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ABSTRACT 

By 2030, PDAC  is projected to be the second leading cause of cancer-related death in the 

US.  PDAC is a multifactorial disease driven by genomic alterations. Understanding this alteration 

landscape will both refine the knowledge of disease etiology and enhance disease stratifications, 

drug design, and targeted treatment.  

This study aimed to identify novel genetic alterations that are associated with pancreatic 

cancer biology and prognosis to further refine the genetic focus for therapy development, disease 

subtyping, and risk assessment in PDAC. 

 To this end, SNV, CNV, and clinical data for PDAC patients were downloaded from the 

ICGC data portal and analyzed for somatic mutations and recurrent copy number variations.  

This study showed that KRAS, TP53, and TTN are not only highly mutated but also associated 

with poor survival in PDAC. Also, this study showed that CN-LOH  TP53, KRAS, SMAD4,  and 

RYR3 were associated with reduced risk of death from PDAC.  
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1. BACKGROUND 

In the last 5 years, pancreatic ductal adenocarcinoma (PDAC) has remained the seventh 

leading cause of cancer-related deaths worldwide, with global incidence and mortality rates of 

2.6% and 4.7% respectively 1.Owing to its poor prognosis, the number of new cases (495,773), 

and the number of deaths (466,003) are almost the same, with the highest incidence rates in Europe, 

Northern America, and Australia/New Zealand. By 2025, pancreatic cancer may surpass breast 

cancer as the third cause of cancer-related deaths in Europe and second leading cause of cancer-

related death in US by 20302,3. 

Mutations are genetic changes that become incorporated into the DNA of an organism. 

Mutations are either somatic or germline. In germline, mutations are passed on to offspring, while 

in somatic mutations occur at the cellular level in somatic tissues and occur post fertilization. 

Mutations often manifest in diverse forms such as single nucleotide variations or copy number 

variations 4. In single nucleotide variation (SNV), there is a variation at a single nucleotide position 

when compared to those of the population genome  (accepted human genome sequence reference). 

While in Copy number variation (CNV) sections of the genome are repeated and the number of 

repeats in the genome varies between individuals. Altogether, these two types of variations 

contributes to the overall genomic mutation that drive tumorigenesis 4,5. 

As a key regulator of genomic and epigenomic abnormalities, several CNVs have been 

found among those with pancreatic cancer. For example, Zhan et al., (2021) categorized PDAC 

patients into four molecular subtypes based on solid tumor derived CNV value for a set of 8 genes 

(PALB2, RAD51C, FGF3, NF1, FGF4, PIK3CA,  MAPKAP1,  RICTOR) that shows statistically 

significant association with overall survival.  Zhan et al., (2021) further showed that low copy 

number subtype (DNA repair deficient) demonstrated poor prognosis 6. Similarly, Liming et al., 
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(2012) who examined the functional significance of CNVR2966.1 at 6q13 , showed that the risk 

of pancreatic cancer observed in 1027 cases and 1031 controls was significantly associated with 

copy number of CNVR2966.1, ( HR=1.31 95% confidence interval = 1.08–1.60; P = 0.007) for 

one copy genotype compared with two copies genotype7. 

 In the same vein,  as a key driver of tumor, studies have shown that somatic mutations of 

genes such as KRAS, TP53 CDKN2A, and SMAD4  not only accumulate in PDAC but also 

significantly associates with  PDAC survival (p < 0.05)  6,8,9.   

The identifications of the associations between genomic alterations and pancreatic may not 

be sufficient to reveal the complete causal relationship between genomic alterations and PDAC 

progression, such information could refine the current knowledge of disease process and biological 

pathways 10. The reliability and generalization of the association between genomic alterations, and 

pancreatic cancer relies on large scale quality genomic data.  

The International Cancer Genome Consortium (ICGC) provides public access to quality 

genomic, epigenomic, transcriptomic, and proteomic data for over 33 human cancers derived from 

whole tumor tissue. Thus, providing rich dataset for computational multi-omics data exploration 

and model building.  

The aim of this research was to apply a bioinformatics approach to understand genomic 

alterations landscape in pancreatic cancer, and how it is associated with prognosis. We hope that 

this study will identify novel gene alterations that are associated with pancreatic cancer biology 

and prognosis, thereby providing further refined genetic focus for therapy development, disease 

subtyping, and  risk assessment in PDAC.   
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To the best of our knowledge, no previous study has combined dataset from these sites, the 

use of datasets from three distinct  study sites with possible inherent genomic variations will 

provide  more sample size to accommodate all possible subtypes of PDAC. 

 

1.1. Modifiable Risk Factors 

Although there is no single risk factor that can be regarded as sufficient or necessary cause 

of pancreatic cancer, several modifiable risk factors such as smoking, drinking, diets of processed 

meat, high-fructose beverages, and saturated fat have been associated with increased risk of 

pancreatic cancer11 12.  

Among lifestyle risk factors, cigarette smoking shows the strongest association with 

pancreatic cancer, followed by daily alcohol intake in excess of 30 g per day 13. The presence of 

two or more of these factors further increase the risk of PDAC, a recent study showed that the 

association between body mass index (BMI) and risk of pancreatic cancer increase by several-fold 

among obese smokers 14.  

1.2. Genetic  Risk Factors 

In addition to the modifiable risk factors, several germline genotypes have also been 

associated with pancreatic cancer risks. In view of this, the National Comprehensive Cancer 

Network guidelines recommended that all new PDAC cases should undergo a seven gene 

(BRCA1/2, ATM, MLH1, MSH2, MSH6, and PMS2) panel test to determine the right line of 

treatment specific to the germline mutations status 15.  

Similarly, an individual with familial genetic history of pancreatic cancer is often 

encouraged to undergo genetic counseling, especially if such individual showed higher risk factor, 

and negative genetic testing for the 7 gene sets.  (Figure 1) 15. 
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The completion of the human genome and further analysis of its sequence unveils an 

unprecedented amount of variability in human populations. The most common forms of genetic 

variation in pancreatic cancer include gene copy number variations (CNV), simple nucleotide 

variations (SNV), chromosomal translocations and microsatellite instability. The ICGC publicly 

available dataset on PDAC is limited to CNV, and SNV, as such this study only focuses on these 

two common genomic alteration types. 

 

 

Figure 1: Suggested Algorithm for Germline Testing for Individuals With PDAC.15 

 

1.3. Chromosomal Translocation 

In chromosomal translocation, a segment from one chromosome is transferred to a 

nonhomologous chromosome or to a new site on the same chromosome, thereby generating a novel 

chromosome 16. This results in the placement of genes in new linkage relationships and generates 

additional chromosomes without formal nuclear recombination. 

Chromosomal translocations, although very rear in PDAC, have been implicated in human 

cancer, particularly in hematopoietic and lymphoid tumors 17. A recent comparative genomic 
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hybridization study by Ghadimi et al., 1999 revealed recurring chromosomal change on 

chromosome arms 3q, 5p, 7p, 8q, 12p, and 20q in pancreatic carcinoma cell lines 18. 

1.4. Microsatellite Instability 

Microsatellites (MS), also called Short Tandem Repeats (STRs) consist of repeated 

sequences of 1–6 nucleotides. The distribution characteristics are different from 15 to 65 

nucleotides tandem repeats of small satellite DNA, which is mainly located near the ends of 

chromosomes. MS are widely distributed and mostly is located near the coding region and may 

be located others region like intron or non-coding region19. Eatsride et al., (2016)  analyzed 109 

pancreatic cancer biopsies , and observed  that 22% are MSI high, as such  they have better 

prognosis and are likely to respond to immunotherapy 20. 

1.5. Copy Number Variation 

The term "copy number variation" is used to describe a form of structural variation in a 

genome where large segments of DNA have different numbers of copies between individual 

organisms of the same species.  Operationally, CNV describes segments greater than 1 kilo base 

pairs in length but typically less than 5 megabases. CNVs are broadly classified as either the 

inclusion of additional copies of sequence (duplications) or losses of sequence segment (deletions). 

Although an organism’s CNVs are either inherited or the result of a de novo mutation, its discovery 

has led to some important biological implications.  

First, beyond Mendel’s law of independent assortment, an individual's unit of hereditary is 

more than the sum of the genetic contributions of the individual's two parents, this is partly because 

the unequal crossover events responsible for CNVs occur during the production of sperm and eggs, 

children may have lost or gained additional copies of genetic information that were present in 
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either of their parents' chromosomes 21. Second, the association between CNV and diseases could 

not be fully explained by the fundamental genetic basis of human diseases 21. 

1.6. Single Nucleotide Variation 

A single-nucleotide polymorphism (SNP) is an “inheritable single nucleotide variation 

between members of species or paired chromosomes”. They were considered as common variants 

in general population (minor allele frequency (MAF) of somatic mutation is > 1%) 22 . On the other 

hand, single-nucleotide variants (SNV) are point mutations frequently found in cancer tissues but 

with MAF less than 1%, as such they do not qualify as SNP. Most of them are missense mutations 

locating at exons and causing alterations of protein’s structure/function. SNVs are abundant in 

cancer driver genes and cellular pathways essential for cancer progression 23. 

DNA mutations are the hallmarks of cancer. Some mutations, termed drivers, give tumour 

cells a selective growth advantage and promote cancer development. A typical example is the 

inactivation of mutations of BRCA genes which lead to the activation of downstream pathways in 

DNA damage repair 24.  

Thus, knowledge of these drivers can guide targeted therapy by targeting genes based on 

their genomic profile. Similarly, there are passenger mutations, which seem to be important but do 

not directly drive cancerous growth, as well as, other molecular changes at the RNA and protein 

levels 24. These mutations all play a role in deregulating cell metabolism, stimulating cell growth 

and promoting metastasis, but their exact contributions are largely unclear. 

The understanding of SNV has several clinical implications on the management and 

treatment of PDAC. For example, SNV may unveil possible racial differences in disease genomic 

landscape, which may influence treatment design and generalization. A Recent study by Guo et 

al., 2021, showed that the most frequent genomic alteration in PDAC  among  oriental patients of  
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Chinese descent  was KRAS (n = 262, 86.75%), followed by TP53 (n = 171, 56.62%), GNAS (n 

= 90, 29.80%), RYR1 (n = 73, 24.17%), and POLE (n = 59, 19.54%). 25 This findings aligns with 

the work of Yachida et al., 2012 who proposed that KRAS, TP53, CDKN2A, and SMAD4 are the 

four major driver genes mutated in nearly 100% of PDAC patients 26. Yachida et al., further 

showed the number of altered genes in PDAC was significantly correlated with both median 

disease free survival (p=0.008) in patients with Stage I/II disease, and median overall survival 

(p=0.041) 26. 

Furthermore, the knowledge of SNV landscape also plays an important role in predicting 

the response of pancreatic cancers to DNA damaging agents. For example, Villarroe et al., 2011  

showed that the inactivation BRCA2, PALB2 or FANC gene mutations confer susceptibility to 

cisplatin or PARP inhibitors 27. 

The  mutation status of specific genes can also be used to infer molecular subtypes of 

PDAC cancers as exemplified by  Xu et al., 2021, who noted that the classical PDAC subtype can 

be determined by double negative (KRT81−HNF1A−, DN) status, KRT81+HNF1A− for QM-

PDA, and KRT81− HNF1A+ for the exocrine-like group in patients 28,29. 

Finally, gene mutation status can also be used to infer possible druggable target. 

Unfortunately, this KRAS mutation is in pancreatic cancer is  undruggable except for a specific 

mutant form, G12C (Janes et al., 2018). Unfortunately, KRAS gene generally has a broad impact 

on the tumor microenvironment, contributing to promotion and maintenance of cancer malignancy, 

responses to immunotherapy, and drug delivery 25. 

1.7. Genomic Mutation in PDAC 

In the last two decades, considerable research has focused on the identification and 

explanation of molecular correlates of pancreatic carcinogenesis and pathophysiology. Under the 
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exposure of listed risk factors, there is evidence of gradual accumulations of genetic alterations 

that triggers the expression and/or activation of pancreatic cancer oncogenes, and repression and/or 

inactivation of tumor suppressor genes coupled with the deregulation of certain signaling pathways 

cascaded to the onset of pancreatic cancer 30.   

Considering the unprecedented dismal survival of pancreatic cancer, identification of 

candidate biomarkers and key signaling pathways is important for early clinical diagnosis, 

prevention, and tailored treatment of pancreatic cancer 31.  Increasing research evidence is showing 

that the integration of diverse omics data sets offers novel insights and further understanding of 

complex multifactorial diseases such as cancer.  

Genomic aberrations due to DNA copy number variation (CNV) and the simple nucleotide 

variation (SNV) are known to be associated with the onset and progression of pancreatic cancer 

32.  Analysis of copy-number profiles of 3131 cancer samples showed that an average tumor sample 

consists of 17% genome amplification and 16% deletion as compared to averages of 0.35% and 

less than 0.1% in the normal counterparts 33.  

One possible mechanism of CNV pathogenicity is gene duplications, if the duplicated gene 

is not dosage sensitive, the inactive copy may escape selective pressure and silently accumulate 

mutations at a faster rate which may eventually affect future protein products 34.  

Similarly, pharmacogenomics evidence has shown that aberrations in gene copy numbers 

and simple somatic mutations can cause significant impact on therapeutic targets, efficacy and 

adverse effects in several types of cancer 35. These are particularly important in the treatment 

administration, as excess gene copies can deleteriously speed up the rate of drug metabolism, and 

loss of key genes in drug metabolic pathways may lead to build-up of intermediate metabolites 36. 
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1.8. International Cancer Genomics Consortium 

The International Cancer Genome Consortium Accelerating Research in Genomic 

Oncology (ICGC ARGO) initiative brings together international researchers to analyze genomic 

and transcriptomic changes along with high-quality clinical data from over 100,000 patients 37. 

The Ontario Institute for Cancer Research (OICR) operates as the Data Coordination 

Centre (DCC) to develop the ARGO Data Platform which manages the submission, processing, 

analysis, and dissemination of high-quality clinical and molecular data 37. 

Participating programs submit clinical data through the ARGO Data Platform, which is also the 

destination for public data display and analysis 37. 
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2. DATA ACQUISITION AND PROCESSION 

Data in the ICGC GDC can be accessed through the user‑friendly web‑based GDC Data 

Portal, which enables browsing, querying and downloading of data and metadata. In addition, the 

GDC provides a command-line tool for downloading large volumes of data, and an application 

programming interface (API) for programmatic access to GDC functionality. The dataset for this 

thesis used the unrestricted publicly available ICGC genomic data common website.   

This study utilized datasets from three different cohorts, ICGC- AU, ICGC-US, and ICGC-

CA. For each cohort, release 28 of two omics data types (SNV and CNV) were downloaded, and 

for each subject whose CNV and SNV have been downloaded, the corresponding clinical metadata 

file was also downloaded for downward clinical association analysis. All data download and 

downstream analysis was performed using the R statistical package version 4.2.1. The detailed 

codes, list of packages and versions are documented in APPENDIX B. DATA PROCESSING. 

For each cohort, the unit record for each dataset is the donor identification number. Table 

1 summarizes the number of records per cohort per sample type. 
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Table 1:  Sample size distribution by ICGC pancreatic cancer cohort and data types  

 PACA-AU PAAD-US PACA-CA Total 

Number of clinical metadata 461 185 317 963 

Number of CNV records 461 185 317 963 

Number of SNV records 391 177 268 836 

Number of SNV records with 

Clinical Records 

391 177 268 836 

Number of CNV records with 

Clinical Records 

461 185 317 963 

Number of SNV records with 

CNV Records 

391 177 268 836 

Number of SNV records with 

CNV and clinical records 

391 177 268 836 

 

The result from Table 1 above showed the absolute counts of omics data per study site 

included in this study. Overall, there are 963 patients’ records, of which only 836 have valid 

SNV records. 
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2.1. Survival Analysis 

Cox PH regression model was used to compare the time-to-event between mutant and wild 

types. Our goal for using  Cox PH model is to compare the hazard rates of individuals with mutant 

genes to individuals with wild type genes.  

The general form of Cox PH regression models  is given as follows:  

𝑙𝑜𝑔(ℎ(𝑡)) = 𝑙𝑜𝑔(ℎ0(𝑡)) + 𝛽1𝑥1 + 𝛽2𝑥2+. . . +𝛽𝑝𝑥𝑝  

This implies that the natural log of the hazard at time t, denoted by h(t)h(t), as a function 

of the baseline hazard, h0(t)h0(t) (the hazard for an individual where all exposure variables are 0), 

and multiple exposure variables x1,x2,…,xpx1,x2,…,xp. 

In order to eliminate any bias average hazard ratio estimates, the weighted Coxregression 

was used, as proposed by Schemper et al., (2009) 38.  The coxphw package was used for the 

weighted coxPH survival analysis. 

2.1.1. Diagnostics for the Cox Model 

The Cox proportional hazards model makes several assumptions. Thus, it is important to 

assess whether a fitted Cox regression model adequately describes the data. 

The fundamental assumption in the Cox model is that the hazards are proportional (PH), 

which means that the relative hazard remains constant over time with different predictor or 

covariate levels. 

The following assumptions were checked for all the COX PH Models used in this study. 

2.1.1.1. The Proportional Hazards Assumption. 

The proportional hazards assumes that estimates β do not vary much over time.  The 

Schoenfeld residual was used to check the proportional hazards assumption. In principle, the 

Schoenfeld residuals are independent of time. A plot that shows a non-random pattern against time 
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is evidence of violation of the PH assumption. The proportional hazard assumption is supported 

by a non-significant relationship between residuals and time and refuted by a significant 

relationship. In this  study, none of the models  violated this assumption. 

2.1.1.2. Testing Influential Observations 

To check for influential observations, deviance residual (symmetric transformation of the 

Martingale residuals) was used. The residuals for the models showed a roughly symmetrical 

distribution around zero. 

2.1.2. Hypothesis Testing 

For our  COXph model, the hypothesis was tested using the wald test. The null 

hypothesis of the Wald test states that the coefficient βj is equal to 0.  

 

𝑍 =  
𝛽̂𝑗 − 0

𝑆𝑡𝑑. 𝐸𝑟𝑟(𝛽̂𝑗)
 ∼ 𝑁(0,1) 

If the test fails to reject the null hypothesis, this suggests that removing the variables from 

the model will not substantially harm the fit of that model, since a predictor with a coefficient that 

is very small relative to its standard error is generally not doing much to help predict the dependent 

variable. 

2.2. Simple Nucleotide Variation Analysis  

The Variant Call Format (VCF) is a generic format for storing DNA polymorphism data. 

It is a text file format (often compressed) and  contains meta-information lines, a header line, and 

then data lines each containing information about a position in the genome 39.  

However, with advances in Cancer Genomics, Mutation Annotation Format (MAF) is 

being widely accepted and used to store somatic variants detected.  Mutation Annotation Format 
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(MAF) is a tab-delimited text file produced through the  Somatic Aggregation Workflow with 

aggregated mutation information from  variant call format (VCF) Files.  

The International Cancer Genome Consortium  data are stored in Simple Somatic Mutation 

Format (SSMF) which is similar to MAF format in its structure, however, the field names and 

classification of variants is different from that of MAF 40.  The 

“ icgcSimpleMutationToMAF”  function of the “MAFTOOLS” R package was used to read ICGC 

(SSMF) data and convert them to MAF for ease of compatibility with the suite of functions in the 

maftool. The corresponding clinical metadata for each study cohort was integrated into their MAF 

file using the “read.maf” function of the “MAFTOOLS”.  

The final output files were used for the downstream analysis such as “oncoplot”, somatic 

interactions, association between mutations and survival, gene mutation disease signatures. Single 

nucleotide variation analysis was done according to the workflow described by Mayakonda et al., 

(2018) 40. The details of the R implementation of this workflow were included  in APPENDIX D. 

SNV DATA ANALYSIS. 

2.3. Identification of Recurrent CNV in Cancer.  

The most significant recurrent CNV was identified using genomic analysis of significant 

chromosomal aberrations (GAIA) package in R. Briefly, GAIA  which is based on a conservative 

permutation test was used to estimate the probability distribution of the contemporary mutations 

expected for non-driver markers.  

Genomic regions identified as significantly altered in copy number (corrected p-value < 

0.001) were then annotated to report amplified and deleted genes potentially related with PDAC. 

The CNV identification and annotation were done in line with the workflow described by Silva et 
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al., (2016). 41 The R code implementation of the CNV workflow, and its association with survival 

are documented in APPENDIX E. CNV DATA ANALYSIS. 

2.4. Mutational Signatures Analysis 

 Somatic mutations found in cancer genomes may be as a result of natural  infidelity 

in DNA replications, or endogenous exposure to mutagens, enzymatic alterations of DNA, or 

defective DNA repair mechanism. In some cancer types, a substantial proportion of somatic 

mutations are said to occur as a result of  exposures to external mutagens, for example, tobacco 

smoking in lung cancers and ultraviolet light in skin cancers, or by abnormalities of DNA 

maintenance, for example, defective DNA mismatch repair in some colorectal cancers 42. 

Alexandrov et.al  (2013) argued  that different mutational processes often generate different 

combinations of mutation types, termed ‘signatures. In this study, the mutation signature analysis 

was done using the method described by Alexandrov et.al  (2013). This is described briefly as 

follows. 

 

Figure 2: Signature analysis steps 
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I. estimateSignatures - which runs NMF on a range of values and measures the goodness of 

fit - in terms of Cophenetic correlation. 

II. plotCophenetic - which draws an elbow plot and helps you to decide optimal number of 

signatures.  

III. extractSignatures - uses non-negative matrix factorization to decompose the matrix 

into n signatures. n is chosen based on the above two steps.  

IV. compareSignatures - extracted signatures from above step can be compared to known 

signatures from COSMIC database, and cosine similarity is calculated to identify best 

match. 

V. plotSignatures - plots signatures 

 

 

 

 

 

 

 

 

 

 

 



 

17 

3. RESULTS 

3.1. Clinical Metadata 

After all datasets have been downloaded, columns with missing values for all records were 

excluded  case wise and/or listwise, depending on the downward analysis need. Simple cross 

tabulations, measures of proportion and histogram were used to describe the key clinical variables. 

The details of this were documented in APPENDIX C. CLINICAL DATA ANALYSIS. 

Table 2: Summary of Clinical metadata by study sites 

Characteristics PAAD-US, 

N=185 

PACA-AU, 

N=461 

PACA-CA, 

N=317 
Disease status last follow-up    

Missing 111 (60%) 41 (8.9%) 105 (33%) 

complete remission 48 (26%) 0 (0%) 65 (21%) 
no evidence of disease 0 (0%) 0 (0%) 9 (2.8%) 
partial remission 0 (0%) 0 (0%) 8 (2.5%) 
progression 26 (14%) 292 (63%) 35 (11%) 
relapse 0 (0%) 0 (0%) 95 (30%) 
stable 0 (0%) 128 (28%) 0 (0%) 
Donor relapse type    
0 (NA%) 225 (49%) 194 (61%)  
distant 

recurrence/metastasis 
0 (NA%) 188 (41%) 83 (26%) 

local recurrence 0 (NA%) 48 (10%) 22 (6.9%) 
local recurrence and distant 

metastasis 
0 (NA%) 0 (0%) 18 (5.7%) 

Unknown 185 0 0 
Donor Sex    

Female 83(45%) 210(46%) 118(37%) 

Male 102(55%) 249(54%) 152(48%) 

Donor Survival status    

   Missing 0(0%) 1(0.2%) 51(16%) 

   Alive 119(64%) 167(36%) 75(24%) 

   Deceased 66(36%) 293(64%) 191(60%) 

 

The data from table 2 showed that  there are more male cases of PDAC in all the three 

regions than female. Furthermore, the chemotherapy status at follow-up was grossly missing the 

three sites, with  PAAD-US site recording about 60% missing values, PACA-AU 8.9% and PACA-

CA 33%. Overall, PACA-AU has more records of stable cancer outcome  after chemotherapy 
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treatment 128(28%) than other sites. However, PACA-AU tends to have more cases of progression 

292 (63%) than other sites.  This observation is consistent with the data on overall survival. In 

PAAD-US 65% are alive as at last follow-up while in PACA-AU and PACA-CA only 36%  and 

24% are alive  respectively. 

 

 

Figure 3: Age distributions of patients at diagnosis stacked by study sites 

 

Figure 3 showed that there is consistent age distribution of population at risk of PDAC in 

the three sites( PACA-US, PACA-AU, and PACA-CA). In all the three sites, the median age for 

PDAC diagnosis ranges from 70-75 years. Overall, the median age of  diagnosis age  is about 71 

years, and more than 70% of PDAC cases happened after age 61.  This further emphasizes the late 

presenting attribute of PDAC.  
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Figure 4: Overall survival time of patients stacked by study sites 

 

 

The overall  survival time between the three sites is relatively consistent with an overall 

median value of about 500 days. The overall survival pattern appeared to be skewed to the right, 

with a few cases that survived far above the median time. It is also worth mentioning that the 

interpretation of this graph may be bias if the study started at different year or patients have entered 

into the study at different time, unfortunately there was no data on the study start date or patient 

inclusion date.  
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Figure 5: Forest plot showing the hazard ratio stratified study sites 

 

In order to ascertain any differential survival pattern between the three study sites, 

weighted Cox-regression was used to estimate  unbiased average hazard ratio estimates, and wald 

test was used to test the null hypothesis . Figure 5 shows that there is no statistically significant 

difference in the hazard ratio estimate among the three sites ( weighted pvalue = 0.367, unweighted 

pvalue= 0.30263). 
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3.2. Summary of Somatic Mutations 

 

 

Figure 6: Summary of somatic mutations  for pooled data from the three study sites. 

 

Figure 6 above shows the summary of the somatic mutations of PDAC of  pooled data from 

three sites. (A) Bar chart showing  occurrence of variant classes, this sub-figure showed that 

missense mutations which accounted for over 90% is the most occurring variant classifications. 

(B) Bar chart showing  occurrence of variant types, this sub-figure showed that single nucleotide 

polymorphism accounted for over 90% of the variant types. (C) Bar chart showing  simple 

nucleotide variation classes, this sub-figure showed that the replacement of Cytosine base by 

Thymine and vice versa  are the most occurring SNV class,  this means that transversion mutations 

accounted for over 60%  while transition mutations accounted for 40%  in PDAC.  (D) Bar chart 
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showing  absolute count of variant per sample, this sub-figure showed that the median number of 

variants is 21, this implies that tumor  variant burden is minimal in PDAC. (E) Box plot showing 

variance classification distributions,  this sub-figure further emphasized that missense mutation 

which is the most occurring has a mean value of 20. 

(E) Bar chart showing  the distribution of most mutated genes, this sub-figure showed that    

KRAS, TP53, TTN, MUC16, SYNE1, LRP1B, RYR3, RYR1, CSMD1, ARID1A are the most 

occurring mutations with KRAS gene mutated in 80% of the samples. 

 

Figure 7: SNV landscape of  the  top 20 genes among donors in PACA-AU site. 
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Figure 8: SNV landscape of  the  top 20 genes among donors in PACA-CA site. 

 

 

Figure 9: SNV landscape of  the  top 20 genes among donors in PAAD-US site. 
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In order to understand between sites variations in the SNV landscape, specific one oncoplot 

was drawn for each site ( Figure 7-9) .  Interestingly, there is slight variation in the top mutated 

genes. While  KRAS, TP53, TTN, MUC16 are consistently the top 4 mutated genes, their 

distribution varies between sites. For example, KRAS genes are mutated in  83%, 79% , and 60%  

in PACA-AU, PACA-CA and PACA-US sites respectively while TP53 genes are mutated in  24%, 

25% , and 18%  in PACA-AU, PACA-CA and PACA-US sites respectively.  

Lastly,  missense mutation is the most occurring mutation type, and it spreads across the 

patients irrespective of their overall survival status (1= dead, 0= alive), and nucleotide base change 

types. 

 

 

Figure 10: Lollipop Plot showing the amino change due to TP53 gene mutation  
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Figure 11:LollipopPlot showing the amino change due to KRAS gene mutation 

 

Since KRAS and TP53 genes are mutated in over 80% of the samples, it is imperative to 

look closer into these genes and understand the loci of these mutations. As shown in figure 10 & 

11, while 23.56% of the subjects had TP53 mutations, the points of this mutations spread across 

the protein domain. Overall, position 175 is the most occurring point of mutation in TP53 (Figure 

10) and the points of mutations are spread across the P53 domain.  

Unlike TP53, KRAS gene has a conserved point of mutation, with about 287 samples 

mutations occurring at position 12, replacing Glycine with either Glutamate, Arginine, Alanine, 

Serine, and Cysteine ( Figure 11). 

3.3. Somatic Interaction 

Somatic mutations are not random, they often occur in characteristics pattern to drive or 

inhibit  certain biological activities. In this section of the analysis, we are interested in  the 

occurrence of pattern of the mutations. Particularly, among the top mutated genes. We would like 

to know if the gene mutations exhibit any co-occurrence pattern or mutual exclusiveness.  

To this end, the top 15 highly mutated genes were selected and analyzed for occurrence 

pattern. The Fisher’s  exact test was used to test for occurrence  association between set of genes.  

Figure 11 below shows the occurrence pattern of the top 15 highly mutated genes.  
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Figure 12: Somatic interaction plot showing mutually exclusive or co-occurring genes 

 

As shown in figure 11, KRAS mutations co-occurred with TP53 mutations, while RYR2 

mutation co-occurred with, TTN, MUC16, LRP1B, ARD1A, RYR, and CSMD1 and MUC16 co-

occurred with TGFBR2, HMCN1, FLG, RYR1, CSMD1, RYR3, and LRP1B. In all these 

combinations, there are no significant mutually exclusive occurrences ( Fisher’s exact p< 0.05). 

3.4. Detecting Cancer Driver Genes 

It is unlikely that the observed millions of mutations drive PDAC, most of the variants in 

cancer causing genes are enriched at few specific hot spots, as such it is important to narrow down 

these mutations and separate driver genes from passenger genes. This is very important  in 

understanding the disease pathway, disease subtyping, and development of candidate drug43.  

Using the oncodriveCLUST algorithm – “detect significant clustering signals across 

genomic regions  based on a local background model derived from the simulation of mutations 

accounting for the composition of tri- or penta-nucleotide context substitutions” 43, top 10 driver 

genes were identified (KRAS, ESX1, PROX2, PSG6, TP53, SF3B1, SMAD4, RNF150, 
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CDKN2A, METTL14) (Figure 12). Some of these driver genes (KRAS, TP53, SMAD4) are also 

among the top mutated genes (Figure 5). 

 

 

Figure 13: Top PDAC  driver  genes identified by oncodriveCLUST algorithm 

 

3.5. Association between Driver Genes and Overall Survival 

Having identified top mutated genes, some of which have also been confirmed to be drivers 

of PDAC, it is imperative that we ascertain their association with survival. Using the COXPH 

model ( 𝑙𝑜𝑔(ℎ(𝑡)) = 𝑙𝑜𝑔(ℎ0(𝑡)) + 𝛽1𝑀𝑢𝑡_𝑠𝑡𝑎𝑡𝑢𝑠1). Prior to the COXPH, preliminary analysis 

was done to check if the data obeys the assumptions of COXPH, the preliminary analysis showed 

that the COXPH assumptions were not violated (APEENDIX D).  

The overall survival of the patients with mutant genotypes was compared to those of 

patients with wild type genotypes for each driver gene. The genes with statistically significant 

associations are shown in the forest plot in figure 14. Figure 14 showed that patients with TP53 

gene mutation have a 2 times risk of death from PDAC than patients with wide type TP53Similarly, 

patients with KRAS, CSMD1, and ARID1A mutations have an increased risk of death from PDAC 

than patients with wide type genotype. 
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Figure 14: Hazard ratio for survival based on gene mutation status  (95% CI), (p<0.05) 

 

 

 

Figure 15: KM Survival Pattern based on KRAS mutation status 
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Figure 16: KM Survival Pattern based on TP53 mutation status 

 

 

Figure 17: KM Survival Pattern based KRAS codon mutation at position 12. 
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3.6. Oncogenic Signaling Pathway Enrichment 

Signaling Pathway describes a series of chemical reactions in which a group of molecules 

in a cell work together to control a cell function, such as cell division or cell death. Abnormal 

activation of signaling pathways is one of the mechanisms that drives cancer 44. The identification 

of these pathways , and therapeutic targeting of specific regions can help keep cancer cells from 

growing45. 

The genomic  alterations in signaling pathways that control cell cycle progression, cell 

growth, and apoptosis, are common hallmarks of cancer. However,  the extent, mechanisms, and 

co-occurrence of alterations in these pathways differ between individual tumors and tumor types.  

Identifying  these pathways could further enhance the understanding of PDAC pathophysiology 

and likely drug targets. 

To this end, the presence of enriched oncogenic signaling pathway was checked in PDAC.  

Ten (10) significantly enriched signaling pathways were identified. RTK-RAS pathway is the key 

pathway that was enriched in about 84% of the samples, followed by TP53 and HIPPOS pathways 

with about 25% and 19% representations  respectively (Figure 18). 
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Figure 18: Enrichment of known Oncogenic Signaling Pathways. 

 

3.7. Mutational Signatures Analysis. 

Every cancer, as it progresses, leaves a signature characterized by a specific pattern of 

nucleotide substitutions. Such signatures can be identified and compared to curated signatures 

from public database. For this study, comparison will be made with the COSMIC database. The 

COSMIC signature database was curated by identifying signatures from the analysis of the Pan-

Cancer Analysis of Whole Genomes (PCAWG) dataset and through curation of specific papers, 

and also updates as new data become available.  

Although this signature catalogue  is not exhaustive or a final set, but it is a reference set 

of high confidence signatures that have been curated by experts in the field 46 . For each of the 

identified mutational signature, the COSMIC database provides key information possible  etiology 

and tissue distribution of each signature 46. 

In this study,  the signatures in the PDAC were extracted compared to validated signature 

using the method described by Alexandrov et.al  which modeled mutational processes as a blind 

source separation problem 43.  
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Overall, the PDAC mutational signature was consistent with three existing cancer 

signatures from the COSMIC signatures database. Out of these three signatures, two are linked to 

spontaneous or enzymatic deamination of 5-methylcytosine and DNA mismatch repair while the 

last one has unknown etiology Figure (22).  

 

 

 

 

Figure 19: PDAC  Signature  and possible aetiology 2 

 

 

 

 

 

 

 

 

2 SBS: means Single base substitutions 
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4. COPY NUMBER VARIATION ANALYSIS 

In order to improve our findings on  the landscape of genomic alterations,  the scope of 

the gene CNV needs to be understood, particularly among the  highly mutated genes.   

The  ICGC CNV data somatic copy Number workflow uses a tumor-normal pair of either 

SNP6 raw CEL data, or WGS data as input. The ASCAT algorithm derives allele-specific copy 

number segments while estimating and adjusting for tumor purity and ploidy 47 . Because there 

are two parental strands, the resulting, the total copy number at any locus is the sum of the copies 

from both parents.  

For CNV analysis, only protein-coding genes were kept, and their numeric CNV values 

were further threshold by a noise cutoff of 0.3 as follows: 

I. Genes with focal CNV values smaller than -0.3 are categorized as a "loss" (-1) 

II. Genes with focal CNV values larger than 0.3 are categorized as a "gain" (+1) 

III. Genes with focal CNV values between and including -0.3 and 0.3 are categorized 

as "neutral" . 

 

 

Figure 20: Recurrent amplifications and deletions  identified  in PDAC 
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The pattern of the recurrent amplifications and deletions showed that there is widespread 

CNV across the 23 chromosomes in PDAC While, there might be widespread of CNV across the 

chromosome length, it is more occurring in some regions of the chromosome than others for 

example, chromosome 1,3, and 6 showed increased abundance of CNV than other chromosomes. 

However, copy number deletion is the most common CNV (figure 20).  

Interestingly, the chromosomes where the previously identified top mutated genes were 

located also showed significant copy number alterations. For example, chromosomes 17 which 

house Tp53 genes showed copy number amplification for TP53 (figure 21), while chromosome 12 

which houses KRAS showed copy number amplification. Biologically,  CNV arise by homologous 

recombination between repeated sequences (recurrent CNVs) or by non-homologous 

recombination mechanisms that occur throughout the genome (non-recurrent CNVs)48, while SNV 

accumulate either from spontaneous errors in replication that evade the proofreading function of 

the DNA or  from mutagen that react with parent DNA49  . This implies that both types of genetic 

alterations can accumulate independently. However, their effect on the phenotype is could be 

synergistic 46. 
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Figure 21: Chromosome 17 showing  recurrent CNVs pattern and mutated genes. 

 

 

Figure 22: Chromosome 12 showing recurrent CNVs and mutated genes. 
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4.1. Association between CNV Types and Overall Survival 

The previous section established the presence of a significant association between gene 

mutations and PDAC survival. In the same vein, it is important to confirm the association between 

CNV pattern and overall survival in PDAC. This section looked at the clinical consequence of the 

CNV types that were observed in PDAC.  

This will help to infer the deleteriousness of the specific gene copy number type. Cox 

proportional hazards regression analysis was used to infer the association between the survival 

time of patients and copy number types for a given gene. To this end, we used COXPH to evaluate 

the association between the copy number type of the established driver genes and survival in 

PDAC. 

Using the COXPH model ( log(h(t))=log(h0(t))+β_1 〖CNV_status〗_1). Prior to the 

COXPH, preliminary analysis was done to check if the data obeys the assumptions of COXPH, 

the preliminary analysis showed that the COXPH assumptions were not violated (APEENDIX D). 

In all cases, the null hypothesis that the coefficient βj is equal to 0 was tested using wald test. 

 Only 5 genes ( TP53, KRAS, SMAD4, RYR3, CDKN2A) showed significant association 

with survival in PDAC. Figure 22 below shows that LOH of  these genes associated with reduced 

risk of death from PDAC, while KRAS and RYR3 CNV loss associated with increased risk of 

deaths. 
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CNV  Definition 

LOH LOH (short for “loss of heterozygosity”) refers to a type of 

mutation that results in the loss of one copy of a segment of DNA. 

Some may be  Copy neutral loss of heterozygosity (CN-LOH) , which 

refers to a special case of LOH occurring without any resulting loss in 

copy number 50. 

Gain When the number of copies of a gene is more than two 

Loss When the number of copies of a gene is zero or one. 
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Figure 23: Hazard ratio for survival based on gene CNV alteration  (95% CI)3 

 

 

 

 

 

 

 

3 Mut_typeloss = CNV Loss,  Mut_typeLOH=CNV LOH,  Mut_typegain= CNV gain. 
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Figure 24: KM survival  pattern of PDAC based on gene CNV alteration type  
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5. DISCUSSION OF RESULTS 

Pancreatic cancer is one of the most lethal cancers worldwide, but its etiology, therapeutic 

modality, and prognosis are not fully understood. This study pooled publicly available ICGC data 

on SNV, CNV and clinical information for PDAC at PAAD-US, PACA-AU, and PACA-CA study 

sites. A total of 963 donor samples were included in this analysis,  and the median age of diagnosis 

is 71 years  (figure 3). This observation corroborates the late-onset nature of pancreatic cancer. 

This finding is supported by the work of Hongcheng et al., 2020 and Robert et al., (2016) who 

observed that the median age of  PDAC in China and the United states is 70 and 71 years 

respectively  51,52.  

Our observations of  more male cases than female is in alignment with the global trend of 

PDAC, as shown in the work  of  Rawla et al., (2019),  who stated that globally, the number of 

new cases of pancreatic cancer is 5.5 per 100,000 for men and 4.0 per 100,000 for women 53. In 

terms of overall survival, we observed that a median overall survival time of about 500 days and 

only 12% lived up to 3 years, across the study sites. This is not surprising for a disease with such 

a poor prognosis and these findings are similar to the report of the World Health Organization 

(WHO), which observed that typically after diagnosis, only 9% live for 5 years 54. 

This study examined the SNV landscapes in PDAC in order to identify a commonly 

mutated set of genes, the mutation pattern, signatures, and their impact on overall survival. The 

findings from this study showed that those missense mutations which accounted for over 90% of 

all variants class are the most occurring variant classifications in all the top mutated genes.  

Similarly, SNV of KRAS, TP53, TTN, MUC16, SYNE1, LRP1B, RYR3, RYR1, CSMD1, and 

ARID1A genes are the most occurring  somatic mutations  in PDAC. 
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 The most commonly altered gene, KRAS, had mutations in 83% of samples of PACA-AU, 

79% in PACA-CA, and  60% in PAAD-US . Pooling samples from all study sites, it was observed 

that 80.4% mutations in KRAS occurred in codon 12 in which amino acid glycine was replaced 

with any of aspartic acid, Arginine, Alanine, Serine and Cysteine (D,R,A,S, and C).  This shows 

the specificity of  KRAS mutation  in PDAC tumorigenesis (Figure 9 & 10).  

 We further attempted to compare subjects’ survival based on their positions of KRAS 

codon mutations, and  we observed that patients with  G12D codon mutations have increased risk 

of  death from PDAC (HR=1.4, p<0.001). While there was no study that corroborated the increased 

risk of death due to codon mutation positions, the presence of varying KRAS mutation codons was 

supported by  the  work of  Guo et al., (2021) who observed that in KRAS mutations  of 408 

Chinese PDAC patients, 117 cases were G12D, 105 cases were G12V, 27 cases were G12R, 5 

cases were G12C, and 1 case was G12A 25. Similarly,  TP53  mutations were also observed in 

23.6% of the samples, but the affected codons in TP53 are widespread across the P53 domain, 

overall, the most frequently mutated site was in codon 175 (n = 31 (Figure 11). 

We observed that KRAS, TP53, TTN, MUC16, and SYNE1 are the five major driver genes 

mutated in nearly 100% of PDAC patients. Two of these genes (TTN, and MUC16) are absent in 

what was previously reported to be the top 10 mutated genes in PDAC in some other studies 8,26.  

At first, we hypothesized that the difference in the top mutated genes between sites could be as 

result of different geographical location. However, this turned out not to be supported by our data, 

as the site specific  onco-plots are not consistent with such hypothesis.  

However,  it could also be related to the stages of the cancer, since the  recent WHO 

classification, PDAC variants were categorized into eight variants with specific 

histomorphological features, in which the tumor stage is one of the defining features 55. To check 
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this theory, we stratified samples based on tumor stage at diagnosis, and observed differential 

mutation landscape between stage 1 and 11. Unfortunately, there were no sufficient samples to 

ascertain the mutation profile for stage 3 and 4, also the classification methods are not consistent 

across study sites. (Appendix A).  

Nevertheless, the roles of KRAS, TP53, TTN,  and SYNE1 have been widely 

investigated8,9, and  KRAS is considered a driver gene in the initial stages of most PDAC. Since 

mutations that drive disease conditions are not random, we further checked for cooccurring 

mutations and mutually exclusive mutations. As shown in figure 13, KRAS mutations co-occurred 

with TP53 mutations, while RYR2 mutation co-occurred with, TTN, MUC16, LRP1B, ARD1A, 

RYR, and CSMD1 and MUC16 co-occurred with TGFBR2, HMCN1, FLG, RYR1, CSMD1, 

RYR3, and LRP1B. In all these combinations, there were not any significant mutually exclusive 

occurrences (p< 0.05).  

This observation emphasized the fact that Co-occurring mutations preferentially occur in 

functionally related gene pairs to drive a disease condition; a typical example is the KRAS 

signaling pathway. To the best of my knowledge, there was no study that specifically looked at 

co-mutation  in PDAC specifically, but other studies have looked into other cancer types such as 

lung cancer and multiple cancers as a whole, and observed that mutations co-occurrence is 

characteristic of the pathways involved. 56,57.  

We next attempted to detect the PDAC driver gene using positional clustering. We 

observed that KRAS, ESX1, PROX2, PSG6, TP53, SF3B1, SMAD4, RNF150, CDKN2A, and 

METTL14 are the top driver genes identified through the positional clustering. Our observations 

are similar to the work of Hu et al., 2021 who explained that   oncogenic mutations in PDAC driver 

genes such as KRAS and loss-of-function mutations in tumor suppressors, such as TP53, 
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CDNK2A, DPC4/SMAD4, and BRCA2, are frequently observed58. We next explored the 

correlation between the top 20 mutated genes and overall survival. It was observed that patients 

with PEG3 gene mutation have 2 times the risk of death from PDAC than patient with wild type 

PEG3 while patients with FAT2 mutation have reduced risk of death from PDAC when compared 

to wild type.  Yili et al., (2022) also observed that  PEG3 gene mutations status correlates with 

total mutation burden and  patient clinical outcomes in  PDAC 59. 

 However, there was no previous publication on the role of the FAT2 gene and pancreatic 

cancer, although this gene has been linked to other cancer, for example, Li et al., (2017) showed 

that FAT2 to be a  novel independent prognostic factor for the poor prognosis of gastric carcinoma 

60.  

Similarly, patients with KRAS and TP53 mutations have an increased risk of death from 

PDAC than patients with wild type genotype for these genes. To this end, the presence of an 

enriched oncogenic signaling pathway was checked in PDAC.  About 10 significantly altered 

signaling pathways were identified (assessed for recurrent alterations within and across samples). 

RTK-RAS pathway is the top pathway that was enriched in about 84% of the samples, followed 

by TP53 and HIPPOS pathways with about 25% and 19% representations  respectively (Figure 

17).   

The presence of the RTK-RAS pathway is not surprising,  owing to the presence of KRAS 

and TP53 mutations which are key genes in cell development, tissue-specific cellular homeostasis, 

and cell differentiation,; any dysregulation  in this gene will likely affect its hallmark functions 

61,62. At the same time, hippo signaling is a key regulator of organ size, tissue hemostasis, and 

regeneration. Dysregulation of the Hippo pathway has been recognized in a variety of human 

cancers, including pancreatic cancer 63 
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Furthermore, in this study, the PDAC mutational signature was consistent with 

spontaneous or enzymatic deamination of 5-methylcytosine and DNA mismatch repair.  The 

presence of deaminase enzymes could be an indicator of DNA damage proliferation in PDAC, 

whose expression  could be used as a proxy indicator for  early detection of PDAC 64. Similarly, a 

recent study in Nature confirmed that 5-Hydroxymethylcytosine signatures in circulating cell-free 

DNA are  diagnostic biomarkers for human cancers 65, further transcriptomics and epigenetic 

analysis will be required to completely understand the scope of this signature in PDAC. 

In the same vein, the landscape of CNV in PDAC was also analyzed. It was observed that 

the pattern of the recurrent copy  number amplification and deletions are  widespread  across the 

23 chromosomes in PDAC. However, copy number deletion is the most common CNV (figure 23).  

Interestingly, the chromosomes where the previously identified top mutated genes were 

located also showed significant copy number alterations. For example, chromosomes 17 which 

houses Tp53 genes showed copy number amplification for TP53 (figure 24), while chromosome 

12 which houses KRAS showed copy number deletion. 

Finally, this study looked at the clinical consequence of the CNV types that were observed 

in PDAC. Overall, we observed that copy number loss of heterozygosity of  ( TP53, KRAS, 

SMAD4, RYR3) was associated with reduced risk of death from PDAC, while KRAS and RYR3 

CNV loss associated with an increased risk of deaths (Figure 22 & 23). Since in CNV-LOH, the 

biological system put in  place mechanisms to ensure adequate expression of the genes to meet 

body needs through coordinated gene expression regulations. Unfortunately, the converse of such 

mechanism doesn’t work for copy number gain. 

 While other studies have associated actual copy number values independently and in 

association with other omics data with survival of PDAC, there was no publication that mentioned 
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the role of CNV genes LOH on PDAC survival, however this is important to know, considering 

the strong positive association we observed between CNV LOH and PDAC prognosis. 

5.1. Strengths  

The major strength of this study is the unprecedented  PDAC sample size. Such scale of 

genome data improves the reliability and quality of genomic data analysis. 

Also, the presence of transcriptomic and epigenomcs data of similar scale for the same 

subjects will facilitate the continuation of this research at other omics level without worries about 

quality control process  or bias due to sample sources. 

 The  scope of the data spanned through different regions of the world; such data will help 

to further spread any genomic variations within each region, and also allow easy generalization of 

research findings. 

5.2. Limitations 

The key limitation of this study is the high number of missing values for some key clinical 

correlates, for example, tumor status at the last follow-up,  tumor stage etc. Such missingness 

affects the inclusion of such variables as covariates in the survival model.  

Also, the classification of tumor is not consistent between study sites, thus making it hard 

to compare tumor classes between sites. This limitation further affected the number of samples 

available to compare mutation profiles between stages of cancer.  

Finally, the fact that tumor tissue samples were taken at admission, but no follow-up 

samples were taken, posed a challenge in assessing mutation clearance profile. As such, we could 

not infer residual or time point mutation profiles at follow-up. 
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6. CONCLUSION 

This study analyzed PDAC  SNV and CNV data from  ICGC public database in order to 

further understand the landscape of genomic alterations in PDAC and add to the existing 

knowledge through the discovery of new gene alteration patterns. This study has identified 

interesting patterns, particularly the key driver genes of PDAC, affected biochemical pathways. 

As expected for multifactorial diseases such as PDAC, knowledge of genomic alteration is not 

enough to provide full scale understanding of the disease; however, analyzing genomic data at the 

genomic level can generate insightful research questions and hypotheses.  

On this note, this study has generated a number of important questions and hypotheses that 

will require further analysis at other genomic levels. For example, this study has identified specific 

codons in the mutated genes; it will be important to understand how the mutation codon position 

affects prognosis. Similarly, this study has shown that over 80% of the PDAC cases have KRAS 

mutations, but only 25% of these KRAS mutated samples have TP53 mutations; it will also be 

interesting to understand the effect of this differential genomic alteration pattern on overall 

progression and prognosis, that is KRAS+ TP53+ versus KRAS+ TP53- group.  

This study further observed that SNV mutation landscapes vary with the stages of PDAC; 

it will be helpful to understand the association between these differences and disease subtypes. 

Furthermore, this study has shown that CNV LOH of driver genes is associated with prognosis; it 

will be interesting to understand the biology behind this observation. Lastly, it will be more helpful 

to integrate the knowledge from SNV and CNV into a single point value that can be used to infer 

the prognosis of PDAC. 
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APPENDIX A. OVERVIEW OF THE MAFTOOLS PACKAGE 
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APPENDIX B. DATA PROCESSING 

// RScript source code 
## Data acquisition 
baseurl <- "https://dcc.icgc.org/api/v1/download?fn=/release_28/Projects/"  
url_US_cnv<- paste0(baseurl,"PAAD-US/copy_number_somatic_mutation.PAAD-US.tsv.gz") 
url_AU_cnv<- paste0(baseurl,"PACA-AU/copy_number_somatic_mutation.PACA-AU.tsv.gz") 
url_CA_cnv<- paste0(baseurl,"PACA-CA/copy_number_somatic_mutation.PACA-CA.tsv.gz") 
 
for (i in c(url_US_cnv,url_AU_cnv,url_CA_cnv)) 
   
{ 
   if (!file.exists( substring(i,78,120))) { 
    download.file(i,method="auto",destfile=substring(i,78,120), mode="ab") 
   } 
 
  gunzip(substring(i,78,117), destname = gsub("[.]gz$", "",substring(i,78,120)), 
overwrite = TRUE, remove = FALSE) 
  
  assign(substring(i,70,109),read.table (substring(i,78,117),sep = "\t", header = T)) 
   
} 
ICGC_cnv <- rbind (`copy_number_somatic_mutation.PAAD-
US.tsv`,`copy_number_somatic_mutation.PACA-AU.tsv`,`copy_number_somatic_mutation.PACA-
CA.tsv`) 
 
 CNV_data <-ICGC_cnv [,c(1:20)] 
 
 rm(`copy_number_somatic_mutation.PAAD-US.tsv`,`copy_number_somatic_mutation.PACA-
AU.tsv`,`copy_number_somatic_mutation.PACA-CA.tsv`) 
 
 saveRDS(CNV_data, file = "cnv.rds") 
 
#### Get Mutation file 
 
## Mutation 
 
baseurl <- "https://dcc.icgc.org/api/v1/download?fn=/release_28/Projects/"  
url_US_MUT<- paste0(baseurl,"PAAD-US/simple_somatic_mutation.open.PAAD-US.tsv.gz") 
url_AU_MUT<- paste0(baseurl,"PACA-AU/simple_somatic_mutation.open.PACA-AU.tsv.gz") 
url_CA_MUT<- paste0(baseurl,"PACA-CA/simple_somatic_mutation.open.PACA-CA.tsv.gz") 
 
for (i in c(url_US_MUT,url_AU_MUT,url_CA_MUT)) 
   
{ 
   
   destfile= substring(i,70,112) 
    
 
 if (!file.exists( substring(i,70,112))) { 
    
    download.file(i,method="auto",destfile=substring(i,70,112), mode="ab") 
   } 
  assign(substring(i,70,105),icgcSimpleMutationToMAF(icgc = substring(i,70,112), 
addHugoSymbol = TRUE)) 
 } 
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// RScript source code 
 
snv.us=`simple_somatic_mutation.open.PAAD-US` 
snv.au=`simple_somatic_mutation.open.PACA-AU` 
snv.ca= `simple_somatic_mutation.open.PACA-CA` 
snv.all= rbind(snv.us,snv.au,snv.ca) 
 
rm(snv.us,snv.au,snv.ca) 
rm(`simple_somatic_mutation.open.PAAD-US`,`simple_somatic_mutation.open.PACA-
AU`,`simple_somatic_mutation.open.PACA-CA`) 
 
saveRDS(snv.all, file = "snv.all.rds") 
 
#ICGC_mut<- ICGC_mut[,c(1,5:7,11:13,22:23,31:34)] 
 
# clinical 
baseurl <- "https://dcc.icgc.org/api/v1/download?fn=/release_28/Projects/"  
url_US_clin<- paste0(baseurl,"PAAD-US/donor.PAAD-US.tsv.gz") 
url_AU_clin<- paste0(baseurl,"PACA-AU/donor.PACA-AU.tsv.gz") 
url_CA_clin<- paste0(baseurl,"PACA-CA/donor.PACA-CA.tsv.gz") 
 
for (i in c(url_US_clin,url_AU_clin,url_CA_clin)){ 
   
   if (!file.exists( substring(i,70,112))) { 
    download.file(i,method="auto",destfile=substring(i,70,90), mode="ab") 
   } 
   
if (!file.exists( substring(i,70,90))) { 
   
  gunzip(substring(i,70,90), destname = gsub("[.]gz$", "",substring(i,70,90)), 
overwrite = TRUE, remove = TRUE) 
  #read data 
} 
   assign(substring(i,70,82),read.table (substring(i,70,86),sep = "\t", header = T)) 
  } 
 
ICGC_clin <- rbind (`donor.PAAD-US`,`donor.PACA-AU`,`donor.PACA-CA`) 
 
ICGC_clin$Overall_Survival_Status <- 0 
ICGC_clin$Overall_Survival_Status[which(ICGC_clin$donor_vital_status == "deceased")] 
<- 1 
ICGC_clin$time <- ICGC_clin$donor_survival_time 
ICGC_clin$time[is.na(ICGC_clin$donor_survival_time)] <- 
ICGC_clin$donor_interval_of_last_followup[is.na(ICGC_clin$donor_survival_time)] 
 
ICGC_clin<-ICGC_clin[,-c(3,16,20)] 
 
saveRDS(ICGC_clin, file = "ICGC_clin.rds") 
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APPENDIX C. CLINICAL DATA ANALYSIS 

// RScript source code 
### Descriptives 
id.s= unique(snv.us$icgc_donor_id) 
id.c= unique(cnv.us$icgc_donor_id) 
id.l= unique(clin.us$icgc_donor_id) 
length(id.l) 
length(id.c) 
length(id.s) 
length(intersect(id.l, id.s)) 
length(intersect(id.l, id.c)) 
length(intersect(id.c, id.s)) 
length(intersect(intersect(id.l, id.s), id.c)) 
c.all=  clin.all %>% select(project_code,disease_status_last_followup, 
donor_relapse_type, donor_age_at_diagnosis, donor_sex, donor_vital_status) 
 
t=c.all %>%  
  gtsummary::tbl_summary( 
    by = project_code 
  ) %>%  
  gtsummary::bold_labels() %>%  
  gtsummary::as_kable_extra( 
    booktabs = TRUE, 
    longtable = TRUE, 
    linesep = "" 
    )  
 
# plot 
hist(clin.all %>% filter(project_code == "PACA-AU") %>%  
pull(donor_age_at_diagnosis), breaks=10, xlim=c(0,90), col=rgb(1,0,0,0.5), xlab="Age 
at diganosis",  ylab="Count", main="distribution of age by region") 
hist(clin.all %>% filter(project_code == "PACA-CA") %>%  
pull(donor_age_at_diagnosis), breaks=10, xlim=c(0,90), col=rgb(0,0,1,0.5), add=T)  
hist(clin.all %>% filter(project_code == "PAAD-US") %>%  
pull(donor_age_at_diagnosis), breaks=10, xlim=c(0,90), col=rgb(1,0,1,0.5), add=T) 
 
# Add legend 
legend("topright", legend=c("PACA-AU","PACA-CA","PAAD-US" ), col=c(rgb(1,0,0,0.5),  
     rgb(0,0,1,0.5),rgb(1,0,1,0.5)), pt.cex=2, pch=15 ) 
 
pp <- plot(ggplot(clin.all, aes(x = donor_age_at_diagnosis,  color=project_code, 
fill=project_code)) +   
  geom_histogram(aes(y = (..count..)/sum(..count..)*100), alpha=0.6, binwidth = 5)) 
+ 
scale_fill_viridis(discrete=TRUE) + 
    scale_color_viridis(discrete=TRUE) + 
    theme_ipsum() + 
    theme( 
      legend.position="none", 
      panel.spacing = unit(0.1, "lines"), 
      strip.text.x = element_text(size = 8) 
    ) + 
    xlab("donor age at dignosis") + 
    ylab(" (%)") + 
    facet_wrap(~project_code) 
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ppp <- plot(ggplot(clin.all, aes(x = donor_age_at_diagnosis,  color=project_code, 
fill=project_code)) +   
  geom_histogram(aes(y = (..count..)/sum(..count..)*100), alpha=0.6, binwidth = 5)) 
+ 
scale_fill_viridis(discrete=TRUE) + 
    scale_color_viridis(discrete=TRUE) + 
    theme_ipsum() + 
    theme( 
      panel.spacing = unit(0.1, "lines"), 
      strip.text.x = element_text(size = 8) 
    ) +  
    xlab("Donor age at dignosis") + 
    ylab(" Percentage (%)") 
p <- clin.all %>% 
  ggplot( aes(x=donor_age_at_diagnosis, color=project_code, fill=project_code)) + 
    geom_histogram(alpha=0.6, binwidth = 5) + 
    scale_fill_viridis(discrete=TRUE) + 
    scale_color_viridis(discrete=TRUE) + 
    theme_ipsum() + 
    theme( 
      legend.position="none", 
      panel.spacing = unit(0.1, "lines"), 
      strip.text.x = element_text(size = 8) 
    ) + 
    xlab("donor age at dignosis") + 
    ylab(" (%)") + 
    facet_wrap(~project_code) 
pq <- clin.all %>% 
  ggplot( aes(x=time, color=project_code, fill=project_code)) + 
    geom_histogram(alpha=0.6, binwidth = 5) + 
    scale_fill_viridis(discrete=TRUE) + 
    scale_color_viridis(discrete=TRUE) + 
    theme_ipsum() + 
    theme( 
      legend.position="none", 
      panel.spacing = unit(0.1, "lines"), 
      strip.text.x = element_text(size = 8) 
    ) + 
    xlab("Overall survival time") + 
    ylab("Assigned Probability (%)") + 
    facet_wrap(~project_code) 
ppq <-suppressWarnings(plot(ggplot(clin.all, aes(x = time,  color=project_code, 
fill=project_code)) +   
  geom_histogram(aes(y = (..count..)/sum(..count..)*100), alpha=0.6, binwidth = 
100)) + 
scale_fill_viridis(discrete=TRUE) + 
    scale_color_viridis(discrete=TRUE) + 
    theme_ipsum() + 
    theme( 
      panel.spacing = unit(0.1, "lines"), 
      strip.text.x = element_text(size = 10) 
    ) +  
    xlab("Overall survival time") + 
    ylab(" Percentage (%)"))   
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os <- clin.all %>% 
  ggplot( aes(x=Overall_Survival_Status, color=project_code, fill=project_code)) + 
    geom_histogram(alpha=0.6, binwidth = 5) + 
    scale_fill_viridis(discrete=TRUE) + 
    scale_color_viridis(discrete=TRUE) + 
    theme_ipsum() + 
    theme( 
      legend.position="none", 
      panel.spacing = unit(0.1, "lines"), 
      strip.text.x = element_text(size = 8) 
    ) + 
    xlab("Overall survival status") + 
    ylab("Assigned Probability (%)") + 
    facet_wrap(~project_code) 
 
 
hist_info= hist(clin.all %>% filter(project_code == "PACA-AU") %>%  
pull(donor_age_at_diagnosis), breaks=12, plot = FALSE ) 
 
hist_info$density <- hist_info$counts /    # Compute density values 
  sum(hist_info$counts) * 100 
plot(hist_info, freq = FALSE, col=rgb(1,0,0,0.5), xlab="Age at diganosis",  
ylab="Proportion (%)", main="Distribution of PDAC patients age at diagnosis by study 
site")  
 
 
hist_infob= hist(clin.all %>% filter(project_code == "PACA-CA") %>%  
pull(donor_age_at_diagnosis), breaks=8, plot = FALSE ) 
 
hist_infob$density <- hist_infob$counts /    # Compute density values 
  sum(hist_infob$counts) * 100 
 
plot(hist_infob, freq = FALSE,  xlim=c(0,90), col=rgb(0,0,1,0.5), add=T)  
 
hist_infoc= hist(clin.all %>% filter(project_code == "PAAD-US") %>%  
pull(donor_age_at_diagnosis), breaks=6, plot = FALSE ) 
 
hist_infoc$density <- hist_infoc$counts /    # Compute density values 
  sum(hist_infoc$counts) * 100 
 
#plot(hist_infoc, freq = FALSE, xlim=c(0,90), col=rgb((0,1,1,0.5), add=T) ) 
 
# Add legend 
legend("topright", legend=c("PACA-AU","PACA-CA","PAAD-US" ), col=c(rgb(1,0,0,0.5),  
                                                                   
rgb(0,0,1,0.5),rgb(0,1,1,0.5)), pt.cex=2, pch=15 ) 
 
sfit <- survfit(Surv(time, Overall_Survival_Status)~project_code, data= 
clin.all[clin.all$time >= 10 & clin.all$time <= 2000,]) 
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ggsurvplot(sfit, conf.int=FALSE, pval=TRUE, risk.table=TRUE,  
           #legend.labs=c("Male", "Female"),  
           legend.title="Position of Mutation",   
           #palette=c("dodgerblue2", "orchid2"),  
           title=("Overall survival pattern stratified by project site"),  
           risk.table.height=.3) 
 
prosit=ggsurvplot( 
   sfit,                     # survfit object with calculated statistics. 
   risk.table = TRUE,       # show risk table. 
   pval = TRUE,             # show p-value of log-rank test. 
   conf.int = FALSE,         # show confidence intervals for  
                            # point estimaes of survival curves. 
   xlim = c(0,2000),        # present narrower X axis, but not affect 
                            # survival estimates. 
   break.time.by = 250,    # break X axis in time intervals by 500. 
   #ggtheme = theme_RTCGA(), # customize plot and risk table with a theme. 
 risk.table.y.text.col = T, # colour risk table text annotations. 
  risk.table.y.text = FALSE, # show bars instead of names in text annotations 
                            # in legend of risk table 
 title=("Overall survival pattern stratified by project site") 
 ) 
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APPENDIX D. SNV DATA ANALYSIS 

/ RScript source code 
snv.all =  
readRDS("C:/Users/17018/Documents/NDSU/ExpScore/pub/msthesis/snv.all.rds")  
  # Filtering mutations in gliomas  
 EA_pathways <- TCGAbiolinks:::listEA_pathways 
pdac_pathways <- EA_pathways[grep("pancreatic", tolower(EA_pathways$Pathway)),] 
 
 pdac_signaling_genes <- unlist(strsplit(as.character(pdac_pathways$Molecules),",")) 
  
snv.all <-snv.all[snv.all$Hugo_Symbol %in% pdac_signaling_genes,] 
 
 
snv=  snv.all %>% select("Hugo_Symbol", "Variant_Classification",  "Variant_Type", 
"Reference_Allele" ,    "Tumor_Seq_Allele1", "Tumor_Seq_Allele2", 
"consequence_type", "project_code" , "aa_mutation") 
 
 
s.tv= snv  %>% select(Variant_Type, project_code) %>% 
  gtsummary::tbl_summary( 
    by = project_code 
  ) %>%  
  gtsummary::bold_labels() %>%  
  gtsummary::as_kable_extra( 
    booktabs = TRUE, 
    longtable = TRUE, 
    linesep = "" 
    )  
 
clin.all=readRDS("C:/Users/17018/Documents/NDSU/ExpScore/pub/msthesis/ICGC_clin.rds"
) 
 
colnames(clin.all)[1]= "Tumor_Sample_Barcode" 
colnames(snv.all)[16]= "Sample_Barcode" 
colnames(snv.all)[22]= "Tumor_Sample_Barcode" 
clin.all$time = as.numeric(clin.all$time) 
clin.all = clin.all[clin.all$time >=5,] 
 
clin.all =clin.all[!is.na(clin.all$time),] 
#library("GenVisR") 
clin.all$time = as.numeric(clin.all$time) 
laml = read.maf(maf = snv.all, clinicalData = clin.all) 
usmf =   read.maf(maf = snv.all[snv.all$project_code == "PAAD-US",], clinicalData = 
clin.all[clin.all$project_code == "PAAD-US",]) 
aumf=   read.maf(maf = snv.all[snv.all$project_code == "PACA-AU",], clinicalData = 
clin.all[clin.all$project_code == "PACA-AU",]) 
camf=   read.maf(maf = snv.all[snv.all$project_code == "PACA-CA",], clinicalData = 
clin.all[clin.all$project_code == "PACA-CA",]) 
 
plotmafSummary(maf = camf, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE, 
titvRaw = FALSE) 
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#oncoplot for top ten mutated genes. 
oncoplot(maf = laml, top = 10) 
 
fabcolors = RColorBrewer::brewer.pal(n = 3,name = 'Spectral') 
names(fabcolors) = c("PAAD-US", "PACA-CA", "PACA-AU") 
fabcolors = list(project_code = fabcolors) 
 
oncoplot(  maf = laml, top=20 ,  clinicalFeatures = 'project_code', sortByAnnotation 
= TRUE, annotationColor =fabcolors, draw_titv = TRUE, pathways = "auto") 
 
 
vc_cols = RColorBrewer::brewer.pal(n = 8, name = 'Paired') 
 
names(vc_cols) = c( 
  'Frame_Shift_Del', 
  'Missense_Mutation', 
  'Nonsense_Mutation', 
  'Multi_Hit', 
  'Frame_Shift_Ins', 
  'In_Frame_Ins', 
  'Splice_Site', 
  'In_Frame_Del') 
 
oncoplot(maf = usmf, 
         top = 20,draw_titv = TRUE) 
 
waterfall(laml, mainRecurCutoff = 0.06) 
 
oncoplot( 
  maf = usmf, 
  draw_titv = TRUE, 
  #pathways = pathways, 
  clinicalFeatures = c('Overall_Survival_Status'), 
  sortByAnnotation = TRUE, 
 # additionalFeature = c("Tumor_Seq_Allele2", "C"), 
  #leftBarData = aml_genes_vaf, 
  leftBarLims = c(0, 100) 
  #rightBarData = laml.mutsig[,.(gene, q)], 
 ) 
 
oncoplot( 
  maf = camf, 
  draw_titv = TRUE, 
  #pathways = pathways, 
  clinicalFeatures = c( 'Overall_Survival_Status'), 
  sortByAnnotation = TRUE, 
 # additionalFeature = c("Tumor_Seq_Allele2", "C"), 
  #leftBarData = aml_genes_vaf, 
  leftBarLims = c(0, 100) 
  #rightBarData = laml.mutsig[,.(gene, q)], 
 ) 
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oncoplot( 
  maf = aumf, 
  draw_titv = TRUE, 
  #pathways = pathways, 
  clinicalFeatures = c('Overall_Survival_Status'), 
  sortByAnnotation = TRUE, 
 # additionalFeature = c("Tumor_Seq_Allele2", "C"), 
  #leftBarData = aml_genes_vaf, 
    leftBarLims = c(0, 100) 
  #rightBarData = laml.mutsig[,.(gene, q)], 
 ) 
somaticInteractions(maf = laml, top = 15, pvalue = c(0.05, 0.1)) 
 
somaticInteractions(maf = usmf, top = 15, pvalue = c(0.05, 0.1)) 
 
somaticInteractions(maf = aumf, top = 15, pvalue = c(0.05, 0.1)) 
 
somaticInteractions(maf = camf, top = 15, pvalue = c(0.05, 0.1)) 
 
sv= c("Nonsense_Mutation", "Frame_Shift_Ins", "Frame_Shift_Del", 
"Translation_Start_Site", "Splice_Site", "Nonstop_Mutation", "In_Frame_Ins", 
"In_Frame_Del", "Missense_Mutation", "5'Flank", "3'Flank", "5'UTR", "3'UTR", "RNA", 
"Intron", "IGR", "Silent") 
 
 x=  snv.all %>% select(Tumor_Sample_Barcode, Hugo_Symbol,Variant_Classification ) 
%>% filter(Variant_Classification %in% sv ) %>% as.data.frame() 
  
prog_geneset = survGroup(maf = laml, top = 50, geneSetSize = 1, time = "time", 
Status = "Overall_Survival_Status", verbose = FALSE) 
prog_geneset= prog_geneset[prog_geneset$P_value <= 0.1,] 
usg=c("KRAS", "SCN5A", "FAT4", "PREX1") 
asg=c("BAI3", "FAT4", "COL6A5", "LRP2", "DCHS1","FLG") 
cag= c("MUC19", "ZNF536", "PAPPA2") 
mafSurvival(maf = laml, genes = 'KRAS', time = "time", Status = 
"Overall_Survival_Status", isTCGA = TRUE) 
 
mafSurvGroup(maf = laml, geneSet = c("KRAS", "TP53", "TTN"), time = "time", Status = 
"Overall_Survival_Status") 
 
laml.sig = oncodrive(maf = laml, AACol = 'aa_mutation', minMut = 2, pvalMethod = 
'zscore') 
 
##signature 
 
library("BSgenome.Hsapiens.UCSC.hg19", quietly = TRUE) 
laml.tnm = trinucleotideMatrix(maf = laml, prefix = 'chr', add = TRUE, ref_genome = 
"BSgenome.Hsapiens.UCSC.hg19") 
aumf.tnm = trinucleotideMatrix(maf = aumf, prefix = 'chr', add = TRUE, ref_genome = 
"BSgenome.Hsapiens.UCSC.hg19") 
 
camf.tnm = trinucleotideMatrix(maf = camf, prefix = 'chr', add = TRUE, ref_genome = 
"BSgenome.Hsapiens.UCSC.hg19") 
 
usmf.tnm = trinucleotideMatrix(maf = usmf, prefix = 'chr', add = TRUE, ref_genome = 
"BSgenome.Hsapiens.UCSC.hg19") 
 
plotApobecDiff(tnm = laml.tnm, maf = laml, pVal = 0.2) 
plotApobecDiff(tnm = aumf.tnm, maf = aumf, pVal = 0.2)  
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library('NMF') 
library('pheatmap') 
 
##########ALL################# 
 
laml.sign = estimateSignatures(mat = laml.tnm, nTry = 6) 
 
laml.sig = extractSignatures(mat = laml.tnm, n = 3) 
 
#Compate against original 30 signatures  
laml.og30.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "legacy") 
 
#Compate against updated version3 60 signatures  
laml.v3.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "SBS") 
 
pheatmap::pheatmap(mat = laml.og30.cosm$cosine_similarities, cluster_rows = FALSE, 
main = "cosine similarity against validated signatures") 
 
maftools::plotSignatures(nmfRes = laml.sig, title_size = 1.2, sig_db = "SBS") 
 
####################AU#################################################### 
aumf.sign = estimateSignatures(mat = aumf.tnm, nTry = 6) 
 
aumf.sig = extractSignatures(mat = aumf.tnm, n = 3) 
 
#Compate against original 30 signatures  
aumf.og30.cosm = compareSignatures(nmfRes = aumf.sig, sig_db = "legacy") 
 
#Compate against updated version3 60 signatures  
aumf.v3.cosm = compareSignatures(nmfRes = aumf.sig, sig_db = "SBS") 
 
pheatmap::pheatmap(mat = aumf.og30.cosm$cosine_similarities, cluster_rows = FALSE, 
main = "cosine similarity against validated signatures") 
 
maftools::plotSignatures(nmfRes = aumf.sig, title_size = 1.2, sig_db = "SBS") 

camf.sign = estimateSignatures(mat = camf.tnm, nTry = 6) 
 
camf.sig = extractSignatures(mat = camf.tnm, n = 3) 
 
#Compate against original 30 signatures  
camf.og30.cosm = compareSignatures(nmfRes = camf.sig, sig_db = "legacy") 
 
#Compate against updated version3 60 signatures  
camf.v3.cosm = compareSignatures(nmfRes = camf.sig, sig_db = "SBS") 
pheatmap::pheatmap(mat = camf.og30.cosm$cosine_similarities, cluster_rows = FALSE, 
main = "cosine similarity against validated signatures") 
maftools::plotSignatures(nmfRes = camf.sig, title_size = 1.2, sig_db = "SBS") 

usmf.sign = estimateSignatures(mat = usmf.tnm, nTry = 6) 
usmf.sig = extractSignatures(mat = usmf.tnm, n = 3) 
#Compate against original 30 signatures  
usmf.og30.cosm = compareSignatures(nmfRes = usmf.sig, sig_db = "legacy") 
#Compate against updated version3 60 signatures  
usmf.v3.cosm = compareSignatures(nmfRes = usmf.sig, sig_db = "SBS") 
pheatmap::pheatmap(mat = usmf.og30.cosm$cosine_similarities, cluster_rows = FALSE, 
main = "cosine similarity against validated signatures") 
maftools::plotSignatures(nmfRes = usmf.sig, title_size = 1.2, sig_db = "SBS") 
  



 

65 

APPENDIX E. CNV DATA ANALYSIS 

// RScript source code 
clin.all=readRDS("C:/Users/17018/Documents/NDSU/ExpScore/pub/msthesis/ICGC_clin.rds"
) 
cnv.all=readRDS("C:/Users/17018/Documents/NDSU/ExpScore/pub/msthesis/cnv.rds") 
 
cnv= cnv.all[,c(1,2,12,13,14),]; rm(cnv.all) 
library(GenomicRanges) 
# Get gene information from GENCODE using biomart 
genes <- TCGAbiolinks:::get.GRCh.bioMart(genome = "hg19")  
genes <- genes[genes$external_gene_name != "" & genes$chromosome_name %in% 
c(1:22,"X","Y"),] 
genes[genes$chromosome_name == "X", "chromosome_name"] <- 23 
genes[genes$chromosome_name == "Y", "chromosome_name"] <- 24 
genes$chromosome_name <- sapply(genes$chromosome_name,as.integer) 
genes <- genes[order(genes$start_position),] 
genes <- genes[order(genes$chromosome_name),] 
genes <- genes[,c("external_gene_name", "chromosome_name", 
"start_position","end_position")] 
colnames(genes) <- c("GeneSymbol","Chr","Start","End") 
genes_GR <- makeGRangesFromDataFrame(genes,keep.extra.columns = TRUE) 
 
cnv= cnv[,c(3,4,5,1,2)] 
colnames(cnv) <- c("Chr","Start","End","sid", "proj") 
 
cnv[cnv$Chr == "X", "Chr"] <- 23 
cnv[cnv$Chr == "Y", "Chr"] <- 24 
 
sCNV_GR <- makeGRangesFromDataFrame(cnv,keep.extra.columns = TRUE) 
hits <- findOverlaps(genes_GR, sCNV_GR, type = "within") 
sCNV_ann <- cbind(cnv[subjectHits(hits),],genes[queryHits(hits),]) 
sCNV_ann <- sCNV_ann [,c(1,2,3,4,5,6)] 
sCNV_ann <- sCNV_ann  %>% distinct() 
 
sCNV_ann <- sCNV_ann %>% mutate(n=nchar(GeneSymbol)) %>% filter(n <=5) 
 
############I tried with ICGC , but failed 
mycnv= cnv.all[,c(1,2,12,13,14,9, 10, 11, 18,19)] 
mycnv$segmean= log2(mycnv$copy_number/ 2) 
 
mycnv=mycnv[mycnv$project_code == "PACA-CA",][,-2] 
 
mycnv$probe=(mycnv$end_probe_id - mycnv$start_probe_id) +1  
 
mycnv= mycnv[,c(1:4,11,10)] 
 
colnames(mycnv)= c("Sample", "Chromosome","Start","End","Num_Probes","Segment_Mean") 
 
pdac.nocnv <-mycnv;rm(mycnv) 
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pdac.nocnv=pdac.nocnv[pdac.nocnv$Segment_Mean !="-Inf",] 

pdac.nocnv=pdac.nocnv[pdac.nocnv$Segment_Mean !="NaN",] 

Tquery.pdac.nocnv <- GDCquery(project = "TCGA-PAAD", 

                            data.category = "Copy number variation", 

                            data.type = "Copy number segmentation", 

                            legacy = TRUE, 

                            file.type = "nocnv_hg19.seg", 

                            sample.type = c("Primary Tumor")) 

GDCdownload(Tquery.pdac.nocnv, files.per.chunk = 100) 

pt.nocnv <- GDCprepare(Tquery.pdac.nocnv, ) 

pdac.nocnv <- pt.nocnv;rm(pt.nocnv) 

# pdac.nocnv <- pdac.nocnv[,-1] 

# pdac.nocnv <- pdac.nocnv[,c(6,1,2,3,4,5)] 

 

rm(Tquery.pdac.nocnv) 

 

# Add label (0 for loss, 1 for gain) 

cnvMatrix <- cbind(pdac.nocnv,Label=NA) 

cnvMatrix[cnvMatrix[,"Segment_Mean"] < -0.3,"Label"] <- 0 

cnvMatrix[cnvMatrix[,"Segment_Mean"] > 0.3,"Label"] <- 1 

cnvMatrix <- cnvMatrix[!is.na(cnvMatrix$Label),] 

#head(cnvMatrix) 

# Remove "Segment_Mean" and change col.names 

cnvMatrix <- cnvMatrix[,-c(6)] 

colnames(cnvMatrix) <- c("Sample.Name", "Chromosome", "Start", "End", 

"Num.of.Markers","Aberration") 

head(cnvMatrix) 

# Substitute Chromosomes "X" and "Y" with "23" and "24" 

cnvMatrix[cnvMatrix$Chromosome == "X","Chromosome"] <- 23 
 


