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ABSTRACT 

With the continuous growth of rail track geometry irregularities due to aging, 

environmental factors, and wheel loads, rail track requires frequent maintenance. Railroads often 

rely on the precise and correct localization and identification of track irregularities that 

significantly destroy infrastructure and create life-threatening environments. Therefore, 

monitoring the conditions of the railroad tracks is vitally essential for ensuring safety, reliability, 

and cost-efficiency of operations. Consequently, agencies inspect all tracks twice a week per 

federal track safety regulations. However, their existing methods of track inspection are 

expensive, slow, require track closure, and pose a high risk to workers. The technical constraints 

of these methods impede network-wide scaling to all railroads. More frequent, continuous, and 

network-wide monitoring to detect and fix irregularities can help to reduce the risk of harm, 

fatalities, property damages, and possible financial losses. 

This work introduces and develops a generalized, scalable, affordable inspection and 

monitoring system called Railway Autonomous Inspection Localization System (RAILS). In 

particular, the study aims to detect, locate, and characterize track-related issues. The research 

focuses on designing RAILS architecture, implementing data collection, and building algorithms 

that include inertial signal feature extraction, data processing, signal alignment, and signal 

filtering. 

Case studies validate and characterize system accuracy by estimating the position of 

detected irregularities based on a linear referencing system. In one case study, the estimated 

position of the irregularity is compared with the actual position of ground truth data (GTA) 

observed by a railroad inspector. In another case study, a railroad inspector verifies the estimated 
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position of the irregularity to demonstrate the system’s effectiveness and affordability for 

practical applications. 

Therefore, railroad agencies employing the developed methods will benefit from reliable 

track and equipment conditions to make informed decisions that will lead to resource 

optimization. The conclusion of this research outlines the significant potential of the proposed 

system, including limitations and future work for practical, real-time, and autonomous 

implementation.  
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1. INTRODUCTION 

The railroad is the crucial sector of transport that significantly affects the economic 

growth of a nation. Railroads of each country are very vulnerable, and its continuous 

deterioration due to aging, environmental factors, and wheel loads on the rails can trigger 

possible damages [1]. Therefore, monitoring the conditions of the railroad is vitally essential for 

ensuring railroad safety, reliability, and cost-efficiency of railroad operations. For the railroad 

industry, monitoring is to identify faults, understand their causes, and predict their occurrence by 

identifying and characterizing track irregularities. Rail track irregularity or abnormality is an 

interchangeable term that is widely used in the railroad industry. 

Track irregularities affect ride quality and the safety of vehicle equipment and train 

operation [2]. For that reason, railroad companies strive to attain the highest quality possible 

track geometry standard [3]. The basic parameters of track geometry include gauge, cross-level, 

vertical profile, horizontal alignment, the warp (twist or cross-level deviation) [4] [5]. Deviations 

from the designed track geometry increase the risk of derailment by intensifying angular 

movements and linear accelerations, which can lead to accidents, results in traffic delays and 

financial losses. According to the FRA’s current safety regulation and rulemaking proceeding 

report, track issues are the second major cause of train accidents. Consequently, most serious 

events involving train derailments result in releasing hazardous material or harm to rail 

passengers [5]. Figure 1.1 shows track-related issues are the second highest cause of rail 

accidents followed by human error.  
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Figure 1.1. Rail accidents due to different causes from 2009-2018 

 

Derailment is the most prominent and significant type of train accident in the United 

States and preventing them has been a focus area of the rail industry and the government [6]. 

Consequently, railroads deploy traditional inspection and monitoring methods to search for 

possible abnormalities. However, these existing methods are laborious, relatively slow, and 

decrease rail productivity by track closure to search for possible track defects. For that reason, 

federal track safety regulation requires railroads to inspect all tracks in operation as often as 

twice weekly [7]. Therefore, railroad maintenance systems integrated with advanced 

technologies are used to help inspectors detect and localize anomalies that can cause casualties 

and financial losses. However, railroads cannot afford to use these complex technologies to 

monitor and inspect all railroad tracks or important routes more often. Subsequently, railroads 

hire trained inspectors to find and fix anomalies. 

Consequently, some track anomalies often go undetected during the monitoring period 

until they cause significant destruction. Correspondingly, many track sections are only monitored 

on an annual basis, leading to significant gaps in the knowledge of the current state of many of 

the lines [8]. Moreover, such resources are generally not available to short lines. Hence, those 
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lines rely on hi-rail vehicles to identify track irregularities subjectively and to verify them by 

measuring parameters manually.  

Therefore, more frequent, continuous, and network-wide monitoring to detect and fix 

irregularities can help to reduce the risk of harm, fatalities, property damages, and possible 

financial losses. Recently, the federal government also mandated railroad to implement positive 

train control (PTC) technology in their respective systems [9]. PTC system is not a single 

technology, but it integrates various components such as the locomotive computer, wayside 

device, communication network, and back office. The locomotive computer, an onboard 

equipment that accepts speed restriction and movement information to compared against the 

train’s location to ensure compliance. The wayside device on the side of the track is capable of 

monitoring and reporting switch position and signal status to locomotive computers and the back 

office. The back office is a centralized office system consists of the back- office server, the 

geographical information system (GIS), and the dispatch office which interface with other 

components of the PTC systems.  

With these integrated components, PTC system uses a combination of communication 

networks, GPS (or transponder), and a fixed wayside signal device to send and receive data 

about the location, direction, and speed of trains. Back offices process these data in real time and 

provide movement authority and speed restriction information to locomotive computers. Then 

locomotive computers accept the information and compare it against the train's condition to 

ensure safety compliance. So, whenever a train crew fails to properly operate within specified 

safety parameters, PTC systems automatically apply the brakes and bring the train to a stop.  

Regardless of preventing accidents due to human error, PTC also designed to prevent 

train-to-train collision, derailments caused by excessive speeds, unauthorized incursions into 
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work zones, and movements of trains through misaligned railroad switches. However, due to 

functional restrictions, there are some challenges in developing and deploying PTC system. Such 

challenges are the operating system does not track the real-time train location and can only 

communicate when a train passes the wayside infrastructure; Wi-Fi is not practical in the PTC 

[10], which restricts greater data transferability, railroad cyber-security risk, en-route failure of 

PTC, grade-crossing protection, and resource constraints prevents many freight and commuter 

railroads from meeting the PTC deadline. 

A more expansive version of PTC, Communication-based train control (CBTC) is a more 

sophisticated computer-aided dispatching framework that uses GPS to track the location and 

speed of the train that sent to a central location, which then disseminates the information to all 

entities in the network. The central control then automatically sends speed restrictions and 

movement authorities to individual trains and checks for potential derailment and collisions. 

However, the system requires seamless communication coverage along the entirety of PTC-

equipped track, as temporary communication loss can pose safety risks. The need for constant 

communication also requires significant investment in either radio towers or fixed transponders. 

These requirements raise the capital cost, making CBTC more expensive [10]. Irrespective of 

functional capabilities and allied costs, both PTC and CBTC limited to focusing on improving 

communication between the system and railroad engineers to reduce specific train accidents and 

their severity. Nonetheless, these technologies do not focus on detecting track related issues that 

causes most accidents. Therefore, this work focuses on introducing and developing a generalized 

and cost-effective system that focuses on detecting track related issues. 
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1.1.   Research Objective 

The primary goal of this research is to develop and introduce a low-cost track condition 

monitoring system called Railway Autonomous Inspection Localization System (RAILS) to 

reinforce condition monitoring to provide safe and seamless operation. The system will locate 

and characterize the possible track irregularity by analyzing regular service vehicles' inertial 

dynamics. 

This research develops an approach that assesses the inertial events or responses of low-

cost inertial sensors aboard revenue service trains or locomotives, which could indicate the 

presence of irregular railroad track geometry. Much of the previous research in this area has 

explored the concept of using on-board sensors to continually monitor the roughness of road 

pavement [11] [12] [13].  This method has the potential to reduce the monitoring cost and 

provide more accurate results. The same technique applies to railroads that presents an 

opportunity to meet all expectations and requirements. The technique utilizes low-cost inertial 

sensors that are ubiquitous in smartphones to provide unimpeded and continuous monitoring of 

the entire network. Consequently, this research uses an Android app called “Railroad 

Infrastructure and Vehicle Evaluation Technology” (RIVET), which can access all the required 

sensors in smartphones. Thus, the capability of frequent monitoring will enhance the efficiency 

of traditional track inspections by focusing inspection resources on high-risk locations and 

helping the assets manager to possess reliable track and equipment condition information to 

make informed decisions, leading to resource optimization.  

1.1.1. Workflow 

This section describes the research plans and objectives associated with the development 

of the RAILS.  
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Figure 1.2. Research plan workflow 

 

Based on the research plan workflow, following are the outlines of the research 

objectives: 

1) Design of the RAILS architecture and description of its implementation. 

2) Develop a method of processing large scale railroad condition monitoring data. 

3) Develop methods that enhances irregularity localization due to GPS error and sample 

rate variation of the accelerometers. The method also includes the signal position 

alignment that will enhance signal quality and reduce signal detection error. The 
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technique leverages the large volume of sensor signals from multiple traversals of a 

road or rail segments by ensemble average. 

4) Design a digital filter by measuring the appropriate cutoff frequency to maximize the 

signal-to-noise ratio for subsequent feature extraction.  

5) Develop a statistical model to extract and combine features of the inertial signals 

from multiple traversals of a road or track segment. The technique will enhance the 

detection and localization accuracy of road or track irregularities.  

6) Validate the accuracy of estimated position of detected track irregularity.  

1.2. Research Contribution 

The widespread use of smartphones embedded in all required sensors and network 

connectivity has become available for network-wide condition monitoring applications. 

However, the geospatial position estimates from the low-cost GPS receivers are inaccurate due to 

satellite signal blockage because of tall buildings or narrow streets, bridges, trees, or tunnels 

called non-line-of-sight (non-Los) condition, causing non-uniform update rates [14]`. Other 

reasons are: First, low-cost GPS receivers provide position updates approximately once per 

second. That means, that when the inertial sensor samples at 90 hertz on an average, the GPS 

coordinate will update after every group of 90 inertial samples. To be precise, the system will tag 

every block of 90 inertial samples with the same GPS coordinate. Second the GPS updates from 

individual traversals will be at different geospatial points along the path. Consequently, some 

position updates will not tag with some signal peaks. Also, the standard deviation (STD) of the 

position estimates from GPS receivers is three to five meters along the travel direction [15]. 

Additionally, non-uniform sample rate of accelerometer causes a problem in signal detection that 

results in additive signal noise and position alignment errors. In another words, the non-uniform 
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sampling caused each signal to have a different number of samples, and the distances associated 

with each sample was also non-uniformly distributed. Therefore, it reduces the signal-to-noise 

ratio (SNR) and pose a significant challenge in detecting, localizing, and characterizing 

irregularities at high accuracy and high precision. Specifically, it increases the false positives and 

false negatives.  

Therefore, the primary contribution of this research is to develop data processing, signal 

processing algorithms and models that will transform the on-board sensors data into track 

geometry irregularities equivalent.  

This research utilizes a mathematical transform called “Road Impact Factor” (RIF 

Transform) that will be applicable for all facility types and at all speeds [12] and produce 

continuous assessments of irregularities for the entire network called Total Ride Quality (TRQ). 

The Total Ride Quality (TRQ) is defined as the resultant vector magnitude of the RIF derived by 

integrating accelerations in the lateral and vertical directions. The developed method also 

visualizes data by using color-coded TRQ values onto maps of the rail routes using a suitable 

geographical information system (GIS) platform. 

Another contribution is the ensemble averaging the inertial signals from the same 

position along multiple road or rail segment traversals at any speed. Consequently, it will 

improve the signal quality as the signal is correlated and reduce noise because of their un-

correlation. Therefore, this research focuses on design RAILS architecture and implementation, 

and building the statistical model that includes inertial signal feature extraction, data processing, 

signal alignment, and signal filtering. The following are the list of publications from this research 

work: 
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Journal Articles: 

1. Bhardwaj, B., Bridgelall, R., Lu, P., & Dhingra, N. (2021). “Signal Feature Extraction 

and Combination to Enhance the Detection and Localization of Railroad Track 

Irregularities.” IEEE Sensors, 21(5). DOI: 10.1109/JSEN.2020.3041652.  

2. Bhardwaj, B., Bridgelall, R., Chia, L., Lu, P., & Dhingra, N. (2020). “Signal Filter 

Cut-off Frequency Determination to Enhance the Accuracy of Rail Track Irregularity 

Detection and Localization.” IEEE Sensors, 20(3). DOI: 

10.1109/JSEN.2019.2947656, pp. 1393-1399.  

3. Bridgelall, R., Chia, L., Bhardwaj B., Lu, P., Tolliver, D., & Dhingra, N. (2019). 

“Enhancement of Signals from Connected Vehicles to Detect Roadway and Railway 

Anomalies.” Measurement Science and Technology. DOI: 10.1088/1361-

6501/ab5b54.  

Conference Proceedings & Presentation: 

1. Bhardwaj, B., Bridgelall, R., Lu, P., Nygard, K., & Dhingra, N. (2020). “Architecture 

for an Intelligent Low-Cost Rail Track Condition Evaluation System.” In ASCE 

International Conference on Transportation & Development. DOI: 

10.1061/9780784483145.020.  

2. Bhardwaj, B., Bridgelall, R., Lu, P., & Dhingra, N. (2020, January). “Signal Feature 

Extraction and Combination to Enhance the Detection and Localization of Railroad 

Track Irregularities.” The 99th Annual Meeting of the Transportation Research 
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3. Bhavana, B., Bridgelall, R., Lu, P., & Dhingra, N. (2019). “Railroad Track 

Irregularities: Position Accuracy Assessments Using Low-Cost Sensors on a Hi-Rail 
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Vehicle.” In Proceedings of the ASCE International Conference on Transportation & 

Development (ICTD 2019). DOI: 10.1061/9780784482575.043.  

1.3. Organization of the Dissertation Proposal 

Chapter 2 describe a literature review on the general state of condition monitoring and its 

application in railways. It also illustrates gap and scope for the improvement of established 

monitoring and inspection techniques. Chapter 3 introduced the architecture of the proposed 

system. It described the high-level view system architecture and its implementation. It also 

designs the software architecture of the system using UML modeling. Chapter 4 briefly explains 

the data processing technique to visualize the irregularities proportional to the amount of peak 

inertial events.  Chapter 5 develop and introduced the methods required to enhance the detection 

and localization of the track irregularity. Chapter 6 shows the potential use of low-cost sensors 

aboard the regular vehicle. The demonstrated two case studies that estimate and validate the 

position of detected irregularity 1) by comparing it with ground truth area (GRA) overserved 

during the rail inspection and 2) by verifying the estimated position of unknown irregularity. 

Chapter 7 summarizes the conclusion and future work of the research. 

 

 

 

 

 

 

 

 



 

11 

2. LITERATURE REVIEW 

Currently, the sector of condition monitoring is proliferating and covers a large scale of 

industries and applications. Research on railway condition monitoring and inspection techniques 

has been evolving over the years in the railway industry. Some condition monitoring techniques 

have been introduced and established into rail track networks and rolling stock.  

A literature review describes the general state of condition monitoring and summarizes 

the research on condition monitoring in railway applications. Conversely, a review discloses 

gaps in the literature for the enhancement of established monitoring techniques.  

2.1. Condition Monitoring 

Generally, condition monitoring is a technique to determine a state of a system according 

to the parameters of a system. Frequently monitoring and taking notes of conditions or any 

irregularities that would reduce equipment lifespan allows scheduling preventive maintenance 

tasks to address the issues before they cause major failures and avoid their consequences [16] 

[17]. The goal is, with the use of collected real-time data, the current condition of a system or 

equipment can be monitored. 

In large-scale industries, the cost of maintenance can be high as 40% of their total budget. 

Nonetheless, inadequate maintenance could lead to major accidents, which can cause 

environmental pollution and damage to human lives [18]. Therefore, condition monitoring would 

help in optimizing the use and efficiency of a system or equipment and significantly increase 

profitability. In the survey of condition monitoring [19], Neale and Woodley addressed the 

potential benefits of condition monitoring, such as reduced injuries and fatal accidents to 

personnel caused by reduces inspection time and speeds up the start of correct remedial action. 
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There are two main condition monitoring methods, and these are continuous and periodic 

monitoring [19] [20]. Continuous monitoring is the practice of recording continuous or regular 

measurements during machine operation at a fixed sampling rate. It is often recommended for 

those critical components with a high impact on the costs and a short time-to-failure. In other 

words, when the cost of replacing a component or the complete breakdown of a malfunctioning 

component is too high. In periodic monitoring, measurements are recorded at scheduled time 

intervals. It is particularly suitable for non-critical components or where failure either can be 

predicted easily or where changes occur very slowly, that is, medium-high time-to-failure.  

2.2. Condition Monitoring in Railway Application 

Condition Monitoring detects and identifies faults in rail structure and infrastructure 

before they cause a failure or prevents rail operations [21]. In the railway industry, vehicle 

components, track conditions, and derailments are attractive targets for condition monitoring 

because of the growing need for safety, reliability, and minimal cost operations. Generally, 

railroad condition monitoring techniques locate or find degradation of suspension, derailment 

risks, or track faults such as track irregularities [22]. Therefore, the condition monitoring 

technique should be selected based on how it can handle severe nonlinear systems, robustness, 

sensitivity to disturbances, and computation performance [23].  

2.2.1. Rail Track Irregularities 

Rail track irregularities are the primary concern of the railroad industry because they can 

lead to accidents, resulting in traffic delays and financial losses. In the railroad industry, railroad 

irregularities or faults are interchangeable terms. Repeated stress from heavy axle loads increases 

the risk of deviations from uniform track geometry [24]. Consequently, it may result in heavy 

tread wear, fatigue cracks, high noise, freight damage, passenger discomfort, and in extreme 



 

13 

cases, derailments [25]. Therefore, railroads spend billions of dollars each year on infrastructure 

inspections and maintenance [26]. The deviation is an abnormal track surface feature, 

characteristic, or occurrence in the rail track surface. This research only focuses on track surface 

irregularities detection.  

Track geometry consists of several parameters that describe each rail's position, or the 

track centerline occupies in space. Track geometry parameters can be specified or grouped by 

projecting into various planes they reside in. There are horizontal plane parameters, longitudinal 

vertical plane parameters, transverse vertical plane parameters, and track plane parameters. The 

main parameters of the track geometry include profile (longitudinal vertical plane), alignment 

(horizontal plane), cross-level and warp (transverse vertical plane), and gage (track plane) [25],  

[27]. The profile, cross-level, and warp represent the track surface condition, and the tool used to 

measurements is called a track level [27], [28]. Figure 2.1 shows the profile, alignment, and warp 

track geometry parameters.  

 

 

Figure 2.1. Profile, alignment, and warp track geometry parameters 

Image Source: (Benefit Cost Analysis of Railroad Track Monitoring Using Sensors Onboard 

Revenue Service Trains, 2021 [29]) 
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A profile is the track geometry of each rail, or the track centerline projected onto the 

longitudinal vertical plane. Deviation in the profile is the change in elevation of the two rails 

along with the track relative to a designated grade. This type of condition might happen where 

the track is especially muddy right under an unloading spout [27], [28]. Typically, a profile is 

measured as the vertical deviation in a certain chord length. If the profile is more than 3 inches, 

take remedial action like tamping fresh ballast [28] . Alignment is an indicator of how well-

positioned the rails are horizontally along the intended route. Alignment deviation is the 

difference between the designated alignment and what is actual. It is measured as the horizontal 

distance between the gauge side railhead and the center of a certain chord length (measured at 

62-foot string length). Gauge is the right-angle distance between the two rails at a given location, 

measured 16 mm below the top surface of the railhead. Cross-level is the deviation between the 

top surfaces of two rails at a given location. Basically, if the track is straight, elevation should be 

at track level and have a half-inch of elevation if the track is curved. Moreover, cross-level 

should be notified if it is greater than 3 inches. That means, on a curve, the limit is more than 3 ½ 

inches and more than 2 ½ inches on the straight line [7], [28]. Warp is the difference in cross-

level of any two points within the specified distance along the track. The warp parameter is used 

to specify the maximum in the cross-level difference of the track in any segment. The limit for 

warp is 3 inches [7], [28] 

There are some other track irregularities such as broken rail, rail joint, and turnouts. 

Broken rail/track means that either fish plate is removed, or track is broken at any section. 

Broken rails are the leading cause of derailment; therefore, they must be changed before another 

car or locomotive may pass over it. The joint bar holds ends of the rail together. If a joint bar is 

cracked or broken between the middle two bolt holes, it must be replaced. There must be at least 
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one bolt in each rail end at a joint. If the rail at a joint is mismatched more than ¼ inch, it must 

be corrected [28]. A turnout is where one-track separates from another. Turnouts are the most 

important piece of the track and require more preventive inspection. 

2.2.2. State-of-Arts Inspection and Monitoring Techniques 

Railroad supplements many tracks inspection & monitoring techniques to maintain safe 

operation. These techniques include manual inspection and non-destructive evaluation methods. 

This section briefly describes and reviews the main NDE methods for rail inspection. However, 

some monitoring systems exist besides NDE methods that many railroad companies use.  

2.2.2.1. Ultrasonic Inspection  

Ultrasonic inspection is normally done in a pulsed or a beamed mode [30]. A piezoelectric 

element produces an ultrasonic energy pulse that is transmitted into a rail. Some portion of the 

ultrasonic pulse is then reflected or scattered back to a receiving transducer [30], [31] . Here, the 

information collected from the magnitude of the signals is used to identify defects. The standard 

ultrasonic inspection equipment or special high-speed testing trains carrying ultrasonic probes. 

These inspection vehicles use liquid-filled rubber wheels to couple the excitation energy into the 

rail. The inspection vehicle provides different angles for detecting the defects such as 0 degree, 

37 degree, or 45 degree, and 70 degree [31], [32]. The typical ultrasonic frequency is 2.25 MHz. 

The speed of the inspection testing trains varies from 10 km/h up to 100km/h.  

Despite being good at detecting flaws in railhead and web, the technique misses the 

cracks smaller than 4 mm deep [31], [32]. Also, maintaining the coupling while the test car is 

moving is a significant challenge. For the 0 degree, the equipment showed a strong back 

reflection from the bottom of the rail base. However, it is not the case for the other beam angles. 

As a result, coupling loss becomes intermittent without the operator realizing it. 
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Nonetheless, residual layers from wheel burns can shadow internal defects. Therefore, the 

backscattered energy pulse or waveforms require complex signal processing and experts to 

interpret them. The technique is also relatively poor at detecting surface or near-surface defects 

where most faults are located. Therefore, most NDE equipment includes electromagnetic probes 

to compensate for this deficiency. Additionally, multiple probe types are high in power 

consumption and require large equipment. Thus, there are not suitable for integrating revenue 

service vehicles [33].  

2.2.2.2. Visual Inspection 

Visual inspection is one of the traditional methods of the railroad industry. Typically, 

visual inspection is conducted by specialized inspectors who walk along the track and focus and 

address all expected track defects. Recently, visual inspection systems based on cameras have 

been used to measure the rail head profile, percentage of wear, rail gap, moving sleepers, 

absence of ballast, missing bolts, and surface defects. These systems first capture images and 

process images using image feature analysis to extract features that would identify and 

characterize fault type and its severity [33].  

The advantage of visual inspection systems based on camera is that it provides more 

reliable and consistent results than human observation. However, these systems do not provide 

sufficient information for the existence of internal defects. Nonetheless, they require a large 

storage capacity to store and process the images. Also, image processing has self-learning and 

computationally complex algorithms to detect faults in the image frame [33]. 

2.2.2.3. Eddy Current Inspection 

A typical eddy current inspection involves a sensing coil that induces current into the rail 

track to generate a magnetic field. This magnetic field produced an eddy current as it approached 
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the test surface area [31]. So, when the defects areas exist, the difference in the magnetic fields 

produced by the coil and the test surface results in variations in the impedance and electromotive 

force. Therefore, the information related to defects such as defect existence, size, and depth can 

be recorded through variation in the electric signals [34]. This approach works very well in 

practice, performing more reliably for near-surface defect detection [31]. However, they cannot 

analyze non-conductive materials [33]. Also, maintaining the eddy current inspection equipment 

is costly and time-consuming. Nonetheless, it requires specialized users of eddy currents to get 

accurate defects data using inspection programs [34].  

2.2.2.4. Magnetic Inspection 

Magnetic inspection uses a magnetic field to detect flaws in the rail. The current is put 

into the rail through direct contact or using an electromagnet. Any disturbance in the magnetic 

field indicates the existence of a potential defect that is detected by pickup coils. This technique 

is good at detecting near-surface or transverse defects. But defects in the vertical and horizontal 

plane often go unnoticed. Due to speed sensitivity, higher speed inspection is not recommended, 

which results in lower magnetic flux density in the rail head [30], [35]. 

2.2.2.5. Track Recording Vehicle (TRV) 

Track recording vehicles comprise sensor signals, measuring systems, and data 

management systems to detect track parameters. However, the high cost and complex structure 

of TRV make it challenging to apply on daily inspection and maintenance operations which 

results in inconvenient and time-consuming operations [36].  

2.2.2.6. Vehicle/Track Interaction (VTI) Systems 

VTI uses vehicle responses as a measure of track geometry conditions. VTI systems are 

originated and evolved as US Federal Railroad Administration (FRA) research & development 
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and with the joint R&D collaboration between ENSCO, Inc., in the late 1990s. This system uses 

an array of sensors to accurately measure the dynamic response of a rail vehicle in interaction 

with the underlying track. The system consists of an onboard monitoring unit (computer), 

necessary electronics, five accelerometers, and an externally mounted dual-purpose antenna for 

GPS and cellular communication. The accelerometer measurement is recorded continuously, and 

an exception is created when a value exceeding a predetermined threshold defined by Federal 

Track Safety Standard (FTSS) is encountered [37]. However, tests demonstrate that the system 

could detect 84% of FTSS exception conditions using a neural network to determine optimum 

shock-level thresholds. Otherwise, it is hard to establish these thresholds by trial-and-error or 

analytically [33]. 

2.2.3. Academic and Experimental System in Railroad Condition Monitoring 

Research found that the fault detection at variable speed using in-service vehicle has been 

an attractive and interesting topic in industry and academia [22]. Traversing the same track again 

and again gives an opportunity for obtaining the track geometry degradation information. The 

obtained information is then used to take necessary actions.  

Tsunashima et al. [38] used the same approach for monitoring the condition of the track 

during regular operation hours. The study demonstrate that the in-service vehicle equipped with 

sensors and GPS receivers may serve as probes to detect and analyze real-time vehicle vibration. 

The Root Mean Square (RMS) values of the vertical acceleration is measured to access the 

longitudinal level irregularities. 

Mori et al. [39] also developed a portable track conditioning monitoring system using in-

service vehicles. The system consists of a noise meter to detect corrugation, accelerometers to 

detect track irregularity, a gyroscope, a GPS receiver for position information, a computer for 
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analysis, and an analog input terminal for inputting signals from each sensor to the computer. A 

field test shows that the track faults are detected using the proposed system. Similarly, 

Bocciolone et al. [40] detects the track corrugation from accelerometers mounted on the axle of a 

passing train.  

We et al. [41] presented an on-board monitoring sensor network system for high-speed 

trains in China. The proposed system that comprises of sensor nodes, a hierarchal data 

transporting scheme, and an electronic tag-based addressing method for making maintenance 

decisions. In another study by Weston et al. [42], sensors are mounted on rail bogie to monitor 

lateral and vertical irregularities by double integration of acceleration signals and high pass 

filtering. 

A high-speed track-irregularity measurement system is introduced and installed it into an 

HSR-350x locomotive and analyzed the test run result on a high-speed line [43]. The Korean 

high-speed train (HSR-350x) is composed of seven cars, two power cars, two motorized cars, 

and three trailer cars. The system measures longitudinal level, cross-level, gauge, alignment, and 

twist irregularity. A global positioning system (GPS) and an encoder attached to the axle also 

measured train speed. The result shows excellent performance of the measurement system. 

Nonetheless, some railroad industry focuses on advanced visual inspection techniques 

include LIDAR and three dimensional (3D) cameras to find and fix the anomaly on the track. 

Such systems use automated algorithms to extract the features from high-resolution two- 

dimensional (2D) images or 3D light detection and LIDAR data. This type of system uses 

automated algorithms for the extraction of designated features from high-resolution 2D images 

or 3D light detection and ranging (LIDAR) data [44], [45], [46]. 
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2.3. Conclusion 

All the discussed techniques & studies in the literature review uncovered some 

disadvantages. The disadvantages include complex sensor system networks that provide dynamic 

behavior of vehicles with high cost, require more energy and low robustness [47], [48]. Thus, 

such systems are not suitable for freight trains [48]. Moreover, it may not be necessary to achieve 

inspection quality accuracy using in-service system that traverse over the same track frequently 

[42]. Therefore, the literature review reports the research gap that no one focuses on the error 

produced in finding and localizing potential anomaly due to non-uniform acceleration sensor 

sampling and GPS signals degrade from the loss of line-of-sight (LOS) to the satellites. Also, 

another gap is the approach combining multiple signal streams obtained from multiple traversals 

at varying speed, frequently and across the network to enhance the detection and localization of 

irregularity. 
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3. RAILS SETUP AND ARCHITECTURE 

3.1. Objective  

This chapter's primary objective is to introduce a low-cost track condition evaluation 

system that generates real-time information using collected data from the accelerometers and 

global positioning system receivers that are ubiquitous in smartphones. Another objective is to 

design a low-cost, robust, and low power consumption system that offers accurate condition 

estimation of tracks for both passenger and freight trains.   

3.2. Contribution 

This chapter's main contribution is to describe the system architecture that will 

autonomously identify track anomalies to focus follow-up inspections. A second contribution is 

to demonstrate the high-level architecture and system implementation. A third contribution is to 

design and draw UML diagrams that illustrates the quantifiable aspects of the system.  

3.3. System Architecture 

This section describes the overall design of a proposed system based on the Intelligent 

Transportation System (ITS) approach. The system consists of low-cost inertial sensors, remote 

servers, and a decision support system.  

3.3.1. System Overview 

Figure 3.1 shows the overall architecture of an intelligent, low-cost rail track condition 

evaluation system. The architecture is divided into three units: on-board measurements, a 

communications channel, and data processing with result diagnosis. 

The on-board measurement unit utilizes inertial sensors embedded in the smartphone to 

sense and record multi-directional inertial responses retrofit in service vehicles or any other 

locomotive during ordinary commercial operation. The measured data are transferred over a 
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communication channel using a secure standard protocol and uploaded to the remote server. 

Figure 3.2 represents the inertial sensor data transmission from smart phone using a secure 

channel to the remote window server. 

 

Figure.3.1. Architecture of the track condition evaluation system 

 

The data processing and result diagnosis unit employs big data and signal processing 

algorithms that will compress three-dimensional linear acceleration, angular acceleration, and 

geospatial data to identify and localize the signature of track irregularity. The diagnostic results 

can provide reliable condition information that using color-coded TRQ values onto maps of the 

rail routes to the railroad inspector via the defect symptom visualization engine. Thereupon, with 

the enhanced situation understanding, railroad companies will be able to optimize inspection and 

maintenance practice to minimize track closure and slow order frequency. Therefore, it will 
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minimize the cost and safety risks while maintaining reliable track and equipment condition 

information. 

 

Figure 3.2. Inertial data communication diagram 

 

3.3.1.1. High-Level System Architecture  

Figure 3.3 Briefly illustrate the high-level view of the track condition evaluation system 

architecture.  

 

Figure 3.3. High-level view of the system architecture 
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The core of the high-level system architecture is the smart phones that can be 

maneuvered as a provenance of data. The smartphones have powerful motion sensors such as 

accelerometers, gyroscopes, and magnetometer, and GPS receiver. With all these integrated 

sensing technologies, we can utilize smartphones as a data source. Web services is selected as a 

method of communication between the data source and data processing & diagnostic results, due 

to their ability to support interoperable machine to machine interaction and to manage the 

securely transfer of the data [49]. Data storage is implemented using NTFS, known as New 

Technology File System, to store and retrieve files on a hard drive that attached to the remote 

server effectively as shown in figure 3.4. NTFS is strong and fault-tolerance, high performance 

logging file system. It offers data security and reliability and supports large volume and file size. 

The data is stored in their original format as .CSV files. Each file is about 4600 KB each minute. 

The data processing algorithm is then implemented on the raw data to processed and transformed 

into new datasets. Thereupon, the signal processing algorithms, called diagnostic algorithms are 

employed to extract the features that fulfill the requirements of analytical models. 
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Figure 3.4. Hard drive attached to the server 

 

3.4. Software Architecture: System Modeling Using UML 

The focus of this section is to design and describe an extensible software architecture 

using the Unified Modeling Language (UML). The architecture leverages and provides 

flexibility to accommodate other potential condition monitoring applications. The Unified 

Modeling Language (UML) is a well-known, recognized, influential, and foremost diagrammatic 

modeling language. It offers a variety of diagrams that express and represent the different views 

of a system. For example, UML provides a static view of the system through the class diagram 

and component diagram, and a dynamic view of the system through the sequence diagram [50].  

3.4.1. Component Diagram for RAILS System 

The UML component diagram of the RAILS is shown in figure 3.5. The Android mobile 

device package consists of a RIVET application [51], Android I/O, and an HTTP client. An 

HTTP client connects to the web server that communicates and transfers data to the Windows 
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server. The web-sever carries out the request of the HTTP client of the Android app. The data 

handling component consists of data processing and signal processing applications. The model 

irregularity uses the input values given by the data handling applications to fuel the analytical 

model (machine learning). The Defect Symptoms Visualization Systems (DSVS) component 

consists of a DSV Engine and a DSVS user interface (UI). The compound results have classified 

irregularities with annotated GIS map that can be viewed using DSVS UI.  

 

Figure 3.5. UML component diagram of RAILS 

 

3.4.2. Class Diagram for RAILS System 

The elements of the UML class diagram are limited to the data processing, signal 

processing, and analysis shown in figure 3.6. UML class diagram shows the methods and 

properties of classes and their relationships. Aggregation, composition, association, dependency, 
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and inheritance are examples of relationships. A generic data source class is defined in figure 

3.6, from which motion sensors and GPS receiver data source take their interfaces. The data 

source class has six attributes: Queue:RIVETDataQueue, SampleRateArray, 

CalibrationConstant, Accelerometer, Gyroscope, and GPS. It has five operations: DataSource, 

getData, clearData, uploadData, and setCalibrarion.  

“RIVETDataQueue” stores an n-ary signal data on the remote server (i.e., Window 

server). RIVETDataQueue class has two attributes: DataQueue and Time. It also has six 

operations: RIVETDataQueue, getData, getAccelerationData, getGyroscopeData, getSpeed, and 

getLocation. 

RemoteServer and DataProcess classes are associated with each other. The 

DataProcessStrategy class describes the generic interface for the different data processing 

strategies such as data munging and data cleaning. Subclasses such as Sort, RemoveBadGPS, 

UnitConversion, and GenerateRIF are generalized by DataMunging class. The DataCleaning 

class uses DataMunging to define Threshold and ColorCodes subclasses. 

The SignalProcessStrategy class describes the generic interface for the signal processing 

strategies to extract the signal features and localize the irregular rail track. The 

SignalProcessStrategy class has two operations: SignalProcessStrategy and getProcessedData. 

Subclasses such as SignalAlignment, FilterDesign, and FeatureExtarction are generalized by 

SignalProcessStrategy class. LocalizeIrregularity subclass includes peak inertial events (PIEs) 

that is the high magnitude of RIFs.  
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Figure 3.6. Principal components of the design for a data processing & signal processing of 

RAILS system 

 

3.4.3. Sequence Diagram for RAILS System 

The UML sequence diagram of the RAILS system is shown in figure 3.7. The main 

objects are the RIVET app, Windows server, data processing, localization irregularity estimation, 

model irregularity and defect symptoms visualization system (DSVS). The process starts with 

the “RIVET app module” generating and logging data. The logged data is uploaded to the server. 

Alternatively, “Window server module” sends an acknowledgment to the “RIVET app module.” 

Once the data stream is available to the server, the “data processing module” reads the data from 

the corresponding data store (Windows server). The data is processed by the data processing 

strategies that produce cleaned data. The “localization irregularity estimation module” uses the 

cleaned data for signal processing activities; it identifies isolated features. Subsequently, the 
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“model irregularity module” read and uses these identified features as input for 

supervised/unsupervised learning activities. 

Consequently, it classified the features such as profile, alignment and warp. Once the 

features are classified, the “model irregularity module” passes the optimized irregularity with 

annotated GIS maps to the “DSVS module.” The DSVS mirrors this action.  

 

Figure 3.7. UML sequence diagram for RAILS 

3.4.4. Software/Hardware 

This research uses software: SAS 9.4 software version to build and design data 

processing algorithms. The minimum system requirements are as follows: 

Operating system: Windows 10 (64-bit version) 

• Hardware: Intel or Intel-compatible Pentium 4 class processor or above 

• Memory: 4GB RAM or more. 

MATLAB R2018a for signal processing. The minimum requirements are as follows: 

• Operating system: Windows 10 (64-bit version) 
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• Hardware: Any Intel or AMD x86-64 processor 

• Memory: 4GB RAM or more. 

External Hard Drive: G-RAID 20TB 

3.5. System Implementation  

This study primarily starts with smart phone application (app) called “Railroad 

Infrastructure and Vehicle Evaluation Technology” RIVET that is capable of autonomously 

collecting and uploading data from rolling stocks such as hi-rails, locomotives, flat cars, freight 

cars, and other vehicle where power is available. 

3.5.1. Data Acquisition and Collection App 

The RIVET app was developed as a part of Mountain Plains Consortium (MPC) project 

at the North Dakota State University, Fargo, North Dakota, USA[30]. The app currently works 

only as a data collection tool. Figure 3.8 displays the RIVET app screen. The app utilizes all 

embedded sensors in the smartphone and any of its available wireless connection to 

communicate with a server. The universal resource locator (URL) for the server is entered in the 

app setup screen. After collecting the data, the app starts uploading logged files automatically 

onto a server. If in case of any pending logged file, researcher can tap “stop logging” which 

uploads any queued file to the server. The app logged inertial and geospatial position data from 

multiple traversals of railroads.  
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Figure 3.8. RIVET app screen shot 

 

3.5.2. Data Collection Instrumentation  

This study uses Harsco Rail ‘s LD 1515 HY-RAIL® shows in figure 3.9 is a light duty 

track and utility vehicle for railway applications requiring travel on the highway and on the rail. 

Road/rail units are equipped for track inspection, crew and material transportation, and 

specialized track maintenance assignments. 
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Figure 3.9. Harsco rail's light duty 1515 HY-RAIL 

 

For the data collection purpose, three google pixel phones are used. Careful consideration 

was given to the smartphone location setup, including different kinetic energy responses, power 

supply resources, and the GPS signal strength. Figure 3.10 shows all three android phones 

location setup in a light duty 1515 Hy-Rail. First phone is mounted on the dashboard of the 

vehicle and the other two phones are fixed securely under the driver and passenger seat. 

Therefore, phones recorded the intensity of the roughness that seated driver and passenger may 

have experienced. All three phones can access the power supply resource and collect the data 

from multiple traversals over the same segments irrespective of the direction of travel. The 

primary area of interest in this study are the locations where geometry issues such as warp, 

profile and alignment are known and exist.  
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Figure 3.10. a) Phone installed under the passenger seat b) phone installed on the dashboard      

c) phone installed under the driver seat 

 

3.5.3. Smart Phones Sensors and Specifications  

Modern smartphones have several kinds of sensors. However, there are three main 

sensors that embedded in the smart devices for the motion detection: accelerometer, gyroscope, 

and magnetometer. Google pixel uses Bosch Sensortec BMI160 IMU chip (IMU = inertial 

measurement unit) utilizes the fascinating MEMS technology (Micro-electromechanical systems) 

that integrates a triaxial accelerometer and a triaxial gyroscope [52]. The smartphones have built-

in GPS receiver that trilaterates the device’s position using data from at least three GPS satellites 

and the receiver. The accelerometer of the smartphone was set to sample at a rate of 400 Hz and 

the GPS receiver updates location in approximately 1 Hz. 

The accelerometer detects changes in the device displacement (change in velocity), 

orientation, and tilt around three axes by measuring acceleration forces or inertial force. Such 

accelerations are popularly measured in terms of g-force. On the other hand, the gyroscope 

measures orientation of the device, based on the principal of angular momentum. Basically, a 

gyroscope is a spinning wheel or disk in which the axle is free to assume any orientation and 

returns three-directional angular velocity [53], [54]. Figure 3.11 shows the orientation of the 

mobile device around three axes.  
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Figure 3.11. Orientation of the smartphone device 

Image Source: (Nguyen, Wang, Li, Luo, and Watkins, 2019 [55])  

A magnetometer measures the strength of the magnetic field around the phone from 

which the phone can obtain its absolute direction related to the earth’s geomagnetic field. The 

magnetometer also returns the three-dimensional values.  
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4. RAILS DATA PROCESSING 

4.1. Objective 

The first objective of this chapter is to remove likely erroneous signal features so that the 

remaining data enable best estimates of the positions and magnitudes of railroad track 

irregularities. Another objective develops a method to visualize the estimated geospatial 

positions and relative magnitudes of railroad track irregularities. Also, to eliminate the minimum 

number of outliers such that the remaining distribution fits a classical distribution that is typical 

of measurements from physical characteristics in nature. 

4.2. Contribution 

The contribution is to introduce a method of cleaning large-scale rail data to visualize the 

condition of the railroad tracks spatially. 

4.3. Data Processing  

The amount of data and data sources is rapidly growing and expanding and becoming 

more diverse in nature and structure. So, it is essential to organize the available data for analysis. 

However, data processing and preparation takes a lot of time in any project or research [56]. Data 

is often merged or fused from different sources, and the quality of data needs to be checked and 

ensured [56], [57].  

Bad data quality adversely affects the decision-making process and negatively impacts 

the results. Also, an explorative analysis will be carried out to identify the abnormalities in the 

data. For this purpose, data munging can be performed, also referred to as data wrangling. It 

integrates heterogeneous data sources, finds dirty or unclean data and extreme outliers, and 

transforms and cleans it. The data munging prepares and transform raw data into a more readily 

used format that can be used for further analysis and visualization. The exact methods differ 
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from project to project depending on the data you are leveraging and the goal you are trying to 

achieve [58]. The below subsections explain the raw data and methods of data munging for this 

research.  

4.3.1. Data Munging  

The inertial and geospatial position data collected from sensors embedded in the 

smartphones aboard a hi-rail vehicle. A portion of the collected data and its format shows in 

table 4.1. The first row contains a header with labels for each column of data collected from 

inertial and GPS sensors. Each data row updates with each sample of the accelerometer data. The 

DateTime variable is in epoch time format for milliseconds. The GPS data is latitude (Lat) and 

longitude (Lon) in decimal degree format. The ground speed (Speed) is in units of m s-1. The 

Ax, Ay, and Az, signals are the linear accelerations in m s-2 along lateral, longitudinal, and 

vertical directions, respectively. The Rx, Ry, and Rz signals are the angular rotations (angular 

velocity) in degrees-per-second around the X, Y, and Z axis, respectively. The integrated 

gyroscope produces the “Azimuth”, “Pitch”, and “Roll” for the sensor orientation angles in 

degree. Azimuth is angle around the z-axis in degrees; Pitch is angle around the x-axis in 

degrees; Roll is angle around the y axis in degrees. The Mx, My, and Mz are the geomagnetic 

field strength along the X, Y, and Z axis in micro-Tesla.  

Table 4.1. Data sample and format 

DateTime Lat Lon Speed Ax Ay Az Azimuth Pitch Roll Rx Ry Rz 

1.55E+12 48.17365 -96.2332 10.47 -1.06 -0.73 10.04 -45.9 4.79 8.38 -0.01 0.02 -6.15E-04 

1.55E+12 48.17365 -96.2332 10.47 -1.06 -0.73 10.04 -45.9 4.79 8.38 -0.01 0.02 -6.15E-04 

1.55E+12 48.17365 -96.2332 10.47 -1.06 -0.73 10.04 -45.9 4.79 8.38 -0.01 0.02 -6.15E-04 

1.55E+12 48.17365 -96.2332 10.47 -1.06 -0.73 10.04 -45.9 4.79 8.38 -0.01 0.02 -6.15E-04 

1.55E+12 48.17365 -96.2332 10.47 -1.06 -0.73 10.04 -45.9 4.79 8.38 -0.01 0.02 -6.15E-04 

1.55E+12 48.17365 -96.2332 10.47 -0.85 0.04 9.561 -45.9 4.79 8.38 -0.01 0.02 -6.15E-04 
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Once the raw data is accessible, the data processing algorithm fuse all the transmitted 

data and sort it via timestamps. The algorithm then removes all the bad GPS data (zero values) 

and converts linear acceleration Ax, Ay, and Az from ms-2 to g-force units by dividing each 

value by 9.80665 m s-2. After combining, sorting, and cleaning bad GPS data, the algorithm 

generates the road impact factor (RIFs) using equations 1 and 2. The data munging flow shows 

the sequence in brief in figure 4.1.  

The Road Impact Factor (RIF) “a measure of intensity that is proportional to resultant 

acceleration rate along the x- and z-axis such that  

 𝑅𝐼𝐹Gi  =  √
1

𝐿
∑ |𝐺𝑖𝑛 𝑣𝑛|2 𝛿𝑡𝑁−1

𝑛=0  (1) 

where 𝑅𝐼𝐹Gi  is the average g-force magnitude experienced per unit of distance L traveled. The 

sample period is 𝛿𝑡 and 𝑣𝑛 the instantaneous traversal speed at sample n for N total samples 

produced by a speed sensor. 𝐺𝑖 is a resultant acceleration signal sample in units of g-force 

calculated as 

 𝐺𝑖 =  √(𝐺x)2 + (𝐺z)2  (2) 

where Gx and Gz are acceleration signals about lateral and vertical directions, respectively. 

Appendix A shows the detail procedure of RIF calculation. When a locomotive or rolling stock 

crossing broken rail or ties on the track, it produces a vertical acceleration. Lateral acceleration 

always cornering or diagonally to the direction of travel of a vehicle shown in figure 4.2 as a 

reference. Hence, both indicate the existence of track irregularities. 
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Figure 4.1. Data munging flow chart 

 

 

Figure 4.2. Three-axis accelerometer orientation 

Image Source: European new car assessment program [58]  
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4.3.2. Data Cleaning – Removing Noise 

After generating RIFs, the approach next clean large-scale data by removing noise such 

as invalid values, skewed values, and outliers to visualize the estimated geospatial positions and 

relative magnitudes of railroad track irregularities. It is significantly important to remove outliers 

as it adversely affects the accuracy of the algorithms. The approach first removes the invalid 

values and outliers in the dataset and check the distribution of the data. Based on the distribution, 

the method applied some heuristic tactics and use normality tests to ensure that data follow the 

normal distribution. The below subsection shows each applied steps and the flow diagram (figure 

4.3) that explains the process more precisely.  

4.3.2.1. Cleaning Steps  

• Eliminate all RIF indices of zero, because g-force values of zero do not produce any 

inertial events. 

• Remove RIF indices above 1.0, as it represents airborne values i.e., flying off your 

seat [59]. Moreover, accelerometer produced very large g-force values that resulting 

in very high outlier RIF values in case of some disturbance such as manual handing 

of the devices, network transmission issues, spurious powering issues, or Android OS 

issues (perhaps downloading updates). Therefore, based on these observations, 

algorithm remove outliers RIF values above 1.0.  

• Start trimming either of the tail (higher or lower tails) based on the use of some 

heuristics in knowing how much to trim in which tail depending upon the shape of the 

resulting histogram. 

• Do normality tests with chi-squared goodness-of-fit test with binning variations until 

all tests fail to reject the hypothesis that the data came from a normal distribution. 
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• If at least one of those tests does not reject the null for at least one distribution type, 

then stop. Go to step 3 

• If the algorithm never stops and still rejecting the null, then randomly generate the 

normally distributed data with the same mean and standard deviation as a RIF data.  

• Repeat all the normality tests with chi-squared goodness-of-fit test and seeing if the 

tests fail to reject. 

 

Figure 4.3. Data cleaning process flow chart 

 

4.3.3. Results 

RIF Data values (RIF-Gi) [0.05-0.451] (figure 4.4) shows the best fitting curve to data 

with truncated left tail. Except chi-squared (p = 93.48%), all the normality tests reject the 

hypothesis. 
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Figure 4.4. Best fitting curve to RIF data values with a truncated left tail 

 

Figure 4.5. RIF data fit curve (Blue) relative to normal random data (Red) 

 

However, randomly generated data with same mean and STD has a longer left tail that 

include negative values shown in figure 4.5. Test of normality (Gaussian) does not reject the null 



 

42 

if we extrapolate the left tail to negative values. However, our RIF data has positive values. 

Thus, we conclude that RIF data follows a normal distribution (Gaussian fit) with truncated left 

tail. Chi-square with Log-Normal fit fails to reject the hypothesis due to similarity. However, 

normal with truncated left tail fits better than Log-Normal (figure 4.6). In case of Weibull 

distribution fit, data values [0.02-0.43], chi-square also fails to reject the hypothesis. Log-Normal 

doesn’t seem to be as good a fit as the Weibull. Weibull (figure 4.7) requires the measured 

values to be positive, which it is in our case. 

 

Figure 4.6. Log-normal distribution fit curve to RIF data values with truncated left tail 
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Figure 4.7. Weibull distribution fit to RIF data values 

 

Hence, the normality tests with chi-squared goodness-of-fit test with binning variations 

shows that the data came from a normal distribution. Finally, it is concluded that RIF feature 

values follows a normal distribution shown in figure 4.8. Therefore, depending on the inferred 

distribution, a percentile threshold and color-codes are defined to visualize the peak inertial 

events (PIEs) that is high magnitude RIF values as represents in table 4.2. Peak inertial events 

are also defined as the peak accelerometer signals in the unit of g-force values produce by 

isolated roughness or irregularity. 



 

44 

 

Figure 4.8. RIF data distribution along with define thresholds & color-codes to visualize the PIEs 
 

Table 4.2. Color-coded scheme to visualize the PIEs 

Color Percentile 

Black Lower 2.5-percentile 

Blue  Within the lower 1 to 2 standard deviations from the mean 

Light Blue Within 1 standard deviation of the mean (68%) 

Orange Within the upper 1 to 2 standard deviations from the mean 

Red Upper 2.5-percentile 
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5. IRREGULARITY POSITION LOCALIZATION AND DETECTION 

ENHANCEMENT1 

5.1. Objective 

The objective of this chapter is developing a procedure that provide robust detection and 

enhanced accuracy in the localization of irregularities. Another objective is to demonstrate the 

effectiveness of the proposed approach by employing data used in the literature [60].  

5.2. Contribution 

The main contribution of this chapter are the signal processing methods that improve the 

low-resolution and low accuracy of GPS receivers, and the non-uniform sample rate of the 

accelerometer signals. Another contribution is an algorithm that can enhance the accuracy of 

identifying and locating track irregularities by combining the data from multiple traversals of the 

same or different trains, at various speeds. The method also enhances the signal-to-noise ratio 

(SNR), which reduces both false positive and false negative feature detection errors. 

5.3. Procedure 

Sensors, when placed on a locomotive or a rail vehicle, do not always perform perfectly. 

With the advent of MEMS technology, the inertial sensors such as accelerometer and gyroscope 

have become smaller, use less power, have better performance, and are lower cost. Moreover, the 

Global Navigation Satellite System (GNSS) is a generic term for a satellite-based positioning 

 

 

1The material in this chapter was co-authored by Bhavana Bhardwaj and Dr. Raj Bridgelall. 

Bhavana Bhardwaj had primary responsibility for data processing and method evaluation. 

Bhavana Bhardwaj was also contributed to the development of the conclusion that is advanced 

here. Bhavana Bhardwaj also drafted and revised all versions of this chapter. Dr. Raj Bridgelall 

and Dr. Kendall Nygard served as a proofreader and checked the math in the statistical analysis 

conducted by Bhavana Bhardwaj.  
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system called GPS (Global Positioning System). It is also assumed that attaching the antenna to 

the roof of a vehicle and connect it to a GNSS module, will provide accurate position 

information. However, this is often not the case. Conversely, for monitoring the development of 

the geometry faults over time, accurate location information is critical. Thus, systems such as 

unattended geometry measurement system (UGMS) and automated track geometry monitoring 

system requires accurate localization.  

Due to non-sufficient quality and low accuracy of GPS receivers and the non-uniform 

sample rate of the inertial accelerometer sensors, affects the signal position alignment and adds 

noise to the signal. As a result, it is hard to detect and localize the track irregularities. In other 

word, it reduces the signal-to-noise ratio that can increase the false positive and false negative. 

Therefore, the proposed procedure could improve the SNR and reduces the significant challenges 

in detecting and locating the irregularities. The proposed procedure includes distance 

interpolation technique called Localization that interpolates the distance between the GPS 

positions to increase the position resolution and heuristic alignment. The primary goal of the 

alignment algorithm is to improve both accuracy and precision of the traversal alignment. That 

means, the algorithm aligns the position of inertial signals collected from multiple traversals so 

that the extracted features among traversals can be ensemble average (EA) to increase the SNR. 

Therefore, ensemble averaging is not only enhancing the signal quality but also improving the 

information and reduce noise in the signals. Nonetheless, both precision and accuracy increase 

with the addition of each traversal during ensemble averaging the aligned signals.  

Moreover, the procedure designs an appropriate digital signal filter that filter the noise 

from the signal, necessary to maximize the signal-to-noise ratio (SNR) of each signal prior to 

feature extraction. The following subsections represents the steps of the proposed procedure.  
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5.3.1. Localization- Distance Interpolation 

High distance resolution can be attained by interpolation using the instantaneous speed 

and sample periods obtained from the sensors aboard regular vehicle. Fundamentally, the 

approach is to position aligns the inertial signals by replacing the GPS position tags with higher 

resolution distance tags and to identify the starting position along the traversal path. Therefore, 

the inertial sample at the starting position y0 of a traversal is set to distance zero, and subsequent 

samples are positioned at the accumulated distance 

 𝑦𝑛 =  𝑦𝑛−1 + 𝑣𝑛 × ∆𝑡𝑛 (3) 

where n is the sample number, vn is the instantaneous speed for n samples, and tn is the 

associated sample period. 

This study uses simulated data shown in table 5.1 from railroad track traversals by 

driving a paved road segment (Cell 40) of the Minnesota road (MnROAD) research facility in 

the United States. A smartphone application (app) named pavement analysis via vehicle 

electronic telemetry (PAVVET) logged the inertial and geospatial data from a sedan. 

Table 5.1. Stimulated data and its format 

 

 

 

The data consists of 53 traversals at nearly uniform speeds. The authors verified that the 

inertial signal patterns observed from traversing isolated road bumps are similar to those 

observed when a train traverses track irregularity. Traversing the bump produced a consistently 

large peak inertial events (PIE) that is used to evaluate the SNR as a function of the number of 

Time Gz Lat Lon GSpeed Pitch Roll Yaw Gx Gy RotX RotY RotZ 

44.142 -1.057 45.263 -93.71 9.586 6.693 4.886 -0.319 -0.088 -0.152 3.177 0.629 -0.452 

46.768 -1.216 45.263 -93.71 9.586 6.693 4.886 -0.319 0.047 -0.241 3.177 0.629 -0.452 

50.26 -1.087 45.263 -93.71 9.586 6.693 4.886 -0.319 0.026 -0.272 3.177 0.629 -0.452 

62.927 -0.854 45.263 -93.71 9.586 6.741 4.903 -0.329 -0.002 -0.212 1.246 -0.13 -0.332 

73.909 -0.912 45.263 -93.71 9.586 6.752 4.907 -0.332 0.022 -0.161 1.865 0.214 -0.258 

86.754 -0.942 45.263 -93.71 9.586 6.776 4.908 -0.341 0.038 -0.144 2.005 -0.67 -0.189 
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traversals combined. In table 5.1, the time variable is in milliseconds from the start of the data 

collection. The GPS data is latitude (Lat) and longitude (Lon) in decimal format. The ground 

speed (GSpeed) is in units of m s−1. The g-force values of Gx, Gy, and Gz are accelerations in 

the lateral, longitudinal, and vertical directions, respectively. The integrated gyroscope provides 

the pitch, roll, and yaw angles of the sensor orientation in degrees. The RotX, RotY, and RotZ 

signals are the angular rotations in degrees-per-second around the X, Y, and Z axis, respectively. 

The accelerometer sample at approximately 90 hertz and GPS updates at approximately 1 hertz, 

the latitude and longitude remained unchanged for blocks of inertial samples, or GPS blocks. 

Figure 5.1 illustrates how the positions of the GPS update, and the accelerometer updates 

distribute nonuniformly both within and across traversal datasets [48]. 

 

Figure 5.1. GPS position variation and non-uniformly distributed accelerometer sample 

 

The geospatial processing technique contracted a starting and ending geofences to 

indicate the interested segment of road or railroad. The data then extracted from all traversals 

contained within the geofences R0 and R1. These geofences are perpendicular to the traversal 

path and jointly served as a distance reference.  
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The reference distance d0 = 0 is the first sample of the GPS block that is closest to the 

left of R0. In Sedan dataset, the GPS updated continuously after every second. That means, there 

is no missing GPS updates in this dataset. Consequently, the variation in the relative distance of 

the peak inertial event (PIE) indicates the misalignment. After interpolation, the procedure 

extracts approximately equal length traversals. The relative position of the two PIEs in figure 5 

shows the position misalignment of the two signals. It also shows two extracted traversals 

starting from the interpolated zero distance position [48]. As shown in the figure 5.2, the positive 

peak is the local maxima and negative peak is the local minima of the vertical acceleration 

profile from traversing the bump.  

 

Figure 5.2. Misalignment of the PIE position between the two signals 

Most importantly, the distance interpolation benefits ensemble averaging in computing 

signal means along the small and fixed window sizes along the traversal, regardless of vehicle 

speed and sampling rate. Now, the next step discussed about the signal alignment algorithms 

using the same dataset. 

5.3.2. Signal Position Alignment 

This section utilizes the heuristic technique to align the misaligned signals from multiple 

traversals. The signals are aligned when the peaks of the signals are at the same distance 
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position. The authors [48] developed some heuristic methods include Dual Geofence, Midway 

Midpoint, Centroid Asymmetric, and Centroid Symmetric to position align the signals. It is better 

to mention that next subsection “Design Digital Signal Filter”, uses the same data set that is the 

outcome of the best performance alignment method. Therefore, for this research, we only explain 

the best performed alignment method and the statical method that evaluate the performance of all 

these heuristic methods. After distance interpolation, the alignment methods identify the first and 

last inertial samples of each traversal to produce maximally aligned signals. 

5.3.2.1. Heuristic Alignment Methods 

These alignment algorithms used extracted dataset obtained from the interpolated 

traversals. Before introducing these methods, this study developed a reference method that 

remove GPS position estimation error to calculate the residual or remaining error as global 

methodology quality reference in the article [60]. The reference method is attained by equalizing 

the position of the known isolated PIE for each traversal.  

The reference method is known to be able to align miss-positioned data almost perfectly 

because the method relies on a known ground truth anomaly and its actual true location in the 

data. However, in practical application, the railroad agencies don’t have a known anomaly 

location to start with. The anomalies need to be determined from the misaligned data. Therefore, 

this reference method labels the isolated PIEs on all traversals as position zero. Here, the known 

ground truth generates the isolated PIE for each traversal shown in figure 5.2. The residual errors 

are from estimates of the speed and sample intervals. 

The Centroid Asymmetric method first calculates the centroid at the center of the 

maximum overlapping segments and draws a center line between the geofences R0 and R1 that 

is perpendicular to the traversal path. The center line is then spatially joined to the traversal 
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layers to obtain a distance. The centroid calculates from the geospatial positions of that set of 

coordinates as 

 �̅� =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
, �̅� =

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
 (4) 

where xi and yi are the coordinates for GPS block i and n is the total number of GPS blocks. 

Subsequently, the algorithm identifies the immediate left GPS blocks closest to the center 

line for all traversals and then interpolate the distance from the first sample of that GPS block. 

All traversals are truncated based on the recorded shortest distance. The first sample of all 

truncated traversals is marked as the new starting zero position. Starting from the new zero 

position, the distance is interpolated to the new ending position. 

5.3.2.2. Statistical Performance Evaluation  

The performance of the alignment methods is tested using the empirical distribution test 

that include Kolmogorov –Smirnov (KS), Anderson-Darling (AD) and Cramer-von Mises tests 

(CVM) [61]. The PIE distributions resulting from each alignment method is the bases of the 

performance evaluation. All three tests use an empirical distribution function (EDF) that defined 

for a set of n independent observations X1…….,Xn that have a common distribution function 

F(x). Under the null hypothesis, F(x) is the normal distribution. The tests reject the null 

hypothesis if the p-value of the test-statistic is less than 0.05. The empirical distribution function 

(EDF), Fn(x), takes a step of height 1/n at each observation such that 

 𝐹𝑛(𝑥) =  {

0,
𝑖

𝑛
,

1,

  

𝑥 < 𝑋(1)

              𝑋𝑖 ≤ 𝑥 ≤ 𝑋(𝑖+1),

𝑋(𝑛) ≤ 𝑥
 𝑖 = 1, . . . , 𝑛 −1 (5) 

At any value x, Fn(x) is the proportion of observations less than or equal to x, while F(x) 

is the probability of an observation less than or equal to x. EDF statistics measure the 
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discrepancy between Fn(x) and F(x). The EDF tests use the probability integral transformation U 

= F(X) such that if F(X) is the distribution function of X, then the random variable U is 

uniformly distributed between 0 and 1, where U(i) = F[X(i)] given n observations X(1), ..., X(n) 

are inputs for the EDF test statistics. 

KS Test: 

The Kolmogorov-Smirnov statistics (D) is 

 𝐷 =  𝑠𝑢𝑝𝑥|𝐹𝑛(𝑥) − 𝐹(𝑥)| (6) 

The Kolmogorov-Smirnov statistics belong to the supremum class of EDF statistics, 

which is based on the largest vertical difference between F(x) and Fn(x). The Kolmogorov-

Smirnov statistic is the maximum of D+ and D-, where D+ is the largest vertical distance 

between the EDF and the distribution function when the EDF is greater than the distribution 

function, and D- is the largest vertical distance when the EDF is less than the distribution 

function. That is, 

 

𝐷+ = 𝑚𝑎𝑥𝑖 (
𝑖

𝑛
− 𝑈(𝑖))

 𝐷−  = 𝑚𝑎𝑥𝑖 (𝑈(𝑖) −
𝑖−1

𝑛
)

𝐷   =  𝑚𝑎𝑥(𝐷+, 𝐷−)

 (7) 

AD Test: 

The Anderson-Darling statistic and the Cramer-von Mises statistic belong to the 

quadratic class of EDF statistics, which is based on the squared difference (Fn(x) – F(x))2. 

Quadratic statistics have the following general form: 

 𝑄 = 𝑛 ∫ (𝐹𝑛(𝑥) − 𝐹(𝑥))
2

𝜑 (𝑥)𝑑𝐹(𝑥)
+∞

−∞
 (8) 

The function φ(x) weights the squared difference [Fn(x) - F(x)]2. The Anderson-Darling statistics 

(A2) is 
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 A2=n ∫ [𝐹𝑛(𝑥) − 𝐹(𝑥)]2[F(x)(1-F(x))]-1dF(x)
+∞

-∞
 (9) 

Here the weight function is φ(x) = [F(x)(1-F(x))]-1. The discrete form for computing the 

Anderson-Darling statistic is 

 A
2
=-n-

1

n
∑ [(2i-1)logU(i)+(2n+1-2i)log({1-U(i)}]n

i=1  (10) 

CVM Test: 

The Cramer-von Mises statistic (W2) is 

 𝑊2 = 𝑛 ∫ [𝐹𝑛(𝑥) − 𝐹(𝑥)]2𝑑𝐹(𝑥)
+∞

−∞
. (11) 

Here the weight function is φ(x) = 1. The discrete form for computing the Cramer-von Mises 

statistic is 

 𝑊2 = ∑ (𝑈(𝑖) −
2𝑖−1

2𝑛
)

2

+
1

12𝑛
.𝑛

𝑖=1  (12) 
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5.3.2.3. Findings and Conclusion 

 

Figure 5.3. 1) PIEs distance distribution of reference method and four heuristic alignment 

methods. 2) statistical summary of all methods 

 

A normal distribution is a symmetric distribution with no skew that means skewness is 

zero and standard deviation is 1. Fundamentally, skewness represents the degree and direction of 

the asymmetry of the distribution about its mean. Conversely, if the distribution has long left tail, 

it means the distribution is skewed to the left and has a negative skewness. The statistics that use 

to compare for the PIE distributions and the length of the aligned traversals are mean, STD, and 

skewness. Figure 5.3 1) shows the distribution of the reference and all four alignment methods. It 

is found that the large offset is present at the beginning of the aligned traversals. And removing 
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such offsets will improve the resolution of the distribution for statistical testing. Therefore, the 

distribution of the PIE distances relative to the PIE distance of the reference traversal provides a 

measure of the alignment spread and removed the offsets. Interestingly, the traversals with the 

most samples for approximately equal distances selected as reference traversal for reference PIE. 

This is because having more samples achieves the highest resolution in distance estimates.  

The reference method overtakes all other method in figure 5.3 1) and 5.3 2). So, the 

performance ranking of all four heuristic methods is decided through the statistics closest to the 

reference method. Here, centroid asymmetric is performed closely to the reference method. The 

centroid asymmetric and reference methods are the methods in which PIE distribution follows 

the normal distribution pattern. That means, in both the methods, none of the normality tests 

could reject the hypothesis. Thus, the study selected centroid asymmetric as a signal alignment 

method that generate aligned signals with the lowest STD of their lengths. Moreover, this 

alignment step prepares the signal for the further process of filtering that explain in the next 

subsection. 

5.3.3. Signal Filter Design 

Appropriate signal filtering, alignment, and combination from multiple traversals can 

enhance the signal-to-noise ratio. However, it is not straightforward in determining the best cut-

off frequency for the filter. This section introduces a method that is suitable for any signal 

filtering approach. A method informs the cutoff frequency selection for a FIR low-pass filter that 

maximizes the SNR, with low computational complexity and high stability for practical use. The 

method achieves this by combining the FFTs from multiple signal runs of the same traversal to 

produce an ensemble average FFT (EA-FFT). Figure 5.4 illustrates the application of EA-FFT. 
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Figure 5.4. Application of EA-FFT technique 

 

Additionally, this technique benefits to overcome some significant limitations in the 

literature. First, the absence of prior knowledge of frequency response parameters, it is hard to 

design standard digital filters due to their changing nature of the filter’s requirements [62]. 

Therefore, they are not suitable for the general application [63]. Second, some authors 

recommended adaptive filtering approach. However, adaptive filtering also has some 

shortcomings, which the previous studies did not highlight. The adaptive process requires the use 

of a more complex cost function and bank of filters to evaluate the SNR in a closed-loop manner. 

Hence, it has high computational complexity and numerically unstable. Nonetheless, it works on 

single signal stream or run and does not guarantee convergence to a local minimum that would 

maximize the SNR, which limits their use in practice. 

5.3.3.1. Method 

The individual FFTs of the inertial signals from each traversal produce patterns in the 

spectral domain that do not clearly distinguish between information and noise. The EA-FFT 

enhances the clarity of the patterns by canceling randomness and boosting the correlated portions 

of the patterns. Subsequently, the sharpened pattern revealed a clearer breakpoint between 

information and noise. Figure 5.5 briefly explains the individual section of the overall approach. 
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Figure 5.5. Method of determining the signal filter cut-off frequency in preparation for feature 

extraction and their application 

 

Before calculating the FFTs and EA-FFTs of the inertial signals, the signals are extracted 

from approximately equal length heuristically aligned traversals. The remaining procedure are to 

1) compute the EA-FFT from the individual FFTs of the inertial signals, 2) compute energy and 

variance windows along the frequency range, 3) determine the appropriate cut-off frequency, 

and apply a low-pass digital filter to each inertial signal shown in workflow figure 5.6. Each FFT 

used the mean sampling frequency (Fs) of its individual signal. However, the mean sample 

frequency varies among traversals. Therefore, the EA-FFT algorithm aligned the frequency bins 

before averaging the non-zero magnitudes. A frequency bin size of 1 Hz provided sufficient 

resolution to compute 5 Hz energy and variance windows for cut-off frequency selection. In 

particular, the observed transition of energy and variance from high to consistently lower values 

pointed to the appropriate cut-off frequency for a low-pass noise filter. 
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Figure 5.6. Determination of digital filter cut-off frequency workflow 

 

• Fast Fourier Transform (FFT)  

The Fast Fourier transform (FFT) is an efficient method of computing the discrete 

Fourier transform (DFT) 𝑋𝑗 of 𝑥𝑙 as follows [64]:  

 𝑋𝑗 = ∑ 𝑥𝑙𝑊
−𝑗𝑙𝑁−1

𝑙=0         𝑊 = 𝑒𝑥𝑝
2𝜋√−1

𝑁
, (13) 

 j = 0, …., N-1  

where each 𝑥𝑙 is an equally spaced sample of a function 𝑥(𝑡), 𝑙 represents the time index, and 𝑗 

represents the frequency index. N is an integral power of 2. 

• Ensemble Average FFT (EA-FFT) 

The EA-FFT is the mean value of all spectral magnitudes within a frequency bin x such 

that 

 𝑋𝑁𝑥 =  
1

𝑁
∑ 𝑋𝑖𝑥

𝑁
𝑖=1  (14) 

where 𝑋𝑁𝑥 is the ensemble average of N FFTs across bin x, and 𝑋𝑖𝑥 is the magnitude of the FFT 

of an individual signal within frequency bin x. Figure 5.7 shows the EA-FFT of the signals 

extracted from the approximately equal length segments after position alignment. Fig. 4 also 

illustrates the difference between the FFT of two individual signals, and the EA-FFT.) 
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Figure 5.7. EA-FFTs of the signals extracted from equal length traversals 

 

• Signal Energy 

The energy [65] of a finite signal x(n) defines as 

 Es = ∑ |x(n)|2N−1

n=0
 (15) 

where Es is the energy of a signal, n is the sample number, and N is the total number of samples.  

• Signal Variance 

The variance of a signal is defined as  

 σ2 =
1

𝑁−1
∑ [xi − μ]2N−1

i=0
 (16) 

where the signal samples are xi,  is the signal mean, N is the number of samples and σ2 is the 

signal variance [65]. The variance of the signal signifies how much a signal varies about the 

average value.  Figure 5.8 a, and 5.8 b shows the calculated energy and variance of the EAFFT 

along the resolution window 5 Hz. 
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Figure 5.8. a) Energy windows of the EA-FFT, and b) variance windows of the EA-FFT along 5 

Hz window 

 

• Finite Impulse Response (FIR) Low-Pass Filtering 

A low-pass FIR filter of order N [66] is defined as: 

 𝑦[𝑛] = 𝑏0𝑥[𝑛] + 𝑏1𝑥[𝑛 − 1] + ⋯ + 𝑏𝑁𝑥[𝑛 − 𝑁] (17) 

Or 

 𝑦[𝑛] =  ∑ 𝑏𝑖𝑥[𝑛 − 𝑖]𝑁
𝑖=0  (18) 

where 𝑥[𝑛] is the input signal, 𝑦[𝑛] is the output signal, and the filter order symbolizes as N.  

Each coefficient 𝑏𝑖 is the value of the impulse response at the ith instant for 0 ≤ 𝑖 ≤ 𝑁. The 

impulse response of the filter is: 

 ℎ[𝑛] =  ∑ 𝑏𝑖𝛿[𝑛 − 𝑖]𝑁
𝑖=0  = {

𝑏𝑛  0 ≤ n ≤ N
0   otherwise

 (19) 

The phase response of the FIR filter causes a delay in the filtered signal. Hence, the 

algorithm estimates and corrects the distance offset accordingly as the filter will delay all signals 

similarly. Figure 5.9 compares the unfiltered (black) and filtered (gray) signals. 
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Figure 5.9. Unfiltered and filtered signals comparison 

 

5.3.3.2. Result Analysis  

The SNR analysis demonstrates the effectiveness of the proposed method by comparing 

the filtered and unfiltered signal to validate improvements in SNR. The results show that the 

method of EA-FFT with statistical decision criteria is effective for informing a cut-off frequency 

to digitally low-pass filter the inertial signals. From figure 5.7, it is evident that the windowed 

ensemble averaging provides a clearer picture of the frequency transition from signal to noise. 

Also, it shows that Ensemble Average (EA) reduces noise and enhances correlated energy 

features in the spectral representation of the signal. Subsequently, there is agreement among the 

EA-FFTs on the frequency at which both the energy and variance in the spectral windows reach 

a minimum before rising again slightly. In particular, both the energy and variance windows of 

the EA-FFT shows such a transition at 25 Hz. 
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• Filtered Signal vs. Unfiltered Signal 

Figure 5.9 shows that the filter effectively removed noise while preserving the quality 

and strength of the inertial signature. The procedure can use any low-pass filter, including 

infinite impulse response (IIR) filters and is independent of the data collection apparatus and 

their operating systems. 

• SNR Improvement Validation 

The filter order determines the degree to which the filter attenuates noise. A poor choice 

of cut-off frequency could result in the attenuation of both signal and noise, and subsequently no 

improvement in SNR. Therefore, the observation of SNR improvements with increasing filter 

order validates the cut-off frequency selection because the filter reduces noise while preserving 

the strength of the desired signal. 

 

Figure 5.10. SNR as a function of filter order (zero order is the unfiltered signal) demonstrates 

the effectiveness of the cutoff frequency selection 

Figure 5.10 shows that after applying a low-pass FIR filter with the selected cut-off 

frequency, the SNR steadily increased with the order of the filter. The SNR shown at order zero 
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is for the unfiltered signal. This procedure prepared the inertial signals for the remaining stages 

of an application that involves signal position realignment, distance interpolation, and truncation 

to obtain signals from approximately equal length traversals for feature extraction and feature 

ensemble averaging. 

5.3.3.3. Conclusion 

Resolving issues such as non-uniform sample rate that adds noise and decreases the 

signal strength enables the placement of sensors in vehicles to monitor road or railroad condition. 

This work showed that appropriate signal filtering and alignment for ensemble averaging could 

be effective in improving the SNR for subsequent feature extraction. However, an objective 

determination of the filter cut-off frequency is necessary. From the individual FFTs, it is difficult 

to see a clear pattern that separates signal from noise. Hence, method ensemble averages the 

individual FFTs (EA-FFT) from the approximately equal length and position aligned inertial 

signals to enhance the clarity of the underlying pattern. The subsequent application of two 

statistical methods to frequency windows of the EA-FFT provides an objective means for 

selecting a frequency threshold where signal transitions to noise. 

This proposed EA-FFT method to identify the cut-off frequency of a low-pass noise filter 

can be generalized to any sensor data that meet at least two criteria. The first is that the signal 

contains both signal and noise. The second is that the data source is from multiple traversals of a 

segment of some transportation network such as a rail track or a roadway. Such data produces 

distinct inertial signal patterns or features in common time windows. Moreover, variable train 

speed, GPS position registration errors, relatively slow update rates of the GPS receivers, and the 

uneven sampling rate of their inertial sensors result in feature alignment errors that can degrade 
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the signal-to-noise ratio. Therefore, it is necessary to align and equalize the position of similar 

features or responses across multiple traversals. 

5.3.4. Signal Feature Extraction 

This section introduces an analytic framework that includes mathematical and statistical 

methods to enhance the detection and localization accuracy of track or road irregularities by 

extracting and combining features of the inertial signals obtained from multiple traversals of a 

track segment. Figure 5.11 shows the workflow framework of the feature extraction and 

localizing irregularities application. The framework explains each step that enhance the signal 

quality for subsequent feature extraction discussed in previous sections. The RIF transform is 

employed to extract the features within a selected window size. 

 

Figure 5.11. Signal feature extraction & localizing road or track irregularities workflow 

framework 

 

The experiment has also been conducted on local railroad data to show the effectiveness 

of the procedures. The collected data was from the traversal of a rail grade crossing (RGC) 
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because it reliably simulated the presence of a rail anomaly. The study concluded that the method 

applies identically on actual railroad detect and localize railroad track anomalies.  

5.3.4.1. Method 

The method inherits a scalable technique that not only extract roughness or irregularity 

features of the inertial signals obtained from multiple traversals of a road or track segment but 

also transform and combine features into a reliable single-index summary of road or railway 

roughness called EAR-index. The value of each peak EAR is the effective estimator for both the 

roughness intensity and position. The workflow framework shown in figure 5.11, the method 

primarily includes distance interpolation from geo-spatial reference position to align the signals 

with approximately equal length segments. The algorithm then applies a finite impulse response 

(FIR) low-pass filter to filter the aligned signals as described in the previous subsection. 

Afterword, the EAR is computed across the small and fixed distance windows of multiple 

traversals. The following are the mathematical computations of the algorithm.  

• Multi-Resolution RIF Feature Indices 

The RIF transform reduces the data into features that are proportional to the roughness by 

replacing the segment length L in Equation (1) with a distance resolution window L such that  

 �̌�
∆𝐿

 = √
1

∆𝐿
∑ |𝐺z[𝑛]�̅�𝑛|

2
𝛿𝑡𝑛

𝑁−1

𝑛=0
 (20) 

where the RIF index �̌�
∆𝐿

 is the average g-force magnitude per unit of distance L travelled. 𝐺z[n] 

is the vertical acceleration for signal sample n, sample period instant  𝛿𝑡𝑛 and, the instantaneous 

traversal speed is �̅�𝑛. The window position varied with GPS error. The RIF intensity varied with 

traversal speed. Hence, an ensemble average of the RIF-indices (EAR) within a selected distance 
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window along the traversal path and across N traversals produced an estimate of the average 

roughness �̅�
𝑤

 experienced in window w, at any speed such that  

 �̅�
𝑤

=
1

𝑁
∑ �̌�𝑤

∆𝐿𝑛
𝑥=1 [𝑥] (21) 

where �̌�𝑤
∆𝐿

[𝑥] is the RIF index from traversal x within distance window w.  

The peak of EAR shows the amount of roughness produced when a vehicle traverses any 

road or railway anomalies. The roughness represents the non-uniform track geometry that affect 

vehicle dynamics and ride quality.  

• Ensemble STD RIF Indices 

The ESR indices represents as �̃�𝑅𝐼𝐹 is a measure of the variability of the roughness 

intensity across traversals, within a distance window. It is defined as:  

 �̃�𝑅𝐼𝐹 = √
∑ (�̌�𝑤

∆𝐿[𝑥] – �̅�𝑤)
2𝑁

𝑥=1

𝑁
 (22) 

• Margin-of-Error 

The margin-of-error denoted as �̌�1−𝛼
∆𝐿

 within a (1-𝜎)% confidence interval defined as  

 �̌�1−𝛼
∆𝐿

 = z *
𝜎�̌�

∆𝐿

√𝑛
 (23) 

where 𝜎�̌�
∆𝐿

 is the standard deviation of the intensity of the peak RIF within the selected distance 

window sizes and n is the total number of traversals within the window size. Z is a critical value 

of 1.96 at 95% confidence interval (CI). The �̌�0.95
∆𝐿

 indicates that 95% of the RIF data values are 

likely to be within that percentage of the ensemble average RIF-index.  
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5.3.4.2. Results Analysis 

The experiment has been conducted on both roadway and railway data that demonstrate 

the reliability and accuracy of the employed method. Also, tradeoff analysis found an optimal 

window size of anomaly detection that minimizes the false positives and false negatives. 

• Road Experiment  

Figure 5.12 displays the EAR for the 1-, 5-, 15-, and 20-meters distance resolution 

window sizes. 

 

Figure 5.12. a) Ensemble average RIF Indices at the resolution window 1 and 5-meters.             

b) ensemble average RIF Indices at the resolution window 15 and 20-meters 

The chart shows the unprocessed inertial signal from one of the traversals for reference. 

The position of the maximum EAR is an estimate of the position of the track irregularity. The 

precision of position estimate increases with the number of traversals. Larger window sizes 

provide greater data reduction but reduce the precision of estimating the position of an 

irregularity. 
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Figure 5.13. a) Ensemble STD RIF Indices at the resolution window 1 and 5-meters.                  

b) ensemble STD RIF Indices at the resolution window 15 and 20-meters 

Figure 5.13 a) and b) displays the ESR for the 1-, 5-, 15-, and 20-meters distance 

resolution window sizes. The ESR generally declines as the window size increases because the 

EAR also decreases. This represents a tradeoff in data size for accuracy and precision in 

estimating the position of anomalies.  

 

Figure 5.14. The MOE of the peak RIF for varying distance windows 
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Figure 5.14 shows the MOE of the peak RIF for distance windows of 1, 2, 5, 10, 15, 20 

and 40 meters. The chart shows that the MOE declines most substantially between window sizes 

of 1 and 5 meters. This suggests that that the reliability of the estimate is best for the window 

sizes in that range. 

• Findings 

Table 5.2. Statistical summary of peak RIF within the selected distance resolution window size 

Window Size  
Peak RIF 

Mean Peak RIF STD 
Peak RIF Dist 

Mean 
Peak RIF Dist 

STD 

1 1.48 0.60 53.38 4.02 

2 1.21 0.57 53.59 4.02 

5 0.87 0.56 54.47 8.50 

10 0.70 0.56 56.79 15.91 

15 0.60 0.56 56.15 20.15 

20 0.53 0.57 51.98 5.91 

40 0.43 0.58 101.22 56.57 

 

From the road experiment, it is found that the position of the maximum EAR is an 

estimate of the position of the irregularity and the ESR declines as the window size increases, 

which is the expected outcome. As a function of window size, Table 5.2 summarizes the means 

and standard deviations (STD) of the peak RIF intensity and the center position of the window 

for the peak RIF relative to the beginning of the traversals. 

A smaller window size increases the precision of locating an irregularity but also 

increases the variability of that estimate. The results show that an optimum window size exists 

that minimizes the STD of estimating the RIF intensity. A lower STD improves the consistency 

of detecting an anomaly and, therefore, reduces the false positive and false negative detection 

errors. From the table 5.2 and figure 5.15 a, and 5.15 b, it is observed that that keeping the 

distance window size below 5 meters maintains a stable estimate of the position of the peak RIF 

relative to the beginning of the traversal (approximately 53 meters for the experiment) and 

minimizes the STD of that estimate. 
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Figure 5.15. a) The mean and standard deviation of the intensity of the peak RIF within the small 

and fixed distance window sizes. b) the mean of peak RIF distance relative to STD of peak RIF 

distance at different window size 

 

Additionally, figure 5.14 indicates that MOE provides the confidence of the 

measurements with an indication that there is an optimum window size selection. Table 5.3 

shows the margin-of-error (MOE) of peak RIF within the selected window size.  
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Table 5.3. MOE of the peak RIF within the selected window 

Window 

Size 
Total Traversals 

MOE Peak 

RIF 

1 53 0.162 

2 53 0.153 

5 53 0.151 

10 53 0.151 

15 53 0.151 

20 53 0.153 

40 53 0.156 

 

• Rail Experiment  

From the rail experiment, Table 5.4 represents the mean and STD of the peak RIF 

intensity relative from the beginning of each traversal.  

Table 5.4. Statistical summary of peak RIF within the selected resolution window using rail 

Window 

Size  

Peak 

RIF 

Mean 

Peak 

RIF 

STD 

Peak RIF 

Dist 

Mean 

Peak RIF 

Dist STD 

1 0.764 0.187 90.114 43.780 

2 0.635 0.145 86.713 30.112 

5 0.498 0.097 87.263 29.889 

10 0.424 0.074 91.513 21.590 

15 0.387 0.063 88.512 28.958 

20 0.370 0.054 86.013 27.988 

40 0.335 0.059 98.013 8.945 

 

Figure 5.16 shows that the RIF transform presents a stable trade-off between resolution 

and confidence as a function of window size with an asymptotic decrease of the mean value and 

a consistent decrease in the STD of the estimate. Figure 5.16 reveals that a window size of 5 

meters provides a stable estimate for locating rail anomalies relative to a linear reference at the 

beginning of the traversals, which was approximately 90 meters in these experiments. 
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Figure 5.16. a) The mean and STD of peak RIFs of varying window size using rail data. b) mean 

of peak RIF distance relative to STD of peak RIF distance at different window size using rail 

data 

Therefore, a window size of 5 meters in both the road and rail experiments balances the 

tradeoff in data size, precision, and accuracy of locating road or rail irregularities with sensors. 

The best window size is also within the visual range for inspectors to locate the anomaly.  

5.3.4.3. Conclusion  

The ensemble average of RIF-indices within each window provides an estimate for the 

intensity and position of an irregularity. Increasing the window size decreases the variability of 

the intensity estimate and decreases the data size. However, a larger spatial window size also 

reduces the accuracy and precision of position estimates. Both roadway and railway experiments 

were conducted to demonstrate the reliability and accuracy of the employed method. In both 
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experiments, tradeoff analysis found that a window size of 5 meters provided a good balance 

between data reduction, accuracy, precision, and the consistency of anomaly detection while 

minimizing the potential for false positives and false negatives. A significant benefit of the 

ensemble averaging approach is that both precision and accuracy increase with the number of 

traversals. Furthermore, the MOE of peak RIF values also validates confidence in the 

measurements and points to an optimal window size selection. 
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6. POSITION ACCURACY ASSESSMENTS 

6.1. Objective 

This chapter's primary objective is to investigate the potential use of low-cost sensors 

aboard the hi-rail vehicle to monitor automatically and continuously for inertial events caused by 

irregular track geometry. Second objective is to characterize and validate its accuracy by 

comparing the estimated positions of detected irregularities with the actual positions of 

irregularities that the railroad inspector observed.  

Another objective is to estimate the position of the unknow irregularity and validate its 

actual position that the railroad inspector verified.  

6.2. Contribution 

The chapter incorporates a signal processing and statistical method to estimate the 

position of peak inertial events from multiple traversals. The method reduces the inertial signals 

associated with irregularity to features called Road Impact Factors (RIFs) [60]. The method also 

utilizes a geographical information system (GIS) platform to visualize peak inertial events 

(PIEs), which are RIF values in the high five percentiles of its distribution.  

Another contribution is the case studies that validate and characterize the detected 

irregularities. It demonstrates the practical utilization of RIF-indexes by using a smartphone app 

to record the required sensor data from a regular service vehicle or locomotive. This will help 

railroad agencies identify and catalog irregularities that demand critical repair.  

6.3. Case Studies of Irregularity Position Assessment 

The following sections demonstrate and estimate the position of irregularities called 

linear references. The study first estimates the position for known irregularity called ground truth 

areas (GTA), and the second is for unknown irregularity. The case study uses inertial and 
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geospatial position data collected from sensors aboard a hi-rail vehicle that regularly monitors 

the condition of a local rural railroad. A portion of the data and its format shows in table 4.1 in 

the previous chapter 4. 

6.3.1. Position Estimation of Known Irregularity (GTA) 

Track irregularity not only degrades the ride comfort but also increases the risk of 

derailments [67]. When a train traverses an irregularity, it produces a Peak Inertial Event (PIE). 

So, the magnitude of PIEs is an effective means of extracting track condition patterns. A Road 

Impact Factor (RIF) transform extracts track condition patterns as features from inertial sensor 

signals to reveal the signature of a track irregularity. In another words, the magnitude of a RIF 

feature is proportional to the amount of irregularity reported by the railroad inspection supervisor 

such as warp or cross level. The cross-level is the elevation difference between rails at a given 

position along the track. For a fixed amount of cross leveling, the intensity of the RIF feature 

varies as a function of traversal speed. 

6.3.1.1. RIF Transform Indexes 

The RIF-transform produces an intensity RIFRt that is proportional to the resultant 

rotation rate about x and y-axis. The RIF-transform is defined as: 

 𝑅𝐼𝐹Rt  =  √
1

𝐿
∑ |𝑅𝑡𝑛 𝑣𝑛|2 𝛿𝑡𝑁−1

𝑛=0  (24) 

where RIFRt is the average magnitude of rotation rate per unit of distance L traveled. The sample 

period is 𝛿𝑡. A speed sensor produces the instantaneous traversal speed 𝑣𝑛 at sample n for N total 

samples. 𝑅𝑡𝑛 is the resultant rotation signal sample n in units of the radians-per second such that 

 𝑅𝑡 = √(𝑅x)2 + (𝑅y)
2
 (25) 

where Rx and Ry are angular rotations around X and Y axis of the phone.  
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Figure 6.1. Distribution of RIFRt. 

 

As discussed in the chapter 4, RIF features follows a normal distribution. Hence, after 

data cleaning, a color-coding scheme (shown in table 4.2 in the chapter 4) based on percentile 

thresholds of the RIFRt distribution (figure 6.1) provided a means to visualize the PIEs using a 

GIS package. Figure 6.2 shows the color-coded RIFRt values for the visualization of PIEs that 

correspond to severe track irregularity. 

6.3.1.2. Position Accuracy Estimation  

The method of estimating the position of an irregularity involved accumulating PIE 

clusters across multiple traversals and then determining a centroid for each cluster. Estimating 

the position accuracy with this method required accumulating from all available traversals the 

PIE that was closest to the position of the reported irregularity. The method built a cluster from 

PIEs with intensity levels in the ‘orange’ or ‘red’ range. That is, track irregularities produce PIEs 

in the ‘orange’ range when the vehicle moves more slowly across them. 
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Figure 6.2. A map of PIEs that correspond to severe track irregularity. 

6.3.1.3. Results 

Figure 6.3 is a GIS map that shows the PIE cluster near the reported irregularity. Figure 

6.4 shows the centroid position relative to the actual irregularity. The centroid was offset 13.1 

feet (3.9m) from the position of the reported irregularity. 
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Figure 6.3. A map of the PIE cluster near the reported irregularity 

 

 

Figure 6.4. A map of the PIE cluster centroid relative to the actual irregularity 

 

This research also validated the method for other Known anomaly called ground truth 

area (GTA). Below is the reference table 6.1.  
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Table 6.1. Known anomalies position assessment 

Ground Truth Area (GTA)/ 

Known Anomaly Mile Post  Lat  Lon 

Distance Offset 

from GTA 

Cross-level MP 344.7 48.194843 -96.913964 

3.9 meters (13.1 

feet) 

Rail Grade Crossing (RGC) Near MP 344.7 48.194838 -96.912465 1.24 meters (4 feet) 

Flacking, track Wiggle MP 380.5 48.2391 -97.676611 

3.14 meters (10 

feet) 

 

6.3.2. Position Estimation of Unknown Irregularity 

The rail track irregularity not reported or observed by the railroad inspector is referred to 

as unknown irregularity. Early detection of these unknown irregularities is critical for 

maintenance and aids in timely exchange to avoid accidents. This case study uses equations 1 

and 2 to calculate the RIF features. These RIF features follow the normal distribution (mentioned 

in chapter 4). Therefore, peak inertial events (PIEs) are visualized using a defined threshold and 

color-code scheme.  

6.3.2.1. Position Localization Estimation 

Localizing the position of unknown irregularity involves the extraction of traversal 

segments with frequently occurring PIEs irrespective of the direction of travel. The study 

extracted the traversals from the route Viking MP 320.2 and Radium MP 330.3.  

This method required accumulating the most frequently occurring PIEs (red & orange) 

within the extracted traversal segments shows in figure 6.5. The method builds a PIE cluster 

across extracted traversal segments and then determines a centroid from the PIEs. The computed 

PIEs centroid is referred to as a Hot Spot area. 
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Figure 6.5. A map of most occurring and brightest PIEs cluster 

 

6.3.2.2. Results 

Figure 6.6 is a GIS map that shows the PIE cluster centroid. Figure 6.7 shows the hot spot 

area representing the PIEs cluster centroid position relative to the unknown irregularity. The hot 

spot area is at MP 325.614 which is 5.414 miles from the Viking 320.2 milepost. The position of 

the estimated hot spot area is validated and verified by the railroad inspector as show in figure 

6.8. The result suggests that the estimated position of the unknown irregularity is within sight 

distance to locate the anomaly for follow-up inspections. 
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Figure 6.6. A map of PIEs cluster centroid 

 

 

Figure 6.7. A map of Hot Spot representing unknown irregularity 
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Figure 6.8. A hot spot area position verified by railroad inspector at MP 325.614 

 

6.4. Conclusion 

This chapter introduced a signal processing and statistical method to estimate the position 

of peak inertial events from multiple traversals. The goal was to characterize its accuracy by 

comparing the estimated position of detected irregularities with the actual positions of 

irregularities that the railroad inspector observed. Another goal is to verify and validate the 

estimated position of unknown irregularities.  

The study developed a mathematical model to produce RIFs from the signals and defined 

a color-coding scheme to visualize PIEs using a geographical information system (GIS) 

platform. A PIE cluster accumulated from the multiple number of traversals provided an estimate 
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of the position of a measured irregularity. Two case studies are demonstrated to show the 

accuracy and reliability of the proposed system.  

In first case study, the result is that the centroid is 13.1 feet (3.9 m) offset from the 

position of actual irregularity (GTA). Therefore, the estimated position of the irregularity is 

within a reasonable visual distance of the actual position of irregularity.  

The second case study showed the estimated position of an unknown irregularity that was 

validated and verified by railroad inspector as a rail joint. The result shows that the hot spot area 

(PIEs cluster centroid) is 5.414 miles from the MP 320.2 milepost that can be seen during a 

follow-up manual inspection. Thus, the results will help to determine a model for quantifying the 

severity of track geometric irregularities such as profile, alignment, and warp. 
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7. CONCLUSION 

A frequent and network-wide monitoring of railroad infrastructure is highly in demand to 

meet the emergent need of safety, reliability, and lower cost operations. This study investigated 

the track and railbed problems cause the derailments. It was determined that some existing 

practices requires line closure to perform inspections. However, some sophisticated technologies 

are more costly and complex to scale for more frequent and network-wide coverage. Thus, 

railroad companies think twice before investing and adopting the technology. Therefore, this 

research developed a generalized low-cost monitoring & evaluation system is called Railroad 

Autonomous Inspection Localization System “RAILS”.  

The developed methods in this research will encourage transportation agencies to deploy 

and implement the technique to frequently scan the network for anomalies and repair them 

before they cause safety issues and vehicle damage. 

7.1. Anomaly Position Detection and Localization Enhancement Conclusion 

RAILS utilizes low-cost micro-electro-mechanical (MEM) accelerometer, gyroscope, and 

GPS receiver sensors embedded in the smartphone. However, it is found that their poor 

performance due to varied update rates and lower resolution is not suitable for high-accuracy and 

high-precision applications. In other words, it increases both false positive and false negative 

feature detection errors. 

Therefore, this research embraces the ensemble averaging approach to enhance the signal 

quality by improving signal-to-noise ratio. The technique combines the signals from multiple 

traversals of a segment by ensemble averaging to reduce noise and enhance position resolution. 

This suggests that the signal quality improves continuously with the additionally available 

position repeatable signal stream. Subsequently, the finding that integrate distance interpolation, 
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signal alignment, and signal filtering to improve detection error and signal quality. Another 

finding is that an appropriate noise filtering is necessary to maximize the signal-to-noise ratio 

(SNR) of each signal prior to feature extraction. Thus, the developed methods that reduce 

detection error, and enhance the quality of the signals and features to get the ensemble averaging 

(EA) through heuristic alignment and signal filtering can be generalized for the practical 

applications produced sensor data from multiple traversals of railroad segments.  

7.2. Position Accuracy Assessment Conclusion 

The research evaluates the proposed approach that employed a Road Impact Factor (RIF) 

transform, which emphasizes features from the sensor signals in proportion to the amount of 

track geometry irregularity. The finding is that the estimated peak inertial events (PIEs) position 

is at a possible rail track irregularity. The study compared the estimated positions of detected 

irregularities with the actual positions of irregularities observed by the railroad inspector.  

Another finding was the estimated position of an unknown irregularity in the route 

between mileposts MP 320.2 and MP 330.3. The railroad inspector verified the estimated 

position of the unknown irregularity at MP 325.614 as a rail joint. Thus, this finding validates 

and characterizes the accuracy of the method and its effectiveness. 

7.3. Limitations 

The following are the limitation that may impact the data and validation complications: 

• Inaccuracy in-field inspection due to human error: The traversal volume plays a 

vital role in the precision of anomaly localization. In other words, signal quality 

improves with the continuous addition of data. However, data collection may be 

hampered due to the following: 
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➢ The railroad inspector forgets to plug in the phone charger during track 

inspection. 

➢ The railroad inspector forgets to unplug the phone charger during non-

inspection days. It will add stationary data that will limit the scope of 

detecting and localizing the anomaly with high accuracy and precision.  

• Impact on Ground Truth Data: Generally, railroad inspectors work 8-10 hours shift 

to locate the anomaly in their assigned section of track. However, they frequently 

work beyond the scheduled workday, and sometimes on rest days [68]. The amount 

of territory an inspector covers depends on considerations such as the inspection 

method, the number of curves on the track, the type of rail (e.g., jointed or 

continuous welded), weather and track visibility, and time constraints. Time 

constraints contribute to time pressure that can hinder the inspectors’ ability to detect 

defects effectively [68]. Therefore, a high-pressure work environment discouraged 

track inspectors from reporting issues or problems [69] and repairs.  

Moreover, many inspectors felt that their territory was too large to inspect in the time 

available. Hence it limits their ability to complete inspections [69]. Consequently, it 

may impact the identification of the ground truth area (GRA).  

• Weather Condition: Weather conditions such as severe winter storms sometimes 

disrupt the entire transportation system [70]. The railroad operations degrade in such 

conditions due to lower visibility, icing, snowdrifts, and cold temperatures. 

Therefore, it affects the data collection pattern and the number of traversals. Also, 

extreme cold weather leads to phone discharge that may disrupt the data collection.  
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Additionally, uneven or rapid temperature variations could increase the track 

maintenance requirements [70]. For example, a track exposed to extreme heat poses 

misalignment or warp. In winter, the freeze-thaw cycle adversely degrades the track 

surface. Thus, it may worsen known track defects or raise new problems.  

7.4. Future Work 

The promising results from this research suggest that future work on this study should be 

continued. The successful implementation of the low-cost onboard sensing monitoring 

technology in this research shows the significant potential for economic benefits and accident 

prevention due to the track and roadbed problems.  

The finding from this research has some extracted features that labeled as joint track 

roughness and warp. These features have been verified by the local railroad inspector. 

Subsequently, these extracted features from the composite signals will then be used to develop 

the machine learning models that can be trained to classify the types of detected railway track 

irregularities. The machine learning models involves supervised and semi-supervised learning 

that requires labeled features. These labeled features have two values type and intensity that will 

be the input for the machine learning models. Additionally, all these research algorithms and 

models including machine learning process will annotate with maps to make the system work 

autonomously in future.  

Therefore, this capability enhanced the follow-up inspection and repairs that will help 

railroad industry to prioritize inspection resources and equipment to categorize the issues and 

make informed decisions. Moreover, such solution could integrate with the PTC system as 

another sensor that strength the communication network and cloud-based system. 
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APPENDIX. ROAD IMPACT FACTOR (RIF) CALCULATION 

 

Figure A1. Road Impact Factor (RIF) computation flow chart 

 

 

 

 


