grunwald (1867) and Letnikov ( l 868) proposed another popular definition of FDs 

which is frequently used today. Using the idea from Liouville, to use the limit of a 

difference quotient using differences of fractional order, Grunwald and Letnikov obtained 

[t-a] 
~ n (-l)j(a)t(t- 0 h) GLDaf( ) _ 1. ;...j=o j 1 

t t - 1mh->O ha , a>O (1.21) 

which is the definition of FDs now called Grilnwald- Letnikov (GL) fractional derivative. 

In Eq. (1.21), t and a are the upper and lower limit of the differentiation. (~) is the 
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generalized binomial coefficient. Under certain conditions the GL definition is with the 

same as the RL definition. Now the question may arise whether the different definition of 

fractional derivatives (RL and GL) are either the same or different since the concept of 

origination is the same. However, the RL definition is suited for analytical solution and the 

GL definition is suited for numerical calculation. 

At the end of the nineteenth century, Oliver Heaviside (1892) showed how certain 

linear differential equations can be solved by the use of generalized operators . He denoted 

the operator d/dx by the letter p and in several applications, he used arbitrary power of p, 

mostly p 112 . Today his collection of works is named as Heaviside operational calculus and 

his method is useful in the theory of the transmission of electrical currents in cables. 

At the beginning of the twentieth century, FC had already grown to a broad 

mathematical field. Many famous mathematicians contributed to the development of FC, 

including H. Wey!, Marchaud, Hardy, Littlewood, Watanabe, M. Riesz, B. S. Nagy, 

Erdelyi, Kober and M. Caputo. Besides RL and GL definitions, in the last century several 

definitions of FDs and fraction integral have been proposed (Weilbeer, 2005), among 

which Caputo derivative has been often adopted in recent research. For a function f with 

(n - 1) continuous derivative, Caputo derivative of order a > 0 is defined as (Caputo, 

1967): 

D~ f(t) = - 1 -t(t - rr-a-i( !!:...rJ(r)dr. 
I'(n-a) a dr 

(1 .22) 

A Caputo fractional derivative (CFD) coincides with the RL fractional derivative (RLFD) 

under the same set of homogeneous initial conditions. CFD is more popular in application 

because the fractional differenfial equations can contain the initial conditions in such forms 
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as f(O),f'(O),f"(O), ... ,[Cn)(O); for RLFD, however, it is necessary to specify the FDs of 

the function at the initial point (Podlubny, 1999; Almeida and Torres, 2011 ). 

FC and its applications have grown rapidly in the last few decades. Consequently, 

the first conference that solely contributed to the theory and applications of FC was held in 

New Haven in I 974 (Ross, I 977b). Several books were published in the field of FC in the 

last couple of decades (Kilbas et al. , 2006; Miller and Ross, I 993; Minardi, 2009; Oldham 

and Spanier, 1974; Pldlubny, 1999; Samko et al. , 1993). The journal "Fractional Calculus 

& Applied Analysis" is solely concerned with topics on the theory of FC and its 

applications (Weilbeer, 2005). From a simple question of l'Hopital to Leibniz in 1695, FC 

has become an interesting topic of research for many researchers. It has significant 

application in many science and engineering fields. 

1.2. APPLICATIONS OF FRACTIONAL CALCULUS 

Although FC has a long history, it does not appear systematically in modern 

literature, and from the application point of view it is rigorously limited because it was 

considered to be extremely difficult to solve problems with FDs (Almeida and Torres, 

. -
2009). Difficulties may arise due to the lack of geometrical and physical interpretation of 

fractional operators (Lohle, 2008). However, based on the projection of a shadow on the 

wall, Podlubny (2002) suggested geometrical interpretation of RL fractional integral. He 

(2002) also suggested geometrical and physical interpretation of the RL fractional 

differentiation, the Caputo fractional differentiation, the Riesz potential, and the Feller 

potential. Additionally, Podlubny (2007) also presented the animation of their 

interpretation. Recently, ·based~ on the GL definition, Machado (2009) presented a 

probabilistic interpretation of FD. 

8 



FC and its applications have attracted considerable interest and it has proved to be 

valuable tool for the modeling of many physical phenomena (Shao, 2009). The main reason 

of this fact is that the realistic modeling of a physical phenomenon depends not only on the 

instant time, but also on the history of the previous time which can be incorporated by 

using FC (EI-Ajou et al., 2010). In particular, processes associated with complex systems 

have non-local dynamics involving the long term memory effect, and the fractional integral 

and FD operators can describe well in this phenomena (Kilbas et al., 2006). Furthermore, 

most of the engineering phenomena possess complex microscopic behavior and their 

macroscopic dynamics cannot be characterized by classical integer order derivative models 

(Kilbas et al., 2006). In order to better understand the potential of FC, some examples are 

given as follows: 

Viscoelasticity: The most extensive applications of FC are in the field of 

viscoelasticity due to its ability to model hereditary phenomena with long memory effect 

(Mainardi, 2009). FD is the best mathematical tool to describe the visco-elastic constitutive 

law (Di Paola and Pirotta, 2009). Di Paola and Pirrotta (2009) demonstrated that as the 

creep compliance exhibited power law decay, the FD appeared naturally of the stress and 

strain response and the various components, such as, intensity and order of fractional 

operator, can be directly evaluated by a curve fitting procedure on creep test. 

According to Stiassnie (1979), constitutive equations for an elastic material and a 

viscous material in a given unidirectional stress <J and the respective strain E can be written 

as follows: 

<J = kE(t) =;·k oDf E(t) 

<J = k dE = k 0Df E(t) 
dt 
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(1.23) 

(1.24) 



Equations (1.23) and (1.24) are the Hooke's law of elasticity and Newton's law of viscosity 

respectively. 0D[' represents differentiation of order a with respect to t. In this case, a = 0 

and a = 1 correspond to purely elastic material and purely viscous materials, respectively. 

Since viscoelastic materials behave in between viscous and elastic, it becomes reasonable 

to express their properties by applying an intermediate order between O to 1 (Scott Blain, 

1949): 

a= E 0D['E(t) (0 ~a~ 1) (1.25) 

Viscoelastic materials like polymers generally show time dependent behavior, such as 

creep, relaxation and damping. An accurate material model is necessary in order to avoid 

expensive tests by numerical simulation. There are various classical models, such as the 

Maxwell model, the Kelvin Voigt model, the Burger model and the Standard Linear Solid 

model, to determine the stress and strain interaction of viscoelastic materials. It is well­

known that traditional integer order models do not always fit the experimental data well (Di 

Paola and Pirrotta, 2009). Therefore, fractional order models (FOMs) have been developed 

to characterize viscoelastic materials. 

The applications of FC in the field of viscoelasticity started in the early 201
h century. 

Nutting (1921) indicated that the stress relaxation phenomenon of viscoelastic materials 

appeared to be proportional to fractional power of time, and Gemant (1936, 1938) stated 

that damping properties of viscoelastic materials fit much better by using fractional powers 

of frequency. Scott-Blair (1949) again suggested applying fractional time-derivatives to 

meet the observations of Nutting and Gemant (Schmidt and Gaul, 2002). Caputo was the 

first to apply fraction derivatives to model the behavior of viscoelastic geological strata 
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(Caputo, 1967, 1976). Later, Caputo and Mainardi (1971) validated their FOM with 

experimental observations of some metals and glasses. 

The damping properties of viscoelastic materials show weak frequency dependence 

within a broad frequency range (Adolfsson et al. , 2005). This weak frequency dependence 

is hard to describe in classical viscoelastic models that consider integer order rate laws, at 

least without an excessive number of material parameters (Adolfsson et al., 2005). On the 

other hand, only one single FD operator acting on both stress and strain is necessary to 

model the simplest uniaxial fractional order viscoelastic model. More or less FC of 

viscoelastic material based on the methodology of replacing the viscous dashpot by 

generalized element called 'spring-pot ', a name given by Bagley (Bagley, 1983; Koeller, 

1984) needs only one parameter. 

Until the beginning of the 1980s, the application of FD s in viscoelasticity had been 

limited to curve-fitting methods. Later, Bagley and Torvik (l 983) demonstrated the 

physical justification for the concept of FDs. In 1986, Bagley and Torvik ( 1986) developed 

constraints on parameters of a fractional 3-parameter model to ensure a nonnegative rate of 

energy .dissipation and a nonnegative internal work. Padovan (1987) applied time 

integration algorithms to calculate responses of viscoelastic structures by using a single 

equation involving FD operators acting on both stress and strain (Enelund et al. 1999). 

Recently, the application of FC to viscoelasticity has expanded further. Drozdov 

( 1997) constructed fractional differential model analogs of the Kelvin-Voigt, Maxwell and 

Mawwell-Weichert constitutive models and verified these models with experimental data 

for viscoelastic solids. Welch _.e-t al. (1999) applied time based FC technique instead of 

frequency based technique for quasi-static viscoelastic response because time-domain 
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techniques are more suitable than frequency- domain techniques in quasi-static viscoelastic 

theory. Adolfsson (2004) also formulated a fractional order viscoelastic model for large 

deformation and developed an algorithm for the integration of the constitutive response. 

Additionally, Adolfsson et al. (2005) presented physical interpretations of the viscoelastic 

model by using viscoelastic functions. Hanyga (2007) developed a general constitutive 

nonlinear model of viscoelastic medium with singular memory by applying internal 

variable concept. The detailed study of FC in viscoelastic media was done by Rossikin and 

Shitikova (1997, 20 I 0) who used FDs to study wave propagation in viscoelastic media. 

Recently, Sunny et al. (20 I 0) developed a model based on FC to model the hysteresis in 

conductive polymer and the accuracy of that model was verified by comparison with the 

experimental results. More information of the applications of FC in the field of 

viscoelasticity can be found in (Samko et al. , 1993; Alcoutlabi and Martinez-Vega, 1998; 

Gen-guo et al. , 2001; Soczkiewicz, 2002; Surguladze, 2002; Pritz, 2003; Chen et al. , 2004; 

Lu, 2006; Catania and Sorrentino, 2007; Nasuno et al, 2007; Reyes-Melo et al. 2008; 

Mainardi, 2010). 

Bioengineering: In the bioengineering field , it is highly necessary to develop an 

efficient and highly precise materials model to simulate the stress response of biological 

materials (Carew et al., 2003). FC is useful for modeling of soft biological tissue (Carew et 

al., 2003; Cafagna, 2007). Moreover, some complex biological systems like modeling of 

connecting gene expression with protein structure and their function can be expressed well 

by FC (Magin, 2010). 

Since the distribution relaxation process appears in human tissues and cells, FC 

naturally has an important role in describing the input-output behavior of biological 
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systems. The properties of tissues and cells depend on the storage modulus that describes 

the elastic property and the loss modulus that describes the ability to absorb energy. Both 

of these properties change with frequency and the classical model is not able to describe 

these properties well. Yuan et al. (1997, 2000) investigated the properties of lung tissues 

and found the necessity of implementing FOMs. Since . then, the application of FC in 

modeling of soft biological tissues has been gradually increasing. 

Carew et al. (2003) formulated a one-dimensional version of fractional-order 

viscoelastic equations called quasilinear fractionalorder viscoelasticity, and applied it to 

model the stress response of porcine aortic valve tissues. Later, Chen et al. (2004) applied 

FD model to characterize the dynamic viscoelasticity of the agarose gels used for culturing 

tissues, especially cartilage cells. Craiem and Armentotano (2007) also presented a 

fractional order Voigt model and validated that model by an experimental observation that 

was conducted over human arterial in-vivo. FOMs have also been applied to model the liver 

tissues (Taylor et al. , 2002; Kiss et al. , 2004) and brain tissue (Kohandel, 2005). Freed and 

Diethelm (2006) developed a fractional order viscoelastic model for isotropic biological 

tissue and applied to the fat pad of human heel. 

The FOM is able to characterize the dynamic behavior of arterial wall and Craiem et 

al. (2008) applied a model (a spring in parallel with two springpots) to describe the 

viscoelastic properties of an arterial specimen behavior. Al-Mezel et al. (2009) also 

presented an approximate solution to the nonlinear FC model of the semilunar heart valve 

vibrations. Recently, Papoulia et al. (2010) developed rheological representations (discrete 

spectrum models) for the FD ~iscoelastic element and proved its accuracy by presenting 
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some computational results. Other applications of FC on biological tissues and processes 

can be found in (Glockle and Nonnehmacher, 2002; Suki et al. , 1994). 

FC has been used not only in modeling of soft tissues. The behavior of neural 

systems can also be described well by using FOMs (Magin, 2006). Anastasio (1994, 1998) 

modeled the vestibular- oculomotor system using the Laplace domain as sk or s-k , where 

0 < k < 1. Fractional order circuit, such as the impedance Z = Z0 /(s)a or Z = Z0 /Uw)a 

has been used to develop an electrical circuit model of complex processes like the electrode 

cardiac tissue interface of a pacemaker electrode (Grimnes, S., Martinsen, 2000; Magin and 

Obaida, 2008; Magin, 2010). FOM was able to predict the propagation of diseases and 

treatment specific parameters effectively (Mera) et al. , 2010). Sinkus et al. (2007) used a 

FOM to fit magnetic resonance elastography (MRE) data for breast tumors. Magin (20 l 0) 

stated that if the structure in living systems was fractal or the measurement of signal 

displayed anomalous properties, one should suspect that the dynamics might better be 

described by a FOM. 

Fractional order controller: In order to attain an effective control of the physical 

systems, the study of fractional-order controllers has attracted great interests. The 

Proportional Integral Derivative (PI D) controllers have been used widely in industrial 

applications for many years for its simplicity of design and good performance including 

low percentage overshoot and small settling time for slow process plants (Astrom and 

Hagglund, 1995; Biswas et al. 2009). However, a major concern is to attain an optimum 

performance and researchers have been trying to obtain the optimum performance by using 

fractional· order tool (Xue et --al. , 2006). The fractional order PI D controller is a 
-· 

generalization of the classical one that can fulfill stricter contradictory design 
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specifications. In a fractional order PI;._ Dµ controller, the Integral (/) and the Derivative 

(D) being fractional have wider scope of design, and therefore besides proportional (Kp), 

derivative (rd) and integral ( Td constants, the fractional order PI;._ Dµ has two more 

parameters: the order of fractional integration (A) and the fractional derivative (µ). 

Therefore, finding an optimal settings ,of Kp , Td, Ti , ,landµ it is easy to meet the user 

specifications (Biswas, et al. , 2009). Podlubly (1999b) proposed a generalization of PIO 

controller which responded better in comparison with the classical PID controller. 

Consequently, Xue et al. (2006) designed a fractional order controller and demonstrated 

that if properly designed and implemented, the fractional order PIO controller will 

outperform the conventional integer order PIO controller. 

Since the fractional order PIO controller performs well , it has found extensive 

applications in real industrial processes (Vinagre et al. , 2007; Maiti et al. , 2008). Calderon 

et al. (2003a,b; 2006) successfully applied fractional order control strategy in the control of 

a power electronic buck converter. This fractional order converter is fast to reach an 

effective control of devices (Cafagna, 2007). The CRONE (French acronym for Controle 

Robuste · d 'Ordre Non-Entier) team conducted research on fractional order controller and 

successfully applied fractional order controller to various sections, including car suspension 

control (Oustaloup et al. , 1996), flexible transmission (Oustaloup, et al., 1995), and 

hydraulic actuator (Lanusse, 2000). Chengbin and Hori (2004) proposed a design of a 

fractional order P/Dk controller for a torsional system' s backlash vibration suppression 

control which gave the possibility of directly tuning and enabled one to adjust the control 

system's frequency response. Ho~ever, previous classical method failed in suppressing the 

vibrations caused by gear backlash nonlinearity (Cafagna, 2007). Using fractional order 
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proportional and integral controller (FOPI), Bhaskaran et al. (2007) presented a new 

practical tuning method and also demonstrated by experimental results that FOPI was not 

only valid for first order plus delay time but also applicable for other general class of 

plants. Recently, Ahn et al. (2009) established a new strategy by using a fractional order 

integral and derivative controller for a temperature profile tracking. 

Different design methods for fractional order controller have been proposed, such as 

pole distribution (Petras, 1999), frequency domain approach (Vinagre et al. , 2000), state­

space design approach (Dorcak et al. , 2001) and hybrid approach (Chengbin and Hori, 

2004). Monje et al. (2004b) proposed a design of Plato ensure that the closed loop system 

is robust to gain variations and the step responses exhibit an iso-damping property. By 

using a fractional order PI D controller for active reduction of vertical tail buffeting, an 

extensive work has been developed by Sanchez (1999). In recent years, particle swarm 

optimization (PSO) technique which is a revolutionary type global optimization algorithm 

has been used in fractional order Controller (Zamani et al. , 2009; Gao and Hu, 2008, 2009). 

Some other interesting work on fractional order controllers can be found in (Matignon and 

d' Andrea-Novel, 1996; Matignon, 1998; Milos and Martin, 2006; Monje et al., 2004a; 

Oustaloup, 1981; Axtell and Bise, 1990). 

Chaotic behavior: In recent years, the application of FC in the chaotic behavior and 

dynamic system has become an interesting research area (Ahmad and Sprott, 2003 ; 

Podlubny, 1999a; Hilfer, 2000; Odaibat, 2010). Chaos, which is nonlinear and cannot be 

predicted beforehand, is important in information processing, safe and sound 

communication, liquid mixing ~nd also biological systems (Chen and Lee, 2004). However, 

synchronization of a chaotic system is a challenging issue (Deng et al., 2009) and recent 
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studies proved that chaotic fractional order system can be synchronized well (Deng and 

Lee, 2005; Lu and Chen, 2006; Li et al , 2003; Zhou et al. , 2008). 

It is common that chaos in a continuous system occur of total order not less than 

three (Petras, 2006). The other conditions for chaos in a continuous-time system are: there 

must be nonlinear element in the system and it must be sensitive to initial conditions. For a 

continuous - time system, the most important condition for occurring chaos is highly 

dependent on initial condition that is not observed in order less than three (Baleanu et al. , 

2010). However, chaotic behavior observed for the FOM of order less than three (Sheu et 

al., 2007). Hartley et al (1995) showed that the fractional order Chua' s circuit with order as 

low as 2.7 can generate a chaotic attractor. Ahmad and Sprott (2003) demonstrated that 

using the proper control parameters, both an electronic chaotic oscillator and a mechanical 

chaotic "jerk" model can produce a chaotic attractor with system with orders as low as 

2.1. Li and Chen (2004) also studied the chaotic behaviors in the fractional-order Rossler 

equations and found the order of chaotic behaviors as low as 2.4 and hyperchaos behaviors 

as low as 3.8. 

The chaotic behavior of fractional order have been studied by Arena et al. (1998) 

who showed that nonautonomous Duffing systems with order less than 2 could still behave 

in a chaotic manner. Ge (2007) demonstrated that chaos in a modified Duffing system 

existed for total systems of order were 1.8, 1.9, 2.0, and 2.1. Ahmad and Harba (2003) 

investigated the chaos control for fractional chaotic systems, where controllers have been 

designed using the "backstepping" method of nonlinear control design. Ahmed et al. , in 

(2001) studied the fractional-or1er Wien bridge sinusoidal oscillator and demonstrated that 

limit cycle could be generated for any fractional order, with a proper value of the amplifier 
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gain. Tavazoei (2008) proposed techniques to suppress chaotic oscillations in 3-0 chaotic 

system by using fractional differentiator and fractional integrator. Many other fractional­

order nonlinear systems are chaotic, such as the fractional-order Arneodo' s systems (Lu, 

2005), a fractional-order rotational mechanical system with a centrifugal governor (Ge and 

Jhang, 2007), the fractional-order Chen-Lee system (Tam et al., 2008) and the fractional 

order Newton-Leipnik system (Wang, 2003). 

Heat conduction and diffusion phenomena: Transient, particularly periodic, 

diffusion problems are very common in engineering fields (Kulish and Lage, 2000). 

Transient heat flux measurement are widely used to measure heat flux in harsh 

environments, such as high enthalpy plasma flows, fusion plasma and rocket motor 

combustion chambers based on solving the inverse heat conduction problem in a semi­

infinite environment (Lo hie et al., 2008). However, transient heat measurement is a 

challenging issue in present days. Using Non-Integer System Identification (NISI), Lohle et 

al. (2008) proposed a method that provided a significant improvement of the rather 

classical heat flux measurement technique. Podlubny (1999a) reported a comparative 

-
analysis between the traditional integer and fractional for a reheating surface and concluded 

that the fractional model enables a better fit to experimental results for the same number of 

free constants because of the nature of the model. Aoki et al. (2008) presented through 

examples that the time-dependent temperature in a transient thermal system can be 

approximately modeled with a fractional order differential equation. Murio (2008) also 

analyzed Caputo's time fractional inverse heat conduction problem. Additionally, Agrawal 

(2004b) presented a fractional . order derivative based approach to compute the surface 

temperature and the heat flux at the contact surface of disk brake by carrying out a transient 
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analysis of two neighboring points. Recently, Pineda et al. (2011) presented a solution 

based on FOM for a one-dimensional transient heat conduction problem. 

Diffusion phenomena, particularly anomalous diffusion phenomena, are common in 

many physical systems, such as pollutant transport through porous media, electron transfer 

in semiconductor and nuclear proliferation (Metzler, et al., 2000; Reynolds, 2002; 

Plasmanter, 1991 ). In recent decades, anomalous diffusion phenomena attracted particular 

interest in biology, chemistry, environmental science and even in economics (Gorenflo and 

Mainardi, 2009; Sun et al., 2010). It has been proved by experimental observation and 

theoretical investigation that the anomalous diffusion processes exhibits the characteristics 

of history dependence and long-range correlation (Sokolov, et al., 2004; Sun et al., 2010). 

Such anomalous diffusion phenomena can be characterized by using FDs (Li and Deng, 

2007). Anomalous behaviors of fractional diffusion equation have been investigated in 

fractional Brownian motion (Lim and Muniandy, 2002), anomalous diffusion with 

adsorption (Drazer et al., 2002), tracer advection (Zaslavsky et al., 1997). 

Based on the assumptions of linear unidirectional heat transport within a semi­

infinite domain with common constant initial and asymptotic boundary-conditions, Oldham 

and Spanier (1972, 1974) were the first to reduce the classical diffusion equation, which 

consisted of second order spatial derivatives and first order time derivatives, to an equation 

involving a first order spatial derivative and a half order time derivative (Murio, 2007). 

Kulish and Lage (2000, 2002) demonstrated the application of FC to the solution of time­

dependent, viscous-diffusion fluid mechanics problems. Since then, many engineers and 

scientists have developed the F9Ms to represent diffusion phenomena. Kilbas et al. (2006) 

presented a FOM for the superdiffusion equation. Applications of fractional diffusion 
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process, such as super diffusion and non-Gaussian diffusion problem can be found in (Liu 

et al., 2004; Meerschaert and Tadjeran, 2004, 2006). Murio (2007, 2009) developed a 

stable numerical solution of a fractional-diffusion inverse heat conduction problem. 

Detailed applications of FC to the diffusion equations can be found in Debnath (2003). 

Other applications of fractional calculus: The applications of FC are extensive. 

Miller and Rose (1993) mentioned that almost every field of science and engineering has 

the applications of FDs. Many processes in physics and engineering sciences would be 

governed more accurately by fractional order differential equations instead of traditional 

integer order differential equations (Oustaloup et al. , 2000; Ray et al. , 2005). With its 

emerging applications in a variety of fields , FC and its application has become an important 

topic for many researchers. In addition to aforementioned fields , some other fields of its 

applications include electrochemistry (Ichise et al. , 1971; Sun et al. , 1984a; Oldham, 2010; 

Debnath, 2003), dielectric polarization (Sun et al. , 1984b ), colored noise (Mandelbrot, 

1967), finance (Scalas et al. , 2000) and also physics (Hilfer, 2000). Detailed applications of 

FC can be found in (Oustaloup et al. , 2000, Machado et al., 2009). 

-
Although FC can describe many physical phenomena well, it still has some 

drawbacks. These are : (1) Integer order models have clear geometrical and physical 

meanings that fractional order definitions lack (2) There are lots of fractional operators like 

the Marchaud, the Riesz, the Caputo, the GL and the RL definitions. Since real problems 

involve different operators. For example, the Riesz operator is more amenable to obtain 

simpler solutions in an unbounded domain working in dynamics at steady state (Paola and 

Pirrotta, 2009). However, these .many different fractional definitions could bring confusion 

in applications (3) FDs and integrals may not be solved by hands and they usually require 
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rigorous and laborious numerical calculations. The integer order derivative of a constant is 

always zero, the fractional order derivatives of a constant, however, is not always zero iv) 

Different symbols have been used to define the same fractional operator, and therefore, it 

can be difficult to recognize the fractional operator just from the symbol being used in 

various articles. 

1.3. SCOPE OF THE THESIS 

The primary focus of this thesis is to develop numerical schemes to solve 

optimization problems in fractional orders . Since FDs have such property as being non­

local, it can be extremely challenging to find analytical solutions for fractional parametric 

optimization problems, and in many cases, analytical solutions may not exist. Therefore, it 

is of great importance to develop numerical methods for such problems. This thesis 

presents formulations and solution schemes of various optimization problems, including (1) 

fractional optimal control problems (2) linear fractional functional minimization problems 

and (3) nonlinear fractional functional minimization problems. The FDs are defined in 

terms of the RL or Caputo definition. The convergence of each method is analyzed to 

ensure stability of the algorithm. Various orders of FDs are considered and as the order 

approaches the integer value of 1, the numerical solution recovers the analytical result for 

the corresponding integer order problem. 

1.4. OUTLINE OF THE THESIS 

The organization of the thesis is as follows: 

Chapter 1: Introduction: This chapter described the history and application of FC. 

Chapter 2: Fractional ?r>timal control problem in spherical and cylindrical 

coordinates: In this Chapter, we present a general formulation and numerical scheme for 
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Fractional Optimal Control Problems (FOCPs) of distributed systems in spherical and 

cylindrical coordinates. The FDs are expressed in the Caputo-Sense and the Fractional 

Optimal Control (FOC) equations are reduced to the Volterra-type integral equations. The 

time domain is discretized into several subintervals. Various orders of FDs are analyzed 

and compare the result with the analytical result. This work has been published in the 

following publications: 

1. Hasan, M. M. , Tangpong, X. W., Agrawal, 0. P., 201 la "Fractional Optimal Control 

of Distributed Systems in Spherical and Cylindrical Coordinates," Journal of 

Vibration and Control (in press) . 

2. Hasan, M. M. , Tangpong, X. W. , Agrawal, 0. P., 201 lb, "A Formulation and 

Numerical Scheme for Fractional Optimal Control of Cylindrical Structures Subjected 

to General Initial Conditions," Fractional Dynamics and Control, editors, Dumitru 

Baleanu, J.A. Tenreiro Machado and Albert Luo, Springer. 

3. Hasan, M. M., Tangpong, X. W. , Agrawal, 0. P. , 2010, "Fractional Optimal Control 

of a Hollow Cylindrical Structure," The 3rd Nonlinear Science and Complexity 

Conference, Ankara, Turkey, July 28-31. 

Statement of Joint authorship 

Md. Mehedi Hasan (Candidate) derived the formulation of FOCPs in Cylindrical 

coordinates, developed the numerical codes in MATLAB and wrote the initial draft of the 

manuscript. 

Xiangqiang W. Tangpong derived the formulation of FOCPs in spherical coordinates, 

directed and guided the work, assisted in the interpretation of results, paper preparation and 
·' 

revised/proofread the manuscript. 
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Om P. Agrawal assisted in the interpretation of results, directed the work and proofread 

the manuscript. 

Chapter 3: A numerical scheme for a class of parametric problem of fractional 

variational calculus: This chapter presents a numerical scheme for a linear functional 

minimization problem that involves FD terms. The FD is defined in terms of the RL 

definition. The spatial domain is discretized into several subdomains and 2-node one­

dimensional linear elements are adopted to approximate the solution and it's FD at point 

within the domain. Various fractional orders of derivative are considered and as the order 

approaches the integer value of 1, the solution recovers the analytical result for the 

corresponding integer order problem. In addition, convergence study and error analysis 

have been performed to ensure the stability and accuracy of the algorithms. This work has 

been accepted by the following publication: 

1. Agrawal, 0 . P., Hasan, M. M., Tangpong, X. W., 2011 , "A numerical scheme for a 

class of parametric problem of fractional variational calculus," ASME 2011 

International Design Engineering Technical Conferences & Computers and 

Information in Engineering Conference IDETCICIE, Washington, DC, September 

28-31 (accepted). 

Statement of Joint authorship 

Md. Mehedi Hasan (Candidate) developed the numerical codes in MATLAB, interpreted 

the results and wrote the results and discussion part of the manuscript. 

Xiangqiang W. Tangpong wrote the manuscript, assisted in the interpretation of results 

and acted as the corresponding author. 
-· 
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Om P. Agrawal derived the formulation and numerical scheme of that problem and 

proofread the manuscript. 

Chapter 4: A numerical scheme for fractional-order isoperimetric problem: 

This chapter presents numerical schemes for solving a nonlinear functional minimization 

problem in fractional order. The integer order version of the problem is to determine the 

shape of a hanging chain in its equilibrium state with two fixed ends and constant length. 

We defined the FD in terms of the RL definition. The spatial domain is discretized into 

several subdomains. Different definitions of GL approximations are taken to approximate 

the FDs of fractional orders in between O and 1. The performances of different GL 

definitions are analyzed. 

Chapter 5: Conclusions and future work: The main contribution of this thesis and 

results are summarized in this chapter. Finally, this chapter concludes with some 

prospective works. 

'·' 
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CHAPTER 2. FRACTIONAL OPTIMAL CONTROL PROBLEMS IN 

SPHERICAL AND CYLINDRICAL COORDINATES 

This Chapter presents a general formulation and numerical scheme for Fractional 

Optimal Control Problem (FOCP) of distributed systems in spherical and cylindrical 

coordinates (Hasan et al. , 2010, 2011 a,, b ). The materials presented in this chapter have 

been accepted for publications in (Hasan et al. , 2010, 2011 a, b ). The FDs are expressed in 

the Caputo-Sense. The performance index of FOCP is considered as a function of both the 

state and the control variables and the dynamic constraints are expressed by a partial 

fractional differential equation. Method of separation of variables is employed to separate 

the time and space terms, and the eigenfunction approach is used to eliminate the terms 

containing space parameter and define the formulation in terms of countable number of 

infinite state and control variables. The Fractional Optimal Control (FOC) equations are 

reduced to the Volterra-type integral equations. For the problems considered, only a few 

eigenfunctions in each direction are sufficient for the calculations to converge. The time 

domain is discretized into several subintervals and the result is more stable for larger 

number of time segments. Various orders of fractional derivatives (FDs) are analyzed and 

the results converge toward those of integer optimal control problems as the order 

approaches the integer value of 1. 

2.1. INTRODUCTION 

The general definition of an optimal control problem requires the minimization of a 

functional over an admissible set of control functions subject to dynamic constraints on the 

., 

state and control variables (A'.grawal, 1989). Optimal control problems have found 

applications in many areas such as engineering, science and economics. A FOCP is an 
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optimal control problem in which either the performance index or the differential equations 

governing the dynamics of the system or both contain at least one FD term (Tangpong and 

Agrawal, 2009). As the demand for accurate and high precision systems increases, the 

demand for numerical formulation and solution scheme of FOC theories also increases 

(Agrawal, 2004a). 

The formulation of FOCPs stems from the Fractional Variational Calculus (FVC) and 

this FVC is applied to deterministic and stochastic analysis of FOCPs (Baleanu et al., 

2009). Riewe (1996, 1997) was among the earliest researchers to formulate a FVC, and 

used FC of variations to develop the Larangian, Euler-Lagrange equations, and other 

concepts for mechanics of nonconservative systems (Agrawal, 2004a). Later, Agrawal 

(2002) presented Euler-Lagrange equations for both unconstrained and constrained 

Fractional Variational Problems (FVPs). Klimek (2001) presented a model of fractional 

sequential mechanics with symmetric FDs. Klimek (2002) also presented stationary 

conservation laws for fractional differential equations with variable coefficients. 

Integer order optimal controls (IOOCs) have already been well established and a 

significant amount of work has been done in the field of optimal control of integer order 

systems. Excellent textbooks are available in that field (Bryson et al. , 1969; Sage and 

White, 1977; Hestenes, 1966; Gregory and Lin, 1992) and various methods have been 

employed to solve such problems (Agrawal, 1989; Gregory and Lin, 1992). A lot of work 

has been done in the area of Fractional Order Control (FORC) (Xue and Chen, 2002; 

Manabe, 2003 ; Bode, 1945; Oustaloup, 1983, 1991 ; Podlubny, 1999; Vinagre and Chen, 

2002) without any discussions ~bout FOCP. With the growing number of applications of 

FOCPs, it is necessary to establish solutions for FOCPs. 
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The outline of FOCPs has grown rapidly over the last decade. Agrawal (2004a) gave 

a general formulation of FOCPs in· the Riemann-Liouville (RL) sense and described a 

solution scheme for FOCPs for classical optimal control problem that was based on 

variational virtual work coupled with the Lagrange multiplier technique. The works 

presented in (Tangpong and Agrawal, 2009; Agrawal, 2006a, 2008a) formulated FOCPs in 

terms of Caputo fractional derivatives (CFDs) instead of RL derivatives and an iterative 

numerical scheme was applied to solve the problem numerically where the time domain 

was discretized into small segments. CFDs allow one to incorporate the usual initial 

conditions in a simple manner, and therefore are popular choices for researchers. In 

(Agrawal and Baleanu, 2007), the FDs of the system were approximated using the 

Grunwald-Letnikov definition that led to a set of algebraic equations that can be solved 

using numerical techniques (Tricaud and Chen, 201 Ob). Agrawal (2005) presented a 

general scheme for stochastic analysis of FOCPs. In (Baleanu et al. , 2009) a different 

solution scheme was proposed where a modified Grunwald-Letnikov definition was used to 

derive a central difference formula. Based on the expansion formula for FDs, a new 

-
solution scheme was proposed in (Jelicic and Petrovacki, 2009). Using the definitions of 

the FOCPs, Frederico and Torres (2006, 2008a,b) formulated a Noether-type theorem in the 

general context of the FOC in the sense of CFDs. Agrawal (2008b) considered a one 

dimensional distributed system and used the eigenfunction approach to solve the FOC 

problem. The eigenfunction expansion-based scheme was also used in (Ozdemir et al. , 

2009a) to formulate FOCP of a 2-dimensional distributed system. 

In recent years, FOCPs ha,ve been addressed in polar coordinates. Ozdemir et al. 

(2009b) presented a formulation for a 2D distributed system in polar coordinates using the 
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separation of variables method. FOCPs of a 3D distributed system were investigated in 

cylindrical coordinate in (Ozdemir 'et al., 2009c). Fractional diffusion problems were 

discussed in polar coordinates (Ozdemir et al., 2009d) and in cylindrical (Qi and Liu, 2009) 

and spherical coordinates (Povstenko, 2008); however, those works did not discuss FOCPs. 

This chapter presents general formulations and numerical solution schemes for FOCPs in 

spherical and cylindrical coordinates. Three cases of problems are discussed in detail, 

which are 1) a sphere with axial symmetry, 2) a sphere with complete symmetry and 3) a 

hollow cylinder with axial symmetry. The FDs are defined in the Caputo sense and the 

separation of variable method is used to decouple the equations. The eigenfunction 

approach is used to eliminate the space parameters and it is indicated by the combination of 

state and control functions. For numerical solutions, the FD differential equations are 

converted into Volterra-type integral equations and the time domain is discretized into 

several segments. The formulation derived here is used to solve for various derivative 

orders and the calculation converges toward the analytical solution for integer order 

problems as the order approaches I. 

-
2.2. FORMULATION OF A FRACTIONAL OPTIMAL CONTROL PROBLEM 

A FOCP is defined in terms of the left and the right Caputo fractional derivatives 

(CFDs) (Tangpong and Agrawal, 2009; Hasan et al. , 201 la,b) that are given as the 

following: 

The left Caputo fractional derivative (LCFD), 

cva J(t) = - 1 -f\t - rr-a-lc ~r J(r)dr 
a t r(n-a) a dr 

(2.l) 

and the right Caputo fractional derivative (RCFD), 
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(2.2) 

where f (t) is a time dependent function and a is the order of the derivative in the range 

n - 1 < a < n . When a is an integer, the left (forward) and the right (backward) 

derivatives are replaced with D and -D, respectively, where D is the differential operator. 

Note that in the literature, the CFD generally means the LCFD. 

Using the above definitions, the FOCP under consideration can be defined as follows. 

Find the optimal control f (t) that minimizes the performance index 

J(f) = J
0

1 
F(w,f, t)dt (2.3) 

subject to the dynamic constraints 

~Dfw = G(w,f, t) (2.4) 

and the initial conditions 

w(O) = w0, (2 .5) 

where w(t) and f (t) are the state and control variables, respectively, F and G are two 

arbitrary functions , and w0 represents the initial condition of the state variable. Note that 

equation (2.3) may also include additional terms containing state variable at the end points. 

The order of the derivative a is considered to be in between O and 1, and when a = 1 , the 

above problem reduces to a standard optimal control problem. Here the limits of the 

integration are taken as O and 1 considering a normalized case. An end point term can also 

be included in the performance index and any integration limits can be considered with any 

order of the derivative. The conclit ions considered here are for simplicity only. 
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To obtain the necessary equations, we combine equations (2.3) and (2.4) using a 

Lagrange multiplier technique, and then take the variations of resulting equation and apply 

integration by parts to modify the equation so that it does not contain variations of a 

derivative term. After imposing necessary terminal conditions and setting the coefficients 

of oil, ow, and of to zero, the following equations are obtained: 

iiDfw = G(w,f, t) (2.6) 

(2 .7) 

oF + (°G/il = Q 
of of ' 

(2.8) 

w(O) = w0 and A(l) = 0 (2 .9) 

where il is the Lagrange multiplier also known as co-state or adjoint variable. The details of 

the derivation of equations (2.6)-(2.9) are given in (Agrawal, 2004a). 

Equations (2.6)-(2.8) represent the Euler-Lagrange equations for the FOCP. These 

equations give the necessary conditions for the optimality of the FOCP considered here. 

They are very similar to the Euler-Lagrange Equations for classical optimal control 

problems, except that the resulting differential equations contain the left and the right FDs. 

Observe that equation (2.6) contains the LCFD whereas equation (2.7) contains the RCFD. 

This clearly indicates that the solution of such optimal control problems requires 

knowledge of not only forward derivatives but also of backward derivatives to account for 

all end conditions. In classical optimal control theories, such issue is either not discussed 

or not clearly stated largeiy bec~-use the backward derivative of order 1 is the negative of 

the forward derivative of order I. It can be demonstrated that in the limit of a ~ 1, 
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equations (2.6}- (2 .8) reduce to those obtained using the standard methods for optimal 

control problems. 

The following section presents a formulation for FOC of a distributed system in 

spherical and cylindrical co-ordinates. 

2.3. FORMULATIONS OF FOC OF SPHERICAL AND CYLINDRICAL 

STRUCTURES 

This section presents the formulations of FOC of two spherical structures and two 

cylindrical structures. 

2.3.1. Spherical structures 

For spherical structures, the FOCP in consideration is as follows : Find the control 

f(r, e, <p, t) that minimizes the cost functional 

(2.10) 

subjected to the system dynamic constraints 

aaw 2 
ata = pv w(r, e, <p, t) + f(r, e, <p, t) , (2.11) 

where 

(2.12) 

is the Laplacian in spherical coordinate. The azimuth angle <p is in the range of [O, 2rr], 

and the polar angle e is in the range of [O, rr] . Two cases of spherical structures: axial 

symmetry and complete symmetry-are discussed next. 
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2.3.1.1. Sphere with axial symmetry 

For a sphere with axial symmetry, there is no variation in the azimuth angle <p , and 

equations (2.10) and (2.12) reduce to 

(2 .13) 

(2.14) 

The initial condition is 

w(r, 8, O) = w0 (r, 8) (2.15) 

and the boundary conditions are 

w(R, 8, t) = w(O, 8, t) = 0, t > 0. (2.16) 

where w(r, 8, t) and f (r, 8, t) are the state and control functions that depend on radius r , 

angle(} and time t. ~:: is the left partial Caputo derivative of w(r, 8, t) with order a with 

respect to time t. Here we consider O < a < 1. Q' and R' are two arbitrary functions that 

may depend on time. R is the radius of the sphere. For convenience, the upper limit of time 

t is taken as 1. 

The eigenfunction approach is used here to decouple the equations. The state and the 

control functions can be expressed as 

(2.17) 

(2 .18) 
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where J n+!. ( Uj i) is the ( n + D - th order Bessel function of the first kind and Uj are the 
2 

roots of this Bessel function. Pn (X) is the Legendre polynomial of the first kind, and 

X = cos8 . The total numbers of the eigenfunctions, k and m, should both go to infinity; 

however, for practical applications, k and m are taken as finite values through convergence 

studies. qnj(t) and Pnj(t) are the state and control eigencoordinates. By substituting 

equations (2.17) and (2.18) into equation (2.13), we obtain 

(2.19) 

Substituting equations (2 .17) and (2.18) into equation (2.11 ), we get 

(2.20) 

and from equations (2.6)-(2.9), (2.19) and (2.20), we obtain 

(2.21) 

By substituting equation (2.17) into equation (2.15), and then multiplying the equation by 

3 

6] n+!.(µj i) on both sides and integrating it from Oto R, we find the initial condition of 
2 

the eigencoordinate, 

2n+l f 1 J.R ! ( r) qn/0) = R2/2 (u ·) -1 0 rzfn+!. ur; Wo(r,8)Pn(X)drdX. 
n+! J 2 

2 

(2.22) 

.... 
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Equations (2.20) and (2.21) have m + 1 sets of decoupled equations that can be solved 

separately. A numerical scheme that can be used to solve equations (2.20) and (2 .21) is 

given in Section 2.5. 

For a= 1, equations (2.20) and (2 .21) reduce to 

(2.24) 

Equations (2.23) and (2.24) represent a set of linear differential equations and the general 

solutions of these equations are given in (Agrawal , 2008b). 

2.3.1.2. Sphere with complete symmetry 

For a sphere with complete symmetry, there is also no variation in the polar angle 8, 

and equations (2.10) and (2.12) further reduce to 

(2 .25) 

(2.26) 

The initial condition is 

w(r, 0) = w0 (r), (2.27) 

and the boundary condition is 

w(R, t) = 0, t > 0. (2.28) 
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The eigenfunction method is used to decouple the equations, and state function and the 

control function can be written as 

w(r, t) = r;l qj(t) h_(uj ;)lvr ' 
2 

(2.29) 

f(r, t) = r; 1 Pj(t)h_(uj ;)/vr , 
, 2 

(2 .30) 

where]!. ( Uj ;) is the ~ - th order Bessel function of the first kind and Uj are the roots of 
2 

this Bessel function. The parameter m represents the number of eigenfunctions, and for 

practical reasons, m is taken as a finite value that is determined through convergence 

studies. qj(t) and pj(t) are the state and control eigencoordinates. By substituting 

equations (2.26) and (2 .27) into (2.25), we obtain the cost function 

(2 .31) 

Next, by substituting equations (2.29) and (2.30) into equation (2.11) and equating the 

coefficients of J !. ( uj ;) / vr, we obtain 
2 

(2 .32) 

From equations (2.6)-(2.9), (2.31) and (2.32), the following equation is obtained, 

(2 .33) 

We then obtain the initial condition of the eigencoordinate by substituting equation (2.29) 

into equation. (2.27), 

(2.34) 

35 



Equations (2.32) and (2.33) can be solved by the numerical algorithm presented in Section 

4. 

In the case of a = 1, equations (2.32) and (2.33) reduce to a set of linear differential 

equations for an integer optimal control problem, and the closed form solution can be found 

in (Agrawal, 2008b). 

2.3.2. Cylindrical structures 

For cylindrical structures, the FOCP in consideration is as follows: Find the control 

f (r, 0, z, t) that minimizes the cost functional 

(2.35) 

subject to the system dynamic constraints 

aaw = p (azw(r,z,8,t) + !. aw(r,z,8,t) + 1 a
2
w(r,z,8,t) + a

2
w~::·8,t)) + f (r, z, (}, t). (2.36) 

ata ar2 r ar r 2 ae 2 

For an axial symmetric case, there are no variations in 0, and therefore, Eqs. (2.35) and 

(2.36) become 

1 r1 rR rL . 2 ( ) • 2 J(f) = 2 Jo Jo Jo [Q w r, z, t +Rf (r, z, t)]rdrdzdt , (2.37) 

aaw = P(a 2 w(r,z,t) + !. aw(r,z,t) + a2
w(r,z,t)) + f( t) 

ata ar2 r ar az2 r, Z, ' (2.38) 

where aawa is the partial Caputo derivative of order a and O < a < 1. Q'and R' are the two 
at 

arbitrary functions that may depend on time. R and Lare respectively the cylinder' s radius 

and length. For convenience, the upper limit of time t is taken as 1. The initial condition 

is represented by 

w(r, z, 0) = "".o(r, z). (2.39) 

Two cases of cylindrical structures: solid and hollow-are discussed next. 



2.3.2.1. Solid cylinder with axial symmetry 

The boundary conditions for FOC of a solid cylinder are considered as 

w(O, z, t) = w(R, z, t) = w(r, 0, t) = w(r, l, t) = 0, t > 0. 

(2.40) 

The eigenfunction approach is used here to d~couple the equations and the state and the 

control functions are found to be 

(2.41) 

(2.42) 

where lo ( uj i) and sin(irr~) are the eigenfunctions in the radial direction and the axial 

direction respectively. The total numbers of eigenfunctions, n and m , are determined by 

convergence studies. lo is the zero-order Bessel function of the first kind and ui are the 

roots of this Bessel function. qij(t) and Pii(t) are the state and control eigencoordinates. 

Substituting equations (2.41) and (2.42) into (2.35), we obtain the cost function 

(2.43) 

By substituting equations (2.41) and (2.42) into equation (2.36) and equating the 

coefficients oflo ( uj i) sin(in~) , we obtain 

((u .)2 (irr)2) ~Df qii(t) = -{J } + 7: qij(t) + Pii(t) . (2.44) 

From equations (2.6)-(2.9), (2.43) and (2.44), we further obtain 

Q' ((u .)2 (irr)2) ~_Dfpii(t) = -"ii~ii(t) - /J } + 7: Pii· (2.45) 
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Substituting Eq. (2.41) into equation (2.39), and then multiplying the equation by 

r/0 ( u1 ~) sin(irrf) on both sides and integrate it, we find the initial condition of the 

eigencoordinates 

where / 1 is the first-order Bessel function of the first kind. 

2.3.2.2. Hollow cylinder with axial symmetry 

The boundary conditions of a hollow cylinder is considered as 

w(a,z,t) = w(R,z,t) = 0, t > 0. 

(2.46) 

(2.47) 

Using the eigenfunction approach, the state function and the control function are found to 

be 

(2.48) 

(2.49) 

where 

(2.50) 

are the eigenfunctions in the radial direction, and sin(irrz/L) are the eigenfunctions in the 

axial direction. / 0 and Y0 are the zero-order Bessel function of the first kind and the second 

kind, respectively, and AJ are the roots of the characteristic equation for the eigenfunctions 

in the radial direction. Substituting Eqs. (2.48) and (2.49) into (2. l 0), we obtain the cost 

function 

(2.51) 
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By substituting Eqs. (2.48) and (2.49) into Eq. (2.11) and equating the coefficients 

of uo(ilir )sin(irrz/L) , we obtain 

c ((A ·)2 (irr)2) oDfqii(t) = -{3 ~ + ""'i: qii(t) + Pii(t). (2 .52) 

From Eqs. (2.6)-(2.9), (2.51) and (2.52), we obtain 

(2.53) 

Substituting Eq. (2.48) into Eq. (2.39), and then multiplying the equation by ru0 (iljr) on 

both sides and integrate from a to R, we find the initial condition of the eigencoordinates 

(2.54) 

A numerical scheme that can be used to solve Eqs. (2.52) and (2 .53) is presented in the 

following section. 

2.4. NUMERICAL ALGORITHM 

This section briefly describes the numerical algorithm for the FOCPs, similar to that 

presented in (Tangpong and Agrawal 2009; Agrawal, 2006a). For simplicity in the 

discussions to follow, we consider the following generic form to represent the FOCPs: 

~Dfw =-Aw+ Bf, (2 .55) 

1Df f = -Cw - Df, (2.56) 

w(O) = w0 , (2.57) 

and 

f(l) = 0 . . , (2.58) 

Equations (2.55) and (2.56) can be expressed in the Volterra integral form as follows. 

39 



w(t) = w0 + r(~) J;(t- r)Ca-l) (Bf(r) - Aw(r))dr, 

f(t) = - I'(~)J/Cr- t)Ca-l) (Df(r) + Cw(r))dr. 

(2.59) 

(2.60) 

To develop the numerical algorithm, we divide the time domain [O, I] into N equal 

intervals, and number the nodes from O to N: Here N is a positive integer. The time at node 

j is given as tj = jh, j = 0, ... , N and h = 1/ N. Furthermore, approximating w(t) and 

f (t) between two successive temporal nodes linearly. Using the above definitions and 

approximations, equation (2.55) reduces to (Tangpong and Agrawal, 2009) 

where the coefficients aij are defined as 

i = 1, .. . , N (2.61) 

if j = 0 

if 1 $: j <5: i - 1 
if j = i 

(2.62) 

Here d1 = ha /f(a + 2), p = a + 1, and k = i - j. Following the same approach, the 

value off (t) at node i becomes 

where 
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if j = i 
if i + 1 $: j $: N - 1 

if j = N 

(2.63) 

(2.64) 



Here M = N - i and k = j - i. Equations (2.61) and (2.63) represent a set of 2N linear 

algebraic equations in terms of 2N unknowns, which can be solved using a standard linear 

algebraic equations solver. 

2.5. NUMERICAL RESULTS AND DISCUSSIONS 

This section presents simulation resuJts of FOC of the four structures discussed in 

Section 2.4. For simplicity, we considered Q' = R' = R = fJ = 1 for all four cases, and 

furthermore, a = 0.5 and L = 1 for the hollow cylinder problem. For each case, we 

discretized the spatial dimensions and the time domain into several segments and took 

different values of a. 

2.5.1. Sphere with axial symmetry 

The initial condition for the sphere with axial symmetry is taken as 

w0 (r, 8) = r(l - ~)cose. (2 .65) 

We first conducted convergence study on the number of eigenfunctions in both the radial 

direction (m) and the angular direction (n). Different combinations of m and n values were 

taken to cal1;ulate the responses of the state and control variables at different locations 

across the time span of Oto 1, and the maximum relative error from each iteration was 

recorded. The maximum relative error reached approximately 1 % when = n = 4 , and it 

continued decreasing as m and n took larger values. For computational efficiency, the 

simulation results presented in figures 2.1-2.8 were based on m = n = 4. 

Figures 2.1 and 2.2 demonstrate the state and control variables as a function of time, and 

they both converged as the time s~eps were reduced . The maximum relative error of the 

state variable reached 0.2 % when the number of time steps N = 100 with an increase of 
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10 time steps for each iteration. The results shown in figures 2.1 and 2.2 are up to N = 50 

for better presentation since the differences in results with larger values of N are not 

discernible. At N = 50, the maximum relative error was around 1 %. Figures 2.3 and 2.4 

show changes of the state and control variables as functions of time for various orders of 

derivative (a) and also compare the numeri~al result with the analytical result of integer 

order optimal control problem when a = 1. In the limit of a = 1, the numerical solution 

recovers the analytical solution of the integer order optimal control problem. This further 

verifies the accuracy of the numerical algorithm developed for the FOCPs. 

Figures 2.5 and 2.6 are the 3D plots of the state and control variables in the radial 

direction, and figures 2. 7 and 2.8 are the 3D plots of both variables in the polar angular 

direction. The state variables in figures 2.5 and 2.7 initially have different values across 

the radial or angular dimension due to the initial conditions; as the time progresses, the 

0.13----..-----..-----..----.......------. 
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-N=20 
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Z' --·N= 50 ~ 
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0.2 0.4 0.6 0.8 1 
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Figure 2.1. Sphere with axial symmetry: state variable w(r, 8, t) for different number of 
time segments; a=0.90, r=0.50 and X = 0. 50. 
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Figure 2.2. Sphere with axial symmetry: control variable f(r, 8, t) for different number of 
time segments; a=0.90, r=0.50 and X = 0. 50. 
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Figure 2.3 . Sphere with axial symmetry: state variable w(r, 8, t) for different values of a ; 
N = 100, r = 0. 5 and X = 0. 50. 
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Figure 2.4. Sphere with axial symmetry: control variable f (r, 8, t) for different values of 
a; N = 100, r = 0. 50 and X = 0. 50. 

state variable reaches the same value across the radius or angular direction. The phenomena 

shown in figures 2.5 and 2. 7 are typical of a diffusion process. The control variable 

changes in the same fashion in figures 2.6 and 2.8. 

2.5.2. Sphere with complete symmetry 

For the sphere with complete symmetry, the initial condition considered is 

w0 (r) = sin(2rr~). (2.66) 

For this case, three eigenfunctions were found to be sufficient for the results to converge 

with a maximum relative error of approximately 1 %, and all results presented in figures 

2.9-2.14 were based on m = 3. Similar studies as those for the previous case were 

conducted. Figures 2.9 and 2.10 illustrate the state variable and control variable, 

respectively, for different time segments. Both variables converge as more time segments 

are taken. 
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Figure 2.5. Sphere with axial symmetry: surface plot of the state variable w at 8 = 
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Figure 2.7. Sphere with axial symmetry: surface plot of the state variable w at r = 0. 50 
for a = 0. 90 and N = 50. 
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Figure 2.10. Sphere with complete symmetry: control variable f(r = 0. 5, t) different 
number of time segments for a= 0. 90. 
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Figures 2.11 and 2.12 show the changes of the state and control variables for various 

orders of derivative (a) and also compare the numerical results with the analytical ones 

when a = 1. The numerical solutions recover the analytical solutions of the integer order 

optimal control problem as a approaches 1. Figures 2.13 and 2.14 are the 3D responses of 

the state and the control variables in the radial direction. Both variables initially have 

different values across the radius, and they come down to the same value as time 

progresses. Such phenomenon is representative of a diffusion process. 

2.5.3. Solid cylinder with axial symmetry 

For FOC of a solid cylinder with axial symmetry, the initial condition is taken as 

w0 (r,z) = r(r-R) [1- cos (zrrD], (2.67) 

The numbers of eigenfunctions in the radial and axial directions were determined through 
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Figure 2.11. Sphere with complete symmetry: state variable w(r = 0. 5, t) for different 
values of a; N = 200. 

48 



18 x 10 
-3 

_ Analytical 
Result 

13 --·a= 1.00 

- a=0.95 

- ••·· a= 0.90 -,.; 
8 

- a=0.80 -""" 
3 

-1~~~~~~~~~~~~~~~~~~~~~ 

0 0.2 0.4 0.6 0.8 1 
Time (t) 

Figure 2.12. Sphere with complete symmetry: control variable f(r = 0. 5, t) for different 
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Figure 2.14. Sphere with complete symmetry: control variable f(r, t) for a = 
0. 90 and N = 100. 

convergence studies. It was found that the results converged with m = n = 5, where m is 

the number of eigenfunctions in the radial direction and n is the number of eigenfunctions 

in the axial direction. All simulation results presented in figures 2.15-2.22 were generated 

based on these values of m and n. 

Figures 2.15 and 2.16 demonstrate the state and control variables as functions of time, 

and they both converge as the time steps are reduced. The convergence studies of the 

number of eigenfunctions and time steps need to be conducted before other parameter 

studies, and the convergence criterion varies with the specific problem. Figures 2.17 and 

2.18 show changes of the state and control variables as functions of time for various orders 

of a and also compare the numericaJ, results with the analytical results when a = 1. In the 
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Figure 2.16. Solid cylinder with.axial symmetry: convergence of the control variable 
f(r = 0. 5,z = 0. 25, t) for different number of time segments for a= 0. 80. · 
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limit of a = 1, the numerical solutions recover the analytical solutions of the integer order 

optimal control problem. The agreement of analytical results with the numerical results 

when a = 1 validates the numerical algorithm. Figures 2.19 and 2.20 are the surface plots 

of the state and control variables in the radial direction. In both figures, the state and 

control variables initially have different values across the radi~l dimension due to the initial 

conditions; as the time progresses, each variable reaches the same value across the radius. 

The phenomenon shown in figure 2.19 is typical of a diffusion process. Figures 2.21 and 

2.22 are the three dimensional responses of the solid cylinder in longitudinal direction. 

Similar to the phenomena shown in figures 2.19 and 2.20, the state and control variables 

each approaches the same value across the length as the time progresses, representing a 

diffusion process. The dynamics constraint equation (2.38) becomes a heat diffusion 

equation when a= 1; when a= 0.9, the dynamics governed by equation (2.38) is close to 

a diffusion process, but not exactly the same as the integer order derivative case. For such 

dynamic problems, the fractional order differential equation can give more accurate results 

than the integer order differential equation. 

2.5.4. Hollow cylinder with axial symmetry 

For the case of a hollow cylinder with axial symmetry, the initial condition 

considered is 

w0 (r,z) = (r - a)(r - R)sin(2rrf). (2.68) 

Similar to the previous cases, only a few eigenfunctions in the radial and axial directions 

are sufficient to model the system -~nd the results presented in figures 2.23-2.30 were all 
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based on the number of eigenfunctions m = 3 and n = 5. We also discretized the space 

and time domain into several sub domains and took different values of a for the simulation. 
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Figure 2.17. Solid cylinder with axial symmetry: state variable w(r = 0. 5, z = 0. is, t) 
for different values of a with N = 50. 

9
xt0 

-3 

_ Analytical 

6 Result 

--· a.=1.00 
-. - u=0.90 -N 

•·•·· a=0.80 ..... 
e;:::' 

- u=0.75 

2 

-1,..__ __ __.. ___ ~ ___ _.__ ___ .__ __ __. 

0 0.2 0.4 0.6 0.8 1 
Time (t) 

Figure 2.18: Solid cylinder with axial symmetry: control variable f (r = 0. 5, z = 0. 25, t) 
for different values of a with N = 50. 
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Figure 2.19. Solid cylinder with axial symmetry: state variable w (r, z = 0. 25, t) for 
N = 50 and a = 0. 90. 
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Figure 2.22. Solid cylinder with axial symmetry: control variable f (r = 0. 5, z, t) for 
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Figures 2.23 and 2.24 demonstrate the state and control variables as functions of time 

and they both converge as finer time step is taken. Figures 2.25 and 2.26 show the changes 

of state and control variables with respect to time for various orders of derivative (a) and 

compare the numerical results with the analytical results when the order a = 1. The 

numerical results recover the analytical results for integer order optimal control problem 

when a= 1. 

Figures 2.27 and 2.28 are the surface plots of the state and control variables in the 

radial direction. In both figures, the state and control variables initially have different 

values across the radial dimension due to the initial conditions; as the time progresses, each 

v .. riable reaches the same value across the radius. The phenomenon shown in figure 2.27 is 

typical of a diffusion process. Figures 2.29 and 2.30 are the three dimensional responses of 

the hollow cylinder in longitudinal direction. Similar to the phenomena shown in figures 
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Figure 2.23. Hollow cylinder with axial symmetry: convergence of the state variable 
w(r = 0. 75, z = 0. 25, t) for different number of time segments for a= 0. 90. 
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2.27 and 2.28, the state and control variables each approaches the same value acrnss the 

length as the time progresses, representing a diffusion process.The results presented in all 

figures are representative, and similar trends are also observed for other values of 

m,n,N and a. 

2.6. SUMMARY 

A general formulation and a numerical scheme for FOC of distributed systems in 

spherical and cylindrical coordinate system are presented. Four cases of problems are 

discussed in detail, including a sphere with axial symmetry, a sphere with complete 

symmetry, a hollow cylinder with axial symmetry and a solid cylinder with · axial 

symmetry.. Partial fractional time derivatives are defined in the Caputo sense and the 

performance index of the FOCP is defined as a function of both state and control variables. 

The separation of variable method and the eigenfunction approach are used to decouple the 
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equations and define the problem in terms of the state and control variables . For numerical 

calculations, the fractional differential equations are expressed in Volterra integral form. 

Several numerical simulations are discussed for each case including convergence studies of 

the state and control variables with respect to the number of segments in the time domain, 

and the convergence of the number o~ eigenfunctions in each direction. Only a few 

eigenfunctions in each direction are sufficient for the calculations to converge. The 

numerical results of the state and the control variables recover the analytical results of an 

integer order optimal control problem as the order of derivative (a) approaches 1. Three 

dimensional plots of the state and control variables are also generated for each case that 

clearly shows a diffusion process in the structure. When the order of derivative a = 1, the 

governing dynamics equation represents a heat diffusion process and the analytical solution 

for such an integer order optimal control problem exists. In phenomena that are close to a 

diffusion process but not quite the same, a FOC model will be useful to model the system 

more accurately. The formulation and numerical algorithm presented in this paper will have 

applications to such systems. 

61 



CHAPTER 3. A NUMERICAL SCHEME FOR A CLASS OF 

PARAMETRIC PROBLEM OF FRACTIONAL VARIATIONAL 

CALCULUS 

Fractional derivatives (FDs) or derivatives of arbitrary order have been used in many 

applications, and it is envisioned that 'in future they will appear in many functional 

minimization problems of practical interest (Agrawal, et al. , 2011 ). The materials presented 

in this chapter have been accepted for publication in (Agrawal, et al. , 2011 ). Since FDs 

have such property as being non-local, it can be extremely challenging to find analytical 

solutions for fractional parametric optimization problems, and in many cases, analytical 

solutions may not exist. Therefore, it is of great importance to develop numerical methods 

for such problems. This chapter presents a numerical scheme for a linear functional 

minimization problem that involves FD terms. The FD is defined in terms of the RL 

definition; however, the scheme will also apply to Caputo derivatives, as well as other 

definitions of FDs. In this scheme, the spatial domain is discretized into several 

subdomains and 2-node one-dimensional linear elements are adopted Jo approximate the 

solution and its FD at point within the domain . The fractional optimization problem is 

converted to an eigenvalue problem, the solution of which leads to fractional orthogonal 

functions . Convergence study of the number of elements and error analysis of the results 

ensure that the algorithm yields stable results. Various fractional orders of derivative are 

considered and as the order approaches the integer value of 1, the solution recovers the 

analytical _result for the corr.esponding integer order problem. 
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3.1. INTRODUCTION 

A Fractional Calculus of Variational (FCV) problem is a problem in which either the 

objective functional or the constraints or both contain at least one FD term (Agrawal, 

2002). Significant amount of work has been done in the field of Integer Order Variational 

Calculus (IOVC). However, as demonstr,ated recently, many of the results ofIOVC can be 

extended to FCV field. Riewe (1996, 1997) was the pioneer of the FCV who developed the 

nonconservative Lagrangian, Hamiltonian, and other concepts of classical mechanics by 

using FD and formulated a version of the Euler-Lagrange equation. Agrawal (2002, 2006b) 

and Klimek (2001, 2002) were among the earliest researchers who developed formulations 

and numerical schemes for various types of fractional variational problems (FVPs) in terms 

of RL and Caputo fractional derivatives (CFD). Other researchers further extended these 

work to other variational problems (Agrawal, 2007, 2010a; Baleanu and Avkar, 2004; 

Muslih and Baleanu, 2005; Herzallah and Baleanu, 2009; Almeida and Torres, 2009, 

2011). 

Integer order parametric problems can be solved analytically by using Euler-Lagrange 

differential equation. For fractional order parametric problems, however, it is extremely 

difficult to solve by using fractional Euler-Lagrange equation since the equation contains 

both left and right derivatives. Almeida and Torres (2009, 2011) provided necessary and 

sufficiency conditions of optimality for functionals containing fractional integrals and FD 

and for the fractional isoperimetric problem in the sense of RL and Caputo derivatives. 

Approximation of FDs is more complex than integer derivatives because fractional order 

derivatives are non-local (Sousa, ·1010). Many fractional differential equations do not have 

exact analytical solution and therefore numerical or approximation techniques are 
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necessary to solve such equations (Odibat and Momani , 2008). Some approximate 

solutions of fractional differential equations can be found in (Momani and Odibat, 2007; 

Momani et al. , 2008; Kumar and Agrawal , 2006; Diethelm et al. , 2002; Diethelm et al. 

2005). 

In this chapter, a numerical schem~ is developed to solve a fractional optimization 

problem using the finite element concept. The FD is taken in the RL sense. Since solutions 

of fractional differential equations in terms of RL require fractional initial condition 

(Podlubny, 1999), the initial conditions are taken as zero here as a simpler demonstration of 

the method. Therefore, the numerical scheme presented in this paper also applies to other 

definitions of FD such as Caputo derivatives. Various fractional orders of derivative are 

considered and analysis of the convergence error is performed. Analytical solutions for a 

large class of problems which arise in FCV have been presented in (Klimek, 2009). 

However, we are not aware of an analytical solution of the problem considered here. 

It should be stated that though the algorithm has been developed for a specific 

problem, it can also be applied to an entire class of problems where the functions in cost 

functionals and integral constraints are defined as quadratic functions in terms of solutions 

and their FDs. Furthermore, the problem has been defined in terms of RLFDs, but the 

same technique could be applied to problems defined using other derivatives. 

3.2. DEFINITIONS OF FRACTIONAL DERIVATIVE 

The left Riemann-Liouville fractional derivative (RLFD) of order a, denoted as 

0Df f(t), is given by equation (1.19) and the left CFD of order a, denoted as ~Df f(t)is 

given by equation (1 .20). The refation between RL and Caputo FDs is defined as follows 

(Podlubny, 1999; Kilbas, et. al, 2006) . 
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~Df J(t) = Daf(t) - 1:n:1 t Ck)(a) (t - a)k-a 
a t k-0 I'(k-a+l) 

(3 .1) 

It is obvious from equation (3.1) that when f(a) = f'(a) = ··· = t<n- 1)(a) = 0 , 

~Df f(t) = aDf f(t). Therefore, with zero initial conditions, RL and Caputo FDs become 

the same. The numerical scheme developed in this paper applies to problems that are in 

terms of both RL and Caputo FDs. 

The problem discussed in the following section is defined in terms of the left RLFD 

only, however, for zero initial condition, the results of the problems defined in terms of the 

RL and CFDs would be the same. Furthermore, a problem defined in terms of Caputo 

derivatives could be cast into a problem in terms of RLFD if necessary. 

3.3. NUMERICAL METHOD FOR A FRACTIONAL PARAMETRIC 

PROBLEM 

Consider the following problem: among all functions y(t) which satisfy the integral 

constraint 

(3.2) 

and the fixed terminal (boundary) conditions 

y(O) = y(l) = 0, (3.3) 

find the one that minimizes the cost functional 

(3.4) 

where ( 0Dff)y represents the left RLFD of order a, 0 < a < 1. For simplicity, we have 

taken the limit of integration from O to 1 and the order of the derivative a between O and 1. 

In a generalized case, the limiJ"of integration could be a to b, a < b, and a could be a 

positive number. When a= 1, equation (3.4) becomes 
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(3.5) 

For the integer order optimization problem defined by equations (3.2), (3.3) and (3.5) an 

analytical solution exists, and it is given in the Section 3.4.2. A fractional power series 

solution was discussed in (Agrawal, 2010b) for the problem defined by equations (3 .2-3.4). 

Here we present a numerical scheme ,using the finite element concept to solve this 

fractional parametric problem. 

We divide the t domain [O, 1] into N equal elements and number the nodes from Oto 

N such that their coordinates are Yi = i/ N, i = 0, 1, ... , N. Due to the terminal 

conditions specified in equation (3 .3), y0 = YN = 0. Using the one dimensional two-node 

finite element and considering linear interpolation between the nodes, function y(t) can 

then be expressed as 

where 

and 

0, t < ti-1 

c/Ji(t) = 
t-ti-1 

ti-ti-1
1 

t i+l-t --, 
t1+1-ti 

0, 

y = [Yi,Y2, .. ,,YN-1 F. 

ti< t < ti+l 

t > ti+l 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

Note that the approximation of y(t) by equation (3.6) does not contain the end nodes due 

to zero terminal conditions. Fun~!ions c/Ji(t) are also known as the hat functions . Using the 

above approximation of y(t) , the FD of the function can be expressed as 
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(3.10) 

By substituting equation (3 .10) into equation (3 .4 ), the cost functional can be written as 

(3.11) 

where matrix A is 

(3 .12) 

Similarly, by substituting equation (3.6) into equation (3.2), the integral constraint can be 

expressed as 

K = yTBY = 2, (3.13) 

where matrix B is formed such that 

B = Jo1<t>(t)<t>T(t) dt. (3.14) 

The Lagrangian can then be expressed as 

F = yT AY -A(YTBY- 2) . (3.15) 

By taking the derivative of F with respect to Y and setting it to 0, the following equation is 

obtain, 

AY = ABY, (3.16) 

which is an eigenvalue problem. Note that matrices A and B formed from equations (3 .12) 

and (3 .14) are positive definite matrices, and therefore, the eigenvalues Ai, i = 1,2, .. . N -

1, of equation (3 .16) are positive real numbers. We arrange Ai such that A1 < A2 < · · · < 

AN-l· The eigenvectors Yi, i = 1, 2, ... , N - 1 of this problem are normalized such that 

1/B~ = oij, 

~TA~ = ~J)ij• 

(3.17) 

(3.18) 

where oij is the Kronecker delta function . Thus, an arbitrary vector Y can be expressed as 
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Y _ ~N-1 Y, 
- L...i=l ai i· (3 .19) 

Substituting equation (3 .19) into the constraint function in equation (3 .13), the integral 

constraint equation becomes 

(3.20) 

or 

2 - 2 ~N-1 2 
a1 - - L...i=2 ai · (3 .21) 

Substituting equat ion (3 .19) into equation (3 .11) and considering equation (3 .21 ), the cost 

functional becomes 

(3.22) 

It is clear in equation (3 .22) that in order to minimize the value of /(y) , ai must be zero for 

i = 2, 3, ... , N - 1. Hence, 

(3.23) 

and 

K(y) = af = 2 or a1 = ,/2. (3.24) 

It should be noted that Yi, i = 1, 2, ... , N - 1, are orthonormal vectors. In the case of 

analytical solutions, they would turn out to be orthonormal functions . Such functions and 

vectors have not been studied for fractional operators, and they may lead to major 

applications. 

3.4. RESULTS AND DISCUSSION 

3.4.1. Integer order problem 

An integer order optimization parametric problem defined by equations (3 .2), (3.3) 

and (3.5) is solved by the numerical scheme presented in the previous section first. Since 
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the analytical solution exists for such a problem (Section 3.4.2), the numerical solution of 

this problem serves as a validation of the numerical algorithm. 

Convergence study of the number of segments N is conducted. Figure 3 .1 shows the 

results of y(t) for different values of N. The results stabilize as N increases and recover 

the analytical solution at large number ~f N or as the step size reduces. To determine the 

rate of convergence, the following error calculations are performed: Let 

(3.25) 

be the error at a given nodal point, where YA is the analytical solution, Y(h) represents the 

numerical solution with step size h, C is a constant and re is the rate of convergence that is 

to be determined. As the step size is halved, the error for the new step size is 

(h)rc 
eh/2 = YA - Y(h/2) = C 2 · 

The value of r can be determined from the following ratio 

R* = _:_!!_ = zr,. 
eh/2 

(3 .26) 

(3.27) 

Table 3.1 lists the values of the relative errors at various nodal points and the ratios of the 

relative errors as defined in equation (3.27) are presented in Table 3.2. The results indicate 

that the rate of convergence re is around 2. 

When analytical solutions are not available, the rate of convergence can also be 

determined from equations (3.25) and (3 .26) . Subtracting equation (3.26) from equation 

(3.25), 

As the step size gets halved, 

!).eh/2 = eh/2 - eh/4 = Y(h/4) - Y(h/2) = C Gf' ( 1 - 2!J 
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The rate of convergence c can then be determined from the ratio 

(3 .30) 

Table 3.3 presents the error calculation of the same integer order parametric optimization 

problem using equation (3.28). Note that the results from taking two step sizes are needed 

to calculate the errors in each column. The ratios of these relative errors are presented in 

Table 3.4, and the values of R** indicate that the rate of convergence re is also close to 2, 

same as the results demonstrated in Tables 3.1 and 3.2. The method outlined by equation 

(3 .28-3.30) can therefore be used to obtain correct estimate of the rate of convergence 

using the numerical solution only. 

3.4.2. Analytical solution 

The analytical solution of this integer order problem is presented here which serves 

the validation of the numerical solution. For this problem, the Lagrangian is 

2 

1 

0.2 

..-.&-N= 4 
-B- N= 8 
-+-N=16 
--N=32 

0.4 
t 

0.6 0.8 

Figure 3 .1. Function y( t) at different values of N for the integer order problem. 
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Table 3.1. Relative error calculations of the integer order problem from the analytical 
solution and the numerical solution. 

t eh= YA - Y(h) 

h = 1/8 h = 1/16 h = 1/32 h = 1/64 
1/8 0.98988E-2 2.4629E-3 0.61498E-3 1.53699E-4 
2/8 l.82906E-2 4.5508E-3 l.13633E-3 2.83999E-4 
3/8 2.38978E-2 5.9459E-3 l.4847E-3 3.71063E-4 
4/8 2.5867E-2 6.4358E-3 1.60702E-3 4.01636E-4 
5/8 2.3898E-2 5.9459E-3 l .4847E-3 3.71063E-4 
6/8 1.82906E-2 4.5508E-3 l.1363E-3 2.83999E-4 
7/8 0.98988E-2 2.4629E-3 0.61498E-3 l .53699E-4 

Table 3.2. Ratios of the relative error of the integer order problem based on the data in 
Table 3.1. 

t 
R* = eh/eh1z 

h = 1/8 h = 1/16 h = 1/32 
1/8 4.0192 4.0048 4.0012 
2/8 4.0192 4.0048 4.0012 
3/8 4.0192 4.0048 4.0012 
4/8 4.0192 4.0048 4.0012 
5/8 4.0192 4.0048 4.0012 
6/8 4.0192 4.0048 4.0012 
7/8 4.0192 4.0048 4.0012 

Table 3.3. Relative error calculations of the integer order problem from the numerical 
solutions only. -

fl.eh = eh - eh/2 
t h = 1/8 h = 1/16 h = 1/32 

1/8 7.4359E-3 l.8479E-3 4.6128E-4 
2/8 1.3740E-2 3.4145E-3 8.5234E-4 
3/8 l .7952E-2 4.4612E-3 l. l l 36E-3 
4/8 l.9431E-2 4.8288E-3 l.2054E-3 
5/8 l.7952E-2 4.4612E-3 l.l 136E-3 

6/8 1.3740E-2 3.4145E-3 8.5234E-4 

7/8 7.4359E-3 l .8479E-3 4.6128E-4 
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Table 3.4. Ratios of the relative error of the integer order problem based on the data in 

Table 3.3. 

t 
R** = !).eh/ !).eh/2 

h = 1/8 h = 1/16 
1/8 4.024 4.006 
2/8 4.024 4.006 
3/8 4.024 4.006 
4/8 4.024 4.006 
5/8 4.024 4.006 
6/8 4.024 4.006 
7/8 4.024 4.006 

F = y2 -Ay2. (3 .31) 

The differential equation is then obtained from applying Lagrange ' s method, 

y + Ay = 0. (3.32) 

After imposing the boundary conditions given by equation (3.3), the solution for equation 

(3.32) is found, 

y(x) = I:=i Bnsin (mrx). (3.33) 

After substituting equation (3.33) into equation (3.2), and due to orthogonality of the 

eigenfunctions, the constraint function is found to be 

K(y) = ~ I:=1 B~ = 2, (3.34) 

and therefore, 

(3 .35) 

Substituting equation (3.35) into equation (3.5), the cost functional becomes 

(3.36) 

In order fo minimize the value o,f,J, the following condition needs to be satisfied: 

Bn = 0, n = 2,3, ... oo. (3.37) 
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Therefore, the solution is 

y(x) = B1sin (rrx}, (3.38) 

where B1 can be determined from the integral constraint function equation (3.2), and it is 

(3.39) 

3.4.3. Fractional order problem 

The algorithm developed in Section 3.3 is applied to the problem defined by 

equation (3.2) to (3.4). Figure 3.2 shows the convergence results of y(t) for different 

values of N when the order of derivative a = 0.8. The results stabilize as N increases. 

To further demonstrate the convergence of the numerical algorithm, Table 3.5 presents the 

values of the cost functional J for problems of different orders of FD and at different step 

2 

-e-N= 4 

1 -e-N= 8 
-+-N=16 
-+-N=32 

0.2 0.4 0.6 0.8 
t 

Figure 3.2. Functio!}·y(t) when a= 0. 8 at different values of N. 
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sizes. As the step size decreases, the value of J also decreases for such an optimi~ation 

problem. 

Figure 3 .3 demonstrates the results for different values of a after performing the 

convergence study for each case. As a approaches the integer value of 1 , the results 

recover the analytical solution of the integer order problem and therefore validat~s the 

numerical algorithm. 

Since the analytical solution for this fractional order problem is not available to our 

best knowledge, the method outlined by equations (3 .28-3.30) is used to calculate the rate 

of convergence for this problem. Table 3.6 presents the error calculation of the problem 

asing , equation (3 .28), and the ratios of these relative errors are presented in Table 3. 7. The 

values of R* show that the rate of convergence re is also around 2 except for a couple of 

nodes close to the ends. 

2.5~---------~-----------------------.-------------..------------, 

2 

-Era,=l.00 

'l -lra,=0.90 

-+-a.=0.80 
-+- a,=0.70 

-+- a.=0.60 

0.2 0.4 0.6 0.8 1 
t 

Figure 3.3 . Function y(t) when N = 32 at different values of a. 



Table 3.5. Convergence of the cost functional]. 

A 0.9 0.8 0.7 0.6 0.5 

4 14.0104 9.6897 6.8775 5.0402 3.8487 
8 13.5788 9.3849 6.6174 4.8061 3.6482 
16 13.4726 9.2798 6.4907 4.6656 3.5159 
32 13.4404 9.2282 6.4103 4.5648 3.4166 
64 13.4281 9.1983 6.3548 4.4880 3.3382 

Table 3.6. Relative error for the fractional order problem (a = 0.9) from the numerical 
solutions only. 

!J.eh = eh - eh12 
t h = 1/8 h = 1/16 h = 1/32 

1/8 8.5274E-3 l .6614E-3 2.8359E-4 
2/8 l.4114E-2 3.5565E-3 9.5 l 13E-4 
3/8 l .8829E-2 4.9023E-3 l.3986E-3 
4/8 2.0358E-2 5.2764E-3 1.4831E-3 
5/8 1.8370E-2 4.5813E-3 l.1756E-3 
6/8 1.3304E-2 2.9767E-3 5.4283E-4 
7/8 8.0109E-3 9.8585E-4 2.2164E-4 

Table 3.7. Ratios of the relative error of the fractional order problem (a= 0.9) based on 
Table 3.6. 

t 
R** = !J.eh/ !J.eh/2 

h = 1/8 h = 1/16 
1/8 5.1327 5.8583 
2/8 3.9687 3.7392 
3/8 3.8409 3.5052 
4/8 3.8583 3.5576 
5/8 4.0099 3.8970 
6/8 4.4693 5.4837 
7/8 8.1258 4.4479 

3.5. SlJl\11\1~\' 

A -numerical scheme f<?r a linear fractional parametric optimization problem is 

developed using the finite element concept. The FD is expressed in terms of the RL 
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definition; however, the scheme also applies to other definitions of FD. The time domain 

[O, 1] is discretized into N equal segments, and the 2-node one-dimensional element and 

linear interpolation are adopted in developing the matrix representations of the cost 

functional and the integral constraint function. After applying the Euler-Lagrange method, 

the problem becomes an eigenvalue pr~blem that has real and positive eigenvalues and 

orthogonal eigenfunctions. Convergence study of the number of elements is conducted to 

ensure stability of the computation. Convergence error is analyzed and the rate of 

convergence is found to be close to 2. The problem is solved for different orders of 

derivative, and as the order approaches the value of 1, the result recovers the analytical 

result of the corresponding integer-order problem. The numerical scheme is easy to 

implement and can be extended to other fractional parametric optimization problems. 
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CHAPTER 4. NUMERICAL SCHEMES FOR FRACTIONAL 

ORDER ISOPERIMETRIC PROBLEM 

This chapter presents numerical schemes to solve a functional minimization problem 

in fractional orders. The integer order version of the problem is to determine the shape of a 

hanging chain in its equilibrium state with two fixed ends and constant length . This 

problem is chosen because its analytical solution exists and therefore, it can serve as a 

validation of the numerical methods developed here for arbitrary orders of derivative when 

an integer order is considered. The FD is defined in terms of the RL definition; however, 

the scheme will also apply to Caputo derivatives, as the initial condition considered here is 

zero. In this scheme, the spatial domain of the equations is discretized into several small 

subdomains and the FD at each nodal point is approximated using the GL approach. 

Different definitions of GL approximations are taken to approximate the FDs of fractional 

orders in between O and 1. Convergence study with respect to different number of segments 

is conducted and problems with different orders of derivatives are solved. Results show 

that as the order of the derivatives approaches an integer order, the solution recovers the 

analytical result. The performances of different GL definitions are compared and analyzed. 

4.1. INTRODUCTION 

The isoperimetric problem 1s one of the most classical optimization problems 

(Sussmann and Willems, 1997). The isoperimetric problem is a problem of constrained 

optimization and it is now part of the calculus of variations (Odzijewicz and Torres, 2010). 

Integer order isoperimetric problems can be solved analytically using Euler-Lagrange 

differential equation. For fracti'onal order isoperimetric problems, however, it is extremely 

difficult to solve using fractional Euler-Lagrange equation since the differential equation 
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contains both left and right derivatives. Almeida and Torres (2009, 2011) provided 

necessary and sufficient conditions of optimality for functionals containing fractional 

integrals and FDs in the sense of RL and Caputo derivatives. They (2011) also proved the 

optimality conditions for various variational functionals in terms of the left and right CFs 

and formulated the isoperimetric proble!Il with an integral constraint in terms of Caputo 

derivatives. Additionally, Almeida and Torres (2011) provided a solution for an 

isoperimetric problem in fractional order for a special kind of function using fractional 

Euler-Lagrange equation. However, the exact solution of isoperimetric problems still 

remains unknown. 

The main aim of this chapter is to find an approximation solution of fractional order 

isoperimetric problem. The FD is taken in the RL sense. Since solutions of fractional 

differential equations in terms of RL require fractional initial conditions (Podlubny, 1999a), 

the initial conditions are taken as zero here as a simpler demonstration of the method. 

Therefore, the numerical scheme presented in this paper also applies to other definitions of 

FDs such as Caputo derivatives. Approximation of FD is more complex than integer 

derivatives because fractional order derivative is non-local (Sousa, 20 I 0). In this work, an 

iterative numerical scheme is developed where the horizontal distance is discretized into 

several small segments. Various orders of FDs are considered. Different definitions of GL 

approximations are used to represent the FDs and their performances are analyzed. 

4.2. FORMULATION OF THE FRACTIONAL ORDER ISOPERIMETRIC 

PROBLEM 

Let us consider the· foll_9w ing problem: Among all curves y(x) which satisfy the 

integral constraint 



I = f0

1 
.J1 + (0Dfy(x)) 2dx 

and the fixed terminal (boundary) conditions 

y(O) = Yo and y(l) = YN , 

find the curve y(x) = / (x) that minimizes the functional 

J(y) = J0

1
mg{y.Jl + (iPfy(x))2}dx, 

(4.1) 

(4.2) 

(4.3) 

where 0Df y(x) represents the left RLFD of order a. Here, for simplicity, we have taken 

the limits of integration from O tol and the order of the derivative a in between O and 1. 

When a = 1, equations ( 4.1) and ( 4.2) become 

(4.4) 

and 

(4.5) 

For an integer order problem define by equations (4.2), (4.4) and (4.5), the analytical 

solution exists and it is given in Section 4.4. For the fractional order problem, we can 

represent the FDs by the GL approximation in order to find the solution. For convenience, 

we consider y(O) = y(l) = 0 and mg = 1. The FDs are approximated by different GL 

definitions described in the next section. 

4.3. NUMERICAL SCHEMES FOR FRACTIONAL ORDER 

ISOPERIMETRIC PROBLEM 

In this section, we present the numerical scheme to approximate the FDs by different 

GL definitions. The general definition of GL is given by equation ( 1.21 ), which is the 

generalization of the ordinary discretization formula for integer order derivatives. It 
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obviously converges for any a> 0 and for every bound of f(t) (Sousa, 2010). The 

definition of operator in the GL sense is equivalent to the definition of operator in the RL 

sense (Podlubly, 1999a). Nevertheless, the GL operator is more flexible and most 

straightforward in numerical calculations. There are various GL definitions to approximate 

the FDs that are discussed below. 

To develop the numerical scheme, we divide the horizontal distance [O, 1] into N 

elements of equal width ofh = 1/N. The coordinates of the nodal points arexj = jh, j = 

0,1,2, ... ,Nandy(xj)= y(jh)=yj, We further assume thaty(x)is linear over each 

element and the FD of each element ( (G~Dffy)e, e = 1, 2, ... , N ) is constant over the 

element. 

4.3.1. Standard and standard shifted GL methods 

Using the standard GL approximation, the FDs of each element can be approximated 

by the following equation (Podlubly, 1999), 

GL a _ (l)a e (a) 
( oDx Y)e = h Lj=O Wj Ye-j (4.6) 

where the coefficients of w?), j = 0,1,2, ..... , N, are computed as follows 

(a) (a) ( a+l) (a) . _ 
w0 = 1, wj = 1--

1
-. wj_1 , J -1,2, ..... ,N. (4.7) 

However, the numerical approximation based on the standard (unshifted) GL 

approximation has limitations such as (I) it frequently generates unstable numerical 

methods, and (2) its order of accuracy is limited to I (Meerschaert and Tedjeran, 2004; 

Sousa, 20 I 0). Therefore, in recent years, the shifted GL approximation has been used 

frequently (Meerschaert and Tedjeran, 2004; Yang, 2010). The standard shifted GL 
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definition for two sided FDs was presented by Meerschaert and Tedjeran (2004) and 

Tedjeran et al., (2006), and it was expressed as (Sousa, 2010) 

( GL,S a ) _ (l)a e (a) 
oDx Y e = h Lj=O Wj Ye-j+l• (4.8) 

where the coefficients w?), j = 1,2, ..... , N, can be computed by equation ( 4. 7) . The 

discrete representations of equations ( 4.1) and ( 4.3) become 

I= h "'N 1 + [(GL.SDay) ]2 .l.,e=l o x e (4.9) 

and 

( 4.10) 

Finally, equation ( 4.10) is minimized subject to the constraint of equation ( 4.9) and the 

boundary conditions given by equation (4.2). 

4.3.2. Modified GL method 

In the standard shifted GL definition, we approximate the FD at each nodal point. In 

the modified GL definition, we approximate the derivatives at the center of each element 

(Beleanu. et. al, 2009). To develop the numerical scheme, we take y(x) as an average value 

of the element; therefore, y(x) = (yj + Yj-i)/2. Let 

(yi-1 +yi) . 1 2 N 
Zzi-1 = 2 l = , , ... · · ( 4.11) 

and by the modified GL definition, the FD of each element can be approximated as 

(Beleanu et. al, 2009): 

( MGL a ) _ (~)a "'2e-1 (a) . oDx Y e - h ""j=O Wj Zze-1-1, (4.12) 
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where the coefficients w?) , j = 1,2, ..... ,2N , can be computed by equation (4 .7) . 

Substituting these approximations into equations (4.1) and (4.3), the discrete presentations 

of the two equations become 

(4.13) 

and 

(4.14) 

Equation (4.14) is then minimized subject to the constraint of the equation (4.13) and the 

boundary condition given by equation (4.2). 

4.4. ANALYTICAL SOLUTION OF INTEGER ORDER PROBLEM 

The analytical solution of the integer order problem is presented here which serves 

as the validation of the numerical algorithm. For this problem, the Lagrangian is 

F = (mgy - ).).J1 + y'2 • 

The differential equation is then obtained from applying Lagrange ' s method, 

(mgy--l) - C 
~1+y,2 - 1 

Rearranging equation ( 4.16), we obtain 

which can be integrated to provide 

( ) 
,l C1 h pg(x+C2) 

y x =-+-cos , 
pg pg C1 

where C1 ·and C2 are the two co~stant of integration. 
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4.5. NUMERICAL RESULTS 

In this section, we present nu.merical results for the fractional order isoperimetric 

problem. We considered two types of GL definitions, the standard shifted GL definition 

and the modified GL definition, to approximate the FDs. The MATLAB optimization 

toolbox was used to solve this constraint, minimization problem. The numerical result was 

compared with the analytical solution when the order of the derivative equaled to l to 

verify the performance of the numerical algorithms. We consider the constraint,/ = 1.4. 

Numerical results were obtained for various orders and at various step sizes. For each 

value of a, we first conducted convergence study of the number of elements N. Figure 

( 4.1) shows the convergence results for the case of a = 0. 9 using the standard shifted GL 

definition. As the number of segment increases, the solution converges. Similarly, when the 

modified GL definition is employed, the result converges as well as Nincreases (figure 

4.2). To further demonstrate the convergence of the numerical algorithm, Table 4.1 

presents the values of the cost functional] for problems of different orders of FD and at 

different step sizes when standard shiftet GL definition was considered. As the step size 

decreases, the negative value of J also decreases for such an optimization problem. Same 

observation can be made when the modified GL definition was employed in Table 4.2. 

We also obtained the results for various orders of the FDs at the same discretization 

(N = 32) using the standard shifted GL definition that are shown in figure 4.3. It is noted 

that as a approaches 1, the numerical solution converges toward the analytical solution and 

therefore validates the numerical algorithm. Same observation can be made when the 

modified GL definition was employed in figure 4.4. 
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Figure 4.1. Function y(x) when a = 0. 9 for different values of N when standard shifted 
GL definition was considered. 
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Figure 4.2. Function y(x) wher( N = 32 and different values of a when standard shifted 
GL definition was considered. 

84 



Or------.-------.--------------

-0.2 

-0.4 

0.2 0.4 

- N=lO 
--- N=20 
-N=30 
······ N=40 
-N=50 

0.6 
X 

0.8 1 

Figure 4.3. Function y(x) when a = 0. 9 and different values of N when modified GL 
definition was considered. 
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Figure 4.4. Function y(x) when N = 32 and different values of a when modified GL 
definition was considered. 
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Table 4.1. Convergence of the cost functional/ for a = 0. 9 with the standard shifted GL 
definition. 

~ 0.9 0.8 0.7 0.6 

4 -0.42434 -0.49096 -0.56760 -0.65474 
8 -0.43983 -0.52043 -0.61470 -0.72225 
16 -0.44801 -0.54039 -0.64909 -0.77149 
32 -0.45370 -0.55767 -0.67894 -0.81134 
64 -0.45922 -0.57592 -0.70833 -0.84480 

Table 4.2. Convergence of the cost functional/ for a = 0. 9 with modified GL definition. 

~ 0.9 0.8 0.7 0.6 

4 -0.45614 -0.55960 -0.68121 -0.81910 
8 -0.45824 -0.56385 -0.68808 -0.82922 
16 -0.46126 -0.57342 -0.70409 -0.85204 
32 -0.46428 -0.58552 -0.72333 -0.87289 
64 -0.46912 -0.60155 -0.74651 -0.88955 

Since the analytical solution for this fractional order problem is not available to our 

best knowledge, the method outlined in the previous chapter by equations (3.28-3.30) is 

used to calculate the rate of convergence for this problem. Table 4.3 presents the relative 

error calculation of the problem using equation (3.28), and the ratios of these relative errors 

are presented in Table 4.4 using equation (3.30) when the standard shifted GL definition 

was considered. Similarly, Tables 4.5 and 4.6 present the relative error and relative error 

ratios when the modified GL definition was adopted. From these results, it can be noted 

that the errors decrease as the number of segments N increases with minor exceptions. We 

can also observe that the results at N = 32 have less errors than those at N = 64, which are 

represented by the relative errors in the columns of h = 1/16 in Tables 4.3 and 4.5. The 
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results in Tables 4.4 and 4.6 also indicated that the order of convergence is not constant for 

this problem. Kumar and Agrawal (2006) presented some numerical results for two types 

of fractional differential equations (FD Es), linear and nonlinear. Their results demonstrated 

that for the linear FDEs the rate of convergence was constant, however, the rate of 

convergence for the nonlinear FDEs w~s not constant and it varies for various order of 

derivatives. Similarly, the fractional order isoperimetric problem considered here is a 

nonlinear problem, it does not maintain a particular order of convergence. 

We can see from figures 4.1-4.4, in cases of fractional orders, the shape of the 

function y(x)is no longer symmetric, and there is a sudden jump at the final element. The 

reason for the sudden jump is as follows: the FD has a property of being nonlocal and it 

incorporates all the results in the history of computation. Compared to the integer order 

case, the FD of the function at the final element is smaller. In order to satisfy the boundary 

condition at the right end, i.e. y(l) = 0, while minimizing the cost function, the 

optimization algorithm forces to take a large value of the FD at the end element and causes 

a sudden jump at the end Such non-symmetric behavior of the result is therefore due to the 

properties of the FD. 

Table 4.3. Relative error analysis for a = 0.9 with the standard shifted GL definition. 

!!.eh = eh - eh/2 
X h = 1/8 h = 1/16 h = 1/32 

1/8 5.6620E-4 7.5070E-4 4.0401E-3 
2/8 3.7667E-3 1.3259E-3 8.6627E-3 
3/8 3.6548E-3 l .9480E-3 7.1650E-3 
4/8 l.6360E-3 9.6372E-4 2.0003E-3 
5/8 2.1374E-3 1.6423E-3 5.7190E-3 
6/8 8.06~0E-3 6.8537E-3 l .4036E-2 
7/8 1.7590E-2 I .6024E-2 2.5665E-2 
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Table 4.4. Ratios of the relative errors based on the data in Table 4.3. 

t R** = !J.eh/ !J.eh12 

h = 1/8 h = 1/16 
l/8 0.7542 0.1858 
2/8 2.8408 0.1531 
3/8 1.8762 0.2719 
4/8 l .6977 0.4818 
5/8 l.3014 0.2872 
6/8 l.1772 0.4883 
7/8 1.0980 0.6243 

Table 4.5. Relative error analysis for a = 0.9 with modified GL definition . 

!J.eh = eh - eh/2 
X h = 1/8 h = 1/16 h = 1/32 

1/8 l .6494E-2 2.297E-3 8.738E-3 
2/8 2.3907E-2 3.762E-4 l .122E-2 
3/8 l.9238E-2 6.672E-4 7.799E-3 
4/8 8.2441E-3 2.265E-3 2.445E-3 
5/8 7.1852E-3 6.126E-4 5.083E-3 
6/8 2.901 IE-2 1.461E-3 l.349E-2 
7/8 5.9419E-2 2.926E-3 2.489E-2 

Table 4.6. Ratios of the relative errors based on the data in Table 4.5. 

t 
R** = !J.eh/ !J.eh12 

h = 1/8 h = 1/16 
1/8 7.1806 0.2629 
2/8 6.3549 0.0335 
3/8 28.628 0.0855 
4/8 3.6398 0.9264 

5/8 1.1729 0.1205 
6/8 1.9857 0.1083 

7/8 2.0307 0.1176 

4.6. CONCLUSIONS 

In this chapter, two different definitions of GL approximations, the standard shifted 

GL definition and the modified GL approximation, have been presented to solve 
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isoperimetric problems in fractional order. The isoperimetric problem contains FD terms in 

both the minimization functional and the constraint equation. The FDs are expressed in 

terms of the RL definition; however, the scheme also applies to other definitions of FD 

such as Caputo derivatives since zero initial conditions are considered. The spatial domain 

[O, 1] is discretized into N equal segment_s. As the order of the derivative a approaches the 

integer value of I , the numerical results recover the analytical result. Convergence study of 

the number of elements is conducted to ensure the stability of the computation. The 

convergence errors are analyzed and the results do not suggest any particular order of 

convergence. 



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

5.1. CONCLUSIONS 

This thesis presents numerical schemes for functional minimization problems that 

involve FD terms. Since FDs have such property as being non-local , it can be extremely 

challenging to find analytical solutions for fractional optimization problems, and in many 

cases, analytical solutions may not exist. Therefore, it is of great importance to develop 

numerical methods for such problems. Several numerical schemes were presented in that 

thesis where FDs were defined either in terms of RL or Caputo FDs. In all numerical 

schemes, the spatial or time domain was discretized in several subdomains and the rate of 

convergence and the convergence errors are analyzed to ensure that the algorithm yields 

stable results. 

Chapter 2 presented formulations and numerical schemes for FOCPs of distributed 

systems in spherical and cylindrical coordinates. Partial fractional time derivatives were 

defined in the Caputo sense and the performance index of the FOCP was defined as a 

function of both state and control variables. The separation of variable method and the 

eigenfunction approach were used to decouple the equations and define the problem in 

terms of the state and control variables. For numerical simulations, the fractional 

differential equations were expressed in Volterra integral form. Several numerical 

simulations were discussed including convergence studies of the state and control variables 

with respect to the number of segments in the time domain. We observed that the numerical 

results of the state and the control variables recovered the analytical results as the order a 

approached 1. The three dimensional plots of the state and control variables were also 

generated that clearly indicated a diffusion process in the structures. 
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A numerical scheme for a linear functional minimization problem that involved FD 

terms was presented in Chapter 3. The FD was expressed in terms of the RL definition. The 

time domain [O, 1] was discretized into N equal segments, and the 2-node one-dimensional 

element and linear interpolation were adopted in developing the matrix representations of 

the cost functional and the integral constraint function. The problem was solved for 

different orders of derivative, and as the order approached the value of 1 , the result 

recovered the analytical result of the corresponding integer-order problem. That numerical 

scheme is easy to implement and can be extended to other fractional parametric 

optimization problems. 

Chapter 4 presented the standard shifted GL definition and the modified GL 

definition to solve isoperimetric problems in fractional order. The isoperimetric problem 

contained FD terms in both the minimization functional and the constraint equation. The 

FDs were expressed in terms of the RL definition and the spatial domain [O, 1] was 

discretized into N equal segments. Convergence study of the number of elements was 

conducted to ensure the stability of the computation. The numerical results of the problem 

recovered the analytical results as the order a approached I . 

5.2. RECOMMENDATIONS FOR FUTURE WORK 

This research can be extended to several directions in the future. Some 

recommendations for future work are given below: 

I. The numerical schemes for FOCPs were developed for only one FD term in the 

system dynamic constraint equation. Problems that involve multiple FD terms can be 

considered. 
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2. For the FOCPs, zero end conditions were considered. We can further specify 

other nonzero end conditions. 

3. In all described optimization problems, we considered the order of the FDs 

between O and 1. The numerical schemes can be extended to other orders above l . 

4. In this thesis, the FDs were expressed in terms of the RL or Caputo derivatives. 

New types of derivatives such as the Riesz derivatives can be used to analyze the results. 

5. For the linear functional minimization problem and fractional isoperimetric 

problem, the left FDs were considered. We can extend the problems to include the right 

FDs or take the average of both left and right FDs. 

6. The fractional isoperimetric problem and linear optimization problem can be 

extended to incorporate end constraints that are functions of time. 
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