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ABSTRACT 

The purpose of this research was to build a model of profitability that can be used by 

individual farmers to calculate the net benefits of using precision agricultural technologies on 

their farms. Three case farms were selected. Partial budgeting analysis is used to calculate the net 

profit effect of adopting precision agricultural technology bundles. Two scenarios were 

compared: farms adopting precision agricultural technologies and farms not adopting. Revenues 

and costs that differ between the two scenarios are included in the model. A six-step process was 

employed and @Risk was used to account for risk. Results show that adopting PA is profitable 

for farms with moderate input use variability and this is amplified with higher input prices.  
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CHAPTER 1. INTRODUCTION 

1.1. Overview 

Precision agriculture (PA) refers to a set of technologies that may help reduce input costs 

and optimize field management practices and yield by providing farmers with detailed spatial 

information (National Research Council, 1997). According to the International Society for 

Precision Agriculture (ISPA, 2019), “Precision Agriculture is a management strategy that 

gathers, processes and analyses temporal, spatial and individual data and combines it with other 

information to support management decisions according to estimated variability for improved 

resource use efficiency, productivity, quality, profitability and sustainability of agricultural 

production”. These benefits result from efficient use of precision agriculture technologies (PAT) 

such as grid/zone soil mapping, tractor guidance systems, yield monitoring harvesters (YM), 

yield mapping (Ymap) with Global Positioning Systems (GPS)/ Global Navigation Satellite 

System (GNSS)1, Unmanned Aerial Vehicles (UAVs)/drone imagery and variable rate 

technology (VRT) input application. The use of PA has significantly increased over the last 

decades, but many farmers are yet to be convinced of the benefits of employing PA on their 

farms. More research on the economic benefits of PA can give farmers a clear understanding of 

potential net benefits from adopting PAT given their situation. 

1.2. Problem Statement 

Precision agriculture has gained an increased importance in the agricultural industry over 

the past two decades (Schimmelpfennig, 2016; Schimmelpfennig & Lowenberg-DeBoer, 2020). 

 

 

1 GNSS is formerly referred to as GPS. The main distinction between GPS and GNSS is that GNSS provides global 

coverage. Although these terms can be used interchangeably, GNSS is used worldwide.  Most of the recent research 

on precision agriculture uses GNSS instead of GPS. 
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Considerable research has been conducted in this area and farmers and their advisors are eager to 

learn about the potential of the technology. Agricultural equipment manufacturers are 

increasingly producing new and improved technologies to enable farmers practice precision 

agriculture (Srinivasan, 2006; Wang & Wood, 2021).  

Traditionally, a uniform rate of input application was the main strategy for applying 

inputs on farms (Van Evert et al., 2017). Producers use this method to ensure that plants are 

getting enough nutrients for their growth and biological needs (Whelan & McBratney, 2000). 

However, this method has its disadvantages. It may result in over or under application given 

plant needs and can cause environmental harm from the overapplication of inputs, especially 

fertilizers and pesticides, and other inorganic chemicals (Bongiovanni & Lowenberg-DeBoer, 

2004; Roberts et al., 2000). Before mechanized agriculture, farmers were aware that soil 

attributes and other agroecological variables are not uniformly distributed across fields and 

seasons (Bullock et al., 2002; Wang & Wood, 2021). However, due to the unavailability of 

appropriate technologies, they were not able to use this knowledge to effectively optimize their 

use of agricultural inputs, especially on large-scale farms (Wang & Wood, 2021). 

Precision agriculture, which manages yield potential and within field variability caused 

by heterogeneity in soil physiochemical properties, could reduce the problems associated with 

inefficient application or overapplication of inputs and environmental deterioration (Carrer et al., 

2022; Finco et al., 2021; Kolady & Van Der Sluis, 2021; Lambert et al. 2015, Lowenberg-

DeBoer, 2018; Tey & Brindal, 2012, Van Evert et al., 2017). It can contribute to the long-term 

sustainability of agriculture through more tailored input application that reduce losses from 

excess applications and due to nutrient imbalances (Bongiovanni & Lowenberg-Deboer, 2004; 

Nawar et al., 2017). Understanding soil variability and site-specific management zones enables 
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sustainable resource utilization and crop yield maximization (Srinivasan et al., 2022). Soil and 

crop variability data also help to reduce costs, increase the efficiency of resource use, and 

mitigate the environmental impacts (ISPA, 2019; Tey and Brindal, 2012). 

PA has considerable potential where input costs are high, inputs are applied at variable 

rates, high value crops are grown, field variability is high, and environmental deterioration needs 

to be mitigated (Cowan, 2000; DeLay & Comstock, 2021; Van Evert et al., 2017). Farmers are 

interested in using PA to improve on-farm profits and reduce impact on the environment (Carrer 

et al, 2022; DeLay & Comstock, 2021; Van Evert et al., 2017). Applications based on PA 

technologies are proving to be increasingly important in addressing global market demands for 

increased agricultural productivity while also promoting environmental sustainability and the 

green economy (Finco et al., 2021).    

The benefits of PA depend on many factors such as region, type of crops grown, soil 

variability and farm sizes (Van Evert et al., 2017; Schimmelpfennig & Lowenberg-DeBoer, 

2020). Although some research has been conducted on the overall economic benefits of PAT, 

many farmers are yet to be convinced of its profitability. More research is needed on the 

economic viability of PA based on soil variability and other farm characteristics so that farmers 

can make informed choices about its adoption. This paper will focus on analyzing how PA can 

reduce input costs and increase farm profits by efficiently managing agricultural inputs including 

fertilizers and seed by using technologies such as grid/zone soil sampling, zone mapping, and 

variable rate technologies (VRTs).  

1.3. Objectives 

The existing literature largely focuses on adoption rates and profits associated with 

adopting PAT for different farm sizes, crops, and regions. Much research is generalized across 
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farms, and therefore does not provide individual farmers with a clear understanding of the 

potential profitability of PAT for use on their unique farms. There is also a gap in the literature 

on the economic benefits of adopting PAT based on soil variability and individual farm 

characteristics.  

This study will look at the effect of adopting PAT (soil sampling, zone mapping, VRTs) 

on the profitability of particular farms and develop a simple model to calculate profitability that 

can be applied to individual farm situations. 

1.4. Procedures 

In this paper, a model was developed to measure the economic benefits of adopting PA 

technologies. This model will help farmers finding the profits associated with adopting PA given 

their unique farm characteristics. Two scenarios were developed in a Microsoft Excel 

spreadsheet: farms adopting PA and farms not adopting PA. Fertilizer price data used for this 

model is collected from the DTN ProphetX application. Corn seed price data is collected from 

North Dakota State University (NDSU) projected crop budgets. Input recommendations and 

yield goals came from AgVeris, Inc., Casselton, North Dakota. Three case farms were used for 

the analysis.  

The Monte Carlo feature in @Risk is used in this model. @Risk is a risk management 

tool used as a Microsoft Excel add-in feature. @Risk runs repetitions of the model based on 

stochastic parameters. The stochastic parameters in this paper include corn and fertilizer prices.  

Numerous scenarios are examined for each of the variables. Sensitivity analysis is used to gain a 

better understanding of the outputs of the model. The model will be discussed in greater detail in 

subsequent chapters. 
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1.5. Organization 

Chapter two describes the literature review. It includes consideration of the literature on 

adoption rates of PA, factors affecting PA adoption, the rate of PA adoption based on farm 

characteristics, the economics of adopting PA, and the challenges of PA. 

The third chapter presents and explains the empirical model used in this paper. It includes 

an explanation of the model and input variables, steps in the analysis, @Risk functions, input 

distributions, and sources of data. Chapter four explains the results in detail which includes the 

static results, @Risk profit distributions, and sensitivity analysis. Lastly, chapter five provides 

the key research findings, recommendations, limitations of the study, and opportunities for future 

research in this area. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Overview 

This section highlights studies related to the objective of the study. Section 2.2 presents 

research related to the background and adoption rates of PAT. Section 2.3 shows the factors that 

influenced the adoption of PA. The adoption of PA based on farm characteristics and the 

economics of adopting PAT are presented in sections 2.4 and 2.5, respectively. Section 2.6 

reveals the different challenges of adopting PA. 

2.2. Adoption Rates of Precision Agriculture Technologies 

Precision agriculture began in the early 1980s with trailblazers, and it is going through 

evolutionary phases like most other technology-oriented industries, but at a relatively faster pace 

(Russo, 2014). The commercial application of PAT started in the mid to late 1990s and continues 

to expand (Bullock et al., 2002; Fountas et al., 2005; Gebbers & Adamchuk, 2010; Griffin & 

Lowenberg-DeBoer, 2005; Griffin & Yeager, 2018; Kitchen et al., 2002; Lambert et al., 2015; 

Lowenberg-DeBoer, 2000; McBride & Daberkow, 2003; Popp et al., 2002; Sonka & Cheng, 

2015). Precision agricultural practices were introduced to manage agricultural inputs efficiently 

and reduce environmental deterioration (Schimmelpfennig & Ebel, 2011). 

Precision agriculture adoption was first reported in the Corn Belt. It helped to reduce 

production costs and increase corn, wheat, and soybean yields (Rains & Thomas, 2009). In fact, 

many PAT were first adopted by U.S. field crop farmers (Lowenberg-DeBoer & Erickson, 2019) 

and PA adoption patterns in the US have been an indicator of how these technologies will be 

accepted worldwide. Recently, technologies that are most popular and widely used are 

Geographical Information Systems (GIS), GPS maps/GNSS, grid/zone soil sampling, YM, 
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Ymap, UAVs/drone imagery, and VRTs (Erickson & Lowenberg-DeBoer, 2020; 2021; Rains & 

Thomas, 2009; Schimmelpfennig, 2016; Torrez et al., 2016; Zhou et al., 2017). 

Various scholars have investigated adoption rates of PAT in the United States (Erickson 

& Lowenberg-DeBoer, 2020; Schimmelpfennig, 2016; Torrez et al., 2016; Zhou et al., 2017). A 

2021 survey of agricultural retailers by Erickson and Lowenberg-DeBoer (2020) showed the 

current state of precision farming technology adoption from the dealers’ perspective. This survey 

was started in 1997, so it shows the historical perspective of the development and adoption of 

precision farming technology over time and projects future challenges and opportunities. Dealers 

report that the availability of service offerings increased drastically from 2008 to 2019, and again 

from 2019 to 2021. Two-thirds of the dealers in the 2019 dealership survey reported offering 

field mapping with GIS, GPS guidance with auto control, GPS-enabled sprayer boom, grid or 

zone soil sampling, satellite, and aerial imagery, VRT lime application, and VRT fertilizer 

application. According to the 2021 dealership survey, 88% of dealers offer grid or zone soil 

sampling and VRT fertilizer application, and 44% offer UAVs/drone imagery. Surprisingly, 

UAVs/drone imagery was not offered in 2008 when the survey was conducted but is forecasted 

to be offered by 65% of dealers in 2024. 

When surveys are conducted from the farmer's perspective, these figures vary slightly. 

Schimmelpfennig and Ebel (2011) used the United States Department of Agriculture’s (USDA) 

Agricultural Resource Management Survey (ARMS) data to examine the adoption trends of four 

information technologies: YM, guidance systems, VRTs, and GPS maps, in the production of 

major field crops. Analyzing the past ten years of ARMS data, the results showed that farmers 

were using YM on over 40% of U.S. grain crop acres, while GPS maps were used by only a few 

producers. Adoption rates were lower a decade ago, but they have been increasing significantly 
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over the past few years. Schimmelpfennig (2016) used ARMS data conducted for corn in 2010 

and showed that only 12% of small farms (less than 600 acres) reported using at least one PA 

technology, while large farms (more than 3,800 acres) reported adoption rates of 80%, 84%, and 

40% for GPS soil/Ymap, guidance systems, and VRTs, respectively. The ARMS data for winter 

wheat (2017), corn (2016), and soybeans (2012) also showed that the VRT seeding and pesticide 

application technologies for these crops were growing rapidly. Using survey data consisting of 

198 farm operators in eastern South Dakota, Kolady et al. (2021) found that the adoption rates of 

YM, GPS guidance, and automatic section control systems were over 50 percent. According to 

Schimmelpfennig and Lowenberg-DeBoer (2020), guidance systems appeared on 40-60% of 

planted acres, GPS soil mapping on 15-25% of planted acres, and VRT fertilization on 10-30% 

of planted acres for major U.S. field crops. 

2.3. Factors Affecting the Adoption of Precision Agriculture 

There are several factors that affect the adoption rates of PAT. Larkin et al. (2005) 

demonstrated that farmers with a higher level of education are more likely to believe that PA is 

important, as is input reduction. Farmers with larger farms or higher yields, as well as those who 

use personal computers, are more likely to believe that PA can improve the environment. 

According to Schimmelpfennig & Ebel (2016), education is an important determinant in the 

adoption of PAT as the sophistication of PA increases. Adoption of PAT is higher when farming 

is the primary occupation of the farm operators, or the farms are organized as corporations, 

estates, or trusts (Schimmelpfennig, 2016). The age of the operators also dictates the adoption 

rate of PAT. Adopting farms of PAT have younger operators than those of nonadopting farms 

(Dhoubhadel, 2020). According to Schimmelpfennig (2016), concerns about data privacy and 

security may further influence the adoption of various combinations of PA tools. 
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Some other important factors that influence PA adoption rate are yield goals and whether 

irrigation and crop rotation are practiced. Analyzing 2010 ARMS data, Schimmelpfennig (2016) 

found that U.S. corn farmers practicing crop rotation had higher adoption rates of GPS 

soil/Ymap, guidance systems, and VRTs than farmers not rotating crops. Irrigated corn acres use 

GPS mapping and guidance systems more than non-irrigated corn acres. Irrigated acres that are 

also no-till benefit from even more guidance and VRTs. Farmers with higher yield goals (over 

180 bushels per acre) adopt GPS soil/yield mapping, guidance systems, and VRTs at nearly 

double the rate of farmers with yield goals of 140 to 180 bushels per acre. In contrast to this, a 

higher adoption rate of guidance systems was found on North Dakota farms with low yield goals 

but farm sizes exceeding 2000 acres. Farm size can be influenced by a variety of factors, which 

may also influence PA adoption. The adoption rates of PA were higher in the Corn Belt States 

than the national average, but North Dakota's rate is even higher. 

2.4. Precision Agriculture Adoption Based on Farm Characteristics 

Adoption of PA depends on many factors such as farm size (Schimmelpfennig, 2016; 

Schimmelpfennig & Lowenberg-DeBoer, 2020), type of crops grown (Schimmelpfennig & 

Lowenberg-DeBoer, 2020), soil variability (Schimmelpfennig, 2016; Schimmelpfennig & 

Lowenberg-DeBoer, 2020), and region (Schimmelpfennig & Lowenberg-DeBoer, 2020). Many 

researchers agree that adoption rates have increased over the last two decades and that adoption 

is higher among larger farms (Schimmelpfennig, 2016; Schimmelpfennig & Lowenberg-DeBoer, 

2020). Technology that improves farm profits often takes a long time to get used to because of 

the unique characteristics of each farm and how much learning is needed to use new technology 

with old practices. Agriculture in countries with longtime PA experience was found to have a 

wide range of factors that influenced the adoption of PA technologies, including input use and 
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output level, as well as farm characteristics (Tey and Brindal, 2012). Dhoubhadel (2020) found 

that farms adopting PAT have a greater average farm size, proportion of cropland, and major 

crop yield than farms without any PAT, but they have a lower proportion of owned land, and 

their operators are younger. However, these characteristics of the PA adopting farms can be 

influenced by some other factors which may also influence PA adoption.  

Analyzing nationally representative data from the 2010 ARMS, Schimmelpfennig (2016) 

found that YM was used on nearly half of the corn farms, whereas Ymap, which uses data from 

YM, was used on only 25 percent of the corn farms. The second most adopted PAT were 

guidance systems which were used on 29% of corn farms. By 2010, GPS soil mapping was used 

on 19 percent of corn farms, as was VRTs. PA technologies have been used on a larger share of 

corn acres than corn farms, which suggests that bigger farms are more likely to use these 

technologies. The difference in farm and acreage share is especially large for guidance systems, 

with 29 percent versus 54 percent, respectively. VRT adoption seemed to depend more on farm 

size than any other technology, but farm size can also be influenced by many other factors which 

can affect PA adoption. Adoption of VRTs may also depend on soil and yield variability. 

Schimmelpfennig and Lowenberg-DeBoer (2020) studied PA adoption trends for three 

different crops: winter wheat, corn, and soybeans. The highest adoption of yield and soil 

mapping was found in the Midwest, where average corn farm sizes are larger, while guidance 

and VRT seeding are heavily used in the western Midwest. Variable rate fertilization 

applications were used on one-fifth of planted corn acres in the western Midwest, Midwest, and 

South regions. The highest adoption rate was found for guidance systems. They are used on 70% 

of farms growing at least 1,000 acres of corn nationwide. Variable rate pesticide applications 

were highest in the south, where pest pressures are usually higher. The Midwest showed the 
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highest soil variability and the highest adoption of soil sampling, Ymap, remote sensing, and 

VRT fertilizer applications. 

2.5. Economics of Precision Agriculture 

Previous research has considered the economics of adopting PAT (Lambert et al., 2004; 

Schimmelpfennig, 2016; 2018; Schimmelpfennig & Ebel, 2016; Shockley et al., 2011; Shockley 

et al., 2012; Smith et al., 2013). Results have been mixed with respect to the impact of these 

technologies on farm profits. Schimmelpfenning (2016) reported that the adoption of GPS soil 

and yield mapping, guidance systems, or VRTs led to a positive but small increase (1.1% to 

2.8%) in net return and operating profits for corn, and Schimmelpfenning (2018) found almost 

similar results with a small increase (1.1% to 1.8%) in operating profit for soybeans. According 

to Thompson et al. (2019), increases in financial returns from the adoption of PA come from two 

sources: reduced production costs and increased yields. Previously, PA focused on reducing 

costs through reduced input usage. As technologies have advanced, a greater emphasis has been 

placed on yield benefits through the more customized use of inputs, with the availability of 

variable rate input applications.  

The USDA ARMS survey provides the most comprehensive data on PA adoption in the 

United States. The Economic Research Service (ERS) and the National Agricultural Statistics 

Service (NASS) work together to conduct the survey. Since 1996, the ARMS Survey has been 

conducting face-to-face interviews with American farmers to gather information on their farming 

practices and resource use. Schimmelpfennig and Ebel (2016) used USDA’s ARMS data to find 

the cost savings from the adoption of PAT. The results reveal that the adoption of PAT has a 

negative relationship with production costs. Most of the PA combinations, including YM, Ymap, 

GPS, soil sampling, and guidance systems, show some cost savings. The largest average variable 
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costs savings ($25.01/acre) was found from the combination of YM and Ymap. Adding VRT to 

this combination does not bring any further cost reduction, which validates the lower adoption 

rate of VRT, although some farmers find additional cost savings from VRT. In any scenario 

when VRT is not being employed, the combination of YM and Ymap alone can save costs for 

U.S. corn production. However, adding VRT with soil mapping and YM brings additional cost 

reductions. This scenario shows an increase in cost savings from $13.45/acre (the lowest variable 

cost reduction among all combinations prior to adding VRT) to $20.56/acre relative to the prior 

combinations. Schimmelpfennig and Ebel (2016) hypothesized that the inconsistency in cost 

savings associated with VRT is because it may result in increased input costs in some cases 

where increased input use can lead to an increase in output and profits. 

Schimmelpfennig (2016) compared input costs (fertilizer, pesticide, seed, and fuel) 

among adopters and nonadopters of PAT (YM, Ymap, soil data mapping, guidance systems, and 

VRTs) both individually and in six combinations. The author found that PA adopters have a 

lower input cost in these variable cost categories compared to nonadopters.  

According to Dhoubhadel (2020), non-adopting farms of PAT had the lowest average net 

returns compared to those farms that had one or more PAT without consideration of the relative 

farm characteristics. Variability of net returns is also relatively higher for non-adopting farms 

than for farms with two or more technologies. A simple comparison of whether they adopted 

PAT or not was used to observe the differences in net returns without controlling for the farm 

characteristics influencing adoption decisions. Schimmelpfennig (2016) said that it can be 

misleading to simply compare the profit of farmers who use PA technologies with those who 

don't. Some factors that affect profit, like the size of the farm or managerial sophistication, can 

also affect whether a farmer adopts the technology. Dhoubhadel (2020) also studied the profit 
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potential of different PAT. The author found that grid soil sampling technology helped farms 

increase net returns by an average of $53/acre over farms with no PA technology. A combination 

of technologies was also tested to see their profit potential, which shows that a combination of 

YM with a grid soil sampling technology is likely to increase net returns by $53/acre. The most 

notable finding is that any combination of technologies that includes grid soil sampling can 

positively contribute to the net returns of the farm. 

DeLay et al. (2020) provided more insight on issues of PA data analysis and utilization 

and how they contribute to the profitability of the farms. A 2019 survey of 800 commercial 

farmers by Purdue’s Center for Commercial Agriculture showed that a larger percentage of 

farmers with 2000 acres or more collected soil samples (80%), YM (85%), and imagery (50%) 

data. This data influences fertilizer, seeding rate, and drainage decisions. According to survey 

data, 72% of the respondents reported getting positive yield benefits from data-driven seeding 

rate decisions, 81% from fertilizer decisions, and 85% from drainage decisions. Data gathered 

from all three sources yielded better results than if only one data stream is used.  

Several factors influenced data collection, including the size of the farm, the age of the 

farm operators, and the educational attainment of the operators. Large farms are the most likely 

to collect data, which is in line with previous findings. However, many other factors can also 

influence the size of the farm, which may influence this data collection process. Farms with 

younger operators and higher educational levels are more likely to collect farm data. Many 

farm operators are not experts in collecting and analyzing data collected from PA machinery. So, 

they subscribe to specialized companies that help them manage their data. According to DeLay 

et al. (2020), 47% of farms use one or more data software services to manage their data, and this 

number is even higher (63%) for farms with 5000 acres or more. Over 70% of farmers share their 
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data with an outside service provider, and their seeding and fertility decisions are also highly 

influenced by the data. 

2.6. Challenges of Precision Agriculture 

Even though the benefits of PA are widely recognized, its application remains 

constrained. As a result, the adoption of PAT has encountered additional challenges, including 

increased application or management costs, investment in new equipment, training of employees 

for technology use, and uncertainty among the farming community (Finco et al., 2021; 

Schimmelpfennig, 2016). Adoption of PAT inevitably results in increased capital expenditures 

on machinery and equipment due to the capital-intensive nature of these technologies. 

Additionally, machinery has a larger expense base (in comparison to labor costs) and a greater 

ability to influence overhead costs. This may explain why larger farms adopt PA at a faster rate 

than smaller farms. Precision agriculture requires investment in equipment, and the capital cost 

of equipment is spread across more crop-producing acres on larger farms. Farm implements with 

VRT capabilities have a relatively high capital cost. Therefore, many producers have chosen to 

hire service providers when selecting VRT, particularly in smaller operations (Schimmelpfennig, 

2016). According to Lambert et al. (2004), operator time and effort are a significant cost for 

VRT and a possible reason for outsourcing the service. 

Another big challenge for the adoption of different combinations of PA tools is data 

privacy and security issues. Some agricultural input companies, including Monsanto and John 

Deere, provide platforms to farmers that can connect and store data from various technologies in 

one farmer’s field. Although field data are privacy protected and anonymous, farmers may still 

be worried because data are linked to the GPS, and they don't have any control over its 

subsequent use (Schimmelpfennig, 2016). 
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CHAPTER 3. DATA AND METHODS 

3.1. Introduction 

The primary goal was to develop a model to help farmers calculate the net benefits of 

using PA technologies based on their unique farm characteristics. The benefits of PA can be very 

farm specific. Benefits  can vary significantly based on farm size (Dhoubhadel, 2020; Van Evert 

et al., 2017; Finco et al., 2021; Schimmelpfennig, & Lowenberg-DeBoer, 2020), region 

(Schimmelpfennig, & Lowenberg-DeBoer, 2020), type of crops grown (Dhoubhadel, 2020; 

Schimmelpfennig, & Lowenberg-DeBoer, 2020), soil variability (Finco et al., 2021; Fountas et 

al., 2005; ISPA, 2019; Schimmelpfennig, & Lowenberg-DeBoer, 2020; Srinivasan et al., 2022; 

Tey & Brindal, 2012), and uncertainty about output and input prices (Finco et al., 2021). Due to 

the lack of a large dataset that would support attributing net profits to PA adoption and the fact 

that the net benefits of PA are very farm-specific, the method adopted is appropriate. 

3.2. Methods 

A partial budgeting model is employed to determine which projects to adopt and which to 

avoid. The process measures net benefits of a project starting with benefits realized (additional 

revenues or cost savings) and subtracts additional expenses. In our model, the net benefit of 

adopting PA technologies including soil sampling, zone mapping and variable rate seed and 

fertilizer application is assessed. Profit is net return to all costs that are not different between 

farms with and without precision agricultural technologies employed (Equation 1). 

 Profits = Revenue - Costs (1) 

The literature supports the use of partial budgeting techniques for measuring the 

economic benefits of adopting PAT. Soha (2014) used this method to compare the costs and 

benefits of two sets of farming decisions and determine which one provides the greatest benefit. 
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Larson et al. (2010) used capital budgeting to develop a decision tool that provides educational 

information on the ownership and operating expenses of a set of precision agricultural 

technologies and the required returns to cover the expenses. Other similar methods, treatment-

effects models and cost-benefit analysis have also been used. Finco et al. (2021) used cost-

benefit analysis to examine the impacts of the introduction of PA technologies on farm 

profitability and to indicate which course of action should be followed. The treatment-effects 

model was employed by Schimmelpfennig and Ebel (2016) and Schimmelpfennig (2016). The 

basic idea behind these methods is to find the net difference in net farm returns caused by the 

adoption of PA by subtracting the net return of non-adopters (the control group) from the net 

return of adopters (the treatment group) of PA. 

In our analysis, the same case farms are used as both treatment and control groups. First, 

we calculate the net returns of each farm as non-adopters and then as adopters of PA. For the 

farms to be considered as PA adopters, all the associated costs that are different from non-

adopters (fertilizer, seed, soil sampling, zone mapping, fertilizer recommendation, dry fertilizer 

application, and hydraulic pump) are added. The difference in net farm returns due to PA 

adoption is calculated by subtracting the net farm returns of nonadopters from the net farm 

returns of the adopters of PA.  The comparison identifies the associated profit or loss from 

adoption (Equation 2). 

 Differential Profit= Profit of PA adopters - Profit of nonadopters of PA (2) 

The analysis assumes that yield goals are similar whether PA is adopted or not. The focus 

rather is on the difference in input costs. That is, this analysis assumes an approximately 

common yield goal; one not dependent on input cost or output price. So, the revenue in both 

scenarios is similar such that differential profit is just the difference in costs. Although contrary 
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to economic theory, this assumption is not inconsistent with farmer behavior. Anecdotal 

evidence suggests regional farmers plant so as to maintain or improve on their current yields and 

to maintain their Actual Production History (APH) yields.  

Maintaining or increasing an APH is important. According to American Farm Bureau 

Insurance Services (AFBIS), INC., APH policies protect farmers from yield losses caused by 

natural disasters such as drought, excessive moisture, hail, wind, frost, insects, and disease. The 

producer chooses the percentage of average yield to insure, which ranges from 50 to 75 percent 

(in some areas to 85 percent). The producer also chooses how much of the predicted price to 

insure, which can be anywhere from 55% to 100% of the crop price. If the harvested and 

appraised production is less than the insured yield, the producer gets an indemnity based on the 

difference. This difference is multiplied by the insured percentage of the price and by the insured 

share. Thus, federally subsidized crop insurance provides some incentive to apply inputs for 

yields on marginal acres above that which economist might recommend. 

The analysis has several steps. First, budgets are built in Excel under two scenarios: farm 

not adopting PA and farm adopting PA. The second step of the analysis adds price and risk to the 

analysis. For the latter, @Risk is used in a six-step process. First, the budget spreadsheet is 

developed in Microsoft Excel. Second, an @Risk output function is included in the cells 

containing output formulas. Third, distributions are added to input cells with considered price 

volatility. Based on the historical input price series, @Risk chooses the best distribution that fits 

the data automatically using Akaike Information Criterion (AIC). Fourth, the correlation among 

the variables is put in the input cells. Fifth, determining the number of iterations is set 

to automatic mode. When automatic iteration is set, @RISK will continue performing iterations 

until all distributions have achieved convergence. Once this has occurred, @RISK will end the 
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simulation. Iteration is a term that refers to the process of recalculating a model during a 

simulation; a single simulation consists of numerous iterations. All uncertain variables are 

sampled once during each iteration based on their probability distributions created by the 

@RISK distribution function. Iterative sampling produces sampled values and statistics that 

closely resemble the theoretical distributed values (and statistics) of the input distribution. Lastly, 

we attribute the simulation to the cell containing the output formula. This subsequently provides 

a profit distribution.  

Calculating profits/losses and comparing two scenarios is the third step of the analysis. 

Finally, we conduct a sensitivity analysis of the differential profit to changes in input prices. 

3.3. Data 

Revenues and costs that differ between the two scenarios are included in the model. The 

primary cost difference is variable inputs of fertilizers and seed. Other costs differing between 

the scenarios are soil sampling, zone mapping, fertilizer recommendation, dry fertilizer 

application and hydraulic pump. Input use and yield information for the example farms come 

from data from three corn farms, one farm in each of Richland (North Dakota), Barnes (North 

Dakota), and Boone (Eastern Nebraska) counties (table 1). The PA technologies scenarios are 

estimated using yield goals, seeding rates, and fertilizer application rates for these three farms 

provided by AgVeris, Inc., Casselton, North Dakota. The firm uses soil sampling and yield data 

to provide input recommendations for multiple farm zones. For the fertilizer recommendations, 

fields are divided into five zones and quantity of suggested inputs vary among zones based on 

the soil variability. The firm uses the national agriculture imagery program (NAIP) and 

normalized difference vegetation index (NDVI) imagery along with accurate yield data to create 

five management zones for each field.  Each management zone is then soil sampled after harvest, 
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and those results are used to provide fertilizer and seed recommendations for each management 

zone within a given field.  The non-adoption scenarios assume traditional and farm-common 

yields and application rates for inputs. 

Table 1 

 

Case Farm Characteristics 

Farm Location Size 

(acres) 

Irrigation 

Type 

Soil variability 

FARM 

A 

Richland county, ND 

(South Valley region) 

158 Non 

irrigated 

Little to no soil variability or 

topography 

FARM 

B 

Barnes County, ND 

(Southeast Region) 

161 Non 

irrigated 

Significant soil variability with 

moderate topography 

FARM 

C 

Boone county, Eastern 

Nebraska 

125 Irrigated Moderate soil variability with no 

topography 

 

Table 2 

 

Sample Fertilizer Recommendations by Zones 

CORN ZONE 

1 

ZONE 

2 

ZONE 

3 

ZONE 

4 

ZONE 

5 

WEIGHTED 

AVERAGE 

OF 5 

ZONES 

TRADITIONAL 

RATE 

YIELD GOAL - BUSHEL 120 150 160 180 200 189.07 185 

SEED RATE (1000) 24 27 29 31 35 31.6 32 

NITROGEN - UREA (LB) 195 215 268 270 295 271 325 

PHOSPHORUS - MAP (LB) 0 19 50 100 140 102 100 

POTASSIUM - POTASH (LB) 0 0 70 74 75 65 100 

SULFUR - AMS (LB) 20 47 51 60 66 58 75 

POPUP FERT - 6-24-6 (GAL) 3.0 3.0 4.5 4.5 5.0 4 5.0 

 

Table 2 shows a sample fertilizer recommendation. The first column lists the yield goals 

and names of different inputs. Yield goal is measured in bushels and seeding rate is in counts.  

All fertilizers are given in pounds except popup fertilizer which is in gallons.  Here, the field is 

divided into five zones based on soil productivity. Weighted average of five zones is calculated 

for yield goals and all other inputs. The last column shows the traditional rate of applications that 
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were used before adopting PA. In most cases, yield goals are similar for both PA and traditional 

fields, but input recommendations are lower for PA. The costs that are different between PA and 

traditional rate are considered for our analysis. Table 3 shows that soil sampling and dry fertilizer 

application costs are always higher for PA adopters than non-adopters. On the other hand, zone 

mapping, fertilizer recommendations, and hydraulic pump costs are only applicable to PA. The 

source of these rates is Agveris, Inc., Casselton, North Dakota.  

Table 3 

 

Cost Differences Between the PA and Traditional Rate (Per Acre) 

Costs PA Rate Traditional Rate 

Soil Sampling costs 2.5 1.25 

Zone Mapping costs 3 N/A 

Fertilizer Recommendation Costs 6 N/A 

Dry Fertilizer Application Costs 10 8 

Hydraulic Pump 1 N/A 

 

Historical monthly prices of corn and fertilizers (except sulfur) are collected from the 

DTN ProphetX application. North Dakota average corn monthly price series from 2010-2020 

was used in our analysis. The historical monthly price series starting from 2010 to 2020 was used 

for nitrogen (Urea), phosphorus (MAP)2, potash, popup (10-34-0), and UAN3 28. The yearly 

price series of sulfur from 2010-2022 is used (Ron Haugen, Personal communication, May 10th, 

2022) due to unavailability of monthly price series. Corn seed price data is collected from NDSU 

projected crop budgets. We excluded 2021 and 2022 prices from our analysis because price of 

 

 

2 Monoammonium Phosphate is referred to as MAP.  

 
3 Urea Ammonium Nitrate is referred to as UAN. 
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corn and all fertilizers started to increase sharply from 2021. The graphs below show price 

volatility in the periods mentioned above. 

Figure 1 

 

Historical Corn Price Series 
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Figure 2 

 

Historical Urea Price Series 

  

Figure 3 

 

Historical MAP Price Series 
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Figure 4 

 

Historical Potash Price Series 

 

Figure 5 

 

Historical 10-34-0 Price Series
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Figure 6 

 

Historical UAN 28 Price Series 

  

Figure 7 

 

Historical Sulfur Price Series 
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CHAPTER 4. ANALYSIS AND RESULTS 

The objective was to identify the differential profit per acre to identify the net benefit of 

adopting PAT. Farmers can use this model and plug in their numbers to find out the differential 

profits for their own farms. Differential profit is the difference between the profit of PA adopters 

and non-adopters of PA. 

4.1. Static Results and Sensitivity Analysis 

Table 4 shows static results using input prices from December 2020, when prices began 

to increase substantially associated with trade policy and COVID-19-related anomalies. The 

result is annual net profit associated with PA adoption. The differential profit is obtained by 

subtracting the profit of non-adopters from the adopters of PA. 

Table 4 

 

Static Results 

 
FARM A FARM B FARM C 

PA Traditional PA Traditional PA Traditional 

Profit*, $/acre 395 371 329 316 653 657 

Differential profit, $/acre 23 13 -4 

*Profit per acre is the return to fixed costs, management, and input costs except those noted as different between the 

adoption and non-adoption scenarios.  

 

Static results show that the differential profit per acre for farm A is $23, whereas for farm 

B it is $13. Our hypothesis suggests that, because Farm B has more soil variability than Farm A, 

it would have a higher differential profit per acre. Results show the opposite. The reason behind 

this is that there is a slight difference in yield goals between the PA and traditional scenarios of 

both farms. Farm A’s PA yield goal is 4 bushels/acre higher than the traditional rate. On the 

other hand, Farm B’s PA yield goal is 2 bushels/acre lower than the traditional rate. The higher 

yield goal for the PA scenario in farm A brings additional revenue, which increases the 
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differential profit per acre for farm A. If the yield goals for each were the same, the profit 

differential for Farm B would be higher.  

Sensitivity analysis calculates net profit differential using June 20224 input prices to 

compare the change in profits when prices are increased by almost double (table 5). The results 

show that differential profit is increased by more than double the 2020 static results. 

Table 5 

 

Sensitivity Analysis of Profits and Differential Profits 

Sensitivity Analysis FARM A FARM B FARM C 

PA Traditional PA Traditional PA Traditional 

Profit*, $/acre 489 437 417 379 772 769 

Differential profit, $/acre 

(June 2022 prices) 

52 38 3 

Differential profit, $/acre 

(December 2020 prices) 

23 13 -4 

*Profit per acre is the return to fixed costs, management, and input costs except those noted as different between the 

adoption and non-adoption scenarios. 

 

Figure 8 shows the sensitivity of differential profits to changes in corn seed and all 

fertilizer prices. The horizontal axis shows the percentage change in the price of seed and 

fertilizers, whereas the vertical axis shows the associated changes in differential profits for each 

of the three farms. In the base point, we are using input data from December 2020. Percentages 

on the horizontal axis show the assumed increase in the prices of both seed and fertilizers. In 

figure 8, we can see that differential profits for farms A, B, and C in the base point were $23, 

$13, and -$4 per acre, respectively. When the input prices were increased by 100%, which is 

similar to 2022 prices, differential profits almost doubled. The figure shows that, when the prices 

 

 

4 In 2022, the cost of all fertilizers increased significantly in large part due to supply and logistical challenges 

associated with the COVID pandemic. In most cases, prices considered are more than double 2020 prices.  
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of inputs increase, the profits of farms adopting PA increase significantly. Among all three 

farms, the rate of increase in differential profits per acre with respect to increases in input prices 

is the highest for farm B. This farm is using some of the more expensive fertilizers. The reduced 

cost associated with Farm B applying less fertilizer is greater under higher fertilizer prices. 

Ultimately, higher per unit costs of inputs variable rate applied leads to an increase in profits 

associated with using PA for Farm B as compared to the other case farms, leading to 

convergence of the profit differential.  

Figure 8 

 

Sensitivity of Differential Profits to Input Price Changes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Risk Analysis 

The @Risk simulation feature was used to develop profit distributions for the three 

sample farms. Table 6 contains statistical characteristics of the profit distributions. When the 

price of the inputs is low, the differential profit is at a minimum. This is because there are fewer 
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cost savings associated with applying less inputs. Profit is higher when the price of inputs 

increases and farmers are using PA to apply fewer inputs, which will lead to greater cost savings. 

For the static analysis, we used only December 2020 prices. But for the @Risk simulation, input 

price series starting from 2010 to 2020 are used. This is the reason that the differential profit 

coming from the simulation can vary from the static results.  

Table 6 

 

Differential Profit Statistics from @Risk Sensitivity Analysis 

Differential Profit/acre Farm A Farm B Farm C 

Minimum  26 10 -3 

Maximum  66 29 4 

Mean  30 13 -2 

Standard deviation 3.1 1.7 .8 

 

Farm A can earn a minimum differential profit of $26/acre and a maximum of $66/acre 

(table 6). Profit differential is at its minimum at low input prices and at its maximum at high 

input prices. The mean differential profit for farm A is $30/acre (table 6).  There is a 90% 

probability that the differential profit will be between $27/acre and $35/acre, which is much 

higher than our static results (figure 9). It is evident that adopting PA is profitable for farm A, not 

only under a higher price (figure 8), but also in a regular market environment (figure 9). 
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Figure 9 

 

Differential Profit/acre for Farm A 

 

Table 6 shows a differential profit per acre for farm B of between $10 and $29. The mean 

differential profit is $13/acre. There is a 90% probability that the differential profit will be 

between $11/acre and $16/acre, which is a little higher than the average static results (figure 10). 

So, adopting PA for farm B is moderately profitable in a normal market environment. But, when 

the price of the inputs increases significantly, the rate of increase in differential profit per acre 

for farm B is higher than for farm A (figure 8). This is expected because farm B is using some 

more expensive fertilizers. So, with the increase in fertilizer prices, farm B can save more costs 

by applying fewer inputs according to fertilizer recommendations. 
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Figure 10 

 

Differential Profit/acre for Farm B 

 

Farm C can earn a minimum differential profit of -$3/acre and a maximum of $4/acre 

(table 6). The mean differential profit for farm A is -$2/acre. There is a 90% probability that the 

differential profit per acre will be between -$3/acre and $0/acre, which is higher than our static 

results (figure 11). Farm C was an irrigated field, and they applied some fertilizer through 

irrigation to all zones at a flat rate. According to its fertilizer recommendation, there was little to 

no difference between the PA and the traditional rate of input applications. That is why farm C 

shows few or no cost savings when adopting PA.   
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Figure 11 

 

Differential Profit/acre for Farm C 
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CHAPTER 5. CONCLUSIONS 

5.1. Conclusions and Implications 

The primary goal of this research was to build a model that farmers can use to calculate 

the net benefits of adopting PAT based on their unique farm characteristics. Our hypotheses were 

that adoption of precision agriculture would increase net profit and that an increase in input 

prices will result in a larger differential profit between farms adopting PA and those not because 

applying fewer inputs will lead to a greater savings in input costs under higher prices.  

Results support the hypothesis, showing that the bundle of technologies including soil 

sampling, zone mapping, and VRT can be moderately to highly profitable for farms which are 

variable in terms of soil fertility. The more variable the field, the higher the probability of an 

increased differential profit per acre. Our analysis shows that adoption of PA is highly profitable 

for farm A where input use was more variable across the farm. The range of differential profit is 

between $26 and $66 dollars per acre. The differential profit for farm B is moderate, ranging 

from $10 to $29 dollars per acre. This farm had less variability but applied some more expensive 

fertilizers so differential profit grew with increased input prices. Adopting PAT for Farm C did 

not increase profits with a 90% probability of small but negative differential profits per acre.  

5.2. Recommendations 

Adopting PA would be moderately to highly profitable for non-irrigating farms based on 

their soil variability and unique farm characteristics. However, a traditional rate of input 

application may be more appropriate for irrigated farms as there is not much variability in the 

input application rate when PA is used and when it is not as irrigated farms are able to control 

the variability within the fields. So, adopting PA for irrigated fields may introduce only small 

input cost savings.   
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The technology bundle (soil sampling, zone mapping, VRT) considered for this research 

can be suggested to farmers who have a variable field in terms of soil productivity, noting that 

more field variability will increase the differential profit per acre of the farm. It is important that 

farmers estimate and use their own soil variability information, prices, and costs associated with 

adopting precision agriculture in estimating the potential for their farm operation. 

5.3. Limitations of the Study 

We offer a case study approach to considering the PAT adoption decision. Specific 

results are therefore limited to the specific case farms considered. Some previous research has 

used large databases including ARMS to estimate the effect of adoption of PAT bundles on farm 

profitability. There are notable concerns about this method and authors frequently indicate the 

limitation that there may be other farm and farmer characteristic factors not included in the 

model that are correlated with PAT adoption and also affect farm profitability; that is, that 

attributing the difference in farm profitability simply to PAT adoption may overstate its effect. 

Examples of such characteristics are management capability or entrepreneurial experience and 

acumen. 

The lack of a large enough data set representing regional farmers, the quick evolution of 

PAT adoption, and variation in the rate of use of PAT even when adopted made the use of 

statistical regression to compare profitability of adopters and non-adopters impractical. Further, 

we recognized the value of developing a model that will help farmers with their adoption 

decisions in the future. Therefore, we relied on the case study approach. We are using three case 

farms for our analysis and focused on building a model that can be used by individual farmers to 

calculate the net benefits of using PAT based on their unique farm characteristics.  
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Adopting additional farmers farms with a varied degree of soil variability could shed 

additional light in this area, as would considering additional technologies and technology 

bundles. 

5.4. Directions for Future Research 

Future studies on the profitability of adopting PAT can be done with a large dataset and 

varied types of fields that have adopted PA on their farms. Taking sample farms from different 

states and including farms producing different types of crops could shed additional light on the 

profitability of adopting PAT. Farms can vary considerably in terms of the soil variability and 

their topography. So, more research can be done on the impact of soil variability on the 

profitability of farms adopting PAT. Additional PAT bundles will also be of value. 
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