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ABSTRACT 

New and exciting opportunities are emerging for operational researchers to create and use 

models that provide managers with solutions to enhance the quality of their services as the 

importance of the service sector grows in industrialized countries. The key to this process is the 

creation of time-dependent models that analyze complicated service systems and produce efficient 

staff schedules, allowing organizations to strike a balance between delivering high-quality services 

and avoiding unnecessary personnel costs. There is a need, particularly in the healthcare sector, to 

encourage effective management of an EMS, where the likelihood of survival is strongly correlated 

with the response time. 

Motivated by case studies investigating the operation of the Emergency Medical System 

(EMS), this dissertation aims to examine how operations research (OR) techniques can be 

developed to determine staff scheduling and maximize the ambulance to decrease service system 

delays. A capacity planning tool is developed that integrates a combination of queueing theory and 

optimization techniques to reduce the delay in the service system and maximize ambulance 

coverage.  

The research presented in this dissertation is novel in several ways. Primarily, the first 

section considers the Markovian models with sinusoidal arrival rates and state-dependency of 

service rate and uses a numerical method known as Stationary Independent Period by Period 

(SIPP) to determine the staff requirement of the service system. The final section considers the 

time dependency in locating an ambulance station across the network and allocating the ambulance 

to the patients to cover more 911 calls. 
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1. INTRODUCTION   

Emergency Medical Service (EMS) refers to providing acute medical services outside of a 

hospital and transferring patients to hospitals by ambulance. EMS has evolved and expanded into 

a significant component of modern health care systems. Indeed, it is a sophisticated network for 

procuring, distributing, and transferring patients to hospitals in strictly time-limited emergency 

treatment ambulance units and medical care teams.  

The EMS has two goals. First, it aids patients quickly before the condition becomes worse. 

Second, it ensures that the best service is delivered to the patients. Both goals have measurable 

impacts on patient outcomes. For the accomplishment of both goals, multiple emergency vehicles 

are often dispatched with a single service call. Multiple answers allow faster first-aid and guarantee 

that vehicles are effectively adjusted to the unpredictable requirement of the patient at the possible 

expense of unavailability of more vehicles compared to only sending one vehicle. If an emergency 

call is responded to by only one ambulance, then that same unit must still carry the patient to the 

hospital after on-scene treatment.  

On the other hand, all vehicles dispatched may not be needed for the entire service process. 

After the respondents arrive at the scene, the patient's actual needs are usually apparent, and 

appropriate EMS unit response becomes more evident. Therefore, modeling the service process in 

two phases is preferable since certain response vehicles are released during the service cycle rather 

than a scenario with a single response unit (Yoon & A.Albert, 2020). 

1.1. Motivation 

The nation's emergency and trauma treatment system highly depends on EMS. Over 16 

million medical transports are performed annually by hundreds of thousands of EMS staff. EMS 

covers the early phases of the emergency care continuum. It comprises dialing 911 in case of an 
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emergency, dispatching emergency responders to the scene of a crash or illness, and treating and 

transporting patients by ambulance and air ambulance. The effectiveness and quickness of 

emergency medical services play a crucial role in the final result for a patient. However, EMS care 

has some strengths, including automatic crash notification technology and improved medical 

equipment such as air ambulance service, which is helpful for rural areas where accessibility is so 

complex or for patients with severe conditions, some systemic problems in the EMS.  

The main weakness of the current EMS system is insufficient coordination. In some cases, 

EMS and other public safety services cannot communicate with one another because they use 

separate frequencies or incompatible communications technology. So, patients may not be 

delivered to facilities that are ideal and prepared to receive them because there is insufficient 

coordination of transport between regions, which leads to inadequate management of the regional 

flow of patients.  

Moreover, disparities in response times are another limitation of the current EMS. The 

selection of which ambulance needs to respond to emergency calls is highly valuable. An inherent 

difficulty in EMS is deciding how to distribute scarce resources geographically. The spatial and 

temporal fluctuation in input elements, such as demand and journey time, must be considered when 

planning ambulance locations. Demand for ambulance services differs by region and by an hour 

of the day. Moreover, the time from dispatching the ambulance to arriving at the patient’s location 

also depends on the time. For instance, in crowded areas, ambulance travel lengths are short, but 

delays may occur due to traffic and other issues, whereas in rural areas, travel distances are more 

significant, and the terrain can occasionally be challenging.  

According to these two main weaknesses of the current EMS system, I investigate to 

develop Operations Research (OR) techniques to evaluate the service system by determining the 
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number of required staff in each period, leading to the lowest delay in the system. Also, the 

limitation of the current service system persuades me to analyze the optimum ambulance locations 

by using the location-allocation problem to provide services to patients.  

1.2. Importance of Research 

In the past few decades, the importance of the service sector, including EMS, has expanded 

in many industrialized countries. As the service sector changes, there is more competition between 

organizations. Therefore, their managers are trying to evaluate their services to allow them to 

provide their customers with services as quickly and cheaply as possible. OR approach has 

dramatically developed in response to the increased evaluation. While the mathematical 

foundations of stochastic modeling, heretics, and optimization approaches have all been well 

established, a significant effort has been made to develop theory through the application of models 

(Ingolfsson, et al., 2010; Izady & Worthington, 2012). In particular, the queueing theory that 

assists managers in making judgmental decisions based on the resources needed to deliver an 

efficient service through the disclosure of analytical system quality details in a variety of scenarios 

has moved from basic server queue analysis to consistent random arrival rates and time-dependent 

systems (Erlang, 1917). While queueing models can be used to decide on the resources required 

for the service, their effectiveness depends on the prediction of demand for the system. Thus, an 

in-depth evaluation of the EMS system involves a mixture of a broad range of statistical and OR 

techniques ranging from forecasting demands, evaluating the number of staff, and advice on 

improving service effectiveness by producing staff numbers to ensure the appropriate number of 

staff at any time.  

 In this sub-section, I will discuss how applying some methods in these upcoming two 

chapters can solve the problem in the EMS. Healthcare sector managers are responsible for 
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promptly delivering services to their patients. Sometimes, they are faced with insufficient staff 

during peak service times. So, they need to have flexible scheduling to provide better service to 

their patients to increase the lifetime of the patients. Similarly, in the EMS, assigning ambulances 

to the patients who call 911 is of high priority to avoid the death of patients. In this way, managing 

how many ambulances are needed is an important matter that I will address them. The second 

chapter of my proposal answers this question: how many servers (ambulances) should be assigned 

to receive different 911 calls?  

Applying the method called Stationary Independent Period by Period (SIPP) to analyze the 

performance measures of queueing systems, including the average number of half-hours with 

missed service level targets and an average maximum delay service level target, lead to 

determining the proper system decisions in staffing level and 911 call response.  

One of the aims of the EMS is to provide services to the broader area of a received 911 

call. The service to the patients will be assigned based on their priorities. So, the third chapter 

proposes an optimal location of ambulance stations across all demand zones and allocates them to 

the demand zone to maximize the service coverage to the patients. In this case, the service coverage 

maximization will result in losing the patients' reach out to the EMS.  

1.3. Purpose of Research 

This dissertation addresses the urgent needs of patients when 911 calls are received. This 

proposal primarily aims to investigate how the Operation Research (OR) technique and statistical 

analysis can be developed to analyze service systems subject to the demand that is urgent and 

heavily time-dependent.  

In the second chapter, I propose a delay probability function in the EMS system to calculate 

the number of servers (ambulances) in each period. Indeed, the second chapter aims to determine 
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the number of required staff in each period, leading to the lowest delay probability rate. Also, the 

third chapter of the dissertation aims to consider the time dependency in locating an ambulance 

station across the network and allocating the ambulance to the patients to cover more 911 calls. 

The time dependency in location models is related to variations in travel time, availability of 

ambulances, and demand. Also, the model of this study is realistic since no study dealt with the 

maximization of service coverage along with time dependency in travel time, availability of 

ambulances, and demand.   

1.4. Problem Statement 

Previous studies investigated EMS in different scopes, but I identified three main gaps. 

First, most studies focused on performance measures such as delays in the EMS system to decrease 

the patient's response time. Although most studies evaluated the service rate as constant while the 

arrival rate is either constant or dependent on time, I assume that the arrival rate is time-dependent, 

which changes in each period, and the service rate has a state-dependent condition. Therefore, in 

the second chapter, I focus on capacity planning of service systems with cyclic arrivals and state-

dependent service rates to determine staffing requirements to decrease the delay in the service 

system. 

Third, studies worked on the location-allocation problem to find the ambulance’s optimum 

location and provide patient services. Other studies applied the repositioning model to relocate the 

ambulance location to deliver services in the shortest time. In this study, I assume each area has 

demand defined by the number of patient calls, which need to be responded to as soon as possible 

to avoid the loss of the patient by establishing locations for ambulance stations to dispatch them 

to the scene. So, the problem is determining the optimal location of ambulance stations across all 
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demand zones and allocating them to the demand zone to maximize the service coverage to the 

patients.  
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2. CAPACITY PLANNING OF SERVICE SYSTEMS WITH CYCLIC ARRIVALS AND 

STATE-DEPENDENT SERVICE RATE  

2.1. Introduction  

Managers of service establishments where client demand for assistance is cyclic and 

random frequently change employee levels to ensure a consistent level of service. In an Emergency 

Department (ED), long waiting times and delays are undesirable because they cause patients 

unnecessary agony and cause care to be delayed. Overcrowding, extended waiting times, and 

resultant delays are common in many countries' emergency departments. In China, top-rated 

hospitals' emergency rooms are constantly congested, and patients face long waiting times (Wang 

& Xu, 2007). A complex connection between the demand for healthcare services and the 

availability of healthcare services results in long waiting times (Xie & Or, 2017).  

An ED, unlike a clinical department, provides continuous emergency medical care without 

planned patient appointments, which is one of the key reasons for overcrowding and delay. The 

ED system is briefly overburdened during peak arrival periods since patient arrivals are frequently 

stochastic and time-varying throughout the day. On the other hand, the lack of a physician 

scheduling mechanism to effectively address demand changes exacerbates ED congestion. So, 

because implementations must take into consideration complex scheduling limitations, developing 

staffing schedules in such service systems can be problematic. Employees' preferred start times, 

quit times, and shift durations are all respected, as are policy limits on the number of consecutive 

hours and days worked, and so on. One of the essential requirements is that there always be enough 

people on duty to meet the service levels that have been established. In this case, I develop the 

practice of determining capacity planning to determine the staff in the service system while random 
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cyclic demands and state dependency service rate by using stationary queueing models. Green et 

al. (2001) proposed the Stationary Independent Period-by-Period (SIPP) approach to staffing. 

In this approach, staffing requirements are determined by dividing the workday into 

"planning periods" such as shifts, hours, etc. One model for each planning period, a sequence of 

stationary queueing models is built, which is M/M/s type models. Each model is solved separately 

to find the smallest number of servers required to satisfy the service target in that time frame. The 

SIPP technique divides the time of interest into small periods. Each discrete period is subjected to 

a distinct stationary Markovian queueing model with the average arrival rate as the input 

parameter. Stationary models can estimate the minimum personnel required based on this 

approximation.  

This chapter aims to determine capacity planning in ED systems with random cyclic 

demands and state-dependent service rates using the SIPP approach. The model of the SIPP 

approach is M(t)/Ms(t)/s(t) system, while the arrival rate is sinusoidal and the service rate is state-

dependent, which refers to the number of servers (staff) at each time. Also, I analyze to measure 

the performance of the service system during load effect on service rate. The service rate function 

has two scenarios, including decreasing scenario, where service time decreases with a load, such 

as social loafing, and the increasing scenario, where service time increase with a load, such as 

social pressure, has been considered.  

The contribution of this chapter is to analyze the performance measure of the SIPP average, 

which relates to standard SIPP. At the same time, the service rate has state-dependency behavior 

and ignores the state-dependency of the service rate. Second, develop the state dependency of the 

SIPP approach with two models, including SIPP Max and SIPP Mix. Third, evaluate the reliability 

of staffing level and SIPP reliability of models.  
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2.2. Literature Review 

Even though operations research and management have considerably improved vital EDs, 

staffing and scheduling for stochastic and time-varying patient arrivals remain challenging 

(Salmon, et al., 2018; Saghafian, et al., 2015). Despite being aware of the day-to-day fluctuation, 

hospital management allocates staff based on gut instinct and general perceptions, with no methods 

to assess the impact on critical patient service quality criteria (Green & Soares, 2007). Because 

different existing systems may experience significant time-dependent changes in their parameters, 

it is appropriate to enable queuing model parameters like user arrival rates and server count to alter 

over time. Even though this phenomenon has been seen in various real-world systems, the 

literature on the issue is relatively young and sparse.  

The demand for emergency rooms is influenced by a variety of unpredictable factors, such 

as the unpredictability of emergencies and the length of surgeries. As a result, some work that 

addresses physician scheduling issues takes stochastic, time-varying demand into account. Tan et 

al. (2013) credited Newell with the first studies on time-dependent queues, which were published 

in a series of papers in 1968 that looked at time-dependent arrival and service rates. According to 

Schwarz et al. (2016), Kolmogorov's work in 1931 was the first to analyze time-dependent queuing 

systems. Since then, various studies have looked at time-dependent behavior in a range of queuing 

systems, including hospitals (Bruin, et al., 2007), emergency medical services (Beojone & Souza, 

2020; J.L.Vile, et al., 2016; Singer & Donoso, 2008), call centers (Atlason, et al., 2007; C.Dietz, 

2011; Green, et al., 2001). In order to address the time-varying component of physician scheduling 

issues, Ingolfsson et al. (2002) first developed an integer program model with the stationary 

independent period-by-period (SIPP) assumption. For the purpose of determining the best schedule 

with time-varying service levels, Ingolfsson et al. (2010) presented a two-step process that 
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included both a schedule generator and a schedule evaluator. Green et al. (2006) examined 

emergency department staffing using the queuing theory. 

Moreover, Green et al. (1991) proposed the nonstationary Pointwise Stationary 

Approximation (PSA) time-varying queues, which assume that the queue reaches a steady state 

throughout each period and that the steady-state findings can roughly predict the performance of 

the queue. The PSA is a weighted average of the performance measurements at each point in time 

(the interval length is set to zero). Whitt (1991) employed the PSA technique for an M(t)/M(t)/c 

system. 

Some approximation methods based on models with piecewise constant input parameters 

into each time interval within the overall time horizon exist. The SIPP approach divides the entire 

period into small, independent periods and uses the average arrival rate for each period as the input 

to a series of stationary studies. Several scholars have used the SIPP to evaluate the behavior of 

M(t)/M/c(t) queuing systems, such as in the work of  Green et al. (2001) and Atlason et al. (2007). 

The stationary approximation is the most widely used method for assessing performance in a 

nonstationary queueing system with time-varying demands. The stationary approximation 

approach converts nonstationary system parameters into stationary counterparts that are then fed 

into a (series of) stationary models (Defraeye & Nieuwenhuyse, 2016). There have been numerous 

proposed stationary approximations. Green et al. (2009) worked on the SIPP method to evaluate 

customer satisfaction and reach out to target customer services. They find that the SIPP method 

cannot ask about customers’ time lag when it will be between peak demand and when the system 

has peak congestion. So, they test two SIPP approaches to find which achieves the service target 

with only an increase in staffing. Green et al. (2001) also enhanced the basic SIPP approach by 

using a time lag between peak demand and peak congestion to improve a basic SIPP's performance. 
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This change considers that system congestion peaks after arrival rate peaks in nonstationary 

systems. Green et al. (2006) investigated the performance of the ED queueing model and identified 

how to modify staffing levels to meet changing needs in an ED of an urban hospital in the United 

States using the lagged version of the SIPP technique. Green et al. (2006) advocated staffing in 

EDs, which has reduced the number of patients who leave the ED without being seen. Green et al. 

(2009) discovered that the basic SIPP approach's suggested staffing in telephone call centers is 

insufficient to provide customer service levels during critical periods. They designed and evaluated 

two simple lagged SIPP adjustments that met the service target while requiring only minor staffing 

additions. With a focus on call centers, Koole et al. (2003) proposed a local search technique for 

joint staffing and shift schedules with a total service level target, where the SIPP approximation is 

used to evaluate scheduling performance. 

In systems with rapidly fluctuating arrival rates, many demand peaks, lengthy wait times, 

and constrained operating hours, the SIPP technique is known to perform poorly (Green, et al., 

2001; GREEN, et al., 2009; Ingolfsson, et al., 2010). In the extended lag-SIPP approach, the mean 

service time is used to lag the arrival rate consideration intervals to account for demand carryover 

(Green, et al., 2001; GREEN, et al., 2009). Both SIPP and lag-SIPP optimize staffing individually 

for each time interval and do not account for the effects of staffing decisions made for earlier 

intervals, which can produce a less precise result (Ingolfsson, et al., 2010).  Furthermore, steady-

state equations are unable to account for customers who are not seen because of the end of the day 

in systems with limited operating hours and client abandonment. 

Another approach to time-dependent small interval staffing is Modified Offered Load 

(MOL) approximation. In the MOL, a related time-dependent queueing model with an infinite 

number of servers provides guidance for staffing considerations. Through the use of proxy steady-
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state queueing models based on the anticipated number of model customers in the infinite server 

system at any one time, the MOL approach expands this idea to other performance indicators 

(Feldman, et al., 2008; Jennings, et al., 1996). The MOL approach does not take into account the 

effects of staffing decisions made in previous time intervals, but it does take into account the 

interaction between service time for prior arrivals under a time-dependent arrival rate. Sinreich et 

al. (2007) calculate small interval staffing for numerous medical resources in an ED care network 

based on the highest anticipated number of busy model servers in each interval of an infinite server 

simulation. 

Moreover, in telecommunication and service systems, some classical models are utilized 

for capacity planning (Robbins, et al., 2010; Inman, 1999). They are also widely employed in 

studies on production and service systems, which assume that the service time distribution 

parameters are exogenous—unrelated to the state of the system.  

Also, some other researchers found that the load, which describes a measure that expresses 

how occupied or congested a system is at a certain moment, has an effect on service time in the 

service system (Batt & Terwiesch, 2016; Delasay, et al., 2019). They analyzed some mechanisms, 

including fatigue, increasing the task of servers, and increasing the server’s work contents which 

push servers to decrease their service speed. Jaeker et al. (2017), and Karaue et al. (1993) analyzed 

that whenever monitoring the individual server’s task was so hard, and servers had less effort, 

which resulted in decreasing the service rate. Also, researchers investigated the incapacity of 

servers to work hard for a long time at a high-level causes server to decrease the service speed (Kc 

& Terwiesch, 2009; KC & Terwiesch, 2012). They found that being overworked and having any 

task varieties in the system impact decreased server speed (Staats & Gino, 2012; Kc & Terwiesch, 

2009). Louriz et al. (2012) and Long et al (2018) investigated a backlog of consumers waiting to 
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move on to a downstream service, causing congestion in a service that has decreased the service 

speed. Tan et al. (2014) and Goes et al. (2018) proposed that distributing server resources among 

numerous customers causes a decrease in service speed due to each customer having full attention 

from their servers.  

On the other hand, researchers proposed that some other mechanism, such as a reduction 

in the server’s task and service cancelation, causes increasing the service speed (Batt & Terwiesch, 

2016; Kc & Terwiesch, 2009; KC & Terwiesch, 2012). Also, they investigated that decreasing the 

server’s tasks causes servers to increase their service speed (Schultz, 2003; Batt & Terwiesch, 

2016; Long & Mathews, 2018). Batt et al. (2016) proposed that whenever servers performed some 

tasks earlier than usual, the service speed increased.  

Although the capacity planning problem has attracted much attention in previous studies, 

a few studies worked on the SIPP approach. Moreover, most previous studies worked on sinusoidal 

arrival rate, which did not pay attention to service rate, and kept it constant. While in this chapter, 

the transient analysis using the SIPP approach has been proposed to evaluate the staff requirement 

in the service system. Moreover, the SIPP approach has been developed with a cyclic arrival rate, 

which is time-dependent, and the service rate is state-dependent, which refers to the number of 

busy servers or staff at the time, into two decreasing and increasing scenarios, where the service 

rate decreases or increase with load. In this case, I evaluate the performance measure of the SIPP 

approach for staffing in the service system. Accordingly, the main contributions of this chapter are 

as follows:  

 Transient analysis of delay system in service system with cyclic and time-varying 

of arrival rate, 

 Considering the state dependency on service rate, 
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 Evaluating the SIPP average, with and without state-dependency of service rate, 

 Improving the SIPP average by using the SIPP Max and SIPP Mix, and 

 Comparing the performance measures for SIPP- based staffing.  

2.3. Methodology 

The queueing theory examines how systems allocate their resources to customers who 

progressively show up at a service facility in order to receive a service. Due to the fact that 

resources are not always readily available, queues frequently form. Queueing theory tries to predict 

system performance and assess the level of service that consumers might anticipate receiving in 

various scenarios. The theory spends a significant amount of time developing performance 

measurements that assess factors including throughput, delay probability, the number of customers 

in the line, and predicted queue length (Bhat, 2008). Queueing theory can be used to optimize 

resource allocation and suggest staffing levels when the goal is to strike a balance between service 

quality and financial factors. This will prevent queues from building up too much while ensuring 

that servers are active for a reasonable amount of time. 

According to queueing theory, a service system can be thought of as consisting of two 

components: 1) the service facility itself, which may be staffed by several servers, and 2) a line for 

service (apart from situations where it may be explicitly stated that queuing is not authorized). 

Customers arrive at each location and stand in line for a certain activity. 

 

Figure 1. The fundamental process of queuing theory 

The two main elements that define every queueing network are the arrival process and the 

service process. Setting up mathematical models that correspond to Figure 1, analyzing the system, 
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and assessing various performance indicators are all part of queueing theory. Numerous factors 

will affect the system's performance, and queueing theory is based on probabilistic analysis 

because these processes are typically stochastic by nature. 

The arrival process specifies the manner in which customers arrive at the service facility 

(for example, separately or in groups) and the order in which they come. The Poisson process is 

frequently chosen to represent random client arrivals since it produces uniformly distributed arrival 

times with an arrival rate. 

The resources required for service are specified in the service mechanism. The service time 

distribution determines how long the service will take, but other factors like the number of servers 

available and whether they are in series (each server has its own queue) or parallel (one queue for 

all customers) must be known before a meaningful analysis of the system can be done. In situations 

where it is assumed that the exponential distribution accurately represents the distribution of 

service times, one can translate the system to a continuous-time Markov chain that can be solved 

analytically according to its Markovian (memoryless) feature. The exponential distribution has 

only one parameter, just like the Poisson distribution. It is conventional to represent the mean 

service rate by µ, with 
1

µ
  standing in for the mean service time in order to distinguish between the 

mean arrival and mean service rate. 

The additional notation that will be utilized throughout this thesis that is frequently used in 

the literature to analyze queueing systems is as follows: 

𝑝𝑛: The probability of n customers in the system, 

s: The number of servers on duty, 

The quantity 𝑝 =  
𝜆

𝑠µ
 , also known as server utilization rate, traffic intensity, or load per 

server, is a widely used indicator of interest that illustrates the queue's behavior over time, whilst, 
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𝑟 =  
𝑝

𝑠
 calculates the system's offered load or the volume of traffic in the queue (Gross, et al., 

1998). Given that all servers have the same service rate, the link between these values and the 

system capacity provides useful insight into the system's performance. In essence, if 𝑝 ≤ 1 then 

the servers are able to process customers faster than the rate at which customers typically arrive, 

preventing the queue from getting infinitely long. All system characteristics, including the number 

of users, the length of the queue, and anticipated wait times, will eventually settle down, and the 

system will operate at a consistent level, which is referred to as "stable" or "stationary" if it runs 

with a mean service level and inter-arrival rate with 𝑝 ≤ 1 for an appropriate amount of time. It is 

referred to as running in a steady state when the system reaches this point. 

A birth-death process can be considered a continuous time stochastic counting process 

{𝑁(𝑡), 𝑡 ≥ 0}. Letting 𝑝𝑛(𝑡) = 𝑃𝑟𝑜𝑏 {𝑁(𝑡) =  𝑛} be the probability that the system is in state n at 

time t, the transition flow of the birth-death process may be shown in Figure 2. A birth causes the 

system to move from state n to n + 1, while a death causes it to move from state n to n-1. The 

process is specified by birth rates {𝜆𝑖}𝑖=0,…∞ and death birth rates {𝜇𝑖}𝑖=1,…∞. 

 

 Figure 2. Transition diagram of the birth-death process 

In this chapter, I developed the M/M/s model, which is one of the most extensively studied 

models in the traditional queueing literature because it simultaneously captures unpredictability in 

arrival and service times, allows for more than one server, and has the appealing advantage of a 

tractable steady-state solution. It depicts a system with a single queueing location where clients 
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come and may queue before being served by one of the s same servers. Arrivals follow a Poisson 

process that is time-homogeneous and has a constant rate, whereas service time has an exponential 

distribution with a constant mean.  

So, I developed the M(t)/Ms(t)/s(t) queuing systems, where M(t) represents exponential, 

independent, and identically distributed arrival rate, which is cyclic and time-dependent; Ms(t) 

represents the distribution of service rate that is dependent on a number of servers on duty, and s(t) 

represents the number of servers at time t. The function arrival rate has the sinusoidal function, 

where A>0 is the amplitude and λ is the arrival rate that changes over time (Equation 2.1).  

                                                   ( ) sin(2 / 24)t A t                                                         (2.1) 

The other model parameters are µ (t), the service rate at time t and s(t), and the number of 

servers scheduled at time t. The service rate function has two increasing and decreasing functions 

where the α is a slope for the µ that is negative for decreasing and positive for increasing 

approaches. In this case, by having decreasing and increasing approach, I can evaluate the 

performance measure in our model to analyze how the delay decrease or increases and also know 

in which states they happen. In other words, it is assumed that the service rate has a state-dependent 

function into increasing scenarios, such as network dispersion, in which the service rate increases 

with load, and in decreasing scenarios, such as social loafing, in which the service rate decreases 

with the load. Also, the service rate function in both mentioned scenarios is presented as follows:  

                                                    ( ) min maxmin ( ),s t s t                                                    (2.2) 

                                                              ( ) m minmax ( ),s t ax s t                                                    (2.3) 
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The μmin and μmax are the server’s average minimum and maximum service rates, 

respectively; μmin represents the rate when the system is staffed by one server, and the average 

service rate increases linearly with the staffing level, at a positive slope α, till it stabilizes at μmax 

in Eq. (2.2) and in decreasing scenario, the rates μmin and μmax are the servers’ average minimum 

and maximum service rates, respectively; μmin represents the system with one server on duty, and 

the average service rate decreases linearly with the staffing level, at a negative slope α, till it 

stabilizes at μmax in Eq. (2.3). 

The number of customers in the system is an appropriate state variable in queueing systems 

that directly model the behavior of individuals who arrive at a service facility in need of a specific 

service to be provided; as a result, pn(t) be the periodic steady-state probabilities that there are n 

customers in the system at time t. The 𝜆𝑡 is average arrival rate that is calculated from (Equation 

2.1). Also, I use the randomization method (Gross, et al., 1985) to solve the differential numerical 

equations system (Eq. (2.4)), which is given in Eq. (2.5) to obtain pn(t) probabilities.  

'
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                                   (2.4) 

Moreover, PD(t) is the instantaneous delay probability that a customer arrives at time t. This 

is also the probability that all servers are busy at epoch t and is given by Eq. (2.5).  

                                                             
( ) 1

0

( ) 1 ( )
s t

D n

n

P t P t




                                                          (2.5) 

The analytic sequence for each scenario is as follows: 



19 
 

 Used the fix scenario’s parameters, including λ, the mean arrival rate; µ, the service rate; 

RA= A/ λ, the relative amplitude; τ, the target probability of delay; and PP, the length of 

the planning period.  

 Divide each workday into planning periods of length PP (e.g., one hour) and compute the 

average arrival rate λPP by integrating λ(t) in Eq. (2.1) over the interval.  

 For each PP, an approximation of the real M(t)/Ms(t)/s(t) system by a stationary M/Ms(t)/s(t) 

model with the fixed arrival rate λPP and state-dependent service rate µs(t) to find the 

minimum staffing level SPP that satisfies the target delay probability τ. 

 Simulate the real system at 5-minute intervals by numerically solving Eq. (2.4), keeping 

the staffing level fixed at SPP during each period. 

 Use the Pn(t) probabilities to compute the average delay probability. 

Table 1 shows the value of each parameter used in the model. Also, the positive and 

negative alpha values are for increasing and decreasing approaches. I analyze a complete factorial 

trial design to test SIPP reliability, with a total of 1,944 possibilities for each approach (parameter 

combinations). 
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Table 1. Experimental Setting 

Parameter setting  Value  

Average arrival rate: λ  {2, 4, 8, 16, 32, 64} 

Maximum service rate: μmax  {1.25, 1.5, 1.75} 

Target delay probability: τ {0.05, 0.1, 0.2} 

Relative amplitude: RA  {0.1,0.5,1} 

Length of planning period: PP {0.25, 0.5, 1, 2} 

Service rate slope: α  {−0.08, −0.04, −0.02, 0.02, 0.04, 0.08}  

 

In the experiments, I set µmin = 1, and the service rate function adheres to Eq. (2.2) and 

Eq. (2.3). I execute each scenario using the above-described SIPP process, and I then keep track 

of how many half-hours (denoted by u) occur when the average delay probability is at least 10% 

higher than the target. I regard SIPP to be reliable for a scenario if the corresponding u = 0 and to 

be unreliable if u > 0 following (Green, et al., 2001).  

2.4. Result and Discussion 

2.4.1. SIPP State-dependency  

In this section, I investigate the SIPP reliability where the service system has a state-

dependent model. To have a state-dependent model for service rate, the queuing model is 

M/Ms(t)/s(t), where the service rate is Ms(t), which depends on the number of servers at time t, which 

is s(t). The state-dependent model is analyzed as two different increasing and decreasing scenarios. 

2.4.1.1. Increasing Scenario 

Figure 3 illustrates the SIPP approach’s state-dependent for increasing approach. The 

figures show how each parameter affects the system's SIPP reliability when the other parameters 
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are different, as shown by solid orange lines. As the typical arrival rate rises, SIPP becomes less 

reliable. When RA = 1, the SIPP reliability is severely reduced by an increase in RA, with the 

unreliability of 83.95%. The performance of the SIPP is not significantly affected by changes to 

the service rate-dependency µmax and α. This fact demonstrates that in all experiences, the µmax 

never achieves its maximal condition. Since personnel levels are set over more extended planning 

periods, the SIPP is typically less accurate, and the changes in arrival rates are undermined. As 

expected, SIPP performs better as the target QoS is more relaxed (i.e., higher τ). 

  

  

  
Figure 3. Effects of parameters on increasing SIPP reliability- increasing approach 
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2.4.1.2. Decreasing Scenario 

Figure 4 summarizes the state-dependent SIPP approach's result for decreasing approach. 

The solid orange lines show the influence of each parameter on the SIPP reliability when other 

parameters change. When the arrival rate increases, the SIPP reliability decreases. Moreover, for 

higher RA, the reliability of SIPP decreases, where the unreliability of RA is 81.17% at RA=1. 

Like SIPP in an increasing approach, µmax and α do not significantly affect SIPP reliability where 

µ never reaches a maximum value. For higher PP (PP=2), the unreliability of SIPP is near 47%. 

Moreover, the SIPP reliability is increased for the higher probability of delay. 

  

  

  
Figure 4. Effects of parameters on increasing SIPP reliability- decreasing approach 
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2.4.1.3. Classification Tree 

Figure 5 and Figure 6 represent the SIPP unreliability for increasing and decreasing 

approaches. According to Figure 5, the SIPP is unreliable in increasing approach while the scenario 

has RA = 0.1, 0.5, PP = 0.25, 0.5, 1, and lambda = 2, 4 decreased. Also, the scenarios with RA = 

1, lambda= 2, 4, and target probability delay = 0.1, 0.2, and PP = 0.25, 0.5 has a high SIPP 

reliability. On the other hand, Figure 6 shows the SIPP unreliability for decreasing scenarios; for 

RA = 1 and lambda> 4, SIPP has unreliable. Also, the scenarios with PP= 0.25, 0.5, and 1 have a 

low SIPP reliability. 

 

Figure 5. Classification tree- Unreliability of state-dependent model-increasing approach 
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Figure 6. Classification tree- Unreliability of state-dependent model-decreasing approach 

2.4.2. Ignoring the SIPP State-dependency  

In this section, I try to examine the SIPP reliability while I ignore the state-dependent 

service rate model. I ignore the state-dependency service rate model and use an M/M/s(t) (instead 

of an M/Ms(t)/s(t)) system in step (ii) of the SIPP approach, considering the average system service 

rate for all states (I refer to this approximate model as state-independency). 

2.4.2.1. Increasing Scenario  

The dashed blue lines in Figure 3 illustrate how the system performance would decline if 

step (ii) of the SIPP approach used an M/M/s(t) system rather than an M/Ms(t)/s(t) system, taking 

into account the average system service rate for all states (I refer to this approximate model as 

state-independency). As the arrival rate (and consequently, system load) rises, the effects become 

more severe, resulting in 45.37% unreliability at λ= 64. When RA = 1, the state-dependent SIPP 

is already so unstable that ignoring state-dependencies does not significantly worsen the 

performance. To complement my findings, I look into system parameter combinations where 
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neglecting state-dependent service rates significantly lower QoS. To improve the SIPP approach's 

reliability for the system, I will change it in addition to my analyses. 

2.4.2.2. Decreasing Scenario 

According to Figure 4, neglecting the state-dependency of service rate has no positive 

effect on reliability. The dashed blue line in the figure indicates ignoring the state-dependencies 

model of service rate. Like the increasing scenario, I used an M/M/s(t) (instead of an M/Ms(t)/s(t)) 

system in step (ii) of the SIPP approach, considering the average system service rate for all states. 

The result shows that while λ increases, the reliability is not superior to the state-dependent service 

rate strategy. The SIPP reliability is unaffected by changing the µmax and when the unreliability of 

µmax is increasing continuously. Because the state-dependent technique is already highly unreliable 

for RA = 1, the state-dependency has no impact on SIPP reliability. The dependability of SIPP 

remained unchanged for longer PP and higher delay probabilities. 

2.4.3. Reliability with/without SIPP State-dependency 

Table 2 and Table 3 show the average amount of system delays for two increasing and 

decreasing scenarios. According to these tables, the bold font indicates that the average number of 

half-hour target probability delays by at least 10% for the state-independent model is higher than 

for state-dependent ones. So, it is proof that ignoring the state-dependency of service rates will 

make SIPP unreliable. Indeed, ignoring the state-dependency of service rate increases the 

probability of delay.  
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Table 2. Reliability/unreliability of state-dependency and independency (based on a half-hour 

target delay of 10%- increasing approach) 

State-dependent 
State-independent 

Reliable Unreliable Total 

reliable 1057 266 1323 

Unreliable 8 613 621 

Total 1065 879 1944 

 

Table 3. Reliability/unreliability of state-dependency and independency (based on a half-hour 

target delay of 10%- decreasing approach) 

State-dependent 
State-independent 

Reliable Unreliable Total 

reliable 1164 165 1329 

Unreliable 6 609 615 

Total 1170 774 1944 

 

Furthermore, Table 4 indicates the total staffing requirement in the SIPP average with and 

without the state-dependent model. The number of staffing for the state-dependent model is 0.6% 

more than staffing when I ignore the state-dependent of service rate. Indeed, by comparing the 

result from Table 2 and Table 3 with Table 4, the state-dependent model is more reliable with good 

staffing for services.  

Table 4. Staffing requirement in SIPP Average method 

Scenario 
Method 

State-dependent State independent 

Increasing 1773678 1793878 

Decreasing 2343428 2298160 

Total 4117106 4092038 

 



27 
 

2.4.4. SIPP Improvement 

Results in the preceding section showed that the traditional SIPP technique has drawbacks. 

The issues are severe enough to invalidate SIPP's use in many service systems. The following 

logical query is, "Are there straightforward substitutes that perform better for systems for which 

SIPP is unreliable?" In this part, I investigate the validity of three different SIPP-based staffing 

requirement techniques. 

2.4.4.1. SIPP Max 

According to Green et al. (2001), the usage of the planning period average to represent the 

arrival rate over the whole planning period is the cause of many of SIPP's reliability issues. Using 

the maximum value of lambda for the planning period instead, as this frequently results in 

understaffing, is one potential solution. The SIPP Max technique is the name of this modification. 

I ran 3,888 scenarios described in sections 2.4.1 and 2.4.2 for increasing and decreasing approaches 

using the SIPP Max method. The result of increasing and decreasing approaches are explained as 

follows. 

      2.4.4.1.1. Increasing 

The dashed blue lines in Figure 7 illustrate the reliability of the SIPP Max- increasing 

approach. In this approach, I used the state dependency model and used M/Ms(t)/s(t) system. The 

figure shows that SIPP Max is always more reliable than standard SIPP, which is referred to as the 

SIPP average. While the SIPP average is unreliable for 621 of the 1,944 experiences run, SIPP 

Max is unreliable for 121 experiments. Moreover, the SIPP max is safe whenever α > 0.04. Also, 

for a low arrival rate, λ = 2, the reliability of SIPP Max is high, and for higher λ, SIPP Max is not 

safe. Moreover, like the SIPP average, the performance of the SIPP is not significantly affected by 

changes in µmax because µmax never achieves maximum conditions. Also, the SIPP Max 
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reliability for low relative amplitude (RA≤ 0.5) is high. Since personnel levels are set over more 

extended planning periods, the SIPP is typically high accurate. As expected, SIPP performs better 

as the target QoS is more relaxed (i.e., higher τ).  

On the other hand, from Figure 8, which gives the SIPP Max- increasing approach results, 

I see that none of any experiences works for the case with µmax and α. This is likely the result of 

Figure 7 describing each parameter's behavior patterns in the SIPP max-increasing approach. 

According to  Figure 8, the unreliability of SIPP Max is high when RA=1, PP=0.25, τ= 0.05. On 

the other hand, while RA=0.1,0.5 and PP=0.5, 1, 2, the reliability rate of the SIPP Max-increasing 

approach is high. 
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Figure 7. Effects of parameters on SIPP Max reliability- increasing approach 
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 Figure 8. Reliability of SIPP Max- Increasing approach           

      2.4.4.1.2. Decreasing 

Figure 9 summarizes the result of the SIPP Max-decreasing approach. The dashed blue 

lines show the influence of each parameter on the SIPP reliability when other parameters change. 

While the arrival rate increase, the SIPP Max reliability decrease. Also, whenever RA= 1, the 

reliability of SIPP Max decrease. Moreover, for higher µmax and α, the reliability of SIPP Max is 

improved, where for α = -0.02 and µmax = 1.75, the SIPP Max is 4.17% and 3.55 respectively. 

For longer planning periods, whenever PP ≥ 1, the reliability of SIPP Max is high. Moreover, the 

SIPP reliability is increased for the higher probability of delay. 

According to Figure 10, which shows the reliability of the SIPP Max- decreasing approach, 

102 unreliable experiences happened while RA=1, PP=0.25,  and λ=16, 32, 64. On the other hand, 
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most reliability of the SIPP Max-decreasing approach occurred while RA=0.1, 0.5 (67% reliable), 

RA=0.1, 0.5, and PP= 0.5, 1, 2 (25% reliability). 

 
 

  

  
Figure 9. Effects of parameters on SIPP Max reliability- decreasing approach 
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Figure 10. Reliability of SIPP Max-decreasing approach 

2.4.4.2. SIPP Mix 

When the arrival rate decreases, the SIPP average is more likely to be understaffed since 

there is a lag between the arrival rate and the ensuing delay. Therefore, employing the maximum 

arrival rate for the planning period should be the most cost-effective option for those planning 

periods during which the arrival rate strictly decreases or achieves its maximum value. Therefore, 

the SIPP Mix technique is the name of modification that employs the average planning period 

arrival rate of periods in which the arrival rate is strictly increasing and the maximum planning 

period arrival rate otherwise. I ran 3,888 scenarios for increasing and decreasing approaches using 

the SIPP Mix method. The result of increasing and decreasing approaches are explained as follows. 
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       2.4.4.2.1. Increasing Scenario 

The solid green lines in Figure 11 illustrate the reliability of the SIPP Mix- increasing 

approach. The figure shows that SIPP Mix is always as or more reliable than standard SIPP, which 

is referred SIPP average. While the SIPP average is unreliable for 621 of the 1,944 experiences 

run, SIPP Mix is unreliable for 213 experiments. The experiments show that the reliability of SIPP 

Mix is high for a low arrival rate, λ = 2. Moreover, unlike the SIPP average, the reliability of the 

SIPP Mix for α > 0.04 is better. Also, the SIPP Mix reliability for the lower RA, RA≤ 0.5, is high. 

Since personnel levels are set over more extended planning periods, the SIPP is typically high 

accurate, specifically for PP=1, 2. As expected, SIPP performs better as the target QoS is more 

relaxed (i.e., higher τ). According to Figure 12, which illustrates the reliability of the SIPP Mix- 

increasing approach, the dark green box is related to unreliability experiences among 1944 

experiences, and the blue box shows the reliability ones.  From Figure 12, the most unreliable 

experiences happened while RA=1 and PP=0.25, 0.5. Moreover, when RA=1, PP=0.25, 0.5, and 

λ≠2, 4, the reliability is decreased.  
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Figure 11. Effects of parameters on SIPP Mix reliability- Increasing approach 
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Figure 12. Reliability experiences SIPP MIX- Increasing approach 

       2.4.4.2.2. Decreasing Scenario 

Figure 13 illustrates the reliability of the SIPP Mix for decreasing approach. The figure 

shows that SIPP Mix is always as or more reliable than standard SIPP, which is referred SIPP 

average. While the SIPP average is unreliable for 615 of the 1,944 experiences run, SIPP Mix is 

unreliable for 145 experiments. The experiments show that the reliability of SIPP Mix is high for 

a lower arrival rate.  Also, the SIPP Mix reliability for RA≤ 0.5 is high. Since personnel levels are 

set over more extended planning periods, the SIPP is typically high accurate. 

Moreover, like the SIPP average, the SIPP Mix reliability is higher for higher target 

planning delays. Figure 13 shows the reliability of the SIPP Mix-decreasing approach, the dark 
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green box indicates the unreliability experiences percentage, and the blue one offers reliable 

experiences. As we can see, the most unreliable experiences, nearly 8% among 1,944 decreasing 

experiences, happened when RA = 1 and PP ≠ 0.25. Figure 14 describes the behavior pattern of 

parameters, especially for α and µmax. As we can see, the unreliability is high for lower µmax, 

where µmax ≤ 1.5.  

 
 

  

  
Figure 13. Effects of parameters on SIPP Mix reliability- decreasing approach 
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Figure 14. Reliability experiences SIPP Mix- Decreasing approach 

2.4.5. Summary  

Table 5 shows the state-dependent service rate model with the sinusoidal arrival rate 

model correctly identifying that SIPP Max is more reliable than SIPP Mix. Although the amount 

of staffing in SIPP Max is higher than in SIPP Mix, the reliability is high, and the SIPP Max 

method didn’t meet the target. Indeed, SIPP Max has high reliability without low delay with high 

staffing during the service time to deliver the services in the system.  

 

 

 



38 
 

Table 5. Staffing requirement SIPP methods 

Measure Scenarios SIPP average SIPP Max SIPP Mix 

Reliability 
Increase 1,329 1,823 1,731 

Decrease 1,323 1,842 1,799 

Staffing 
Increase 1,773,678 1,808,836 1,791,257 

Decrease 2,343,428 2,393,128 2,368,278 

 

2.5. Conclusion  

This chapter proposed the staff requirements in a service system with random cyclic 

demand and state-dependency service rate. Also, I used the Markovian model and SIPP approach 

to determine staff requirements in the EMS. By comparing the number of delays in the service 

system, SIPP Max can be more reliable than SIPP Mix and SIP average. In all parameter values, 

SIPP Max has a good performance and a low probability of delay.  

The finding described in this chapter is based on sinusoidal arrival rate and state-dependent 

service rate in the service system. Moreover, the chapter is based on the probability of delayed 

performance targets for some reasons. First, we are familiar with most real-world implementations, 

and the research on these issues used the likelihood of delay measures. Because, given the method 

of numerically solving the differential equations of the system, computation of probability delay 

was theoretically possible. Finally, adopting a performance metric with a single parameter makes 

the analysis more straightforward and clearer conclusions. 

This chapter addressed the staff requirement and capacity planning using the SIPP 

technique. Indeed, by using the sinusoidal arrival rate model and state dependency of service rate, 

I developed the SIPP approach to have highly reliable performance with a low level of delay in 

the service system. This approach is more broadly applicable in setting outside of service systems 

that provide interdisciplinary services, for instance, in emergency departments. This approach can 
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inform the successful implementation of capacity planning in the healthcare system and improve 

access to community-based healthcare. 

For future studies, researchers can apply some scenarios such as SIPP Max and SIPP Mix 

for service rate. Indeed, in the SIPP Max approach, the system selects the maximum level of 

service rate. Also, in the SIPP Mix approach, whenever the service rate is increasing level, the 

system uses the average level of service rate. Otherwise, the system uses the increased level of 

service rate.  
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3. TIME-DEPENDENT MAXIMAL COVERING LOCATION PROBLEM 

CONSIDERING REPOSITIONING AND AMBULANCE RANKING  

3.1. Introduction  

The EMS systems aim to provide prompt medical attention to preserve lives and lower 

morbidity. The ability to guarantee a rapid response time is crucial since EMS systems sometimes 

assist patients who need emergency requests. To meet the patient demand, the arrangement of all 

facilities in EMS systems, including the location of emergency facilities, ambulance stations, 

emergency vehicles, crew schedules, and ambulance routing, needs to be planned.  

An essential long-term planning issue in developing an EMS system that enables 

emergency response to calls is the placement of ambulance stations and the allocation of 

ambulances to these stations. The spatial and temporal variability of input parameters, such as 

demand and travel time, must be considered when determining the locations of ambulances. The 

need for ambulance requests varies by region and day (Cantwell, et al., 2013). The time it takes to 

go from the ambulance's position to the patient's location also depends on the time of day (Schmid 

& F.Doerner, 2010). In urban areas, the variance in travel times throughout different day hours can 

substantially impact the actual service level and cause delays while transferring the patient to the 

hospital. The urban areas of many developing nations have dense populations and congested 

roadways, which makes this difference more challenging and sometimes does not let ambulances 

pass (Boutilier & Chan, 2020).  

This chapter of my dissertation has utilized the percentage of emergency calls that should 

be answered within a predetermined time frame to assess the quality of an EMS system. When 

there is a strong probability that an ambulance will be available at the location closest to a call, a 

high level of service quality is attained. Therefore, a predetermined number of ambulances must 
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be distributed throughout the sites to ensure the highest possible level of coverage. Also, in 

mathematical modeling, maximizing the coverage and minimizing the response time are among 

the popular objective measures to select the best locations for ambulance stations. Erkut et al. 

(2008) demonstrated how these measurements are ineffective in differentiating between the effects 

of two different response times. These policies are predicated on the idea that territory is covered 

if it can be reached within a predetermined window. For instance, if the required coverage time is 

12 minutes, a patient’s place will be regarded as covered, 5 or 11.8 minutes away from an 

ambulance station. On the other hand, whether a patient’s place is 12.2 or 20 minutes from the 

ambulance station will be regarded as uncovered. This is a significant problem because the 

difference between 11.8 and 12.2 minutes may not be a problem, but the difference between 5 and 

11.8 minutes will be more problematic as the patients may lose their lives. In this manner, Erkut 

et al. (2008) presented a non-linear survival function that monotonically declines with response 

time and considered patients' chances of survival to solve the problem. Also, Raviarun et al. (2021) 

considered a continuous survival function-based objective by including station-level service 

rate, arrival rate, and the busy probability of ambulances to propose a mixed-integer non-linear 

program.  

This chapter also investigates finding the location of ambulances and their relocations 

between those ambulance stations. The location of ambulances has been selected among the 

demand zone as candidate locations should be placed. On the other hand, the concept of relocation 

has been utilized, which means the ambulance is placed at various base locations in consecutive 

time periods. Therefore, the ambulance should be relocated between two time periods. Also, to 

reduce the number of opened locations and their relocations, penalty cost has been given to them 
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to control the total costs of the network (Berg & Aardal, 2015). Indeed, considering penalties in 

the model allows the decision-makers to manage their budget better to avoid unnecessary costs.    

This chapter of my dissertation aims to consider the time dependency of ambulance 

location stations across the network and allocate the ambulance to the patients to cover more 911 

calls. The time dependency in location models is related to variations in travel time, availability of 

ambulances, and demand. Also, the model of this chapter is realistic since few studies dealt with 

the maximization of service coverage along with time dependency on travel time, availability of 

ambulances, and demand. The overall contribution of this chapter is as follows. First, I propose a 

Mixed-Integer Programming (MIP) model by considering the time dependency in the location 

model. Second, to maximize network coverage, I penalized the objective function to fully reflect 

the effect of opening the location and relocating the ambulance during the allocation to avoid high 

costs imposed on the network. Third, the proposed model is tested on a commercial CPLEX solver 

to find an optimal solution. Finally, the sensitivity analysis on crucial parameters has been done to 

show the applicability of the model. 

3.2. Literature Review 

Due to the importance of EMS planning, the location-allocation problem of ambulances 

has attracted much attention in the literature studies. In addition to context-free location models, 

(ReVelle, et al., 1977) provided an early assessment of ambulance location models. A summary of 

the evolution of operations research challenges for the planning of EMS and fire departments is 

provided (Goldberg, 2004). A review of ambulance localization problems using static, 

probabilistic, and dynamic models is presented by Brotcorne et al. (2003). A study of EMS 

planning issues, including issues with ambulance location, is presented by Aringhieri et al. (2017) 

throughout the entire emergency treatment route. In a review of relevant research that focuses on 
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the interdependencies across various challenges, Reuter-Oppermann et al. (2017) provided an 

overview of the logistical issues in EMS. A recent analysis of EMS fleet management challenges 

is presented by Bélanger et al. (2019),  with a particular emphasis on the location, relocation, and 

dispatch-related issues and the interactions between these issues. The comprehensive literature on 

ambulance location issues is more thoroughly surveyed in these review studies. Next, I provide an 

overview of a few papers that are pertinent to this chapter in this research. 

The Location Set Covering Model (LSCM) and Maximum Covering Location Problem 

(MCLP) are two early location models for placing ambulances that have been documented in the 

literature. To reduce the number of ambulances needed to cover all demand zones, Toregas et al. 

(1971) developed the LSCM. The goal of the MCLP, developed by Church et al. (1974), was to 

provide the greatest amount of coverage with a predetermined number of ambulances. In a seminal 

work employing queueing theory, Larson (1974) introduced the hypercube queuing model, which 

considers server congestion and coverage. The maximal expected covering location problem 

(MEXCLP), created by Daskin et al. (1983), maximizes the expected coverage while explicitly 

accounting for the busy likelihood of ambulances. The Maximum Availability Location Problem 

(MALP), developed by ReVelle et al. (1989), extended the MCLP to take server availability 

probabilities into account. To maximize the amount of demand that two ambulances can cover at 

one location, Gendreau et al. (1997) suggested the Double Standard Model (DSM). 

Emergency call demand follows a circadian rhythm, which implies that it changes 

continually throughout 24 hours. Low demand occurs at night, then rises to a peak at noon and 

another in the evening. This pattern describes how demand fluctuates (Cantwell, et al., 2015; 

Cantwell, et al., 2013;Momenitabar, et al., 2022; Momenitabar, et al., 2022).  To consider temporal 

fluctuation in demand, Repede et al. (1994) proposed the maximal expected coverage location 
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model with time variation (TIMEXCLP), an extension to the MEXCLP. A dynamic available 

coverage location (DACL) model was proposed by Rajagopalan et al. (2008) that considers several 

times with fluctuating demands and minimizes the number of ambulances while still maintaining 

a predetermined level of ambulance availability. Saydam et al. (2013) proposed an extension of 

DACL that considers two goals: reducing the number of ambulances and reducing the frequency 

of ambulance shift relocations. 

The time it takes ambulances to respond to patients is another significant input that changes 

throughout the day. The DSM is expanded by Schmid et al. (2010) to account for several periods 

with variable travel times throughout the day. An ambulance location model that considers 

response time uncertainty by considering a short random dispatch delay and the random journey 

time is presented by Ingolfsson et al. (2008). To account for temporal fluctuation in demand, travel 

duration, and ambulance availability, Berg et al. (2015) extended the MEXCLP. To reduce the 

number of stations and relocations while increasing predicted coverage, they penalize the target 

function by including the cost of opening new stations and moving ambulances. In a lower-middle-

income country setting of Dhaka, Bangladesh, Boutilier et al. (2020) explored the issue of 

identifying and routing ambulances while emphasizing the variability in geographical demand and 

uncertainty in trip times. To deal with data uncertainty, they combine field data and prediction 

models and employ a simulation-based methodology to address problems with the policy.  

Most models used to locate ambulances in the literature either employ coverage or response 

time restriction-based objective functions. Through their analysis of EMS performance metrics, 

McLay et al. (2010) concluded that varied response time criteria could be effectively employed as 

a proxy for survival probability and fairness. By extending the MSLP to incorporate heterogeneous 

patients with additional outcome metrics, such as survival function and coverage based on patient 
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category, Knight et al. (2012) developed the maximal expected survival location model for 

heterogeneous patients (MESLMHP). A more realistic ambulance location model is presented by 

Leknes et al. (2017) formulation of the maximum expected performance location problem for 

heterogeneous regions (MEPLP-HR), which computes the busy probability for each station 

separately while considering a heterogeneous performance measure for various patient categories. 

Andersson et al. (2020) proposed an adaptation to the MEPLP-HR that considers different periods 

and evaluates many scenarios, including closing an emergency department, designating cars for 

non-urgent calls, and time-dependent fluctuation in demand.  

Based on what has been discussed so far, a few studies dealt with finding simultaneously 

optimal locations of ambulance stations along with relocating ambulances when returning from 

serving demand zone. Also, no studies considered different parameters, including the availability 

of ambulances, demand, and travel time of ambulance arriving at the scene. Repede et al. (1994) 

proposed the TIMEXCLP, which introduced several time frames and increased the predicted 

coverage throughout the entire day. Also, Schmid et al. (2010) introduced the time dependency 

model, which is the extension of the Double Standard model that assumes that the travel time is 

time-dependent. Moreover, a penalty has been added for the number of relocations to deal with 

time-dependency in travel time. Therefore, this chapter aims to maximize the coverage along the 

network by minimizing the number of ambulance stations and penalizing the opened locations and 

their relocations to fully address EMS planning. Also, the model with penalty costs for relocation 

and locations between different time periods has been proposed. Moreover, the model of this 

chapter is realistic since few studies dealt with the maximization of service coverage along with 

time dependency on travel time, availability of ambulances, and demand, simultaneously. 

Furthermore, the ambulance stations have been ranked to prioritize the stations based on their 
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received calls. Indeed, the proposed model has applicability to be implemented in reality due to 

including the time independency and coverage maximization that are concerns of decision-makers.  

3.3. Problem Formulation   

In this section, firstly, the problem statement of this chapter has been proposed. Second, 

the mathematical formulation of the model has been discussed in detail.  

3.3.1. Problem Statement  

Assume that a geographical area has been divided into different zones to cover the patient’s 

needs promptly. Indeed, the demand of each zone is defined by the number of calls received from 

the patients. Accordingly, these calls need to be responded to as soon as possible to avoid the loss 

of the patient. For that purpose, some locations need to be established to place the ambulance. 

Figure 15 shows the schematic view of the covering location model that has been discussed in this 

chapter.  

 

Figure 15. Network of covering location problem  
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Also, each station is ranked 1 to r in providing patient service. For instance, rank 1 means 

that the ambulance station can be dispatched to the scene after receiving the call to respond to the 

patient. Rank 2 means the ambulance can be dispatched to the scene if the first ambulance station 

is not available. Also, the model of this chapter is a multi-period model, meaning that the time is 

divided into various times to comprehensively cover all 24 hours in a day. The model has the 

penalty cost for relocation and locations. This penalty works for the number of locations and 

relocation between time periods to decrease the cost in the time-dependent travel times model. 

Also, the model has the busy fraction, which is the percentage of time a resource—such as an 

ambulance, a location, or a system—is in use and thus unavailable to respond to incoming 

emergency calls.  

The problem here is to determine an optimal location of ambulance stations across all 

demand zones and allocate them to the demand zone to maximize the service coverage to the 

patients. Due to the high costs of establishing an ambulance location, the penalty has been given 

to the opened locations and the relocations of an ambulance in different periods to avoid the high 

cost imposed on the network.  

3.3.2. Mathematical Formulation  

Before proposing the equations of the model, the notation of the mathematical model has 

been defined which are as follows in Table 6 :  
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Table 6. Notation of the mathematical model 

Notation  Definition  

Set 

i Index of the demand zone 1,2,...,i I  

j Index of candidate locations of ambulances 1,2,...,j J  

k Index of ambulances 1,2,...,k K  

t Index of time, 1,2,...,t T  

t

iW  Index of base locations that can cover demand point i in period t 

r, q Index of ambulance station’s rank 1,2,...,r R , 1,2,...,q Q  

Parameters:  

tq  Busy fraction in period t 

  A penalty for each ambulance location 

  A penalty for each ambulance relocation 

tP  Number of available ambulances during period t  

 
M Large number  

tL  Maximum load which is assigned to each ambulance in each period 

it  Number of calls per unit times received from demand zone i in period t 

ijtS  Service time of received call from demand zone i responded by ambulance station j 

in period t 
Variables:  

jtX  The number of ambulances located at station j during period t 

iktY  If demand point i is covered by at least k ambulances during period t 

jZ  If the based location j is used at a one-time period 

ijtR  If the ambulance is relocated from location i to location j between period t and t+1 

ijrtdd  The proportion of demand from zone i covered by station j with rank r during period 

t jritDelta  If station j is assigned rank r for demand zone i during period t 

 

The proposed model of this chapter can be formulated as follows:  
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1

1 (1 ) k

it t t ikt it ijrt

i k t i j r t

MaxZ q q Y dd                                                        (3.1) 

2 j ijt

j i j t

MinZ Z R                                                                                                                 (3.2) 

Subject to:   

, 1,2,..., , 1,2,...,
t

t
i

p

jt ikt

kj W

X Y i I t T


                                                                                  (3.3) 

, 1,2,...,jt t

j W

X P t T


                                                                                                          (3.4) 

, 1,2...,jt j

t T

X M Z j J


                                                                                                     (3.5) 

( 1) , 1,2..., , 1,2..., 1jt ijt jit j t

i i

X R R X j J t T                                                            (3.6) 

1, 1,2...,jT ijT jiT j

i W i W

X R R X j J
 

                                                                                    (3.7) 

1, 1,2,..., , 1,2,..., , 1,2,...,jrit

j

Delta r R i I t T                                                              (3.8) 

, 1, 2,..., , 1, 2,..., , 1, 2,..., , 1, 2,...,jrit ijrtDelta dd i I j J r R t T                                        (3.9) 

, 1, 2,..., , 1, 2,..., , , 1, 2,...,jrit ijqtDelta dd i I J J q r R t T                                            (3.10) 

( 1) , 1,2,..., , 1,2,..., , | 1, 1,2,...,ijrt ij r t

j j

dd dd i I j J r R r t T                                   (3.11) 
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1, 1,2,..., , 1,2,...,ijrt

j r

dd i I t T                                                                                 (3.12) 

, 1,2,..., , 1,2,...,it ijt ijrt t jt

i r

S dd L X j J t T                                                           (3.13) 

, 1,2,..., , 1,2,...,
tP

ikt jrit

k j r

Y Delta i I t T                                                                    (3.14) 

, 1,2,..., , 1,2,...,j jrit

i t

Z Delta j J r R                                                                       (3.15) 

 , , , 0,1 , , , , ,

0 1, , , , ,

, ,

ikt j ijt jrit

ijrt

jt

Y Z R Delta i j k r t

dd i I i j r t

X Z j t

 

    

 

                                                                                   (3.16) 

The first objective function (Eq. (3.1)) aims to maximize the coverage of all demands 

across the network. The second objective function plans to penalize the number of locations that 

have been established. Also, the second term of Eq. (3.2) aimed at penalizing the total number of 

ambulance relocations between different periods. Eq. (3.3) ensures that all demand should be 

covered by at least k ambulances. Also, Eq. (3.4) confirms that the available number of ambulances 

in each period is limited. Eq. (3.5) indicates that the ambulance can be assigned to each location 

only if the ambulance stations are opened. Also, the balance between the number of ambulances 

in different periods has been ensured by Eq. (3.6) and Eq. (3.7).  

Eq. (3.8) through Eq. (3.12) have been written to show the coverage constraints for the 

model of this chapter. For instance, Eq. (3.8) shows that only one ambulance station can obtain 

one rank based on the model. While Eq. (3.9) assures that if the station is opened, the demand can 

be covered by that station. Eq. (3.10) tells us that one rank can be assigned to one station and 
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cannot be given to multiple stations. The more significant portion of demand has been given to a 

station with a higher rank, which is shown by Eq. (3.11). Eq. (3.12) guarantees that each demand 

zone in each period can only be covered by one station. The maximum service time availability at 

each station is shown by Eq. (3.13). Eq. (3.14) states that if one rank has been assigned to one 

station, then the demand can be covered by at least k ambulances. Eq. (3.15) represents the 

relationship between the location of the ambulance station and the rank of each ambulance station 

for covering the demand zone in each period. Lastly, the nature of all defined variables has been 

shown in Eq. (3.16).  

3.3.3. Solution Methodology  

To solve the propsoed multi-objetcive optimization model in section 3.3.1, the Epsilon 

constraint method has been utilized to obtain the result. This method continually optimizes one of 

the objective functions if the decision maker defines the highest acceptable constraint for other 

objectives in the form of constraints. The structure of this method has been proposed as follows:  

 Select one of the objective functions as desired. 

 Solve the problem each time according to one of the objective functions and extract 

the optimal values.  

 Get a table of values for 2 ,..., n  .  

 Each time solve the problem with the primary objective function with any of the 

values 2 ,..., n  .  

 Report the Pareto frontier.  

 By changing the values to the right-hand side of the constraints ( i ), efficient 

solutions to the problem are obtained.  



52 
 

Also, Eq. (3.17) shows how this technique can be formulated and adjusted to the proposed 

model of this chapter. 

1
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M x x X

x

x











                                                                                                            (3.17)                                                  

3.4. Computational Results  

The proposed model of this chapter is a Mixed Integer Programming (MIP) model. 

Therefore, it can be solved using commercial solvers like CPLEX, Gurobi, and BARAN. This 

chapter utilizes the CPLEX solver to obtain the result. Also, all computations were executed on a 

2.9 GHz Intel® Core i7-3520M PC with 16 GB of RAM.  

3.4.1. Input Parameters  

The input data for sunning the model has been provided in Table 7. It is noteworthy to 

mention that the input data of the model has been obtained from Berg et al. (2015).   
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Table 7. Input data of the model  

Parameters Definition Value 

𝑞𝑡 The busy fraction in period t Uniform (0.15, 0.45) 

𝛽 A penalty for each ambulance location 360.00 

𝛾 A penalty for each ambulance relocation 3.60 

𝑃𝑡 Number of available ambulances during period t Uniform (5, 10) 

𝐿𝑡 
Maximum load is assigned to each ambulance in each 

period 
Uniform (190, 200) 

𝑑𝑖𝑡 Demand for point i in period t 
Uniform (2000, 

2500) 

𝜆𝑖𝑡 
Number of calls per unit times received from demand 

zone i in period t 
Uniform (9, 10) 

𝑆𝑖𝑗𝑡 
Service time of received call from demand zone i 

responded by ambulance station j in period t 
Uniform (0.20, 0.25) 

 

To run the model, I have generated 15 demand points and six candidate locations for 

placing ambulances in 6 different periods. As can be seen in Table 7, the busy fraction is uniformly 

generated between 0.15 and 0.45. The penalty for each ambulance location and relocation is 

considered to be 0.5 and 0.005 percent of the total number of demands in all periods. I divide the 

time between 6 seasons, which is shown in Table 8 (see reference (Berg & Aardal, 2015)). The 

deviation from the average demand during a period is referred to as call intensity. As a result, the 

average number of calls per hour during period 6 is only 88% of the daily average. Travel time 

displays the deviation from the average travel time over a given period. For example, traveling 

from point A to point B takes 15% less time in period 1. Also, the demand, number of ambulances, 

and call duration are used to calculate the busy fractions. The call duration is the average amount 

of time an ambulance is unavailable after responding to a call. This time does not include the time 

it takes to return to the base because ambulances are dispatched during that time.  
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Table 8. Input data for different periods    

Interval Call intensity Travel time Number of ambulances Busy fraction 

00:00-04:00 0.72 0.85 5 0.212 

04:00-08:00 0.58 1.22 7 0.283 

08:00-12:00 1.13 1.35 10 0.429 

12:00-16:00 1.84 0.97 10 0.455 

16:00-20:00 1.31 1.24 10 0.363 

20:00-24:00 0.88 0.93 7 0.257 

 

3.4.2. Basic Results  

After running the model of this chapter, the result is shown in Table 9. Based on Table 9, 

I can see that different coverage levels in each time period have been obtained. Also, the total 

number of calls is between 89% and 96% in each interval. Also, the third and fourth columns show 

the number of locations and relocations of ambulance sites. The computational time of running 

this model is about 25 seconds. Also, I have set the limitation time for the CPLEX solver to 300 

seconds which could obtain a result less than this threshold time.  

 Table 9. Result of the model     

Interval Percentage of coverage Number of locations Number of relocations 

00:00-04:00 0.962 5 1 

04:00-08:00 0.953 6 0 

08:00-12:00 0.898 4 0 

12:00-16:00 0.935 6 2 

16:00-20:00 0.917 5 1 

20:00-24:00 0.942 6 0 

00:00-24:00 0.934 6 4 

 

As can be seen, the coverage is different in different periods. The final result shows that a 

total number of 6 locations and four relocations is needed to reach the coverage of 93.4%.  



55 
 

3.4.3. Sensitivity Analysis   

3.4.3.1. Response Time   

The result of the basic model is obtained according to the maximum travel time of 12 

minutes, which is the response time of 15 minutes minus a pre-trip delay of 3 minutes. Indeed, the 

pre-trip delay is the time between the arrival call and when the ambulance leaves the center. This 

sub-section aims to know changes in response time and how much they affect the coverage of the 

model. In this way, the result of variations in response time is shown in  

Figure 16. As is visible, the coverage value increased by increasing the response time. Also, 

it can be noted that increasing the response time after 16 minutes has not resulted in changes 

significant in the service coverage.   

 

Figure 16. Coverage of ambulances based on various response times  

3.4.3.2. Penalty Coefficient  

Another important parameter that I have included in this chapter is the effect of changing 
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of these two parameters on objective function has been shown in Table 10. As can be seen, ignoring 

the penalties in the objective function resulted in improving the expected coverage considerably 

but led to an increase significantly in the total number of locations and relocations in the model 

with 11 and 18, respectively. Indeed, considering penalties minimized the total costs of 

establishing the ambulance locations. Interestingly, the trade-off between the costs of opening 

ambulance locations and service coverage can help the decision-makers behave properly.   

Table 10. Effects of penalties 

 Objective function 

With Penalties Without penalties 

Expected coverage 0.934 0.978 

Number of locations 6 11 

Number of relocations 4 18 

 

3.4.3.3. Availability of Ambulances  

The other parameter is the availability of ambulances in different periods of time. In Table 

11, this parameter has been generated using uniform distribution between 5 and 10, which is 

considered a basic scenario. But, some other scenarios have been included, which show the 

availability of ambulance lower and upper than of the basic scenarios, which are shown in Table 

11.  

Table 11. Availability of an ambulance in different scenarios   

Time interval Scenario 

1 2 3 (basic)  4 5 

00:00-04:00 1 3 5 7 9 

04:00-08:00 3 5 7 9 11 

08:00-12:00 6 8 10 12 14 

12:00-16:00 6 8 10 12 14 

16:00-20:00 6 8 10 12 14 

20:00-24:00 3 5 7 9 11 
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The result of different scenarios on various time intervals for the first objective function 

has been reported in Table 12. As can be seen, increasing the availability of an ambulance resulted 

in improving the coverage of ambulances in the network. This is expected since increasing the 

number of ambulances helps the network to cover more demand, which leads to improving the 

first objective function. Also, it can be understood that depending on how much the decision maker 

wants to invest, the coverage can be improved.  

Table 12. Impact of availability of an ambulance on the first objective function    

Time interval Percentage of coverage 

Number of locations 

Number of relocations 

  

1 2 3 (basic)  4 5 

00:00-04:00 0.928 0.945 0.962 0.971 0.983 

04:00-08:00 0.917 0.930 0.953 0.966 0.975 

08:00-12:00 0.856 0.873 0.898 0.912 0.929 

12:00-16:00 0.895 0.911 0.935 0.945 0.958 

16:00-20:00 0.872 0.899 0.917 0.924 0.934 

20:00-24:00 0.905 0.928 0.942 0.951 0.967 

00:00-24:00 0.895 0.914 0.934 0.945 0.957 

 

3.4.4. Time Dependency Versus Time-independency in the Parameter of the Model    

As I discussed previously, the proposed model of this chapter is time-dependent. It means 

that the busy fraction, travel time, demand, and number of ambulances are constant during the day. 

Therefore, I solve the model in a time-independent condition and compare it with a time-dependent 

condition to see how much coverage and number of locations alter. The result, which is brought 

in Table 13, shows that running the model in a time-independent condition resulted in the loss of 

1.7 % of the total received calls.  
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Table 13. Effects of penalties  

 Time independent Time-dependent 

Expected coverage 0.917 0.934 

Number of locations 6 6 

Number of relocations 0 4 

 

3.4.5. Compared with Published Studies     

The result of this chapter has been compared with published studies to show how much the 

proposed model could bring benefit to the decision-makers (Berg & Aardal, 2015) and (Raviarun 

A. Nadar, 2021). By proposing the model of this chapter, I could obtain better results in terms of 

expected coverage and minimize the total costs of opened locations and ambulances’ relocations 

between those opened locations. For example, Berg et al. (2015) reported the expected coverage 

of their time-dependent MEXCLP with the value of 91.5%, while this value for the model of this 

chapter is 93.4%. Also, the result of time-independent MEXCLP has been compared, and it found 

that the model of this chapter resulted in better coverage with a value of 91.7% versus 90.15%. 

This comparison shows that considering time dependency on travel time, availability of 

ambulances, and demand, simultaneously resulted in reaching better ambulance coverage in the 

network, which led to delivery services efficiently to the patient's needs.  

3.4.6. Scalability  

  To show the scalability of the model, the proposed model has been tested on large-size 

networks to ensure that the model has capability in real conditions. The network considered in this 

chapter consists of 161 demand zone, and 9 of these demand zone are indicated as candidate base 

locations for ambulance locations. Figure 17 shows the demand points across the real network. 

Also, the input parameters of the model have been provided in Table 14.  
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Figure 17. Map of demand points in real condition   

Table 14. Data input of the real network     

Interval Total calls Travel time Number of ambulances Busy fraction 

00:00–02:00 27,380 1.005 13 0.2678 

02:00–04:00 23,212 0.983 13 0.1973 

04:00–06:00 18,942 1.036 13 0.1625 

06:00–08:00 18,139 1.081 13 0.2275 

08:00–10:00 39,430 1.008 18 0.3811 

10:00–12:00 44,518 0.970 18 0.4912 

12:00–14:00 47,526 0.979 18 0.5483 

14:00–16:00 49,527 0.981 18 0.5151 

16:00–18:00 35,342 1.003 17 0.4866 

18:00–20:00 41,808 0.987 17 0.4200 

20:00–22:00 42,505 0.962 17 0.3639 

22:00–24:00 33,114 0.999 17 0.2837 
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Based on the input data into the model of this chapter, the result has been reported in Table 

15. Again, the CPLEX solver was utilized to solve the model in a large size in just 10 minutes and 

38 seconds to provide the result.  

As can be seen, in Table 15, the expected coverage is around 97%, which shows the 

expected coverage that has been reported by the solver. Also, a total number of 5 locations has 

been chosen for the ambulance locations among the nine available candidate locations, and a total 

number of 3 relocations have been selected to occur between different ambulance stations in 

different time periods of the network.  

On the other hand, the result of the model has been compared with existing conditions, 

which shows that the model could find better results in terms of expected coverage and the total 

number of locations and their relocations. Also, by comparing the result of the model with the 

current situation, the number of locations that need to be established has decreased from 9 to 5, 

which shows a reduction of almost 44.5 %. Also, the same situation has been obtained for the total 

number of relocations in the network, with a 50 % decrease.  

Table 15. Result of the real network     

Title Value  

Optimal Current  

Expected coverage   0.9751 0.9328 

Number of locations  5 9 

Number of relocations  3 6 

 

3.5. Conclusion  

This chapter proposed a time-dependent probabilistic location model for emergency 

medical services. By presenting a mathematical model, I could find optimal locations of ambulance 

stations across the network to serve received calls. Also, my model has considered relocations in 
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different periods to avoid the high costs of opening ambulance stations. After running the model, 

I understood that the model was able to obtain an optimal solution by covering more demand 

compared to the model in the literature. Indeed, my proposed model, compared with the time-

independent model in the literature, could find better coverage. More interestingly, I found that 

my model was sensitive to some critical parameters, including penalties for opening ambulance 

stations and the relocations of ambulances between different periods, which resulted in more 

coverage (see Table 10) with more number of opening ambulance stations.  

Considering temporal variance in ambulance allocation enables better planning in 

estimating ambulance needs and coverage. This improvement comes at the expense of a more 

computationally challenging problem that requires longer to solve and more ambulance moves 

between intervals. These factors imply that, despite the minor benefits, dividing a day into more 

periods may not be as beneficial as increasing the number of periods. Effective location-allocation 

decisions are essential since they impact short-term EMS planning decisions such as crew 

planning, ambulance relocation, and real-time route planning for ambulances. For instance, the 

number of ambulances needed at various times of the day can be used to decide the number of 

crews to assign and the scheduling of shifts for these crews.  

The sensitivity analysis has been done on some crucial parameters of the proposed model. 

First, the response time has been involved in evaluating its effect on the expected coverage of the 

model. It found that the coverage value improved by increasing the response time. The second 

parameter was to involve the effects of two penalties for opened locations and their relocations 

between different periods. The results confirmed that ignoring the penalties in the second objective 

function resulted in improving the expected coverage considerably but led to an increase 

significantly in the total number of locations and relocations in the model with 11 and 18, 
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respectively. Therefore, it can be concluded that the trade-off between the costs of opening 

ambulance locations and service coverage helps the decision-makers to decide properly.  

Also, the model has been solved in two conditions, in which the busy fraction, travel time, 

demand, and the number of ambulances were constant during the day (time-independent), 

compared to other conditions where the model was time-dependent. The result represented that 

running the model in a time-independent condition led to the loss of 1.7 % of the total received 

calls. The last parameter of the model was the impact of ambulance availability on the first 

objective function. The result confirmed that increasing the availability of an ambulance resulted 

in improving the coverage of ambulances in the network, which is expected.   

For future studies, researchers can focus more on factors including disruption, weekends, 

and seasonal factors that might affect the model's result. Also, some solution procedures can be 

applied for solving the model in a large size by utilizing a meta-heuristics algorithm in the fastest 

time.   
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4. CONCLUSION  

This research was carried out to determine performance measures of the EMS system in 

the US. The second chapter of this dissertation determined the staff requirement in the service 

system using the Markovian chain process and SIPP approach with random cyclic demand and 

state-dependent service rates. In this chapter, three approaches have been proposed, including SIPP 

Average, SIPP Max, and SIPP Mix, with two increasing and decreasing scenarios by applying 

some reliable methods to evaluate the staff scheduling in the service system.   

In the third chapter of this dissertation, the mathematical programming model has been 

proposed to determine an optimal location of the ambulance station by providing services to the 

patients. Also, it is assumed that each area has demand that has been defined by the number of 

patient calls, which need to be responded to as soon as possible to avoid the patient's loss.  

Moreover, according to the result of the research, the findings are listed as follows:  

1. The second chapter indicated that whenever the arrival rate has a sinusoidal function, and 

the service rate is a state-dependent function, the SIPP Max is more reliable for determining 

staff requirements. Also, this method is reliable because the probability of delays in the 

service system is lower than the SIPP average and SIPP Mix approaches. The family of 

SIPP-based techniques examined here aimed at generating the bare minimum staff numbers 

that were practicable.  

2. In the third chapter, the time-dependent probabilistic location model has been utilized in 

the service system to determine the optimal location of ambulances across the network to 

maximize coverage. Also, the coverage rate has been compared, which resulted in better 

results compared with past studies. Moreover, the sensitivity analysis showed that the 

penalties for opening ambulance stations and the relocations of ambulances between 
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different periods, with more opening ambulance stations, significantly impacted the model 

of this chapter. 

This dissertation demonstrated that the EMS could be more efficient in management. It 

introduced a method for staff requirements by analyzing the factors that have an effect on 

ambulance response time and ambulance coverage. In addition, this study has some 

implementations as follows:  

1. According to the second chapter, the method can be used in various healthcare settings, 

including community health centers, walk-in clinics, and urgent care facilities. Also, 

implementing the SIPP approach can inform the successful implementation of capacity 

planning in the healthcare system and improve access to community-based healthcare to 

have the lowest delay in the service systems. 

2. Because ambulance crews are the EMS system's first point of physical contact with 

patients, a faster response time can conceivably enhance the likelihood that patients would 

receive early medical interventions. Implementing strategies, such as providing more in-

depth information to analyze the best approach, such as the best route and location for EMS 

responders to use quick response vehicles, may help shorten the response time of 

ambulances and improve the morbidity and mortality results for patients. 

3. Better planning in estimating ambulance requirements and coverage is made possible by 

considering temporal variation in ambulance allocation. This improvement comes at the 

expense of a more computationally difficult problem that takes longer to solve and more 

ambulance relocations between intervals. These elements suggest that splitting a day up 

into more periods may not be as effective as increasing the number of periods, even with 

the marginal benefits. Additionally, selecting the number of periods that strike a balance 
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between the improvement in solution and the rise in computational demands and 

ambulance relocations is essential. Effective location-allocation choices are crucial 

because they influence short-term EMS planning choices like crew planning, ambulance 

relocation, and real-time route planning for ambulances. 

For future research, the two proposed chapters can be extended as follows: In the second 

chapter, researchers can utilize the SIPP approach for staff requirements with available servers at 

each time. Moreover, researchers can apply some scenarios, such as SIPP Max and SIPP Mix, for 

service rate. Indeed, in the SIPP Max approach, the system selects the maximum level of service 

rate. Also, in the SIPP Mix approach, whenever the service rate is increasing level, the system uses 

the average level of service rate. Otherwise, the system uses the increased level of service rate. For 

the third chapter, researchers can focus more on factors including disruption, weekends, and 

seasonal factors that might affect the result of the model. Also, some solution procedures can be 

applied for solving the model in a large size by utilizing a meta-heuristics algorithm in the fastest 

time.   

 

 

 

 

 

 

 



66 
 

REFERENCES 

A.H. Nasser, A. et al., 2020. Every minute counts: The impact of pre-hospital response time and 

scene time on mortality of penetrating trauma patients. The American Journal of Surgery, 220(1), 

pp. 240-244. 

A.Waalewijn, R., Vos, R., G.P.Tijssen, J. & W.Koster, R., 2001. Survival models for out-of-

hospital cardiopulmonary resuscitation from the perspectives of the bystander, the first 

responder, and the paramedic. Resuscitation, 51(2), pp. 113-122. 

Adeyemi, O. J., Arif, A. A. & Paul, R., 2021. Exploring the relationship of rush hour period and 

fatal and non-fatal crash injuries in the U.S.: A systematic review and meta-analysis. Accident; 

Analysis and Prevention, Volume 163. 

Adeyemi, O. J., Paul, R. & Arif, A., 2021. An assessment of the rural-urban differences in the 

crash response time and county-level crash fatalities in the United States. the Journal of Rural 

Health. 

Alanis, R., Ingolfsson, A. & Kolfal, B., 2013. A Markov Chain model for an EMS system with 

repositioning. Production and Operations Management, 22(1), pp. 216-231. 

Alnowibet, K. A. & Perros, H., 2006. The Nonstationary Loss Queue: A Survey. Communication 

Networks and Computer Systems, pp. 105-125. 

Andersson, H. et al., 2020. Using optimization to provide decision support for strategic 

emergency medical service planning – Three case studies. International Journal of Medical 

Informatics, Volume 133. 



67 
 

Aringhieri, R., Bruni, M., S.Khodaparasti & Essen, J., 2017. Emergency medical services and 

beyond: Addressing new challenges through a wide literature review. Computers & Operations 

Research, Volume 78, pp. 349-368. 

Atar, R., Keslassy, I. & Mendelson, G., 2019. Subdiffusive Load Balancing in Time-Varying 

Queueing Systems. Operations Research, 67(6), pp. 1678-1698. 

Atlason, J., Epelman, M. A. & Henderson, S. G., 2007. Optimizing Call Center Staffing Using 

Simulation and Analytic Center Cutting-Plane Methods. Management Science, 54(2), pp. 295-

309. 

Bakke, H. K. et al., 2015. Bystander first aid in trauma - prevalence and quality: a prospective 

observational study. Acta Anaesthesiologica Scandinavica, 59(9), pp. 1187-1193. 

Batt, R. J. & Terwiesch, C., 2016. Early Task Initiation and Other Load-Adaptive Mechanisms in 

the Emergency Department. Management Science, 63(11), pp. 3531-3551. 

Bélanger, V., Ruizb, A. & Soriano, P., 2019. Recent optimization models and trends in location, 

relocation, and dispatching of emergency medical vehicles. European Journal of Operational 

Research, 272(1), pp. 1-23. 

Beojone, C. V. & Souza, R. M. d., 2020. Improving the shift-scheduling problem using non-

stationary queueing models with local heuristic and genetic algorithm. Pesquisa Operacional, 

Volume 40. 

Berg, P. L. d. & Aardal, K., 2015. Time-dependent MEXCLP with start-up and relocation cost. 

European Journal of Operational Research, 242(2), pp. 383-389. 

Bhat, U. N., 2008. An Introduction to Queueing Theory: Modeling and Analysis in. s.l.:Springer. 



68 
 

Boutilier, J. J. & Chan, T. C. Y., 2020. Ambulance Emergency Response Optimization in 

Developing Countries. Operations Research, 68(5), pp. 1315-1334. 

Brotcorne, L., Laporte, G. & Semet, F., 2003. Ambulance location and relocation models. 

European Journal of Operational Research, 147(3), pp. 451-463. 

Brown, J., Sajankila, N. & Claridge, J. A., 2017. Prehospital Assessment of Trauma. Surgical 

Clinics of North America, 97(5), pp. 961-983. 

Bruin, A. M. d., Rossum, A. C. v., Visser, M. C. & Koole, G. M., 2007. Modeling the emergency 

cardiac in-patient flow: an application of queuing theory. Health Care Management Science 

volume , Volume 10, p. 125–137. 

Budge, S., Ingolfsson, A. & Zerom, D., 2010. Empirical analysis of ambulance travel times: the 

case of Calgary emergency medical services. Management Science, 56(4), pp. 716-723. 

Bürger, A. et al., 2018. The Effect of Ambulance Response Time on Survival Following Out-of-

Hospital Cardiac Arrest. Deutsches Arzteblatt International, pp. 541-548. 

Buuren, M., Kommer, G. J., Mei, R. d. & Bhulai, S., 2017. EMS call center models with and 

without function differentiation: A comparison. Operations Research for Health Care, Volume 

12, pp. 16-28. 

Byrne, J. P. et al., 2019. Association Between Emergency Medical Service Response Time and 

Motor Vehicle Crash Mortality in the United States. JAMA Surgery, 154(4), pp. 286-293. 

Byrne, J. P. et al., 2015. Redefining “dead on arrival”: Identifying the unsalvageable patient for 

the purpose of performance improvement. Journal of Trauma and Acute Care Surgery, 79(5), 

pp. 850-857. 



69 
 

C. Larson, R., 1974. A hypercube queuing model for facility location and redistricting in urban 

emergency services. Computers & Operations Research, 1(1), pp. 67-95. 

C.Dietz, D., 2011. Practical scheduling for call center operations. Omega, 39(5), pp. 550-557. 

Calland, J. F. et al., 2012. The effect of dead-on-arrival and emergency department death 

classification on risk-adjusted performance in the American College of Surgeons Trauma Quality 

Improvement Program. The Journal of Trauma and Acute Care Surgery, 73(5), pp. 1086-1091. 

Call, D. A., Medina, R. M. & Black, A. W., 2019. Causes of weather-related crashes in Salt Lake 

county, Utah. The Professional Geographer, 71(2), pp. 253-264. 

Cantwell, K., Dietze, P., Morgans, A. E. & Smith, K., 2013. Ambulance demand: random events 

or predicable patterns?. Emergency Medicine Journal, 30(11), pp. 883-887. 

Cantwell, K. et al., 2015. Time of Day and Day of Week Trends in EMS Demand. Prehospital 

Emergency Care, 19(3), pp. 425-431. 

Carlson, L. C., Reynolds, T. A., Wallis, L. A. & Hynes, E. J. C., 2019. Reconceptualizing the 

role of emergency care in the context of global healthcare delivery. Health Policy and Planning, 

34(1), pp. 78-82. 

Chen, B., Maio, R. F., Green, P. E. & Burney, R. E., 1995. Geographic variation in preventable 

deaths from motor vehicle crashes. The Journal of Trauma, 38(2), pp. 228-232. 

Church, R. & ReVelle, C., 1974. The maximal covering location problem. Papers of the 

Regional Science Association, Volume 32, pp. 101-118. 

Cruz, M. C. & Ferenchak, N. N., 2020. Emergency Response Times for Fatal Motor Vehicle 

Crashes, 1975–2017. Transportation Research Board, 2674(8). 



70 
 

Dai, J. G. & Shi, P., 2017. A Two-Time-Scale Approach to Time-Varying Queues in Hospital 

Inpatient Flow Management. Operations Research, 65(2), pp. 514-536. 

Daskin, M. S., 1983. A Maximum Expected Covering Location Model: Formulation, Properties 

and Heuristic Solution. Transportation Science, 17(1), pp. 48-70. 

Defraeye, M. & Nieuwenhuyse, I. V., 2016. Staffing and scheduling under nonstationary demand 

for service: A literature review. Omega, Volume 58, pp. 4-25. 

Delasay, M., Ingolfsson, A. & Kolfal, B., 2016. Modeling Load and Overwork Effects in 

Queueing Systems with Adaptive Service Rates. Operations Research, 64(4), pp. 867-885. 

Delasay, M., Ingolfsson, A., Kolfal, B. & Schultz, K., 2019. Load effect on service times. 

European Journal of Operational Research, Volume 279, pp. 673-686. 

Detroit's Open Data Portal, 2020. City of Detroit Open Data Portal. [Online]  

Available at: https://data.detroitmi.gov/datasets/detroitmi::911-calls-for-service/about 

[Accessed 8 September 2020]. 

Dibene, J. C. et al., 2017. Optimizing the location of ambulances in Tijuana, Mexico. Computers 

in Biology and Medicine, Volume 80, pp. 107-115. 

Di, T. S. et al., 2020. Factors associated with delayed ambulance response time in hospital 

university sains malaysia, Kubang kerian, Kelantan. Malaysian Journal of Public Health 

Medicine, 20(1). 

Erkut, E., Ingolfsson, A. & Erdoğan, G., 2008. Ambulance location for maximum survival. 

Naval Research Logistics, 55(1), pp. 42-58. 



71 
 

Erlang, A., 1917. Solution of Some Problems in the Theory of Probabilities of Significance in 

Automatic Telephone Exchanges. Post Office Electrical Engineer’s Journal, Volume 10, pp. 

189-197. 

Estochen, B., Strauss, T. & Souleyrette, R. R., 1998. An assessment of emergency response 

vehicle pre-deployment using GIS identification of high-accident density locations.  

Feero, S., R Hedges, J., Simmons, E. & Irwin, L., 1995. Does out-of-hospital EMS time affect 

trauma survival?. The American Journal of Emergency Medicine, 13(2), pp. 133-135. 

Feldman, Z., Mandelbaum, A., Massey, W. A. & Whitt, W., 2008. Staffing of time-varying 

queues to achieve time-stable performance. Management Science, 54(2), pp. 324-338. 

G.Bakalos, et al., 2011. Advanced life support versus basic life support in the pre-hospital 

setting: A meta-analysis. Resuscitation, 82(9), pp. 1130-1137. 

Gendreau, M., Laporte, G. & Semet, F., 1997. Solving an ambulance location model by tabu 

search. Solving an ambulance location model by tabu search, 5(2), pp. 75-88. 

Goldberg, J., 2004. Operations research models for the deployment of emergency services 

vehicles. EMS Management Journal, 1(1), pp. 20-39. 

Gonzalez, R. P. et al., 2009. Does increased emergency medical services prehospital time affect 

patient mortality in rural motor vehicle crashes? A statewide analysis. The American Journal of 

Surgery, 197(1), pp. 30-34. 

Gopalakrishnan, S., 2012. A Public Health Perspective of Road Traffic Accidents. Journal of 

Family Medicine and Primary Care, 1(2), pp. 144-150. 



72 
 

Green, L. & Kolesar, P., 1991. The Pointwise Stationary Approximation for Queues with 

Nonstationary Arrivals. Management Science, 37(1), pp. 84-97. 

Green, L. V. & Kolesar, P. J., 1997. The Lagged PSA for Estimating Peak Congestion in 

Multiserver Markovian Queues with Periodic Arrival Rates. Management Science, 43(1), pp. 80-

87. 

Green, L. V. & Kolesar, P. J., 1998. A Note on Approximating Peak Congestion in Mt/G/∞ 

Queues with Sinusoidal Arrivals. Management Science, 44(11-part-2), pp. S137-S144. 

Green, L. V., Kolesar, P. J. & Soares, J., 2001. Improving the Sipp Approach for Staffing 

Service Systems That Have Cyclic Demands. Operations Research, 49(4), pp. 549-564. 

Green, L. V., Kolesar, P. J. & Soares, J., 2009. An improved heuristic for staffing telephone call 

centers with limited operating hours. Production and Operations Management, 12(1), pp. 46-61. 

Green, L. V. & Soares, J., 2007. Note—Computing Time-Dependent Waiting Time Probabilities 

in M(t)/M/s(t) Queuing Systems. Manufacturing & Service Operations Management, 9(1), pp. 

54-61. 

Green, L. V., Soares, J., Giglio, J. F. & Green, R. A., 2006. Using Queueing Theory to Increase 

the Effectiveness of Emergency Department Provider Staffing. Academic Emergency Medicine, 

13(1), pp. 61-68. 

Griffin, R. & McGwin, G., 2013. Emergency Medical Service Providers' Experiences with 

Traffic Congestion. The Journal of Emergency Medicine, 44(2), pp. 398-405. 

Gross, D., Shortle, J. F., Thompson, J. M. & Harris, C. M., 1985. Fundamentals of Queuing 

Theory. 2nd Edition ed. New York: John Wiley & Sons. 



73 
 

Gross, D., Shortle, J. F., Thompson, J. M. & Harris, C. M., 1998. Fundamentals of Queueing 

Theory. Fourth Edition ed. s.l.:Wiley. 

Gunduz, M. & Karacan, H. V., 2017. Assessment of abnormally low tenders: a multinomial 

logistic regression approach. Technological and Economic Development of Economy , 23(6), pp. 

848-859. 

He, Z., Qin, X., Renger, R. & Souvannasacd, E., 2019. Using spatial regression methods to 

evaluate rural emergency medical services (EMS). The American Journal of Emergency 

Medicine, 37(9), pp. 1633-1642. 

Holmén, J. et al., 2020. Shortening Ambulance Response Time Increases Survival in Out‐of‐

Hospital Cardiac Arrest. Journal of the American Heart Association, 9(21). 

Ingolfsson, A. et al., 2007. A Survey and Experimental Comparison of Service-Level-

Approximation Methods for Nonstationary M(t)/M/s(t) Queueing Systems with Exhaustive 

Discipline. INFORMS Journal on Computing, 19(2), pp. 201-214. 

Ingolfsson, A., Budge, S. & Erkut, E., 2008. Optimal ambulance location with random delays 

and travel times. Health Care Management Science volume, Volume 11, pp. 262-274. 

Ingolfsson, A., Campello, F., Wu, X. & Cabral, E., 2010. Combining integer programming and 

the randomization method to schedule employees. European Journal of Operational Research, 

202(1). 

Ingolfsson, A., Haque, M. & Umnikov, A., 2002. Accounting for time-varying queueing effects 

in workforce scheduling. European Journal of Operational Research, 139(3), pp. 585-597. 



74 
 

Inman, R. R., 1999. Empirical evaluation of exponential and independence assumptions in 

queueing models of manufacturing systems. Production and Operations Management, 8(4), pp. 

409-432. 

Insurance Information Institute, 2022. acts + Statistics: Highway Safety., s.l.: s.n. 

Insurance Institute for Highway Safety, 2015. s.l.: s.n. 

Izady, N. & Worthington, D., 2012. Setting staffing requirements for time dependent queueing 

networks: The case of accident and emergency departments. European Journal of Operational 

Research, 219(3), pp. 531-540. 

J.L.Vile, J.W.Gillard, P.R.Harper & V.A.Knight, 2016. Time-dependent stochastic methods for 

managing and scheduling Emergency Medical Services. Operations Research for Health Care, 

Volume 8, pp. 42-52. 

J.Trowbridge, M., J.Gurka, M. & E.O'Connor, R., 2009. Urban sprawl and delayed ambulance 

arrival in the U.S. American Journal of Preventive Medicine, 37(5), pp. 428-432. 

Jaeker, J. A. B. & Tucker, A. L., 2017. Past the Point of Speeding Up: The Negative Effects of 

Workload Saturation on Efficiency and Patient Severity. Management Science, 63(4), pp. 901-

1269. 

Jaffe, E., 2021. Far Beyond Rush Hour: The Incredible Rise of Off-Peak Public Transportation. 

s.l.:s.n. 

Jennings, O. B., Mandelbaum, A., Massey, W. A. & Whitt, W., 1996. Server Staffing to Meet 

Time-Varying Demand. Management Science, 42(10), pp. 1383-1394. 



75 
 

Jou, R.-C. & Chao, M.-C., 2021. Fail to Yield? An Analysis of Ambulance Crashes in Taiwan. 

Sustainability, 13(3). 

Kalyanaraman, R. & Sundaramoorthy, A., 2019. A Markovian single server working vacation 

queue with server state dependent arrival rate and with randomly varying environment. AIP 

Conference Proceedings, 2177(1). 

Karau, S. J. & D.William, K., 1993. Social loafing: A meta-analytic review and theoretical 

integration. Journal of Personality and Social Psychology, 65(4), pp. 681-706. 

Katayama, Y. et al., 2019. Prehospital factors associated with death on hospital arrival after 

traffic crash in Japan: a national observational study. BMJ open. 

Kc, D. S. & Terwiesch, C., 2009. Impact of Workload on Service Time and Patient Safety: An 

Econometric Analysis of Hospital Operations. Management Science, 55(9), pp. 1486-1498. 

KC, D. S. & Terwiesch, C., 2012. An Econometric Analysis of Patient Flows in the Cardiac 

Intensive Care Unit. Manufacturing & Service Operations Management, 14(1), pp. 50-65. 

Khursheed, M. et al., 2015. Dead on arrival in a low-income country: results from a multicenter 

study in Pakistan. BMC Emergency Medicine, 15(S8). 

Knight, V., Harper, P. & Smith, L., 2012. Ambulance allocation for maximal survival with 

heterogeneous outcome measures. Omega, 40(6), pp. 918-926. 

König, D. & Schmidt, V., 1980. Imbedded and Non-Imbedded Stationary Characteristics of 

Queueing Systems with Varying Service Rate and Point Processes. Journal of Applied 

Probability, 17(3), pp. 753-767. 



76 
 

Koole, G. & Sluis, E. v. d., 2003. Optimal Shift Scheduling with a Global Service Level 

Constraint. IIE Transactions, 35(11), pp. 1049-1055. 

Kumar, A. et al., 2017. Trend Analyses of Emergency Medical Services for Motor Vehicle 

Crashes: Michigan Case Study. Transportation Research Board, 2635(1). 

Lambert, T. E. & Meyer, P., 2005. Ex-Urban Sprawl as a Factor in Traffic Fatalities and EMS 

Response Times in the Southeastern United States.  

Larson, R. & Odoni, A., 2007. Urban Operations Research. s.l.:Transportation Research Board. 

Lee, J., Abdel-Atya, M., Cai, Q. & Wang, L., 2018. Effects of emergency medical services times 

on traffic injury severity: A random effects ordered probit approach. Traffic Injury Prevention, 

19(6), pp. 577-581. 

Lee, J., Abdel-Aty, M., Cai, Q. & Wang, L., 2018. Analysis of Fatal Traffic Crash-Reporting and 

Reporting-Arrival Time Intervals of Emergency Medical Services. Transportation Research 

Board, 2672(32), pp. 61-71. 

Leknes, H. et al., 2017. Strategic ambulance location for heterogeneous regions. European 

Journal of Operational Research, 260(1), pp. 122-133. 

Lilley, R. et al., 2019. Geographical and population disparities in timely access to prehospital 

and advanced level emergency care in New Zealand: a cross-sectional study. 9(7). 

Liu, Y. & Whitt, W., 2012. Stabilizing Customer Abandonment in Many-Server Queues with 

Time-Varying Arrivals. Operations Research, 60(6), pp. 1551-1564. 



77 
 

Long, E. F. & Mathews, K. S., 2018. The Boarding Patient: Effects of ICU and Hospital 

Occupancy Surges on Patient Flow. Production and Operations Management, 27(12), pp. 2122-

2143. 

Louriz, M. et al., 2012. Determinants and outcomes associated with decisions to deny or to delay 

intensive care unit admission in Morocco. Intensive Care Medicine, Volume 38, pp. 830-837. 

Lovely, R. et al., 2018. Injury Severity Score alone predicts mortality when compared to EMS 

scene time and transport time for motor vehicle trauma patients who arrive alive to hospital. 

Traffic Injury Prevention, Volume 19. 

Lu, Y. & Davidson, A., 2017. Fatal motor vehicle crashes in Texas: needs for and access to 

emergency medical services. Annals of GIS, 23(1), pp. 41-54. 

Mandelbaum, A. & Massey, W. A., 1995. Strong Approximations for Time-Dependent Queues. 

Mathematics of Operations Research, 20(1), pp. 33-64. 

Ma, N. & Whitt, W., 2019. Minimizing the maximum expected waiting time in a periodic single-

server queue with a service-rate control. Stochastic Systems, 9(3), pp. 261-290. 

Massey, W. A., 2002. The Analysis of Queues with Time-Varying Rates for Telecommunication 

Models. Telecommunication Systems, Volume 21, pp. 173-204. 

Massey, W. A. & Whitt, W., 1997. Peak congestion in multi-server service systems with slowly 

varying arrival rates. Queueing Systems, Volume 25, pp. 157-172. 

McFadden, D., 1987. Regression-based specification tests for the multinomial logit model. 

Journal of Econometrics, 34(1-2), pp. 63-82. 



78 
 

McLay, L. A. & Mayorga, M. E., 2010. Evaluating emergency medical service performance 

measures. Health Care Management Science, Volume 13, pp. 124-136. 

Medrano, N. W. et al., 2019. Multi-Institutional Multidisciplinary Injury Mortality Investigation 

in the Civilian Pre-Hospital Environment (MIMIC): a methodology for reliably measuring 

prehospital time and distance to definitive care. Trauma Surgery & Acute Care, 4(1). 

Meng, Q. & Weng, J., 2013. Uncertainty Analysis of Accident Notification Time and Emergency 

Medical Service Response Time in Work Zone Traffic Accidents. Traffic Injury Prevention, 

14(2), pp. 150-158. 

Mojir, K. Y. & Pilemalm, S., 2016. Actor-centred emergency response systems: a framework for 

needs analysis and information systems development. International Journal of Emergency 

Management (IJEM), 12(4). 

Momenitabar, M. et al., 2022. Designing a sustainable closed-loop supply chain network 

considering lateral resupply and backup suppliers using fuzzy inference system. Environment, 

Development and Sustainability, pp. 1-34. 

Momenitabar, M., Ebrahimi, Z. D., Arani, M. & Mattson, J., 2022. Robust possibilistic 

programming to design a closed-loop blood supply chain network considering service-level 

maximization and lateral resupply. Annals of Operations Research, pp. 1-43. 

National Center for Statistics and Analysis, 2019. 2018 Fatal Motor Vehicle Crashes: Overview. 

Traffic Safety Fact, s.l.: National Highway Traffic Safety Administration. 

National Center for Statistics and Analysis, 2020. Preview of Motor Vehicle Traffic Fatalities in 

2019. Traffic Safety Fact, s.l.: National Highway Traffic Safety Administration;. 



79 
 

National Center for Statistics and Analysis, 2022. Early Estimate of Motor Vehicle Traffic 

Fatalities for the First 9 Months (January–September) of 2021, s.l.: National Highway Traffic 

Safety Administration. 

National Highway Traffic Safety Administration;, 2017. MMUCC Guideline: Model Minimum 

Uniform Crash Criteria, Washington,DC.: National Highway Traffic Safety Administration. 

National Highway Traffic Safety Administration, 2017. FARS annual crash statistics 2017, s.l.: 

s.n. 

National Highway Traffic Safety Administration, 2018. Crashes, by Time of Day, Day of Week, 

and Crash Severity, s.l.: United States Department of Transportation. 

National Highway Traffic Safety Administration, 2019. Fatality Data Show Continued Annual 

Decline in Traffic Deaths, s.l.: United States Department of Transportation. 

National Highway Traffic Safety Administration, 2020. Emergency Medical Services NEMSIS 

Data Dictionary. s.l.:National Highway Traffic Safety Administration. 

National Safety Council, 2021. Preliminary Semiannual Estimates. National Security Council, 

s.l.: s.n. 

Organization, W. H., 2009. Global status report on road safety time for action , s.l.: World 

Health Organization. 

Organization, W. H., 2018. Global status report on road safety 2018, s.l.: World Health 

Organization. 



80 
 

Paleti, R. & Naveen Eluru, C. R. B., 2010. Examining the influence of aggressive driving 

behavior on driver injury severity in traffic crashes. Accident Analysis and Prevention, 42(6), pp. 

1839-1854. 

Paulo B. Goes, N. I. & Mingfeng Lin, J. L. Z., 2018. When More Is Less: Field Evidence on 

Unintended Consequences of Multitasking. Management Science, 64(7), pp. 3033-3054. 

Philip McArthur, D., A.Gregersen, F. & P.Hagen, T., 2014. Modelling the cost of providing 

ambulance services. Journal of Transport Geography, Volume 34, pp. 175-184. 

Pirdavani, A., Bellemans, T., Brijs, T. & Wets, G., 2014. Application of Geographically 

Weighted Regression Technique in Spatial Analysis of Fatal and Injury Crashes. Journal of 

Transportation Engineering, 140(8). 

Polley, E. C., Rose, S. & Laan, M. J. v. d., 2011. Super Learning. In: New york, NY: Springer, 

pp. 43-66. 

Pons, P. T. et al., 2005. Paramedic response time: does it affect patient survival?. Academic 

Emergency Medicine, 12(7), pp. 594-600. 

R.Aringhieri, M.E.Bruni, S.Khodaparasti & Essen, J., 2017. Emergency medical services and 

beyond: Addressing new challenges through a wide literature review. Computers & Operations 

Research, Volume 78, pp. 349-368. 

Rajagopalan, H. K., Saydam, C. & Xiao, J., 2008. A multiperiod set covering location model for 

dynamic redeployment of ambulances. Computers & Operations Research, 35(3), pp. 814-826. 



81 
 

Raviarun A. Nadar, J. J. J. J. T., 2021. Strategic location of ambulances under temporal variation 

in demand and travel time using variable neighbourhood search based approach. Computers & 

Industrial Engineering,, Volume 162, p. 107780. 

Repede, J. F. & Bernardo, J. J., 1994. Developing and validating a decision support system for 

locating emergency medical vehicles in Louisville, Kentucky. European Journal of Operational 

Research, 75(3), pp. 567-581. 

Reuter-Oppermann, M., Berg, P. L. v. d. & Vile, J. L., 2017. Logistics for Emergency Medical 

Service systems. Health System, 6(3), pp. 187-208. 

ReVelle, C. et al., 1977. Facility location: a review of context-free and EMS models. Health 

Service Research, 12(2), pp. 129-146. 

ReVelle, C. & Hogan, K., 1989. The Maximum Availability Location Problem. Transportation 

Science, 23(3), pp. 192-200. 

Robbins, T. R., Medeiros, D. J. & Harrison, T. P., 2010. Does the Erlang C model fit in real call 

centers?. Proceedings of the 2010 Winter Simulation Conference, pp. 2853-2864. 

S.Roudsari, B. et al., 2007. Emergency Medical Service (EMS) systems in developed and 

developing countries. Injury, 38(9), pp. 1001-1013. 

Saghafian, S., Austin, G. & Traub, S. J., 2015. Operations research/management contributions to 

emergency department patient flow optimization: Review and research prospects. IIE 

Transactions on Healthcare Systems Engineering, 5(2), pp. 101-123. 



82 
 

Salmon, A., Rachuba, S., Briscoe, S. & Pitt, M., 2018. A structured literature review of 

simulation modelling applied to Emergency Departments: Current patterns and emerging trends. 

Operations Research for Health Care, Volume 19, pp. 1-13. 

Sánchez-Mangas, R., García-Ferrrer, A., Juan, A. & Arroyo, A. M., 2010. The probability of 

death in road traffic accidents. How important is a quick medical response?. Accident Analysis & 

Prevention, 42(4), pp. 1048-1056. 

Saydam, C., Rajagopalan, H. K., Sharer, E. & Lawrimore-Belanger, K., 2013. The dynamic 

redeployment coverage location model. Health Systems, 2(2), pp. 103-119. 

Schmid, V. & F.Doerner, K., 2010. Ambulance location and relocation problems with time-

dependent travel times. 207(3), pp. 1293-1303. 

Schultz, K. L., 2003. Overcoming the dark side of worker flexibility. Journal of Operations 

Management, 21(1), pp. 81-92. 

Schwarz, J. A., Selinka, G. & Stolletz, R., 2016. Performance analysis of time-dependent 

queueing systems: Survey and classification. Omega, Volume 63, pp. 170-189. 

Selinka, G., Franz, A. & Stolletz, R., 2016. Time-dependent performance approximation of truck 

handling operations at an air cargo terminal. Computers & Operations Research, Volume 65, pp. 

164-173. 

Singer, M. & Donoso, P., 2008. Assessing an ambulance service with queuing theory. Computers 

& Operations Research, 35(8), pp. 2549-2560. 



83 
 

Sinreich, D. & Jabali., O., 2007. Staggered work shifts: A way to downsize and restructure an 

emergency department workforce yet maintain current operational performance. Health Care 

Management Science, 10(3), pp. 293-308. 

Staats, B. R. & Gino, F., 2012. Specialization and Variety in Repetitive Tasks: Evidence from a 

Japanese Bank. Management Science, 58(6), pp. 1141-1159. 

Stainsby, D., MacLennan, S. & Hamilton, P., 2000. Management of massive blood loss: a 

template guideline. British Journal of Anaesthesia, 85(3), pp. 487-491. 

Syahputri, K. et al., 2020. Application of Fuzzy C-Means in Level Clustering of Traffic Accident 

Vulnerability. IOP Conference Series: Materials Science and Engineering. 

Tan, T. F. & Netessine, S., 2014. When Does the Devil Make Work? An Empirical Study of the 

Impact of Workload on Worker Productivity. Management Science, 60(6), pp. 1574-1593. 

Tan, X., Knessl, C. & Yang, Y. P., 2013. On finite capacity queues with time dependent arrival 

rates. Stochastic Processes and their Applications, 123(6), pp. 2175-2227. 

Thind, A. et al., 2015. Prehospital and Emergency Care. pp. 245-262. 

Thompson, G. M., 1993. Accounting for the multi-period impact of service when determining 

employee requirements for labor scheduling. Journal of Operations Management, 11(3), pp. 

269-287. 

Toregas, C., Swain, R., ReVelle, C. & Bergman, L., 1971. The Location of Emergency Service 

Facilities. Operations Research, 19(6), pp. 1363-1373. 

Trujillo, L., Álvarez-Hernández, G., Maldonado, Y. & Vera, C., 2020. Comparative analysis of 

relocation strategies for ambulances in the city of Tijuana, Mexico. Volume 116. 



84 
 

U.S. Environmental Protection Agency, 2021. United States Environmental Protection Agency. 

[Online]  

Available at: https://www.epa.gov/smartgrowth/smart-location-database-technical-

documentation-and-user-guide 

[Accessed 16 June 2021]. 

V.Bélanger, A.Ruiz & P.Soriano, 2019. Recent optimization models and trends in location, 

relocation, and dispatching of emergency medical vehicles. European Journal of Operational 

Research, 272(1), pp. 1-23. 

Valenzuela, T. D. et al., 2000. Outcomes of rapid defibrillation by security officers after cardiac 

arrest in casinos. Journal of Medicine, 343(17), pp. 1206-1209. 

W.K.Grassmann, 1977. Transient solutions in markovian queueing systems. Computers & 

Operations Research, 4(1), pp. 47-53. 

Wang, H. & Xu, T., 2007. Attitudes to triage of Chinese emergency room patients in a Beijing 

tertiary hospital. Emergency Medical Journal, 24(3). 

Wang, N. et al., 2018. Study of time-dependent queuing models of the national airspace system. 

Computers & Industrial Engineering, Volume 117, pp. 108-120. 

Weather Underground, 2020. Weather underground. [Online]  

Available at: https://www.wunderground.com/ 

[Accessed 8 September 2020]. 

Wei Lam, S. S. et al., 2015. Factors affecting the ambulance response times of trauma incidents 

in Singapore. Accident Analysis & Prevention, Volume 82, pp. 27-35. 



85 
 

Whitt, W., 1991. The Pointwise Stationary Approximation for Mt/Mt/s Queues Is 

Asymptotically Correct As the Rates Increase. Management Science, 37(3), pp. 307-314. 

Whitt, W. & You, W., 2019. Time-varying robust queueing. Operations Research, 67(6), pp. 

1766-1782. 

Whitt, W. & You, W., 2020. Heavy-traffic limits for stationary network flows. Queueing 

Systems, Volume 95, pp. 53-68. 

Wubben, B. M., Denning, G. M. & Jennissen, C. A., 2019. The Effect of All-Terrain Vehicle 

Crash Location on Emergency Medical Services Time Intervals. Safety, 5(4). 

Wu, C. (., Bassamboo, A. & Perry, O., 2018. Service System with Dependent Service and 

Patience Times. Management Science, 65(3), pp. 1151-1172. 

Xie, S.-H.et al., 2016. Mortality from road traffic accidents in a rapidly urbanizing Chinese city: 

A 20-year analysis in Shenzhen, 1994–2013. Traffic Injury Prevention , 17(1), pp. 39-43. 

Xie, Z. & Or, C., 2017. Associations Between Waiting Times, Service Times, and Patient 

Satisfaction in an Endocrinology Outpatient Department: A Time Study and Questionnaire 

Survey. Inquiry, Volume 54. 

Y.Dimitrakopoulos & A.N.Burnetas, 2016. Customer equilibrium and optimal strategies in an 

M/M/1 queue with dynamic service control. European Journal of Operational Research, 252(2), 

pp. 477-486. 

Yasmina, S., Eluru, N. & R.Pinjari, A., 2015. Analyzing the continuum of fatal crashes: A 

generalized ordered approach. Analytic Methods in Accident Research, Volume 7, pp. 1-15. 



86 
 

Yasunaga, H. et al., 2011. Population density, call-response interval, and survival of out-of-

hospital cardiac arrest. International Journal of Health Geographics, 10(26). 

Yom-Tov, G. B. & Mandelbaum, A., 2014. Erlang-R: A Time-Varying Queue with Reentrant 

Customers, in Support of Healthcare Staffing. Manufacturing & Service Operations 

Management, 16(2), pp. 283-299. 

Yoon, S. & A.Albert, L., 2020. A dynamic ambulance routing model with multiple response. 

Transportation Research Part E: Logistics and Transportation Review, Volume 133. 

Zeng, Q. et al., 2019. Analyzing freeway crash severity using a Bayesian spatial generalized 

ordered logit model with conditional autoregressive priors. Accident Analysis & Prevention, 

Volume 127, pp. 87-95. 

 

 

 


