
UNDERSTANDING THE PATTERNS OF MICROSERVICE INTERCOMMUNICATION FROM A

DEVELOPER PERSPECTIVE

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Anas Nadeem

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

November 2022

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY
Graduate School

Title

UNDERSTANDING THE PATTERNS OF MICROSERVICE

INTERCOMMUNICATION FROM A DEVELOPER PERSPECTIVE

By

Anas Nadeem

The Supervisory Committee certifies that this thesis complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Muhammad Zubair Malik
Chair

Dr. Zahid Anwar

Dr. María de los Ángeles Alfonseca-Cubero

Approved:

17 November 2022
Date

Dr. Simone Ludwig
Department Chair

ABSTRACT

Microservices Architecture is the modern paradigm for designing software. Based on the

divide-and-conquer strategy, microservices architecture organizes the application by furnishing

it with a fine-level granularity. Each microservice has a well-defined responsibility and multiple

microservices communicate with each other toward a common goal. A momentous decision

in designing microservices applications is the choice between orchestration or choreography-

based modes as the underlying intercommunication pattern. Choreography entails that mi-

croservices work autonomously while orchestration entails that a central coordinator directs

the interaction between services. We arbitrate this decision from a developer’s perspective by

empirically evaluating the properties of a benchmark system mapped into both orchestration

and choreographed topologies. In this research, we document our experience from imple-

menting and debugging this system. Our studies demonstrate microservices composed using

orchestration exhibit desirable inherent characteristics that make microservice code easier to

implement, debug, and scale.

iii

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to the following people who made this

research and my master’s degree possible. First and foremost, I would like to express my

appreciation to my parents who have helped me become the person I am today. It would

not have been possible without their support. I also express my whole-hearted gratitude to

my advisor, Dr. Zubair Malik for his support and encouragement throughout my academics,

research, and career. I would like to extend my sincere thanks to all of my family and friends;

who have constantly been supporting me despite the distances. Finally, I would like to thank

my friend Nimrah for her constant support.

iv

DEDICATION

This thesis is dedicated to my parents.

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xi

1. INTRODUCTION . 1

1.1. Overview . 1

1.2. Motivation . 1

1.3. Thesis Statement . 2

1.3.1. Research Questions . 2

1.3.2. Research Contributions . 2

1.3.3. Research Objectives . 3

1.4. Thesis Organization . 3

2. LITERATURE REVIEW . 4

2.1. Background . 4

2.1.1. Traditional Architecture . 4

2.1.2. Challenges of the Traditional Application Architecture 4

2.1.3. Microservice Architecture . 4

2.1.4. Challenges of Microservice Architecture . 5

2.1.5. Composition Styles . 6

2.1.6. Choreography . 6

2.1.7. Orchestration . 7

2.2. Related Work . 8

2.2.1. On Microservice Architecture . 8

vi

2.2.2. On Maintenance and Debugging of Microservice Based Systems 9

2.2.3. On Orchestration and Choreography . 9

3. RELEVANT TOOLS AND DEFINITIONS . 10

3.1. Tools and their Utilization . 10

3.1.1. Docker . 10

3.1.2. Spring Boot Framework . 10

3.1.3. Workflow Engines . 10

3.2. Definitions . 10

3.2.1. Container Orchestration . 10

3.2.2. Fault Tolerance . 11

3.2.3. Visual Tracing . 11

4. APPROACH OF THE STUDY . 12

4.1. Benchmark System . 12

4.1.1. System Configuration . 13

4.2. Infrastructure and Tools . 13

4.2.1. Choreography . 13

4.2.2. Orchestration . 13

4.3. Technical Debt . 17

4.4. Debugging Methodology . 18

4.4.1. Choreography . 21

4.4.2. Orchestration . 21

5. RESULTS AND DISCUSSION . 24

5.1. Results . 24

5.1.1. Tools and Support . 24

5.1.2. Technical Debt . 24

5.1.3. Debugging . 25

5.2. Discussion . 26

5.2.1. Reality of Choreography . 26

vii

5.2.2. Promise of Orchestration and Workflow Engines 27

5.2.3. Testing and Debugging Using Temporal . 27

6. CONCLUSION . 29

REFERENCES . 31

APPENDIX . 39

viii

LIST OF TABLES

Table Page

5.1. Technical debt survey for choreography based benchmark system implementation . 25

5.2. Technical debt survey for orchestration based benchmark system implementation . 25

5.3. Comparison of debugging times between original study and system mapped into
Temporal . 26

ix

LIST OF FIGURES

Figure Page

2.1. Layout of a monolithic application having all components housed in a single unit. . 5

2.2. Layout of a microservice application where each microservice has its database and
communicates with each other. 6

2.3. Request flow in a microservice system composed using choreography. 7

2.4. Request flow in a microservice system composed using orchestration. 8

4.1. Original flow of the business process before mapping to Temporal. 15

4.2. CancelTicket business process mapped as a Temporal workflow. 17

4.3. Original cancelTicket process with fault injected. Error is thrown while setting the
order to cancelled. 21

4.4. Visual trace of faulty cancelTicket workflow. 22

4.5. Stack trace of faulty cancelTicket workflow. 22

5.1. Barchart of times taken to debug choreographed vs orchestrated approach. 27

5.2. A result of dependencies created by increasing microservices in choreography. . . . 28

x

LIST OF ABBREVIATIONS

MSA . Microservice Architecture

HTTP . Hyper Text Transfer Protocol

REST. .Representational State Transfer

SOA. .Service-Oriented Architecture

OOD . Object Oriented Design

IP . Internet Protocol

AI . Artificial Intelligence

API. .Application Programming Interface

JVM. Java Virtual Machine

gRPC. .gRPC Remote Procedure Calls (recursive)

UI .User Interface

DSL . Domain Specific Language

GUI . Graphical User Interface

XML . Extensible Markup Language

SQL . Structured Query Language

CI . Continuous Integration

CD . Continuous Deployment

NoSQL . Non-Structured Query Language

IoT. Internet of Things

TD . Technical Debt

xi

1. INTRODUCTION

1.1. Overview

Microservice Architecture (MSA) is a method of structuring an application by breaking

it down into small, cohesive units that are loosely coupled and functionally independent. Their

lightweight nature allows the development, deployment, testing, and scaling of these microser-

vices independent from each other [56]making them promising for cloud-native infrastructure.

As a result, large web companies including Netflix, Amazon, IBM, and Microsoft have made

efforts to evolve their applications towards a microservice-based architecture [14, 16]. The

microservice architecture inherits concepts and principles from the Service-Oriented Architec-

ture; both decompose the systems into services available over a network [11], however, the

microservice architecture takes it a level up as each microservice may communicate over an

entirely different protocol and could be written in entirely different languages.

Adopting microservice architecture is not a straightforward task [7, 21, 44, 53] and re-

quires several critical decisions. One contentious architectural decision is whether to compose

the microservices using choreography or orchestration patterns. This decision has vast impacts

on the lifecycle of a system and proposes further challenges in its entirety. In this work, we try

to develop a strong understanding of these patterns and their challenges from the perspective

of a developer. This research is an extension of our previous research [32].

1.2. Motivation

The choice between composing a microservice-based system using either choreography

or orchestration is critical. Regardless of the underlying architecture, or collaboration strategy

the user needs to be abstracted of the inherent complexities and should be able to receive a

seamless experience. This naturally shifts the burden of managing the associated complexities

onto the developers [26], who are responsible for building, maintaining, and troubleshooting

these systems. This motivates us to explore the pros and cons of both approaches from a

1

developers’ perspective. This is a gap in the existing literature [28, 53] as existing research

considers only the inherent properties of the system itself, and not the developers’ aspect [28,

35].

1.3. Thesis Statement

Systems composed using microservice orchestration are more favourable for a devel-

oper in terms of availability of tools, better quality of code and is simple to debug.

In this section we describe our research questions, highlight our contributions and our

objectives for carrying out this research.

1.3.1. Research Questions

The goal of the research is to study and highlight the inherent characteristics of the

choreography and orchestration approach. In specific, we want to find out how both of these

approaches impact the overall developer’s experience from implementation, debugging and

maintenance. The following are our research questions:-

• RQ1: How does the choice of the interaction pattern affect the implementation process

of the systems?

• RQ2: What are the immediate pros and cons of selecting either of the approaches?

• RQ3: How does the choice affect the process of debugging the system?

1.3.2. Research Contributions

To answer the research questions above, We make the following research contributions.

• We dive deep into the literature to understand the problem with microservice choreog-

raphy and orchestration.

• We discuss our experience in implementing microservice orchestration and choreogra-

phy techniques on a benchmark microservice system.

• We inject faults into the benchmark system and conduct an empirical study and com-

pare the times required to debug these faults in both orchestration and choreography

schemes.

2

1.3.3. Research Objectives

We conduct a case study around a benchmark system [58], designed for activities

around booking train tickets. We consider this benchmark system mapped in choreography

as well as orchestration patterns. Our objectives are highlighted as follows:-

• Understand and identify the challenges of the microservice architecture

• Understand the concepts and differences between the microservice orchestration and

choreography patterns.

• Consider factors including learnability, and ease of use and present our findings in an

organized approach.

• Use scientific methods to gather substantial evidence around both techniques and see

how different processes would be carried out in both approaches.

• Based on our results, draw conclusions supported with evidence.

• Provide sufficient equipment for the purpose of expanding our work.

1.4. Thesis Organization

In Chapter 2 we discuss the background of the microservice architecture and the avail-

able patterns of communications. In Chapter 3 we document some concepts and clarify some

definitions, disambiguate between any concepts or jargon and discuss the state of the art in mi-

croservices, that were employed while carrying out the experimentation. Further, we highlight

the details of our experimentation in Chapter 4 and discuss the results in Chapter 5. Finally,

Chapter 6 concludes our research and the findings.

3

2. LITERATURE REVIEW

2.1. Background

To develop systems, various architectures have been predominantly used in the past

such as Data-centric architecture, and Peer-to-Peer architecture. We discuss the most common

of these architectures; the Monolithic Architecture and highlight its challenges to develop an

understanding of the need for microservice architecture.

2.1.1. Traditional Architecture

Computer applications have evolved from the traditional monolithic architecture in

which the entire application [14], including the user interface and the business implementation

were housed on the same machine. From a developer’s perspective, tasks such as implement-

ing, testing, and debugging such environments were easy as there was better traceability of

requests because the components resided on the same machine.

2.1.2. Challenges of the Traditional Application Architecture

Towards the downside, the monolithic application would soon grow into a gigantic

system that was difficult to maintain. This also meant that the modules could not be executed,

or deployed independently [15]. As a result, the system components were intertwined in a

dependency-hell [29, 50] making the application prone to a single point of failure where one

component failing could cause the entire system to fail. Despite its challenges, the monolithic

architecture was widely used in the past by companies like Amazon and Ebay [14] and is still

commonly used for small-scale applications. However, systems requiring high scalability and

availability have shifted onto the more promising, microservice architecture [36]. Figure 2.1

demonstrates application components arranged in a monolithic style.

2.1.3. Microservice Architecture

The modern Microservice Architecture paradigm solves the challenges of monolithic ar-

chitecture. It is an approach to developing the system as a suite of small independent services,

4

User Interface Business Layer Data Layer

Database

Figure 2.1. Layout of a monolithic application having all components housed in a single unit.

demonstrated in Figure 2.2. These services run in their own independent processes [11] and

interact with each other to perform business processes. This makes the system fault-tolerant

as a failing microservice can be easily replaced and the other parts of the system can function

normally even while that service is down [38]. The microservice architecture solves the chal-

lenges of monolithic architecture by introducing the principles of high cohesion, less collision,

and scalability.

2.1.4. Challenges of Microservice Architecture

The benefits of microservices are no free lunch [54] and microservices come with sev-

eral challenges of their own. Microservice-based applications soon become very complex as a

result of high dynamism, failing services, a high amount of parallelism, and developers’ lack of

observability and pose unique challenges [55]. Debugging a microservice system is degrees of

magnitude more complex than a traditional system as logs are distributed among multiple iso-

lated services. Microservices typically run inside Docker containers [29], which are lightweight

runtimes. Adding an automatic layer of scalability, these container instances are dynamically

created or destroyed by container orchestrators such as Kubernetes [9] based on traffic or other

metrics. This further complicates the problem as it becomes difficult to map requests to a phys-

ical instance of a microservice [56]. Therefore, it is important to make correct architectural

choices while composing microservices as adopting anti-patterns and wrong patterns may have

adverse effects on the performance, scalability, and cost of the systems [40].

5

Microservice Microservice Microservice

UI
Microservice

Figure 2.2. Layout of a microservice application where each microservice has its database and
communicates with each other.

2.1.5. Composition Styles

A complex microservice-based system might be composed of thousands of microser-

vices [55]. As discussed earlier, each microservice in the system has a well-defined responsi-

bility and performs specialized tasks. Hence, a business request invocation might span across

multiple microservices [39]. The collaboration of microservice towards a goal is often termed

as a ’workflow’. This invocation or collaboration in a microservice system is composed using

either microservice choreography or microservice orchestration [5, 28, 32, 35, 39, 42]. The

selection of the right composition strategy is a key decision while architecting microservice

systems which impacts developer activities such as debugging, testing, and trouble-shooting.

2.1.6. Choreography

Microservice choreography is traditionally the most prevalent approach while compos-

ing microservices [19, 39]. Each microservice operates autonomously hereby following the

event-driven paradigm. Hence, the flow of a request is from one microservice to another un-

til a response is generated, which is communicated back to the requester [28]. Figure 2.3

6

Figure 2.3. Request flow in a microservice system composed using choreography.

represents the underlying topology of this communication. Commonly, in choreography, each

microservice listens and responds to events from a message broker such as Apache Kafka [18],

ActiveMQ [43], etc. In this work, we mainly consider the topological aspect of this commu-

nication, and rather than using complex distributed queues, we choreograph our microser-

vices using REST, which is another common way of organizing the choreography pattern [13].

Choreography has no hard dependencies and each microservice is independent in handling

business, including enabling the service with monitoring, fault tolerance, and fault resilience

capabilities.

2.1.7. Orchestration

Microservice orchestration uses a central coordinator that acts as the brain of commu-

nication within a microservice-based system. Each request and response is directed to and

from the orchestrator [28, 39]. Figure 2.4 demonstrates the flow of a request within a mi-

croservice orchestration scheme. The property of control flow being centrally controlled, and

the microservices not being atomic allows the construction of frameworks to enable the or-

chestration approach and allowing to handle monitoring, and fault tolerance directly from the

orchestrators.

7

Figure 2.4. Request flow in a microservice system composed using orchestration.

2.2. Related Work

2.2.1. On Microservice Architecture

Microservice architecture, which was designed to meet the shortcomings of the mono-

lithic architecture [20] has received a lot of attention over the last decade. Developers are

making effort to migrate their monolithic applications onto the microservice framework thus

enabling the applications to become cloud native [4]. This migrating trend towards the cloud

and its increasing adoption has made it common for deployments to rely on container-based

microservices [41]. Studies around microservices [41] have proved them to be promising for

companies allowing to manage large code bases. Moreover, the microservice architecture has

not only evolved the method of engineering but has impacted the agility of an organization

where the teams solely manage one or multiple microservices [22], hence allowing efficient

division of labor.

Microservices, due to their lightweight nature, have seen their adaptation in the Internet

of Things (IoT) [10] and edge computing [52] with critical use cases. Their efficiency has

resulted in their utilization not only in the software industry but they have also helped scale

systems in the area of biotechnology [8]. Monolithic applications are increasingly being broken

down into microservices. According to a study, this transition is worthwhile as microservice-

based systems reduce infrastructure costs by at least 70% [51]when compared with monolithic

8

applications. Makris et. al [26] highlight the challenges of this transition. More recent work

is around devising strategies to formalize and automate the process of this transition [1, 46].

2.2.2. On Maintenance and Debugging of Microservice Based Systems

The puzzling complexity of system visibility of microservice systems has provoked re-

searchers to ponder ways around solving this challenge. Distributed tracing [34] is a way of

having a bird’s eye view of the request life-cycle from its origin to its completion. Zhou et.

al [55, 57] worked on solving the problem by using the delta-debugging algorithm to devise a

strategy for identifying the root causes of failures. Gan et. al [17] worked on the performance

debugging aspect of these systems. Zhou et. al [56] also worked on collecting insights from a

detailed industrial survey. They presented common faults found in microservice systems and

injected these faults into a benchmark system. They further presented results from debugging

these faults and the underlying tools used to debug the faults. In our work, we utilize the same

benchmark system while conducting our empirical study.

2.2.3. On Orchestration and Choreography

While microservice orchestration and choreography are extensively used in the industry

for the composition of microservices, they have received little attention in academia. Although

several researchers have tried to arbitrate the decision between making this decision, they did

not consider the developer aspect of it [28]. Alan et. al proposed a formal survey methodology

for narrowing down the decision of choosing the desired composition strategy. They assign

weights to the desired properties and score specific characteristics when mapped to either

approach and come to a conclusion based on the maximum points earned based on the weights.

C. K. Rudrabhatla [39]worked on a comparison of both patterns. Their findings suggested that

microservice choreography is the desired approach for systems involving a small number of

microservices however, as soon as the size of the system tends to grow, choreography becomes

hard to code, and maintain. More recent work is around combining the best of both approaches

to be able to leverage the benefits of both in a hybrid approach [49]

9

3. RELEVANT TOOLS AND DEFINITIONS

3.1. Tools and their Utilization

We use this section to define the tools that we used in the research and discuss their

specific use in detail during our experimentation.

3.1.1. Docker

Docker Container is a lightweight virtualization platform that the industry uses to share

resources without worrying about dependencies [2]. This lightweight makes them suitable

to be hosted on cloud infrastructure. In our work, we use microservices hosted in Docker

containers that run within Docker runtime.

3.1.2. Spring Boot Framework

Springboot framework, is a set of java libraries that facilitate the creation of stand

alone microservices [37] by embedding REST capability, database integration and interface

with Docker directly. The majority of the microservices we use are written using this frame-

work.

3.1.3. Workflow Engines

Workflow engines are tools, designed to orchestrate microservices. These tools relieve

the developer of managing low level tasks such as managing the distributed architecture, han-

dling faults, handling communication and focus on implementing the business logic. These

workflow engines include Netflix Conductor [33], Uber Cadence [48]. We use one such work-

flow engine, Temporal [27], to facilitate orchestration of microservices during our empirical

study.

3.2. Definitions

3.2.1. Container Orchestration

Container Orchestration; not to be confused with microservice orchestration, is a tech-

nology that automatically up-scales or down-scales container instances. This up-scaling and

10

down-scaling is based on a set of tools defined in that orchestrator by an administrator, usually

based on traffic, for load-balancing purposes. These tools are such as Docker Swarm [45],

Kubernetes [9].

3.2.2. Fault Tolerance

Fault tolerance refers to the system’s ability to handle any fault and recover from it.

High availability is an important aspect in distributed systems involving microservices therefore

requires immediate attention [23]. We will further discuss this aspect and its manageability

for both orchestration and choreography patterns.

3.2.3. Visual Tracing

Visual tracing or trace analysis refers to ways of visualizing the life cycle of a request

in a distributed system, typically with the help of graphs. We use the visual tracing technique

while debugging our system during our study.

11

4. APPROACH OF THE STUDY

Due to their complexity, microservice systems are hard to implement and debug, there-

fore it is important to study how the choice of either choreography or orchestration affects the

overall developer experience. While several external factors impact the overall developer ex-

perience including team communication, and organizational changes [12], we limit the scope

of our study to intrinsic properties of the system itself, including the availability of tools and

technical debt of the code produced [12].

Technical debt is a critical issue in the modern world software development industry

and can lead to high software quality issues. Technical debt refers to the potential long-term

effect of immature code produced during the life-cycle and the ’debt’ has to be repaid later in

the development process [6], significantly impacting the developer experience. Several factors

that procure technical debt include application-level code smells such as duplicated code, and

tight coupling of components.

First, we report the implementation aspect of this experience including the technical

debt of the produced code, and the infrastructure tools and support [12]. Then we discuss the

debugging aspect of this system and finally compare the system with both approaches.

4.1. Benchmark System

For the purpose of our study, we use a microservice benchmark system TrainTicket [56].

This benchmark system allows a user to perform typical train ticket booking activities including

purchasing, canceling, and changing tickets. TrainTicket, to the best of our knowledge, is the

largest publicly available benchmark microservice system which contains over 30 fine-grained

microservices. These microservices are written in several languages including Java, NodeJS,

Go, and Python. The benchmark system extensively utilizes the Springboot framework, which

serves to make the implementation of microservices easier. Additionally, the benchmark system

12

contains common fault cases that occur in industrial microservice systems, gathered from an

external industrial survey.

4.1.1. System Configuration

The benchmark system is available at our TrainTicket-workflows GitHub repository [30].

The microservices were hosted on Docker containers running on a Linux machine and were

powered by a processor configuration of 3.60 GHz x 8 cores and 32GiB available memory.

4.2. Infrastructure and Tools

4.2.1. Choreography

The benchmark system code is originally composed using the choreography topology.

Hence a request in the original TrainTicket system originates from one microservice and tra-

verses from one microservice to another until a response is received. In TrainTicket, microser-

vice choreography is implemented using direct REST API communication. During the case

study, mapping TrainTicket to use an event-driven broker such as Apache Kafka was also con-

sidered, however, it added little value since it would’ve only complicated the communication

with little to no benefit since the microservice topology would have remained the same.

We observed a low availability of available tools for choreography as compared to or-

chestration. We document the possible reasons for it in the discussion section.

4.2.2. Orchestration

When mapping to orchestration, we were able to leverage several existing tools. For the

purpose of writing the business processes, we employed a workflow engine. These workflow

engines relieved us of low-level distributed system management tasks such as handling failures

and enabled us to implement only the business logic. After considering variety of workflow

engines including Netflix Conductor [33], Uber Cadence [48], and Apache Airflow [3], we

opted Temporal [27] due to the following reasons:-

1. We were able to define the microservice communication in plain code rather than using

any complex Domain-Specific Language.

13

2. Temporal itself came with off-the-shelf tool support to ease debugging.

Below we highlight our experience in using Temporal to orchestrate our microservice

in detail.

4.2.2.1. Temporal

Temporal workflow engine manages the workflow lifecycle and provides a fault-oblivious

stateful programming model to orchestrate microservices. Using Temporal, programmers can

write their microservice communication workflows in a familiar language such as Go, Java,

and PHP and the platform takes responsibility for managing tasks including fault tolerance,

and frees the developer to focus on actual business logic implementation rather than spending

time on re-inventing the wheel.

4.2.2.2. Transitioning to Temporal

While mapping code to Temporal, the code had to undergo several changes such as

separating business logic from control flow. While the platform promised low-level handling

of distributed tasks, the code had to go through several refactoring. The framework had two

main constructs to carry out business processes; workflows and activities.

In Temporal, every business process must instantiate a workflow. This workflow man-

ages all the interactions of microservices. Every microservice interaction must be managed by

the Temporal framework.

Every non-deterministic action that is prone to failure, such as calls to microservices

and calls to external APIs must be wrapped in an activity. These activities are used within the

workflow. The state of every input and output from these activities is stateful and is recovered

in case of failures enabling fault resilience.

These workflows and activities are then registered using a worker which is responsible

for fetching the tasks from the queue and thus executing them.

14

Cancel
Ticket

Controller
Request

Cancel Service
(cancelTicket)

Inside Payment
Service

(processDrawBack)
Order Service

(setToCancelling)

Order Service
(setToCancelled)

Figure 4.1. Original flow of the business process before mapping to Temporal.

Below we highlight our experience from mapping a microservice business from TrainTicket

to Temporal orchestrated workflow, and use a similar strategy to map all the workflows to Tem-

poral.

4.2.2.3. Original Ticket Cancellation Process

The ticket cancellation process in the benchmark system allows canceling a purchased

Ticket. The purchase cancellation involves two main operations. The first is processing the

refund and the second involves changing the status of the order. When a user requests the

cancellation of a ticket, cancel ticket service is involved which calls inside payment service to

process the refund. The inside payment service internally triggers the order service to set the

order to cancel. before it starts processing. Once the inside payment service completes the

processing of the refund, it transfers the control back to cancel service which again calls the

order service to set the order to canceled. This whole process is demonstrated in Figure 4.1.

4.2.2.4. Conversion to Temporal Workflow

We were able to map the above business process to a workflow, systematically. First,

we mapped the business process to cancelTicketWorkflow. Subsequently, all calls to the mi-

croservices in the system were individually mapped into different activities. The following

demonstrates the business process after our mapping strategy, also demonstrated in Figure 4.2

15

1. When the controller receives a request for canceling a ticket, it initiates a cancel ticket

workflow.

2. Cancel ticket workflow calls to setOrderCancellingActivitiy which triggers a call to the

order service to set the order to canceling

3. Cancel ticket workflow then triggers the drawBackMoneyActivity which refunds the

money by internally calling inside-payment-service.

4. The cancel ticket workflow lastly calls the setOrderCancelledActivity, which internally

calls order service.

4.2.2.5. Temporalint

We further wrote a simple linter [31] for Temporal to assist the experience in develop-

ing. This was possible as a result of workflows originating centrally from a single coordinator.

The linter can detect a whole range of patterns and anti-patterns. Our effort in building this

tool has made us more familiar with the core implementation of the Temporal framework as

well as developer interactions and usage patterns of the framework. It verifies that the work-

flow is free from common pitfalls that might occur in writing Temporal code and notifies the

end user of what needs to be done in case an issue with the input code is detected. Examples

of pitfalls include the violation of deterministic rules that are essential for the framework to

function properly. The following are the main capabilities of the linter.

• Parsing: We first build an AST of the source which allows us to inspect the tree by

helping us to walk the nodes one by one.

• Identifying Potential Fault Locations: Before we move on to looking for violations, we

need to identify potential fault locations. Since the body of the workflow is where our

deterministic constraints can be violated, we identify all the workflow definitions inside

the Temporal project. While writing workflows in Temporal, the workflow signature

must have a special ’workflow.Context’ first parameter. We navigate around the syntax

tree in this stage to identify nodes containing workflow definitions.

16

Temporal Ecosystem

setOrderCancelling
Activity refundAmountActivity setOrderCancelled

Activity

Temporal Worker (Cancellation Worker)

Temporal Workflow (CancelTicketWorkflow)

Queue

Cancel
Ticket

Controller
Request

Figure 4.2. CancelTicket business process mapped as a Temporal workflow.

• Finding Violations: We look at all of the potential fault areas and verify that the workflow

definition code is free from common pitfalls. If there is a violation in any workflow code,

we notify the user that they need to rectify their mistake.

The orchestrated approach using Temporal orchestrated workflows allows for central-

izing the processes. Thus code duplication is minimalized resulting in little to no duplication.

Moreover, handling of failures is implicitly done by Temporal itself relieving the developer of

having to write code to enable fault tolerance and fault resilience.

4.3. Technical Debt

Technical debt significantly impacts developer experience as developers have to work

around this debt or fix it later in the process. Although technical debt (TD) may be of many

types such as Architectural TD, Requirements TD, Design TD, and Test TD. Our study is scoped

around Code TD which is procured as a result of a violation of coding standards and the in-

troduction of code-smells [25]. To measure technical debt procured in the process of imple-

menting either pattern, we follow a survey-based approach. The subject under study in this

survey is a developer that has experience with the system and is familiar with the code base

for orchestrated as well as the choreographed system.

17

First, we identify common microservice code smells which are major causes of code

technical debt. We then follow a weight-based methodology where the user in our study is

asked to assign weight to the likelihood of the presence of a code smell from the options

including ’Not likely’, ’Somewhat likely’, and ’Very likely’ with assigned weights 3, 2, and 1

respectively. The developer is then asked to fill out this survey after they had worked on both

the orchestrated and choreographed versions of the benchmark system. Finally, we compute

the overall score in either approach where a higher score means more promising results and

thus the system incurs less technical debt as a result of code smells. We present the scores for

orchestration and choreography in Chapter 5.

We identified the most common code smells in microservice-based systems [47] as:-

• Cyclic Dependency: Existence of a dependency cycle between two or more microser-

vices.

• Hard Coded Endpoints: Existence of hard-coded IPs and Ports of one microservice in

another.

• Inappropriate Service Intimacy: One microservice tries to connect and access the

private data of another microservice.

• Lack of API Gateway: Microservices communicating with each other directly.

• Shared Libraries: Multiple microservices share same libraries.

• Shared Persistence: Different microservices attempt to access the same database.

• Too Many Standards: There are multiple protocols, languages, and frameworks used

for the development of different microservices.

• Duplication of Code: Same business is re-implemented in multiple microservices.

4.4. Debugging Methodology

As an outcome of the implementation study in the previous steps, we end up with the

benchmark system TrainTicket mapped in both Choreography and Orchestration. To debug

the benchmark system in both patterns, the benchmark system is injected with 22 fault cases,

18

gathered from an extensive industrial survey [56]. We then collect the total time required to

debug each fault.

• F1: Lack of sequence control in asynchronous message delivery in cancelTicket process

• F2: Network congestion in ticket reservation causes delivery of requests in the wrong

order

• F3: Requests occupy larger memory than the available resources causing service un-

availability

• F4: SSL offloading in each microservice causes prolonged response time

• F5: Incoming requests to basic info service exceed the available thread pool size causing

a timeout

• F6: Recursive errors in voucher service results in a large number of retries leading to a

time out

• F7: Call to charge amount during the ticket purchase process intermittently times out

• F8: Missing request tokens during the ticket reservation process for VIP users leads to

failure

• F9: Words on UI have incorrect display alignment

• F10: Ticket reservation process makes incorrect API calls resulting in failure

• F11: A missing edge case causes intermittent lack of sequence control during the can-

cellation process resulting in failure

• F12: A cancellation request to the order service for a locked station rejects any incoming

requests resulting in failure

• F13: A transmission delay in simultaneous requests by the same user over a short period

makes the system inconsistent

• F14: Calculation of the price of a seat is wrong

• F15: A lengthy request body size results in Nginx to block the request

19

• F16: Adding routes by file upload with a size bigger than the limit results in the rejection

of the file

• F17: Requesting voucher with a simulated load delay in SQL results in a query timeout

• F18: A missing null value check during the train selection process results in an error in

the getFood response

• F19: Display of package consignment prices in French is in the wrong format

• F20: Mismatch in the version of a common library versioning results in loading different

versions of the same data structure

• F21: Missing aria-labeled-by in verification code field in login results in poor accessi-

bility

• F22: A mismatch of the column name in the select and from part of an SQL query results

in empty results during voucher printing

After mapping the entire system to Temporal, we organize the source code on our

GitHub repository [30] on different branches in such a way that a user can preview what

changes have to be made to the existing system to map the business flow to Temporal and

changes to the source to inject the faults above.

For example, to be able to see how fault F1 is mapped onto Temporal, one only needs

to do a diff from master to F1 to understand the source code changes. An example of this diff

can be found in the appendix.

Consistent with the benchmark system [56], the 22 fault cases are subdivided into three

types.

1. Internal: Result of implementation in microservice code.

2. Interaction: Result of interaction between microservices.

3. Environment: Result of external infrastructure and misconfiguration.

20

Figure 4.3. Original cancelTicket process with fault injected. Error is thrown while setting the
order to cancelled.

4.4.1. Choreography

As the original benchmark system is a choreographed version, we utilize the time to

debug the faults in the original study as our baseline for the choreographed approach and

compare these to the ones in the orchestrated approach. We discuss this comparison in Chap-

ter 5.

4.4.2. Orchestration

In the orchestrated scheme of TrainTicket, built using Temporal, we employ tools pro-

vided by Temporal itself to analyze and debug the 22 fault cases. To study this debugging

process, we consider the previously highlighted cancelTicket process with the injected fault,

demonstrated in Figure 4.3. In TrainTicket, this fault is injected by making the system lack

strict sequence control and simulating network congestion while calling the inside payment

service. Upon simulating the network congestion, the refund call gets triggered after the order

service already sets the order to canceled which throws an error as only active orders can be

further processed for a refund. In Temporal, we invoke drawBackMoneyActivity and setOrder-

CancelledAcitivty asynchronously to replicate the fault in the cancelTicket workflow. Further,

we highlight the steps taken towards debugging it from the Temporal system with the help of

a formal model [24].

21

Figure 4.4. Visual trace of faulty cancelTicket workflow.

Figure 4.5. Stack trace of faulty cancelTicket workflow.

• Constructing Problem Space: In this step, we develop an initial understanding of the

fault. The Temporal Web UI tool produces a stack trace. We collect these to develop

fault perception. The stack trace and visual trace for the cancelTicket workflow are

demonstrated in Figure 4.5 and Figure 4.4 respectively.

• Fault Symptom Identification: In this step, we set the environment to be able to re-

produce the fault. As a benefit of Temporal, the workflow made the business process

explicit and we were able to set a minimalistic version of the environment by quickly

identifying and deploying only the microservices involved in the workflow.

• Diagnosis: In this step, we used the knowledge gained through the previous steps to

predict and hypothesize the locality of the fault. From careful observation of the vi-

sual trace, we found that setOrderCancelledActivity invokes before drawBackMoney-

ForCancelActivity, which breaks the routine business expectation.

22

• Solution Generation: The final step was correcting the fault. In this case, this was

achieved by adding the necessary sequence control. After the correction, we ran multi-

ple test cases to verify the correctness of the solution.

23

5. RESULTS AND DISCUSSION

This section highlights the results of our study and further discusses the findings con-

cerning the original research questions. The user in our study had more than three years of

industry experience in developing microservices.

5.1. Results

5.1.1. Tools and Support

During the case study, the developers were able to find more tools for orchestration-

based approaches, in comparison to microservice choreography. While tools like istio service

mesh enabled monitoring, there were no framework-based methodologies towards developing

choreographed system. Whereas, in Microservice Orchestration we found several frameworks

that handled low level distributed tasks.

We believe that this difference in the availability of tools is a result of the autonomous

nature of microservice in a choreography-based approach. Since every microservice in chore-

ography is independent of each other, it is hard to conform every microservice to a uniform set

of rules or patterns that is the basic assumptions of such a framework. Whereas, an orchestra-

tor is meant to have more control over the system as it coordinates the entire communication,

enabling the possibility of add-ons such as frameworks on this central layer which is the brain

of the system.

5.1.2. Technical Debt

We used a negative weighing methodology where a developer scores higher points if

there is a low likelihood of the presence of an issue in code and lower points for a high like-

lihood, hence an overall high score is desirable. Table 5.1 and Table 5.2 highlight the results

for choreography and orchestrated versions of the system respectively.

Out of the highest point mark of 27, the choreographed system achieves a total score of

12 points whereas orchestrated system scores 20 points. This indicates that the orchestrated

24

Table 5.1. Technical debt survey for choreography based benchmark system implementation

Code Smell Not Likely (3) Somewhat Likely (2) Very Likely (1)
Did the code have cyclic dependencies between microservices? ✓
Is there a presence of hard coded endpoints? ✓
Does one microservice try to access private data of another? ✓
Are microservices communicating directly? ✓
What is the likely hood of the existence of shared libraries? ✓
Does the system have shared persistence? ✓
Does the code follow too many different standards? ✓
What was the likely hood of code duplication? ✓

Table 5.2. Technical debt survey for orchestration based benchmark system implementation

Code Smell Not Likely (3) Somewhat Likely (2) Very Likely (1)
Did the code have cyclic dependencies between microservices? ✓
Is there a presence of hard coded endpoints? ✓
Does one microservice try to access private data of another? ✓
Are microservices communicating directly? ✓
What is the likely hood of the existence of shared libraries? ✓
Does the system have shared persistence? ✓
Does the code follow too many different standards? ✓
What was the likely hood of code duplication? ✓

version of the system has a lower overall Code TD (Technical Debt) whereas, the choreographed

approach procures more Code TD.

The presence of high code technical debt is a negative in terms of developer experience

as the system becomes complex and hard to maintain over time. This means that microservice

orchestration is more favorable for a better developer experience.

5.1.3. Debugging

Table 5.3 sums up our findings of the time required to debug the faults in the orches-

trated system, to the time required to debug those faults in the original choreography-based

system. Temporal did not play a significant role in helping the faults that were internal as these

faults are only a result of miscommunicated requirements. Whereas, on the occurrence of an

interactional fault causing exceptions, Temporal handled fault tolerance and preserved the en-

tire state of the program including local variables, inputs, and outputs. The function resumed

as soon as the fault was corrected. Similarly, for environment faults, the execution resumed

automatically as soon as the microservice came back live. This was not the case in the orches-

25

Table 5.3. Comparison of debugging times between original study and system mapped into
Temporal

Fault Type Overall Time (H) Overall Time Temporal (H)
Fl Interaction 13.6 2.4
F2 Interaction 13.9 3.6
F3 Environment Failed 0.5
F4 Environment Failed 0.4
F5 Interaction 12.6 5.2
F6 Interaction 5.9 6
F7 Interaction 12 5.3
F8 Interaction 12.2 4.8
F9 Internal 1.8 0.9
F10 Interaction 10.6 6.1
F11 Interaction 13.9 4.8
F12 Interaction 19.3 8.1
F13 Interaction 16 7.6
F14 Internal 2.9 3
F15 Environment 1.8 0.6
F16 Environment 5.9 6.1
F17 Internal 5.9 4.1
F18 Internal 3.4 3.9
F19 Internal 0.7 0.7
F20 Environment 3.8 3.1
F21 Internal 1.6 1.5
F22 Internal 0.4 0.5

trated approach, as not every place had explicit error handling resulting in the microservices

crashing and the whole operation being lost, having to start over.

As highlighted in Figure 5.1, it is evident that the time required to debug the faults in

a Temporal based microservice orchestration-based approach was way less than the time that

was required to debug these faults in the original choreographed version of the benchmark

system. Hence improving the overall speed of debugging.

5.2. Discussion

5.2.1. Reality of Choreography

Microservice choreography sounds very promising for agility and lose coupling. It im-

plies that services are simply connected or disconnected from the broker. However, teams that

have built complex systems shared that as a result of the growth of the system, process flows

were embedded within the source code of multiple services, which is troublesome for mainte-

26

Figure 5.1. Barchart of times taken to debug choreographed vs orchestrated approach.

nance activities including debugging. In addition to that, it is hard to monitor these services

and it becomes very complex to answer the current progress of an initiated task.

With the continuous addition of microservices in a choreographed system, the commu-

nications become a dependency hell, an example of which can be seen in Figure 5.2.

5.2.2. Promise of Orchestration and Workflow Engines

We believe that employing a workflow engine-based approach for the implementation of

the choreography pattern was fruitful in multiple ways. Similar to the early days of computing,

before SQL was invented as a standard for querying and saving data, everyone invented their

storage and retrieving mechanism. Workflow engines such as Temporal, similarly handle the

low-level distributed tasks to how SQL does for data and we envision that these engines have

the potential to become broiler plates for every microservice-based system.

5.2.3. Testing and Debugging Using Temporal

Temporal provides a test framework to facilitate testing Workflow implementations.

The framework supports unit tests as well as functional tests of the Workflow logic. Temporal

provides a Web UI that can be used to view Workflow Execution states or explore and debug

Workflow Executions. Each workflow can be explored based on its ID and argument, variables

and other parts of state and history are also fully available. There is no need to use any external

27

Figure 5.2. A result of dependencies created by increasing microservices in choreography.

tool for debugging. In comparison to the original microservices-benchmark work [56] where

the authors had to use external tools in their empirical study of debugging process.

28

6. CONCLUSION

In this work, we have presented a detailed literature review in which we identified

the main concepts including monolithic architecture and its challenges, the advantages of mi-

croservices, and the patterns of microservice communication including choreography and or-

chestration. We conducted a study to compare the orchestration and choreography patterns.

First, we highlighted results from our study and experience of developing a benchmark system

in both patterns where we compared the available tools and technical debt procured in both

approaches. Then we compared the time required to debug the system in both approaches.

Through thorough research and study, we were able to achieve results in the favor of microser-

vice orchestration making the program easier to debug, producing less technical debt, and

having the availability of more tools than choreography. Our experiment is designed to be

scalable and can be easily extended for a larger study group.

From the findings of our study, we were able to answer our research questions as high-

lighted in Chapter 1.

• RQ1: How does the choice of the interaction pattern affect the implementation

process of the systems? The choice of pattern affects the system in multiple ways. A

thorough literature review led us to hypothesize that selecting a specific pattern comes

with its own pros and cons. We compared this implementation aspect as a measure of

quality, in terms of the produced technical debt and the availability of tools and support

of either pattern.

• RQ2: What are the immediate pros and cons of selecting either of the approaches?

When selecting an appropriate pattern, there are multiple immediate pros and cons as-

sociated including factors that come into play immediately. During our study, we found

multiple benefits of using the orchestrated approach that started from the development

phase in terms of handling low-level distributed tasks until debugging, providing us

29

with tools off the shelf to assist the maintenance phase as well. Whereas, while work-

ing with choreography we faced a lack of tool support.

• RQ3: How does the choice affect the process of debugging the system? The choice

of an appropriate pattern has a great impact on post-development activities such as

debugging in both the development and the maintenance phase. From Table 5.3, it can

be seen that it took us a shorter amount of time to debug a microservice orchestration-

based system in comparison to a microservice choreography-based system.

30

REFERENCES

[1] Omar Al-Debagy and Péter Martinek. Extracting microservices’ candidates from mono-

lithic applications: interface analysis and evaluation metrics approach. In 2020 IEEE 15th

International Conference of System of Systems Engineering (SoSE), pages 289–294. IEEE,

2020.

[2] Charles Anderson. Docker [software engineering]. IEEE Software, 32(3):102–c3, 2015.

[3] Apache. Apache airflow. Available: https://airflow.apache.org, 2022.

[4] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices architecture

enables devops: Migration to a cloud-native architecture. IEEE Software, 33(3):42–52,

2016.

[5] Saša Baškarada, Vivian Nguyen, and Andy Koronios. Architecting microservices: Practical

opportunities and challenges. Journal of Computer Information Systems, 60(5):428–436,

2020.

[6] Terese Besker, Antonio Martini, and Jan Bosch. Technical debt cripples software developer

productivity: a longitudinal study on developers’ daily software development work. In

Proceedings of the 2018 International Conference on Technical Debt, pages 105–114, 2018.

[7] Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. Industry prac-

tices and challenges for the evolvability assurance of microservices. Empirical Software

Engineering, 26(5):1–39, 2021.

[8] Stephen K Burley, Helen M Berman, Charmi Bhikadiya, Chunxiao Bi, Li Chen, Luigi

Di Costanzo, Cole Christie, Ken Dalenberg, Jose M Duarte, Shuchismita Dutta, et al.

Rcsb protein data bank: biological macromolecular structures enabling research and ed-

31

https://airflow.apache.org

ucation in fundamental biology, biomedicine, biotechnology and energy. Nucleic acids

research, 47(D1):D464–D474, 2019.

[9] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg,

omega, and kubernetes. Communications of the ACM, 59(5):50–57, 2016.

[10] Björn Butzin, Frank Golatowski, and Dirk Timmermann. Microservices approach for the

internet of things. In 2016 IEEE 21st International Conference on Emerging Technologies

and Factory Automation (ETFA), pages 1–6, 2016.

[11] Tomas Cerny, Michael J. Donahoo, and Michal Trnka. Contextual understanding of mi-

croservice architecture: Current and future directions. 17(4):29–45, jan 2018.

[12] Lan Cheng, Emerson Rex Murphy-Hill, Mark Canning, Ciera Nicole Christopher Jaspan,

Collin Green, Andrea Marie Knight Dolan, Nan Zhang, and Elizabeth Kammer. What

improves developer productivity at google? code quality. In Foundations of Software

Engineering: Industry Paper, 2022.

[13] Cesar de la Torre, Bill Wagner, and Mike Rousos. .net microservices: Architecture for

containerized .net applications. Microsoft Developer Division, 2020.

[14] Lorenzo De Lauretis. From monolithic architecture to microservices architecture. In 2019

IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW),

pages 93–96, 2019.

[15] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fabrizio

Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: Yesterday, Today, and Tomor-

row, pages 195–216. Springer International Publishing, Cham, 2017.

[16] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. Research on architecting mi-

croservices: Trends, focus, and potential for industrial adoption. In 2017 IEEE Interna-

tional Conference on Software Architecture (ICSA), pages 21–30, 2017.

32

[17] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and Christina

Delimitrou. Seer: Leveraging big data to navigate the complexity of performance debug-

ging in cloud microservices. In Proceedings of the twenty-fourth international conference

on architectural support for programming languages and operating systems, pages 19–33,

2019.

[18] Nishant Garg. Apache kafka. Packt Publishing Birmingham, UK, 2013.

[19] Mahtab Haj Ali. Measuring the Modeling Complexity of Microservice Choreography

and Orchestration: The Case of E-commerce Applications. PhD thesis, Université

d’Ottawa/University of Ottawa, 2021.

[20] Wilhelm Hasselbring and Guido Steinacker. Microservice architectures for scalability,

agility and reliability in e-commerce. In 2017 IEEE International Conference on Software

Architecture Workshops (ICSAW), pages 243–246, 2017.

[21] Marcus Hilbrich and Fabian Lehmann. Discussing microservices: Definitions, pitfalls, and

their relations. In 2022 IEEE International Conference on Services Computing (SCC), pages

39–44. IEEE, 2022.

[22] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan Tilkov. Mi-

croservices: The journey so far and challenges ahead. IEEE Software, 35(3):24–35, 2018.

[23] Ravi Jhawar and Vincenzo Piuri. Fault tolerance and resilience in cloud computing en-

vironments. In Computer and information security handbook, pages 165–181. Elsevier,

2017.

[24] Chen Li, Emily Chan, Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. Towards a

framework for teaching debugging. In Proceedings of the Twenty-First Australasian Com-

puting Education Conference, ACE ’19, page 79–86, New York, NY, USA, 2019. Association

for Computing Machinery.

33

[25] Zengyang Li, Paris Avgeriou, and Peng Liang. A systematic mapping study on technical

debt and its management. Journal of Systems and Software, 101:193–220, 2015.

[26] Antonios Makris, Konstantinos Tserpes, and Theodora Varvarigou. Transition from mono-

lithic to microservice-based applications. challenges from the developer perspective. Open

Research Europe, 2(24):24, 2022.

[27] Samar Abbas Maxim Fateev. Temporal workflow engine. Available: https://temporal.io,

2022.

[28] Alan Megargel, Christopher M. Poskitt, and Venky Shankararaman. Microservices or-

chestration vs. choreography: A decision framework. In 2021 IEEE 25th International

Enterprise Distributed Object Computing Conference (EDOC), pages 134–141, 2021.

[29] Dirk Merkel et al. Docker: lightweight linux containers for consistent development and

deployment. Linux j, 239(2):2, 2014.

[30] Anas Nadeem. Trainticket-workflows. Available: https://github.com/ansnadeem/train

ticket-workflows, 2022.

[31] Anas Nadeem and Muhammad Zubair Malik. Temporalint: A linter for temporal.io. Avail-

able:https://github.com/ansnadeem/temporalint, 2020.

[32] Anas Nadeem and Muhammad Zubair Malik. A case for microservices orchestration us-

ing workflow engines. In Proceedings of the ACM/IEEE 44th International Conference on

Software Engineering: New Ideas and Emerging Results, ICSE-NIER ’22, page 6–10, New

York, NY, USA, 2022. Association for Computing Machinery.

[33] Netflix. Conductor workflow engine. Available: https://netflix.github.io/conductor/,

2021.

34

https://temporal.io
https://github.com/ansnadeem/trainticket-workflows
https://github.com/ansnadeem/trainticket-workflows
https://github.com/ansnadeem/temporalint
https://netflix.github.io/conductor/

[34] Austin Parker, Daniel Spoonhower, Jonathan Mace, Ben Sigelman, and Rebecca Isaacs.

Distributed tracing in practice: Instrumenting, analyzing, and debugging microservices.

O’Reilly Media, 2020.

[35] Chris Peltz. Web services orchestration and choreography. Computer, 36(10):46–52,

2003.

[36] Francisco Ponce, Gastón Márquez, and Hernán Astudillo. Migrating from monolithic

architecture to microservices: A rapid review. In 2019 38th International Conference of

the Chilean Computer Science Society (SCCC), pages 1–7, 2019.

[37] RV Rajesh. Spring Microservices. Packt Publishing Ltd, 2016.

[38] Daniel Richter, Marcus Konrad, Katharina Utecht, and Andreas Polze. Highly-available

applications on unreliable infrastructure: Microservice architectures in practice. In 2017

IEEE International Conference on Software Quality, Reliability and Security Companion

(QRS-C), pages 130–137, 2017.

[39] Chaitanya K Rudrabhatla. Comparison of event choreography and orchestration tech-

niques in microservice architecture. International Journal of Advanced Computer Science

and Applications, 9(8), 2018.

[40] Adalberto R. Sampaio, Harshavardhan Kadiyala, Bo Hu, John Steinbacher, Tony Erwin,

Nelson Rosa, Ivan Beschastnikh, and Julia Rubin. Supporting microservice evolution.

In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME),

pages 539–543, 2017.

[41] Vindeep Singh and Sateesh K Peddoju. Container-based microservice architecture for

cloud applications. In 2017 International Conference on Computing, Communication and

Automation (ICCCA), pages 847–852, 2017.

35

[42] Neha Singhal, Usha Sakthivel, and Pethuru Raj. Selection mechanism of micro-services

orchestration vs. choreography. International Journal of Web & Semantic Technology

(IJWesT), 10(1):25, 2019.

[43] Bruce Snyder, Dejan Bosnanac, and Rob Davies. ActiveMQ in action, volume 47. Manning

Greenwich Conn., 2011.

[44] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel. The pains

and gains of microservices: A systematic grey literature review. Journal of Systems and

Software, 146:215–232, 2018.

[45] Fabrizio Soppelsa and Chanwit Kaewkasi. Native docker clustering with swarm. Packt

Publishing Ltd, 2016.

[46] Tatjana D Stojanovic, Sasa D Lazarevic, Milos Milic, and Ilija Antovic. Identifying mi-

croservices using structured system analysis. In 2020 24th International Conference on

Information Technology (IT), pages 1–4. IEEE, 2020.

[47] Davide Taibi and Valentina Lenarduzzi. On the definition of microservice bad smells. IEEE

software, 35(3):56–62, 2018.

[48] Uber. Uber cadence workflow engine. Available: https://cadenceworkflow.io/, 2022.

[49] Pedro Valderas, Victoria Torres, and Vicente Pelochano. Supporting a hybrid composition

of microservices. the eucaliptool platform. Journal of Software Engineering Research and

Development, 8:1–1, 2020.

[50] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano, Lorena Salamanca,

Rubby Casallas, and Santiago Gil. Evaluating the monolithic and the microservice ar-

chitecture pattern to deploy web applications in the cloud. In 2015 10th Computing

Colombian Conference (10CCC), pages 583–590, 2015.

36

https://cadenceworkflow.io/

[51] Mario Villamizar, Oscar Garcés, Lina Ochoa, Harold Castro, Lorena Salamanca, Mauricio

Verano, Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zambrano, and Mery Lang.

Infrastructure cost comparison of running web applications in the cloud using aws lambda

and monolithic and microservice architectures. In 2016 16th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 179–182, 2016.

[52] Shangguang Wang, Yan Guo, Ning Zhang, Peng Yang, Ao Zhou, and Xuemin Shen. Delay-

aware microservice coordination in mobile edge computing: A reinforcement learning

approach. IEEE Transactions on Mobile Computing, 20(3):939–951, 2019.

[53] Muhammad Waseem, Peng Liang, Mojtaba Shahin, Amleto Di Salle, and Gastón Márquez.

Design, monitoring, and testing of microservices systems: The practitioners’ perspective.

Journal of Systems and Software, 182:111061, 2021.

[54] Qilin Xiang, Xin Peng, Chuan He, Hanzhang Wang, Tao Xie, Dewei Liu, Gang Zhang, and

Yuanfang Cai. No free lunch: Microservice practices reconsidered in industry, 2021.

[55] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. Delta de-

bugging microservice systems with parallel optimization. IEEE Transactions on Services

Computing, 2019.

[56] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. Fault anal-

ysis and debugging of microservice systems: Industrial survey, benchmark system, and

empirical study. IEEE Transactions on Software Engineering, 47(2):243–260, 2021.

[57] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Wenhai Li, Chao Ji, and Dan Ding. Delta de-

bugging microservice systems. In 2018 33rd IEEE/ACM International Conference on Au-

tomated Software Engineering (ASE), pages 802–807. IEEE, 2018.

[58] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao. Bench-

marking microservice systems for software engineering research. In Michel Chaudron,

37

Ivica Crnkovic, Marsha Chechik, and Mark Harman, editors, Proceedings of the 40th

International Conference on Software Engineering: Companion Proceeedings, ICSE 2018,

Gothenburg, Sweden, May 27 - June 03, 2018, pages 323–324. ACM, 2018.

38

APPENDIX

d i f f −−g i t a/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l /async/AsyncTask .

,→ j ava b/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l /async/AsyncTask .

,→ j ava

index 98e5d6e . . ae66130 100644

−−− a/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l /async/AsyncTask . j ava

+++ b/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l /async/AsyncTask . j ava

@@ −1,63 +1,78 @@

−package cance l . async ;

−

−import j ava . u t i l . concurrent . Future ;

−import cance l . domain .* ;

−import org . s l f 4 j . Logger ;

−import org . s l f 4 j . LoggerFactory ;

−import org . springframework . beans . f a c t o r y . annotat ion . Autowired ;

−import org . springframework . schedul ing . annotat ion . Async ;

−import org . springframework . schedul ing . annotat ion . AsyncResul t ;

−import org . springframework . s t e r eo type . Component ;

−import org . springframework . web . c l i e n t . RestTemplate ;

−

−

−

−@Component

−public c lass AsyncTask {

− protected f i n a l Logger logger = LoggerFactory . getLogger (th i s . g e tC l a s s

,→ ()) ;

−

39

− @Autowired

− private RestTemplate res tTemplate ;

−

− @Async(" myAsync ")

− public Future<ChangeOrderResult> updateOtherOrderStatusToCancel (

,→ ChangeOrderInfo in fo) throws In te r rup tedExcep t ion {

−

− Thread . s l eep (2000) ;

−

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Change Order S ta tus]

,→ Get t ing ") ;

− ChangeOrderResult r e s u l t = res tTemplate . pos tForObjec t (" h t tp :// t s−

,→ order−other−s e r v i c e :12032/ orderOther/update " , in fo , ChangeOrderResult .

,→ c lass) ;

− return new AsyncResult<>(r e s u l t) ;

− }

−

− @Async(" mySimpleAsync ")

− public Future<Boolean> drawBackMoneyForOrderCan (S t r i ng money , S t r i ng

,→ userId , S t r i ng order Id) throws In te r rup tedExcep t ion {

−

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Get Order] Get t ing

,→ ") ;

− GetOrderByIdInfo getOrder In fo = new GetOrderByIdInfo () ;

− getOrder In fo . se tOrder Id (order Id) ;

− GetOrderResult cor = res tTemplate . pos tForObjec t (

− " h t tp :// t s−order−other−s e r v i c e :12032/ orderOther/getById / "

− , getOrderInfo , GetOrderResult . c lass) ;

40

− Order order = cor . getOrder () ;

− i f (order . ge tS ta tu s () == OrderStatus . NOTPAID . getCode ()

− || order . ge tS ta tu s () == OrderStatus . PAID . getCode () ||

,→ order . ge tS ta tu s () == OrderStatus .CHANGE. getCode ()) {

−

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Draw Back Money]

,→ Draw back money . . . ") ;

− DrawBackInfo in fo = new DrawBackInfo () ;

− i n f o . setMoney (money) ;

− i n f o . se tUse r Id (user Id) ;

− S t r ing r e s u l t = res tTemplate . pos tForObjec t (" h t tp :// t s−in s ide−

,→ payment−s e r v i c e :18673/ inside_payment/drawBack " , in fo , S t r i ng . c lass) ;

− i f (r e s u l t . equals (" t rue ")) {

− return new AsyncResult<>(true) ;

− } else {

− return new AsyncResult<>(f a l se) ;

− }

− } else {

−

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Drawback Money]

,→ F a i l . S ta tus Not Permit ted ") ;

− return new AsyncResult<>(f a l se) ;

−

− }

− }

−

−}

+package cance l . async ;

41

+

+import j ava . u t i l . Random;

+import j ava . u t i l . concurrent . Future ;

+import cance l . domain .* ;

+import org . springframework . beans . f a c t o r y . annotat ion . Autowired ;

+import org . springframework . schedul ing . annotat ion . Async ;

+import org . springframework . schedul ing . annotat ion . AsyncResul t ;

+import org . springframework . s t e r eo type . Component ;

+import org . springframework . web . c l i e n t . RestTemplate ;

+

+

+

+@Component

+public c lass AsyncTask {

+

+ // p r i v a t e S t r i n g hostname = "172 .25 .234 .77 " ;

+

+ @Autowired

+ private RestTemplate res tTemplate = new RestTemplate () ;

+

+ @Async(" myAsync ")

+ public Future<ChangeOrderResult> updateOtherOrderStatusToCancel (

,→ ChangeOrderInfo in fo) throws In te r rup tedExcep t ion {

+

+ Thread . s l eep (4000) ;

+

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Change Order S ta tus] ")

,→ ;

42

+ ChangeOrderResult r e s u l t = res tTemplate . pos tForObjec t (" h t tp :// t s−

,→ order−other−s e r v i c e :12032/ orderOther/update " , in fo , ChangeOrderResult .

,→ c lass) ;

+ return new AsyncResult<>(r e s u l t) ;

+

+ }

+

+ @Async(" mySimpleAsync ")

+ public Future<Boolean> drawBackMoneyForOrderCancel (S t r i ng money ,

,→ S t r ing userId , S t r i ng orderId , S t r i ng loginToken) throws

,→ In te r rup tedExcep t ion {

+

+ /*********************** Fau l t Reproduc t ion − Error P r o c e s s Seq

,→ *************************/

+ // double op = new Random() . nextDouble () ;

+ // i f (op < 1.0) {

+ // System . out . p r i n t l n (" [Cance l Order S e r v i c e] Delay

,→ P r o c e s s Wrong Cance l P r o c e s s ") ;

+ Thread . s l eep (8000) ;

+ //} e l s e {

+ // System . out . p r i n t l n (" [Cance l Order S e r v i c e] Normal

,→ P r o c e s s Normal Cance l P r o c e s s ") ;

+ //}

+

+

+ // 1. Search Order I n f o

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Get Order] Get t ing

,→ ") ;

43

+ GetOrderByIdInfo getOrder In fo = new GetOrderByIdInfo () ;

+ getOrder In fo . se tOrder Id (order Id) ;

+ GetOrderResult cor = res tTemplate . pos tForObjec t (

+ " h t tp :// t s−order−other−s e r v i c e :12032/ orderOther/getById / "

+ , getOrderInfo , GetOrderResult . c lass) ;

+ Order order = cor . getOrder () ;

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce]Got order s u c c e s s f u l l y "

,→) ;

+

+ // 2. Change order s t a t u s to c a n c e l l i n g

+ order . s e t S t a t u s (OrderStatus . Cancel ing . getCode ()) ;

+ ChangeOrderInfo changeOrderInfo = new ChangeOrderInfo () ;

+ changeOrderInfo . setOrder (order) ;

+ changeOrderInfo . setLoginToken (loginToken) ;

+ ChangeOrderResult changeOrderResult = res tTemplate . pos tForObjec t (

,→ " h t tp :// t s−order−other−s e r v i c e :12032/ orderOther/update " ,

,→ changeOrderInfo , ChangeOrderResult . c lass) ;

+ i f (changeOrderResult . i s S t a t u s () == f a l se) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce]Unexpected e r ro r ") ;

+ }

+ // 3. do drawback money

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Draw Back Money] Draw

,→ back money . . . ") ;

+ DrawBackInfo in fo = new DrawBackInfo () ;

+ i n f o . setMoney (money) ;

+ i n f o . se tUse r Id (user Id) ;

+ S t r ing r e s u l t = res tTemplate . pos tForObjec t (" h t tp :// t s−in s ide−

,→ payment−s e r v i c e :18673/ inside_payment/drawBack " , in fo , S t r i ng . c lass) ;

44

+ i f (r e s u l t . equals (" t rue ")) {

+ return new AsyncResult<>(true) ;

+ } else {

+ return new AsyncResult<>(f a l se) ;

+ }

+ /***********/

+ }

+}

d i f f −−g i t a/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l / c o n t r o l l e r /

,→ Cance lCont ro l l e r . j ava b/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l /

,→ c o n t r o l l e r /Cance lCont ro l l e r . j ava

index 3eb5887 . . 1 bbe0e3 100644

−−− a/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l / c o n t r o l l e r /Cance lCont ro l l e r .

,→ j ava

+++ b/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l / c o n t r o l l e r /Cance lCont ro l l e r .

,→ j ava

@@ −1,70 +1,70 @@

−package cance l . c o n t r o l l e r ;

−

−import cance l . domain . Ca lcu la teRefundResu l t ;

−import cance l . domain . CancelOrderInfo ;

−import cance l . domain . CancelOrderResul t ;

−import cance l . domain . V e r i f y R e s u l t ;

−import cance l . s e r v i c e . Cance lServ i ce ;

−import org . springframework . beans . f a c t o r y . annotat ion . Autowired ;

−import org . springframework . web . bind . annotat ion .* ;

−import org . springframework . web . c l i e n t . RestTemplate ;

−

45

−@RestControl ler

−public c lass Cance lCont ro l l e r {

−

− @Autowired

− private RestTemplate res tTemplate ;

−

− @Autowired

− Cance lServ i ce cance lSe rv i c e ;

−

− @CrossOrigin (o r i g i n s = "* ")

− @RequestMapping (path = " / cance lCa lcu la teRefund " , method =

,→ RequestMethod . POST)

− public Calcu la teRefundResu l t c a l c u l a t e (@RequestBody CancelOrderInfo

,→ i n f o) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Ca l cu l a t e Cancel

,→ Refund] OrderId : " + i n f o . getOrderId ()) ;

− return cance lSe rv i c e . ca l cu la teRefund (in fo) ;

− }

−

− @CrossOrigin (o r i g i n s = "* ")

− @RequestMapping (path = " / cancelOrder " , method = RequestMethod . POST)

− public CancelOrderResul t c ance lT i cke t (@RequestBody CancelOrderInfo

,→ in fo , @CookieValue S t r ing loginToken , @CookieValue S t r i ng l o g in I d) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel T i cke t] i n f o : "

,→ + i n f o . getOrderId ()) ;

− i f (loginToken == nul l) {

− loginToken = " admin " ;

− }

46

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel Order] order ID

,→ : " + i n f o . getOrderId () + " loginToken : " + loginToken) ;

− i f (loginToken == nul l) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel Order] Not

,→ r e c e i v e any log in token ") ;

− CancelOrderResul t r e s u l t = new CancelOrderResul t () ;

− r e s u l t . s e t S t a t u s (f a l se) ;

− r e s u l t . setMessage ("No Login Token ") ;

− return r e s u l t ;

− }

− V e r i f y R e s u l t v e r i f y R e s u l t = ve r i f yS soLog in (loginToken) ;

− i f (v e r i f y R e s u l t . i s S t a t u s () == f a l se) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel Order] Do

,→ not log in . ") ;

− CancelOrderResul t r e s u l t = new CancelOrderResul t () ;

− r e s u l t . s e t S t a t u s (f a l se) ;

− r e s u l t . setMessage (" Not Login ") ;

− return r e s u l t ;

− } else {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel T i cke t]

,→ V e r i f y Success ") ;

− t ry {

− return cance lSe rv i c e . cancelOrder (info , loginToken , l o g in I d)

,→ ;

− } catch (Except ion e) {

− e . p r in tS tackTrace () ;

− return nul l ;

− }

47

−

− }

− }

−

− private V e r i f y R e s u l t ve r i f yS soLog in (S t r ing loginToken) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [V e r i f y Login]

,→ V e r i f y i n g ") ;

− V e r i f y R e s u l t tokenResul t = res tTemplate . ge tForObjec t (

− " h t tp :// t s−sso−s e r v i c e :12349/ ver i fyLoginToken / " +

,→ loginToken ,

− V e r i f y R e s u l t . c lass) ;

− return tokenResul t ;

− }

−

−}

+package cance l . c o n t r o l l e r ;

+

+import cance l . domain . Ca lcu la teRefundResu l t ;

+import cance l . domain . CancelOrderInfo ;

+import cance l . domain . CancelOrderResul t ;

+import cance l . domain . V e r i f y R e s u l t ;

+import cance l . s e r v i c e . Cance lServ i ce ;

+import org . springframework . beans . f a c t o r y . annotat ion . Autowired ;

+import org . springframework . web . bind . annotat ion .* ;

+import org . springframework . web . c l i e n t . RestTemplate ;

+

+@RestControl ler

+public c lass Cance lCont ro l l e r {

48

+

+ @Autowired

+ private RestTemplate res tTemplate ;

+

+ @Autowired

+ Cance lServ i ce cance lSe rv i c e ;

+

+ @CrossOrigin (o r i g i n s = "* ")

+ @RequestMapping (path = " / cance lCa lcu la teRefund " , method =

,→ RequestMethod . POST)

+ public Calcu la teRefundResu l t c a l c u l a t e (@RequestBody CancelOrderInfo

,→ i n f o) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Ca l cu l a t e Cancel

,→ Refund] OrderId : " + i n f o . getOrderId ()) ;

+ return cance lSe rv i c e . ca l cu la teRefund (in fo) ;

+ }

+

+ @CrossOrigin (o r i g i n s = "* ")

+ @RequestMapping (path = " / cancelOrder " , method = RequestMethod . POST)

+ public CancelOrderResul t c ance lT i cke t (@RequestBody CancelOrderInfo

,→ in fo , @CookieValue S t r ing loginToken , @CookieValue S t r i ng l o g in I d)

,→ throws RuntimeException {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel T i cke t] i n f o : "

,→ + i n f o . getOrderId ()) ;

+ i f (loginToken == nul l) {

+ loginToken = " admin " ;

+ }

49

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel Order] order ID

,→ : " + i n f o . getOrderId () + " loginToken : " + loginToken) ;

+ i f (loginToken == nul l) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel Order] Not

,→ r e c e i v e any log in token ") ;

+ CancelOrderResul t r e s u l t = new CancelOrderResul t () ;

+ r e s u l t . s e t S t a t u s (f a l se) ;

+ r e s u l t . setMessage ("No Login Token ") ;

+ return r e s u l t ;

+ }

+ V e r i f y R e s u l t v e r i f y R e s u l t = ve r i f yS soLog in (loginToken) ;

+ i f (v e r i f y R e s u l t . i s S t a t u s () == f a l se) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel Order] Do

,→ not log in . ") ;

+ CancelOrderResul t r e s u l t = new CancelOrderResul t () ;

+ r e s u l t . s e t S t a t u s (f a l se) ;

+ r e s u l t . setMessage (" Not Login ") ;

+ return r e s u l t ;

+ } else {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel T i cke t]

,→ V e r i f y Success ") ;

+ t ry {

+ return cance lSe rv i c e . cancelOrder (info , loginToken , l o g in I d)

,→ ;

+ } catch (Except ion e) {

+ e . p r in tS tackTrace () ;

+ return nul l ;

+ }

50

+

+ }

+ }

+

+ private V e r i f y R e s u l t ve r i f yS soLog in (S t r ing loginToken) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [V e r i f y Login]

,→ V e r i f y i n g ") ;

+ V e r i f y R e s u l t tokenResul t = res tTemplate . ge tForObjec t (

+ " h t tp :// t s−sso−s e r v i c e :12349/ ver i fyLoginToken / " +

,→ loginToken ,

+ V e r i f y R e s u l t . c lass) ;

+ return tokenResul t ;

+ }

+

+}

d i f f −−g i t a/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l /domain/OrderStatus .

,→ j ava b/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l /domain/OrderStatus .

,→ j ava

index fe9ba85 . . 3 f7632c 100644

−−− a/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l /domain/OrderStatus . j ava

+++ b/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l /domain/OrderStatus . j ava

@@ −1,39 +1,40 @@

−package cance l . domain ;

−

−public enum OrderStatus {

−

− NOTPAID (0 , " Not Paid ") ,

− PAID (1 , " Paid & Not Co l l e c t ed ") ,

51

− COLLECTED (2 , " Co l l e c t ed ") ,

− CHANGE (3 , " Cancel & Rebook ") ,

− CANCEL (4 , " Cancel ") ,

− REFUNDS (5 , " Refunded ") ,

− USED (6 , " Used ") ;

−

− private in t code ;

− private S t r ing name ;

−

− OrderStatus (in t code , S t r i ng name) {

− th i s . code = code ;

− th i s . name = name ;

− }

−

− public in t getCode () {

− return code ;

− }

−

− public S t r ing getName () {

− return name ;

− }

−

− public s t a t i c S t r ing getNameByCode(in t code) {

− OrderStatus [] orderS ta tusSe t = OrderStatus . va lues () ;

− for (OrderStatus orderS ta tus : o rderS ta tusSe t) {

− i f (orderS ta tus . getCode () == code) {

− return orderS ta tus . getName () ;

− }

52

− }

− return orderS ta tusSe t [0] . getName () ;

− }

−

−}

+package cance l . domain ;

+

+public enum OrderStatus {

+

+ NOTPAID (0 , " Not Paid ") ,

+ PAID (1 , " Paid & Not Co l l e c t ed ") ,

+ COLLECTED (2 , " Co l l e c t ed ") ,

+ CHANGE (3 , " Cancel & Rebook ") ,

+ CANCEL (4 , " Cancel ") ,

+ REFUNDS (5 , " Refunded ") ,

+ USED (6 , " Used ") ,

+ Cancel ing (100 , " Cancel ing ") ;

+

+ private in t code ;

+ private S t r ing name ;

+

+ OrderStatus (in t code , S t r i ng name) {

+ th i s . code = code ;

+ th i s . name = name ;

+ }

+

+ public in t getCode () {

+ return code ;

53

+ }

+

+ public S t r ing getName () {

+ return name ;

+ }

+

+ public s t a t i c S t r ing getNameByCode(in t code) {

+ OrderStatus [] orderS ta tusSe t = OrderStatus . va lues () ;

+ for (OrderStatus orderS ta tus : o rderS ta tusSe t) {

+ i f (orderS ta tus . getCode () == code) {

+ return orderS ta tus . getName () ;

+ }

+ }

+ return orderS ta tusSe t [0] . getName () ;

+ }

+

+}

d i f f −−g i t a/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l / s e r v i c e /Cance lServ i ce .

,→ j ava b/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l / s e r v i c e /Cance lServ i ce .

,→ j ava

index 989cb88 . .05658 f4 100644

−−− a/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l / s e r v i c e /Cance lServ i ce . j ava

+++ b/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l / s e r v i c e /Cance lServ i ce . j ava

@@ −1,13 +1,41 @@

−package cance l . s e r v i c e ;

−

−import cance l . domain . Ca lcu la teRefundResu l t ;

−import cance l . domain . CancelOrderInfo ;

54

−import cance l . domain . CancelOrderResul t ;

−

−public in ter face Cance lServ i ce {

−

− CancelOrderResul t cancelOrder (CancelOrderInfo info , S t r i ng loginToken ,

,→ S t r ing l o g i n Id) throws Except ion ;

−

− Calcu la teRefundResu l t ca l cu la teRefund (CancelOrderInfo in fo) ;

−

−}

+package cance l . s e r v i c e ;

+

+import cance l . domain . Ca lcu la teRefundResu l t ;

+import cance l . domain . CancelOrderInfo ;

+import cance l . domain . CancelOrderResul t ;

+import cance l . domain . ChangeOrderInfo ;

+import cance l . domain . ChangeOrderResult ;

+import cance l . domain . GetAccountByIdInfo ;

+import cance l . domain . GetAccountByIdResult ;

+import cance l . domain . GetOrderByIdInfo ;

+import cance l . domain . GetOrderResult ;

+import cance l . domain . N o t i f y I n f o ;

+import cance l . domain . Order ;

+

+public in ter face Cance lServ i ce {

+

+ CancelOrderResul t cancelOrder (CancelOrderInfo info , S t r i ng loginToken ,

,→ S t r ing l o g i n Id) throws Except ion ;

55

+

+ public boolean sendEmail (N o t i f y I n f o n o t i f y I n f o) ;

+

+ public Calcu la teRefundResu l t ca l cu la teRefund (CancelOrderInfo in fo) ;

+

+ public S t r ing ca lcu la teRefund (Order order) ;

+

+ public ChangeOrderResult cancelFromOrder (ChangeOrderInfo in fo) ;

+

+ public ChangeOrderResult cancelFromOtherOrder (ChangeOrderInfo in fo) ;

+

+ public boolean drawbackMoney(S t r ing money , S t r i ng user Id) ;

+

+ public GetAccountByIdResult getAccount (GetAccountByIdInfo in fo) ;

+

+ public GetOrderResult getOrderByIdFromOrder (GetOrderByIdInfo in fo) ;

+

+ public GetOrderResult getOrderByIdFromOrderOther (GetOrderByIdInfo

,→ i n f o) ;

+

+ public ChangeOrderResult updateOtherOrderStatusToCancelAsync (

,→ ChangeOrderInfo in fo) throws In te r rup tedExcep t ion ;

+

+ public Boolean drawBackMoneyForOrderCancelAsync (S t r i ng money , S t r i ng

,→ userId , S t r i ng orderId , S t r i ng loginToken) throws

,→ In te r rup tedExcep t ion ;

+

+}

56

d i f f −−g i t a/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l / s e r v i c e /

,→ Cance lServ ice Impl . j ava b/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l /

,→ s e r v i c e /Cance lServ ice Impl . j ava

index ff8ab2b . . 7 b19bf8 100644

−−− a/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l / s e r v i c e /Cance lServ ice Impl .

,→ j ava

+++ b/ t s−cancel−s e r v i c e / s r c /main/ j ava / cance l / s e r v i c e /Cance lServ ice Impl .

,→ j ava

@@ −1,401 +1,284 @@

−package cance l . s e r v i c e ;

−

−import cance l . async . AsyncTask ;

−import cance l . domain .* ;

−import org . springframework . beans . f a c t o r y . annotat ion . Autowired ;

−import org . springframework . s t e r eo type . Se rv i ce ;

−import org . springframework . web . c l i e n t . RestTemplate ;

−import j ava . t e x t . DecimalFormat ;

−import j ava . u t i l . Calendar ;

−import j ava . u t i l . Date ;

−

−@Service

−public c lass Cance lServ ice Impl implements Cance lServ i ce {

−

− @Autowired

− private RestTemplate res tTemplate ;

−

− @Autowired

− private AsyncTask asyncTask ;

57

−

− @Override

− public CancelOrderResul t cancelOrder (CancelOrderInfo info , S t r i ng

,→ loginToken , S t r i ng l og i n I d) throws Except ion {

− GetOrderByIdInfo getFromOrderInfo = new GetOrderByIdInfo () ;

− getFromOrderInfo . se tOrder Id (in fo . getOrderId ()) ;

− GetOrderResult o rderResu l t = getOrderByIdFromOrder (

,→ getFromOrderInfo) ;

− i f (orderResu l t . i s S t a t u s () == true) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel Order]

,→ Order found G|H") ;

− Order order = orderResu l t . getOrder () ;

− i f (order . ge tS ta tu s () == OrderStatus . NOTPAID . getCode ()

− || order . ge tS ta tu s () == OrderStatus . PAID . getCode () ||

,→ order . ge tS ta tu s () == OrderStatus .CHANGE. getCode ()) {

−

− order . s e t S t a t u s (OrderStatus . CANCEL . getCode ()) ;

− ChangeOrderInfo changeOrderInfo = new ChangeOrderInfo () ;

− changeOrderInfo . setLoginToken (loginToken) ;

− changeOrderInfo . setOrder (order) ;

−

−

−

−

− ChangeOrderResult changeOrderResult = cancelFromOrder (

,→ changeOrderInfo) ;

− i f (changeOrderResult . i s S t a t u s () == true) {

58

− CancelOrderResul t f i n a l R e s u l t = new CancelOrderResul t

,→ () ;

− f i n a l R e s u l t . s e t S t a t u s (true) ;

− f i n a l R e s u l t . setMessage (" Success . ") ;

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel

,→ Order] Success . ") ;

− //Draw back money

− S t r ing money = ca lcu la teRefund (order) ;

− boolean s t a t u s = drawbackMoney(money , l og i n I d) ;

− i f (s t a t u s == true) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Draw

,→ Back Money] Success . ") ;

−

− GetAccountByIdInfo getAccountByIdInfo = new

,→ GetAccountByIdInfo () ;

− getAccountByIdInfo . se tAccount Id (order .

,→ getAccountId () . t o S t r i n g ()) ;

− GetAccountByIdResult r e s u l t = getAccount (

,→ getAccountByIdInfo) ;

− i f (r e s u l t . i s S t a t u s () == f a l se) {

− return nul l ;

− }

−

− N o t i f y I n f o n o t i f y I n f o = new N o t i f y I n f o () ;

− n o t i f y I n f o . se tDate (new Date () . t o S t r i n g ()) ;

−

−

59

− n o t i f y I n f o . se tEmai l (r e s u l t . getAccount () . getEmail

,→ ()) ;

− n o t i f y I n f o . s e t S t a r t i n g P l a c e (order . getFrom ()) ;

− n o t i f y I n f o . setEndPlace (order . getTo ()) ;

− n o t i f y I n f o . setUsername (r e s u l t . getAccount () .

,→ getName ()) ;

− n o t i f y I n f o . setSeatNumber (order . getSeatNumber ()) ;

− n o t i f y I n f o . setOrderNumber (order . ge t Id () . t o S t r i n g

,→ ()) ;

− n o t i f y I n f o . s e t P r i c e (order . g e t P r i c e ()) ;

− n o t i f y I n f o . s e t S e a t C l a s s (Sea tC la s s . getNameByCode(

,→ order . ge tSea tC la s s ())) ;

− n o t i f y I n f o . se tS ta r t ingT ime (order . getTravelTime () .

,→ t o S t r i n g ()) ;

−

− sendEmail (n o t i f y I n f o) ;

−

− } else {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Draw

,→ Back Money] F a i l . ") ;

− }

−

−

−

− return f i n a l R e s u l t ;

− } else {

− CancelOrderResul t f i n a l R e s u l t = new CancelOrderResul t

,→ () ;

60

− f i n a l R e s u l t . s e t S t a t u s (f a l se) ;

− f i n a l R e s u l t . setMessage (changeOrderResult . getMessage ()

,→) ;

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel

,→ Order] F a i l . Reason : " + changeOrderResult . getMessage ()) ;

− return f i n a l R e s u l t ;

− }

−

− } else {

− CancelOrderResul t r e s u l t = new CancelOrderResul t () ;

− r e s u l t . s e t S t a t u s (f a l se) ;

− r e s u l t . setMessage (" Order S ta tus Cancel Not Permit ted ") ;

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel Order]

,→ Order S ta tus Not Permit ted . ") ;

− return r e s u l t ;

− }

− } else {

− GetOrderByIdInfo getFromOtherOrderInfo = new GetOrderByIdInfo

,→ () ;

− getFromOtherOrderInfo . se tOrder Id (in fo . getOrderId ()) ;

− GetOrderResult orderOtherResul t = getOrderByIdFromOrderOther (

,→ getFromOtherOrderInfo) ;

− i f (orderOtherResul t . i s S t a t u s () == true) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel Order]

,→ Order found Z|K|Other ") ;

−

− Order order = orderOtherResul t . getOrder () ;

− i f (order . ge tS ta tu s () == OrderStatus . NOTPAID . getCode ()

61

− || order . ge tS ta tu s () == OrderStatus . PAID . getCode

,→ () || order . ge tS ta tu s () == OrderStatus .CHANGE. getCode ()) {

−

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel

,→ Order] Order s t a t u s ok ") ;

−

− order . s e t S t a t u s (OrderStatus . CANCEL . getCode ()) ;

− ChangeOrderInfo changeOrderInfo = new ChangeOrderInfo

,→ () ;

− changeOrderInfo . setLoginToken (loginToken) ;

− changeOrderInfo . setOrder (order) ;

− ChangeOrderResult changeOrderResult =

,→ cancelFromOtherOrder (changeOrderInfo) ;

−

−

− i f (changeOrderResult . i s S t a t u s () == true) {

− CancelOrderResul t f i n a l R e s u l t = new

,→ CancelOrderResul t () ;

− f i n a l R e s u l t . s e t S t a t u s (true) ;

− f i n a l R e s u l t . setMessage (" Success . ") ;

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel

,→ Order] Success . ") ;

− //Draw back money

− S t r ing money = ca lcu la teRefund (order) ;

− boolean s t a t u s = drawbackMoney(money , l og i n I d) ;

− i f (s t a t u s == true) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [

,→ Draw Back Money] Success . ") ;

62

− } else {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [

,→ Draw Back Money] F a i l . ") ;

− }

− return f i n a l R e s u l t ;

− } else {

− CancelOrderResul t f i n a l R e s u l t = new

,→ CancelOrderResul t () ;

− f i n a l R e s u l t . s e t S t a t u s (f a l se) ;

− f i n a l R e s u l t . setMessage (changeOrderResult .

,→ getMessage ()) ;

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel

,→ Order] F a i l . Reason : " + changeOrderResult . getMessage ()) ;

− return f i n a l R e s u l t ;

− }

− } else {

− CancelOrderResul t r e s u l t = new CancelOrderResul t () ;

− r e s u l t . s e t S t a t u s (f a l se) ;

− r e s u l t . setMessage (" Order S ta tus Cancel Not Permit ted "

,→) ;

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel

,→ Order] Order S ta tus Not Permit ted . ") ;

− return r e s u l t ;

− }

− } else {

− CancelOrderResul t r e s u l t = new CancelOrderResul t () ;

− r e s u l t . s e t S t a t u s (f a l se) ;

− r e s u l t . setMessage (" Order Not Found ") ;

63

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Cancel Order]

,→ Order Not Found . ") ;

− return r e s u l t ;

− }

− }

− }

−

− public boolean sendEmail (N o t i f y I n f o n o t i f y I n f o) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Send Email] ") ;

− boolean r e s u l t = res tTemplate . pos tForObjec t (

− " h t tp :// t s−n o t i f i c a t i o n −s e r v i c e :17853/ n o t i f i c a t i o n /

,→ order_cance l_ succes s " ,

− n o t i f y I n f o ,

− Boolean . c lass

−) ;

− return r e s u l t ;

− }

−

−

− public Calcu la teRefundResu l t ca l cu la teRefund (CancelOrderInfo in fo) {

− GetOrderByIdInfo getFromOrderInfo = new GetOrderByIdInfo () ;

− getFromOrderInfo . se tOrder Id (in fo . getOrderId ()) ;

− GetOrderResult o rderResu l t = getOrderByIdFromOrder (

,→ getFromOrderInfo) ;

− i f (orderResu l t . i s S t a t u s () == true) {

− Order order = orderResu l t . getOrder () ;

− i f (order . ge tS ta tu s () == OrderStatus . NOTPAID . getCode ()

− || order . ge tS ta tu s () == OrderStatus . PAID . getCode ()) {

64

− i f (order . ge tS ta tu s () == OrderStatus . NOTPAID . getCode ()) {

− Calcu la teRefundResu l t r e s u l t = new

,→ Calcu la teRefundResu l t () ;

− r e s u l t . s e t S t a t u s (true) ;

− r e s u l t . setMessage (" Success ") ;

− r e s u l t . setRefund (" 0 ") ;

− System . out . p r i n t l n (" [Cancel Order] [Refund P r i c e] From

,→ Order Se rv i ce . Not Paid . ") ;

− return r e s u l t ;

− } else {

− Calcu la teRefundResu l t r e s u l t = new

,→ Calcu la teRefundResu l t () ;

− r e s u l t . s e t S t a t u s (true) ;

− r e s u l t . setMessage (" Success ") ;

− r e s u l t . setRefund (ca lcu la teRefund (order)) ;

− System . out . p r i n t l n (" [Cancel Order] [Refund P r i c e] From

,→ Order Se rv i ce . Paid . ") ;

− return r e s u l t ;

− }

− } else {

− Calcu la teRefundResu l t r e s u l t = new Calcu la teRefundResu l t

,→ () ;

− r e s u l t . s e t S t a t u s (f a l se) ;

− r e s u l t . setMessage (" Order S ta tus Cancel Not Permit ted ") ;

− r e s u l t . setRefund (" e r ro r ") ;

− System . out . p r i n t l n (" [Cancel Order] [Refund P r i c e] Order .

,→ Cancel Not Permit ted . ") ;

−

65

− return r e s u l t ;

− }

− } else {

− GetOrderByIdInfo getFromOtherOrderInfo = new GetOrderByIdInfo

,→ () ;

− getFromOtherOrderInfo . se tOrder Id (in fo . getOrderId ()) ;

− GetOrderResult orderOtherResul t = getOrderByIdFromOrderOther (

,→ getFromOtherOrderInfo) ;

− i f (orderOtherResul t . i s S t a t u s () == true) {

− Order order = orderOtherResul t . getOrder () ;

− i f (order . ge tS ta tu s () == OrderStatus . NOTPAID . getCode ()

− || order . ge tS ta tu s () == OrderStatus . PAID . getCode

,→ ()) {

− i f (order . ge tS ta tu s () == OrderStatus . NOTPAID . getCode ()

,→) {

− Calcu la teRefundResu l t r e s u l t = new

,→ Calcu la teRefundResu l t () ;

− r e s u l t . s e t S t a t u s (true) ;

− r e s u l t . setMessage (" Success ") ;

− r e s u l t . setRefund (" 0 ") ;

− System . out . p r i n t l n (" [Cancel Order] [Refund P r i c e]

,→ From Order Other Se rv i ce . Not Paid . ") ;

− return r e s u l t ;

− } else {

− Calcu la teRefundResu l t r e s u l t = new

,→ Calcu la teRefundResu l t () ;

− r e s u l t . s e t S t a t u s (true) ;

− r e s u l t . setMessage (" Success ") ;

66

− r e s u l t . setRefund (ca lcu la teRefund (order)) ;

− System . out . p r i n t l n (" [Cancel Order] [Refund P r i c e]

,→ From Order Other Se rv i ce . Paid . ") ;

− return r e s u l t ;

− }

− } else {

− Calcu la teRefundResu l t r e s u l t = new

,→ Calcu la teRefundResu l t () ;

− r e s u l t . s e t S t a t u s (f a l se) ;

− r e s u l t . setMessage (" Order S ta tus Cancel Not Permit ted "

,→) ;

− r e s u l t . setRefund (" e r ro r ") ;

− System . out . p r i n t l n (" [Cancel Order] [Refund P r i c e]

,→ Order Other . Cancel Not Permit ted . ") ;

− return r e s u l t ;

− }

− } else {

− Calcu la teRefundResu l t r e s u l t = new Calcu la teRefundResu l t

,→ () ;

− r e s u l t . s e t S t a t u s (f a l se) ;

− r e s u l t . setMessage (" Order Not Found ") ;

− r e s u l t . setRefund (" e r ro r ") ;

− System . out . p r i n t l n (" [Cancel Order] [Refund P r i c e] Order

,→ not found . ") ;

− return r e s u l t ;

− }

− }

− }

67

−

− private S t r ing ca lcu la teRefund (Order order) {

− i f (order . ge tS ta tu s () == OrderStatus . NOTPAID . getCode ()) {

− return " 0.00 " ;

− }

− System . out . p r i n t l n (" [Cancel Order] Order Trave l Date : " + order .

,→ getTrave lDate () . t o S t r i n g ()) ;

− Date nowDate = new Date () ;

− Calendar c a l = Calendar . ge t In s t ance () ;

− c a l . setTime (order . getTrave lDate ()) ;

− in t year = c a l . get (Calendar . YEAR) ;

− in t month = c a l . get (Calendar .MONTH) ;

− in t day = c a l . get (Calendar .DAY_OF_MONTH) ;

− Calendar ca l2 = Calendar . ge t In s t ance () ;

− ca l2 . setTime (order . getTravelTime ()) ;

− in t hour = ca l2 . get (Calendar .HOUR) ;

− in t minute = ca l2 . get (Calendar .MINUTE) ;

− in t second = ca l2 . get (Calendar .SECOND) ;

− Date s tar tT ime = new Date (year ,

− month ,

− day ,

− hour ,

− minute ,

− second) ;

− System . out . p r i n t l n (" [Cancel Order] nowDate : " + nowDate . t o S t r i n g

,→ ()) ;

− System . out . p r i n t l n (" [Cancel Order] s ta r tT ime : " + s ta r tT ime .

,→ t o S t r i n g ()) ;

68

− i f (nowDate . a f t e r (s tar tT ime)) {

− System . out . p r i n t l n (" [Cancel Order] T i cke t exp i re refund 0 ") ;

− return " 0 " ;

− } else {

− double t o t a l P r i c e = Double . parseDouble (order . g e t P r i c e ()) ;

− double p r i c e = t o t a l P r i c e * 0 .8 ;

− DecimalFormat pr iceFormat = new j ava . t e x t . DecimalFormat (" 0.00

,→ ") ;

− S t r ing s t r = priceFormat . format (p r i c e) ;

− System . out . p r i n t l n (" [Cancel Order] c a l c u l a t e refund − " + s t r)

,→ ;

− return s t r ;

− }

− }

−

−

− private ChangeOrderResult cancelFromOrder (ChangeOrderInfo in fo) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Change Order S ta tus]

,→ Changing ") ;

− ChangeOrderResult r e s u l t = res tTemplate . pos tForObjec t (" h t tp :// t s−

,→ order−s e r v i c e :12031/ order /update " , in fo , ChangeOrderResult . c lass) ;

− return r e s u l t ;

− }

−

− private ChangeOrderResult cancelFromOtherOrder (ChangeOrderInfo in fo) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Change Order S ta tus]

,→ Changing ") ;

69

− ChangeOrderResult r e s u l t = res tTemplate . pos tForObjec t (" h t tp :// t s−

,→ order−other−s e r v i c e :12032/ orderOther/update " , in fo , ChangeOrderResult .

,→ c lass) ;

− return r e s u l t ;

− }

−

− public boolean drawbackMoney(S t r ing money , S t r i ng user Id) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Draw Back Money] Draw

,→ back money . . . ") ;

− DrawBackInfo in fo = new DrawBackInfo () ;

− i n f o . setMoney (money) ;

− i n f o . se tUse r Id (user Id) ;

− S t r ing r e s u l t = res tTemplate . pos tForObjec t (" h t tp :// t s−in s ide−

,→ payment−s e r v i c e :18673/ inside_payment/drawBack " , in fo , S t r i ng . c lass) ;

− i f (r e s u l t . equals (" t rue ")) {

− return true ;

− } else {

− return fa l se ;

− }

− }

−

− public GetAccountByIdResult getAccount (GetAccountByIdInfo in fo) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Get By Id] ") ;

− GetAccountByIdResult r e s u l t = res tTemplate . pos tForObjec t (

− " h t tp :// t s−sso−s e r v i c e :12349/ account/ f indById " ,

− in fo ,

− GetAccountByIdResult . c lass

−) ;

70

− return r e s u l t ;

− }

−

− private GetOrderResult getOrderByIdFromOrder (GetOrderByIdInfo in fo) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Get Order] Get t ing

,→ ") ;

− GetOrderResult cor = res tTemplate . pos tForObjec t (

− " h t tp :// t s−order−s e r v i c e :12031/ order /getById / "

− , in fo , GetOrderResult . c lass) ;

− return cor ;

− }

−

− private GetOrderResult getOrderByIdFromOrderOther (GetOrderByIdInfo

,→ i n f o) {

− System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Get Order] Get t ing

,→ ") ;

− GetOrderResult cor = res tTemplate . pos tForObjec t (

− " h t tp :// t s−order−other−s e r v i c e :12032/ orderOther/getById / "

− , in fo , GetOrderResult . c lass) ;

− return cor ;

− }

−

−}

+package cance l . s e r v i c e ;

+

+import cance l . async . AsyncTask ;

+import cance l . domain .* ;

+import cance l . workflow . CancelWorkflow ;

71

+import i o . temporal . ap i . common . v1 . WorkflowExecution ;

+import i o . temporal . c l i e n t . WorkflowClient ;

+import i o . temporal . c l i e n t . WorkflowOptions ;

+import i o . temporal . s e r v i c e c l i e n t . Workf lowServiceStubs ;

+import i o . temporal . s e r v i c e c l i e n t . Workf lowServiceStubsOptions ;

+

+import org . springframework . beans . f a c t o r y . annotat ion . Autowired ;

+import org . springframework . schedul ing . annotat ion . AsyncResul t ;

+import org . springframework . s t e r eo type . Se rv i ce ;

+import org . springframework . web . c l i e n t . RestTemplate ;

+import j ava . t e x t . DecimalFormat ;

+import j ava . u t i l . Calendar ;

+import j ava . u t i l . Date ;

+import j ava . u t i l . UUID ;

+import j ava . u t i l . concurrent . CompletableFuture ;

+import j ava . u t i l . concurrent . Future ;

+

+@Service

+public c lass Cance lServ ice Impl implements Cance lServ i ce {

+

+ private S t r ing hostname = " 134.129.91.178 " ;

+

+ @Autowired

+ private RestTemplate res tTemplate = new RestTemplate () ;

+

+ @Override

+ public CancelOrderResul t cancelOrder (CancelOrderInfo info , S t r i ng

,→ loginToken , S t r i ng l og i n I d) throws Except ion {

72

+

// I n i t i a t o r

+ // Work f l owServ i c eS tubs i s a gRPC s t u b s wrapper tha t t a l k s

,→ to the l o c a l Docker

+ // i n s t a n c e o f the Temporal s e r v e r .

+ WorkflowServiceStubsOptions stubOpt ions =

,→ WorkflowServiceStubsOptions . newBuilder () . s e tTa rge t (hostname+" :7233 ")

+ . bu i ld () ;

+ WorkflowServiceStubs s e r v i c e = WorkflowServiceStubs .

,→ newServiceStubs (s tubOpt ions) ;

+ WorkflowOptions opt ions = WorkflowOptions . newBuilder () .

,→ setTaskQueue (" d e f a u l t ")

+ // A WorkflowId p r e v e n t s t h i s i t from

,→ having d u p l i c a t e i n s t a n c e s , remove i t to

+ // d u p l i c a t e .

+ . setWorkflowId (" cancel−order−workflow ") .

,→ bu i ld () ;

+ // Workf lowCl i en t can be used to s t a r t , s i gna l , query ,

,→ cance l , and t e rmina t e

+ // Workflows .

+ WorkflowClient c l i e n t = WorkflowClient . newInstance (s e r v i c e

,→) ;

+ // WorkflowStubs enab l e c a l l s to methods as i f the

,→ Workflow o b j e c t i s l o c a l , but

+ // a c t u a l l y per form an RPC .

+ CancelWorkflow workflow = c l i e n t . newWorkflowStub (

,→ CancelWorkflow . class , op t ions) ;

73

+ return workflow . cance l (info , loginToken , l og i n I d) ;

+ // Asynchronous e x e c u t i o n . Th i s p r o c e s s w i l l e x i t a f t e r

,→ making t h i s c a l l .

+ // Comple tab leFuture<Cance lOrderRe su l t> we =

+ // Workf lowCl i ent . e x e c u t e (workflow : : cance l , in fo ,

,→ log inToken , l o g i n I d) ;

+ // System . out . p r i n t f ("\ nTrans f e r o f $%f from account %s to

,→ account %s i s

+ // p r o c e s s i n g \n " , amount , fromAccount , toAccount) ;

+ // System . out . p r i n t f ("\ nWorkflowID : %s RunID : %s " , we .

,→ getWorkf lowId () ,

+ // we . getRunId ()) ;

+ }

+

+ @Override

+ public boolean sendEmail (N o t i f y I n f o n o t i f y I n f o) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Send Email] ") ;

+ boolean r e s u l t = res tTemplate . pos tForObjec t (

+ " h t tp :// "+hostname+" :17853/ n o t i f i c a t i o n /

,→ order_cance l_ succes s " , n o t i f y I n f o , Boolean . c lass) ;

+ return r e s u l t ;

+ }

+

+ @Override

+ public Calcu la teRefundResu l t ca l cu la teRefund (CancelOrderInfo in fo)

,→ {

+ GetOrderByIdInfo getFromOrderInfo = new GetOrderByIdInfo ()

,→ ;

74

+ getFromOrderInfo . se tOrder Id (in fo . getOrderId ()) ;

+ GetOrderResult o rderResu l t = getOrderByIdFromOrder (

,→ getFromOrderInfo) ;

+ i f (orderResu l t . i s S t a t u s () == true) {

+ Order order = orderResu l t . getOrder () ;

+ i f (order . ge tS ta tu s () == OrderStatus . NOTPAID .

,→ getCode () || order . ge tS ta tu s () == OrderStatus . PAID . getCode ()) {

+ i f (order . ge tS ta tu s () == OrderStatus .

,→ NOTPAID . getCode ()) {

+ Calcu la teRefundResu l t r e s u l t = new

,→ Calcu la teRefundResu l t () ;

+ r e s u l t . s e t S t a t u s (true) ;

+ r e s u l t . setMessage (" Success .

,→ Ca l cu l a t e Refund Not paid ") ;

+ r e s u l t . setRefund (" 0 ") ;

+ System . out . p r i n t l n (" [Cancel Order

,→] [Refund P r i c e] From Order Se rv i ce . Not Paid . ") ;

+ return r e s u l t ;

+ } else {

+ Calcu la teRefundResu l t r e s u l t = new

,→ Calcu la teRefundResu l t () ;

+ r e s u l t . s e t S t a t u s (true) ;

+ r e s u l t . setMessage (" Success .

,→ Ca l cu l a t e Refund ") ;

+ r e s u l t . setRefund (ca lcu la teRefund (

,→ order)) ;

+ System . out . p r i n t l n (" [Cancel Order

,→] [Refund P r i c e] From Order Se rv i ce . Paid . ") ;

75

+ return r e s u l t ;

+ }

+ } else {

+ Calcu la teRefundResu l t r e s u l t = new

,→ Calcu la teRefundResu l t () ;

+ r e s u l t . s e t S t a t u s (f a l se) ;

+ r e s u l t . setMessage (" Order S ta tus Cancel Not

,→ Permit ted ") ;

+ r e s u l t . setRefund (" e r ro r ") ;

+ System . out . p r i n t l n (" [Cancel Order] [Refund

,→ P r i c e] Order . Cancel Not Permit ted . ") ;

+

+ return r e s u l t ;

+ }

+ } else {

+ GetOrderByIdInfo getFromOtherOrderInfo = new

,→ GetOrderByIdInfo () ;

+ getFromOtherOrderInfo . se tOrder Id (in fo . getOrderId ()

,→) ;

+ GetOrderResult orderOtherResul t =

,→ getOrderByIdFromOrderOther (getFromOtherOrderInfo) ;

+ i f (orderOtherResul t . i s S t a t u s () == true) {

+ Order order = orderOtherResul t . getOrder () ;

+ i f (order . ge tS ta tu s () == OrderStatus .

,→ NOTPAID . getCode ()

+ || order . ge tS ta tu s () ==

,→ OrderStatus . PAID . getCode ()) {

76

+ i f (order . ge tS ta tu s () ==

,→ OrderStatus . NOTPAID . getCode ()) {

+ Calcu la teRefundResu l t

,→ r e s u l t = new Calcu la teRefundResu l t () ;

+ r e s u l t . s e t S t a t u s (true) ;

+ r e s u l t . setMessage (" Success

,→ . Ca l cu l a t e not pay ") ;

+ r e s u l t . setRefund (" 0 ") ;

+ System . out . p r i n t l n (" [

,→ Cancel Order] [Refund P r i c e] From Order Other Se rv i ce . Not Paid . ") ;

+ return r e s u l t ;

+ } else {

+ Calcu la teRefundResu l t

,→ r e s u l t = new Calcu la teRefundResu l t () ;

+ r e s u l t . s e t S t a t u s (true) ;

+ r e s u l t . setMessage (" Success

,→ . Ca l cu l a t e pay ") ;

+ r e s u l t . setRefund (

,→ ca lcu la teRefund (order)) ;

+ System . out . p r i n t l n (" [

,→ Cancel Order] [Refund P r i c e] From Order Other Se rv i ce . Paid . ") ;

+ return r e s u l t ;

+ }

+ } else {

+ Calcu la teRefundResu l t r e s u l t = new

,→ Calcu la teRefundResu l t () ;

+ r e s u l t . s e t S t a t u s (f a l se) ;

77

+ r e s u l t . setMessage (" Order S ta tus

,→ Cancel Not Permit ted ") ;

+ r e s u l t . setRefund (" e r ro r ") ;

+ System . out . p r i n t l n (" [Cancel Order

,→] [Refund P r i c e] Order Other . Cancel Not Permit ted . ") ;

+ return r e s u l t ;

+ }

+ } else {

+ Calcu la teRefundResu l t r e s u l t = new

,→ Calcu la teRefundResu l t () ;

+ r e s u l t . s e t S t a t u s (f a l se) ;

+ r e s u l t . setMessage (" Order Not Found ") ;

+ r e s u l t . setRefund (" e r ro r ") ;

+ System . out . p r i n t l n (" [Cancel Order] [Refund

,→ P r i c e] Order not found . ") ;

+ return r e s u l t ;

+ }

+ }

+ }

+

+ @Override

+ public S t r ing ca lcu la teRefund (Order order) {

+ i f (order . ge tS ta tu s () == OrderStatus . NOTPAID . getCode ()) {

+ return " 0.00 " ;

+ }

+ System . out . p r i n t l n (" [Cancel Order] Order Trave l Date : " +

,→ order . getTrave lDate () . t o S t r i n g ()) ;

+ Date nowDate = new Date () ;

78

+ Calendar c a l = Calendar . ge t In s t ance () ;

+ c a l . setTime (order . getTrave lDate ()) ;

+ in t year = c a l . get (Calendar . YEAR) ;

+ in t month = c a l . get (Calendar .MONTH) ;

+ in t day = c a l . get (Calendar .DAY_OF_MONTH) ;

+ Calendar ca l2 = Calendar . ge t In s t ance () ;

+ ca l2 . setTime (order . getTravelTime ()) ;

+ in t hour = ca l2 . get (Calendar .HOUR) ;

+ in t minute = ca l2 . get (Calendar .MINUTE) ;

+ in t second = ca l2 . get (Calendar .SECOND) ;

+ Date s tar tT ime = new Date (year , month , day , hour , minute ,

,→ second) ;

+ System . out . p r i n t l n (" [Cancel Order] nowDate : " + nowDate .

,→ t o S t r i n g ()) ;

+ System . out . p r i n t l n (" [Cancel Order] s ta r tT ime : " + s ta r tT ime

,→ . t o S t r i n g ()) ;

+ i f (nowDate . a f t e r (s tar tT ime)) {

+ System . out . p r i n t l n (" [Cancel Order] T i cke t exp i re

,→ refund 0 ") ;

+ return " 0 " ;

+ } else {

+ double t o t a l P r i c e = Double . parseDouble (order .

,→ g e t P r i c e ()) ;

+ double p r i c e = t o t a l P r i c e * 0 .8 ;

+ DecimalFormat pr iceFormat = new j ava . t e x t .

,→ DecimalFormat (" 0.00 ") ;

+ S t r ing s t r = priceFormat . format (p r i c e) ;

79

+ System . out . p r i n t l n (" [Cancel Order] c a l c u l a t e refund

,→ − " + s t r) ;

+ return s t r ;

+ }

+ }

+

+ @Override

+ public ChangeOrderResult cancelFromOrder (ChangeOrderInfo in fo) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Change Order

,→ Sta tus] Changing ") ;

+ ChangeOrderResult r e s u l t = res tTemplate . pos tForObjec t ("

,→ ht tp :// "+hostname+" :12031/ order /update " , in fo ,

+ ChangeOrderResult . c lass) ;

+ return r e s u l t ;

+ }

+

+ @Override

+ public ChangeOrderResult cancelFromOtherOrder (ChangeOrderInfo in fo

,→) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Change Order

,→ Sta tus] Changing ") ;

+ ChangeOrderResult r e s u l t = res tTemplate . pos tForObjec t ("

,→ ht tp :// "+hostname+" :12032/ orderOther/update " ,

+ in fo , ChangeOrderResult . c lass) ;

+ return r e s u l t ;

+ }

+

+ @Override

80

+ public boolean drawbackMoney(S t r ing money , S t r i ng user Id) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Draw Back Money

,→] Draw back money . . . ") ;

+ DrawBackInfo in fo = new DrawBackInfo () ;

+ i n f o . setMoney (money) ;

+ i n f o . se tUse r Id (user Id) ;

+ S t r ing r e s u l t = res tTemplate . pos tForObjec t (" h t tp :// "+

,→ hostname+" :18673/ inside_payment/drawBack " ,

+ in fo , S t r i ng . c lass) ;

+ i f (r e s u l t . equals (" t rue ")) {

+ return true ;

+ } else {

+ return fa l se ;

+ }

+ }

+

+ @Override

+ public GetAccountByIdResult getAccount (GetAccountByIdInfo in fo) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Get By Id] ") ;

+ GetAccountByIdResult r e s u l t = res tTemplate . pos tForObjec t ("

,→ ht tp :// "+hostname+" :12349/ account/ f indById " , in fo ,

+ GetAccountByIdResult . c lass) ;

+ return r e s u l t ;

+ }

+

+ @Override

+ public GetOrderResult getOrderByIdFromOrder (GetOrderByIdInfo in fo)

,→ {

81

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Get Order]

,→ Get t ing ") ;

+ GetOrderResult cor = res tTemplate . pos tForObjec t (" h t tp :// "+

,→ hostname+" :12031/ order /getById / " , in fo ,

+ GetOrderResult . c lass) ;

+ return cor ;

+ }

+

+ @Override

+ public GetOrderResult getOrderByIdFromOrderOther (GetOrderByIdInfo

,→ i n f o) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Get Order]

,→ Get t ing ") ;

+ GetOrderResult cor = res tTemplate . pos tForObjec t (" h t tp :// "+

,→ hostname+" :12032/ orderOther/getById / " , in fo ,

+ GetOrderResult . c lass) ;

+ return cor ;

+ }

+

+ public ChangeOrderResult updateOtherOrderStatusToCancelAsync (

,→ ChangeOrderInfo in fo) throws In te r rup tedExcep t ion {

+

+ Thread . s l eep (4000) ;

+

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Change Order S ta tus] ")

,→ ;

+ ChangeOrderResult r e s u l t = res tTemplate . pos tForObjec t (" h t tp :// "+

,→ hostname+" :12032/ orderOther/update " , in fo , ChangeOrderResult . c lass) ;

82

+ return r e s u l t ;

+

+ }

+

+ public Boolean drawBackMoneyForOrderCancelAsync (S t r i ng money , S t r i ng

,→ userId , S t r i ng orderId , S t r i ng loginToken) throws

,→ In te r rup tedExcep t ion {

+ // r e tu rn asyncTask . drawBackMoneyForOrderCancel (money , u s e r Id ,

,→ order Id , log inToken) ;

+ /*********************** Fau l t Reproduc t ion −

,→ Error P r o c e s s Seq *************************/

+ // double op = new Random() . nextDouble () ;

+ // i f (op < 1.0) {

+ // System . out . p r i n t l n (" [Cance l Order S e r v i c e] Delay

,→ P r o c e s s Wrong Cance l P r o c e s s ") ;

+ //Thread . s l e e p (8000) ;

+ //} e l s e {

+ // System . out . p r i n t l n (" [Cance l Order S e r v i c e] Normal

,→ P r o c e s s Normal Cance l P r o c e s s ") ;

+ //}

+

+

+ // 1. Search Order I n f o

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Get Order]

,→ Get t ing ") ;

+ GetOrderByIdInfo getOrder In fo = new GetOrderByIdInfo () ;

+ getOrder In fo . se tOrder Id (order Id) ;

+ GetOrderResult cor = res tTemplate . pos tForObjec t (

83

+ " h t tp :// "+hostname+" :12032/ orderOther/getById / "

+ , getOrderInfo , GetOrderResult . c lass) ;

+ Order order = cor . getOrder () ;

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce]Got order

,→ s u c c e s s f u l l y ") ;

+

+ // 2. Change order s t a t u s to c a n c e l l i n g

+ order . s e t S t a t u s (OrderStatus . Cancel ing . getCode ()) ;

+ ChangeOrderInfo changeOrderInfo = new ChangeOrderInfo () ;

+ changeOrderInfo . setOrder (order) ;

+ changeOrderInfo . setLoginToken (loginToken) ;

+ ChangeOrderResult changeOrderResult = res tTemplate .

,→ pos tForObjec t (" h t tp :// "+hostname+" :12032/ orderOther/update " ,

,→ changeOrderInfo , ChangeOrderResult . c lass) ;

+ i f (changeOrderResult . i s S t a t u s () == f a l se) {

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce]Unexpected

,→ e r ro r ") ;

+ }

+ // 3. do drawback money

+ System . out . p r i n t l n (" [Cancel Order Se rv i ce] [Draw Back Money

,→] Draw back money . . . ") ;

+ DrawBackInfo in fo = new DrawBackInfo () ;

+ i n f o . setMoney (money) ;

+ i n f o . se tUse r Id (user Id) ;

+ S t r ing r e s u l t = res tTemplate . pos tForObjec t (" h t tp :// "+

,→ hostname+" :18673/ inside_payment/drawBack " , in fo , S t r i ng . c lass) ;

+ i f (r e s u l t . equals (" t rue ")) {

+ return true ;

84

+ } else {

+ return fa l se ;

+ }

+ /**********************/

+ }

+

+}

85

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Overview
	Motivation
	Thesis Statement
	Research Questions
	Research Contributions
	Research Objectives

	Thesis Organization

	Literature Review
	Background
	Traditional Architecture
	Challenges of the Traditional Application Architecture
	Microservice Architecture
	Challenges of Microservice Architecture
	Composition Styles
	Choreography
	Orchestration

	Related Work
	On Microservice Architecture
	On Maintenance and Debugging of Microservice Based Systems
	On Orchestration and Choreography

	Relevant Tools and Definitions
	Tools and their Utilization
	Docker
	Spring Boot Framework
	Workflow Engines

	Definitions
	Container Orchestration
	Fault Tolerance
	Visual Tracing

	Approach of the study
	Benchmark System
	System Configuration

	Infrastructure and Tools
	Choreography
	Orchestration

	Technical Debt
	Debugging Methodology
	Choreography
	Orchestration

	Results and Discussion
	Results
	Tools and Support
	Technical Debt
	Debugging

	Discussion
	Reality of Choreography
	Promise of Orchestration and Workflow Engines
	Testing and Debugging Using Temporal

	Conclusion
	REFERENCES
	APPENDIX

