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ABSTRACT 

Java developers rely on code reusability because of its time and effort reduction advantage. 

However, they are exposed to vulnerabilities in publicly available open-source software (OSS) 

projects. This study employed a multi-stage research approach to investigate the extent to which 

open-source Java projects are secured. The research process includes text analysis of Java’s 

Common Vulnerabilities and Exposures (CVE) descriptions and static code analysis using 

GitHub’s CodeQL. This study found (a) cross-site scripting, (b) buffer overflow (though analyzed 

as array index out of bounds), (c) data deserialization, (d) input non-validation for an untrusted 

object, and (e) validation method bypass as the prevalent Java’s vulnerabilities from the MITRE 

CVEs. The static code analysis of the compatible seven (7) Java projects out of the 100 top projects 

cloned from GitHub revealed a 71.4% presence of the array index out-of-bounds vulnerability.  
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1. INTRODUCTION 

Software security approaches emphasize the extension of security design and integration 

to requirement engineering, software architecture, and coding beyond the prevalent security testing 

[1]. These approaches, which explain the need to integrate security best practices to every stage of 

the software development lifecycle (SDLC), include, but are not limited to, risk analysis, abuse 

case modeling, and static code analysis [2]–[4]. Implementing these approaches is essential for all 

software projects. Still, open-source software (OSS) projects are direr because many OSS libraries 

that speed up the development process have been sources of known vulnerabilities [5].  

Cybercriminals often exploit vulnerabilities in the software to perpetrate fraud, data and 

identity theft, and denial-of-service attacks [6]. The OSS projects, like others, are always alerted 

of vulnerabilities, and the communities are urged to work on fixing them. The Java OSS projects 

have also experienced damaging and costly attacks due to vulnerabilities exploited through a Java 

development platform or Java Runtime Engine (JRE) [7], [8]. The Common Vulnerabilities and 

Exposures (CVE) and Common Weakness Enumeration (CWE) have documented these 

experiences and their associated impacts [9].  

Java developers rely on code reusability because of its time and effort reduction advantage 

and thus are exposed to vulnerabilities in these publicly available OSS projects. The advocacy for 

secure coding practices, such as input validation, output encoding, and session management [10], 

has been further stressed and expected to be adopted by all, including OSS project contributors. 

However, the extent to which this has been done is unknown. Also, the anticipated impact of secure 

coding among the OSS projects and Java is rarely investigated. The Java language’s approach to 

security, including encapsulation and access control mechanism, has not stopped it from failing 

security testing in interesting ways [10]. Based on understanding these situations, this study 
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answered a central question: How secured are the codes written in the top GitHub’s open-source 

Java projects? 

In answering the central question, the following are the research questions answered: 

i. What are Java’s vulnerabilities prevalent in its MITRE CVE’s vulnerability 

descriptions? 

ii. What are the Java’s vulnerabilities suggested in the commit messages of GitHub’s 

open-source projects? 

iii. How secured are Java’s open-source projects in GitHub from Java’s MITRE CVE 

vulnerabilities? 

In the light of these research questions, the objectives achieved by this study are: 

i. Identification of Java’s vulnerabilities from the MITRE CVE’s vulnerability descriptions. 

ii. Identification of Java’s vulnerabilities suggested by the projects’ commits logs. 

iii. Security Assessment of GitHub’s Java projects code for the identified Java vulnerabilities. 

GitHub is chosen as the public repository for fetching Java’s OSS projects because it 

supports all popular programming languages and provides numerous development supports [12]. 

A multi-stage research approach that includes text analysis and static code analysis using GitHub’s 

CodeQL [11] is employed by this study to answer the research questions and achieve their 

respective objectives. The remaining parts of this work are organized as follows: Chapter 2 

discusses the background and motivation of the study. Examples of Java’s vulnerabilities are 

discussed, and past studies on building security into the software construction phase of the SDLC 

are presented. Chapter 3 presents the research approach, enumerating the techniques and 

procedures, employed by this study. Chapter 4 presents the findings, and Chapter 5, as the 

concluding section, discusses the implications and limitations of the study.  
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2. BACKGROUND AND MOTIVATION FOR STUDY 

This study stems from the need for securing software by starting from writing secure code. 

It emphasizes integrating security into the software construction stage of the SDLC. Software 

security has been primarily a post-development activity, with security and penetration testing, 

among others. Understanding the characteristics of the Common Vulnerabilities and Exposures 

(CVEs) and how they can be exploited is as essential in defensive security as it is for offensive 

security. The analysis of Java’s CVEs in GitHub’s open-source projects is an essential preliminary 

study into understanding the security status of the public code repositories. The security of these 

public code repositories would further suggest a compliance rate to secure coding practices. In this 

section, prominent Java CVEs are discussed, with due attention to the coding characterizations of 

the weaknesses. Also, the concept of “Building Security In,” popularized by McGraw [1] as it 

relates to software construction security best practices, was discussed.  

 

2.1. Java’s common vulnerabilities and exposures 

Vulnerabilities are generally weaknesses in the system design or code implementation. 

They can be exploited for attack manifestation. Some vulnerabilities are general to many 

programming languages, and some are specific to Java. The CVE program [9] identifies, defines, 

and catalogs publicly announced cybersecurity vulnerabilities. The initiative helps cybersecurity 

professionals globally to coordinate efforts addressing vulnerabilities. This study adopts Holzinger 

et al.’s [7] discussion of the Java CVEs. [7] specified unauthorized use of restricted classes, loading 

arbitrary classes, the unauthorized definition of privilege classes, reflective access to methods and 

fields, confused deputies, caller sensitivity, method handles, serialization and type confusion, and 

privileged code execution. These weaknesses are discussed in the following sub-sections. 
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2.1.1. Unauthorized use of restricted classes 

Java platform is highly affected by unauthorized use of restricted classes. Custom classes 

defined with such an exploit can run arbitrary codes and disable security managers without further 

security checks. The object-oriented programming (OOP) paradigm’s information hiding is often 

violated, thus exposing sensitive functionality to untrusted code. Preventing this experience might 

finally be done by the Java Module System [11], but there is still a considerable knowledge gap in 

this area. 

The misconception of inner class restriction is prevalent among Java programmers, and the 

belief that enclosing classes can only access the inner class fields is incorrect for many Java 

compilers. The compilation is often done into independent classes with scopes extended 

throughout the package. Therefore, when compiled, the private fields of the outer Class changed 

to package scope and gave package scope access. Code listing in Figure 2.1 is an example of an 

inner class with access to the private variable of its enclosing class. In the code listing example in 

Figure 2.1, the outer_value variable would become accessible to all other classes in the same 

package, thus violating the intended scope restriction.  

 

 

 

 

 

 

 

Figure 2.1. Inner class restricted class vulnerability. 

package testresearch;  

public class outerclass {  

private String outer_variable = "private outer variable";  

class innerclass {  

void printprivate() {  

System.out.println("private field"+outer_variable);  

} }  

public static void main(String a[]){...} } 

} 
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2.1.2. Loading arbitrary classes 

Java platform has dynamic class loading, which is a central security feature. By design, the 

class loaders ensure that all code load only classes it can access. However, malicious code can 

abuse a system class to invoke a caller-sensitive method, such as Class.forName(String), 

as a confused deputy. The caller-sensitive method will use the immediate defining class loader to 

load the requested class. For example, the immediate caller of forName is a trusted system class; 

but an untrusted code can request the loading of arbitrary restricted classes. Figure 2.2 lists the 

simplified code illustration for arbitrary class loading.  

 

 

 

 

 

Figure 2.2. Simplified code illustration for arbitrary class loading [7]. 

 

The MBeanInstantiator, in the listing in Figure 2.2 (line 3), is the trusted Class with 

vulnerability because it provides an unrestricted, public interface to load arbitrary classes. A 

special class loader that will not define a privileged context for a custom class can allow an 

untrusted code in cases of complex call sequences. 

 

2.1.3. Unauthorized definition of privilege classes 

Arbitrary code execution can be caused by defining a class, with all permissions, in a 

protected domain. Exploits can use restricted classes to define a custom class and thus requires an 

attack vector that abuses the vulnerability to gain access. Unauthorized access to 

1 // Method loads arbitrary classes 

2 private Class GetClass1 (String s) { 

3  JmxMBeanServer server =(JmxMBeanServer)JmxMBeanServer; 

4  newMBeanServer ("",null ,null , true ); 

5  MBeanInstantiator i= server.getMBeanInstantiator (); 

6  return i.findClass (s ,(ClassLoader) null ); 

7 } 
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MethodHandles is called internal methods of class loaders, bypassing security checks 

implemented in the publicly accessible methods.  

 

2.1.4. Reflective access to methods and fields 

Malicious codes use improper reflection in system classes and caller-sensitive methods to 

bypass information hiding. This weakness, which is found in the sun.awt.SunToolkit, has 

been used to access private members of the Java class. There are also experiences of using 

confused deputies to invoke caller-sensitive methods, such as getDeclaredFields and 

getDeclaredMethods in Java.lang.Class. For example, as shown in the code listing in 

Figure 2.3, a private variable, say private_variable, can be called by a public method, say 

public_method (). It would increase the private variable’s scope; therefore, its content, 

which might be confidential information, can be revealed.  

 

 

 

 

Figure 2.3. Access violation vulnerability. 

 

2.1.5. Confused deputies 

Confused deputies are privilege escalators, legitimately tricked by another program into 

misusing its authority. They can be used to invoke the caller-sensitive methods, though it will not 

allow bypassing permission checks since its privileges are limited. The 

MethodHandle.invokeWithArguments can be used by untrusted code as a wrapper to 

MethodHandle.invokeExact, which will call the target method. Figure 2.4 lists the 

simplified code illustration of the confused deputy.  

1 public String public_method ( ) { 

2   

3   return private_variable; 

4 } 
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Figure 2.4. Simplified code illustration of confused deputy.  

 

2.1.6. Caller sensitivity 

Caller-sensitive methods behave according to the trust level of their callers. They can skip 

permission checks when the immediate caller is seen to be trusted. Therefore, they are not 

primarily vulnerabilities but can be abused if called through a confused deputy. Exploits that use 

caller-sensitive methods can use Class.forName to load arbitrary classes and get reflective 

access to class members (fields, methods, and constructors) that should not ordinarily be accessed. 

However, Holzinger et al. [7] noted that empirical evaluation of the security check issues with 

caller-sensitive methods is required because callers are not explicitly aware of their privileges.  

 

2.1.7. Method handles 

MethodHandles, just as the reflection API, bypass information hiding. The lookup 

objects called by MethodHandles.lookup are facilitated by a confused deputy and used by 

malicious code in accessing system class members. The lookup object retrieved from the confused 

deputy grants such undue access when MethodHandles is used because it is less strict for type 

checking or an alternative to reflection API. Figure 2.5 illustrates how MethodHandles is 

exploited to access Class’s members. 

 

1 Class A { 

2  public Object invoke (Method m, Object [] args ) { 

3   return m.invoke (this, args); 

4 } 

5 // ... 

6 } 
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Figure 2.5. Exploiting MethodHandles for unauthorized access [7]. 

 

2.1.8. Serialization issues and type confusion 

Serialization is the process of turning data objects into formats that can be saved to storage, 

sent as communication parts, or restored later. Therefore, data deserialization is reversing the 

serialization process. It involves rebuilding data back to objects from some formats. JavaScript 

Object Notation (JSON) and extensible Markup Language (XML) are the most popular data 

formats for serializing data. Native deserialization mechanisms provided by many programming 

languages, Java inclusive, can be repurposed for attack when an untrusted data object is involved. 

The Java’s ObjectInputStream#resolveClass() method can be exploited for arbitrary 

classes’ deserialization. Figure 2.6 shows a Java deserialization routine.  

 

 

 

 

 

 

 

 

1 // Method loads arbitrary classes 

2 private Class getClass2 (String s) { 

3  MethodType mt = MethodType.methodType(Class.class, String.class); 

4  MethodHandles.Lookupl = MethodHandles.publicLookup(); 

5  MethodHandle mh = l.findStatic(Class.class," forName ",mt); 

6  return (Class)mh.invokeWithArguments (new Object []{s}); 

7 } 
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Figure 2.6. Java deserialization routine [12]. 

 

The data deserialization-related vulnerabilities leverage class loading and type safety 

security features in Java for attacks [7]. Figure 2.6 depicts the serialization of an object from a 

serializable class (ValueObject). The object’s value, Hi, can be changed during deserialization 

without calling the constructor. An invalid object can, therefore, be created. The attack can be 

perpetrated by manually creating a serialized object inserted into the 

AtomicReferenceArray. 

 

2.1.9. Privileged code execution 

Privilege code execution is a type of vulnerability that allows attackers to execute code in 

a way that successfully bypasses arbitrary permission checks. They are different from and more 

radically powerful than confused deputies because they do not rely on caller sensitivity. Exploits 

public class ValueObject implements Serializable { 

   private String value; 

   private String sideEffect; 

   public ValueObject() { 

       this("empty"); 

   } 

   public ValueObject(String value) { 

       this.value = value; 

       this.sideEffect = java.time.LocalTime.now().toString(); 

   } 

} 

ValueObject vo1 = new ValueObject("Hi"); 

FileOutputStream fileOut = new FileOutputStream("ValueObject.ser"); 

ObjectOutputStream out = new ObjectOutputStream(fileOut); 

out.writeObject(vo1); 

out.close(); 

fileOut.close(); 
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achieve privileged code execution through abuse system classes and trusted method chaining. In 

abuse system classes, the privileges are elevated, and attack methods are called with arbitrary 

arguments. However, malicious code creates a thread that executes the attacker-provided method 

in trusted method chaining. The code listing in Figure 2.7 shows how a system property of the 

privilege System class can gain unintended information, precisely the name value. 

 

 

 

 

 

Figure 2.7. Privilege access as-a-result of abuse of System classes. 

 

2.2. Building security in software construction 

The need for software security approaches that are system development focused and 

beyond the operational and application-level security is dire. Against this backdrop, general 

software security best practices have been suggested for every stage of the SDLC. These 

approaches are needed as extensions of security design and integration to requirement engineering, 

software architecture, coding, and testing. Specifically, for the software construction phase, static 

analysis tools, program analysis, obfuscation and masking, verification and model checking, 

knowledge graph modeling, and machine and deep learning techniques are recorded as adapted 

strategies for building security into coding. 

Static code analysis tools – which are either proprietary [6], [13] or open-source [14]–[16] 

– search the code or analyze compiled versions to identify vulnerabilities, among others. The tools 

provide immediate feedback to developers, help in the speedy build process, and fasten the release 

public static String getProp(final String name) 

{ 

return (String) AccessController.doPrivileged(new PrivilegedAction() 

{  

public Object run() 

{ 

// privileged code goes here, for example: 

return System.getProperty(name); 

} 

}); 

} 
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period. Unfortunately, they may give false positives and miss specific security issues, such as 

authentication. They are primarily unsuitable for codes that cannot be compiled and are generally 

language-specific [17]. In the same vein, Taint analysis, one of the evaluation analyses of 

Collective Program Analysis proposed by Upadhyaya and Rajan [18], detects and reports 

vulnerabilities in the program source code. The analysis checks if data from external inputs like 

consoles are read to the outputs and reports associated vulnerabilities. In a similar study, taint 

analysis is used in detecting malicious input in embedded systems [19]. It helps track tainted data 

from its source to its application point in the source code.  

Formal software verifications and model checking methods have also been used to prove 

code correctness and assess compliance with specified security constraints, such as no memory, 

type safety violations, and logging sensitive information [3], [20]. However, its adoption and wide 

acceptability have been limited due to its inability to scale. Obfuscation and masking techniques 

were also invented to enhance software security [21], [22]. These include selecting a subset of 

code to obfuscate or transform to the desired level that resists reverse engineering and removes 

potential security vulnerabilities. The implementations involve a finite-state machine (FSM), 

which decomposes programs for simple predicate extraction [21], and code transformation, which 

uses opaque constructs from aliasing and concurrency [22]. 

With applicability in automated detection of vulnerabilities in source code, a knowledge 

graph of vulnerabilities data was constructed by Jia et al. [23]. The study used the Stanford Named 

Entity Recognizer (NER) as a machine learning training model for an extractor of cybersecurity-

related entities. Their work, useGazette parameter, though focusing on broader cybersecurity 

entities, is helpful in training recognizers in automated detection of vulnerabilities. A similar 

anticipated study for detecting vulnerabilities is [24] on classifying service-oriented architecture 
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(SOA) vulnerabilities. The study proposed a comprehensive classification to identify the systems’ 

vulnerabilities, including building vulnerability management tools for software code, due to 

existing additional SOA vulnerabilities.  

Notably, there are significant new studies on detecting program source code vulnerabilities 

using machine and deep learning techniques. These range from vulnerabilities detection in open 

source dependencies [5], [25], to programming languages like C [26]–[29], C++[26], [27], and 

Java [30]. Building security in software is the major motivation of these studies, but there are other 

important specific problems. For instance, open-source software (OSS) libraries, widely used to 

speed up the development process, have been sources of publicly known vulnerabilities [5]. The 

static scanning tools have also been inadequate for vulnerability detection in complex but low-

level languages like C [28]. There is also an invention for just-in-time vulnerability detection in 

source code [30]. Also, a proposed minimum intermediate representation learning technique 

reduces the false-positive rate [29]. 

GitHub’s CodeQL [31] and Facebook’s PySa [32] are currently open-source projects for 

vulnerability detection in source code. CodeQL is a semantic code analysis engine that allows 

querying code as data to detect variants of a vulnerability. Using taint analysis, CodeQL can be 

used on codebases to discover bad patterns [31]. A similar, but a specific tool for Python language, 

is PySa – an acronym for Python Static Analyzer. It detects and prevents security and privacy 

issues in Python code. It is built on a type checker to analyze data flows through the code to identify 

web application security issues, including cross-site scripting and SQL injection [32]. Table 2.1 

summarizes the “build security in” techniques for the software construction phase. 
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Table 2.1. Build-Security-In techniques for the software construction phase. 

Techniques  Strengths Limitation  

Static code analysis 

tool [13], [15], [32] 

Suitable for flagging 

vulnerabilities in source code or 

after being compiled. 

It can be integrated into IDE to 

provide immediate feedback. 

Give a high number of false 

positives. 

Miss specific security issues, 

such as authentication. 

Program analysis 

[18], [19] 

Optimal in detecting malicious 

input or flow within the source 

code. 

Limited in scope, therefore, 

mostly need supporting 

techniques for optimal 

performance. 

Obfuscation and 

masking [21], [22] 

Suitable for concurrency security 

control. 

Applicable in state-dependent 

code. 

It is unable to scale. 

 

Verification and 

model checking [3], 

[20] 

Suitable for actualizing complete 

and sound techniques. 

It is unable to scale. 

 

Knowledge graph 

(ontology) modeling 

[23], [24] 

It is suitable for rule-based 

verification and formalization and 

can easily integrate into other 

technologies. 

Requires supporting techniques 

like program analysis for 

abstract syntax tree construction 

for optimal performances. 

Machine and Deep 

learnings [5], [26], 

[28] 

It handles multivariate data 

optimally. 

Suitable for pattern recognition 

on all types of datasets. 

It has a high rate of false 

positives. 

It requires intensive data for 

optimal performance.  
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3. RESEARCH APPROACH 

A multi-step research approach is adopted in proffering answers to the research questions 

of this study. Text and static code analysis are the main components of this research process. 

Considering the leverage provided by computational methods and tools, text analysis helps extract 

information from documents. It is also used in identifying and exploring interesting patterns from 

unstructured textual data [30]. Text analysis’s use cases include, but are not limited to, text 

categorization, text clustering, entity extraction, production of taxonomies, sentiment analysis, and 

entity relation modeling [31]. The text analysis techniques are used to identify the prevalent Java 

vulnerabilities published by the MITRE CVEs. 

Static code analysis tools have been reported for their extensive use and merits in providing 

immediate feedback to developers, helping in the speedy build process, and fastening the release 

period [10]– [14]. They are used for finding bugs or security vulnerabilities in the code by scanning 

and not executing the code. Figure 3.1 presents the research design process. Sub-sections 3.1 

and3.2 provide the details of the steps involved in the components. Also, the code implementation 

of these components is presented1. 

 

 

 

 

 

 

 

 

1 https://github.com/Semiu/java-codesecurity/tree/main/java-cve-analysis 
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Figure 3.1. Research approach. 

 

3.1. Text analysis to identify prominent Java CVE in MITRE and vulnerabilities-related 

themes in the commit’s logs of the Java’s GitHub open-source projects 

Data curation and text analysis are the two steps in this phase of the research approach. The 

first and second research questions, answered by this phase, identified Java’s CVEs in the 

MITRE’s vulnerability descriptions and commit messages of GitHub’s Java open-source projects. 

The Java’s CVE descriptions are extracted from the MITRE website, cleaned, and saved in 

comma-separated values (CSV) files, using different web scraping techniques. Web scraping is 

Data 
scraping 
and storage 

Vulnerability descriptions from MITRE 

Getting the list of top 100 Java projects from 
GitHub. 

Cloning the top 100 Java projects. 

Generating log history and parsing needed 
information. 

Python Libraries: 
Request, json, os, 
regex, 
BeautifulSoup, 
pandas, pymysql 

Others: MySQL, 
SQL 

Text pre-processing to extract vulnerabilities 
phrases. 

Tokenization of the vulnerabilities’ phrases. 

Text 
Analysis 

Visualization of the vulnerabilities’ tokens. 

Python Libraries: 
re, pandas, 
seaborn, nltk, 
nltk.stem, 
matplotlib.pyplot 

Conversion of codebases to semantic 
databases 

Analysis of codebases converted to semantic 
databases. 

CodeQL 

Static Code 

Analysis 
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extracting text from web pages [33]. Python libraries, such as BeautifulSoup and Request, 

implement web scraping scripts. The list of the top 100 GitHub Java open-source project names is 

created using the number of stars, and each of these projects is cloned to a local machine. Also, 

commit logs are generated for each of the open-source projects, and they are parsed and saved in 

a CSV file, using their respective hash numbers (sha) as identifiers. 

The extracted MITRE’s vulnerability descriptions and Java’s open-source projects git 

commit messages are pre-processed for vulnerability phrases. The pre-processing allows clarity 

and specifics of words that represent the important contents. These phrases are then tokenized 

using NLTK and Wordnet Lemmatizer: Python libraries for removing stop words, stemming, 

and Lemmatization. Stop words are littered words and mostly have no significance to the 

generality of the analyzed body of text. Examples are “the,” “and,” “at.” Stemming is the process 

of reducing words to their base form, while Lemmatization groups different forms of words into 

single items for analysis [33]. The vulnerability-representative tokens derived are visualized to 

identify the prevalent ones. These tokens suggest the prevalent Java’s CVE vulnerabilities 

published on MITRE’s website.  

 

3.2. Analysis of GitHub’s Java projects using CodeQL to identify security vulnerabilities 

present 

The third research question evaluates the security of Java open-source projects on GitHub 

using the static code analysis method. The static code analysis uses CodeQL [31] to identify the 

security vulnerabilities. CodeQL is a semantic code analysis engine that allows querying code as 

data to detect variants of a vulnerability. The extracted MITRE’s vulnerability descriptions for 

Java suggest the vulnerabilities analyzed. The codebases of the Java open-source projects are 

firstly converted to semantic databases for working compatibility with CodeQL. Queries are then 
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written to detect the suggested vulnerabilities, and the analysis results are presented. This study 

adopts applicable code queries from the CodeQL’s documentation2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 https://codeql.github.com/codeql-query-help/java/  
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4. FINDINGS 

4.1. Identification of prominent Java CVEs in MITRE CVEs 

Identifying the prominent Java CVEs from the NVD was based on identifying the prevalent 

tokens in the vulnerability’s texts reported in MITRE. Figure 4.1 presents the top twenty (20) 

prominent tokens.  

 

 

 

 

 

 

 

 

Figure 4.1. Top twenty (20) prominent tokens from the text analysis of Java’s CVEs in NVD. 

 

The top 20 prominent tokens from the text analysis of Java’s CVEs in MITRE suggest the 

following web vulnerabilities, using domain knowledge as heuristics. These are (a) cross-site 

scripting, (b) buffer overflow, (c) data deserialization, (d) input non-validation for an untrusted 

object, and (e) validation method bypass. These vulnerabilities were investigated where 

appropriate, and the findings are reported in sub-section 4.3. The explanation for the presence of 

buffer overflow as a vulnerability reported by the MITRE, despite the Java’s defence against it is 

explained in Chapter 5, section 5.1. Similarly, identifying the security vulnerabilities-related 

themes in the commit’s logs of GitHub Java’s open-source projects followed the same process. 
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The details of the text analysis are also presented in sub-section 3.2. Figure 4.1 presents the top 

twenty (20) prominent tokens from the text analysis of Java’s open-source projects’ git commits. 

 

 

 

 

 

 

 

Figure 4.2. Top twenty (20) prominent tokens from the text analysis of Java’s open-source 

projects’ git commits. 

 

The git commit messages are not correctly worded to ease text analysis in identifying the 

vulnerability themes and tokens. Nevertheless, SQL injection and Denial of entry (DoE), also 

understood as Denial of Service (DoS), are the vulnerabilities arguably suggested by the prominent 

tokens identified. 

 

4.2. Identification of security vulnerabilities in GitHub Java’s open-source projects 

The process of identifying the security vulnerabilities in GitHub’s Java open-source 

projects is multi-stage, as described in Chapter 3. Findings reported in this section include (a) the 

list of the 100 open-source projects cloned for analysis, indicating the build message from the 

codebase-database conversion process, (b) the summary of the successful and unsuccessful 

conversions, (c) the breakdown of the build messages of the unsuccessful conversions, (d) the 

descriptions of the successfully-converted codebases that were later analyzed for the presence of 
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the specified vulnerabilities, and (e) the results of the analysis of the specified vulnerabilities in 

the codebases. Table 4.1 lists the 100 Java open-source projects from GitHub. 

 

Table 4.1. List of the first 100 (based on star counts) Java’s open-source projects on GitHub. 

 Project Name Star count Build message 

1 CyC2018/CS-Notes 120756 No suitable build command 

2 Snailclimb/JavaGuide 96870 No suitable build command 

3 iluwatar/java-design-patterns 63975 mvn.cmd not recognized 

4 MisterBooo/LeetCodeAnimation 62528 No suitable build command 

5 elastic/elasticsearch 53668 SocketException  

6 spring-projects/spring-boot 53458 FileNotFound Exception 

7 doocs/advanced-java 51923 No suitable build command 

8 kdn251/interviews 50095 could not detect suitable build 

9 macrozheng/mall 46312 mvn.cmd not recognized 

10 ReactiveX/RxJava 44239 Successful  

11 spring-projects/spring-framework 41432 Successful 

12 google/guava 40302 mvn.cmd not recognized 

13 square/okhttp 39372 Successful 

14 square/retrofit 37517 SDK location not found 

15 TheAlgorithms/Java 35025 Could not find the build command 

16 apache/dubbo 34657 MAVEN/DependencyResolutionE

xception 

17 PhilJay/MPAndroidChart 32765 NoClassDefFoundError 

18 bumptech/glide 30698 NoClassDefFoundError 

19 airbnb/lottie-android 30633 Android SDK location not found; 

software internal component 

missing 

20 kon9chunkit/GitHub-Chinese-

Top-Charts 

30122 No build detected 

21 Blankj/AndroidUtilCode 28848 NoClassDefFoundError 

22 zxing/zxing 27166 mvn.cmd not recognized 

23 netty/netty 25976 CompilationError problem 

24 crossoverJie/JCSprout 25779 mvn.cmd not recognized 

25 JakeWharton/butterknife 25615 SDK location not found 

26 proxyee-down-org/proxyee-down 25526 mvn.cmd not recognized 

27 skylot/jadx 25108 Successful  

28 ityouknow/spring-boot-examples 24798 mvn.cmd not recognized 

29 eugenp/tutorials 24780 mvn.cmd not recognized 

30 NationalSecurityAgency/ghidra 24728 Gradle not found 

31 alibaba/arthas 24709 MojoFailureException in the build 

32 geekxh/hello-algorithm 24079 No build detected  
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Table 4.1. List of the first 100 (based on star counts) Java’s open-source projects on GitHub 

(continued). 

 Project Name Star count Build message 

33 ctripcorp/apollo 23805 mvn.cmd not recognized 

34 alibaba/druid 23339 mvn.cmd not recognized 

35 greenrobot/EventBus 23178 NoClassDefFound error 

36 alibaba/fastjson 23035 mvn.cmd not recognized 

37 scwang90/SmartRefreshLayout 22186 NoClassDef error 

38 CymChad/BaseRecyclerViewAda

pterHelper 

21490 SDK location not found 

39 Netflix/Hystrix 21075 IllegalArgument Exception 

40 xkcoding/spring-boot-demo 20523 mvn.cmd not recognized 

41 lenve/vhr 20236 mvn.cmd not recognized 

42 SeleniumHQ/selenium 19804 No suitable build 

43 signalapp/Signal-Android 19798 No SDK location 

44 hollischuang/toBeTopJavaer 19604 No suitable build 

45 ReactiveX/RxAndroid 19328 SDK location not found 

46 google/gson 19178 IllegalArgument Exception 

47 qiurunze123/miaosha 19073 XMLpullException 

48 zhangdaiscott/jeecg-boot 18903 mvn.cmd not recognized 

49 alibaba/easyexcel 18851 mvn.cmd not recognized 

50 seata/seata 18679 SocketException 

51 dbeaver/dbeaver 18594 mvn.cmd not recognized 

52 wuyouzhuguli/SpringAll 18490 Cannot detect build command 

53 libgdx/libgdx 18029 Taskexecution exception 

54 apache/kafka 18017 Gradle not recognized  

55 halo-dev/halo 18006 Successful 

56 looly/hutool 17884 mvn.cmd not recognized 

57 square/picasso 17854 NoClassDef error 

58 alibaba/canal 17787 mvn.cmd not recognized 

59 alibaba/spring-cloud-alibaba 17589 pom.xml file does not exist 

60 Baseflow/PhotoView 17495 Missing 

SoftwareInternalComponent 

61 xuxueli/xxl-job 17274 mvn.cmd not recognized 

62 google/ExoPlayer 17255 NoClassDef error 

63 jenkinsci/jenkins 16902 mvn.cmd not recognized 

64 nostra13/Android-Universal-

Image-Loader 

16782 NoClassDef error 

65 didi/DoraemonKit 16741 No suitable build command 

66 facebook/fresco 16490 SDK location not found 

67 alibaba/nacos 16336 mvn.cmd not recognized 

68 bazelbuild/bazel 16212 Could not find a suitable build 

 



 

22 

Table 4.1. List of the first 100 (based on star counts) Java’s open-source projects on GitHub 

(continued). 

 Project Name Star count Build message 

69 apache/skywalking 16077 Could not find a suitable build 

70 shuzheng/zheng 15847 mvn.cmd not recognized 

71 CarGuo/GSYVideoPlayer 15720 SDK location not found 

72 redisson/redisson 15695 mvn.cmd not recognized 

73 Tencent/tinker 15634 Could not determine Java version 

74 apache/flink 15503 mvn.cmd not recognized 

75 alibaba/Sentinel 15325 mvn.cmd not recognized 

76 linlinjava/litemall 15318 mvn.cmd not recognized 

77 mybatis/mybatis-3 15048 mvn.cmd not recognized 

78 dianping/cat 14994 mvn.cmd not recognized 

79 forezp/SpringCloudLearning 14956 Cannot detect build directory 

80 android10/Android-

CleanArchitecture 

14708 could determine Java version from 

15 

81 brettwooldridge/HikariCP 14568 mvn.cmd not recognized 

82 oracle/graal 14537 No build command  

83 winterbe/java8-tutorial 14376 No build command 

84 elunez/eladmin 14241 mvn.cmd not recognized 

85 EnterpriseQualityCoding/FizzBuz

zEnterpriseEdition 

14080 IllegalArgument Exception 

86 openzipkin/zipkin 14006 Successful 

87 JeffLi1993/springboot-learning-

example 

13971 mvn.cmd not recognized 

88 lottie-react-native/lottie-react-

native 

13847 NoClassDefFound error 

89 hdodenhof/CircleImageView 13746 NoClassDefFound error 

90 apache/rocketmq 13516 mvn.cmd not recognized 

91 lgvalle/Material-Animations 13510 Gradle not recognized  

92 LMAX-Exchange/disruptor 13436 Successful 

93 apache/shardingsphere 13349 mvn.cmd not recognized 

94 alibaba/ARouter 12858 local.properties file is missing  

95 dyc87112/SpringBoot-Learning 12762 mvn.cmd not recognized 

96 orhanobut/logger 12676 could determine Java version from 

15 

97 Tencent/QMUI_Android 12652 SDK location not found 

98 TeamNewPipe/NewPipe 12538 SDK location not found 

99 Bigkoo/Android-PickerView 12531 NoClassDefFound error 

100 Curzibn/Luban 12326 IllegalArgumentException 
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For various reasons, only seven (7) codebases were successfully converted to databases 

that could be analyzed for vulnerabilities using CodeQL. The reasons for the unsuccessful 

conversion, as shown in the build messages, are presented in Table 4.3. Table 4.2 presents the 

summary of the codebase-to-database conversion success rate. The conversion success rate is also 

graphically represented in Figure 4.3. 

 

Table 4.2. Summary of the codebase-to-database conversion for the vulnerability analysis. 

Codebase-to-Database state Quantity 

Successful  7 

Unsuccessful  93 

Total 100 

 

Figure 4.3 depicts a graphical representation of the summary of the codebase-to-database 

conversion of the 100 Java open-source projects from GitHub.  

 

 

 

 

 

Figure 4.3. Pie-chart – graphical representation of codebase-to-database conversion summary. 
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Table 4.3. Breakdown of the causes of the unsuccessful codebase-to-database conversions. 

 Causes Frequency  

1 Illegal Argument Exception 4 

2 No Class Definition Exception 11 

3 Android SDK location not found 10 

4 mvn.cmd not recognized  35 

5 Java version could not be determined 3 

6 Gradle not recognized  4 

7 local.properties file missing 1 

8 No build command in the source 4 

9 Missing software internal component  1 

10 pom.xml does not exist 1 

11 Task Execution Exception  1 

12 Socket Exception Error 2 

13 XML pull Exception  1 

14 Mojo Failure Execution in the build  1 

15 File not found exception  1 

16 MAVEN Dependency resolution Exception  1 

17 Compilation Error 1 

 

Figure 4.4 depicts a graphical representation of the breakdown of the causes of the unsuccessful 

codebase-to-database conversions.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Bar chart – graphical representation of codebase-to-database conversion summary. 
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The successfully converted codebases are seven (7): RxJava, Spring framework, OkHTTP, 

Jadx, Halo, Zipkin, and Exchange Disruptor. Table 4.4 presents the detailed information of the 

codebases, including their respective descriptions and uniform resource locators (URLs). 

 

Table 4.4. List of the successful codebases from the codebase-to-database conversion process. 

 Name of 

project 

GitHub 

Star 

count 

Description Uniform Resource 

Locator  

Lines of 

Code (LOC) 

1 ReactiveX

/RxJava 

44239 It is a library for 

composing asynchronous 

and event-based 

programs. 

https://github.com/Rea

ctiveX/RxJava 

323206 

2 spring-

projects/sp

ring-

framework 

41432 The home of the Spring 

framework. Spring 

provides everything 

required for creating 

enterprise applications. 

https://github.com/spri

ng-projects/spring-

framework 

805165 

3 square/okh

ttp 

39372 This HTTP client 

supports all requests to 

the same host when 

sharing a socket, 

reducing the request 

latency, among others. 

https://github.com/squ

are/okhttp 

92178 

4 skylot/jad

x 

25108 This command line and 

Graphical User Interface 

(GUI) tools produce Java 

source code from 

Android Dex and Apk 

files. 

https://github.com/sky

lot/jadx 

125739 

5 halo-

dev/halo 

18006 A modern personal and 

independent blogging 

system. 

https://github.com/hal

o-dev/halo 

40967 

6 openzipki

n/zipkin 

14006 A distributed tracing 

system used for gathering 

timing data which are 

needed for solving 

latency problems in 

service architecture. 

https://github.com/ope

nzipkin/zipkin 

113750 

7 LMAX-

Exchange/

disruptor 

13436 A high-performance 

inter-thread messaging 

library. 

https://github.com/LM

AX-

Exchange/disruptor 

19925 
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The successfully converted codebases are analyzed with CodeQL and the provided code 

snippets to query the vulnerabilities identified in sub-section 4.1. Table 4.5 presents the findings 

of the analysis. Notably, array index out of bounds, as a type of buffer overflow, was analyzed 

because of the presumption that Java’s technology has been built to avoid the occurrence of buffer 

overflow. Further discussions are provided in section 5. 

 

Table 4.5. Security evaluation of GitHub open-source projects. 

Vulnerability  Database Result Details (where necessary) 

Array index 

out of bound  

ReactiveX/RxJ

ava 

2 at TestHelper.java file, line 2454, 72 

code below shows lines 2453 to 2455 
for (int i = 0; i < classes.length; i += 2) { 
   assertError(list, i, (Class<Throwable>)classes[i], (String)classes[i + 1
]); 
  } 

at TestHelper.java file, line 2499, 72 

code below shows lines 2498 to 2500 
for (int i = 0; i < classes.length; i += 2) { 
            assertError(list, i, (Class<Throwable>)classes[i], (String)classes[i + 1]); 
        } 

spring-

projects/spring

-framework 

3 at Frame.java file, line 653, 35 

code below shows 652 to 654 
if (kind == STACK_KIND) { 
          initializedType = dim + inputStack[inputStack.length - value]; 
        } 

at PathPatternTests.java file, line 1182, 40 

code below shows line 1181 to 1183 
for (int i = 0; i < keyValues.length; i += 2) { 
      expectedKeyValues.put(keyValues[i], keyValues[i + 
1]); 
    } 

at ViewResolverRegistryTests.java file, line 219, 

22 

code below shows lines 218 to 220 
for (int i = 0; i < nameValuePairs.length ; i++, i++) { 
      Object expected = nameValuePairs[i + 1]; 
{ 

square/okhttp 1 at CallTest.java file, line 3955, 37 

code below shows lines 3954 to 3956 
for (int i = 0, size = headers.length; i < size; i += 2)
 { 
      builder.addHeader(headers[i], headers[i + 1]); 
    } 

 

skylot/jadx 2 at SignatureParserTest.java file, line 111, 41 
List<ArgType> list = (List<ArgType>) objs[i + 1]; 
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Table 4.5. Security evaluation of GitHub open-source projects (continued). 

Vulnerability  Database Result Details (where necessary) 

Array index 

out of bound 

  at TestArrayforEachNegative.java file, line 28, 12 

code below shows lines 27 to 29 
for (int i = 0; i <= a.length; i++) { 
        sum += a[i];} 

halo-dev/halo 0 Not applicable 

openzipkin/zip

kin 

2 at Endpoint.java file, line 379,27 

code below shows lines 378 to 382 
for (int i = 0; i < ipv6.length; i += 2) { 
      if (ipv6[i] == 0 && ipv6[i + 1] == 0) { 
        if (zeroIndex < 0) zeroIndex = i; 
        continue; 
      } 

at Endpoint.java file, line 414,18 
 byte low = ipv6[i++]; 

LMAX-

Exchange/disru

ptor 

0 Not applicable  

Method 

Bypass  

ReactiveX/RxJ

ava 

0 Not applicable 

spring-

projects/spring

-framework 

0 Not applicable 

square/okhttp 0 Not applicable 

skylot/jadx 0 Not applicable 

halo-dev/halo 0 Not applicable 

openzipkin/zip

kin 

0 Not applicable 

LMAX-

Exchange/disru

ptor 

0 Not applicable 

Cross-site 

scripting 

(due to user-

provided 

value) 

ReactiveX/RxJ

ava 

0 Not applicable 

spring-

projects/spring

-framework 

51 

 

(Note: Few selected details are presented) 

The user-provided value 
out.write(in); 

at  ServletWebRequest.java file, line 372, 28 

The code below shows from line 371 to 373 
HttpServletRequest request = getRequest(); 
StringBuilder sb = new StringBuilder(); 
sb.append("uri=").append(request.getRequestURI()); 

at line 382, 18 
String user = request.getRemoteUser(); 
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Table 4.5. Security evaluation of GitHub open-source projects (continued). 

Vulnerability  Database Result Details (where necessary) 

Cross-site 

scripting 

(due to user-

provided 

value) 

  at ForwardedHeaderFilter.java, line 394, 12 
if (this.requestUri == null) { 
        return this.delegate.get().getRequestURI(); 
      } 

at MultipartFileResource.java, line 85, 39 

the code shows lines 84 to 86 
public String getDescription() { 
    return “MultipartFile resource [“ + this.multipartFi
le.getName() 
 + ”]”; 
  } 

at UrlPathHelper.java file, line 435, 10 

code below shows lines 434 to 436 
if (uri == null) { 
      uri = request.getRequestURI(); 
    } 

at UrlResource.java file, line 186, 11 

code below shows line 185 to 187 
try { 
      return con.getInputStream(); 
    } 

  at httpComponentAsynClientHttpResponse.java 

file, line 81, 28 
HttpEntity entity = this.httpResponse.getEntity(); 
    return (entity != null ? entity.getContent() : Strea
mUtils.emptyInput()); 

at SimpleServerhttpRequest.java, line 98, 62 
this.responseStream = (errorStream != null ? errorStream
 : this.connection.getInputStream()); 

at MultipartFile.java, line 149, 22 
default void transferTo(Path dest) throws IOException, I
llegalStateException { 
    FileCopyUtils.copy(getInputStream(), Files.newOutput
Stream(dest)); 
  } 

at MultipartFileResource.java file, line 77, 10 
return this.multipartFile.getInputStream(); 

at DefaultMultipartHttpServletRequest.java, line 

85, 21 
String[] values = getMultipartParameters().get(name); 

at RequestPartServletServerHttpRequest.java, line 

100, 23 
String paramValue = this.multipartRequest.getParameter(t
his.requestPartName); 
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Table 4.5. Security evaluation of GitHub open-source projects (continued). 

Vulnerability  Database Result Details (where necessary) 

   at UrlResouce.java file, 186, 11 
try { 
      return con.getInputStream(); 
    } 

square/okhttp 0 Not applicable 

skylot/jadx 0 Not applicable 

halo-dev/halo 0 Not applicable 

openzipkin/zip

kin 

0 Not applicable 

LMAX-

Exchange/disru

ptor 

0 Not applicable 

Deserializati

on  

ReactiveX/RxJ

ava 

0 Not applicable 

spring-

projects/spring

-framework 

1 at HttpInvokerServiceExporter.java, line 146, 16 

Code below shows lines 95 to 99 
protected RemoteInvocation readRemoteInvocation(HttpServ
letRequest request) 
      throws IOException, ClassNotFoundException { 
 
    return readRemoteInvocation(request, request.getInpu
tStream()); 
  } 

square/okhttp 0 Not applicable 

skylot/jadx 0 Not applicable 

halo-dev/halo 0 Not applicable 

openzipkin/zip

kin 

0 Not applicable 

LMAX-

Exchange/disru

ptor 

0 Not applicable 

Improper 

validation of 

user-

provided 

array index 

ReactiveX/RxJ

ava 

0 Not applicable 

spring-

projects/spring

-framework 

81 (Note: Few selected details are presented) 

 

at Frame.java, line 486,  
@Override 
  public InputStream getInputStream() throws IOException
, IllegalStateException { 
    return this.multipartFile.getInputStream(); 
  } 
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Table 4.5. Security evaluation of GitHub open-source projects (continued). 

Vulnerability  Database Result Details (where necessary) 

   at MultipartFileResource.java, line 77 
if (multipartRequest != null) { 
      List<MultipartFile> files = multipartRequest.getFi
les(name); 
… 
{ 

at UrlResource.java, line 186 

Code below shows line 185 to 187 
try { 
      return con.getInputStream(); 
    } 

at ServletWebRequest.java, line 372 

Code below shows lines 371 to 372 
StringBuilder sb = new StringBuilder(); 
    sb.append("uri=").append(request.getRequestURI()); 

at ForwardedHeaderFilter.java, line 185 

Code below shows line 184 to 186 
if (!FORWARDED_HEADER_NAMES.contains(name)) { 
          headers.put(name, Collections.list(request.get
Headers(name)));} 

square/okhttp 0 Not applicable 

skylot/jadx 0 Not applicable 

halo-dev/halo 0 Not applicable 

openzipkin/zip

kin 

0 Not applicable 

LMAX-

Exchange/disru

ptor 

0 Not applicable 

Improper 

validation of 

user-

provided size 

used for 

array 

construction 

ReactiveX/RxJ

ava 

0 Not applicable 

spring-

projects/spring

-framework 

0 Not applicable 

square/okhttp 0 Not applicable 

skylot/jadx 0 Not applicable 

halo-dev/halo   

openzipkin/zip

kin 

0 Not applicable 

LMAX-

Exchange/disru

ptor 

0 Not applicable 
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5. DISCUSSION AND CONCLUSION 

5.1. Discussion 

5.1.1. Java’s vulnerabilities identified from the MITRE CVE’s vulnerability descriptions 

Cross-site scripting (XSS), buffer overflow, data deserialization, input non-validation for 

an untrusted object, and validation method bypass are the prevalent Java vulnerabilities suggested 

by the text analysis of MITRE CVEs. XSS allows attackers to inject malicious code into the web 

browser, such as JavaScript programs. Buffer overflow attacks are specified by overwriting 

process memory segments [34]. Data deserialization is rebuilding data back to objects from 

formats like JSON and XML. It can, therefore, be used for attack when the data object is untrusted 

[7]. The input non-validation for untrusted data can happen in different instances, including 

deserialization. All data from untrusted sources, including user-facing sites and backend feeds, 

should be subject to input validation [35]. The validation method bypass, in most cases, happens 

when a malicious code poses as a trusted object and therefore enjoys the privilege and unmerited 

execution [36]. 

XSS is also caused by user input from the HTML output that escapes validation. It 

resembles the validation method bypass principle. But in specifics, XSS injects scripts for damage, 

whether persistent or reflected. XSS can be exploited for attack because every user-facing 

application requires input. With the malicious code, attackers can access the victim’s credentials, 

such as cookies and passwords [34]. The log injection attack is also carried out through exploitation 

[37]. Therefore, securing Java applications from XSS and log injection requires server-side input 

validation because the client-side can be easily bypassed [36], [38].  

Buffer overflow can be prevented by modifying the stack-allocated data and bound 

checking. The modification of the stack-allocated data presents canary values in programs that 
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help intercept the buffer overflow attack. Languages like Java natively employ bound checking, 

which checks permission to each allocated memory block. It prevents data into unallocated space 

because they do not have direct memory access [34]. Therefore, the identification of buffer 

overflow as a prevalent Java vulnerability from the text analysis of the MITRE’s CVEs is best 

understood by the possibility of exploitation through the Java Virtual Machine, which is developed 

in C++ language, or Java Runtime Engine (JRE) [7], [8]. Also, the JVM is highly affected by 

unauthorized use of restricted classes, making custom classes defined with an exploit to run 

arbitrary codes and disable security managers without further security checks [7]. Array index out 

of bounds, as a type of buffer overflow that throws ArrayIndexOutofBoundsException 

is analyzed in the codebases. 

Data deserialization in Java allows exploitation of the arbitrary Class and the type-safety 

features using type confusion, which means the object type passed to the code is not verified [7]. 

An attacker would insert a modified serialized object that can trigger a malicious code when 

deserialized [12]. On the other hand, improper input validation is when software does not validate 

input properly. It allows input in an unexpected and unsanitized form, leading to altered control or 

arbitrary code execution. Lastly, validation method bypass is manifested through confused 

deputies. These are programs that trick programs into misusing authority or bypassing validation. 

The experience would subsequently privilege code execution. 

 

5.1.2. Java’s vulnerabilities identified from the open-source projects’ commits logs 

SQL injection and Denial of entry (DoE), also known as Denial of Service (DoS), are the 

vulnerabilities suggested by the git commits of the top 100 Java projects on GitHub. Though the 

commit messages’ wordings inhibit valuable insights, the tokens derived from the text analysis 

still helped. SQL injection manipulates applications by passing input containing SQL commands 
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to the database for execution. It can add, modify and delete records in a database [39], [40]. On 

the other hand, DoS is an explicit attempt to prevent legitimate users from using a service [41]. 

Though DoS is only 5% of the 2016 OWASP survey of web application attacks [42], it is, 

nevertheless, essential to prevent it [41].  

Static analysis tool, input validation [10], [39], [43]–[45], injection detection tool [40], 

machine and deep learning models [40], [46], [47] are some of the techniques that can prevent 

SQL injection. Java development frameworks and libraries [38], especially for the Model-View-

Controller development, are now developed with Object Relational Modelling (ORM) technology 

for data query and plain SQL statement execution alternatives. Considering its numerous attack 

approaches, the best way to prevent DoS is a hybrid of attacker and victim side defenses through 

overlay networks [41]. 

 

5.1.3. Security assessment of GitHub’s Java projects source code for the identified Java 

vulnerabilities  

Cross-site scripting, array index out of bound, data deserialization, input non-validation (or 

improper validation) for an untrusted object, and improper validation of user-provided array 

construction (as a validation method bypass) are the vulnerabilities investigated in GitHub’s Java 

projects. As a type of buffer overflow, array index out of bounds was analyzed for two reasons. 

First, since the analysis is done on program source code, without the involvement of a Java 

platform or JRE, the presumption that Java technology has been built to avoid buffer overflow is 

held. Second, GitHub’s CodeQL, the semantic code analyzer, most likely because of the first 

reason, provides documentation only for the array index out of bounds vulnerability.  

The security assessment identified two (2) instances of array index out of bounds in each 

ReactiveX/RxJava, skylot/jadx, and openzipkin/zipkin. It found three (3) instances in spring-
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projects/spring-framework, and one (1) in square/okhttp. The total number of cases of array index 

out of bound is ten (10) across four (4) out of the seven (7) codebases analyzed, implying 71.4% 

presence. Method bypass and improper validation of user-provided size used for array construction 

were not found in any codebases analyzed. Due to user-provided value, fifty-one (51) instances of 

XSS were found in only spring-projects/spring-framework codebase. A similar result is found for 

the improper validation of the user-provided array index, where eighty-one (81) instances were 

found only in spring-projects/spring-framework codebase. A single instance of deserialization 

vulnerability was found in spring-projects/spring-framework codebase.  

 

5.2. Limitations of the findings 

The main limitation of the findings of this study, which would understandably affect its 

generalizability, is the few numbers of successfully converted codebases that were ultimately used 

for the code analysis. Out of the one hundred (100) top open-source Java projects cloned from 

GitHub, only seven (7) were successfully converted. These are, therefore, the codebases 

compatible for code analysis using CodeQL. Though the reasons for the unsuccessful conversion 

are beyond the researcher’s fix, future research should extend the pool of the top open-source 

projects enough to achieve at least thirty (30) compatible codebases. 

The identified vulnerabilities reported in this study were based on heuristics, considering 

the prevalent tokens from the texts analyzed. Future research could employ n-gram analysis which 

provides more insights than tokens. Name Entity Recognizer (NER) for cybersecurity texts, where 

a processed text can be fed and recognized by the present name entity, such as vulnerability, vector 

attack, and agent, should also be developed. The non-existence of name entities for cybersecurity 

texts and themes affects the ability to gain a deeper understanding and make definitive conclusions 

from the text analysis of the vulnerabilities’ descriptions extracted from the MITRE’s NVD. 
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5.3. Conclusion of the study 

The need to extend security design and integration to requirement engineering, software 

architecture, and coding beyond the prevalent security testing is justified. It is an essential 

approach toward promoting secure coding and ultimately reducing the experiences of vulnerable 

software, attacks, and the associated cost. This study’s response to minimizing the occurrence of 

damaging attacks due to possible vulnerabilities in Java’s OSS is the analysis of Java’s CVEs in 

GitHub’s Open-Source Projects using text and code analyses. It identified the prevalent 

vulnerabilities and evaluated the security state of the open-source projects. The text analysis of the 

Java’s CVEs extracted from the MITRE’s NVD identified cross-site scripting, buffer overflow, 

data deserialization, improper validation, and validation method bypass. SQL injection and Denial 

of Service vulnerabilities are identified from the git’s commit. 

The code analysis of the compatible codebases showed that array index out of bounds is a 

common vulnerability in Java’s GitHub’s open-source projects. Notably, the code analysis using 

CodeQL to identify the prevalent vulnerabilities in the Java open-source projects in GitHub 

investigated array index out of bounds instead of buffer overflow and the other identified 

vulnerabilities. In conclusion, despite its limitations, this study answered the central question of 

how secure the codes written in top GitHub’s open-source projects are. It showed that the top 

projects on GitHub are not secured. These findings further emphasize the need for the adoption of 

secure coding practice.  

 

 

 

 



 

36 

REFERENCES 

[1] G. McGraw, “Software Security: Building Security In,” in 2006 17th International 

Symposium on Software Reliability Engineering, Raleigh, NC, Nov. 2006, pp. 6–6. doi: 

10.1109/ISSRE.2006.43. 

[2] J. McDermott and C. Fox, “Using Abuse Case Models for Security Requirements 

Analysis,” in Proceedings 15th Annual Computer Security Applications Conference 

(ACSAC’99), Phoenix, AZ, USA, Dec. 1999, p. 11. doi: 10.1109/CSAC.1999.816013. 

[3] K. Li, “Towards Security Vulnerability Detection by Source Code Model Checking,” in 

2010 Third International Conference on Software Testing, Verification, and Validation 

Workshops, Paris, France, Apr. 2010, pp. 381–387. doi: 10.1109/ICSTW.2010.23. 

[4] A. Ekelhart, S. Fenz, M. Klemen, and E. Weippl, “Security Ontologies: Improving 

Quantitative Risk Analysis,” in 2007 40th Annual Hawaii International Conference on 

System Sciences (HICSS’07), Jan. 2007, pp. 156a–156a. doi: 10.1109/HICSS.2007.478. 

[5] S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assessment and mitigation of 

vulnerabilities in open source dependencies,” Empir. Softw. Eng., vol. 25, no. 5, pp. 3175–

3215, Sep. 2020, doi: 10.1007/s10664-020-09830-x. 

[6] Edgescan, “2016 Vulnerability Statistics Report.” EdgeScan Continous Vulnerability 

Management, 2016. [Online]. Available: www.edgescan.com 

[7] P. Holzinger, S. Triller, A. Bartel, and E. Bodden, “An In-Depth Study of More Than Ten 

Years of Java Exploitation,” in Proceedings of the 2016 ACM SIGSAC Conference on 

Computer and Communications Security, Vienna Austria, Oct. 2016, pp. 779–790. doi: 

10.1145/2976749.2978361. 

[8] V. Jain, J. Gomex, and A. Singh, “A DAILY GRIND: Filtering Java Vulnerabilities,” 

Security Reimagined, p. 33. 

[9] “CVE - Home.” http://cve.mitre.org/about/index.html (accessed Aug. 15, 2021). 

[10] J. Viega, T. Mutdosch, G. McGraw, and E. W. Felten, “Statically Scanning Java Code for 

Security Vulnerabilities,” IEEE Softw., vol. 17, no. 5, pp. 68–74, 2000. 

[11] “The State of the Module System.” http://openjdk.java.net/projects/jigsaw/spec/sotms/ 

(accessed Aug. 19, 2021). 

[12] “Serialization and deserialization in Java | Snyk Blog.” https://snyk.io/blog/serialization-

and-deserialization-in-java/ (accessed Aug. 15, 2021). 

[13] TechTarget, “How to Deliver DevSecOpsVeracode.” VeraCode. 

[14] “PyCQA/bandit.” Python Code Quality Authority, Sep. 15, 2020. Accessed: Sep. 14, 2020. 

[Online]. Available: https://github.com/PyCQA/bandit 

[15] “Checkmarx – Application Security, Made Easy,” Checkmarx. 

https://www.checkmarx.com/ (accessed Sep. 14, 2020). 

[16] “Security Code Scan.” https://security-code-scan.github.io/ (accessed Sep. 14, 2020). 

[17] “Source Code Analysis Tools | OWASP.” https://owasp.org/www-

community/Source_Code_Analysis_Tools (accessed Sep. 03, 2020). 

[18] G. Upadhyaya and H. Rajan, “Collective program analysis,” in Proceedings of the 40th 

International Conference on Software Engineering  - ICSE ’18, Gothenburg, Sweden, 2018, 

pp. 620–631. doi: 10.1145/3180155.3180252. 

[19] A. Fehnker, R. Huuck, and W. Rödiger, “Model checking dataflow for malicious input,” in 

Proceedings of the Workshop on Embedded Systems Security - WESS ’11, Taipei, Taiwan, 

2011, pp. 1–10. doi: 10.1145/2072274.2072278. 



 

37 

[20] M. Payer, Software Security: Principles, Policies and Protection. 2019. 

[21] S. Chen, J. Xu, Z. Kalbarczyk, and K. Iyer, “Security Vulnerabilities: From Analysis to 

Detection and Masking Techniques,” Proc. IEEE, vol. 94, no. 2, pp. 407–418, Feb. 2006, 

doi: 10.1109/JPROC.2005.862473. 

[22] C. S. Collberg, C. D. Thomborson, and D. W. K. Low, “Obfuscation techniques for 

enhancing software security,” US6668325B1, Dec. 23, 2003 Accessed: Jul. 10, 2019. 

[Online]. Available: https://patents.google.com/patent/US6668325B1/en 

[23] Y. Jia, Y. Qi, H. Shang, R. Jiang, and A. Li, “A Practical Approach to Constructing a 

Knowledge Graph for Cybersecurity,” Engineering, vol. 4, no. 1, pp. 53–60, Feb. 2018, doi: 

10.1016/j.eng.2018.01.004. 

[24] L. Lowis and R. Accorsi, “On a Classification Approach for SOA Vulnerabilities,” in 2009 

33rd Annual IEEE International Computer Software and Applications Conference, Seattle, 

Washington, USA, 2009, pp. 439–444. doi: 10.1109/COMPSAC.2009.173. 

[25] Y. Li, L. Ma, L. Shen, J. Lv, and P. Zhang, “Open source software security vulnerability 

detection based on dynamic behavior features,” PLOS ONE, vol. 14, no. 8, p. e0221530, 

Aug. 2019, doi: 10.1371/journal.pone.0221530. 

[26] R. L. Russell et al., “Automated Vulnerability Detection in Source Code Using Deep 

Representation Learning,” ArXiv180704320 Cs Stat, Nov. 2018, Accessed: Sep. 09, 2020. 

[Online]. Available: http://arxiv.org/abs/1807.04320 

[27] J. A. Harer et al., “Automated software vulnerability detection with machine learning,” 

ArXiv180304497 Cs Stat, Aug. 2018, Accessed: Sep. 09, 2020. [Online]. Available: 

http://arxiv.org/abs/1803.04497 

[28] B. Chernis and R. Verma, “Machine Learning Methods for Software Vulnerability 

Detection,” in Proceedings of the Fourth ACM International Workshop on Security and 

Privacy Analytics - IWSPA ’18, Tempe, AZ, USA, 2018, pp. 31–39. doi: 

10.1145/3180445.3180453. 

[29] X. Li, L. Wang, Y. Xin, Y. Yang, and Y. Chen, “Automated Vulnerability Detection in 

Source Code Using Minimum Intermediate Representation Learning,” Appl. Sci., vol. 10, 

no. 5, p. 1692, Mar. 2020, doi: 10.3390/app10051692. 

[30] University of Waterloo, “Deep Defect and Vulnerability Prediction” 

[31] “CodeQL - GitHub Security Lab.” https://securitylab.github.com/tools/codeql/ (accessed 

Sep. 09, 2020). 

[32] “Pysa: Open Source static analysis for Python code,” Facebook Engineering, Aug. 07, 

2020. https://engineering.fb.com/security/pysa/ (accessed Sep. 09, 2020). 

[33] F. Berends, “Library Guides: Text mining & text analysis: Introduction.” 

https://guides.library.uq.edu.au/research-techniques/text-mining-analysis/introduction 

(accessed Aug. 26, 2021). 

[34] P. Shital and C. R., “Web Browser Security: Different Attacks Detection and Prevention 

Techniques,” Int. J. Comput. Appl., vol. 170, no. 9, pp. 35–41, Jul. 2017, doi: 

10.5120/ijca2017914938. 

[35] “Deserialization - OWASP Cheat Sheet Series.” 

https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html (accessed 

Aug. 15, 2021). 

[36] J. Offutt, Ye Wu, Xiaochen Du, and Hong Huang, “Bypass Testing of Web Applications,” 

in 15th International Symposium on Software Reliability Engineering, Saint-Malo, 

Bretagne, France, 2004, pp. 187–197. doi: 10.1109/ISSRE.2004.13. 



 

38 

[37] S. Turner, “Security vulnerabilities of the top ten programming languages: C, Java, C++, 

Objective-C, C#, PHP, Visual Basic, Python, Perl, and Ruby,” p. 16. 

[38] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure Coding Practices in 

Java: Challenges and Vulnerabilities,” ArXiv170909970 Cs, Sep. 2017, Accessed: Aug. 11, 

2021. [Online]. Available: http://arxiv.org/abs/1709.09970 

[39] V. B. Livshits and M. S. Lam, “Finding Security Vulnerabilities in Java Applications with 

Static Analysis,” p. 16. 

[40] T. Pattewar, H. Patil, H. Patil, N. Patil, M. Taneja, and T. Wadile, “Detection of SQL 

Injection using Machine Learning: A Survey,” Int. Res. J. Eng. Technol., vol. 06, no. 11, p. 

8, 2019. 

[41] Q. Gu and P. Liu, “Denial of Service Attacks,” p. 28. 

[42] N. K. Sangani and H. Zarger, “Machine Learning in Application Security,” in Advances in 

Security in Computing and Communications, J. Sen, Ed. InTech, 2017. doi: 

10.5772/intechopen.68796. 

[43] S. Thakare and D. B. B. Meshram, “Java Program Vulnerabilities,” vol. 2, no. 3, p. 8, 2013. 

[44] L. V. Satyanarayana, “STATIC ANALYSIS TOOL FOR DETECTING WEB 

APPLICATIONLVENUKLANERABILITIES,” Int. J. Mod. Eng. Res. IJMER, vol. 1, no. 

1, pp. 127–133, 2009. 

[45] A. Kaur and R. Nayyar, “A Comparative Study of Static Code Analysis tools for 

Vulnerability Detection in C/C++ and JAVA Source Code,” Procedia Comput. Sci., vol. 

171, pp. 2023–2029, 2020, doi: 10.1016/j.procs.2020.04.217. 

[46] M. Vignesh and K. Kumar, “WEB APPLICATION VULNERABILITY PREDICTION 

USING MACHINE LEARNING,” Int. J. Sci. Eng. Res., vol. 8, no. 5, pp. 80–90, 2017. 

[47] L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web Application Vulnerability Prediction 

Using Hybrid Program Analysis and Machine Learning,” IEEE Trans. Dependable Secure 

Comput., vol. 12, no. 6, pp. 688–707, Nov. 2015, doi: 10.1109/TDSC.2014.2373377. 

 


