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ABSTRACT 

LiDAR sensor’s mapping and detection abilities make these sensors an important tool for 

research on navigation and object detection for robots and vehicles. This study used a ground robot 

and LiDAR sensor to collect navigational data sets from North Dakota State University Research 

Extension Center agricultural test plots in Carrington, ND. Three different height and angle 

combinations were used to study the factors that could potentially affect object detection. Three 

trials were run for each sensor placement and recorded the distance the laser pulse traveled and the 

intensity of the laser. The analysis results showed that the data did not have a normal distribution. 

However, statistical analysis showed a relationship between the return intensity of the laser pulse 

from the sensor and the distance the object was from the sensor. Thus, this study showed that 

LiDAR sensors could be a navigation tool for UGV applications in precision agriculture. 
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1. INTRODUCTION 

1.1. Purpose of Study 

North Dakota State University has been continuously growing the Precision Agriculture 

Program since its creation in 2019. The program team members conduct research on various topics, 

from weed identification to drone imaging. The research done with autonomous or unmanned 

ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) has greatly expanded with the 

addition of the LiDAR sensor. LiDAR, or light detection and ranging, is a widely used sensor and 

has been applied to many industries such as autonomous vehicles. LiDAR sensors work by 

emitting pulses of light that reflect off surrounding objects (Teague). The sensors then use the 

return time from the laser to calculate the distance, X, Y, and Z coordinates, intensity, time, and 

other variables. Using a LiDAR sensor gives an advanced approach to autonomous vehicles, 

whether with road vehicles or agricultural machinery. Understanding more about a LiDAR 

sensor’s signal can allow for more progress or efficacy while using them in real-world applications. 

This study investigated the relationship between the distance that a laser pulse, emitted from a 

LiDAR sensor, travels to a surrounding object and the return intensity of that laser pulse. More 

can be determined about optimal sensor placement using the relationship between these two 

variables. 

1.2. Background of Research Topic 

Autonomous vehicles have become an increasingly relevant part of research in agriculture. 

Companies such as Tesla, Ford, John Deere, and Case IH, have been researching and releasing 

new autonomous technology, which has increased the need to continue learning about autonomous 

machinery. Both the automotive industry and agricultural sector utilize this technology and have 

allowed more opportunities for continuing research. Machinery that can run effectively, 
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efficiently, and autonomously means that more work can be achieved with less input. In 

agriculture, autonomous machinery means crop production could be increased with the same 

amount of work input. It also makes expanding a farming operation much more feasible because 

less labor is needed to get the same amount of work done.  

There are many similarities to what the agricultural sector and the automotive industry are 

doing in terms of autonomous vehicles. Both industries utilize similar base concepts for what the 

autonomous machine needs. For each case, sensors to detect the machine’s surroundings, such as 

LiDAR sensors, cameras, and GPS, are necessary for the machine to be able to navigate safely and 

effectively. In cars, obstacle detection and avoidance features are one of the main safety priorities 

for the passengers who would be buying these cars. The safety features are also important to the 

other cars in the roadway and any pedestrians in the area (What is an Autonomous Car?). In 

contrast, most agricultural machinery does not include passengers. Therefore, the safety features 

of an autonomous vehicle in agriculture are very different because the surrounding people are the 

top safety priority. However, obstacle avoidance and other safety features are still extremely 

relevant in the agriculture field.  

As mentioned above, LiDAR sensors provide information about distances from obstacles 

and people through emitting pulses of light that reflect off surrounding objects (Teague) and then 

calculating the distance, X, Y, Z coordinates, intensity, and time. LiDAR then creates a 3D point 

cloud of surrounding objects using those variables to have both the 3D graphical output as well as 

a numerical data set for each frame. The image below shows a comparison of what a LiDAR sensor 

output looks like compared to the actual topography shown on the right side. This comparison 

helps illustrate what a LiDAR sensor shows the user when it is running. 
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(a)                                                        (b) 

Figure 1.1. (a) LiDAR sensor output.  (b) Actual image of the topography (Lohani & Ghosh).  

 

Because the sensor can relay surrounding objects in real-time, it is widely utilized in 

autonomous technologies. LiDAR sensors are ideal for the safety features that are needed for 

autonomous vehicles but have many other applications. Some of the other popular uses of LiDAR 

sensors include crop and weed detection as well as topography mapping.  

Features such as real-time obstacle detection make LiDAR sensors an excellent candidate 

for many different uses and in different industries. Expanding upon what is currently known about 

LiDAR sensors is another way to continue learning about the technology. Building upon its current 

capabilities in autonomous vehicles, in conjunction with the other uses in agriculture, allows for a 

better machine with fewer sensor inputs needed to achieve similar results. The obstacle detection 

needed for the safety of autonomous vehicles and the plant identification abilities studied in the 

agricultural field can both be achieved with the same sensor, making it important to know as much 

as possible about how these sensors work.  

1.3. Objectives of Study 

The goals of this study were to increase the understanding of LiDAR sensors by analyzing 

the relationship between the return intensity from laser pulses emitted from the sensor and the 

distance traveled by the laser beam. This study focused on the return intensity of the laser pulse 

emitted by the LiDAR sensor and analyzed the relationship between that variable and the distance 
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that laser pulse travels to a surrounding object. Multiple forms of statistical analysis were 

conducted to represent the relationship between a surrounding object and the laser pulse that came 

out from the LiDAR sensor.  

1.3.1. Sub Objectives 

• Collect LiDAR sensor output data from field testing with the remote-controlled 

agricultural robot.  

• Run statistical analysis on the collected LiDAR sensor data.  

• Determine the type of relationship between the return intensity of a laser pulse and 

the distance from the LiDAR sensor to the object  

1.4. Research Approach  

A variety of crops and weeds were planted at a satellite research site for North Dakota State 

University in Carrington, North Dakota. The field was utilized for a variety of studies including 

this data collection. A remote-controlled robot with a LiDAR sensor attached to the front at varying 

heights and angles was used to collect the data sets. Three trial positions were used for the sensor 

height and angle, named Condition 1, 2, and 3, each with a specific height and angle. Each 

condition consisted of 3 trials, in which the robot was directed from one end of the field to the 

other end directly above a double row of crops spaced 30 inches from each other. The collected 

data sets were then statistically analyzed to determine the relationship between 2 of the calculated 

variables.  

1.5. Organization of Thesis 

This thesis investigated the function of LiDAR sensors in a precision agriculture field 

robot, why the relationship between the distance traveled and the return intensity of the laser is 

important, and the results of statistical analysis on these data sets. Chapter 1 explores this 
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relationship to help build a better understanding of sensor placement depending on the output 

required for different experiments. Chapter 2 contains a literature review that discussed ground 

robots in agriculture, the navigation of ground vehicles in both agriculture and the automotive 

industry, LiDAR sensors, and how it relates to this study. The method of data collection and 

materials used are discussed in Chapter 3. Chapter 4 then addresses the relationship between the 

return intensity of the laser and the distance from the sensor to the object and a comparison of 

statistical methods was used to determine the best predictor model. Lastly, Chapter 5 concludes 

the paper with a discussion of the results.  
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2. REVIEW OF LITERATURE 

2.1. Ground Robots in Precision Agriculture 

Precision agriculture is a continuously growing field. There have been many advancements 

in the field of ground robots in particular. The robots created in precision agriculture serve many 

purposes. Ground robots in agriculture are being created to reduce the most time-consuming and 

labor-intensive processes. Crop seeding is one of these tasks as this process is very meticulous for 

farmers. Therefore, designing a robot to complete this task would greatly reduce the time and 

energy needed for this task (Azmi, et. al.). The figure below shows examples of robot prototypes 

built for crop seeding.  

(a)        (b)         

Figure 2.1. Prototype crop seeding robots created for precision agriculture research (a) Azmi, et. 

al. (2021) (b) Kumar and Ashok (2021).  

 

Both robots designed by Azmi et al. (2021) and Kumar and Ashok (2021) were designed 

to reduce the amount of time it takes for farmers to sow seeds. Spraying is another task that could 

be easily completed with a ground robot. A robotic spraying platform that was built to reduce costs 

and increase autonomy using solar panels and a completely electric system was effectively able to 

reach and focus on the plants to collect thermal data (Loukatos et al.). While the spraying 

capabilities of this research are still in progress, the concept is there. Mechanical weeding is 

another way to achieve the same goal. There have been robotic concepts in that research area, such 
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as a concept created by Quan et al. (2022) that had both high crop and weed detection and an 

85.91% removal rate with very low crop damage recorded. The sprayer concept and mechanical 

weeding concept are shown in Figure 2.2.  

 

                (a)            (b) 

Figure 2.2. (a) Robotic sprayer concept (Loukatos, et al.) (b) Mechanical weeding concept (Quan 

et al.).  

 

The concepts by both Loukatos et al. (2021) and Quan et al. (2022) have been successful 

in their advancement, proving that both concepts have great future possibilities for future 

improvement. A study conducted in Bavaria, Germany determined that farmers are more likely to 

consider owning smaller ground robots rather than larger autonomous tractors. The interest in 

small robots for agriculture, especially for smaller farms, is high (Spykman, et al.). The reduction 

of labor costs and increased efficiency of using robots for agriculture procedures is why they have 

become such a large part of current research (Gai, et. al.). Creating a robot that can manually or 

autonomously complete tasks, such as the concepts above, can greatly reduce labor costs, and 

allow farmers to accomplish more in the same amount of time. Figure 2.3. is the prototype 

agricultural robot used in the study conducted by Gai et al. (2021) to help develop better navigation 

for agricultural ground robots. Research by both Gai et al. (2021) and Weiss and Biber (2011) have 
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been working towards the same goal to create a localization or mapping system that can help 

agricultural robots navigate. By mapping the details of a field and its rows, ground robots will be 

more able to work effectively in field conditions. They need a localization or vehicle positioning 

system when conducting any of the previously mentioned tasks ground robots are being built for. 

Mapping is an important step for agricultural ground robots to be successful and has been 

continuously improving for many years. Figure 2.3. also shows the test robot used by Weiss and 

Biber (2011) to conduct their 3D laser sensor mapping. 

  

(a) 

Figure 2.3. (a) Agricultural ground robot working on improving navigation (Gai et al.) (b) Test 

robot using a 3D laser sensor to create plant map (Weiss and Biber).  
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(b) 

Figure 2.3. (a) Agricultural ground robot working on improving navigation (Gai et al.) (b) Test 

robot using a 3D laser sensor to create plant map (Weiss and Biber) (continued).  

 

Along with agricultural ground robots being created for a single purpose, some robots are 

being created as a base that can be altered for any agricultural application. Grimstad and From 

(2017) created Thorvald II, a reconfigurable robot that can be used in a variety of agricultural 

settings.  

 

Figure 2.4. Thorvald II robot in standard configuration (Grimstad and From).  
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Thorvald II can be utilized for greenhouse settings, orchards, and typical crop fields. The 

versatility of the base concept makes it applicable for many different types of use. Because of the 

versatility in the use of these ground robots, another important factor to consider is the control 

system. Whether the robot is manually or autonomously controlled, there still needs to be a detailed 

control system in place to prevent any issues with the robot. A study done by Tu et al. (2019) 

designed a robot that used 2 steering modes with corresponding controllers. It was able to follow 

straight and curved paths well with smooth transitions along the curves. All agricultural ground 

robots need to be able to cleanly follow the paths they are given when being used in a field 

operation to prevent damage to the crops. Improving the controls of the robot can achieve this and 

continue improving the research.  

Completing tasks more efficiently is one of the main priorities of robots in agriculture but 

another important aspect that robots can help in is tracking purposes. Robotics and the autonomy 

of agriculture machinery allow for better regulation of field data. Transmitting data in real-time 

about the condition of the crop and its health allows for better and more efficient care 

(Baerdemaeker). The ability to consistently know the condition of the soil in a field or the moisture 

content in the plant’s leaves means the field can be taken care of to the best of the farmers’ ability. 

Along with reducing costs, the time a task takes, and the labor needed, getting the field the best 

care possible is extremely important. Ground robots are an increasingly important research topic 

to continue to improve the output of farms.  

2.2. LiDAR Sensors 

LiDAR sensors are widely used across a variety of industries and in many types of research. 

Since LiDAR’s creation in the 1960s, it has been utilized for projects ranging from aiding 

meteorologists to mapping the bottom of the ocean (Wandinger). In both research and industry, 
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LiDAR sensors have been expanding upon work previously done using multiple types of sensors. 

Minimizing the number of sensors needed eliminates the need for extremely complex control 

systems and allows for a simpler system. The simplicity and versatility of LiDAR sensors are why 

they have become a large part of many research fields.   

2.2.1. Components of LiDAR Sensors 

LiDAR sensors are comprised of a laser scanner, high precision clock, GPS, inertial 

navigation measurement unit or IMU, and a data storage/management system. Depending on the 

type of sensor, the components may vary. However, all LiDAR sensors have some form of the 

previously mentioned components (Light Detection and Ranging (LiDAR)). The laser scanner 

component of a LiDAR sensor projects the laser pulses emitted from the sensor and measures the 

angle at which it was fired. The scanner then receives the reflected pulse from the surface of the 

sensor which is the return. The intensity of the return is based on a scale of 0-256. It is based on 

the light energy reflected from the object the laser pulse returned from. Different material types 

influence the return intensity, some of which are listed in the table below.  
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Table 2.1. Reflectivity (%) of various materials (Song, et. al). 

Materials Reflectivity (%) 

White paper Up to 100 

Dimension lumber 94 

Snow 80-90 

Beer foam 88 

White masonry 85 

Limestone, clay Up to 75 

Newspaper with print 69 

Tissue paper, with ply 60 

Deciduous trees Typ. 60 

Carbonate sand (dry) 57 

Beach sands  Typ. 50 

Carbonate sand (wet) 41 

Coniferous trees  Typ. 30 

Rough wood pallet (clean) 25 

Concrete, smooth 24 

Asphalt with pebbles 17 

Lava 8 

Black rubber tire wall 2 

 

The effect of the material on the return intensity is an important factor of this research as 

return intensity is one of the variables being analyzed. The clock used in a LiDAR sensor is another 

important component as it records the time it takes for the laser pulse to return which can be used 

in the calculation of other variables such as the distance the object is from the sensor which is the 

other primary variable analyzed in this study. Therefore, the calculation of the 2 variables, return 

intensity and distance, is crucial to this research. 

Other components, such as the GPS in a LiDAR sensor are not always necessary but can 

be used to determine the positioning of the sensor. This along with the IMU, which measures the 

orientation of the sensor to the ground, are good references for data collection using LiDAR 

sensors. However, the last component listed above is one of the most important. The data 
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storage/management system of a LiDAR sensor allows for data to be collected and recorded for 

data analysis. Without those systems, LiDAR sensors would not have the same capabilities for 

research as they do. Therefore, this is one of the most important characteristics of LiDAR sensors.  

2.2.2. Current Uses of LiDAR Sensors 

The uses of LiDAR sensors range from autonomous navigation to predicting weather 

patterns. The versatility in uses makes LiDAR sensors applicable to a range of different types of 

research and in many industries. As mentioned previously, one of the uses of LiDAR sensors is 

mapping. The figure below shows a LiDAR sensor output for a topography map. 

 

Figure 2.5. Topography map created using LiDAR sensor (US Department of Commerce). 

 

Topography mapping is currently one of the larger uses of these sensors and this benefit is 

applied in many industries. Agriculture, forestry, urban planning, and many other sectors can all 

benefit from the maps created by LiDAR sensors. Archeologists can utilize these maps when 

analyzing historical sites, and a study on geomorphology was able to use a t-LiDAR to analyze 

structural changes in bedrock (Wiatr, et. al.). Taking LiDAR images of large areas allows the 
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output map created to be analyzed and anomalies in the map can be detected. A study conducted 

by Wang and Glenn (2009) used airborne LiDAR data to create a method of getting a bare-earth 

digital terrain model (DTM) with less error than previous studies. By creating DTMs with less 

error, other areas of study can use them to determine other factors with more accuracy. For 

example, another study by Casana et al. (2021) on archaeological landscapes conducted in Hawaii, 

Colorado, and New Hampshire, found that they were able to find archaeological site locations by 

taking LiDAR images of large areas and eliminating the tree canopy and vegetation to look at the 

bare-earth terrain or DTM. Another way that LiDAR sensors can be utilized for mapping is 

depicted in the figure below that shows a backpack created by apple maps, that is carried around 

to advance their system. 

 

Figure 2.6. Apple maps backpack created to update their maps.  
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Apple Maps vans have been using LiDAR sensors to collect accurate street-level data in 

recent years. Currently, they have expanded their research to using LiDAR sensors, GPS, and 

cameras on a backpack to make their new maps update even more accurate.   

Another popular use of LiDAR sensors is in the autonomous vehicle sector. As mentioned 

previously, this is a key part of multiple industries, the automotive and agricultural sectors being 

the largest. A LiDAR sensor’s ability to detect obstacles, both moving and stationary, and relay 

that information back to the control system in real-time makes it unparalleled in its benefits to 

autonomous machines. This is a feature that makes it useful to many other industries, such as 

meteorology and hazard assessment (The history of LiDAR). Both uses require detecting the 

sensor’s surroundings to detect objects around the sensor or movement in the sensor’s 

surroundings.  

2.2.3. Agricultural Uses of LiDAR Sensors 

The current research using LiDAR in agriculture primarily focuses on the ability to identify 

plants using the sensor as well as its use in obstacle detection. Plant identification, as well as field 

mapping, are the most widely researched topics for LiDAR in agriculture. One study conducted 

using LiDAR focused on identifying weeds between rows of different crops. By mounting a 

LiDAR sensor above the crop height on an ATV, they were able to distinguish between the crop 

and the weeds based on height from 4 varieties of crops (Andújar, et. al.). Other studies, such as 

the work by Abanay et al. (2022), use LiDAR to create a calibration method to keep an agricultural 

robot on its path to conduct its tasks.  

Agricultural robots are not only able to complete plant identification or mapping tasks but 

also require mapped areas for autonomous work. A mapping and localization system is essential 

for agricultural robots as they are working in large areas to keep track of where they are (Le, et. 



 

16 

al.). This is important to note because of how relevant it is in agriculture specifically. A ground 

robot may be in an isolated area with limited distinguished land markers and therefore needs to 

create its localization system based on the field. The figure below shows the robot and LiDAR 

sensor used for mapping in the study conducted by Le et al. 

 

Figure 2.7. Agricultural robot and LiDAR sensor for localization system mapping (Le, et al.).  

 

Mapping is something that can be achieved by using a LiDAR sensor, but it is also 

something an autonomous robot using a LiDAR sensor would require in agriculture. The 

information gathered by the forestry sector and through land mapping analyzes the relationship 

between different variables in some work.  

In agriculture, few papers include the relationship between the return intensity of a laser 

and the distance between the sensor and object. A study on how the distance between the sensor 

and object affected the return intensity of the laser beam was conducted. They found a primarily 

linear relationship between the distance and intensity (Tatoglu and Pochiraju, 2012) similar to what 
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Bordin et al. (2013) determined in a study comparing the distance and output intensity data in a 

forestry setting. LiDAR research focuses on its ability to detect obstacles and its ability to create 

2D or 3D maps. There are a limited number of studies like the previous that discuss the relationship 

between the return intensity and distance, especially in agriculture. In the most current research, 

LiDAR sensors have mostly been analyzed in urban or city settings. Agriculture has a variety of 

different characteristics to consider when using a LiDAR sensor that urban settings do not need to 

be concerned with (Le, et. al.). That is why understanding how an agricultural setting will affect 

the output of the sensor is important.  

2.3. Navigation of Autonomous Ground Vehicles 

2.3.1. Background 

Autonomous vehicles are becoming more and more popular in the modern automobile 

industry. The concept of the self-driving car has been around since the 1500s when Leonardo Da 

Vinci invented his concept for a self-propelled cart. Since the creation of modern vehicles, the 

introduction of Autopilot to Tesla vehicles in 2015 has helped bring the idea of a fully autonomous 

car closer to reality. Figure 2.8. shows a variety of sensors that Tesla uses for their autonomous 

features in the Autopilot controls. Cameras surround the vehicle to detect objects close to the 

vehicle as well as ultrasonics right around the car. 



 

 

1
8

 

 

Figure 2.8. Sensors and capabilities used in Tesla Autopilot (Autopilot).  
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In agriculture, autonomous vehicles are becoming one of the top researched areas for 

machinery companies.  For instance, Case IH released a concept for an autonomous tractor in 2016 

and has continued to consider this a realistic option for farmers with large operations to add to 

their machinery. John Deere is another company that has an autonomous tractor that will be 

available for large-scale production by late 2022. Companies like these have created concepts that 

use this technology to improve their machine’s capabilities and ease of use. Below are examples 

of both Case IH’s and John Deere’s autonomous tractor prototype.  

 

(a) 

Figure 2.9. (a) Case IH Autonomous tractor (Case IH autonomous concept vehicle) (b) John 

Deere Autonomous tractor (John Deere).  
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(b) 

Figure 2.9 (a) Case IH Autonomous tractor (Case IH autonomous concept vehicle) (b) John 

Deere Autonomous tractor (John Deere) (continued).  

 

Whether in the automobile industry or the agriculture field, to make the autonomous 

function works, a variety of sensors are needed on the vehicle such as GPS, RTK, LiDAR, and 

cameras to navigate as well as a sophisticated control system and machine learning to make 

decisions (Figure 2.10.). Each of these sensors is integral to the operation of an autonomous 

machine and is each very complex in what they accomplish. Because of the complexity, there are 

concerns about how safe and effective the machines are (Lokshina, et. al.). The safety concerns 

for both industries guide much of the research on this technology. However, each industry has 

different safety concerns and technical obstacles to overcome.  
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Figure 2.10. Waymo’s self-driving car sensor set up (Why lidar is doomed).  

 

2.3.2. Automobiles 

Autonomous vehicles require more measures to be taken regarding public safety compared 

to agricultural machinery. The safety features are extremely important to self-driving vehicles 

being a viable option for transport. For instance, LiDAR sensors are installed on the autonomous 

to make sure all the objects around autonomous vehicles are scanned and identified. The image 

below shows a LiDAR sensor being used for an autonomous vehicle.  
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Figure 2.11. Example of LiDAR sensor about of cars surroundings (Allyh).  

 

As illustrated, the sensor output shows the people and cars surrounding the sensor. This is 

one of the most important aspects of an autonomous machine – detecting surrounding objects. The 

safety of the surrounding people is important to the advancement of autonomous cars, as they are 

being created to improve driving safety. The automobile industry has more to overcome in terms 

of public trust than the technology behind autonomous vehicles (Kim, et. al.). As stated, the 

technology behind autonomous cars is less of a concern than getting the public to consider buying 

an autonomous vehicle. Distrust in technology is prevalent due to the buyers’ need to be able to 

trust autonomous driving technology with their life. Many socioeconomic factors have been 

studied that influence an individual’s thoughts on autonomous vehicles (Lokshina, et. al.). 

Studying these factors allows companies to understand how the public will receive an autonomous 

car and how it can be marketed. Overall, more built-in safety features and more complex decision-

making capabilities are needed in cars than in agricultural machinery.   
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The machine learning needed for cars is extremely complex. It needs to be able to 

determine the safest course of action in millions of scenarios. There are many considerations to 

include, such as road traffic and conditions, that are constantly changing. Therefore, the deep 

learning system needs to be able to take in information and problem solve based on that in real-

time (Zhu, et. al.). Being able to adapt to the constantly changing environment is an important 

aspect of being able to utilize autonomous functions in a road vehicle. Without complex decision-

making algorithms, machines may not be able to make the necessary decisions to keep people safe. 

However, each company interprets these concerns differently depending on their priorities which 

is part of the public trust concerns that automotive companies need to deal with when presenting 

the public with autonomous vehicles. The concerns brought up in the studies done by Kim et al. 

(2022), Lokshina et al. (2022), and Zhu et al. (2022) as well as additional safety concerns are a 

large obstacle for autonomous vehicles to overcome. However, they differ from the concerns that 

autonomous agricultural machines face.   

2.3.3. Agricultural Machinery and LiDAR Sensors  

The use of LiDAR sensors has become synonymous with autonomous vehicles. The ability 

to detect moving and stationary obstacles and relay that information back to the controls of a 

system is key to why these sensors are used in place of a range of other sensors for navigation 

purposes. An autonomous agricultural robot using only LiDAR-based navigation was studied by 

Malavazi et al. (2018) to determine if one sensor would be adequate for navigation. The abilities 

in navigation and obstacle avoidance that LiDAR sensors can give to agricultural machinery open 

many more possibilities for effective and efficient work. Research conducted from 1990 to 2018 

at Hokkaido University was analyzed in a case study. Through the university’s research on 13 

autonomous agriculture vehicle concepts, they determined that laser scanners are more accurate 
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than cameras at longer distances (Roshanianfard, et al.). That better accuracy makes LiDAR one 

of the most important sensors on an autonomous machine. A study focusing on the design and 

validation of a fully autonomous tillage tractor was conducted by Jeon et al. (2021) to determine 

the coverage efficiency. They were able to determine that the proposed planner system provided 

an increase in coverage efficiency providing positive results those autonomous vehicles can be 

highly effective.  

However, there are a variety of concerns that differ for agricultural machines than for cars. 

An autonomous tractor typically will not be carrying passengers or dealing with traffic patterns 

and road conditions. Other factors must be considered such as the cost of running a fully 

autonomous field tractor. One study did find that the cost of running an autonomous BED system 

had costs comparable to or lower than a one or two-manned diesel vehicle annually (Lagnelov, et. 

al.). Running costs are important to consider as the goal of this technology is to reduce labor but 

also reduce costs. Another consideration for this technology is the energy source as it can be an 

added cost or limit to the technology. When the autonomous vehicle needs to be refueled or 

charged needs to be planned for in advance. The source, whether a chargeable battery or fuel, is a 

factor that needs to be considered as it does with autonomous cars. Renewable energy sources 

being used in agricultural machinery have not been previously explored the same way is has for 

cars. A recent study by Ghobadpour et al. (2019), discussed the benefits of using vehicle 

electrification for autonomous agricultural machines as it has the advantage of flexibility in control 

and would be able to be built into the already existing autonomous controls.  

Another difference between cars and agricultural machinery is that charging stations/gas 

stations are easily accessible along the roadway for cars. Agricultural vehicles need to plan in more 

detail when, where, and how they are going to recharge or refuel. With fuel, the robot can be sent 
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to a location where a truck can be waiting to fill it. But to be recharged, the robot would either 

need sites set up or be able to hold a charge for the time it is in the field. Considering 

fueling/recharging options is important to determine how to design a fully autonomous agricultural 

machine.  

Along with the need for reasonable costs and adequate fuel, understanding field conditions 

and the limitations of the machines is important. There will always be varying conditions in an 

agricultural setting and there is a possibility of a machine getting stuck. So, while road conditions 

and traffic patterns are not a consideration, the quality of the field and the risk to the machine are. 

However, understanding when to use an autonomous machine is similar to understanding when 

the conditions are not adequate for a manually operated machine. This means, there should be 

adequate conditions and a plan to repair the autonomous tractor should any issues arise. With those 

plans in place, an autonomous tractor would be a way for farmers to save labor on certain tasks.  

2.4. Conclusion 

Precision agriculture is continuously growing and becoming integral to how farms 

function. Ground robots are one aspect of precision agriculture that has been expanding especially 

in research. The ability to complete the same task, with less labor input and time means farms can 

dedicate fewer people to doing simple work in the field. Autonomous vehicles – automobiles and 

agricultural machines – both contribute to this as well. There can be fewer people doing the same 

amount of work which can allow for better care in more fields. These technologies will all 

contribute to the efficiency of the farm and help improve productivity.  

Current research covers the use of LiDAR sensors in a variety of settings, both in 

agriculture and other research areas. However, the relationships between different components and 

the use of those in sensor placement are not well researched at this current time. The ability to 
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understand how the components affect each other allows for a better understanding of the best 

placement and use of a LiDAR sensor. There has been a limited amount of research into the 

relationship between return intensity and distance in past work. The previous research on this topic 

has not been within an agricultural-focused field. Using a data set from field research will obtain 

more applicable data for agricultural use and understanding this relationship is important when 

using LiDAR for future experiments. This relationship if proven will be helpful to consider when 

determining sensor placement for plant detection or other research when the return image needs to 

be clear. 

The research about the return intensity to the LiDAR is a good basis for what this paper 

will continue exploring. Especially in agriculture, there is little research into how the distance 

affects the return intensity of the laser. The components that are detected and calculated using 

LiDAR sensors are what the focus of this research is. The relationship between 2 components – 

the intensity of the laser when it returns to the sensor and the distance the laser traveled to the 

object it is detecting. This relationship if proven will be helpful to consider when determining 

sensor placement for plant detection or other research when the return image needs to be clear.  
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3. MATERIALS AND METHOD 

3.1. Field Environment 

The data sets for this study were collected at North Dakota State University’s Carrington 

Research Extension Center (REC) located in Carrington, North Dakota. This site focuses on crop 

production practices, soil health and improvement, and new agricultural technologies evaluation. 

The test plot used at Carrington REC consisted of a variety of crops and weeds planted in rows for 

a variety of research projects, including drone imaging, weed identification, and autonomous 

machinery research. Figures 3.1. and 3.2. show the test plot and machine used in Carrington, ND 

for data collection. 

 

Figure 3.1. NDSU Carrington Research Extension Center fields.  
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Figure 3.2. Mini Weedbot at NDSU Carrington REC for field testing - Sept. 2021. 

 

This study was run on a single row on the test plot. Each row consisted of 4 types of crops 

in varied orders. The row used in this study consisted of field pea, lentil, flax, and dry bean, set up 

with weeds in the center of each row as illustrated in Figure 3.3. below.  

 

 

 

Soybean 
Corn 

Field Pea 
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Figure 3.3. Experimental setup of each row created by Dr. Xin Sun’s PAG team.  

 

The conditions of this experiment were kept as uniform as possible. This includes the use 

of one row for each trial that was completed. The weather factors were also kept consistent to limit 

the possible effect on the data. Each trial was completed on a sunny day with minimal clouds. The 

temperature range was also consistent, ranging from 65°F - 80°F with wind from 26 mph to 36 

mph. The pace of the robot was another factor that was kept as uniform as possible. Each trial 

consisted of 1400 – 2200 frames of data. The variables, such as temperature, wind, and sun/cloud 

coverage, were not taken into consideration when modeling and analyzing this data set. Due to 

that, the experiment was conducted to minimize the effect of any of these factors on the results.  
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3.2. LiDAR Sensor 

The sensor used for data collection was a Velodyne LiDAR - 32vlcp or Ultra Puck. This 

LiDAR sensor has a 200-meter detection range with high accuracy. The sensor can see its 

surroundings with a 360° horizontal view and a 40° vertical view. With a 903 nm wavelength laser 

utilized in the laser scanner component of this LiDAR, the laser can see through many weather 

conditions, including fog, rain, and snow. This sensor was attached at different heights and angles 

on the front of the robot used to get different samples to test. The sensor shown below in Figure 

3.4. is the Velodyne Ultra Puck (VLP-32C). This sensor was utilized in this study to collect 

information about the surroundings in a research field. The microprocessor attached to the sensor 

was hooked up to the laptop and the data was recorded in Veloview, which is free software 

provided by Velodyne that is compatible with Velodyne LiDAR sensors.



 

 

3
1

 

Power input and cord 

Veloview Software Output 

 

Ethernet connector 

LiDAR Microprocessor

 

Ultra-Puck LiDAR Sensor

 

Figure 3.4. Velodyne Ultra Puck system.    
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The LiDAR sensor was mounted to the precision agriculture robot used for the experiment. 

In Creo Parametric 4.0, a LiDAR mounting system was developed. The mounting system needed 

to be able to attach to 2 different size bars and adjust to 2 angles. Below in Figure 3.5., the model 

of the mounting system designed in Creo, and the 3D printed version are shown. Figure 3.6. then 

shows the 3D printer used to create the mounting system.  

  

Figure 3.5. Model of sensor mounting system designed in Creo Parametric 4.0 and 3D printed 

output.  
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Figure 3.6. Lulzbot Taz Pro 3D printer used to create sensor mounting system.  

 

 This model was then 3D printed using PLA in a Lulzbot 3d printer. By using a higher fill 

level, the component was studier than in previous trials. There were many designs attempted but 

this design was able to be attached to either bar easily and the angle was altered to 30° or 45°. 

Figure 3.7. shows the LiDAR sensor mounted on the bottom bar of the Mini Weedbot.  
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Figure 3.7. LiDAR sensor mounted on Mini Weedbot.  

 

3.3. Precision Agriculture Robot 

The precision agriculture team working with Dr. Xin Sun has created multiple robots that 

can be used for field testing. In this study, the robot used was the “Mini Weedbot” built by Dr. 

Sun’s precision agriculture group at NDSU. The Mini Weedbot is controlled by a remote control, 

with four 12 Volt batteries to power the robot. Two of these batteries run the motors that are 

directly linked to the wheels to drive and steer the robot. The other two batteries are used for the 

control system for the sensors connected to the robot. The figure below shows the frame utilized 

for this robot created in Creo Parametric 4.0.  
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Figure 3.8. Mini Weedbot frame designed in Creo Parametric.  

 

Attached to the frame is a raspberry pi, which is used as the central controller and connects 

the sensors attached to the robot back to a laptop. The robot was equipped with GPS, RTK (real-

time kinetics), and the LiDAR sensor for this experiment. The data set being used came solely 

from the LiDAR sensor as the robot was manually driven down the rows for this experiment. The 

GPS and RTK were connected for the robots’ autonomous functions. Figure 3.9. shows the Mini 

Weedbot as it was set up for these trials. The LiDAR sensor is attached to the front of the robot as 

shown by the arrow.  
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Figure 3.9. Mini Weedbot using a Velodyne VLP-32C LiDAR sensor attached to the front. Built 

by Dr. Xin Sun’s PAG team. 

 

 The raspberry pi is connected to the laptop which saves the data. This process allows for 

the software, Veloview – which is provided by Velodyne for free and is compatible with the sensor 

used – to record directly from the LiDAR sensor. This experiment was conducted by manually 

driving the robot and manually starting and stopping the recording process on Veloview. This 

process can eventually be run autonomously for future trials and compared to the results from this 

data. Figure 3.10. below shows some key features of the Mini Weedbot.  
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Figure 3.10. Annotated image showing aspects of the Mini Weedbot.  
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The robot is powered by 4 12-volt batteries. These are mounted above each of the wheels. 

The batters run both the motors for the wheels as well as power the sensors and controls on the 

Mini Weedbot. The Mini Weedbot can be driven using the remote controller seen in Figure 3.10. 

or autonomously using GPS or RTK input. For this experiment, the manual remote control was 

used to operate the machine.  

3.4. Experimental Method 

Through experimental trials, the relationship between the return intensity of each laser 

pulse and the distance that the laser travels to the object is explored. By running multiple trials at 

2 different heights and 2 different angles, the relationship can be better understood. Using a UGV, 

trials were conducted to test the relationship in an agricultural setting. Each trial was conducted by 

mounting the LiDAR sensor to the front of the Mini Weedbot at a specific height and angle. This 

was then run from one end of the field, directly over the row of crops with the LiDAR sensor 

centered on the robot. Three conditions were set, each with a set angle for the LiDAR sensor to be 

mounted from the ground and at a specified height. Each condition is shown in Figures 3.11. (a), 

(b), and (c).  
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(a) 

Figure 3.11. References for the angle and height of (a) Condition 1, (b) Condition 2, and (c) 

Condition 3 using Autocad.  
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(b) 

Figure 3.11. References for the angle and height of (a) Condition 1, (b) Condition 2, and (c) 

Condition 3 using Autocad (continued).  
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(c) 

Figure 3.11. References for the angle and height of (a) Condition 1, (b) Condition 2, and (c) 

Condition 3 using Autocad (continued).  
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Each condition’s measurements are listed in the table below. The trials were conducted at 

both 30° from the horizontal axis, which was what the ground was considered, and 45° from the 

horizontal axis. The lower bar mount elevated the sensor 20 inches from the ground, while the 

higher bar was 37 inches above the ground.  

Table 3.1. The angles and heights used for each experiment’s conditions.  

Conditions  Angle (Degrees) Height (Inches) 

Condition 1 30 20 

Condition 2 45 20 

Condition 3 45 37 

 

Each variation of the height or angle allowed for a better understanding of the relationship 

between the 2 variables being compared. Expanding upon that, the changes in height or angle can 

be compared to determine if one had a more statistically significant impact. Doing 3 trials with 

each of the setups listed above allows for more accurate data collection with the repeated tasks. 

This along with the consistency of the environmental setting were both intended to keep variables, 

other than the ones being focused on in the statistical analysis, from interfering with the data 

collected.  

3.5. Statistical Analysis Method 

Using descriptive statistics on the data sets acquired from these trials, the statistical 

significance of the relationship between these 2 variables – the return intensity and the distance – 

can be determined. One statistical analysis method considered for this data set was linear 

regression analysis. As summarized in “The Assumptions of the Linear Regression Model” by 

Poole and O’Farrell, linear regression modeling requires making assumptions depending on what 

the model is trying to attain. If these assumptions are unable to be satisfied, alternative techniques 

may be used to determine the importance of the variation. It is important to note that these 
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assumptions exist and need to be considered before a model can be valid. For this model, the 

following assumptions were made with X and Y being the variables of distance and the return 

intensity of the laser.  

1. The relationship between X and Y is linear.  

2. Any value of X has the same variance of residual, this is referred to as 

homoscedasticity.  

3. X and Y are independent of each other.  

4. X and Y values are normally distributed.  

How these affect the output is another important consideration. Normality assumptions for 

large populations may be unnecessary as it does not always provide valid results. Additionally, 

transformations in the data may lead to bias in the full model (Schmidt and Finan). However, with 

such a large data set being analyzed the normality assumption is a relevant concern. The 

nonparametric analysis is a method that can be considered without utilizing the normality 

assumptions.  

Along with the assumptions noted before, outliers are another factor to consider in 

statistical analysis. How to detect outliers and ways to understand their significance in the model 

are important considerations. Zwilling wrote about outliers in the dissertation, “New Approaches 

for Outlier Detection”. This dissertation provided an overall explanation of outliers. It also 

illustrates some methods to find outliers such as Multivariate Voronoi Outlier Detection (MVOD). 

Another method to factor how statistically significant is Cook’s Distance. Dr. Marzjarani shows 

the practical application of this in “Sample Size and Outliers, Leverage, and Influential Points, and 

Cooks Distance Formula”. By using Cook’s Distance, one can check if the outliers in a data set 

are statistically significant. If they are, they must be explained or dealt with in some manner. 
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However, if they aren’t, they can be disregarded as they don’t significantly impact the output of 

the model. Using Cook’s Distance on a sample of this data was tested to determine whether the 

outliers in this model would impact the results.  

Cook’s Distance:     𝐷𝑖 =
 ∑𝑗=1

𝑛 (𝑌𝑗− 𝑌𝑗(𝑖))
2

(𝑝+1)𝜎2
    (Eq. 1) 

When applied, the data showed that the outliers held no statistical significance to the data 

set. Due to this, they can be omitted without a significant impact on the final output. Below shows 

the graph of Cook’s Distance in which the points fall within the acceptable range to omit the 

outlying data.  

 

Figure 3.12. Cook’s Distance tested on sample data set to determine statistical significance on 

outliers.  

 

Due to the determination that the outliers have no statistically significant effect on the 

results of the data and the sheer amount of data that these trials acquired, the outliers were omitted. 

This allowed for a much cleaner statistical model and aided in determining what relationship is 

seen between the return intensity and the distance between the sensor and the object.   
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4. RESULTS AND DISCUSSION 

4.1. LiDAR Sensor Output 

Each trial was recorded using Veloview, a free software provided by Velodyne that is 

compatible with Velodyne LiDAR sensors. The output of the data in Veloview is uploaded to a 

point cloud that can be watched frame by frame in the software. The data can also be downloaded 

into a .csv file. The outputs of this study will be discussed in this chapter.  

4.1.1. LiDAR Image Acquisition 

In Veloview, the point cloud for multiple variables is available. For each variable, the point 

cloud color scale is adjusted based on the data output. Both the variables possible and an example 

of the intensity scale are seen in Figure 4.1.  

  

            (a)                       (b) 

Figure 4.1. (a) Point cloud variable options (b) Intensity color scale.  

 

The point cloud for this data shows the intensity of the return beams for each point it 

returned from. The image in Figure 4.1. below shows the point cloud recorded during trial 1 for 

Condition 1 from frame 1556.  
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Figure 4.2. Veloview software output for LiDAR sensor.  
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As illustrated in Figure 4.1. (b), the color scale for intensity has red being the highest 

intensity possible at 256. Low intensity returns closer to 0 are seen as blue. As seen in Figure 4.2., 

the mainly blue section is the robot that the sensor was mounted to as it was behind the LiDAR 

sensor. As there is a 360° view for this LiDAR sensor, it is visible however, it does not have a 

strong intensity return. The return intensities for data using field crops while not listed in Table 

2.1, which was discussed earlier, should fall between coniferous trees (Typ. 30) and deciduous 

trees (Typ. 60) as those are similar biological materials. The crop rows referred to in Figure 4.2., 

are a mix of greens and blues, showing that the intensity return is anywhere from 0 to around 64 

which fits with the maximum intensity return but not the lower intensity return. There is a large 

amount of variation in intensity returns when looking at the raw, unfiltered data. This is logical 

when using field testing for experimental data. However, filtering the data by looking only in front 

of the robot at the crops helps determine the relationship between the return intensity from the crop 

rows and the distance. 

4.1.2. LiDAR Numerical Data Acquisition 

After recording each trial, the data was downloaded from Veloview into a .csv file for each 

frame of data. The appendix shows 100 lines of the excel data output from frame 1556 of Condition 

1 – trial 1. The individual frames of data for each trial contained around 33,000 lines of data in 

excel. By filtering out the outliers in the data sets, the trials were much smaller but still had a large 

amount of data. Using a simple command prompt, the filtered trials were merged into a larger file 

for each trial. Each trial still had outliers present after the data was filtered. Figure 4.3. shows the 

box plot used to identify the outliers for trials from Condition 1(a) and Condition 3(b).  
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(a) 

Figure 4.3. Box and Whisker plot showing the outliers for (a) Condition 1 – trial 2 and (b) 

Condition 3 – trial 1.  
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(b) 

Figure 4.3 Box and Whisker plot showing the outliers for (a) Condition 1 – trial 2 and (b) 

Condition 3 – trial 1 (continued).  

 

Eliminating the outlying data points allowed for cleaner results for each condition. 

Conditions 1, 2, and 3 had 851028, 957937, and 712773 data points respectively after the removal 

of any outlying points. Descriptive statistics were used to analyze the data overall. Normality tests 

in excel were then used to determine if the data would fit the assumptions required for simple 

linear regression and ANOVA tests. Non-parametric tests and logistic regression will also be 

conducted to determine if there is any relationship between the return intensity of the laser emitted 

from the LiDAR sensor and the distance the laser traveled from the sensor to the object.  

4.2. Normality Tests 

Normality in the data is important to consider when looking to use tests like simple linear 

regression. These tests assume that the data is normally distributed as it gives the most accurate 
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results. Due to that, the first tests conducted were to test the distribution of the data. Histograms 

of the data demonstrate the distribution of the data in an easily visualized way. The plots in Figure 

4.4. and Figure 4.5. show the histograms for the intensity and distance data collected.   

 

 

(a) 

Figure 4.4. Histogram showing the distribution of intensity values for (a) Condition 1, (b) 

Condition 2, and (c) Condition 3.  
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(b) 

 

(c) 

Figure 4.4. Histogram showing the distribution of intensity values for (a) Condition 1, (b) 

Condition 2, and (c) Condition 3 (continued).  
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(a) 

 

(b) 

Figure 4.5. Histogram showing the distribution of distance values for (a) Condition 1, (b) 

Condition 2, and (c) Condition 3.  
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(c) 

Figure 4.5. Histogram showing the distribution of distance values for (a) Condition 1, (b) 

Condition 2, and (c) Condition 3 (continued).  

 

As the histograms for each condition show, the data is skewed to the left for both the return 

intensity values and the distance values. This means more of the data falls in the lower intensity 

values and smaller distance values which is consistent through each trial. Being skewed to the left 

also indicates that the data collected is not normally collected. Normal probability plots are another 

way to check if there are other concerns in the data. These plots are a tool to help identify outliers, 

skewed data, and other significant departures from what is considered normal. This is a useful tool 

for determining any issues in the data before or during in-depth analysis. The graphs below show 

the normal probability plots for each condition in this study.  
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(a) 

 

(b) 

Figure 4.6. Normal probability plot of intensity for (a) Condition 1, (b) Condition 2, and (c) 

Condition 3.  
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(c) 

Figure 4.6. Normal probability plot of intensity for (a) Condition 1, (b) Condition 2, and (c) 

Condition 3 (continued).  

 

 The normal probability plots for each condition are very similar. They each follow a mostly 

linear trend with slight a slight curve up near the end. A clear linear trend is what would be 

considered a good normal probability graph, therefore this also does not support the assumption 

that the data is normal. Another way to check the normality is to conduct tests on the data set using 

methods such as the D’Agostino-Pearson normality test. The results of that test for each condition 

are shown in Table 4.1. below.  

Table 4.1. D’Agostino-Pearson test results for Conditions 1-3.   

 
Condition 1 Condition 2 Condition 3 

  Intensity Distance Intensity Distance Intensity Distance 

DA-stat 43504.4 31288.1 75672 66618.6 33134.1 45194.6 

p-value 0 0 0 0 0 0 

alpha 0.05 0.05 0.05 0.05 0.05 0.05 

normal no no no no no no 
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As shown in Table 4.1., the data did not pass the normality test. Not passing the normality 

tests does not mean simple linear regression or ANOVA tests may not be attempted but the results 

will most likely not be conclusive. Non-parametric tests and logistic regression are what will be 

more likely to determine significant results since the data is not normally distributed. The results 

of a range of tests conducted on this data set will follow in this chapter.  

4.3. Linear Regression Analysis 

The regression analysis between the x variable, the distance from the object to the sensor 

in meters, and the y variable, the intensity of the return pulse, results are shown in this section. 

Comparing these 2 variables, the statistical significance of the impact of the distance on the 

intensity can be illustrated and compared for each condition. Each trial produced similar results 

that are shown in the tables and figures that follow. The null hypothesis or H₀ for this study is the 

β = 0 where β refers to the intensity output. The alternative hypothesis or Hₐ is that β ≠ 0. Using 

this model, the best fit can be determined. The R-squared values are an indicator of the best fit for 

the model.  

Table 4.2. Best fit variables for each condition.  

 
Condition 1 Condition 2 Condition 3 

Multiple R 0.18086832 0.26054874 0.21678643 

R Square 0.03271335 0.06788565 0.04699636 

Adjusted R Square 0.03271221 0.06788468 0.04699502 

P-value 0 0 0 

 

For each condition, the R-squared values were very low. These values indicate there is 

almost no relationship between the 2 variables. However, when looking at the p-values for these 

data sets, the value of each condition was below 0.05. This concludes that the results found were 

statistically significant. A low p-value also indicates that the null hypothesis should be rejected 
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and therefore the alternative hypothesis of β ≠ 0 is true. However, the residual plots also indicate 

that the model is not a good fit. Figure 4.7. shows the residual plots for each condition. The 

residuals are a measure of how far, vertically, a point is from the regression line. It tells the 

difference between the actual value and the predicted value.  

 

(a) 

Figure 4.7. Residual plots for (a) Condition 1, (b) Condition 2, and (c) Condition 3. 
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(b) 

 

(c) 

Figure 4.7. Residual plots for (a) Condition 1, (b) Condition 2, and (c) Condition 3 (continued).  

 

The residual plots for each condition are all varied but the result is the same. All trial 

residuals fall between the range of -100 to 100 but all follow some sort of pattern. It is important 

to note that an ideal correlation would show a residual plot with random scattering on both sides 
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of the identity line, which is zero on these plots. These plots do not show that ideal image, as they 

all have some sort of trend. The residual plots and the R-squared values both tell us that the linear 

regression model is not a good fit.  

4.4. Single Factor ANOVA Test 

A single-factor ANOVA test is another way to analyze the data collected in these trials. 

ANOVA tests can determine the variability in the data affects the repeatability of this data. Table 

4.3. shows the ANOVA output from a trial for each condition using these hypotheses. 

Table 4.3 ANOVA table for (a) Condition 1, (b) Condition 2, and (c) Condition 3.   

ANOVA 
 

 
     

Source of 

Variation SS 

 

df MS F 

P-

value F crit 

Between Groups 4.57E+08  1 4.57E+08 3198468 0 3.841464 

Within Groups 2.43E+08  1702052 142.921 
   

Total 7E+08  1702053         

 

(a) 

ANOVA 
      

Source of 

Variation SS df MS F P-value F crit 

Between Groups 5.01E+08 1 5.01E+08 2450210 0 3.841464 

Within Groups 3.92E+08 1915870 204.4258 
   

Total 8.93E+08 1915871         

 

(b) 

ANOVA 
      

Source of 

Variation SS df MS F P-value F crit 

Between Groups 4.71E+08 1 4.71E+08 3066856 0 3.841465 

Within Groups 2.19E+08 1425542 153.568 
   

Total 6.9E+08 1425543         

 

(c) 
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With the single factor analysis, the consistency between the trials is shown by the F value 

and the F critical value. The F critical values are the same and the F values fall within a reasonable 

range. This means the variation in the trials was consistent through each Condition. This is a good 

indicator that the data collected is repeatable.  

4.5. Logistic Regression Analysis 

Logistic regression analysis using the return intensity of the laser beam, the distance the 

beam traveled, and whether the vertical angle was positive or negative was used to create the model 

output below. The model is created with the logistic regression equation.  

Logistic Regression:     𝑦 =  𝐿𝑜𝑔 (
𝑝

1−𝑝
)    (Eq. 2) 

In the logistic regression equation, p is the probability of success. A good way to visualize 

this model is a ROC curve or receiver operating characteristic curve which is shown below in 

Figure 4.8. for each condition. 
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 (a) 

 

(b) 

Figure 4.8. ROC Curves for (a) Condition 1, (b) Condition 2, and (c) Condition 3. 



 

62 

 

(c) 

Figure 4.8. ROC Curves for (a) Condition 1, (b) Condition 2, and (c) Condition 3 (continued).  

 

A ROC Curve is an indicator used in logistic regression to determine if the classifier is 

good for the model or random. Better performance classifiers are closer to the top left corner of 

the graph. The graphs for Conditions 1 through 3 are much closer to a diagonal line across the 

graph which indicates they are much closer to a random classifier. Another way to analyze if this 

model fits the data is by looking at the R squared values. There are multiple tests to determine the 

R squared value for logistic regression. For this model, the Cox-Snell method and the Nagelkerke 

method were looked at. The table below shows the R squared values and p-values.  

Table 4.4. R squared values and p-values for Conditions 1, 2 and 3.  

 
Condition 1 Condition 2 Condition 3 

p-value 0 0 0 

R-sq (CS) 0.0866594 0.01885026 0.075637 

R-sq (N) 0.1215755 0.02608286 0.1062079 
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The values for both methods of finding R squared indicate a low correlation between the 

variables. The p-values are less than 0.5 which means the variables are statistically significant. 

However, the combination of the R-squared values and the ROC curves determines that the logistic 

regression model does not fit the data well.  

4.6. Chi-Square Test 

The Chi-Square test is a non-parametric test that does not assume normality in the data. 

This test compares the observed results with the expected results to determine whether the 

difference between these results is due to chance or a relationship between the variables being 

tested. The variables being tested in this test are the return intensity of the laser beam and the 

distance the laser beam travels from the sensor to the object. The table below shows the results for 

each condition.  

Table 4.5. Chi-Square Results for (a) Condition 1, (b) Condition 2, and (c) Condition 3.  

CHI-SQUARE for Condition 1 
  

 
chi-sq p-value x-crit sig Cramer V 

Pearson's 901441 0 35536.9 yes 0.11884 

Max likelihood 622230 0 35536.9 yes 0.09874 

(a) 

CHI-SQUARE for Condition 2 
  

 
chi-sq p-value x-crit sig Cramer V 

Pearson's 1160841 0 38559.2 yes 0.11735 

Max likelihood 871406 0 38559.2 yes 0.10167 

(b) 

CHI-SQUARE for Condition 3 
  

 
chi-sq p-value x-crit sig Cramer V 

Pearson's 544593 0 25231.9 yes 0.09537 

Max likelihood 435873 0 25231.9 yes 0.08532 

(c) 
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 To determine the goodness of fit of the Chi-Square model, the chi-square value should be 

compared to the x-critical value. If the chi-square value is greater than the critical value, the model 

is significant which is shown in the fourth column. The p-values, which are less than 0.05, also 

indicate that the model is significant. The last column of information, Cramer’s V, measures how 

strongly correlated the variables are on a scale from 0 to 1. In this case, the correlation between 

the return intensity and the distance the laser travels is very low on the scale. 0.1 is typically 

considered the minimum threshold for suggesting there is a relationship between the two variables. 

Condition 1 and Condition 2 average to over 0.1, meeting the minimum threshold. However, 

Condition 3 falls just under the threshold. What this indicates is that there is a correlation between 

the variables, particularly in Conditions 1 and 2, but that it is a very low correlation.   

4.7. Discussion 

The most conclusive results from the tests above come from the Chi-Squared test. The 

simple linear regression, single-factor ANOVA test, and logistic regression indicate no 

relationship between the two variables – the distance between the LiDAR sensor and the object 

and the return intensity of the laser pulses emitted by the sensor. The non-normality in the data 

affects the simple linear regression and ANOVA tests, and the logistic regression results prove 

that there is not a clear logarithmic trend in the data. The Chi-Squared test determined that there 

is a trend in the data. The large variation and large scope of the data could be affecting the results. 

However, the low p-value indicating statistically significant results and Cramer’s V results are 

better indicators in my opinion of the statistical relationship between these two variables (Table 

4.5). It is clear that there is not a linear or logarithmic trend in the data but that does not mean there 

is no correlation between the variables. This conclusion differs from studies by Tatoglu and 
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Pochiraju (2012), Bordin et al. (2013), and Hopkinson (2007) as they all focused on linear trends 

in their research.   

Many studies both in agriculture and other research areas have covered similar topics. 

However, few have studied the relationship between the return intensity of a laser beam and the 

distance between the LiDAR sensor and the object. Each of the three previously mentioned studies 

compared laser intensity with distance in some way. Tatoglu and Pochiraju (2012) did a lab study 

on how the distance between the sensor and object affected the return intensity of the laser beam. 

What they found was a mostly linear relationship between distance and intensity. Their study 

differs from what was accomplished in this study as they tested over a much shorter distance, 

within 5 meters, and used samples in a lab rather than a field test as found in this paper. Bordin et 

al. (2013) and Hopkinson (2007) both did field studies. The field study conducted by Bordin 

focused on the intensity return of a laser scanner compared with distance. They found a direct 

relationship between the two variables. They were testing this in a forestry setting and were using 

the return intensity from a single tree which differs from the field testing conducted for this study. 

Hopkinson concluded the same thing as the previously mentioned studies, that there was a linear 

relationship between the intensity and peak pulse power concentrations where the surface 

encountered the emitted laser pulse which differs from both previous works as it is focused on how 

altitude affects the relationship. Neither Bordin et al. (2013) nor Hopkinson (2007) focused on 

how a LiDAR sensor works in a typical agricultural field setting. By using data acquired in a test 

plot with several varieties of crops, the resulting data acquired in this study can be applied to 

navigation for agricultural robots looking to be used in field settings.  

Other studies also used similar field-testing methods to what was conducted in these 

experiments. Andújar et al. (2013), Rosell et al. (2009), and Weiss and Biber (2011) used LiDAR 
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sensors to distinguish crops. Rosell and their team used a 2D LiDAR and created 3D digitized 

images of an orchard while Andújar and his team were distinguishing between crops and weeds. 

Weiss and Biber used the LiDAR sensor to distinguish crops and map the field to improve the 

localization of the ground robot. All these studies used LiDAR sensors and field testing; however, 

they did not focus on comparing the relationship between the return intensity of the laser and the 

distance the laser emission traveled. Understanding the impact of distance on the output of LiDAR 

sensors will help improve LiDAR’s use in agricultural settings.  

Many of the studies mentioned previously in Chapter 2.1 about agricultural ground robots 

had similar ground robot concepts. The ground robots being studied for weed removal by Loukatos 

et al. (2021) and Quan et al. (2022) both had similar designs to the ground robot used to acquire 

this data. The two ground robots in those studies are being used for weed removal research. 

Similarly, the robots being used by Azmi et al. (2021) and Kumar and Ashok (2021) are being 

used for one research focus. However, the robot used in this study is being applied to not only 

weed removal but also for autonomous navigation, such as the LiDAR sensor. The robot, Thorvald 

II, built by Grimstad and From (2017) is also being used for a variety of different settings as it is 

equipped to deal with different environments. The robot in the study was only built for row field 

testing but is being applied to many aspects that go into field robots such as navigation, like Gai 

et al. (2021) and Tu et al. (2019). Navigation is extremely crucial for any ground robot and an 

important step for autonomous ground robots. The work done in this study is to gain a better 

understanding of the LiDAR sensor in the process of creating an autonomous robot. As the sensors 

being utilized for an autonomous robot are better understood, the navigation of the autonomous 

robot will become simpler. As the study by Malavazi et al. (2018) concluded, navigation of an 

autonomous robot is possible using a LiDAR sensor. Knowing that- it is important to conduct more 
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research on how a LiDAR sensor behaves in an agricultural setting before fully relying on the 

sensor as the only navigation tool. However, Malavazi and their team have proven that it is possible 

to navigate with only one sensor which expands the possibilities for autonomous robots greatly.  

4.7.1. Limitations 

There were some limitations to this method of data collection. The test plots had a selective 

number of crops; therefore, a large variety wasn’t used. Due to this and the heights chosen, more 

research would be needed to expand upon the data found in these trials. The trials used were 

conducted to keep environmental factors as similar as possible. However, it is important to note 

that changes in these factors – such as sunlight/cloud cover, temperature, or wind, could have had 

an impact on the data collection. The shorter growing season in northern areas limited the time 

that this study was able to take place as well. Completing more trials in different weather 

conditions could help account for some of the influences. This is not taken directly considered in 

this research as that would expand the scope of what this research is covering. This model and the 

outcome found were based solely on this experiment. While there were multiple trials for each 

condition, there was no further experimental research conducted. More trials with more angles and 

heights used would be the best way to expand this research. As mentioned before, weather 

conditions and the lack of more trials could have affected the results. More information on these 

aspects would be important for an improved model.  

Another factor that is relevant to note is that as this was conducted in a field setting, the 

angles and heights were all original measurements. The angle was measured at the beginning and 

end of each trial and never shifted beyond 1 or 2 degrees from its starting point. The heights 

measured were taken when the robot was on flat ground. Therefore, those measurements are not 

consistent throughout the trial due to uneven ground or otherwise jostling the robot. However, 
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these slight variations are unavoidable for field testing and make it more accurate for actual 

predictions. More trials could also help average the variation due to that as well. They would also 

be beneficial in determining more about the relationship between the variables looked at in this 

study. With more trials, there should be clearer evidence of the correlation between the return 

intensity of the laser beam and the distance the beam traveled from the sensor to the object.  

Completing more trials for at least one of the conditional setups would illustrate this point more 

clearly and would be important to consider if continuing to expand upon this topic.  
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5. CONCLUSION 

The relationship that can be determined between the return intensity of the laser beam and 

the distance the beam traveled will be beneficial to the future use of LiDAR in agriculture. 

Understanding the impact of how far the sensor is from the object being analyzed will allow for 

better judgment when determining sensor placement in future experiments. LiDAR sensors can be 

used for obstacle detection, plant identification, or land mapping. Other settings can also benefit 

from understanding this relationship. Sensor placement is important for any application and this 

analysis could help with that. This data was collected using a ground robot and LiDAR sensor. By 

comparing the results of 3 trials with varying heights and angles for the sensor placement, the 

relationship between the 2 variables being compared can be more clearly illustrated.  

The output of this data showed some contradictions when comparing certain aspects. With 

the lack of normality in the data, the linear regression and ANOVA tests were skewed. However, 

it can be determined that it is unlikely that there is a linear relationship in this data set as clearly 

indicated by the residual plots (Figure 4.7.) and the low R squared values (Table 4.2.). There is 

most likely not a logarithmic trend in this data either. The ROC curves (Figure 4.8.) and low R 

squared values (Table 4.4.) in this test are clear indicators. However, the non-parametric Chi-

Squared test of the variables, the return intensity of the laser and distance traveled by the laser 

beam, tells that there is a correlation between the variable but a very low correlation. Collecting 

more data for further analysis would be beneficial for future studies. 

5.1. Future Work 

This research opens different possibilities when it comes to expanding the working 

knowledge of LiDAR sensors. Doing more experimental trials with different heights and angles 

can allow for a more accurate prediction of the model between these 2 components. Completing 
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more trials for each experimental setup would benefit the analysis of the data as well. Using 

different environments is another way the model can be improved. Using both a lab and field 

environment would be helpful to eliminate some of the elements that limited this research such as 

the limited growing seasons in North Dakota. Finding the optimal sensor height, angle, and 

distance from the crop can be determined by exploring this relationship more as well. That and 

other implementations of this research are important to using LiDAR sensors most effectively and 

efficiently.  
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3.38E+0

8 

3.38E+

08 -2 
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-
0.0181

8 

1.3019

41 

0.3488

88 

-
0.018

18 

1.301

941 

0.348

888 24 29 60 1.348 

3.38E+0

8 

3.38E+

08 15 

0.0403
02 

1.1483
5 

0.2095
03 

0.040
302 

1.148
35 

0.209
503 10 30 61 1.168 

3.38E+0
8 

3.38E+
08 10.333 

-

0.0083
8 

0.6077
78 

-

0.0141
4 

-

0.008
38 

0.607
778 

-

0.014
14 7 31 61 0.608 

3.38E+0
8 

3.38E+
08 -1.333 

0.0234
21 

0.6448
66 -0.3009 

0.023
421 

0.644
866 

-

0.300
9 12 0 68 0.712 

3.38E+0
8 

3.38E+
08 -25 

-

0.0370
8 

0.6027
69 

-

0.0105
4 

-

0.037
08 

0.602
769 

-

0.010
54 10 1 68 0.604 

3.38E+0
8 

3.38E+
08 -1 

0.0287
26 

0.7871
43 

-

0.0229
2 

0.028
726 

0.787
143 

-

0.022
92 51 2 69 0.788 

3.38E+0
8 

3.38E+
08 -1.667 

-

0.0076
4 

0.6162
59 

-

0.1725
3 

-

0.007
64 

0.616
259 

-

0.172
53 12 3 69 0.64 

3.38E+0
8 

3.38E+
08 -15.639 

Note: This is 100 lines of the data collected from Condition 1 – Trial 1 – Frame 1556. There are 

33048 lines of data from this single frame.  


