

ANALYSIS OF JAVA’S COMMON VULNERABILITIES AND EXPOSURES IN GITHUB’S

OPEN-SOURCE PROJECTS

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Semiu Ayobami Akanmu

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Program:

Software Engineering

June 2022

Fargo, North Dakota

North Dakota State University

Graduate School

Title

ANALYSIS OF JAVA’S COMMON VULNERABILITIES AND

EXPOSURES IN GITHUB’S OPEN-SOURCE PROJECTS

 By

Semiu Ayobami Akanmu

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Muhammad Zubair Malik

 Chair

Dr. Pratap Kotala

Dr. Supavich (Fone) Pengnate

 Approved:

 July 25, 2022 Dr. Simone Ludwig

 Date Department Chair

iii

ABSTRACT

Java developers rely on code reusability because of its time and effort reduction advantage.

However, they are exposed to vulnerabilities in publicly available open-source software (OSS)

projects. This study employed a multi-stage research approach to investigate the extent to which

open-source Java projects are secured. The research process includes text analysis of Java’s

Common Vulnerabilities and Exposures (CVE) descriptions and static code analysis using

GitHub’s CodeQL. This study found (a) cross-site scripting, (b) buffer overflow (though analyzed

as array index out of bounds), (c) data deserialization, (d) input non-validation for an untrusted

object, and (e) validation method bypass as the prevalent Java’s vulnerabilities from the MITRE

CVEs. The static code analysis of the compatible seven (7) Java projects out of the 100 top projects

cloned from GitHub revealed a 71.4% presence of the array index out-of-bounds vulnerability.

iv

ACKNOWLEDGMENTS

I, first and foremost, acknowledge the mercy and blessing of Allah (SWT) on me,

especially during this graduate school program. I appreciate the graduate assistantship support

from the Department of Computer Science, North Dakota State University. Without the

department’s tuition waiver assistance and the monthly stipend, I would not have completed this

program. I also appreciate my thesis advisor, Dr. Muhammad Zubair Malik, and my thesis

committee members, Dr. Pratap Kotala and Dr. Supavich (Fone) Pengnate.

My particular regards to my parents, who planted the seed of formal education in me and

exposed me to the values and benefits of education. Lastly, I appreciate the support from my wife,

Folasade, and my kids, Ayomiposi and Ayomikun. Your sacrifice finally paid off. I love you!

v

DEDICATION

This thesis is dedicated to all humans of all races, whose dreams kept them awake and whose

wins are testimonies that “impossibility” does not have the right to exist at all times.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

DEDICATION .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS ... x

1. INTRODUCTION .. 1

2. BACKGROUND AND MOTIVATION FOR STUDY ... 3

2.1. Java’s common vulnerabilities and exposures ... 3

2.1.1. Unauthorized use of restricted classes ... 4

2.1.2. Loading arbitrary classes ... 5

2.1.3. Unauthorized definition of privilege classes ... 5

2.1.4. Reflective access to methods and fields .. 6

2.1.5. Confused deputies ... 6

2.1.6. Caller sensitivity .. 7

2.1.7. Method handles ... 7

2.1.8. Serialization issues and type confusion ... 8

2.1.9. Privileged code execution .. 9

2.2. Building security in software construction ... 10

3. RESEARCH APPROACH ... 14

3.1. Text analysis to identify prominent Java CVE in MITRE and vulnerabilities-

related themes in the commit’s logs of the Java’s GitHub open-source projects...................... 15

3.2. Analysis of GitHub’s Java projects using CodeQL to identify security

vulnerabilities present ... 16

4. FINDINGS .. 18

vii

4.1. Identification of prominent Java CVEs in MITRE CVEs .. 18

4.2. Identification of security vulnerabilities in GitHub Java’s open-source projects 19

5. DISCUSSION AND CONCLUSION... 31

5.1. Discussion .. 31

5.1.1. Java’s vulnerabilities identified from the MITRE CVE’s vulnerability

descriptions .. 31

5.1.2. Java’s vulnerabilities identified from the open-source projects’ commits logs 32

5.1.3. Security assessment of GitHub’s Java projects source code for the identified

Java vulnerabilities .. 33

5.2. Limitations of the findings ... 34

5.3. Conclusion of the study .. 35

REFERENCES ... 36

viii

LIST OF TABLES

Table Page

2.1. Build-Security-In techniques for the software construction phase. 13

4.1. List of the first 100 (based on star counts) Java’s open-source projects on GitHub. 20

4.2. Summary of the codebase-to-database conversion for the vulnerability analysis. 23

4.3. Breakdown of the causes of the unsuccessful codebase-to-database conversions. 24

4.4. List of the successful codebases from the codebase-to-database conversion process. 25

4.5. Security evaluation of GitHub open-source projects. .. 26

ix

LIST OF FIGURES

Figure Page

2.1. Inner class restricted class vulnerability. ... 4

2.2. Simplified code illustration for arbitrary class loading [7]. ... 5

2.3. Access violation vulnerability.. 6

2.4. Simplified code illustration of confused deputy. ... 7

2.5. Exploiting MethodHandles for unauthorized access [7]. ... 8

2.6. Java deserialization routine [12]. ... 9

2.7. Privilege access as-a-result of abuse of System classes. ... 10

3.1. Research approach. .. 15

4.1. Top twenty (20) prominent tokens from the text analysis of Java’s CVEs in NVD. 18

4.2. Top twenty (20) prominent tokens from the text analysis of Java’s open-source

projects’ git commits. .. 19

4.3. Pie-chart – graphical representation of codebase-to-database conversion summary. 23

4.4. Bar chart – graphical Representation of codebase-to-database conversion summary. 24

x

LIST OF ABBREVIATIONS

SDLC ………………………... Software development lifecycle

OSS …………………………. Open-source software

JRE …………………………. Java runtime engine

CVE …………………………. Common vulnerabilities and exposures

CWE ………………………… Common weakness enumeration

OOP …………………………. Object-oriented programming

JSON ………………………… JavaScript object notation

XML …………………………. Extensible markup language

SOA …………………………. Service oriented architecture

SQL …………………………. Structured query language

CSV …………………………. Comma-separated values

NVD ………………………… National vulnerabilities database

DoE ………………………… Denial of entry

DoS ………………………… Denial of service

XSS ……………………….... Cross-site scripting

HTML ……………………… Hypertext markup Language

OWASP ……………………. Open web application security project

ORM ………………………. Object relational modelling

NER ………………………... Name entity recognizer

1

1. INTRODUCTION

Software security approaches emphasize the extension of security design and integration

to requirement engineering, software architecture, and coding beyond the prevalent security testing

[1]. These approaches, which explain the need to integrate security best practices to every stage of

the software development lifecycle (SDLC), include, but are not limited to, risk analysis, abuse

case modeling, and static code analysis [2]–[4]. Implementing these approaches is essential for all

software projects. Still, open-source software (OSS) projects are direr because many OSS libraries

that speed up the development process have been sources of known vulnerabilities [5].

Cybercriminals often exploit vulnerabilities in the software to perpetrate fraud, data and

identity theft, and denial-of-service attacks [6]. The OSS projects, like others, are always alerted

of vulnerabilities, and the communities are urged to work on fixing them. The Java OSS projects

have also experienced damaging and costly attacks due to vulnerabilities exploited through a Java

development platform or Java Runtime Engine (JRE) [7], [8]. The Common Vulnerabilities and

Exposures (CVE) and Common Weakness Enumeration (CWE) have documented these

experiences and their associated impacts [9].

Java developers rely on code reusability because of its time and effort reduction advantage

and thus are exposed to vulnerabilities in these publicly available OSS projects. The advocacy for

secure coding practices, such as input validation, output encoding, and session management [10],

has been further stressed and expected to be adopted by all, including OSS project contributors.

However, the extent to which this has been done is unknown. Also, the anticipated impact of secure

coding among the OSS projects and Java is rarely investigated. The Java language’s approach to

security, including encapsulation and access control mechanism, has not stopped it from failing

security testing in interesting ways [10]. Based on understanding these situations, this study

2

answered a central question: How secured are the codes written in the top GitHub’s open-source

Java projects?

In answering the central question, the following are the research questions answered:

i. What are Java’s vulnerabilities prevalent in its MITRE CVE’s vulnerability

descriptions?

ii. What are the Java’s vulnerabilities suggested in the commit messages of GitHub’s

open-source projects?

iii. How secured are Java’s open-source projects in GitHub from Java’s MITRE CVE

vulnerabilities?

In the light of these research questions, the objectives achieved by this study are:

i. Identification of Java’s vulnerabilities from the MITRE CVE’s vulnerability descriptions.

ii. Identification of Java’s vulnerabilities suggested by the projects’ commits logs.

iii. Security Assessment of GitHub’s Java projects code for the identified Java vulnerabilities.

GitHub is chosen as the public repository for fetching Java’s OSS projects because it

supports all popular programming languages and provides numerous development supports [12].

A multi-stage research approach that includes text analysis and static code analysis using GitHub’s

CodeQL [11] is employed by this study to answer the research questions and achieve their

respective objectives. The remaining parts of this work are organized as follows: Chapter 2

discusses the background and motivation of the study. Examples of Java’s vulnerabilities are

discussed, and past studies on building security into the software construction phase of the SDLC

are presented. Chapter 3 presents the research approach, enumerating the techniques and

procedures, employed by this study. Chapter 4 presents the findings, and Chapter 5, as the

concluding section, discusses the implications and limitations of the study.

3

2. BACKGROUND AND MOTIVATION FOR STUDY

This study stems from the need for securing software by starting from writing secure code.

It emphasizes integrating security into the software construction stage of the SDLC. Software

security has been primarily a post-development activity, with security and penetration testing,

among others. Understanding the characteristics of the Common Vulnerabilities and Exposures

(CVEs) and how they can be exploited is as essential in defensive security as it is for offensive

security. The analysis of Java’s CVEs in GitHub’s open-source projects is an essential preliminary

study into understanding the security status of the public code repositories. The security of these

public code repositories would further suggest a compliance rate to secure coding practices. In this

section, prominent Java CVEs are discussed, with due attention to the coding characterizations of

the weaknesses. Also, the concept of “Building Security In,” popularized by McGraw [1] as it

relates to software construction security best practices, was discussed.

2.1. Java’s common vulnerabilities and exposures

Vulnerabilities are generally weaknesses in the system design or code implementation.

They can be exploited for attack manifestation. Some vulnerabilities are general to many

programming languages, and some are specific to Java. The CVE program [9] identifies, defines,

and catalogs publicly announced cybersecurity vulnerabilities. The initiative helps cybersecurity

professionals globally to coordinate efforts addressing vulnerabilities. This study adopts Holzinger

et al.’s [7] discussion of the Java CVEs. [7] specified unauthorized use of restricted classes, loading

arbitrary classes, the unauthorized definition of privilege classes, reflective access to methods and

fields, confused deputies, caller sensitivity, method handles, serialization and type confusion, and

privileged code execution. These weaknesses are discussed in the following sub-sections.

4

2.1.1. Unauthorized use of restricted classes

Java platform is highly affected by unauthorized use of restricted classes. Custom classes

defined with such an exploit can run arbitrary codes and disable security managers without further

security checks. The object-oriented programming (OOP) paradigm’s information hiding is often

violated, thus exposing sensitive functionality to untrusted code. Preventing this experience might

finally be done by the Java Module System [11], but there is still a considerable knowledge gap in

this area.

The misconception of inner class restriction is prevalent among Java programmers, and the

belief that enclosing classes can only access the inner class fields is incorrect for many Java

compilers. The compilation is often done into independent classes with scopes extended

throughout the package. Therefore, when compiled, the private fields of the outer Class changed

to package scope and gave package scope access. Code listing in Figure 2.1 is an example of an

inner class with access to the private variable of its enclosing class. In the code listing example in

Figure 2.1, the outer_value variable would become accessible to all other classes in the same

package, thus violating the intended scope restriction.

Figure 2.1. Inner class restricted class vulnerability.

package testresearch;

public class outerclass {

private String outer_variable = "private outer variable";

class innerclass {

void printprivate() {

System.out.println("private field"+outer_variable);

} }

public static void main(String a[]){...} }

}

5

2.1.2. Loading arbitrary classes

Java platform has dynamic class loading, which is a central security feature. By design, the

class loaders ensure that all code load only classes it can access. However, malicious code can

abuse a system class to invoke a caller-sensitive method, such as Class.forName(String),

as a confused deputy. The caller-sensitive method will use the immediate defining class loader to

load the requested class. For example, the immediate caller of forName is a trusted system class;

but an untrusted code can request the loading of arbitrary restricted classes. Figure 2.2 lists the

simplified code illustration for arbitrary class loading.

Figure 2.2. Simplified code illustration for arbitrary class loading [7].

The MBeanInstantiator, in the listing in Figure 2.2 (line 3), is the trusted Class with

vulnerability because it provides an unrestricted, public interface to load arbitrary classes. A

special class loader that will not define a privileged context for a custom class can allow an

untrusted code in cases of complex call sequences.

2.1.3. Unauthorized definition of privilege classes

Arbitrary code execution can be caused by defining a class, with all permissions, in a

protected domain. Exploits can use restricted classes to define a custom class and thus requires an

attack vector that abuses the vulnerability to gain access. Unauthorized access to

1 // Method loads arbitrary classes

2 private Class GetClass1 (String s) {

3 JmxMBeanServer server =(JmxMBeanServer)JmxMBeanServer;

4 newMBeanServer ("",null ,null , true);

5 MBeanInstantiator i= server.getMBeanInstantiator ();

6 return i.findClass (s ,(ClassLoader) null);

7 }

6

MethodHandles is called internal methods of class loaders, bypassing security checks

implemented in the publicly accessible methods.

2.1.4. Reflective access to methods and fields

Malicious codes use improper reflection in system classes and caller-sensitive methods to

bypass information hiding. This weakness, which is found in the sun.awt.SunToolkit, has

been used to access private members of the Java class. There are also experiences of using

confused deputies to invoke caller-sensitive methods, such as getDeclaredFields and

getDeclaredMethods in Java.lang.Class. For example, as shown in the code listing in

Figure 2.3, a private variable, say private_variable, can be called by a public method, say

public_method (). It would increase the private variable’s scope; therefore, its content,

which might be confidential information, can be revealed.

Figure 2.3. Access violation vulnerability.

2.1.5. Confused deputies

Confused deputies are privilege escalators, legitimately tricked by another program into

misusing its authority. They can be used to invoke the caller-sensitive methods, though it will not

allow bypassing permission checks since its privileges are limited. The

MethodHandle.invokeWithArguments can be used by untrusted code as a wrapper to

MethodHandle.invokeExact, which will call the target method. Figure 2.4 lists the

simplified code illustration of the confused deputy.

1 public String public_method () {

2

3 return private_variable;

4 }

7

Figure 2.4. Simplified code illustration of confused deputy.

2.1.6. Caller sensitivity

Caller-sensitive methods behave according to the trust level of their callers. They can skip

permission checks when the immediate caller is seen to be trusted. Therefore, they are not

primarily vulnerabilities but can be abused if called through a confused deputy. Exploits that use

caller-sensitive methods can use Class.forName to load arbitrary classes and get reflective

access to class members (fields, methods, and constructors) that should not ordinarily be accessed.

However, Holzinger et al. [7] noted that empirical evaluation of the security check issues with

caller-sensitive methods is required because callers are not explicitly aware of their privileges.

2.1.7. Method handles

MethodHandles, just as the reflection API, bypass information hiding. The lookup

objects called by MethodHandles.lookup are facilitated by a confused deputy and used by

malicious code in accessing system class members. The lookup object retrieved from the confused

deputy grants such undue access when MethodHandles is used because it is less strict for type

checking or an alternative to reflection API. Figure 2.5 illustrates how MethodHandles is

exploited to access Class’s members.

1 Class A {

2 public Object invoke (Method m, Object [] args) {

3 return m.invoke (this, args);

4 }

5 // ...

6 }

8

Figure 2.5. Exploiting MethodHandles for unauthorized access [7].

2.1.8. Serialization issues and type confusion

Serialization is the process of turning data objects into formats that can be saved to storage,

sent as communication parts, or restored later. Therefore, data deserialization is reversing the

serialization process. It involves rebuilding data back to objects from some formats. JavaScript

Object Notation (JSON) and extensible Markup Language (XML) are the most popular data

formats for serializing data. Native deserialization mechanisms provided by many programming

languages, Java inclusive, can be repurposed for attack when an untrusted data object is involved.

The Java’s ObjectInputStream#resolveClass() method can be exploited for arbitrary

classes’ deserialization. Figure 2.6 shows a Java deserialization routine.

1 // Method loads arbitrary classes

2 private Class getClass2 (String s) {

3 MethodType mt = MethodType.methodType(Class.class, String.class);

4 MethodHandles.Lookupl = MethodHandles.publicLookup();

5 MethodHandle mh = l.findStatic(Class.class," forName ",mt);

6 return (Class)mh.invokeWithArguments (new Object []{s});

7 }

9

Figure 2.6. Java deserialization routine [12].

The data deserialization-related vulnerabilities leverage class loading and type safety

security features in Java for attacks [7]. Figure 2.6 depicts the serialization of an object from a

serializable class (ValueObject). The object’s value, Hi, can be changed during deserialization

without calling the constructor. An invalid object can, therefore, be created. The attack can be

perpetrated by manually creating a serialized object inserted into the

AtomicReferenceArray.

2.1.9. Privileged code execution

Privilege code execution is a type of vulnerability that allows attackers to execute code in

a way that successfully bypasses arbitrary permission checks. They are different from and more

radically powerful than confused deputies because they do not rely on caller sensitivity. Exploits

public class ValueObject implements Serializable {

 private String value;

 private String sideEffect;

 public ValueObject() {

 this("empty");

 }

 public ValueObject(String value) {

 this.value = value;

 this.sideEffect = java.time.LocalTime.now().toString();

 }

}

ValueObject vo1 = new ValueObject("Hi");

FileOutputStream fileOut = new FileOutputStream("ValueObject.ser");

ObjectOutputStream out = new ObjectOutputStream(fileOut);

out.writeObject(vo1);

out.close();

fileOut.close();

10

achieve privileged code execution through abuse system classes and trusted method chaining. In

abuse system classes, the privileges are elevated, and attack methods are called with arbitrary

arguments. However, malicious code creates a thread that executes the attacker-provided method

in trusted method chaining. The code listing in Figure 2.7 shows how a system property of the

privilege System class can gain unintended information, precisely the name value.

Figure 2.7. Privilege access as-a-result of abuse of System classes.

2.2. Building security in software construction

The need for software security approaches that are system development focused and

beyond the operational and application-level security is dire. Against this backdrop, general

software security best practices have been suggested for every stage of the SDLC. These

approaches are needed as extensions of security design and integration to requirement engineering,

software architecture, coding, and testing. Specifically, for the software construction phase, static

analysis tools, program analysis, obfuscation and masking, verification and model checking,

knowledge graph modeling, and machine and deep learning techniques are recorded as adapted

strategies for building security into coding.

Static code analysis tools – which are either proprietary [6], [13] or open-source [14]–[16]

– search the code or analyze compiled versions to identify vulnerabilities, among others. The tools

provide immediate feedback to developers, help in the speedy build process, and fasten the release

public static String getProp(final String name)

{

return (String) AccessController.doPrivileged(new PrivilegedAction()

{

public Object run()

{

// privileged code goes here, for example:

return System.getProperty(name);

}

});

}

11

period. Unfortunately, they may give false positives and miss specific security issues, such as

authentication. They are primarily unsuitable for codes that cannot be compiled and are generally

language-specific [17]. In the same vein, Taint analysis, one of the evaluation analyses of

Collective Program Analysis proposed by Upadhyaya and Rajan [18], detects and reports

vulnerabilities in the program source code. The analysis checks if data from external inputs like

consoles are read to the outputs and reports associated vulnerabilities. In a similar study, taint

analysis is used in detecting malicious input in embedded systems [19]. It helps track tainted data

from its source to its application point in the source code.

Formal software verifications and model checking methods have also been used to prove

code correctness and assess compliance with specified security constraints, such as no memory,

type safety violations, and logging sensitive information [3], [20]. However, its adoption and wide

acceptability have been limited due to its inability to scale. Obfuscation and masking techniques

were also invented to enhance software security [21], [22]. These include selecting a subset of

code to obfuscate or transform to the desired level that resists reverse engineering and removes

potential security vulnerabilities. The implementations involve a finite-state machine (FSM),

which decomposes programs for simple predicate extraction [21], and code transformation, which

uses opaque constructs from aliasing and concurrency [22].

With applicability in automated detection of vulnerabilities in source code, a knowledge

graph of vulnerabilities data was constructed by Jia et al. [23]. The study used the Stanford Named

Entity Recognizer (NER) as a machine learning training model for an extractor of cybersecurity-

related entities. Their work, useGazette parameter, though focusing on broader cybersecurity

entities, is helpful in training recognizers in automated detection of vulnerabilities. A similar

anticipated study for detecting vulnerabilities is [24] on classifying service-oriented architecture

12

(SOA) vulnerabilities. The study proposed a comprehensive classification to identify the systems’

vulnerabilities, including building vulnerability management tools for software code, due to

existing additional SOA vulnerabilities.

Notably, there are significant new studies on detecting program source code vulnerabilities

using machine and deep learning techniques. These range from vulnerabilities detection in open

source dependencies [5], [25], to programming languages like C [26]–[29], C++[26], [27], and

Java [30]. Building security in software is the major motivation of these studies, but there are other

important specific problems. For instance, open-source software (OSS) libraries, widely used to

speed up the development process, have been sources of publicly known vulnerabilities [5]. The

static scanning tools have also been inadequate for vulnerability detection in complex but low-

level languages like C [28]. There is also an invention for just-in-time vulnerability detection in

source code [30]. Also, a proposed minimum intermediate representation learning technique

reduces the false-positive rate [29].

GitHub’s CodeQL [31] and Facebook’s PySa [32] are currently open-source projects for

vulnerability detection in source code. CodeQL is a semantic code analysis engine that allows

querying code as data to detect variants of a vulnerability. Using taint analysis, CodeQL can be

used on codebases to discover bad patterns [31]. A similar, but a specific tool for Python language,

is PySa – an acronym for Python Static Analyzer. It detects and prevents security and privacy

issues in Python code. It is built on a type checker to analyze data flows through the code to identify

web application security issues, including cross-site scripting and SQL injection [32]. Table 2.1

summarizes the “build security in” techniques for the software construction phase.

13

Table 2.1. Build-Security-In techniques for the software construction phase.

Techniques Strengths Limitation

Static code analysis

tool [13], [15], [32]

Suitable for flagging

vulnerabilities in source code or

after being compiled.

It can be integrated into IDE to

provide immediate feedback.

Give a high number of false

positives.

Miss specific security issues,

such as authentication.

Program analysis

[18], [19]

Optimal in detecting malicious

input or flow within the source

code.

Limited in scope, therefore,

mostly need supporting

techniques for optimal

performance.

Obfuscation and

masking [21], [22]

Suitable for concurrency security

control.

Applicable in state-dependent

code.

It is unable to scale.

Verification and

model checking [3],

[20]

Suitable for actualizing complete

and sound techniques.

It is unable to scale.

Knowledge graph

(ontology) modeling

[23], [24]

It is suitable for rule-based

verification and formalization and

can easily integrate into other

technologies.

Requires supporting techniques

like program analysis for

abstract syntax tree construction

for optimal performances.

Machine and Deep

learnings [5], [26],

[28]

It handles multivariate data

optimally.

Suitable for pattern recognition

on all types of datasets.

It has a high rate of false

positives.

It requires intensive data for

optimal performance.

14

3. RESEARCH APPROACH

A multi-step research approach is adopted in proffering answers to the research questions

of this study. Text and static code analysis are the main components of this research process.

Considering the leverage provided by computational methods and tools, text analysis helps extract

information from documents. It is also used in identifying and exploring interesting patterns from

unstructured textual data [30]. Text analysis’s use cases include, but are not limited to, text

categorization, text clustering, entity extraction, production of taxonomies, sentiment analysis, and

entity relation modeling [31]. The text analysis techniques are used to identify the prevalent Java

vulnerabilities published by the MITRE CVEs.

Static code analysis tools have been reported for their extensive use and merits in providing

immediate feedback to developers, helping in the speedy build process, and fastening the release

period [10]– [14]. They are used for finding bugs or security vulnerabilities in the code by scanning

and not executing the code. Figure 3.1 presents the research design process. Sub-sections 3.1

and3.2 provide the details of the steps involved in the components. Also, the code implementation

of these components is presented1.

1 https://github.com/Semiu/java-codesecurity/tree/main/java-cve-analysis

15

Figure 3.1. Research approach.

3.1. Text analysis to identify prominent Java CVE in MITRE and vulnerabilities-related

themes in the commit’s logs of the Java’s GitHub open-source projects

Data curation and text analysis are the two steps in this phase of the research approach. The

first and second research questions, answered by this phase, identified Java’s CVEs in the

MITRE’s vulnerability descriptions and commit messages of GitHub’s Java open-source projects.

The Java’s CVE descriptions are extracted from the MITRE website, cleaned, and saved in

comma-separated values (CSV) files, using different web scraping techniques. Web scraping is

Data
scraping
and storage

Vulnerability descriptions from MITRE

Getting the list of top 100 Java projects from
GitHub.

Cloning the top 100 Java projects.

Generating log history and parsing needed
information.

Python Libraries:
Request, json, os,
regex,
BeautifulSoup,
pandas, pymysql

Others: MySQL,
SQL

Text pre-processing to extract vulnerabilities
phrases.

Tokenization of the vulnerabilities’ phrases.

Text
Analysis

Visualization of the vulnerabilities’ tokens.

Python Libraries:
re, pandas,
seaborn, nltk,
nltk.stem,
matplotlib.pyplot

Conversion of codebases to semantic
databases

Analysis of codebases converted to semantic
databases.

CodeQL

Static Code

Analysis

16

extracting text from web pages [33]. Python libraries, such as BeautifulSoup and Request,

implement web scraping scripts. The list of the top 100 GitHub Java open-source project names is

created using the number of stars, and each of these projects is cloned to a local machine. Also,

commit logs are generated for each of the open-source projects, and they are parsed and saved in

a CSV file, using their respective hash numbers (sha) as identifiers.

The extracted MITRE’s vulnerability descriptions and Java’s open-source projects git

commit messages are pre-processed for vulnerability phrases. The pre-processing allows clarity

and specifics of words that represent the important contents. These phrases are then tokenized

using NLTK and Wordnet Lemmatizer: Python libraries for removing stop words, stemming,

and Lemmatization. Stop words are littered words and mostly have no significance to the

generality of the analyzed body of text. Examples are “the,” “and,” “at.” Stemming is the process

of reducing words to their base form, while Lemmatization groups different forms of words into

single items for analysis [33]. The vulnerability-representative tokens derived are visualized to

identify the prevalent ones. These tokens suggest the prevalent Java’s CVE vulnerabilities

published on MITRE’s website.

3.2. Analysis of GitHub’s Java projects using CodeQL to identify security vulnerabilities

present

The third research question evaluates the security of Java open-source projects on GitHub

using the static code analysis method. The static code analysis uses CodeQL [31] to identify the

security vulnerabilities. CodeQL is a semantic code analysis engine that allows querying code as

data to detect variants of a vulnerability. The extracted MITRE’s vulnerability descriptions for

Java suggest the vulnerabilities analyzed. The codebases of the Java open-source projects are

firstly converted to semantic databases for working compatibility with CodeQL. Queries are then

17

written to detect the suggested vulnerabilities, and the analysis results are presented. This study

adopts applicable code queries from the CodeQL’s documentation2.

2 https://codeql.github.com/codeql-query-help/java/

18

4. FINDINGS

4.1. Identification of prominent Java CVEs in MITRE CVEs

Identifying the prominent Java CVEs from the NVD was based on identifying the prevalent

tokens in the vulnerability’s texts reported in MITRE. Figure 4.1 presents the top twenty (20)

prominent tokens.

Figure 4.1. Top twenty (20) prominent tokens from the text analysis of Java’s CVEs in NVD.

The top 20 prominent tokens from the text analysis of Java’s CVEs in MITRE suggest the

following web vulnerabilities, using domain knowledge as heuristics. These are (a) cross-site

scripting, (b) buffer overflow, (c) data deserialization, (d) input non-validation for an untrusted

object, and (e) validation method bypass. These vulnerabilities were investigated where

appropriate, and the findings are reported in sub-section 4.3. The explanation for the presence of

buffer overflow as a vulnerability reported by the MITRE, despite the Java’s defence against it is

explained in Chapter 5, section 5.1. Similarly, identifying the security vulnerabilities-related

themes in the commit’s logs of GitHub Java’s open-source projects followed the same process.

19

The details of the text analysis are also presented in sub-section 3.2. Figure 4.1 presents the top

twenty (20) prominent tokens from the text analysis of Java’s open-source projects’ git commits.

Figure 4.2. Top twenty (20) prominent tokens from the text analysis of Java’s open-source

projects’ git commits.

The git commit messages are not correctly worded to ease text analysis in identifying the

vulnerability themes and tokens. Nevertheless, SQL injection and Denial of entry (DoE), also

understood as Denial of Service (DoS), are the vulnerabilities arguably suggested by the prominent

tokens identified.

4.2. Identification of security vulnerabilities in GitHub Java’s open-source projects

The process of identifying the security vulnerabilities in GitHub’s Java open-source

projects is multi-stage, as described in Chapter 3. Findings reported in this section include (a) the

list of the 100 open-source projects cloned for analysis, indicating the build message from the

codebase-database conversion process, (b) the summary of the successful and unsuccessful

conversions, (c) the breakdown of the build messages of the unsuccessful conversions, (d) the

descriptions of the successfully-converted codebases that were later analyzed for the presence of

20

the specified vulnerabilities, and (e) the results of the analysis of the specified vulnerabilities in

the codebases. Table 4.1 lists the 100 Java open-source projects from GitHub.

Table 4.1. List of the first 100 (based on star counts) Java’s open-source projects on GitHub.

 Project Name Star count Build message

1 CyC2018/CS-Notes 120756 No suitable build command

2 Snailclimb/JavaGuide 96870 No suitable build command

3 iluwatar/java-design-patterns 63975 mvn.cmd not recognized

4 MisterBooo/LeetCodeAnimation 62528 No suitable build command

5 elastic/elasticsearch 53668 SocketException

6 spring-projects/spring-boot 53458 FileNotFound Exception

7 doocs/advanced-java 51923 No suitable build command

8 kdn251/interviews 50095 could not detect suitable build

9 macrozheng/mall 46312 mvn.cmd not recognized

10 ReactiveX/RxJava 44239 Successful

11 spring-projects/spring-framework 41432 Successful

12 google/guava 40302 mvn.cmd not recognized

13 square/okhttp 39372 Successful

14 square/retrofit 37517 SDK location not found

15 TheAlgorithms/Java 35025 Could not find the build command

16 apache/dubbo 34657 MAVEN/DependencyResolutionE

xception

17 PhilJay/MPAndroidChart 32765 NoClassDefFoundError

18 bumptech/glide 30698 NoClassDefFoundError

19 airbnb/lottie-android 30633 Android SDK location not found;

software internal component

missing

20 kon9chunkit/GitHub-Chinese-

Top-Charts

30122 No build detected

21 Blankj/AndroidUtilCode 28848 NoClassDefFoundError

22 zxing/zxing 27166 mvn.cmd not recognized

23 netty/netty 25976 CompilationError problem

24 crossoverJie/JCSprout 25779 mvn.cmd not recognized

25 JakeWharton/butterknife 25615 SDK location not found

26 proxyee-down-org/proxyee-down 25526 mvn.cmd not recognized

27 skylot/jadx 25108 Successful

28 ityouknow/spring-boot-examples 24798 mvn.cmd not recognized

29 eugenp/tutorials 24780 mvn.cmd not recognized

30 NationalSecurityAgency/ghidra 24728 Gradle not found

31 alibaba/arthas 24709 MojoFailureException in the build

32 geekxh/hello-algorithm 24079 No build detected

21

Table 4.1. List of the first 100 (based on star counts) Java’s open-source projects on GitHub

(continued).

 Project Name Star count Build message

33 ctripcorp/apollo 23805 mvn.cmd not recognized

34 alibaba/druid 23339 mvn.cmd not recognized

35 greenrobot/EventBus 23178 NoClassDefFound error

36 alibaba/fastjson 23035 mvn.cmd not recognized

37 scwang90/SmartRefreshLayout 22186 NoClassDef error

38 CymChad/BaseRecyclerViewAda

pterHelper

21490 SDK location not found

39 Netflix/Hystrix 21075 IllegalArgument Exception

40 xkcoding/spring-boot-demo 20523 mvn.cmd not recognized

41 lenve/vhr 20236 mvn.cmd not recognized

42 SeleniumHQ/selenium 19804 No suitable build

43 signalapp/Signal-Android 19798 No SDK location

44 hollischuang/toBeTopJavaer 19604 No suitable build

45 ReactiveX/RxAndroid 19328 SDK location not found

46 google/gson 19178 IllegalArgument Exception

47 qiurunze123/miaosha 19073 XMLpullException

48 zhangdaiscott/jeecg-boot 18903 mvn.cmd not recognized

49 alibaba/easyexcel 18851 mvn.cmd not recognized

50 seata/seata 18679 SocketException

51 dbeaver/dbeaver 18594 mvn.cmd not recognized

52 wuyouzhuguli/SpringAll 18490 Cannot detect build command

53 libgdx/libgdx 18029 Taskexecution exception

54 apache/kafka 18017 Gradle not recognized

55 halo-dev/halo 18006 Successful

56 looly/hutool 17884 mvn.cmd not recognized

57 square/picasso 17854 NoClassDef error

58 alibaba/canal 17787 mvn.cmd not recognized

59 alibaba/spring-cloud-alibaba 17589 pom.xml file does not exist

60 Baseflow/PhotoView 17495 Missing

SoftwareInternalComponent

61 xuxueli/xxl-job 17274 mvn.cmd not recognized

62 google/ExoPlayer 17255 NoClassDef error

63 jenkinsci/jenkins 16902 mvn.cmd not recognized

64 nostra13/Android-Universal-

Image-Loader

16782 NoClassDef error

65 didi/DoraemonKit 16741 No suitable build command

66 facebook/fresco 16490 SDK location not found

67 alibaba/nacos 16336 mvn.cmd not recognized

68 bazelbuild/bazel 16212 Could not find a suitable build

22

Table 4.1. List of the first 100 (based on star counts) Java’s open-source projects on GitHub

(continued).

 Project Name Star count Build message

69 apache/skywalking 16077 Could not find a suitable build

70 shuzheng/zheng 15847 mvn.cmd not recognized

71 CarGuo/GSYVideoPlayer 15720 SDK location not found

72 redisson/redisson 15695 mvn.cmd not recognized

73 Tencent/tinker 15634 Could not determine Java version

74 apache/flink 15503 mvn.cmd not recognized

75 alibaba/Sentinel 15325 mvn.cmd not recognized

76 linlinjava/litemall 15318 mvn.cmd not recognized

77 mybatis/mybatis-3 15048 mvn.cmd not recognized

78 dianping/cat 14994 mvn.cmd not recognized

79 forezp/SpringCloudLearning 14956 Cannot detect build directory

80 android10/Android-

CleanArchitecture

14708 could determine Java version from

15

81 brettwooldridge/HikariCP 14568 mvn.cmd not recognized

82 oracle/graal 14537 No build command

83 winterbe/java8-tutorial 14376 No build command

84 elunez/eladmin 14241 mvn.cmd not recognized

85 EnterpriseQualityCoding/FizzBuz

zEnterpriseEdition

14080 IllegalArgument Exception

86 openzipkin/zipkin 14006 Successful

87 JeffLi1993/springboot-learning-

example

13971 mvn.cmd not recognized

88 lottie-react-native/lottie-react-

native

13847 NoClassDefFound error

89 hdodenhof/CircleImageView 13746 NoClassDefFound error

90 apache/rocketmq 13516 mvn.cmd not recognized

91 lgvalle/Material-Animations 13510 Gradle not recognized

92 LMAX-Exchange/disruptor 13436 Successful

93 apache/shardingsphere 13349 mvn.cmd not recognized

94 alibaba/ARouter 12858 local.properties file is missing

95 dyc87112/SpringBoot-Learning 12762 mvn.cmd not recognized

96 orhanobut/logger 12676 could determine Java version from

15

97 Tencent/QMUI_Android 12652 SDK location not found

98 TeamNewPipe/NewPipe 12538 SDK location not found

99 Bigkoo/Android-PickerView 12531 NoClassDefFound error

100 Curzibn/Luban 12326 IllegalArgumentException

23

For various reasons, only seven (7) codebases were successfully converted to databases

that could be analyzed for vulnerabilities using CodeQL. The reasons for the unsuccessful

conversion, as shown in the build messages, are presented in Table 4.3. Table 4.2 presents the

summary of the codebase-to-database conversion success rate. The conversion success rate is also

graphically represented in Figure 4.3.

Table 4.2. Summary of the codebase-to-database conversion for the vulnerability analysis.

Codebase-to-Database state Quantity

Successful 7

Unsuccessful 93

Total 100

Figure 4.3 depicts a graphical representation of the summary of the codebase-to-database

conversion of the 100 Java open-source projects from GitHub.

Figure 4.3. Pie-chart – graphical representation of codebase-to-database conversion summary.

24

Table 4.3. Breakdown of the causes of the unsuccessful codebase-to-database conversions.

 Causes Frequency

1 Illegal Argument Exception 4

2 No Class Definition Exception 11

3 Android SDK location not found 10

4 mvn.cmd not recognized 35

5 Java version could not be determined 3

6 Gradle not recognized 4

7 local.properties file missing 1

8 No build command in the source 4

9 Missing software internal component 1

10 pom.xml does not exist 1

11 Task Execution Exception 1

12 Socket Exception Error 2

13 XML pull Exception 1

14 Mojo Failure Execution in the build 1

15 File not found exception 1

16 MAVEN Dependency resolution Exception 1

17 Compilation Error 1

Figure 4.4 depicts a graphical representation of the breakdown of the causes of the unsuccessful

codebase-to-database conversions.

Figure 4.4. Bar chart – graphical representation of codebase-to-database conversion summary.

25

The successfully converted codebases are seven (7): RxJava, Spring framework, OkHTTP,

Jadx, Halo, Zipkin, and Exchange Disruptor. Table 4.4 presents the detailed information of the

codebases, including their respective descriptions and uniform resource locators (URLs).

Table 4.4. List of the successful codebases from the codebase-to-database conversion process.

 Name of

project

GitHub

Star

count

Description Uniform Resource

Locator

Lines of

Code (LOC)

1 ReactiveX

/RxJava

44239 It is a library for

composing asynchronous

and event-based

programs.

https://github.com/Rea

ctiveX/RxJava

323206

2 spring-

projects/sp

ring-

framework

41432 The home of the Spring

framework. Spring

provides everything

required for creating

enterprise applications.

https://github.com/spri

ng-projects/spring-

framework

805165

3 square/okh

ttp

39372 This HTTP client

supports all requests to

the same host when

sharing a socket,

reducing the request

latency, among others.

https://github.com/squ

are/okhttp

92178

4 skylot/jad

x

25108 This command line and

Graphical User Interface

(GUI) tools produce Java

source code from

Android Dex and Apk

files.

https://github.com/sky

lot/jadx

125739

5 halo-

dev/halo

18006 A modern personal and

independent blogging

system.

https://github.com/hal

o-dev/halo

40967

6 openzipki

n/zipkin

14006 A distributed tracing

system used for gathering

timing data which are

needed for solving

latency problems in

service architecture.

https://github.com/ope

nzipkin/zipkin

113750

7 LMAX-

Exchange/

disruptor

13436 A high-performance

inter-thread messaging

library.

https://github.com/LM

AX-

Exchange/disruptor

19925

26

The successfully converted codebases are analyzed with CodeQL and the provided code

snippets to query the vulnerabilities identified in sub-section 4.1. Table 4.5 presents the findings

of the analysis. Notably, array index out of bounds, as a type of buffer overflow, was analyzed

because of the presumption that Java’s technology has been built to avoid the occurrence of buffer

overflow. Further discussions are provided in section 5.

Table 4.5. Security evaluation of GitHub open-source projects.

Vulnerability Database Result Details (where necessary)

Array index

out of bound

ReactiveX/RxJ

ava

2 at TestHelper.java file, line 2454, 72

code below shows lines 2453 to 2455
for (int i = 0; i < classes.length; i += 2) {
 assertError(list, i, (Class<Throwable>)classes[i], (String)classes[i + 1
]);
 }

at TestHelper.java file, line 2499, 72

code below shows lines 2498 to 2500
for (int i = 0; i < classes.length; i += 2) {
 assertError(list, i, (Class<Throwable>)classes[i], (String)classes[i + 1]);
 }

spring-

projects/spring

-framework

3 at Frame.java file, line 653, 35

code below shows 652 to 654
if (kind == STACK_KIND) {
 initializedType = dim + inputStack[inputStack.length - value];
 }

at PathPatternTests.java file, line 1182, 40

code below shows line 1181 to 1183
for (int i = 0; i < keyValues.length; i += 2) {
 expectedKeyValues.put(keyValues[i], keyValues[i +
1]);
 }

at ViewResolverRegistryTests.java file, line 219,

22

code below shows lines 218 to 220
for (int i = 0; i < nameValuePairs.length ; i++, i++) {
 Object expected = nameValuePairs[i + 1];
{

square/okhttp 1 at CallTest.java file, line 3955, 37

code below shows lines 3954 to 3956
for (int i = 0, size = headers.length; i < size; i += 2)
 {
 builder.addHeader(headers[i], headers[i + 1]);
 }

skylot/jadx 2 at SignatureParserTest.java file, line 111, 41
List<ArgType> list = (List<ArgType>) objs[i + 1];

27

Table 4.5. Security evaluation of GitHub open-source projects (continued).

Vulnerability Database Result Details (where necessary)

Array index

out of bound

 at TestArrayforEachNegative.java file, line 28, 12

code below shows lines 27 to 29
for (int i = 0; i <= a.length; i++) {
 sum += a[i];}

halo-dev/halo 0 Not applicable

openzipkin/zip

kin

2 at Endpoint.java file, line 379,27

code below shows lines 378 to 382
for (int i = 0; i < ipv6.length; i += 2) {
 if (ipv6[i] == 0 && ipv6[i + 1] == 0) {
 if (zeroIndex < 0) zeroIndex = i;
 continue;
 }

at Endpoint.java file, line 414,18
 byte low = ipv6[i++];

LMAX-

Exchange/disru

ptor

0 Not applicable

Method

Bypass

ReactiveX/RxJ

ava

0 Not applicable

spring-

projects/spring

-framework

0 Not applicable

square/okhttp 0 Not applicable

skylot/jadx 0 Not applicable

halo-dev/halo 0 Not applicable

openzipkin/zip

kin

0 Not applicable

LMAX-

Exchange/disru

ptor

0 Not applicable

Cross-site

scripting

(due to user-

provided

value)

ReactiveX/RxJ

ava

0 Not applicable

spring-

projects/spring

-framework

51

(Note: Few selected details are presented)

The user-provided value
out.write(in);

at ServletWebRequest.java file, line 372, 28

The code below shows from line 371 to 373
HttpServletRequest request = getRequest();
StringBuilder sb = new StringBuilder();
sb.append("uri=").append(request.getRequestURI());

at line 382, 18
String user = request.getRemoteUser();

28

Table 4.5. Security evaluation of GitHub open-source projects (continued).

Vulnerability Database Result Details (where necessary)

Cross-site

scripting

(due to user-

provided

value)

 at ForwardedHeaderFilter.java, line 394, 12
if (this.requestUri == null) {
 return this.delegate.get().getRequestURI();
 }

at MultipartFileResource.java, line 85, 39

the code shows lines 84 to 86
public String getDescription() {
 return “MultipartFile resource [“ + this.multipartFi
le.getName()
 + ”]”;
 }

at UrlPathHelper.java file, line 435, 10

code below shows lines 434 to 436
if (uri == null) {
 uri = request.getRequestURI();
 }

at UrlResource.java file, line 186, 11

code below shows line 185 to 187
try {
 return con.getInputStream();
 }

 at httpComponentAsynClientHttpResponse.java

file, line 81, 28
HttpEntity entity = this.httpResponse.getEntity();
 return (entity != null ? entity.getContent() : Strea
mUtils.emptyInput());

at SimpleServerhttpRequest.java, line 98, 62
this.responseStream = (errorStream != null ? errorStream
 : this.connection.getInputStream());

at MultipartFile.java, line 149, 22
default void transferTo(Path dest) throws IOException, I
llegalStateException {
 FileCopyUtils.copy(getInputStream(), Files.newOutput
Stream(dest));
 }

at MultipartFileResource.java file, line 77, 10
return this.multipartFile.getInputStream();

at DefaultMultipartHttpServletRequest.java, line

85, 21
String[] values = getMultipartParameters().get(name);

at RequestPartServletServerHttpRequest.java, line

100, 23
String paramValue = this.multipartRequest.getParameter(t
his.requestPartName);

29

Table 4.5. Security evaluation of GitHub open-source projects (continued).

Vulnerability Database Result Details (where necessary)

 at UrlResouce.java file, 186, 11
try {
 return con.getInputStream();
 }

square/okhttp 0 Not applicable

skylot/jadx 0 Not applicable

halo-dev/halo 0 Not applicable

openzipkin/zip

kin

0 Not applicable

LMAX-

Exchange/disru

ptor

0 Not applicable

Deserializati

on

ReactiveX/RxJ

ava

0 Not applicable

spring-

projects/spring

-framework

1 at HttpInvokerServiceExporter.java, line 146, 16

Code below shows lines 95 to 99
protected RemoteInvocation readRemoteInvocation(HttpServ
letRequest request)
 throws IOException, ClassNotFoundException {

 return readRemoteInvocation(request, request.getInpu
tStream());
 }

square/okhttp 0 Not applicable

skylot/jadx 0 Not applicable

halo-dev/halo 0 Not applicable

openzipkin/zip

kin

0 Not applicable

LMAX-

Exchange/disru

ptor

0 Not applicable

Improper

validation of

user-

provided

array index

ReactiveX/RxJ

ava

0 Not applicable

spring-

projects/spring

-framework

81 (Note: Few selected details are presented)

at Frame.java, line 486,
@Override
 public InputStream getInputStream() throws IOException
, IllegalStateException {
 return this.multipartFile.getInputStream();
 }

30

Table 4.5. Security evaluation of GitHub open-source projects (continued).

Vulnerability Database Result Details (where necessary)

 at MultipartFileResource.java, line 77
if (multipartRequest != null) {
 List<MultipartFile> files = multipartRequest.getFi
les(name);
…
{

at UrlResource.java, line 186

Code below shows line 185 to 187
try {
 return con.getInputStream();
 }

at ServletWebRequest.java, line 372

Code below shows lines 371 to 372
StringBuilder sb = new StringBuilder();
 sb.append("uri=").append(request.getRequestURI());

at ForwardedHeaderFilter.java, line 185

Code below shows line 184 to 186
if (!FORWARDED_HEADER_NAMES.contains(name)) {
 headers.put(name, Collections.list(request.get
Headers(name)));}

square/okhttp 0 Not applicable

skylot/jadx 0 Not applicable

halo-dev/halo 0 Not applicable

openzipkin/zip

kin

0 Not applicable

LMAX-

Exchange/disru

ptor

0 Not applicable

Improper

validation of

user-

provided size

used for

array

construction

ReactiveX/RxJ

ava

0 Not applicable

spring-

projects/spring

-framework

0 Not applicable

square/okhttp 0 Not applicable

skylot/jadx 0 Not applicable

halo-dev/halo

openzipkin/zip

kin

0 Not applicable

LMAX-

Exchange/disru

ptor

0 Not applicable

31

5. DISCUSSION AND CONCLUSION

5.1. Discussion

5.1.1. Java’s vulnerabilities identified from the MITRE CVE’s vulnerability descriptions

Cross-site scripting (XSS), buffer overflow, data deserialization, input non-validation for

an untrusted object, and validation method bypass are the prevalent Java vulnerabilities suggested

by the text analysis of MITRE CVEs. XSS allows attackers to inject malicious code into the web

browser, such as JavaScript programs. Buffer overflow attacks are specified by overwriting

process memory segments [34]. Data deserialization is rebuilding data back to objects from

formats like JSON and XML. It can, therefore, be used for attack when the data object is untrusted

[7]. The input non-validation for untrusted data can happen in different instances, including

deserialization. All data from untrusted sources, including user-facing sites and backend feeds,

should be subject to input validation [35]. The validation method bypass, in most cases, happens

when a malicious code poses as a trusted object and therefore enjoys the privilege and unmerited

execution [36].

XSS is also caused by user input from the HTML output that escapes validation. It

resembles the validation method bypass principle. But in specifics, XSS injects scripts for damage,

whether persistent or reflected. XSS can be exploited for attack because every user-facing

application requires input. With the malicious code, attackers can access the victim’s credentials,

such as cookies and passwords [34]. The log injection attack is also carried out through exploitation

[37]. Therefore, securing Java applications from XSS and log injection requires server-side input

validation because the client-side can be easily bypassed [36], [38].

Buffer overflow can be prevented by modifying the stack-allocated data and bound

checking. The modification of the stack-allocated data presents canary values in programs that

32

help intercept the buffer overflow attack. Languages like Java natively employ bound checking,

which checks permission to each allocated memory block. It prevents data into unallocated space

because they do not have direct memory access [34]. Therefore, the identification of buffer

overflow as a prevalent Java vulnerability from the text analysis of the MITRE’s CVEs is best

understood by the possibility of exploitation through the Java Virtual Machine, which is developed

in C++ language, or Java Runtime Engine (JRE) [7], [8]. Also, the JVM is highly affected by

unauthorized use of restricted classes, making custom classes defined with an exploit to run

arbitrary codes and disable security managers without further security checks [7]. Array index out

of bounds, as a type of buffer overflow that throws ArrayIndexOutofBoundsException

is analyzed in the codebases.

Data deserialization in Java allows exploitation of the arbitrary Class and the type-safety

features using type confusion, which means the object type passed to the code is not verified [7].

An attacker would insert a modified serialized object that can trigger a malicious code when

deserialized [12]. On the other hand, improper input validation is when software does not validate

input properly. It allows input in an unexpected and unsanitized form, leading to altered control or

arbitrary code execution. Lastly, validation method bypass is manifested through confused

deputies. These are programs that trick programs into misusing authority or bypassing validation.

The experience would subsequently privilege code execution.

5.1.2. Java’s vulnerabilities identified from the open-source projects’ commits logs

SQL injection and Denial of entry (DoE), also known as Denial of Service (DoS), are the

vulnerabilities suggested by the git commits of the top 100 Java projects on GitHub. Though the

commit messages’ wordings inhibit valuable insights, the tokens derived from the text analysis

still helped. SQL injection manipulates applications by passing input containing SQL commands

33

to the database for execution. It can add, modify and delete records in a database [39], [40]. On

the other hand, DoS is an explicit attempt to prevent legitimate users from using a service [41].

Though DoS is only 5% of the 2016 OWASP survey of web application attacks [42], it is,

nevertheless, essential to prevent it [41].

Static analysis tool, input validation [10], [39], [43]–[45], injection detection tool [40],

machine and deep learning models [40], [46], [47] are some of the techniques that can prevent

SQL injection. Java development frameworks and libraries [38], especially for the Model-View-

Controller development, are now developed with Object Relational Modelling (ORM) technology

for data query and plain SQL statement execution alternatives. Considering its numerous attack

approaches, the best way to prevent DoS is a hybrid of attacker and victim side defenses through

overlay networks [41].

5.1.3. Security assessment of GitHub’s Java projects source code for the identified Java

vulnerabilities

Cross-site scripting, array index out of bound, data deserialization, input non-validation (or

improper validation) for an untrusted object, and improper validation of user-provided array

construction (as a validation method bypass) are the vulnerabilities investigated in GitHub’s Java

projects. As a type of buffer overflow, array index out of bounds was analyzed for two reasons.

First, since the analysis is done on program source code, without the involvement of a Java

platform or JRE, the presumption that Java technology has been built to avoid buffer overflow is

held. Second, GitHub’s CodeQL, the semantic code analyzer, most likely because of the first

reason, provides documentation only for the array index out of bounds vulnerability.

The security assessment identified two (2) instances of array index out of bounds in each

ReactiveX/RxJava, skylot/jadx, and openzipkin/zipkin. It found three (3) instances in spring-

34

projects/spring-framework, and one (1) in square/okhttp. The total number of cases of array index

out of bound is ten (10) across four (4) out of the seven (7) codebases analyzed, implying 71.4%

presence. Method bypass and improper validation of user-provided size used for array construction

were not found in any codebases analyzed. Due to user-provided value, fifty-one (51) instances of

XSS were found in only spring-projects/spring-framework codebase. A similar result is found for

the improper validation of the user-provided array index, where eighty-one (81) instances were

found only in spring-projects/spring-framework codebase. A single instance of deserialization

vulnerability was found in spring-projects/spring-framework codebase.

5.2. Limitations of the findings

The main limitation of the findings of this study, which would understandably affect its

generalizability, is the few numbers of successfully converted codebases that were ultimately used

for the code analysis. Out of the one hundred (100) top open-source Java projects cloned from

GitHub, only seven (7) were successfully converted. These are, therefore, the codebases

compatible for code analysis using CodeQL. Though the reasons for the unsuccessful conversion

are beyond the researcher’s fix, future research should extend the pool of the top open-source

projects enough to achieve at least thirty (30) compatible codebases.

The identified vulnerabilities reported in this study were based on heuristics, considering

the prevalent tokens from the texts analyzed. Future research could employ n-gram analysis which

provides more insights than tokens. Name Entity Recognizer (NER) for cybersecurity texts, where

a processed text can be fed and recognized by the present name entity, such as vulnerability, vector

attack, and agent, should also be developed. The non-existence of name entities for cybersecurity

texts and themes affects the ability to gain a deeper understanding and make definitive conclusions

from the text analysis of the vulnerabilities’ descriptions extracted from the MITRE’s NVD.

35

5.3. Conclusion of the study

The need to extend security design and integration to requirement engineering, software

architecture, and coding beyond the prevalent security testing is justified. It is an essential

approach toward promoting secure coding and ultimately reducing the experiences of vulnerable

software, attacks, and the associated cost. This study’s response to minimizing the occurrence of

damaging attacks due to possible vulnerabilities in Java’s OSS is the analysis of Java’s CVEs in

GitHub’s Open-Source Projects using text and code analyses. It identified the prevalent

vulnerabilities and evaluated the security state of the open-source projects. The text analysis of the

Java’s CVEs extracted from the MITRE’s NVD identified cross-site scripting, buffer overflow,

data deserialization, improper validation, and validation method bypass. SQL injection and Denial

of Service vulnerabilities are identified from the git’s commit.

The code analysis of the compatible codebases showed that array index out of bounds is a

common vulnerability in Java’s GitHub’s open-source projects. Notably, the code analysis using

CodeQL to identify the prevalent vulnerabilities in the Java open-source projects in GitHub

investigated array index out of bounds instead of buffer overflow and the other identified

vulnerabilities. In conclusion, despite its limitations, this study answered the central question of

how secure the codes written in top GitHub’s open-source projects are. It showed that the top

projects on GitHub are not secured. These findings further emphasize the need for the adoption of

secure coding practice.

36

REFERENCES

[1] G. McGraw, “Software Security: Building Security In,” in 2006 17th International

Symposium on Software Reliability Engineering, Raleigh, NC, Nov. 2006, pp. 6–6. doi:

10.1109/ISSRE.2006.43.

[2] J. McDermott and C. Fox, “Using Abuse Case Models for Security Requirements

Analysis,” in Proceedings 15th Annual Computer Security Applications Conference

(ACSAC’99), Phoenix, AZ, USA, Dec. 1999, p. 11. doi: 10.1109/CSAC.1999.816013.

[3] K. Li, “Towards Security Vulnerability Detection by Source Code Model Checking,” in

2010 Third International Conference on Software Testing, Verification, and Validation

Workshops, Paris, France, Apr. 2010, pp. 381–387. doi: 10.1109/ICSTW.2010.23.

[4] A. Ekelhart, S. Fenz, M. Klemen, and E. Weippl, “Security Ontologies: Improving

Quantitative Risk Analysis,” in 2007 40th Annual Hawaii International Conference on

System Sciences (HICSS’07), Jan. 2007, pp. 156a–156a. doi: 10.1109/HICSS.2007.478.

[5] S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assessment and mitigation of

vulnerabilities in open source dependencies,” Empir. Softw. Eng., vol. 25, no. 5, pp. 3175–

3215, Sep. 2020, doi: 10.1007/s10664-020-09830-x.

[6] Edgescan, “2016 Vulnerability Statistics Report.” EdgeScan Continous Vulnerability

Management, 2016. [Online]. Available: www.edgescan.com

[7] P. Holzinger, S. Triller, A. Bartel, and E. Bodden, “An In-Depth Study of More Than Ten

Years of Java Exploitation,” in Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, Vienna Austria, Oct. 2016, pp. 779–790. doi:

10.1145/2976749.2978361.

[8] V. Jain, J. Gomex, and A. Singh, “A DAILY GRIND: Filtering Java Vulnerabilities,”

Security Reimagined, p. 33.

[9] “CVE - Home.” http://cve.mitre.org/about/index.html (accessed Aug. 15, 2021).

[10] J. Viega, T. Mutdosch, G. McGraw, and E. W. Felten, “Statically Scanning Java Code for

Security Vulnerabilities,” IEEE Softw., vol. 17, no. 5, pp. 68–74, 2000.

[11] “The State of the Module System.” http://openjdk.java.net/projects/jigsaw/spec/sotms/

(accessed Aug. 19, 2021).

[12] “Serialization and deserialization in Java | Snyk Blog.” https://snyk.io/blog/serialization-

and-deserialization-in-java/ (accessed Aug. 15, 2021).

[13] TechTarget, “How to Deliver DevSecOpsVeracode.” VeraCode.

[14] “PyCQA/bandit.” Python Code Quality Authority, Sep. 15, 2020. Accessed: Sep. 14, 2020.

[Online]. Available: https://github.com/PyCQA/bandit

[15] “Checkmarx – Application Security, Made Easy,” Checkmarx.

https://www.checkmarx.com/ (accessed Sep. 14, 2020).

[16] “Security Code Scan.” https://security-code-scan.github.io/ (accessed Sep. 14, 2020).

[17] “Source Code Analysis Tools | OWASP.” https://owasp.org/www-

community/Source_Code_Analysis_Tools (accessed Sep. 03, 2020).

[18] G. Upadhyaya and H. Rajan, “Collective program analysis,” in Proceedings of the 40th

International Conference on Software Engineering - ICSE ’18, Gothenburg, Sweden, 2018,

pp. 620–631. doi: 10.1145/3180155.3180252.

[19] A. Fehnker, R. Huuck, and W. Rödiger, “Model checking dataflow for malicious input,” in

Proceedings of the Workshop on Embedded Systems Security - WESS ’11, Taipei, Taiwan,

2011, pp. 1–10. doi: 10.1145/2072274.2072278.

37

[20] M. Payer, Software Security: Principles, Policies and Protection. 2019.

[21] S. Chen, J. Xu, Z. Kalbarczyk, and K. Iyer, “Security Vulnerabilities: From Analysis to

Detection and Masking Techniques,” Proc. IEEE, vol. 94, no. 2, pp. 407–418, Feb. 2006,

doi: 10.1109/JPROC.2005.862473.

[22] C. S. Collberg, C. D. Thomborson, and D. W. K. Low, “Obfuscation techniques for

enhancing software security,” US6668325B1, Dec. 23, 2003 Accessed: Jul. 10, 2019.

[Online]. Available: https://patents.google.com/patent/US6668325B1/en

[23] Y. Jia, Y. Qi, H. Shang, R. Jiang, and A. Li, “A Practical Approach to Constructing a

Knowledge Graph for Cybersecurity,” Engineering, vol. 4, no. 1, pp. 53–60, Feb. 2018, doi:

10.1016/j.eng.2018.01.004.

[24] L. Lowis and R. Accorsi, “On a Classification Approach for SOA Vulnerabilities,” in 2009

33rd Annual IEEE International Computer Software and Applications Conference, Seattle,

Washington, USA, 2009, pp. 439–444. doi: 10.1109/COMPSAC.2009.173.

[25] Y. Li, L. Ma, L. Shen, J. Lv, and P. Zhang, “Open source software security vulnerability

detection based on dynamic behavior features,” PLOS ONE, vol. 14, no. 8, p. e0221530,

Aug. 2019, doi: 10.1371/journal.pone.0221530.

[26] R. L. Russell et al., “Automated Vulnerability Detection in Source Code Using Deep

Representation Learning,” ArXiv180704320 Cs Stat, Nov. 2018, Accessed: Sep. 09, 2020.

[Online]. Available: http://arxiv.org/abs/1807.04320

[27] J. A. Harer et al., “Automated software vulnerability detection with machine learning,”

ArXiv180304497 Cs Stat, Aug. 2018, Accessed: Sep. 09, 2020. [Online]. Available:

http://arxiv.org/abs/1803.04497

[28] B. Chernis and R. Verma, “Machine Learning Methods for Software Vulnerability

Detection,” in Proceedings of the Fourth ACM International Workshop on Security and

Privacy Analytics - IWSPA ’18, Tempe, AZ, USA, 2018, pp. 31–39. doi:

10.1145/3180445.3180453.

[29] X. Li, L. Wang, Y. Xin, Y. Yang, and Y. Chen, “Automated Vulnerability Detection in

Source Code Using Minimum Intermediate Representation Learning,” Appl. Sci., vol. 10,

no. 5, p. 1692, Mar. 2020, doi: 10.3390/app10051692.

[30] University of Waterloo, “Deep Defect and Vulnerability Prediction”

[31] “CodeQL - GitHub Security Lab.” https://securitylab.github.com/tools/codeql/ (accessed

Sep. 09, 2020).

[32] “Pysa: Open Source static analysis for Python code,” Facebook Engineering, Aug. 07,

2020. https://engineering.fb.com/security/pysa/ (accessed Sep. 09, 2020).

[33] F. Berends, “Library Guides: Text mining & text analysis: Introduction.”

https://guides.library.uq.edu.au/research-techniques/text-mining-analysis/introduction

(accessed Aug. 26, 2021).

[34] P. Shital and C. R., “Web Browser Security: Different Attacks Detection and Prevention

Techniques,” Int. J. Comput. Appl., vol. 170, no. 9, pp. 35–41, Jul. 2017, doi:

10.5120/ijca2017914938.

[35] “Deserialization - OWASP Cheat Sheet Series.”

https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html (accessed

Aug. 15, 2021).

[36] J. Offutt, Ye Wu, Xiaochen Du, and Hong Huang, “Bypass Testing of Web Applications,”

in 15th International Symposium on Software Reliability Engineering, Saint-Malo,

Bretagne, France, 2004, pp. 187–197. doi: 10.1109/ISSRE.2004.13.

38

[37] S. Turner, “Security vulnerabilities of the top ten programming languages: C, Java, C++,

Objective-C, C#, PHP, Visual Basic, Python, Perl, and Ruby,” p. 16.

[38] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure Coding Practices in

Java: Challenges and Vulnerabilities,” ArXiv170909970 Cs, Sep. 2017, Accessed: Aug. 11,

2021. [Online]. Available: http://arxiv.org/abs/1709.09970

[39] V. B. Livshits and M. S. Lam, “Finding Security Vulnerabilities in Java Applications with

Static Analysis,” p. 16.

[40] T. Pattewar, H. Patil, H. Patil, N. Patil, M. Taneja, and T. Wadile, “Detection of SQL

Injection using Machine Learning: A Survey,” Int. Res. J. Eng. Technol., vol. 06, no. 11, p.

8, 2019.

[41] Q. Gu and P. Liu, “Denial of Service Attacks,” p. 28.

[42] N. K. Sangani and H. Zarger, “Machine Learning in Application Security,” in Advances in

Security in Computing and Communications, J. Sen, Ed. InTech, 2017. doi:

10.5772/intechopen.68796.

[43] S. Thakare and D. B. B. Meshram, “Java Program Vulnerabilities,” vol. 2, no. 3, p. 8, 2013.

[44] L. V. Satyanarayana, “STATIC ANALYSIS TOOL FOR DETECTING WEB

APPLICATIONLVENUKLANERABILITIES,” Int. J. Mod. Eng. Res. IJMER, vol. 1, no.

1, pp. 127–133, 2009.

[45] A. Kaur and R. Nayyar, “A Comparative Study of Static Code Analysis tools for

Vulnerability Detection in C/C++ and JAVA Source Code,” Procedia Comput. Sci., vol.

171, pp. 2023–2029, 2020, doi: 10.1016/j.procs.2020.04.217.

[46] M. Vignesh and K. Kumar, “WEB APPLICATION VULNERABILITY PREDICTION

USING MACHINE LEARNING,” Int. J. Sci. Eng. Res., vol. 8, no. 5, pp. 80–90, 2017.

[47] L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web Application Vulnerability Prediction

Using Hybrid Program Analysis and Machine Learning,” IEEE Trans. Dependable Secure

Comput., vol. 12, no. 6, pp. 688–707, Nov. 2015, doi: 10.1109/TDSC.2014.2373377.

