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ABSTRACT 

Bridges are widely used in human life. Understanding structural performance, assessing 

structural conditions, and providing in-time decision are crucial components in structural health 

monitoring (SHM), to avoid catastrophic events and improve public safety. However, traditional 

SHM needs traffic closure, extensive sensor deployment, and in-contact measurements. The main 

purpose of this thesis is to develop a vision-based sensor of high accuracy that does not need 

artificial targets. When the vibration of the UAV itself is removed, the UAV is a convenient 

method to record video of the vibrations. Based on the recorded images and vibration data, a new 

deep learning method is developed and used to analyze vibrations of the structure and detect 

damage locations and conditions automatically. 

In the thesis, a non-contact vision sensor system for monitoring structural displacements 

with an advanced Zernike subpixel edge detection technique is first suggested. A new method to 

filter the effect of camera motions through background templates is proposed in the study. Several 

experiments on the MTS machine were performed with different frequencies and amplitudes to 

verify the method. The results show that filtering of vibrations of the camera significantly improves 

the displacement monitoring accuracy from 53.0% to 97.0%.  Three translations and three rotations 

of the unmanned aerial vehicle (UAV) were derived through the suggested fast Normalized Cross 

Correlation (NCC) based template matching method, and their effect on the monitored structural 

displacement is analyzed. To verify the concept, a series of lab and field experiments were 

performed. Excellent precision and consistency were obtained for the UAV monitored 

displacement, the MTS piston motion, and the fixed camera derived displacement. 

Further in the thesis, a novel deep learning-based structural health monitoring method was 

developed, which could detect damages using both defects and vibration data. Two ABAQUS 
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models on a beam and an ABAQUS model on a truss were conducted to test if the proposed CNN 

model could detect damages successfully. Seven transfer learning methods were compared on 

detecting crack images. From the outputs of the deep learning models, it is apparent that the 

AlexNet CNN model with defect images shows higher accuracy in estimating damage status. 
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1. INTRODUCTION 

1.1. Background 

Engineering infrastructure consists part of human life’s necessities, such as roadways and 

bridges [1, 2]. Their safety and continuous operations are critical, as aging problems and damage 

accumulations often lead to serious public safety issues and large economic loss. 

In the past 20 years, image-based displacement sensors become increasingly attractive 

because of their advantages of low cost and efficiency. The unmanned aerial vehicle (UAV) can 

be used conveniently to detect both static characteristics such as cracks and dynamic behaviors 

such as natural frequencies and vibrations under different loads using image-based sensors. When 

UAV is used to detect dynamic responses of structures, the most important thing is filtering out 

vibrations of the UAV because the displacement of structures is always very small compared to 

movements of the UAV due to its flying motions and the environment. Therefore, a UAV based 

damage detection method with the capacity to filter UVA’s self-vibration is needed. Deep learning 

is then used to classify the damage condition based on the filtered vibrations and the images 

captured by the UAV. 

1.2. Problem Statement 

Most existing structural health monitoring (SHM) techniques are based on measured 

acceleration data. Such practice, however, is highly expensive to operate, mainly due to the 

cumbersome, time-consuming, expensive installation of sensors, and their data acquisition 

systems. As an emerging noncontact method, the vision-based displacement sensor systems have 

been more attractive to many researchers. However, most existing vision-based methods need 

physical access to the structure to set up artificial targets that have a higher contrast pattern and 

are easy to track. In this thesis, a new vision-based displacement monitoring method is suggested, 
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in which three translations and three rotations of the UAV were derived through the suggested 

Normalized Cross Correlation (NCC) based template matching computer vision method and their 

effect on the monitored structural displacement is filtered out. Moreover, the vibration data 

captured by the UAV always accompanies the target images. To detect damages using global 

vibration data and local image information, it is important to develop a deep learning system of 

high accuracy to utilize both vibration data and images. 

1.3. Literature Review 

1.3.1. Vibration-based Structural Health Monitoring 

Conventionally, contact-type displacement sensors such as linear variable differential 

transformers (LVDTs) and laser-based displacement sensors [1] are employed for measuring 

structural displacements. However, such sensors measure relative displacements and need a 

stationary point to be set as a reference on the measured structure. Usually, for a large-scale civil 

engineering structure, such as a bridge spanning a wide river, a stationary reference is difficult to 

set up. Moreover, these sensors need to be wired to a data acquisition board with power supply 

and the package box and wiring are cumbersome and costly for monitoring a large structure. On 

the other hand, accelerometers, which do not require a stationary reference, can be used to measure 

displacement through double integration of acceleration data, however, they are usually 

accompanied by numerical integration errors. Global positioning systems (GPS)) [2] offer 

potential advantages due to its non-contact nature, but high cost and low accuracy of these systems 

prevent their wide applications in monitoring civil engineering structures.  

1.3.2. Noncontact Vision-Based Sensor System for Displacement Measurement 

In the past 20 years, image-based displacement sensors become increasingly attractive 

because of their advantages of low cost and efficiency. To adopt such a computer vision method 
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in structural health monitoring, template matching is typically used to trace displacements of 

structures. The template matching method could find the position of a template in the target image, 

and sometimes the bolt group or other connections in the target structure could be used as 

templates. Olaszek [3] first used the template matching method to obtain the dynamic 

characteristics of bridges. Wahbeh et al. [4] proposed a novel vision-based approach to detect the 

absolute displacement time history at selected locations of civil infrastructure systems using a 

high-resolution camera and a laser sensor as comparison. An experiment in the lab was conducted 

to successfully verify the method. Lee et al. [5] developed a real-time vision-based system for the 

structural displacement measurement of bridges and made the displacement monitoring right at 

the site. Park et al. [6] proposed a novel vision-based displacement measurement technique using 

a partition approach to detect horizontal displacement of a high-rise building structure. Ho et al. 

[7] presented an advanced multipoint vision-based system to detect dynamic displacements of civil 

infrastructures. Several shaking table tests were performed to verify the effectiveness of the 

proposed system and the displacements obtained agreed well with those from a conventional 

sensor. Sładek [8] detected the in-plane displacement using template matching on a beam. Wu et 

al. [9] developed a vision system that uses digital image processing and computer vision 

technologies to monitor the 2D plane vibrations of a reduced-scale frame mounted on a shake 

table. Henke et al. [10] took the LED light as the visual target and measured the deformation of 

building structures by use of the digital image processing technique. On the other front, some 

researchers advanced the original template matching method using normalization and made it more 

efficient in displacement monitoring. Di et al. [11] described the mapping of a modified template 

matching algorithm based on NCC. Wei et al. [12] proposed a fast pattern matching algorithm 

using NCC by combining adaptive multilevel partition with the winner update scheme to make the 
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original NCC more effective. Lei et al. [13] conducted a fast NCC-based template matching 

method which could reduce the computation time and increase efficiency significantly using a 

modified local search algorithm when motions of the object are small and could be negligible. If 

there are several suitable templates in one image, template matching could be used to obtain 

vibrations of these points at the same time. Multiple templates could be obtained in one region of 

interest (ROI) to detect displacements of multi-locations at the same time. Lin et al. [14] proposed 

a monitoring system using videogrammetry and terrestrial laser scanning to obtain the dynamic 

behavior of the as‐built membrane roof structures at multiple locations. Jurjo et al. [15] presented 

a digital image processing technique to obtain displacements on thin members with several 

templates. However, if there are no suitable nature targets on the measured points and it is difficult 

and dangerous to attach artificial targets on the surface of the structure, such as bridges over a big 

river or a canyon, there is a need for a template-free vision-based displacement monitoring method, 

which will advance this field tremendously. So, in this thesis, an edge detection-based method was 

researched and used for structural condition assessment. 

Besides the template matching method, other computer vision methods such as edge 

detection and digital image correlation (DIC) could detect displacement with high accuracy. Pan 

et al. [16] enhanced DIC for surface deformation measurement at the macroscopic to nano scale. 

Chan et al. [17] proposed a charge-coupled device (CCD) camera-based method to measure the 

vertical displacement of bridges. Kohut et al. [18] proposed a vision-based method to calculate the 

displacement field of the analyzed structure using the so-called digital image correlation 

coefficient. Cigada et al. [19] obtained the displacement responses using three vision methods 

(Pattern Matching, Edge Detection, and Digital Image Correlation) and two types of cameras to 

acquire the motions of multiple targets fixed on a railway bridge during the passage of a train. Ri 
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et al. [20] proposed a nontarget vision-based method for cable force estimation using handheld 

shooting through smartphone cameras. The edge of the cable is selected as a target and was 

obtained by the edge detection method. Vibrations of the cable were obtained based on the changes 

in its locations in the ROI of video image sequences, captured by a smartphone camera. 

1.3.3. UAV-based Sensor System for Displacement Measurement 

UAV is an attractive tool to perform structural health monitoring in detecting both static 

characteristics such as cracks and dynamic ones such as natural frequencies and vibrations under 

different loads. It is easy to fly UAVs at a close position to the structures even if structures are in 

an inaccessible area such as a bridge over a wide river or a great canyon. When the UAV is used 

to detect dynamic characteristics of structures, the most important thing is filtering out vibrations 

of the UAV because the displacement of structures is always very small compared to movements 

of the UAV due to its flying motion and environment. Due to motions of the UAV, very large 

effect on the results of vibrations of the structure could be generated. Yoon et al. [21] proposed an 

image-based method to detect relative displacements between stories using UAV. A fixed camera 

was used to compare the results with those from UAVs. The method could get rid of the three 

translations of the UAV without calculating the camera motion. This method could only be used 

to detect structures with several stories when the rotations of the camera could be negligible. The 

rotations of the UAV caused by wind would cause different translations of different stories, thus 

the real displacement of the structure could not be obtained using this method. Yoon et al. [22] 

also used a UAV to detect the vibration of a structure in the lab. To obtain the vibrations of the 

UAV, a checking barcode was used to be the background point. In the real environment, it might 

be difficult to attach a manmade checking barcode at the background of the target structure. In 

summary, the main challenge of the vision-based displacement sensor is to filter out the motions 
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of the camera (3 translations and 3 rotations). Some researchers used relative displacement or a 

manmade checking board to eliminate motions of the camera. However, the apparent distortion 

due to the angle between structure plane and the camera was not considered. 

1.3.4. Deep Learning-based Damaged Detection Using Vibration Data and Defects’ Images 

Structural damages, such as corrosions and cracks, always represents degraded structural 

health conditions. In the last several decades, visual inspection by trained workers is the main 

approach to detect structural damages, which is time-consuming and costly. Because of the 

significant advantages of computer-vision-based sensors, researchers are increasingly attracted to 

adopt them. Civil structures, particularly concrete structures, are likely to suffer cracks due to 

changing load conditions and other reasons. Cracks in concrete are always expressed as lines or 

curve lines with different orientations and intensities. Compared to the background color of 

concrete, these lines are darker and connected. Through image processing methods like the edge 

detection, crack detection could be conducted using properly prescribed thresholds. The image 

binarization method and the sequential image processing method are the two main methods to 

detect defects in structures, especially for cracks. Liu [23] proposed an image binarization method 

to detect cracks and had satisfactory accuracy. Ebrahimkhanlou [24] researched the sequential 

image processing method that was carried out to detect cracks in images of concrete surfaces 

successfully. The vision-based crack detection methods for cracks in concrete structures were 

mostly based on edge detection algorithms through some filters, such as Roberts, Prewitt, Sobel, 

and Gaussian [25]. Usually, these methods are time-consuming and could only detect the existence 

of cracks in the image. These methods could not evaluate the severity of cracks directly. 

Some researchers intended to use deep learning to classify and evaluate structural defects 

like cracks and corrosion. Rawat and Wang [26] provided the background of the CNN method for 
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classifying the images. Chen and Jahanshahi [27] proposed a CNN-based crack detection system 

and used a Naïve Bayes data fusion scheme to extract cracks from the video frames captured for 

the structure. Kim et al. [28] proposed a faster CNN with image binarization to obtain the location 

of the crack in the pixel level precision. Li et al. [29] trained and tested a deep-learning model 

using 6000 tunnel crack images and compared different crack mechanism networks. Their model 

significantly outperformed basic U-net, fully convolutional networks (FCN), SegNet, and multi-

scale fusion crack detection (MFCD) for detecting cracks in tunnel through noisy images. Soloviev 

et al. [30], Li et al. [31], Tong et al. [32], and Fan et al. [33] proposed deep CNN models to detect 

and find the cracks and their lengths and sizes on pavement surfaces. 

Structure assessment could also use dynamic characteristics such as the natural frequency, 

the damping ratio, and the mode shape. Moreover, damage locations could be calculated using 

these dynamic characteristics, because, in theory, any structural damage would cause the change 

in the mass and stiffness distributions of structures, lead to the change in natural frequency, 

damping ratio, and mode shape [34-36]. Vibration-based structural damage detection methods with 

system identification could build the correlations between the vibration features and the damage 

information [37-39]. However, natural frequencies are not sensitive to minor damages and could 

be easily contaminated by environmental factors. This issue will be resolved using the deep 

learning method proposed in this thesis because the developed deep learning method could connect 

the raw vibration data with the damage information directly through data fusion. 

Lin, Nie, and Ma [40] proposed a CNN-based deep learning method, containing six 

convolutional layers and three maximum pooling layers. This CNN-based system was then trained 

using the raw vibration data of a finite element beam and the damage was detected successfully 
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with high accuracy (94.57%). Some researchers used the CNN-based method and found the 

damages caused by losing bolts of a steel truss with high curacy [41]. 

Some researchers have proposed deep learning-based defects detection using images as 

input data and some other researchers have validated the performance of deep learning-based 

damage detection using vibration data. However, there is no research to evaluate a civil structure 

comprehensively by using both defect’s images and vibration data in a deep learning-based model. 

In this thesis, a novel deep-learning model was developed to evaluate civil structures 

comprehensively through infusion of static images and vibration signals. 

1.4. Organization of Dissertation 

The whole thesis will include 7 chapters. A literature review will be conducted in Chapter 

1, followed by Chapter 2 that presents a non-contact vision sensor system for monitoring structural 

displacements with an advanced Zernike subpixel edge detection technique. Experiments on MTS 

machine is performed to verify the proposed displacement sensor. Chapter 3 presents a field testing 

on a street sign to obtain its vibrations and a lab experiment on a steel plate to detect the damage 

inside. Chapter 4 presents a new method to filter the effect of cameras’ motions through 

background templates when the vibration of cameras could not be ignored. Moreover, the effect 

of template sizes and brightness on the accuracy of monitored displacement are analyzed and 

compared. Several experiments on the MTS machine are performed with different frequencies and 

amplitudes to verify the method. Chapter 5 presents a method to filter out the effect of vibrations 

of the UAV. A fast NCC-based template matching method is created, which could accelerate the 

original NCC-based template matching method significantly. Experiments on the MTS and a field 

test on a shaker are performed to verify the proposed method. Chapter 6 provides a novel deep 

learning-based structural health monitoring method. In this section, two ABAQUS models on a 



 

 9 

beam with different segmentations and an ABAQUS model on a truss are performed and vibration 

data is collected. Then these vibration data is combined with structural defects’ images. This 

database is used to train the proposed deep learning models with high accuracy. Finally, Chapter 

7 summarizes the primary conclusions and address future research directions. 
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2. DEVELOPMENT OF VISION-BASED SENSOR FOR STRUCTURAL 

DISPLACEMENT USING FIXED CAMERA 

2.1. Introduction 

Bridges are exposed to many external loads, such as traffic, wind, flooding, and 

earthquakes. The monitoring of bridges’ conditions becomes increasingly important due to safety 

concerns. There are some direct measurement methods such as the use of linear variable 

differential transformer (LVDT) and laser-based displacement sensors [1]. However, many 

LVDTs are required to measure the displacement across a bridge, which can be both costly and 

time-consuming. Another method to obtain displacements is the non-contact method, such as using 

GPS [2], but the precision of GPS displacement measurements is not satisfactory. 

Nowadays, vision-based displacement sensors are more and more popular [3-9]. Moreover, 

the template matching is the most used method to calculate the displacement and the deformation 

of structures [10-13]. Olaszek [14] first used the template matching method to obtain the dynamic 

characteristics of bridges. Poudel et al. [15] proposed an algorithm to determine the edge location 

with sub-pixel precision through information from neighboring pixels and used these edge 

locations to trace structural deformations. A non-contact vision sensor system for monitoring 

structural displacements with an advanced Zernike subpixel edge detection technique is suggested 

in this chapter. Edge detection can detect features of objects effectively, without using templates. 

Subpixel techniques provide more accurate and cost-effective results when compared to integer 

pixel methods. Built on these two techniques, a new version sensor method is developed to detect 

the vibrations of structures in this chapter. Satisfactory agreements were found between the 

displacements measured by the vision sensor system and those recorded by the Multipurpose 

Testing System (MTS). 
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2.2. Proposed Vision Sensor System: Hardware and Basic Principle 

2.2.1. Setup of the Vision Sensor System 

Experiments are performed to verify the vison sensing mechanism. Figure 1 shows the 

setup of the experiment in the lab. An iPhone6s with 30 fps data acquisition rate and 1920×1080-

pixel resolution was fixed on a tripod which is set at a reference point and used to capture vibrations 

of the MTS machine. The MTS system performs a 4-Hz vibration, while the displacement of its 

piston is measured using the deployed iPhone6s. The iPhone was placed 1m from the MTS 

machine. Sinusoidal waves were initiated through the MTS system with controlled frequencies (3 

Hz, 2 Hz, 1 Hz, and 0.5 Hz) and amplitudes (2.5 mm, 5 mm, 10 mm, and 10 mm). To simulate the 

vibration of the camera, continuous vibrations were triggered manually. 

 

Figure 1. Setup of the experiment on MTS. (a) Front view; (b) Side View. 

(a) 

(b) (a) 
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2.2.2. Basic Principle for Displacement Measurement 

An edge-detection method to monitor displacement through images captured by a single 

camera is illustrated in Figure 2. Once the original images (Figure 2(a)) are obtained through 

cameras, they are converted to gray-scale images (Figure 2(b)). The Edge detection using Canny 

edge detector, which is defined on the integer pixel level, is then performed (Figure 2(c)). The 

white lines shown in Figure 2(c) indicate edges found while the background is set to black through 

the greyscale thresholding process. Once the edges of a structure are found, a self-developed 

algorithm in MATLAB is executed to calculate the coordinates of the edges at measured points. 

Through this algorithm, displacements at any location of the target structure could be measured. 

To reduce the runtime, the ROI is used to calculate displacements at certain locations of the 

structure. Most of the time, the displacements of a structure are small, so an image of the entire 

structure is not required. 

The proposed displacement measurement method is like a group of laser displacement 

sensors or LVDTs. The cameras are the reference points because they do not move, similar to 

fixtures of laser sensors or LVDTs. Every point on the edges of measured structures could be 

selected as there is a laser sensor at each point of the edges. It is also convenient to change 

measured points since they are captured simultaneously. 

 

Figure 2. Processed image: (a) Original image; (b) Grayscale image; (c) Edges in the image. 

When the camera is not very close to the object or the camera does not have a high 

resolution, the accuracy obtained is usually not adequate. There are two approaches to enhance it. 

(a) (b) (c) 
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The one is to use a higher resolution camera. The other way is to use the sub-pixel technology to 

improve the accuracy of the image analysis. Some researchers have incorporated the subpixel 

technique to the conventional template matching methodology, mostly using the interpolation. In 

this chapter, the edge detection method is combined with the subpixel technique to achieve better 

accuracy. After the displacement at an integer-pixel level is obtained, the subpixel-technique based 

on Zernike moment method is used to obtain subpixel level displacements and achieve more 

accurate results. At the same time, to convert the displacement in pixel to the real physical distance, 

a relationship between the pixel and physical coordinates needs to be established. 

2.2.3. Principles of Zernike Moment-based Subpixel Edge Detection 

Photo images are very sensitive to noises such as changes in brightness and the vibration 

of cameras. Zernike moment is an integral operator that filters these effects and helps improving 

displacement measurement accuracy [16,17]. The Zernike moment has a property of rotation 

invariance, which can be written as: 

𝑍′𝑛,𝑚 = 𝑍𝑛,𝑚 𝑒𝑥𝑝( − 𝑗𝜙) (1) 

Where Zn,m is the original n by m Zernike moment matrix; Z'n,m is the transferred Zernike moment 

matrix; j is the imagery identifier; and ϕ is the rotation angle. 

 

Figure 3. Model of edge: (a) Original edge; and (b) Edge after rotation. 

(a) (b) 
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Figure 3 contains a model of the edge. Figure 3(b) is obtained when Figure 3(a) is rotated 

clockwise about the origin by ϕ. In the figure, S is the edge, h and h+k are the values of grayscale 

of two sides about S, l is the perpendicular length from the origin to S, and ϕ is the angle between 

l and x-axis. In Equation (1) and Figure 3, Z'n,m is the Zernike moment after the rotation. The exact 

coordinates of the edges will require k, l, and ϕ.  

Each Zernike moment element is defined in Equation (2).  

𝑍𝑛,𝑚 =
𝑛 + 1

𝜋
∬ 𝑉𝑛,𝑚𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑥2+𝑦2≤1

(2) 

𝑍𝑛,𝑚 is the Zernike moment of 𝑓(𝑥, 𝑦) at rank n. 𝑉
_

𝑛,𝑚is the conjugate function of 𝑉𝑛,𝑚, which is 

the integral core function. 

Discrete form of Zernike moment can be written in Equation (3). 

𝑍𝑛,𝑚 =
𝑛 + 1

𝜋(𝑁 − 1)2
∑ ∑ 𝑓(𝑥𝑖 , 𝑦𝑗)𝑉𝑛,𝑚

𝑁

𝑗=1

𝑁

𝑖=1

(𝑥𝑖, 𝑦𝑗) (3) 

Where N is the number of the integration points, xi, yj are the coordinates of the integration 

points, and f(xi, yj) is the gray scale of the pixel. 

Table 1. Zernike orthogonal complex polynomials (𝑉
−

𝑛,𝑚) (Abdallah et al. 1997). 

m/n 0 1 

0 1 / 

1 / 𝑥 − 𝑦𝑗 

2 2𝑥2 + 2𝑦2 − 1 / 

3 / (3𝑥3 + 3𝑥𝑦2 − 2𝑥)

+ (3𝑦3 + 3𝑥𝑦 − 2𝑦)𝑗 

4 6𝑥4 + 6𝑦4 + 12𝑥2𝑦2 − 6𝑥2 − 6𝑦2 + 1 / 
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𝑍0,0, 𝑍1,1, and 𝑍2,0 are used to calculate the edges at subpixel level. Their integral core 

functions are 𝑉
−

0,0 = 1, 𝑉
−

1,1 = 𝑥 − 𝑦𝑗, and 𝑉
−

2,0 = 2𝑥2 + 2𝑦2 − 1, respectively (Table 1).  

The edge after rotation is symmetric about x axis, so 

∬ 𝑦𝑓′(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 0
𝑥2+𝑦2≤1

(4) 

Where, 𝑓′(𝑥, 𝑦) is the image function after rotation.  

𝑍′1,1 = 𝑍1,1 𝑒𝑥𝑝( − jϕ) 

= 𝑅 𝑒(𝑍1,
′ 1) + 𝑗𝐼 𝑚(𝑍1,

′ 1) (5) 

Where, Re is the real part of 𝑍′1,1, Im is its imaginary part. 

𝜙 = 𝑡𝑎𝑛−1(
𝐼𝑚( 𝑍1,1′)

𝑅𝑒( 𝑍1,1′)
) (6) 

In which, 𝑍′1,1 and 𝑍′2,0 are calculated using Equation (7) and (8). 

𝑍′1,1 = ∬ 𝑓′(𝑥, 𝑦)(𝑥 − 𝑦𝑗)𝑑𝑥𝑑𝑦 =
𝑥2+𝑦2≤1

∬ 𝑓′(𝑥, 𝑦)𝑥𝑑𝑥𝑑𝑦 =
𝑥2+𝑦2≤1

2𝑘(1 − 𝑙2)
3
2

3
(7) 

 

𝑍′2,0 = ∬ 𝑓′(𝑥, 𝑦)(2𝑥2 + 2𝑦2 − 1))𝑑𝑥𝑑𝑦 =
𝑥2+𝑦2≤1

2𝑘𝑙(1 − 𝑙2)
3
2

3
(8) 

 

l and k are calculated from Equation (9a) and Equation (9b). 

𝑙 =
𝑍′2,0

𝑍′1,1
=

𝑍′2,0

𝑍1,1 𝑒𝑥𝑝( − 𝑗𝜙)
(9a) 

 

𝑘 =
3𝑍′1,1

2(1 − 𝑙2)
3
2

=
3𝑍1,1 𝑒𝑥𝑝( − 𝑗𝜙)

2(1 − 𝑙2)
3
2

(9b) 

                              



 

 20 

When the values of l, k, h and 𝜙 are obtained, coordinates at subpixel level (asc and bsc) are 

calculated using Equation (10), where a and b are integer coordinates of the edge. 

[
𝑎𝑠𝑐

𝑏𝑠𝑐
] = [

𝑎
𝑏

] + 𝑙 [
𝑐𝑜𝑠( 𝜙)
𝑠𝑖𝑛( 𝜙)

] (10) 

An example test is conducted to verify the accuracy of the subpixel method using 

MATLAB (Figure 4). First, a circle with the center at (50, 75) and a diameter of 50 units is drawn 

using the circle equation with color of red. The color of the outside region is black, and the inside 

region is white. The line for the circle is the true edge between the black and white regions. The 

edges are calculated using both the integer-pixel edge detection and the subpixel edge detection, 

and they are compared with the real edge in red (Figure 4(b)). The improved accuracy of the 

subpixel method over the integer-pixel method is clearly seen when the detected edge is compared 

with the true edge. 

 

 

 

 

 

 

 



 

 21 

 

 

Figure 4. Performance of subpixel method and integer-pixel method. (a) The overall image, (b) 

Zoom-in details of (a). 

2.2.4. Scaling Factor Determination 

Two ways to calculate the scale factor are shown blow: 

𝑆𝐹1 =
𝐿𝑘𝑛𝑜𝑤𝑛

𝑂𝑘𝑛𝑜𝑤𝑛

(11) 

(a) 

(b) 
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𝑆𝐹2 =
𝐷

𝐹
𝑑𝑝𝑖𝑥𝑒𝑙 (12) 

Lknown is the known physical length on the structure surface. Oknown is the pixel length on the image 

plane. D is the distance between the camera and the structure. F is the focal length of the camera. 

And dpixel is the pixel length such as μm/pixel. 

The Zernike moment-based subpixel method could improve accuracy of edge points by 

about 90%. In a physical test setting, the resolution of the camera, distance from the camera to the 

structure, and the focal length of the camera together determines the resolution of the monitored 

displacement in physical unit. By applying the Zernike moment-based subpixel method, the final 

resolution in subpixel precision could be improved 10 times compared to the resolution in pixel 

level. 

2.3. Effect of Threshold on Edge Detection 

The edge detection is used to obtain vibrations of structures. Edge detection is more flexible 

and timesaving than the template matching method since the template matching method needs to 

select a suitable template before testing. Suitable templates may not be everywhere in images, but 

edges present extensively in images, especially for bridges and other structures. Figure 5(a) shows 

a grayscale image at one measured point of the MTS machine. Figure 5(b), (c), (d), (e), (f) show 

the edges obtained by Canny Edge Detector on the measured points of the MTS at different 

thresholds of 0.05, 0.1, 0.5, 0.6, and 0.8. Images are very sensitive to noises such as brightness 

changes and vibrations of cameras. Since the Zernike moment is an integral operator which is not 

sensitive to noise, the Zernike moment method is selected in this chapter. Different thresholds were 

used to filter out fake edges on structures. As shown in Figure 5(b) and Figure 5(c), some fake 

edges at very dark background were detected, which could prove that structural edges will be 

detected too using the Canny edge detector. However, structural edges would be lost when the 
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threshold is high. Right thresholds are necessary to remain structural edges and filter out fake edges 

at background. The threshold could be selected according to gradients of grayscale values on the 

two sides of an edge. The proposed Zernike moment edge-finding method could trace any edge on 

the structure conveniently. 

 

 

 

Figure 5. (a) Grayscale image at the measured point; (b) Edges found at the measured point with 

threshold at 0.05; (c) Edges found at the measured point with threshold at 0.1; (d) Edges found at 

the measured point with threshold at 0.5; (e) Edges found at the measured point with threshold at 

0.6; (f) Edges found at the measured point with threshold at 0.8. 

(b) 

 

Measured 

edge 

(a) 

(c) (d) 

(e) (f) 

Fake 

edges 
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2.4. Performance Evaluation 

Three tests were conducted in the lab to verify the proposed method. The tests were aimed 

at measuring the one-dimensional vibrations of the piston of the MTS machine. The displacement 

output by MTS, whose error is less than 0.5% with respect to the given input command, is taken 

as reference of the measurement methods. An accelerometer was also used to detect the vibrations, 

which were compared to the displacement data obtained through image processing and output of 

the MTS. The acceleration data from the accelerometer will be integrated to obtain the velocity 

and displacement data using the detrended double integration method through a filter for 

frequencies higher than 60 Hz. 

2.4.1. MTS Test Setup 

Figure 6 shows the experimental set-up in the lab. A XiaoYi’s commercial camera with 

120 fps acquisition rate and 1920×1080-pixel resolution was placed 0.5 m from the MTS machine. 

A MEMS accelerometer was glued on the piston and connected with a laptop which collected and 

stored the data from the MEMS accelerometer. The piston was mounted on the MTS machine, 

whose vibrations were computer controlled. Sinusoidal wave-type motions were adopted with 

controlled frequencies (2 Hz, 2.5 Hz, and 3 Hz) and amplitudes (4 mm, 2 mm, and 1.5 mm, 

respectively). 
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Figure 6. Set-up for lab experiment. 

2.4.2. Results With Subpixel Resolution 

Figure 7(a) presents the results when a sinusoidal wave with an amplitude of 4 mm and a 

frequency of 2 Hz was applied. Comparison of vibrations between the subpixel image processing, 

the integer pixel image processing, the MTS, and the accelerometer measurements are shown in 

Figure 7(b). Very good agreement between the subpixel image measurement and the displacement 

output by MTS is shown. The accuracy of the subpixel image processing method is better than that 

of the accelerometer method in monitoring displacement. For the integer image processing 

method, 56% of points per cycle are at the same value for the displacement shown. One possible 

reason is that the integer image processing method could only detect displacements at integer pixel 

values. Especially, when the piston moves slowly, more points at the same value of displacements 

will be obtained.  
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Figure 7. (a) Comparison of captured displacements with the input vibration with a frequency of 

2 Hz and amplitude of 4 mm, and (b) Error analysis. 

The results of vibration measurements for the case with an amplitude of 2 mm and 

frequency of 2.5 Hz are shown in Figure 8(a). Moreover, comparison of vibration measurements 

between the subpixel image processing method, the MTS input, the integer pixel image processing 

method, and the accelerometer measurements are shown in Figure 8(b). From Figure 8(b), higher 

accuracy is achieved for the subpixel image processing method. 

(a) 

(b) 
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Figure 8. (a) Comparison of captured displacement with the input vibration at a frequency of 2.5 

Hz and amplitude of 2 mm, and (b) Error analysis. 

Figure 9(a) shows the results of vibrations measured by the subpixel image processing 

method, integer pixel image processing method, the MEMS accelerometer, when a sinusoidal 

wave with amplitude of 1.5 mm and frequency of 3 Hz was applied. Comparisons of errors between 

the subpixel image processing and MTS, the integer pixel image processing and MTS, and the 

accelerometer measurements and the MTS are shown in Figure 8(9). 

(a) 

(b) 
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Figure 9. (a) Comparison of captured displacement data with input sinusoidal function with 

frequency of 3 Hz and amplitude of 1.5 mm and (b) Error analysis. 

According to Figures 7(b), 8(b), and 9(b), the maximum error of subpixel method is less 

than 5%. Some measured displacements from the integer pixel method are larger than 10%. 

However, for MEMS accelerometer, the maximum error is typically larger than 20%. 

2.4.3. Error Quantification 

As shown in Figure 10, when the frequency is higher, larger errors are observed because 

fewer points per cycle are obtained to describe the vibration. Higher resolution images could help 

but are also very expensive, so the subpixel image processing method is adopted instead. 

(a) 

(b) 
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Moreover, the proposed subpixel image processing method does not need any target on the object 

and can detect displacements at any location on the structure. In comparison to the template 

matching method, the edge detection method is timesaving and avoids issues from events such as 

excessive deformation and failure of targets. 
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Figure 10. Error analysis of experiments: (a) 4 mm at 2 Hz; (b) 2 mm at 2.5 Hz; (c) 1.5 mm at 3 

Hz. (Sub – subpixel method, Int – integer pixel method, Mems – MEMS accelerometer method) 

(a) 

(b) 

(c) 
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2.5. Conclusion 

In this chapter, a novel vision system was developed for noncontact displacement 

measurement of structures using a subpixel Zernike edge detection technique. Comprehensive 

experiments using an MTS machine were carried out to verify the accuracy of the proposed 

method. The following conclusions are reached: 

• In MTS tests, satisfactory agreements were observed between the displacement measured 

by the vision system and those from the MTS output. 

• Subpixel based Zernike matrix method is an innovative edge detection that could monitor 

structural displacements accurately at any location on the detected edges. 

• The proposed edge-detection-based displacement sensor is a novel non-contract sensor to 

detect displacement and vibration successfully. 
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3. PERFORMANCE EVALUATION OF THE VISION-BASED DISPLACEMENT 

SENSOR 

3.1. Introduction 

To adopt computer vision methods in structural health monitoring, the template matching 

is typically used to trace deformation of structures [1-5]. Olaszek [6] first used the template 

matching method to obtain the dynamic characteristics of bridges. Sładek et al. [7] detected the in-

plane displacement using template matching on a beam. Wu et al. [8] developed a vision system 

that uses digital image processing and computer vision technologies to monitor the 2D plane 

vibrations of a reduced-scale frame mounted on a shake table. 

Without template targets, computer vision methods can still be used to trace structural 

deformations [9,10]. Poudel et al. (2005) proposed an algorithm to determine the edge location 

with sub-pixel precision through information from neighboring pixels and used these edge 

locations to trace structural deformations. Wahbeh et al. (2003) followed a similar approach to 

obtain direct measurements of displacement. In this chapter, a field testing on a street sign was 

performed to verify the proposed image-based displacement sensor.  The vibration of the street 

sign under wind was obtained and three nature frequencies were calculated using the vibration 

data. For the test on a steel plate, vibration curves and mode shapes of the damaged steel plate and 

the healthy one was obtained. The damage location on the steel plate was then obtained by 

comparing these two mode shapes. Finally, a field test was conducted to see how different template 

sizes and contrast levels affect the accuracy. 
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3.2. Field Tests and Performance Evaluation on a Street Sign 

3.2.1. Test Setup and Test Scenarios 

A field experiment was carried out using a street sign at the North Dakota State University 

(NDSU) campus to verify the proposed subpixel image edge detection-based displacement sensor. 

As shown in Figure 11, the street sign can be considered as a cantilever column fixed on the 

ground. An accelerometer was attached on the street sign 40 cm above the ground to compare with 

the subpixel image processing method. The rate of the data acquisition of MEMS is 100Hz. A 

moving averaging method is used to filter high frequency noises over 40 Hz to minimize the error. 

A camera was fixed on a tripod and set up 85 cm from the street sign. A pulse was applied to the 

tip of the street sign to initiate the vibration.  

 

Figure 11. Setup of street sign experiment (a) Field photo; (b) Front view with dimensions; (c) 

Side view with dimensions. 

3.2.2. Displacement Time Histories of the Street Sign 

Figure 12 presents the vibration data from the image processing method. As shown in 

Figure 12, the magnitude of vibrations of the street sign was less than 2 mm. The MEMS 

accelerometer failed to detect the vibration because the magnitude of vibrations of the street sign 

is too small, and the street sign vibrated too fast. 

(a) (b) (c) 
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Figure 12. Vibration of street sign using subpixel image processing. 

3.2.3. Analysis of Frequency Characteristics 

The displacement time history and several natural frequencies were detected through the 

subpixel image processing method, although the amplitude of the street sign’s vibration is less than 

2 mm. Figure 13 shows the modal frequencies obtained through the subpixel image processing 

method. Through the proposed subpixel image processing, these frequencies are found at 7.85 Hz, 

15.86 Hz, and 31.73 Hz respectively. The proposed algorithm can be used at any location on the 

street sign since it has many edges and infinite points on each edge. The edge detection technique 

could avoid noises such as brightness changing, so the displacement in bad weather can also be 

detected. Subpixel methods could enhance the edge detection method and detect small 

displacements with high accuracy. 
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Figure 13. Modal frequencies of street sign at measured location. 

3.3. Test on a Cantilever Beam and Damage Detection Using Its Mode Shapes 

3.3.1. Test Setup and Test Scenarios 

The main purpose of the proposed method is to evaluate damages on structures based on 

changes in their natural frequencies. To do so, a laboratory experiment was conducted to track the 

changes in the natural frequencies of a steel beam. The natural frequency of the original steel beam 

with no damage was first measured using the proposed method. Then a rectangular incision was 

made on the steel beam and the natural frequency was measured again. The incision is made at 1 

foot (0.305 m) away from the fixed end with a depth of 0.5 in. (12.7 mm) and a width of 1.0 in. 

(25.4 mm). Finally, the location of damage was determined based on the differences between the 

natural frequencies of the original and damaged steel beam.  

To initiate vibration of the steel beam, an arbitrary manual tapping was applied. Figure 14 

shows that the camera was fixed on a tripod and set up 1 foot (0.304 m) away from the steel beam. 

A MEMS accelerometer connected with a laptop was used to measure the displacement of the steel 

beam too. 
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Figure 14. (a) Setup of the steel beam vibration test, (b) Schematic diagram of the experiment 

setup (1’ = 12’’ = 0.3048 m). 

3.3.2. Analysis of Frequency Characteristics 

Figure 15 shows the natural frequencies of the undamaged steel beam through the image 

processing method and MEMS measurements, while Figure 16 shows the natural frequencies of 

the damaged steel beam through the proposed method and the MEMS measurements. There is a 

gap between peaks obtained by MEMS and subpixel image method, whose reason is that MEMS 

has errors to obtain the vibrations due to the times of integration. The data in Figure 15 and Figure 

16 was zoomed out to show the comparison of the first natural frequency, which will have the 

similar Power Spectrum Amplitude curve as shown in Figure 11 if the x axis scale is set to 0-40 

Hz. 

(a) 

(b) 
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Figure 15. Natural frequency of the undamaged steel beam through the MEMS accelerometer 

and subpixel image method. 
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Figure 16. Natural frequency of the damaged steel beam through the MEMS accelerometer and 

subpixel image method. 

Through the two tests, the reduction of stiffness of the steel beam due to incision was 

successfully found using the proposed method. The natural frequency was reduced from 3.10 Hz 

to 3.00 Hz after the beam was damaged. Thus, the proposed vision sensor can detect the reduction 

of stiffness of a structure. 

3.3.3. Mode Shape and Damage Detection on the Beam 

The location of the damage can also be identified if mode shapes of the structure could be 

found. Time domain decomposition (TDD) is a proven method used to extract mode shapes of a 
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structure and identify structural damages, even though other methods such as neural networks 

shown in Mao et al. (2020) could be also adopted for this purpose. Figure 17(a) shows the 

undamaged and damaged mode shapes. The two mode shapes are similar with small differences 

observed in the middle region. Normalized position is the ratio of the distance between the points 

on the bar and the left end (x) and the total length of the steel plate (L). The ratio of the displacement 

(d) and the maximum displacement (D) is defined as the normalized displacement. Figure 17(b) 

shows that there are some differences between the undamaged mode shape and damaged mode 

shapes. As shown in Figure 17(b), the peak difference happened at a normalized location of 0.3 

indicates the location of the damage. Through the analysis of mode shape difference, the damage 

was detected successfully. Since the mode shape and the damage detection method adopted here 

uses 11 points (10 segments), which makes the highest precision for the normalized damage 

location is 0.1. 
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Figure 17. Mode shape analysis. (a) Mode shapes of the undamaged and the damaged steel 

beam, (b) Differences in the normalized displacement between the undamaged mode shape and 

damaged mode shape. 

3.4. Template Matching Technique: NCC 

When camera movement is unavoidable such as due to wind or self-vibrations of UAVs, 

displacement calculation through edge detection only will not be adequate. Filtering the noise from 

Damage 

location at 

0.3 
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environment factors such as wind or self-vibration is necessary and needs to be conducted through 

a background template using NCC. When applying the NCC method, a template on the background 

of the images is used to calculate the correlation between the template and the regions in the target 

image. Then positions of the template in every image are obtained by searching the highest 

correlation between the template and the target region in the target image using the NCC method. 

𝑁𝐶𝐶(𝑢, 𝑣) =
∑ [𝑓(𝑥, 𝑦) − 𝑓𝑢,𝑣][𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − �̄�]𝑥,𝑦

{∑ [𝑓(𝑥, 𝑦) − 𝑓𝑢,𝑣]2[𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − �̄�]2}0.5
𝑥,𝑦

(13) 

Where f is the pixel value of the image; 𝑓𝑢,𝑣 is the mean of the pixel values of the image; t is the 

pixel value of the template; 𝑡 ̄is the mean of the pixel values of the template; u and v are the 

positions in the image. 

Figure 18 shows NCC results of one example. X-direction and Y-direction represent the 

searching region of the template in the target image. X-direction runs through the pixel horizontal 

location of the image, while Y-direction runs through the pixel vertical location of the image. The 

peak point indicates the position of the template in the image. In this process, every NCC between 

each position in the target image and the template are calculated using Eq. (13). The coordinates 

of the largest NCC could be found and indicate the position of the template in the target image. 
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Figure 18. The matching result of NCC. 

Peak: [62,116] 
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3.5. Subpixel Through 3-D Fitting 

Once positions of the template in images are obtained through the above method, the 

resolution is in the pixel level. To improve the precision, 3D parabolic curve fitting could be used 

to obtain the sub-pixel level accuracy. 

As shown in Eq. (14), the pixel with the maximum value of NCC correlation coefficients 

and its adjacent eight pixels in the image are fitted to construct a 3D parabolic equation. 

𝑝(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 (14) 

p0 is the maximum NCC value; p1, …, p8 are its eight adjacent pixel NCC values; x0, y0, x1, …yn 

are the coordinators of the pixels in the image. Eq. (15) is used to solve the 3D problem. 

𝐴𝑋 = 𝐵 (15) 

𝐴 = [
𝑥0

2 𝑦0
2 𝑥0𝑦0 𝑥0 𝑦0 1

… . … . . … . … … . … .

𝑥8
2 𝑦8

2 𝑥8𝑦8 𝑥8 𝑦8 1
] (16) 

𝑋 =  [𝑎 𝑏 𝑐 𝑑 𝑒 𝑓]𝑇 (17) 

B = [𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8]𝑇 (18) 

So, X could be calculated using Eq. (19): 

𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐵 (19) 

Thus, the NCC coefficient surface is obtained. The zero gradient of the surface equation 

with respect to x and y is used to obtain the x and y coordinates of the peak. The overall 

computational process is free of iteration and efficient. 
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3.6. Effect of Template Size and Contrast Level 

Figure 19 (a) shows four different templates used in the experiment. Figure 19 (b) shows 

the setup of the experiment, and the camera is placed at 1.5 m away from the shaker in a windy 

day. There are four templates which were traced to calculate the vibration of the camera 

considering the effect of environmental factors such as sunlight intensity and wind. Templates 

used in this thesis are different, including the car on the parking lot, and the tree near the larger 

building. They have different distances from the camera, different sizes, and different pixel values. 

The average of NCC values for each different template is used to describe how the templates are 

matched in the target images. The higher the average of NCC values for each template, the better 

the matching is, and the more accurate motion of the camera could be obtained. 

 

Figure 19. (a) Camera view with templates selected for the field test of the suggested method, (b) 

Setup of the experiment. 

Table 2 shows the average of the NCC values for different templates. Two buildings 

provide similar values of the average of the NCC values. Car and Tree supply lower values, 

because the size of them and the contrast of the pixel value are smaller. It is obvious accuracy is 

higher when the average of the NCC calculated in the process of template matching is higher. 
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Table 2. Pixel size and average of the NCC values for each template. 

 (1) Building 1 (2) Tree (3) Building 2 (4) Car 

Pixel Size 215x589 310x410 639x570 260x200 

Average of NCC values 0.997 0.960 0.989 0.954 

NCC between obtained 

vibration with the input 

0.998 0.980 0.992 0.975 

 

Figure 20(a) shows the monitored displacement of the shaker using four different templates 

and the proposed vision-based displacement finding method. Displacements obtained using the 4 

different templates are shown in Figure 20(b). When the vibration of the camera is small, the 

monitored displacements using the four templates agreed with each other very well. When the 

motions of the camera increase, the monitored displacements using the four templates have 

different level of errors. 
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Figure 20. (a) Monitored Vibration of the shaker using four different templates and the input of 

the shaker, (b) Vibration of camera obtained through different templates using the suggested 

method. 

(a) (b) 
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3.7. Conclusions 

In this chapter, a novel vision system was developed for noncontact displacement 

measurement of structures using a subpixel Zernike edge detection technique. Comprehensive 

experiments, including vibration tests on street sign and steel beams, were carried out to verify the 

accuracy of the proposed method.  

If movement of camera is unavoidable, NCC-based template matching could be used to 

solve this issue. Different templates would have different impacts on obtaining displacement of 

structures. Typically, larger templates contain more feature points and provide higher accuracy in 

monitored displacement when NCC methods are used. One needs to select templates carefully and 

avoid any shadows that could come in and out of the templates, because the shadows would cause 

errors in the process of template matching. If there are two templates with similar size, the template 

with more feature points would give better accuracy in monitored displacements. The following 

conclusions are reached: 

• From the street sign test, vibrations of the street sign after an excitation pulse were 

detected successfully. Using Fast Fourier Transform, several natural frequencies of the street sign 

were founded successfully. 

• The subpixel-based Zernike matrix method is an innovative edge detection method 

that could monitor structural displacements accurately at any location on the detected edges. 

• Through the analysis of mode shapes obtained by the proposed image processing 

method, the damage location on the steel beam was accurately detected. 

• Four different templates were selected to obtain vibrations of the camera and 

showed different accuracies. To achieve higher accuracy, the template is better to be fully 
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contained in the image, needs to have high contrast, and is not flat on the grayscale values. In other 

words, templates should have enough feature points to make them stand out in the target image. 

By tracking existing natural edges of structures, the vision sensor method developed in this 

thesis provides flexibility to change measured locations on structures. The availability of such a 

remote sensor will facilitate cost-effective monitoring of civil engineering structures, with 

consideration of camera movement due to environmental or operational factors. 
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4. VISION-BASED DISPLACEMENT MEASUREMENT CONSIDERING 

TRANSLATIONAL AND ROTATIONAL MOTIONS OF CAMERA 

4.1. Introduction 

With massive bridges constructed recently, health monitoring of these infrastructures 

becomes more and more important, to ensure that the structural behavior and the security level are 

appropriate throughout the bridge’s usage life. Railway bridges are one of them, which is 

particularly related to the dynamic displacement of the structure due to the passage of trains. 

To filter out the effect of camera movement due to environmental or operational factors, 

template matching is typically adopted. The area-based method calculates the correlation between 

the template image and the target image and obtains the location of template image in the target 

image [1-7]. 

Nowadays, UAVs are widely used to obtain the videos of structures’ vibrations. The most 

important thing to be considered is that the effect of the UAV vibration needs to be eliminated. 

Yoon [8] used an UAS to measure relative vibration between stories of a 6-story structure in the 

lab. The nature frequencies are obtained successfully but the actual displacement of the story and 

motions of the UAS could not be obtained. Yoon [9] also proposed a method which could obtain 

vibrations of the UAS verified by experiments in lab and field. The main drawback of this method 

is that it needs a manmade checking board on the background to obtain vibrations of the UAS. 

A new method to filter the effect of cameras’ motions through background templates is 

proposed in this chapter. All six motions of the camera (three translations and three rotations) were 

considered and the proposed method filtered the effect of these motions successfully. The results 

show that filtering out vibrations of the camera significantly improves the displacement monitoring 

accuracy from 53.0% to 97.0%. Adopting scale factors for every frame and different positions in 
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each frame also helps improving accuracy of the monitored displacement from 97.0% to 99.0%. 

Through the developed filtering method, frequencies of target motions have been successfully 

identified. 

4.2. Effect of Camera Motions on Displacement Monitoring 

4.2.1. Displacement of Target and Movement of Camera 

When the motions of cameras are not negligibly small, it could affect the accuracy of the 

monitored displacement significantly. For example, a bridge is monitored on a windy day and the 

motion of the camera is large due to wind. It is vital to find a method to filter out vibrations of the 

camera. 

Figure 21 shows the process of the proposed system. Images are captured using a high-

speed camera with good resolutions. Then fixed points on the background of the structure are 

selected by users and the NCC is used to obtain the positions of these fixed points in every image. 

To obtain the subpixel resolution, the 3-D fitting is applied based on the results of NCC. With the 

obtained camera motions, the images are converted to the cases without distortion through filtering 

the obtained camera motions. An edge is then selected as the measure point on the structure. And 

the proposed Zernike moment matrix edge-finding method is used to obtain positions of this edge 

in every image. To convert coordinates at pixels to physical coordinates, the scale factor in every 

image is calculated and applied. Finally, the displacement history of the measured points is 

obtained.  
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Figure 21. Flowchart of the proposed displacement monitoring method. 

4.2.2. Determination of Scale Factors 

Template matching methods will be used to filter the rigid motion of the camera when the 

motion is perpendicular to the image plane as shown in section 2.5. The motion of the camera, 

when moving toward the structure, would cause the distance change between the camera and the 

structure. And the distance change between the camera and the structure would subsequently cause 

changes of scale factors of every image. Two ways to calculate the scale factor are shown blow: 

𝑆𝐹1 =
𝐿𝑘𝑛𝑜𝑤𝑛

𝑂𝑘𝑛𝑜𝑤𝑛

(20) 

𝑆𝐹2 =
𝐷

𝐹
𝑑𝑝𝑖𝑥𝑒𝑙 (21) 

Lknown is the known physical length on the structure surface. Oknown is the pixel length on the image 

plane. D is the distance between the camera and the structure. F is the focal length of the camera. 

And dpixel is the pixel length such as μm/pixel.  
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4.2.3. Getting Rid of the Translations and Rotations of the Camera 

When the camera rotates, the positions of background and measure points would change 

in image [10]. Since there is an angle between the camera and the structure, a keystone effect with 

an apparent distortion (Figure 22) will appear if the camera rotates toward the target (around x or 

z axis). For example, it would cause a square in the original image to look like a trapezoid in the 

distorted image, the shape of an architectural keystone. 

 

 

 

 

 

 

 

 

 

 

Figure 22. Keystone effect due to rotation of the camera. 

As shown in Figure 22, the shape of the original image is a rectangle, and the shape of the 

distorted image is a trapezoid. At position 1 and position 2, there are two different scale factors, 

which would cause error on the measured vibrations. The most frequently used technique to solve 

this issue is interpolation. But in the process of interpolation, it cannot convert the distorted image 

to the original image perfectly, which could cause errors. The method suggested in this chapter 

could be called the “adaptive scale method”, which uses the adaptive scale factors for the measured 

features in every image. For example, if the measure point is at location 1 in Figure 22, scale 

Target Original image 
 

1 2 

Distorted image 

Camera rotations 

 

 

Image frame 



 

 51 

factors would be different from each other for the whole series of images. If every scale factor at 

the measure point for every image could be calculated, the error due to the rotation of the camera 

could be easily solved. As shown in Eq. (8), to calculate SF1, only two parameters need to be 

obtained. It is easy to find a known distance on the surface of a structure and the relative distance 

of the pixels on the image. 

 

Figure 23. Calculations of average scale factors. 

Figure 23 shows a 6x6 pixels image. F is a fixed point and M is a measurement point and 

they are approximately in the same plane. DFM,vertical is the vertical physical distance between F 

and M. PFM,vertical is the vertical pixel distance between F and M. Because of distortion due to 

rotation of the camera, the scale factors between F and M are different. So DFM,vertical could be 

calculated using the equation below: 

𝐷𝐹𝑀,𝑣𝑒𝑟𝑡𝑖𝑐𝑙𝑒 = ∑ 𝑆𝐹𝑖 × 1

𝐹𝑀,𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

(22) 

Because the distortion causes linear changes of scale factors between F and M, there is a 

linear change of scale factors too. So DFM,vertical could be calculated blow: 
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𝐷𝐹𝑀 = 𝑆𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒 × 𝑃𝐹𝑀 (23) 

𝐷𝐹𝑀,𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 𝑆𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒 × 𝑃𝐹𝑀 × 𝐶𝑜𝑠 𝛼 (24) 

𝐷𝐹𝑀,𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 𝑆𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒 × 𝑃𝐹𝑀,𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 (25) 

𝑆𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑆𝐹𝐹 + 𝑆𝐹𝑀

2
(26) 

Similar procedures could apply to the horizontal physical distance and horizontal 

displacement. When the fixed point and the measure point could not be assumed in the same plane. 

The motion of the camera and the motion of the structure are calculated using their own average 

of scale factors and coordinates. For the rotation of the camera that is parallel to the structure plane, 

it would only cause the rotation of the image. The Speeded-Up Robust Features (SURF) algorithm 

could be used to find blob features, and M-estimator Sample Consensus (MSAC) algorithm was 

used to find the translations according to the feature points. Then changes of angle and scale on 

images due to arbitrary motion of cameras could be obtained.  

4.2.4. Speeded-Up Robust Features (SURF) 

SURF was first published in 2006 and has three main parts: interested point detection, local 

neighborhood description, and matching. SURF uses square-shaped filters as an approximation of 

Gaussian smoothing and adopts a blob detector based on Hessian matrix to find points of interest. 

The determinant of the Hessian matrix is used as a measure of local change around the point and 

points are chosen where this determinant is the maximum.  

Given a point P = (x, y) in an image I, the Hessian matrix H(x, σ) in x at scale σ could be 

defined as follow: 

     𝐻(𝑥, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝜎)    𝐿𝑥𝑦(𝑥, 𝜎)

𝐿𝑥𝑦(𝑥, 𝜎)    𝐿𝑦𝑦(𝑥, 𝜎)
] (27) 
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Lxx(x, σ) is the convolution of the Gaussian second order derivative
𝜕2

𝜕𝑥2
𝑔(𝜎) at point x in  image 

I, and similarly for Lxy(x, σ) and Lyy(x, σ). 

 

Figure 24. (a) Original image; (b) Scaled and rotated image; (c) Matching results considering 

scale factor and angle of rotation. 

Figure 24 shows the results of feature matching on the MTS between the images before 

tilting and after tilting and scaling. The original image was first rotated by 30 degrees and scaled 

to 0.7. Then M-estimator Sample Consensus (MSAC) algorithm was used to calculate the angle 

and scale based on the results of the feature matching. The outputs are 29.89 degrees for angle and 

0.69 for scale, which verifies the accuracy of the suggested method. 

4.3. Performance Evaluation Through a Shaking Table Test in Field 

4.3.1. Shaking Table Test Setup 

Experiments were performed to verify the proposed concept. Figure 25 shows the setup of 

the experiment in the lab. An iPhone6s with 30 fps acquisition rate and 1920×1080-pixel resolution 

was fixed on a tripod and used to capture vibrations of the MTS machine. The MTS system 

performs a 4-Hz vibration, while the displacement of its piston is measured using the deployed 

iPhone6s. The iPhone was placed 1 m away from the MTS machine. Sinusoidal waves were 

initiated through the MTS system with controlled frequencies (3 Hz, 2 Hz, 1 Hz, and 0.5 Hz) and 

amplitudes (2.5 mm, 5 mm, 10 mm, and 10 mm), respectively. To simulate vibrations of the 

camera, continuous vibrations were triggered manually including translations and rotations in all 

three directions. 

(a) (b) (c) 
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Figure 25. Setup of the experiment on MTS. (a) Front view, (b) Side View. 

4.3.2. Subpixel Resolution Performance 

Figure 26(a) shows the displacement monitoring results measured by the suggested 

subpixel image processing method for the cases of considering noise correction, without noise 

correction, and considering noise correction and adaptive scale factor adjustment, when a 

sinusoidal motion with an amplitude of 5.0 mm and frequency of 2 Hz was applied to the MTS 

system. NCCs calculated for the cases of considering noise correction and scale factor adjustment, 

considering noise correction only, and without noise correction and scale factor adjustment are 

0.99, 0.97, and 0.53, respectively. The adopted scale factor adjustment improved the monitoring 

accuracy marginally, however the suggested method improved 45% accuracy of the monitored 

displacement when considering vibration correction of the camera even without the scale factor 

adjustment. Figure 26(c) shows the rotation angle at the position of the template and the measure 

point. The rotation angle varied from -2.5 degrees to 0.5 degrees, which brought tremendous effect 

(a) (b) 
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to the monitored displacement. The scale factors calculated at the position of the template and the 

measure point are shown in Figure 26(d). The scale factor ranged from 0.99 to 1.03 and did not 

change much, because the out-of-plane motion of the camera is not significant enough. 

Figure 26(b) shows fast Fourier transform (FFT) results of the monitored displacement for 

the case of considering noise correction and without noise correction. The FFT results of the 

monitored displacement for the case of without noise correction have three peaks, where two 

smaller peaks are frequencies due to noises and the highest peak is the frequency of the MTS 

motion at 2 Hz. When the data was processed through the suggested method considering noise 

correction, only one peak at 2 Hz was obtained in the FFT results. 
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Figure 26. Comparison of captured displacement and the input sinusoidal function with a 

frequency of 3 Hz and amplitude of 1.5 mm. (a) Monitored Displacement, (b) FFT result of the 

monitored displacement, (c) Angle of camera rotations, (d) Scale factors calculated. 
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Figure 27(a) shows four templates in the camera view of the MTS system. Figure 27(b) 

shows four template ROIs (Range of Interest) and their matching results. The displacement 

captured using the four different templates are shown and compared with the outputs from the 

MTS system in Figure 27(c). Figure 27(e) shows NCCs between the captured displacements using 

the four different templates and the input of MTS. The proposed edge-coordinate-finding method 

was used to obtain the displacements of the measure point. The small-MTS-template and the large-

MTS-template have similar NCCs when the displacements captured through the two templates 

were compared. The cases using the No.3 and No.4 templates have smaller NCCs, when compared 

to the cases using template No. 1 and 2. The case using No.4 template has the lowest NCC, because 

there is a steel column at the top of this template that changes the template when the piston vibrates. 

The case using No. 1 template has slightly better precision than the case using No. 2 template, 

because No. 1 template contains more feature points. But larger templates would need more time 

to operate. Larger NCCs of the template has higher precision.  
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Figure 27. Effect of template on the accuracy of displacement monitored. (a) Camera views, (b) 

Four different templates, (c) Comparison of captured displacement using the four different 

templates, (d) NCCs calculated for the four different templates used, (e) NCCs between captured 

vibration using four different templates with input of MTS. 
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Figure 28(a) shows the results of displacement measured by the subpixel image processing 

method for the case of considering noise correction, without noise correction, and considering 

noise correction and scale factor adjustment, when a sinusoidal wave motion with an amplitude of 

10.0 mm and frequency of 1 Hz was applied to the MTS system. NCCs for the case of considering 

noise correction and scale factor adjustment, the case of considering noise correction only, and the 

case without noise correction are 0.99, 0.99 and 0.56. Similarly, adopting scale factor adjustment 

did not much improve the monitored displacement accuracy, because out-of-plane motions of the 

camera was small comparing to the distance between the MTS and the camera. However, 

vibrations of the camera affected the monitored displacement very much. The displacement 

obtained with the correction of camera translations and rotations improved its accuracy by 44%. 

Figure 28(c) shows the rotation angles at the position of the template and the measure point. Figure 

28(d) shows the scale factors at the position of the template and the measure point.  

Figure28(b) shows FFT results for the cases of considering noise correction and without 

noise correction. The FFT results for the case with noise have four peaks, where 3 smaller peaks 

are frequencies due to noises and the highest peak is the frequency of MTS at 1 Hz. After noises 

were filtered through the suggested method, only one peak at 1 Hz was obtained in the FFT results 

of monitored displacement. 
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Figure 28. Comparison of captured displacement and the input sinusoidal function with a 

frequency of 1 Hz and amplitude of 10 mm. (a) Monitored Displacement, (b) FFT result of the 

monitored displacement, (c) Angle of camera rotations, (d) Scale factors calculated. 

Figure 29(a) shows the four templates in the camera view of the MTS system. Figure 29(b) 

shows the four template ROIs and the matching results. The displacements captured using the four 

different templates are shown and compared with the outputs from the MTS in Figure 29(c). Figure 

29(d) shows the NCCs using the four different templates. Figure 29(e) shows NCCs between the 

captured vibration using the four different templates and the input of MTS. The four different 

templates were used to obtain the vibrations of the camera and the proposed edge-coordinate-

finding method was used to obtain the displacements of the measure point. The captured 

displacements of the measure point using the four different templates are compared with the input 

of the MTS, respectively. The small-MTS-template (No.2) and the large-MTS-template (No.1) 

have similar NCCs during the whole testing process, while No.3 and No.4 templates have smaller 
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NCCs because there is a shadow caused by the curtain on the MTS system. Another reason is these 

two templates have low contrast and flat grayscale values; thus, these two templates do not have 

enough feature points to make them highlighted. Larger NCCs of the template have higher 

precision. No.1 template has better precision than No.2 template because No.1 template contains 

more feature points. But larger templates would need more time to process. 
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Figure 29. Effect of template on the accuracy of displacement monitored. (a) Camera views, (b) 

Four different templates, (c) Comparison of captured displacement using the four different 

templates, (d) NCCs calculated for the four different templates used, (e) NCCs between captured 

vibration using four different templates with input of MTS. 
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Above experiments tested the suggested method on displacements with the large-amplitude 

and regular noises. Cameras on UAVs could be affected by small-amplitude noises such as wind 

or the pass-by traffic. Figure 30(a) shows the displacement obtained by the proposed image 

processing method considering small-amplitude noises on the camera. The motion of the MTS is 

set to move with 10 mm of the amplitude and 0.5 Hz of the frequency. The amplitude of the noise 

brought in by movement of camera is less than 2 mm and irregular (Figure 30(a)). Only small 

difference exists for the obtained displacement considering the noise or not considering noise 

induced by motions of the camera and both displacements give the similar FFT distribution as 

shown in Figure 30(b). NCCs for the case with noise correction and the case without noise 

correction are 0.99 and 0.98, respectively. 
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Figure 30. (a) Comparison of captured displacement data with input sinusoidal function with 

frequency of 0.5 Hz and amplitude of 10 mm, (b) FFT results. 

Figure 31(a) shows the displacement obtained through the proposed image processing 

method and the small-amplitude noise induced by motions of the camera. The input motion of 

MTS is at 2.5 mm of amplitude and 3 Hz of frequency. The amplitude of the noise is less than 1.5 

mm and irregular. Only small difference exists for the monitored displacement for the case with 

noise correction and the case without noise correction and both capture the motion of MTS very 

(a) (b) 
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well. NCCs for the case with noise correction and the case without noise correction are 0.97 and 

0.92, respectively. Filtering the motion effect of the camera improved the NCC value nearly 5%. 

As shown in Figure 31(b), frequencies obtained using the captured displacement without noise 

correction and the captured displacement with noise correction are the same, both at 3 Hz. 
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Figure 31. Comparison of captured displacement data between different processing methods for 

an input motion with frequency of 1 Hz and amplitude of 2.5 mm. (a) Displacement and noise, 

(b) FFT results. 

4.4. Conclusions 

The proposed vision-sensor system obtained vibrations of measure points on the structure 

successfully. The accuracy of monitored displacement was improved significantly by filtering 

vibrations of the camera through applying the subpixel curve fitting technique on NCC and the 

proposed Zernike moment edge-coordinate-finding method. Excellent agreements were obtained 

between displacements calculated by the proposed image-based displacement sensor and the 

outputs of MTS. Adaptive scale factor adjustment for each image improved the monitored 

displacement accuracy but only slightly, because the out-of-plane motion of the camera is small. 

In summary, the suggested image-based sensor system has many advantages compared to 

existing image sensor systems in literature, such as 

 

(a) (b) 
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• The proposed image-based sensor system could filter out vibrations of the camera, which 

improves the accuracy of monitored displacements significantly. 

• All six motions of the camera (three translations and three rotations) were considered in 

this chapter. Two translations which are parallel to the target image were eliminated by tracing the 

positions of the background point. The translation which is perpendicular to the image plane was 

eliminated by updating scale factors of each image. The two rotations which are perpendicular to 

the image plane would cause the changes of the angle between the camera and the image plane. 

These angles would cause the keystone effect which was eliminated by updating the average scale 

factor between the background point and the measure point. The scale factor and the rotation angle 

parallel to the image plane at the background point and the measure point were calculated using 

the Speeded-Up Robust Features method. 
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5. UAV-BASED DISPLACEMENT MEASUREMENT CONSIDERING 

TRANSLATIONAL AND ROTATIONAL MOTIONS OF THE UAV 

5.1. Introduction 

In the past 20 years, image-based displacement sensors become increasingly attractive 

because of their advantages of low-cost and efficiency. To adopt such a computer vision method 

in structural health monitoring, template matching is typically used to trace displacements of 

structures [1-5]. Olaszek [6] first used the template matching method to obtain the dynamic 

characteristics of bridges. Besides the template matching method, other computer vision methods 

such as edge detection and digital image correlation (DIC) could detect displacement with high 

accuracy. Ri et al. [7] proposed a nontarget vision-based method for cable force estimation using 

handheld shooting through smartphone cameras. The edge of cable is selected as a target and was 

obtained by the edge detection method. Vibrations of the cable were obtained based on the changes 

in its locations in ROI of video image sequences, captured by a smartphone camera. Pan et al. [8] 

enhanced DIC for surface deformation measurement at the macroscopic to micro- or even 

nanoscale. 

The UAV is an increasingly attractive tool to perform structural health monitoring in 

detecting both static characters such as cracks and dynamic characters such as natural frequencies 

and vibrations under different loads. It is easy to fly UAVs at a close position to the structures even 

if structures are in an inaccessible area such as a bridge over a wide river or a great canyon. Yoon 

et al. [9] proposed an image-based method to detect relative displacements between stories using 

UAV. A fixed camera was used to compare the results with these from UAVs. The method could 

get rid of the three translations of the UAV without calculating the camera motion. This method 

only could be used to detect structures with several stories when the rotations of the camera could 
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be negligible. The rotations of the UAV caused by wind would cause different translations of 

different stories, thus the real displacement of the structure could not be obtained using this 

method. Yoon et al. [10] used a UAV to detect the vibration of a structure in the lab. To obtain the 

vibrations of the UAV, a checking barcode was used to be the background point. In real 

environment, it is always difficult to attach a manmade checking barcode at the background of the 

target structure. 

Both the term motion and vibration are used in dynamics. Motion is a general term to 

describe the movement of an object from one place to another while vibration typically refers to a 

periodic motion. If the rate of the data acquisition system is high enough, both vibrations with 

different frequencies and/or motions of the object could be obtained. 

In this chapter, three translations and three rotations of the unmanned aerial vehicle were 

derived through the suggested Normalized Cross Correlation based template matching computer 

vision method and their effect on the monitored structural displacement was analyzed. The NCC-

based template matching was used to obtain the vibration of UAVs by tracing far-field background 

points at the recorded images. The images captured at any general orientations were rotated back 

to their original positions which could detect errors in the monitored displacement induced by the 

rotation angles. A fast NCC-based template matching method was proposed in this chapter, which 

could accelerate the original NCC-based template matching method significantly and reaches the 

same level accuracy as that of the original NCC-based template matching method. To verify the 

concept, a series of experiments were performed on a Multipurpose Testing System machine with 

amplitudes of 10 mm, 5 mm, and 2.5 mm and frequencies of 2 Hz, 1 Hz and 0.5 Hz, respectively, 

at the same time a UAV was used to record the motions of the MTS piston. The derived 

displacements through the UAV and the fixed camera were compared with the true motions of the 



 

 67 

MTS machine. Excellent precision and consistence were obtained for the UAV monitored 

displacement, the MTS piston motion, and the fixed camera derived displacement. In comparison 

to the case of the fixed camera, scales and rotation angles of the UAV are critical and largely affect 

the accuracy of monitored displacements. A field experiment was conducted to test the proposed 

method in a windy environment. Excellent agreement was found between the monitored 

displacement obtained by the UAV and that derived from the fixed camera. 

5.2. Displacement Monitoring Through UAV 

5.2.1. Hardware of the Vision Sensor System 

Table 3. Main devices used in the experiment. 

 DAJIANG Mavic Air 2 

 

 

Record vibrations 

 iPhone 6s Record vibrations 

 Multipurpose Testing System 

(MTS) 

Provide vibrations with 

input amplitudes and 

frequencies 

 Shaker Provide vibrations with 

the fixed amplitude and 

controlled frequencies 
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5.2.2. Displacement Measurement Through UAV 

Figure 32 shows the process of the proposed image-based displacement sensor system 

which could obtain the vibrations of a structure using UAVs. Images are captured using a UAV 

with 4k resolution and modest frame rate of 60 fps. Then rotations of each frame are calculated 

using the Speeded-Up Robust Features (SURF) and M-estimator Sample Consensus (MSAC) 

algorithm if the range of target is not too large and the keystone effect could be neglected. Each 

frame is then rotated to the original position based on the captured angles. Fixed points on the 

background of the structure are selected by users at this time and the skipped fast NCC is used to 

obtain the positions of these fixed points in each target image. To obtain the subpixel resolution, 

3-D fitting is applied based on the results of NCC. An edge is then selected as the measured point 

on the structure. And the proposed edge-finding method through the subpixel Zernike moment 

method in Chapter 2 is used to obtain positions of this edge in every image. To convert coordinates 

at pixels to physical coordinates, the average of scale factors is calculated and applied to obtain 

world displacement of the UAV and measured point. Finally, the displacements at the measured 

points are obtained using the derived coordinate time history. 
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Figure 32. Flowchart of the UAV vision-based displacement monitoring. 

5.2.3. Getting Rid of the Translations and Rotations of the UAV 

Define x-direction and y-direction in the image plane, and z-direction perpendicular to the 

image plane. For the rotation of camera that is parallel to the structure plane, it would cause the 

rotation of the image. Typically, this rotation of the camera is small but may not be negligible.  

Firstly, the real rotation (α1) at the first image is calculated by tracing some horizontal or 

vertical edges (RE1) as shown in Figure 33(a). Here RE1 is the 1st frame image location of a real 
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horizontal edge in the target, and REn is the nth frame image location of the real edge. These 

horizontal or vertical edges could be edges of buildings, decks of bridges and columns of bridges. 

With the keystone effect considered, the horizontal lines in the image keep horizontal and straight. 

Due to the anti-shake system of UAVs, the keystone effect caused by rotations of the UAVs could 

be small.  

Rotations of every image are obtained using the proposed SURF method by tracing 

background features or the whole captured images as shown in Figure 33(b). Finally, images are 

rotated to the correct position based on the angles calculated. Based on the rotation on the first 

image and the rotations between the current image frame and the first image frame, the true rotation 

angel can be calculated as Eq. (28): 

𝛼𝑛
′ = 𝛼1 + 𝛼𝑛 (28) 

n is the number of the frame; αn’ is the real rotation angle of the frame n. α1 is the rotation angle 

of the first frame. αn is the rotation angle of the frame n between the current image frame and the 

first image frame. 

 

Figure 33. Schematic plots for calculation of rotation angles. (a) First frame, (b) The nth frame. 

Sometimes, the keystone effect could not be ignored. To overcome the keystone effect, two 

elements (E1 and E2) at the same height on the structure are selected, such as bolts groups on the 

surface of bridges. The coordinates and scale factors of these two elements are first obtained. Then 
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the rotation angle could be calculated as shown in Eq. (29), based on their coordinates and scale 

factors. 

𝛼1 = arctan
𝑌𝐸1 × 𝑆𝐹𝐸1 − 𝑌𝐸2 × 𝑆𝐹𝐸2

𝑋𝐸1 × 𝑆𝐹𝐸1 − 𝑋𝐸2 × 𝑆𝐹𝐸2
(29) 

XE1, YE1, XE2, and YE2 are the coordinates of elements E1 and E2 in the image, respectively; SFE1 

and SFE2 are scale factors of E1 and E2. The scale factor is defined as the ratio of real distance of 

targets over the image distance of the targets in the photo, which can be calculated when the 

physical coordinates of elements and coordinates of them in the image are known. 

5.2.4. Skipped NCC Template Matching 

Original template matching methods always need much time to execute, because the NCC 

at every point needs to be calculated and the position with the highest NCC is the position of the 

template in the target image. The method named the skipped NCC template matching method was 

proposed in this paper to accelerate the execution of the original NCC method. Only one peak 

value of NCC exists in the target image, thus a modified bisect method could be adopted, which 

will accelerate the NCC process significantly. 

The skipped fast NCC template matching method is conducted in multiple stages. At the 

first stage, the NCCs at the designated points are calculated using Eq. (30). Eq. (31) is then used 

in the second step to search locally the potential template location. 
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(31) 

Where f is the pixel value of the image; 𝑓𝑢,𝑣 is the mean of the pixel values of the image; t is the 

pixel value of the template; �̄�is the mean of the pixel values of the template; u and v are the 



 

 72 

positions in the image; s is the skipped distance at the first step; su+1 and sv+1 are the positions in 

the target image and no more than the size of the target image; u and v are natural integer numbers 

starting from 0; umax and vmax are the coordinates of the highest NCC point found in the first 

stage.  

Assume the size of the template is n×m and the size of a target image is N×M. To obtain 

the position of the template in the target image, (N1×M1) NCCs need to be calculated using the 

original NCC template matching method. N1 is equal to N-n+1 and M1 is equal to M-m+1.  

The method used in this paper skips the calculations of NCCs at some locations. If the skipped 

distance is 2 as shown in Figure 34 in the first stage, the NCCs at points which are 2 pixels skipped 

with each other are calculated. The “1” in Figure 7 shows the points where NCC is calculated in 

the first stage. The total calculations of NCCs at the first step is (N1×M1)/9. At the second stage, 

the NCCs of points surrounding the highest NCC point found in stage 1 are calculated. The ‘2’ 

represents the calculations of NCCs at the second stage in Figure 38. When the skip is s, the total 

times of NCC calculations are (N1×M1)/ (s+1)2+((2s+3)2-9), which is always smaller than 

(N1×M1) no matter what s is.  

 

Figure 34. Calculations of NCC using the proposed skipped NCC method. 
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There is only one template in the target image and the NCC values in the whole searching 

region are approximately continuous. If the position of the largest value does not locate in both 

regions at the first stage and the second stage, there would be: 

𝑁𝑚𝑎𝑥 > 𝑁𝐵 < 𝑁1𝑚𝑎𝑥 (32) 

Nmax is the largest NCC value in the whole searching region which is located outside the selected 

points at the first stage and the second stage, as shown ‘3’ in Figure 38. NB is the NCC value of 

the points at the boundary between regions at the first stage and the second stage. N1max is the 

highest NCC value in the searched regions at the first stage and the second stage. The more pixels 

overlapped between the template and the searching region in the target image, the larger NCC 

would be. If the distance between the point to the position of the largest NCC is decreasing, the 

NCC would be increasing. Thus, Nmax should be less than N1max, which is impossible. In conclusion, 

the position with the largest NCC value should be in the regions of the second stage when the 

skipped distance is much less than the template size.  

Figure 35 (a) shows the NCC results using the original NCC template matching method. 

Other figures in Figure 39 show the NCC results using the proposed skipped fast NCC template 

matching method using skipped distance s from 1 to 19. The original NCC template matching 

method detected the highest value which is 0.9408 at location (76, 169) in the searching region 

with 78309 calculated numbers of NCCs. However, the proposed skipped fast NCC template 

matching method detected the same highest value of 0.9408 at location (76, 169) by calculating 

only 8750 numbers of NCCs. When the skipped distances are increased, the number of NCC 

calculations at stage 1 is decreasing but the number of NCC calculations at stage 2 is increasing. 
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Figure 35. Results of calculation of the NCC using the proposed skipped NCC-based template 

matching with different skipped distances. (a) 0; (b) 1; (c) 2; (d) 3; (e) 5; (f) 10; (g) 15; (h) 20. 

 

Figure 36 shows numbers of the NCC calculations when the skipped distance s is from 

0 to 22. The searching region is an image with 231×339 pixels. A sharp drop in the number of the 

NCC calculations is founded when the skipped distance s is from 0 to 5. When the skipped distance 

s is from 5 to 10, the number of the NCC calculations is stable. The number of the NCC calculations 

begins increasing when the skipped distance s is larger than 10. For a searching region of 231×339 

(a) 
(b) 

(c) 

(d) (e) (f) 

(g) (h) 
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pixels, the skipped distance s could be selected as 5, which will need the least NCC calculations 

and avoid errors due to the skipped regions. 

 

Figure 36. Numbers of the NCC calculations when the skipped distance s is from 0 to 22. 

5.2.5. Rotation Angle and Scale Factor Calculations Based on SURF Method 

To obtain the rotation angle and the change of the scale factor, the SURF method is used 

to detect, extract and match features using their descriptors in both the original image and the 

distorted image. The MSAC method is then used to remove outliers while computing the 

transformation matrix and detect the scale and the angle using the obtained geometric 

transformation. To verify accuracy of the calculated scale factors and rotation angles based on the 

SURF method and MSAC method, the whole images captured by the UAV could be used, since 

better accurate results for rotation angles and scale factors could be obtained if more image features 

are included. Figure 37(a) shows the original image captured by the UAV. Figure 37(b) shows the 

image after rotating 30oC counterclockwise and scaling down to 70% of its original size. Figure 

37(c) shows the results of calculated rotation angle and scale factor based on the original image 

and scaled image using the SURF method and MSAC method. The obtained rotation angle and the 

scale factor are 29.998o and 0.699 respectively, which matches well with the input values. 
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Figure 37.  Calculation of the rotation angle and scale factor of images using the SURF and 

MSAC method. (a) Original image; (b) Rotated and scaled image; (c) Feature matching process 

through the SURF and MSAC method. 

5.3. Performance Evaluation Through MTS Experiment in Lab 

5.3.1. MTS Test Setup 

As shown in Figure 38 and Table 1, the DJI Mavic drone was flying at 1.5 m away from 

the MTS and at a height of 1.7 m to record videos of vibrations of the MTS, which has been 

operated at frequencies of 0.5 Hz, 1 Hz, and 2 Hz with amplitudes of 10 mm, 5 mm, and 2.5 mm 

respectively. The displacement output error from the MTS is less than 0.5% with respect to the 

given input command, which is taken as the benchmark for the image-based displacement 

monitoring method. An iPhone 6s was used at 0.5m away from the MTS and at a height of 1.7m 

to record the vibration of the MTS too, as a comparison method with the proposed method. The 

recorded videos were processed using the proposed skipped template matching method to obtain 

(a) (b) 

(c) 
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the translations and rotations of the UAV and the edge detection method developed by authors to 

obtain displacements of the measured points on the MTS. 
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Figure 38. Setup of the experiment on MTS. (a) Front view; (b) UAV view; (c) Front view of the 

schematic diagram of the experiment setup; (d) Side view of the schematic diagram of the 

experiment setup. 

The main device used in these experiments is the DJI Mavic Air with 4k resolution and 30 

frames per second, whose 4k resolution is adequate to obtain high-precision results. The scale 

factor of experiments using the fixed camera at the first frame is 5/8 mm/pixel. The scale factor of 

experiments using UAV at the first frame is 0.486 mm/pixel. The iPhone 6s has 30 frames per 

second and resolution of 544x960 pixels.  

Fixed point 

Measured point 

(a) (b) 

(c) (d) 
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5.3.2. Results of Experiments 

Figure 39 shows the displacement monitoring results measured by the suggested subpixel 

image processing method for the cases of using the UAV and the fixed camera, when sinusoidal 

motions with amplitude of 10.0 mm and frequencies of 0.5 Hz, 1 Hz and 2Hz were applied to the 

MTS system. 

Figure 39. The vibrations obtained by MTS, UAV, and the fixed camera with amplitude of 10.0 

mm and frequencies at 0.5 Hz, 1 Hz, and 2 Hz. 

Figure 40 shows the original vibration, vibration of the UAV and corrected vibrations at 

10.0 mm of amplitude and 0.5Hz, 1 Hz and 2 Hz of frequencies. To obtain correct vibrations, 

adaptive scale factors, rotations, and translations of the UAV are used to obtain the actual 

vibrations of the MTS through the image data acquired by the UAV. 
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Figure 40. The vibrations of the MTS obtained after filtering vibration of the UAV, vibrations of 

the UAV, the vibrations of the MTS without filtering vibration of the UAV for the case of 

amplitude at 10.0 mm and frequencies at 0.5 Hz, 1 Hz, and 2 Hz. 
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Figure 41 shows the monitored displacement results measured by the suggested subpixel 

image processing method for the cases of using the UAV and fixed camera, when sinusoidal 

motions with amplitude of 5.0 mm and frequencies of 0.5 Hz, 1Hz, and 2 Hz were applied to the 

MTS system. 
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Figure 41. The monitored displacement obtained through MTS, UAV and the fixed camera with 

amplitude at 5.0 mm and frequencies at (a) 0.5 Hz, (b) 1 Hz, and (c) 2 Hz. 

Figure 42(a) shows FFT results of the monitored MTS displacement after filtering 

vibrations of the UAV, vibration of the UAV, the monitored displacement without filtering 

vibrations of the UAV, and the monitored MTS displacement obtained by the fixed camera. The 

FFT results of the vibration of the UAV have two peaks, which are 0.366 Hz and 0.659 Hz. When 

the data was processed through the suggested method considering noise correction, only one peak 

at 0.5 Hz was obtained in the FFT results. Figure 42(b) shows FFT results of the monitored MTS 

displacement when the MTS is operated at 1 Hz and an amplitude of 10 mm. Two peaks were 

obtained at 0.184 Hz and 0.552 Hz for the vibration of the UAV. Two peaks at 0.184 Hz and 1.102 

Hz were found for the monitored MTS displacement without filtering the vibration effect of the 

UAV. Only one peak was obtained at 1.012 Hz for the monitored MTS displacement after filtering 

the vibration of the UAV and a similar peak at 0.974 was found for the monitored MTS 

displacement using the fixed camera. Figure 42(c) showed FFT results for the monitored MTS 

displacement when it was operated at 2 Hz and amplitude of 10 mm. One peak at 0.956 Hz was 

detected for the vibration of the UAV and two peaks at 0.562 Hz and 1.969 Hz for the monitored 
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MTS displacement without filtering the vibration effect of the UAV. Only one peak was obtained 

at 1.969 Hz for the monitored MTS displacement after filtering the vibration of the UAV and a 

similar peak at 2.045 Hz was found for the monitored displacement using the fixed camera. 
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Figure 42.  FFT results for the monitored MTS displacement through UAV images after filtering 

the vibration of the UAV, the vibration of UAV, the monitored MTS displacement without 

filtering the vibration of the UAV, and the monitored MTS displacement using the fixed camera 

for the excitations with an amplitude of 10.0 mm and frequencies at 0.5 Hz, 1 Hz, and 2 Hz. 

Figure 43 shows the monitored displacement without filtering the vibration of the UAV, 

vibration of the UAV, and the monitored displacement after filtering vibration of the UAV for the 

case of excitations with an amplitude of 5.0 mm and frequency at 0.5 Hz, 1Hz, and 2 Hz. To obtain 

the correct monitored displacements, adaptive scale factors, filtration of translations and rotations 

of the UAV are used to enhance the image processing. 
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Figure 43. The monitored MTS displacement of the MTS after filtering vibration of the UAV, 

vibration of the UAV, and the monitored MTS displacement without filtering vibration of the 

UAV for the case of excitations with an amplitude of 5.0 mm and frequencies at 0.5 Hz, 1 Hz, 

and 2 Hz. 

(a) (b) (c) 
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Figure 44(a) shows FFT results of the monitored MTS displacement after filtering vibration 

of the UAV, vibration of the UAV, the monitored MTS displacement without filter vibration of 

the UAV, and the monitored MTS displacement obtained by the fixed camera. FFT results of the 

vibration of the UAV have two peaks, which are 0.230 Hz and 0.382 Hz. Three peaks at 0.230 Hz, 

0.459 Hz and 0.535 Hz were obtained for the FFT results of the monitored MTS displacement 

without filtering vibration of the UAV. When the data was processed through the suggested 

method after filtering vibration of the UAV, only one peak at 0.505 Hz was obtained in the FFT 

results. Figure 44(b) shows FFT results for the case of excitations at 1 Hz. The FFT results of the 

monitored displacement after filtering vibration of the UAV clearly indicated the corrected 

frequency has been found at 1.04 Hz and without additional noise frequencies. The frequency 

identified has the similar level of accuracy as the monitored displacement through the fixed 

camera. Figure 44(c) found the similar trend and correctly identified the input frequency at 2.069 

Hz.    

 

Figure 44. FFT results of the monitored MTS displacement after filtering vibration of the UAV, 

the vibration of UAV, the monitored MTS displacement without filtering vibration of the UAV, 

and the monitored MTS displacement through the fixed camera for the case of excitations at an 

amplitude of 5.0 mm and frequencies at (a) 0.5 Hz, (b) 1 Hz and (c) 2 Hz. 

Figure 45 shows the monitored MTS displacement measured by the suggested subpixel 

image processing method for the cases of using the UAV and fixed camera, when sinusoidal 
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motions with an amplitude of 2.5 mm and frequencies at 0.5 Hz, 1Hz and 2 Hz were applied to the 

MTS system. 
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Figure 45. The monitored displacement obtained by MTS, UAV, and the fixed camera for the 

case of excitation at an amplitude of 2.5 mm and frequencies at 0.5 Hz, 1 Hz and 2 Hz. 

Figure 46 shows the monitored displacement without filtering vibration of the UAV, 

vibration of the UAV, and the monitored displacement after filtering vibration of the UAV for the 

excitation at an amplitude of 2.5 mm and frequency at 0.5 Hz, 1Hz and 2 Hz. To obtain correct 

displacements, adaptive scale factors, filtration of rotations and translations of the UAV are used 

to improve the quality of image processing. 
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Figure 46. The monitored MTS displacement after filtering vibration of the UAV, vibration of 

the UAV, and the monitored MTS displacement without filtering vibration of the UAV for the 

excitation of an amplitude at 2.5 mm and frequencies at 0.5 Hz, 1 Hz and 2 Hz. 

Figure 47(a) shows scale factors obtained by the UAV and the fixed camera at each frame 

using the proposed SURF method and MSAC method. Figure 51(b) shows the scaled plot of the 

region between frame 1200 and frame 1500. The 300 frames in each experiment are selected and 

the total number of selected frames is 2700. There are some gaps at the boundaries of each 

experiment because these experiments were conducted at different time. Scale factors of images 



 

 83 

captured by the UAV are from 0.87 to 1.02 and larger than the scale factors obtained by the fixed 

camera, which are close to 1. As shown in Figure 47(b), the range of the scale factor is the largest 

between frame 1200 and frame 1500 which may be caused by interferences due to person walking-

by or obstacles nearby. 

 

Figure 47. (a) Scale factors of the captured images obtained by UAV and fixed camera, (b) 

Zoom-in plot of scale factors of the images captured by UAV. 

Figure 48(a) shows rotation angles around the z-direction that is vertically parallel to the 

image plane. Figure 48(b) shows the zoom-in plot of the region between frame 900 and frame 

1200, because in this region, the amplitude of the changes of the rotation angles is biggest. Overall, 

the changes of the rotation angle obtained by UAV are bigger than those obtained by the fixed 

camera, but they are acceptable and make sense. The biggest change of the rotation angles by using 

both UAV and the fixed camera are less than 1 degree, whose effect could be negligible. 
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Figure 48. (a) Calculated rotation angles of different devices when capturing images, (b) Zoom-

in plot of UAV rotations. 

5.3.3. Error Quantification 

Figure 49 shows NCCs between the monitored displacement and the benchmark MTS 

displacement using the image processing method after filtering vibration of the UAV, fixed 

camera, and the image processing method without filtering vibration of the UAV. The monitored 

displacement obtained using the fixed camera has the highest NCC compared with the other 2 

methods. In contrast, the image processing method without filtering vibration of the UAV has the 

lowest NCC. The significant improvement of the NCC could be found after filtering vibration of 

the UAV. In terms of effect of the input frequencies, the monitored displacement has higher 

accuracy with lower input frequencies. In terms of effect of the input excitation amplitude, the 

monitored MTS displacement shows higher precision for higher input amplitudes, since the 

magnitude of error depends on the flight of UAV that is irrelevant to the input displacement 

amplitude but the ratio between the amplitude of error and the amplitude of the displacement 

becomes less for larger input displacement amplitudes. 
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Figure 49. NCCs between the monitored displacement without filtering vibration of the UAV, 

the monitored displacement after filtering vibration of the UAV, and the monitored displacement 

captured by the fixed camera with the input excitation of the MTS at amplitude of 10 mm, 5 mm, 

and 2.5mm and frequencies of 0.5 Hz, 1 Hz and 2Hz. 

Table 4 shows the identified frequencies for the monitored displacement for the case after 

filtering vibration of the UAV, the monitored displacement for the case without filtering vibration 

of the UAV, the monitored displacement obtained through the fixed camera, and vibrations of the 

UAV itself. The identified frequencies for the case after filtering vibration of the UAV and through 

the fixed camera have a unique peak which is very close to the true input frequency of the MTS. 

Multiple noise frequencies are found in vibrations of the UAV itself. When the vibration amplitude 

of the UAV is larger than the amplitude of the measured displacement, it will cause significant 

impacts on the accuracy of monitored displacements. 
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Table 4. Frequency peaks founded in the FFT results of filtered and unfiltered vibrations, 

vibrations of the UAV, and the vibrations of MTS captured by the fixed camera at amplitude of 

10 mm, 5 mm, and 2.5mm and frequencies of 0.5 Hz, 1 Hz and 2Hz. 

Identified frequencies through FFT analysis of the monitored displacement 

Experiment 1 2 3 4 5 6 7 8 9 

Amplitude 10mm 5mm 2.5mm 

Frequency 
0.5H

z 
1Hz 2Hz 

0.5H

z 
1Hz 2Hz 

0.5H

z 
1Hz 2Hz 

Monitored 

displacement after 

filtering vibration of 

UAV 

0.51 1.01 1.97 0.51 1.04 2.07 0.5 0.96 1.96 

Monitored 

displacement 

without filter 

vibration of UAV 

0.51 
0.18 

1.10 

0.56 

1.97 

0.23 

0.46 

0.54 

0.45 

1.04 

0.52 

2.07 

0.10 

0.40 

0.70 

0.19 

0.96 
1.96 

Fixed camera 0.49 0.97 2.05 0.53 0.96 2.14 0.51 1.06 1.96 

Vibration of UAV 
0.37 

0.67 

0.18 

0.55 
0.96 

0.23 

0.38 

0.45 

0.89 
0.52 

0.2 

0.4 

0.7 

0.42 NA 

5.4. Performance Evaluation Through Shaking Table Test in Field 

5.4.1. Shaking Table Test Setup 

Figure 50 shows the setup of field experiments, in which a UAV was used to obtain 

horizontal displacements of a column fixed on a shaker. The shaker was used to provide excitations 

to the column with controlled frequencies up to 200 cycles per minute and an amplitude up to 9.35 

mm. In the experiment, the frequency of the shaker was set to 1.367 Hz (82 cycles per minute). 

The UAV flied at 1.10 m away from the shaker and 80 cm of height from the ground. A fixed 

camera was also used to record the vibration of the column at 2.10 m away from the shaker and 80 
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cm of height. The experiment was conducted in open field on a windy day to verify whether the 

proposed method could monitor vibrations of structures correctly and promptly when there are 

large noises. 

 

Figure 50. Setup of outdoor experiments. (a) Top view; (b) Front view; (c) Front view of the 

schematic diagram of the experiment setup; (d) Side view of the schematic diagram of the 

experiment setup. 

5.4.2. Subpixel Resolution Performance 

Figure 51(a) shows the column’s vibration obtained by the UAV without and with 

consideration of scale factors, compared with the column’s vibrations obtained by the fixed camera 

and the input of the shaker. Good agreement between them is founded and the NCCs between the 

UAV monitored displacement without considering scale factors, the UAV monitored displacement 

with considering scale factors, the fixed camera monitored displacement and the shaker input are 

0.920, 0.975, and 0.990, respectively. Figure 51(b) shows the displacement of the column obtained 
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through the UAV after filtering vibration of the UAV, the vibration of the UAV by tracking the 

template point on background, and the monitored displacement of the column without filtering the 

vibration of the UAV. Motions of the UAV are large and reach to 20 cm due to the wind in the 

windy day. True displacement of the column could be obtained through the proposed image-based 

displacement monitoring method after filtering vibration of the UAV. 
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Figure 51. Results of the field experiment. (a) Vibrations captured by the UAV, the fixed 

camera, and the shaker, (b) The monitored displacement obtained after filtering vibration of the 

UAV, vibration of the UAV, and the monitored displacement obtained without filtering vibration 

of the UAV. 

Figure 52 shows the FFT results of the monitored column displacement after filtering the 

vibration of the UAV, the vibration of the UAV itself, the monitored column displacement without 

filtering the vibration of the UAV, and the column displacement obtained by the fixed camera. 

Multiple frequencies of 0.606 Hz, 1.061 Hz and 1.363 Hz are obtained in the FFT results of the 

monitored column displacement without filtering the vibration of the UAV. Only one clear peak 

exists for the FFT results of the monitored column displacement after filtering the vibration of the 

UAV and those using the fixed camera, which is at 1.363 and 1.364, respectively, and close to the 

true excitation frequency of 1.367. The proposed method could obtain the true frequency of the 

structure successfully under aggressive windy environments. 

(a) 
(b) 



 

 89 

 

 

 

 

 

 

Figure 52. FFT results of the field monitored experiment through different methods. 

Figure 53(a) shows variation of rotation angles of the UAV and the fixed camera. Figure 

53(b) shows variation of the scale factors of the images captured by the UAV and the fixed camera. 

Calculated rotation angles of the UAV are larger than those of the fixed camera but still small, 

ranging from -0.15 degrees to 0.4 degrees. Scale factors of the images captured by the UAV are 

1.0 to 1.1 times of the initial scale factor of the first frame, while the scale factors of the images 

captured by the fixed camera is stable and close to 1.0. 
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Figure 53. (a) Calculated rotation angles of different devices when capturing images, (b) Scale 

factors of the captured images by the UAV and the fixed camera. 
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5.5. Conclusions 

The proposed vision-sensor system obtained vibrations of the UAV through examining 

fixed points at the structure background and derived displacements of measured points on the 

structure successfully and with high accuracy, through filtering the motions of the UVA. The 

accuracy of the monitored displacement was improved significantly by filtering vibration of the 

UAV and through applying the Zernike moment subpixel technique on the proposed edge-

coordinate-finding method. 3-D fitting-based subpixel method on the proposed fast skipped NCC-

based template matching method was adopted to improve the accuracy in determining camera’s 

motions. Excellent agreements were obtained among displacements calculated by the proposed 

image-based displacement sensor, the outputs of MTS, and those calculated by the fixed camera.  

In summary, the suggested image-based sensor system has many advantages compared to 

existing image sensor systems in literature, such as 

• The proposed image-based sensor system could filter vibrations of the UAV, which 

improves the accuracy of monitored displacements significantly.  

• UAV’s rotations which are parallel to the image plane are calculated using the 

SURF method and MSAC method comparing with the original rotation at the first frame. Moreover, 

scale factors were calculating at the mean time with rotation angles. To obtain more accurate 

results, the whole template captured by the UAV are used to provide more features and more 

accurate results. Because larger template would contain more features which could be traced and 

used to calculate the scale factor and the rotation angle. 

• The proposed skipped NCC-based template matching method is 10 times faster than 

the original NCC method and these two methods detect the same position of the template in the 

target images with similar accuracy. 
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• The proposed image-based displacement sensor could obtain accurate frequencies 

of measured structure displacements in their FFT results. These monitored displacements are in 

more than 99% accuracy and do not get contaminated by other frequencies from UAVs and/or 

environmental factors such as wind. 

• Translations of the UAV could be large and up to 20 cm in field. The proposed 

method could filter these translations successfully. Rotation angles of the UAV are always small 

both in field and in lab, partially because most of drones have an embedded anti-shake system to 

control their vibrations. 
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6. DEEP LEARNING-BASED STRUCTURAL HEALTH MONITORING USING BOTH 

DEFECT IMAGES AND VIBRATION DATA 

6.1. Introduction 

Computer vision-based sensors combined with deep learning techniques were conducted 

to detect structural damage automatically, which could overcome the limitations of visual 

inspection. In the last several decades, visual inspection by trained workers is the main approach 

to detect structural damage. However, it is subjective, time-consuming, and costly.  

Some researchers have proposed deep learning-based defect detection methods using 

images as input data [1-10] and some other researchers have validated the performance of deep 

learning-based damage detection methods using vibration data [11-18]. However, there is a 

challenge when evaluating a civil structure comprehensively by using both defect images and 

vibration data. In literatures, the vibration data could be used to train CNNs and detect damage 

locations on structures. Images could be adopted to detect defects as well through the conventional 

photos collected by UAVs and sent to train CNNs. In this chapter, a novel deep learning-based 

method was developed, which could use combined images of defects and vibration images as input 

and improve the accuracy of defect identification and classification significantly. To verify this 

method, 8000 combined images are generated as the input of the proposed deep learning algorithm. 

6.2. Novel Damage Evaluation Method 

6.2.1. Process of the Novel Damage Evaluation Method 

As shown in Figure 54, first, a structure is selected to be inspected and the potential sensor 

locations are determined. Then, the video of vibrations of the structure at measure points was 

recorded through cameras or UAVs. The proposed image-based displacement monitoring method 

will be used to analyze the recorded video and obtain the curves of vibrations at the measured 
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points. These vibration data were sent to the proposed CNN-based damage detection algorithm to 

obtain the location of the damage. Then these damaged locations on the structure will be scanned 

carefully using the camera or the UAV. These images are trained using the proposed transfer 

learning method to detect the defects at the damage location. Finally, the evaluation of this 

structure will be completed according to the damage location and defects at this location. 

Set the structural 

model

Evaluate structure using both of 

dynamic factors and defects

Collect vibration data under 

loads using proposed image 

processing displacement 

sensor

Use proposed CNN-based 

damage detection method to 

obtain the damage location 

Use the proposed Transfer 

leaning method to detect 

defects at the damage poistion

Use camera or UAV to 

scan the damage position 

on the structure

 

Figure 54. Process of the proposed method. 

The CNNs is one of the methods of artificial neural networks (ANNs), which is very 

popular because of their applications in classification of images, audios, and texts. The main 

difference between a typical neural network (NN) and a CNN is that NN uses general 

multiplication while CNN uses convolution which makes it a perfect tool for processing data in a 

vector or grid form such as images. For SHM, it is very important that some algorithms could use 

raw data of the structure as the input such as the vibration data. Time history of vibration data 

obtained from sensors like cameras and accelerometers could be treated as distinct images. The 
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CNN model is a subset of machine learning, and it is the crucial part of the deep learning 

algorithms. The CNN structure contains input layers, one or more hidden layers, and an output 

layer. And there are three main types of layers, which are: convolutional layer, pooling layer, and 

fully connected layer. The convolutional layer is the core building block of the CNN model and 

contains most of the computation of the whole CNN structure. The size of the convolutional layer 

could vary, and the typical size is 3x3. The next step is filtering on an area of the image and a dot 

product is calculated between the input pixels and the filter. This dot product is then fed into an 

output array. 

6.3. Deep Learning-Based Damage Detection Using Vibration Data  

6.3.1. Training the Deep-Learning Damage Detection Model  

The convolutional neural network was involved to identify the structural damage through 

vibration data at measure points. There are three main sections in the progress as shown in Figure 

55, which are the dataset collection section, the CNN model training section, and the validation 

and prediction section. In this chapter, vibrations at measure points under dynamic loads are 

obtained in the ABAQUS model, and.these vibration data were enlarged by adding Gaussian white 

noises with different Signal-To-Noise Ratio (SNR) at different cases. The calculation of the SNR 

is shown blow: 

𝑆𝑁𝑅 =
𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟
（33）

𝑆𝑁𝑅(𝑑𝐵) = 10 𝑙𝑜𝑔10

𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟
（34）

 

As shown in Figure 55, the vibration pattern will be classified according to different 

damage case. The vibration data are divided into three groups randomly, which are 70% of the 

data for training, 15% of the data for the validation, and 15% of the data for the test. The training 

data is sent to the proposed CNN model as the input data to train this system. Training section and 
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validating section are necessary for the CNN model to build and improve the sensitivity of the 

feature learning and the performance of classification. Finally, the test data is sent to the model to 

predict and obtain the accuracy of this model. 

Numerical Simulation 
using ABAQUS

Data Acquisition
Data Collection and 

labeled

70% training data 15% validation data 15% testing data

Randomly divided into three groups

CNN Classifier Design Prediction

 

Figure 55. Flow chart of the intended CNN damage detection model. 

6.3.2. Proposed CNN Structure for Analyzing Vibration Data  

The CNN model is composited of layers that contain artificial neurons arranged in three 

dimensions including width, height, and depth. In this damage detection chapter, the input data is 

time-history vibrations at 10 points on the structure, which is a two-dimensional matrix. Stepping 

through each layer of the CNN model, the matrix is converted into a one-dimensional vector 

corresponding to the category. Figure 56 illustrates the whole process of the proposed CNN system. 

Three main layers were involved in the CNN architecture, including the convolution layer, the 

pooling layer, and the fully connected layer. 
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Figure 56. The proposed CNN model structure. 

6.3.3. Convolutional Layer 

The convolutional layer is the main part of the CNN model. Each convolutional block 

contains learnable parameters such as weights (filters) and biases. Compared with the input, the 

width and the height of the filter are spatially smaller, but the depth is the same. For example, the 

RGB image has 3 layers, so, the convolutional layer should have 3 depths to analyze these 3 layers 

in the RGB image respectively. The feature maps from the previous layer are convolved with filters 

and formed the output through the activation function. The formula of the convolutional layer for 

a pixel is 

 𝐶𝑥𝑦 = 𝜎 (∑ ∑ ∑ 𝑓𝑖𝑗𝑘 ∗ 𝑿𝒙+𝑖,𝑦+𝑗−1,𝑘

𝑑

𝑘=1

𝑤

𝑗=1

ℎ

𝑖=1

+ 𝑏) (35) 

where h and w are the sizes of the filter and d is the number of channels of the input, X is the input 

vector, b is the bias vector, σ is the activation function, and f is the weight matrix.  

Figure 57 shows the convolution operation on a 4×4 matrix randomly selected by the 

researcher. A 3×3 matrix is selected as the filter which is generated randomly at the initial state 

and updated from the model by a backward propagation algorithm. The stride is equal to 1 and 
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four sub-arrays of the same size is generated by sliding along the width and height of the input 

matrix. Each sub-array is multiplied with the filter matrix. Then, the output value is obtained, 

which is the sum of the multiplied values and the bias. The size of the output is smaller than the 

previous layer because of the stride. 

After the convolution layer, a nonlinear activation function is followed, which is used for 

introducing non-linearity into the network. Two of the most common activation functions used in 

neural networks are rectifier linear unit (ReLU) and softmax. The function of ReLU and Softmax 

are expressed as follow:  

𝑓(𝑥) = max (0, 𝑥) (36) 

𝑓(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐾
𝑗=1

(37) 

Where f(x) is the parameter which could represent probability for each group, notation xi and xj 

denotes the membrane potential of neuron, K is the step number. 

 

 

 

 

Figure 57. Process of the convolution layer. 

6.3.4. Pooling Layer 

The pooling layer is used to reduce the spatial size of the feature maps to speed up the 

computation and increase the robustness of the feature detection. The most common ways are max 

pooling and average pooling. In max pooing, the maximum values in the filter area are chosen as 

outputs. For example, as shown in Figure 58, an input layer with the size of 4×4 is operated by a 

2×2 max-pooling filter. The stride is designed as 2 which means the next filter should move by 

1 0 0 

0.5 1 -0.5 

0 -1 0 

1.2 0.5 

0.9 1.6 
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) 

Output 
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∑ + Bias 

 

 Output 
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two positions along the right and down, which causes the dimension of the output is declined to 

2×2, and the value is the maximum elements in the response field. For the average pooling, average 

values would be selected in the filter area. 

 

Figure 58. Process of the pooling layer. 

6.3.5. Fully Connected Layer 

The fully connected layer is the last layer before the output layer of the whole network. In 

this layer, all the neurons are related to the features generated in the previous layer. Weights and 

biases in this layer convert the generated features into correspondent categories. The equation of 

the output yl is shown: 

𝑦𝑙 = 𝜎(𝑦𝑙−1 ∗ 𝑤 + 𝑏) (38) 

where, σ is the activation function; w and b represent the weights and bias vectors in this layer 

respectively. 

6.4. Different Transfer Learning Methods Used  

6.4.1. Alex Transfer Learning 

AlexNet is a very famous technique whose image classification performance is 

significantly accurate. AlexNet is a huge network with 60 million parameters and 650,000 neurons. 

Table 4 shows the architecture of the AlexNet algorithm. The AlexNet has 8 layers. Its first 5 

layers are convolutional layers, and the last 3 layers are fully connected. Between these two groups 

of layers, there are some layers called polling and activation. 
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Table 5. The architecture of the AlexNet algorithm. 

1 ‘data’ Image Input 227 × 227 × 3 images with ’zero center’ normalization 

2 ‘conv1’ Convolution 96 11 × 11 × 3 convolutions with stride [4 4] and padding 

[0 0 0 0] 

3 relu1’ ReLU ReLU 

4 ‘norm1’ cross Channel 

Normalization 

cross channel normalization with 5 channels per element 

5 ’pool1’ Max Pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0] 

6 ’conv2’ Convolution 256 5 × 5x48 convolutions with stride [1 1] and padding [2 

2 2 2] 

7 ’relu2’ ReLU ReLU 

8 ’norm2’ Cross Channel 

Normalization 

cross channel normalization with 5 channels per element 

9 ‘pool2’ Max Pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0] 

10 ‘conv3’ Convolution 384 3 × 3x256 convolutions with stride [1 1] and padding 

[1 1 1 1] 

11 ’relu3’ ReLU ReLU 

12  ’conv4’ Convolution 384 3 × 3x256 convolutions with stride [1 1] and padding 

[1 1 1 1] 

13 ’relu4’ ReLU ReLU 

14 ’conv4’ Convolution 256 3 × 3x192 convolutions with stride [1 1] and padding 

[1 1 1 1] 

15 ‘relu5’ ReLU ReLU 

16 ’pool5’ Max Pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0] 

17 ’fc6’ Fully Connected 4096 fully connected layer 

18 ’relu6’ ReLU ReLU 

19 ’relu6’ Dropout 50% dropout 

20 ’fc7’ Fully Connected 4096 fully connected layer 

21 ’relu7’ ReLU ReLU 

22 ’drop7’ Dropout 50% dropout 

23 ’fc8’ Fully Connected 1000 fully connected layer 

24 ‘prob’ Softmax Softmax 

25 ‘output’ Classification 

Output 

crossentropyex with ’tench’ and 999 other classes 
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Figure 59 presents the diagram of the AlexNet. The 5 convolutional layers and 3 connected 

layers are shown in this figure with data sizes for each layer. The size of input images is 227×227 

pixels. The number of categories in the final output is up to 1000. 

 

Figure 59. The diagram of AlexNet. 

6.4.2. Vgg16 and Vgg19 

VGG-16 is a convolutional neural network that is 16 layers deep. The model loads a set of 

weights pre-trained on ImageNet. The model achieves 92.7% top-5 test accuracy in ImageNet, 

which is a dataset of over 14 million images belonging to 1000 classes. The default input size for 

the VGG16 model is 224 x 224 pixels with 3 channels for RGB images. 

The concept of the VGG19 model is the same as the VGG16 model except that it supports 

19 layers. The “16” and “19” stand for the number of weight layers in the model (convolutional 

layers), which means that VGG19 has three more convolutional layers than VGG16 does.  

6.4.3. GoogLeNet 

In the GoogLeNet model, the different part from AlexNet is that it has inception modules. 

In the inception module, 1×1, 3×3, 5×5 convolution layers and 3×3 max pooling layers are 
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performed at the meantime and the output of these layers is stacked together to generate final 

output, which could handle objects at multiple scales better.  

Table 6. The architecture of the GoogLeNet algorithm. 

type 

patch size 

stride 
outputsize depth 

convolution 7×7/2 112X112x64 1 

max pool 3×3/2 56X56×64 0 

convolution 3x3/1 56×56×192 2 

max pool 3x3/2 28×28×192 0 

inception(3a) / 28×28×256 2 

inception(3b) / 28×28×480 2 

max pool 3x3/2 14×14 ×480 0 

inception(4a) / 14×14×512 2 

inception(4b) / 14×14 ×512 2 

inception(4c) /  14×14×512 2 

inception(4d) / 14×14×528 2 

inception(4e) / 14×14×832 2 

max pool 3×3/2 7×7×832 0 

inception(5a) / 7×7×832 2 

inception(5b) / 7×7×1024 2 

avg pool 7×7/1 1×1×1024 0 

Dropout (40%) / 1×1×1024 0 

linear / 1×1×1000 1 

soft max / 1×1×1000 0 

 

6.4.4. InceptionResNetv2 

The InceptionResNetv2 is a kind of convolutional neural network which has 164 layers 

and could classify images into up to 1000 categories. 
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6.4.5. ResNet50 and ResNet101 

The ResNet-50 model consists of 5 stages each with a convolution and Identity block. 

Each convolution block has 3 convolution layers, and each identity block also has 3 convolution 

layers as shown in Figure 60. The ResNet-50 has over 23 million trainable parameters. The 

difference between ResNet50 and ResNet101 is that the ResNet-50 model has 101 layers.  

 

Figure 60. The architecture of the ResNet50 algorithm. 

6.5. Abaqus Modeling of a Cantilever Beam 

6.5.1. Abaqus Modeling of a Cantilever Beam1 With 10 Elements and 16 Different Cases 

Figure 61(a) shows a schematic diagram of the beam modeled using ABAQUS. There are 

10 segments (S1 to S10) and 10 measured points (MP1 to MP10). For each case, different segments 

would be damaged by reducing their Elastic Modulus by 30%. Then a concentrated force (CF) is 

applied to the free end of the cantilever beam. Then the CF is released to let the cantilever beam 

perform free vibration. Thus, the vibrations at each measured point can be obtained. These 

vibrations need to be labeled and included in the training set of the CNN model. Figure 62(b) 

shows the beam model in ABAQUS, in which one end is fixed, and the other end is free. 
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Figure 61. (a) The beam model in ABAQUS, (b) The applied load, boundary condition, 

and the measurement points in the beam model. 

Table 6 shows the different damage locations of each case. There are 10 cases with 1 

damage location (2 to 11), 1 healthy beam (1), and 5 cases (12 to 16) with 2 damage locations. For 

example, the No.14 case represents damage locations at element 1 and element 5. 

Table 7. The damage location of each case. 

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Damage NO 1 2 3 4 5 6 7 8 9 10 1 4 3 6 1 5 4 8 5 9 

 

6.5.2. Abaqus Modeling of a Cantilever Beam2 With 10 Elements and 16 Different Cases 

As shown in Figure 62, another modeling of a cantilever beam in ABAQUS is conducted. 

The beam is divided into 256 elements and there are 15 cases with different damage locations. 

There are one case with a health beam, seven cases with one damage location, four cases with two 

damage locations, two cases with three damages locations, and one case with four damage 

locations. The damage of the element was performed by reducing the young’s modular to 70%. 

Vibrations of the beam were triggered by the release of a concentrated force at the free end of the 

beam. Then these vibrations at 16 measured points which are shown as red points in Figure 62(15). 

(b) 
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Then Gaussian noise was used in this chapter to enlarge the training dataset and finally, there are 

7,500 samples in total. 

 

 

 

 

Figure 62. (0)-(14): All cases in ABAQUS modeling with different damages, (15) 16 measured 

points. 

(0) (1) (2) (3) 

(4) (5) (6) (7) 

(11) (9) (10) (8) 

(12) (13) (14) 

(15) 
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6.6. Abaqus Modeling of a Steel Truss 

 

Figure 63. Modeling of the truss in ABAQUS. 

Figure 63 shows the truss model in ABAQUS. The truss in this study has 8 spans and there 

are 10 measured points on the truss. Table 7 shows the damage locations of different cases and 

there are 16 cases in total. f represents the front face and t represents the top face of the truss. t, m, 

and r represent top element, middle element, and right element respectively. There are 5 spans as 

shown in Figure 63.  For example, for the number 8 case, the sloping rod on the front face is 

damaged by reducing 30% of its Elastic modulus. No. 5 case represents the damage is on the top 

element of the front face at the fourth span of the truss. 

Table 8. Damage positions for different cases. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

span / S1 S2 S3 S4 S1 S2 S1 S2 S3 S4 S1 S2 S3 S4 S5 

face / f f f f t t f f f f f f f f f 

element / T T T T m m m m m m r r r r m 
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6.7. Results of Cases on Beam 1 

Figure 64(a) shows the original vibration data and Figure 68(b) shows the vibration data 

with inclusion of the noise in the truss study. The changes are obvious after applying noise, which 

could enlarge the data set tremendously.  

 

Figure 64. (a) The original vibration data; (b) The vibration data after applying noise. 

As shown in Figure 65, the accuracy is 73.88% for the case that the SNR is 90dB. Moreover, 

the main error exists at point 8, point 9 and point 10, which is partially because the damage at a 

location far from the fixed end will have a small influence on the dynamic characters of a cantilever 

beam. And the 2-damage case would be affected by the cases which has at least one same damage 

location, such as case 4 and case 48. 

(a) 

(b) 
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Figure 65. The training results when the noise is 90dB. (a) The training error and validation 

error, (b) Prediction results. 

As shown in Figure 66, the accuracy is 90.44% for the case that the SNR is 100dB. 

Moreover, the main error also exists at point 8, point 9 and point 10. And the 2-damage case would 

be affected by the case which has at least one same damage location, such as case 5 and case 59. 

For this case, the accuracy is enough for using in field.  

(a) 

(b) 
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Figure 66. The training results when the noise is 100dB. (a) The training error and validation 

error, (b) Prediction results. 

As shown in Figure 67, the accuracy is 93.63% for the case that the SNR is 110dB. In the 

training process, both training error and validation error are decreasing quickly to 0.1. For the 

prediction process, the main error is between case 9 and case 10, which are the two elements close 

to the free end of the beam. 

(a) 

(b) 
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Figure 67. The training results when the noise is 110dB. (a) The training error and validation 

error, (b) Prediction results. 

As shown in Figure 68, the accuracy is 94.13% for the case where the SNR is 120dB. In 

the training process, both training error and validation error are decreasing quickly to about 0.05. 

For the prediction process, the main error is between case 9 and case 10, which are the two 

elements close to the free end of the beam. 

(a) 

(b) 



 

 111 

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

e
rr

o
r

iteration

 train

 validation

 

 

Figure 68. The training results when the noise is 120dB. (a) The training error and validation 

error, (b) Prediction results. 

Figure 69(a) shows the training process and both the training error and validation error 

decease to zero at epoch 60. Figure 69(b) shows prediction results which has a small error between 

case 9 and case 10 with a satisfied accuracy close to 99%. 

(a) 

(b) 
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Figure 69. The training results when the noise is 130dB. (a) The training error and validation 

error, (b) Prediction results. 

6.8. Results of Cases on Beam 2 

Figure 70 shows the vibration curves after applying noises at different levels. Applying 

noises could significantly affect vibration curves which could help to enlarge the database. 

(a) 

(b) 
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Figure 70. Vibration curves after applying different noises comparing with healthy vibrations. (a) 

80dB; (b) 85dB; (c) 100dB; (d) No noises. 

Figure 71 shows the training processes of the proposed CNN structure at different noise 

levels. When the SNR is below 90dB, the accuracies are between 80% to 90%. When the SNR is 

from 90dB to 120dB, the accuracy is near 100%. For cases with SNR higher than 120dB, the 

accuracy is 100%. Cases with one damaged location have more errors. However, cases with 

more than one damaged location have higher accuracy. 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure 71. Testing results of the training process with noise at (a) 80dB; (b) 85dB; (c) 90dB; (d) 

95dB; (e) 100dB; (f) 110dB; (g) 120dB; (h) 130dB. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 



 

 115 

Figure 72 shows the training processes with different SNR level. Smaller SNR would 

need more iterations to achieve stable for the training curves. As the SNR become smaller, the 

accuracy would be lower and there are bigger gapes between training loss and validation loss. 
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Figure 72. Training processes with noise at (a) 80dB; (b) 85dB; (c) 90dB; (d) 95dB; (e) 100dB; 

(f) 110dB; (g) 120dB; (h) 130dB. 

6.9. Results of the Case of the Truss 

Figure 73(a) shows the original vibration data and Figure 73(b) shows the vibration data 

after applying the noise in the truss study.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 
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Figure 73. (a) The original vibration data, (b) The vibration data after applying noise. 

As shown in Figure 74, the overall accuracy is 74.81% for the case where the SNR is 105dB. 

Moreover, the main error exists between case 12 and case 15 whose damages are on the vertical 

elements in the front face. Because those damages cause small change in the stiffness and dynamic 

characters of the truss and those effect on the vibration is similar.  
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Figure 74. The training results when the noise is 105dB. (a) The training error and validation 

error, (b) Prediction results. 
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As shown in Figure 75, the overall accuracy is 84.44% for the case where the SNR is 110dB. 

Moreover, the main error also exists between case 12 and case 15 with less error than that at 100dB.  
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Figure 75. The training results when the noise is 110dB. (a) The training error and validation 

error, (b) Prediction results. 

As shown in Figure 76, the overall accuracy is 93.50% for the case where the SNR is 115dB. 

Moreover, the main error exists between case1 and case 12. Because the change of stiffness in case 

12 is the smallest and similar to that in case 1 (no damage). 
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Figure 76. The training results when the noise is 115dB. (a) The training error and validation 

error, (b) Prediction results. 

Figure 77 shows the training process and prediction results when the noise level is 120dB. 

Moreover, the main error is observed between case 1 and case 12. The prediction accuracy is 

96.75%. 
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Figure 77. The training results when the noise is 120dB. (a) The training error and validation 

error, (b) Prediction results. 

Figure 78 shows the training process and prediction results when the noise level is 130dB. 

The error and validation errors are decreasing significantly and close to zero after about 17 epochs. 

The prediction accuracy is 100%. 
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Figure 78. The training results when the noise is 130dB. (a) The training error and validation 

error, (b) Prediction results. 

6.10. Results of Cracks Detection Using the Proposed CNN Structure 

Figure 79 shows two groups of labeled images that are with-crack images and no-crack 

images. There are 20000 with-crack images and 20000 no-crack images for training the proposed 

transfer learning method. Some with-crack images of different widths, different lengths, different 

directions, and different image brightness are collected for training the model. 

(a) 

(b) 
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Figure 79. The part of training images. 

Figure 80 shows the training process of the proposed method. The method is very fast and 

effective because after only several epochs, both testing accuracy and validation accuracy are close 

to 100%. Some sharp changes in the training accuracy are founded whose reason is overfitting. 

The features of cracking in images are simple and do not need too many training circles to find 

them. The CNN is prone to overfitting because of the millions or billions of parameters it encloses. 

A model with these many parameters can be overfitted on the training data because it has sufficient 

capacity to do so. However, in the next epoch, the testing accuracy returns to nearly 100%. 
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Figure 80. The training process with training accuracy and validation accuracy using AlexNet. 
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Figure 81 shows the training process of the proposed method. The method is very fast and 

effective, because after only several epochs, both testing accuracy and validation accuracy are 

close to 100%.  
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Figure 81. The training process with training accuracy and validation accuracy using 

GoogLeNet. 

Figure 82 shows the training process with training and validation accuracy using the 

InceptionResNetv2 model. The training accuracy is more stable, but the validation accuracy 

fluctuates and over 90%. The training loss is very unstable, and validation is better for comparing. 

In the end, the validation loss is close to 0.3 which is not satisfactory. 
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Figure 82. The training process with training accuracy and validation accuracy using 

InceptionResNetv2. 
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Figure 83 shows the training process with training and validation accuracy using the 

ResNet50 model. The training accuracy is stable, but the validation accuracy fluctuates and over 

90%. The training loss is very unstable, and validation is better in comparison. In the end, the 

validation loss is close to 0.2 which is not satisfactory. 
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Figure 83. The training process with training accuracy and validation accuracy using ResNet50. 

Figure 84 shows the training process with training and validation accuracy using the 

ResNet101 model. The training accuracy is stable, but the validation accuracy fluctuates and over 

90%. The training loss is very unstable, but validation is better in comparison. In the end, the 

validation loss is close to 0.1 which is not satisfactory. 
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Figure 84. The training process with training accuracy and validation accuracy using ResNet101. 
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Figure 85 shows the training process with training and validation accuracy using VGG16. 

The training and validation accuracy reach near 100% rapidly after only several iterations. The 

training loss and validation loss decrease quickly to zero after 50 iterations. There are some peaks 

for all these four curves, which are due to the overfitting errors. Moreover, after these peaks, these 

curves return to be stable quickly.  
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Figure 85. The training process with training accuracy and validation accuracy using VGG16. 

Figure 86 shows the training process with training and validation accuracy using VGG19. 

The training and validation accuracy reach near 100% rapidly after only several iterations. The 

training loss and validation loss decrease quickly to zero after 50 iterations. There are some peaks 

for all these four curves, which are due to the overfitting errors. Moreover, after these peaks, these 

curves return to be stable quickly. From No.170 iteration to the end, these four curves are very 

stable.  
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Figure 86. The training process with training accuracy and validation accuracy using VGG19. 

Figure 87(a) shows the with-crack image captured in the field and Figure 87(b) shows the 

results of all proposed methods. Moreover, each segment of the crack in the with-crack image was 

detected successfully.  

 

Figure 87. The testing results using an image captured in field: (a) The captured image, (b) The 

output image using the proposed method. 

Figure 88 shows the testing results of the proposed method using images in the same dataset 

with training data. ‘N’ represents the label of no-crack images and ‘Y’ represents the label of with-

crack images. The accuracy of the testing results for these 20 images is 100%.  

(a) (b) 
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Figure 88. The testing results using images in the same dataset with training data. 

Table 8 shows the running time and accuracy for each deep learning method trained by the 

crack dataset. The AlexNet model has the smallest running time (2m58s) and the 

InceptionResNetv2 model has the most running time (62m55s). The ResNet101, Vgg16, and 

Vgg19 models have similar running times which is about 20 minutes. The GoogleNet and 

ResNet50 model have 5m24s and 14m15s on the running time respectively. The accuracy of the 

RetNet101 model is less than 99%, and the accuracies of the rest of those methods are more than 

99%.  

Table 9. Running times and accuracy for the 7 different transfer learning methods. 

 AlexNet GoogLeNet InceptionResNetv2 ResNet50 ResNet101 Vgg16 Vgg19 

Running 

Time 

2m58s 5m24s 62m55s 14m12s 27m15s 20m37s 23m50s 

Accuracy 99.33% 99.33% 99.08% 99.00% 95.92% 99.50% 100% 
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6.11. Structural Evaluation Using a Novel Deep-Learning-Based Method With Both Defect 

Image and Vibration Data 

6.11.1. Process of the Proposed Method Using Images of Vibrations Calculated by GASF 

and Raw Images of Defects 

As shown in Figure 89, images of defects at important positions of a structure are captured 

by cameras or UAVs. The vibration data of the structure is obtained by the image-based 

displacement sensor discussed in Chapters 3-5. Then these one-dimension vibrations are converted 

into two-dimension images. These two groups of images are then combined to provide input data 

for the suggested deep-learning model. 

 

Figure 89. The process of the proposed damage evaluation method using images of vibration and 

raw images of defects. 

6.11.2. Gramian Angular Field 

In the field of time series data, the GAF algorithm was created to encode 1D time series 

into 2D images without losing any features. GAF can be completed through two different 

algorithms: grammar angular sum field (GASF) and gramian angular difference field (GADF). 

The vibration data is X = {x1, x2, …, xi, …, xn}, where n is the total number of displacement points 

and xi is the value of the displacement. The second step is to normalize the spectral data and scale 

it to the range of [0, 1], and record it as ̃xi_n. 
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xi𝑛
=

xi − 𝑚𝑖𝑛(𝑋)

𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛(𝑋)
(39) 

Next, the 1D spectral sequence in the Cartesian coordinate system is transformed into a 

polar coordinate system, the formula is as follows: 

𝜑 = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑥𝑖, 𝑛)       (40) 

The Gram matrix retains a time dependency. Since time increases as the position moves 

from the upper left corner to the lower right corner, the time dimension is encoded into the 

geometry of the matrix. It can be seen from Eq. (39) that the value range of the converted angle ϕ 

is [0, π], and the cosine value decreases monotonically within this range. With the increase of 

wavelength, xi in each Cartesian coordinate system only corresponds to the angle value in the polar 

coordinate system, time T corresponds radius in the polar coordinate system, and the 

corresponding bending occurs between different angle points on the polar coordinate circle. By 

calculating the cosine value of the sum of angles between different points, we can get the following 

formula for the calculation of the gramian angular summation field (GASF) as shown in Figure 90. 

Where I is the unit vector. �̃�𝑖 is the normalized vibration data. φ is the angle of the point. 

 

Figure 90. Formula for the calculation of the gramian angular summation field (GASF). 

Figure 91 shows an example using vibration data obtained from the ABAQUS model of 

the steel truss. The vibration is converted into images using the proposed GASF and there are many 

obvious features in the image, such as the highlighted points and lines in the Figure 90(b). 
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Figure 91. Example of GASF. (a) Raw vibration obtained in ABAQUS model, (b) Images 

obtained by GASF. 

6.12. Gaussian Noise 

The Gaussian noise, typically called normal noise, is used to test the robustness of the 

method. The Gaussian noise could be calculated as: 

𝑝(𝑧) =
1

√2πσ2
e

−−
(𝑧−z)̅2

2σ2 (41) 

Where z is the intensity, 𝑧̅ represents the mean value of z, and the 𝜎 is the standard deviation of z. 

𝜎2 is the variance. 

The Matlab was used in this study to apply the Gaussian noises. 0.01, 0.1, and 1 were used 

in codes and represent the mean value in the Gaussian noise function after multiplying 255. So, 

the mean pixel values in the image of the Gaussian noises were 2.55, 25.5, and 255. The variance 

was set at 0.1. 

6.13. Results of the Proposed Method 

To verify this method, vibrations obtained from the ABAQUS models of the steel truss are 

used to be converted into images using GASF. There are 8 different groups of combined images 

with different damage locations (no-damage, No.3 damage, and No.5 damage in the ABAQUS 

model of the steel truss) and different defects (no-crack, small crack, and large crack). There are 

9000 images in total and 1000 images for each group. 
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Figure 92 shows combined images after applying different Gaussian noises (0.01, 0.1, 1) 

when damage is No. 3 and crack is large. Significant effect on images by Gaussian noise could be 

seen here and they are unable to classify them by humans. 

 

Figure 92. Input images for cases of with no-image, with 0.01 Gaussian noise, with 0.1 Gaussian 

noise, with 1 Gaussian noise when damage is No. 3. 

Figure 93 shows combined images after applying different Gaussian noises (0.01, 0.1, 1) 

when damage is No. 5 and crack is small. Significant effect on images by Gaussian noise could be 

seen here and they are unable to classify them by humans. 

 

Figure 93. Input images for cases of with no-image, with 0.01 Gaussian noise, with 0.1 Gaussian 

noise, with 1 Gaussian noise when the damage is No. 5. 

Figure 94 shows the training process with training and validation accuracy using AlexNet 

when there is no noise applied to images. The training accuracy and validation accuracy reach near 

100% after 160 iterations. The training loss and validation loss decrease to zero after about 160 

iterations. From 160 iteration to the end, these four curves are very stable.  
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Figure 94. Training results for the case without Gaussian noise. 

Figure 95 shows the training process with training and validation accuracy using AlexNet 

when 0.01 Gaussian noises are applied to images. The training accuracy and validation accuracy 

reach near 100% after 180 iterations and the training loss and validation loss decrease to zero after 

about 180 iterations. From the 180th iteration to the end, these four curves are very stable which 

are similar to the results from the case of no noise. 
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Figure 95. Training results for the case with applied Gaussian noise at 0.01. 

Figure 96 shows the training process with training and validation accuracy using AlexNet 

when 0.1Gaussian noises are applied to images. The training accuracy and validation accuracy 

reach near 100% after 200 iterations and the training loss and validation loss decrease to zero after 
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about 200 iterations. From the 200th iteration to the end, these four curves are stable but at some 

positions, there are some small peaks due to over-fitting. 
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Figure 96. Training results for the case with applied Gaussian noise at 0.1. 

Figure 97 shows the training process with training and validation accuracy using AlexNet 

when 1 Gaussian noise is applied to images. Two accuracy curves increase slowly and are waved 

during the whole training process because the Gaussian noise is too big.  
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Figure 97. Training results for the case with applied Gaussian noise at 1. 

Table 9 shows accuracies at different cases with different Gaussian noises applied to 

images. When the noise is from 0.01 to 0.1, the accuracy only has a small decrease from 98.33% 

to 96.33%, which is satisfactory to classify these combined images. When the noise is 1, the 

accuracy decreases to 79.66%. 
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Table 10. The accuracy at different cases with different Gaussian noise applied to images. 

Case No noise 0.01 noise 0.1 noise 1 noise 

Accuracy 100% 98.33% 96.33% 79.66% 

 

The transfer learning method always has a large set of parameters, which would cause over-

fitting. Also, overfitting occurs when a model tries to predict a trend in data that is too noisy. There 

are some ways to prevent the over-fitting, including simplifying the model, early stopping, using 

data augmentation, regularization, and dropouts. 

6.14. Process of the Proposed Method Using Images of Vibration Calculated by the GASF 

and Images of Defect Maps 

As shown in Figure 98, images at the damage location of the structure are sent to the 

transfer learning algorithm to detect different defects with different severities. The defect map 

would be generated based on results from the transfer learning model. Different colors represent 

different types of defects and different color depths represent how serious the defects are. For 

example, the white color represents no damage and the yellow color represents crack. At the same 

time, vibration data obtained by the proposed displacement sensor is converted to RGB images 

and combined with defect maps. These combined images are sent to the CNN structure to train the 

CNN model and obtain the final classification and evaluation of the structure comprehensively. 
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Figure 98. The process of the proposed damage evaluation method using images of vibration and 

images of defect maps. 

6.15. Conclusions 

⚫ Modeling of a steel truss and a beam using ABAQUS were conducted. Free vibration after 

release of a concentrated force was conducted. The model provides vibration data of any point on 

the structure successfully. 

⚫ The proposed CNN-based method was trained by raw vibration data obtained in the 

ABAQUS models and had very high accuracy. This method classified different damages in the 

truss and beam case accurately and respectively. 

⚫ The seven transfer learning methods used in this chapter had high accuracy, in which the 

ResNet101 model had the lowest accuracy at 95%. The Alex transfer learning method is more 

effective because it has higher accuracy and less running time compared to the other six transfer 

learning methods when they are trained by local crack photos and the converted vibration mages. 

⚫ Images of vibrations obtained by GASF are able to train the CNN algorithm and identify 

damages accurately. 

Raw vibration data 

Combined images 

Images of vibration 

Transfer learning 
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⚫ Higher Gaussian noises would generate lower accuracy, but the proposed damage detection 

method is accurate to classify cases with different damages and different defects under high noise 

levels.  

⚫ Theoretically, combined images using a defect map and a vibration map are more 

sensitive and would generate more accurate results. Because different colors and their depth 

could be selected manually to make them easier to be classified. 
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7. CONCLUSIONS AND FUTURE WORK 

7.1. Main Contributions and Concluding Remarks 

• The computer-vision based displacement sensor was developed using the edge detection 

and the Zernike moment method, which does not need any manmade targets or artificial targets on 

structures. This method is faster than the template matching-based displacement sensor and has 

very high resolution by adopting the Zernike moment method for subpixel resolution precision. 

• The UAV-based displacement monitoring system gets rid of self-vibration of UAV itself 

and environment-induced vibration at all six directions (3 translations and 3 rotations) 

successfully. The breaking improvement for the industry is that this system does not need any 

manmade targets on the background of the structure. 

• The skipped-NCC template matching method was developed, which could improve the 

computational efficiency of the displacement monitoring method significantly without affecting 

its accuracy. The 3-D polynomial fitting method was used to achieve subpixel precision using the 

NCC results. 

• Two ABAQUS models on a cantilever beam and a truss were conducted and a free 

vibration simulation was modeled. The vibration data was collected and sent to the proposed CNN 

model to classify different damages. 

• A novel structural damage evaluation method based on the transfer learning and CNN was 

developed, which could analyze both vibration data and defect images. By adopting this method, 

the damage location would be detected first using CNN with the vibration data as the input. The 

UAV will be then used to scan the area of the damage on the structure. These images are further 

used as the input data of the proposed CNN to detect defects. Another novel structural damage 
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evaluation method based on the transfer learning and CNN was also developed, which could use 

combined images of defects’ photos and vibration data. 

7.2. Future Research Directions 

• Resolution of structural defects that could be detected using the deep learning methods 

depends on the differences between different groups of defects in labeling process. The number of 

the groups of defects would determine the resolution of the defect’s detection in deep learning. 

Collect more images with different damages and different severities. The system based on the 

AlexNet transfer learning is completed but the damage detection is only completed for the crack’s 

detection. In the future, images with more damage types need to be collected such as corrosion, 

losing bolts, and distortion of joints. When this is achieved, the developed system could be used 

for wider applications in structural condition assessment. 

• Conduct field inspection of a real bridge using the proposed damage detection system in a 

real-time setting, including vibration-based damage detection, photo-based defect detection, and 

infused vibration-image-based defect detection. High speed data process and transmission through 

5G and Raspberry Pi would help to achieve data transfer in real-time fast and accurately. 

 


