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ABSTRACT 

Predictive analytics has multiple facets that range from failure predictability and optimal 

asset management to high-level managerial insights. Predicting the failure time of assets and 

estimating their reliability through efficient prognostics and reliability assessment framework 

allow for appropriate maintenance actions to avoid catastrophic failures and reduce maintenance 

costs. Most of the systems used in the manufacturing and service sectors are composed of multiple 

interdependent components. Moreover, these systems experience dynamic operating conditions 

during their life. The dynamic operating conditions and the system complexity pose three 

challenging questions: how to perform the prognostic and reliability assessment of a complex 

multi-component system, how to perform the prognostic and reliability assessment of a system 

functioning under dynamic operating conditions, and how to use the condition based and reliability 

assessment data to find the optimal maintenance strategy for complex systems.  

This dissertation investigates five tasks to address these challenges. (1) To capture the 

stochastic dependency between interdependent components of a system through a continuous time 

Markov process with the transition rate depending on the state of all components of the system. 

This technique helps get an accurate estimation of system reliability. (2) To propose a framework 

based on instance-based learning to predict the remaining useful life (𝑅𝑈𝐿) of a complex system. 

This technique can be used for highly complex systems with no need of having prior expertise on 

the system behavior. (3) To incorporate time-varying operating conditions in the prognostics 

framework through a proportional hazards model with external covariates dependent on the 

operating condition and internal covariates dependent on the degradation state of the system. (4) 

To propose a prognostic framework based on deep learning to predict the 𝑅𝑈𝐿 of a system working 

in dynamic operating conditions. This framework has two main steps: first identifying the 
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degrading point and developing the Long Short-Term Memory model to predict the 𝑅𝑈𝐿. (5) To 

propose an efficient algorithm for reliability analysis of a phased-mission system, its behavior 

changes at different phases during the mission. This technique accounts for imperfect fault 

coverage for the components to get accurate reliability analysis.  
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1. INTRODUCTION 

1.1. Overview 

Reliability and safety of critical engineering systems are key aspects to be considered to 

ensure proper operation, prevent undesirable situations, minimize risks, and reduce the life cycle 

costs of the systems. The engineering systems are subjected to a gradual degradation process as 

the result of usage and age, which considerably reduces their efficiency and eventually causes the 

systems to be unable to perform the required functions for the intended period of use [1]. Failure 

to do so may lead to system failures and severe damage to the environment and society, such as 

loss of lives, environmental contamination, and substantial financial costs. The following 

examples demonstrate the damage caused by systems’ failures. 

On September 2008, the malfunction of a turbine generator at the D.C. Cook Nuclear 

Power Plant resulted in a fire, which led to a manual plant shutdown and a massive loss of revenues 

for the one-year outage [1]. As another example, in July 2013, the Lac-Mégantic rail disaster 

occurred in Canada that resulted in the damage of 63 tank cars and the release of about 6 million 

liters of crude oil [2]. The train derailment and explosion caused 47 deaths, destroyed 30 buildings, 

and contaminated much of the downtown core. Most recently, the Texas blackout of 2021 caused 

a widespread power outage throughout the state of Texas [3]. More than 4.5 million homes and 

businesses were left without power for several days. The power outage had a broad range of 

impacts on the communication network, emergency services, water treatment, supply and 

distribution, food distribution, banking services, traffic services, and government services. The 

blackout caused at least 111 deaths and cost more than $195 billion, making it the costliest disaster 

in Texas history. The failure of such systems was due to several reasons ranging from faulty design 
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and poor equipment quality to not considering the effects of environmental conditions on system 

performance. 

One of the best ways to keep a system in service and prevent such failures is to perform 

proper maintenance activities that assure a satisfactory level of reliability throughout the life of the 

system. Traditional maintenance approaches such as corrective maintenance and scheduled 

maintenance take place either at breakdowns or at periodic intervals regardless of the health 

condition of the system and its components [4]. These approaches would have still exposed the 

system to failures and unnecessary maintenance actions. On the other hand, condition-based data 

related to the health condition of the system can be used to identify the degradation state and 

predict the remaining useful life (𝑅𝑈𝐿), i.e., the amount of time the system will continue to perform 

its functions according to design specifications without catastrophic failure. Knowledge of the 

degradation state and 𝑅𝑈𝐿 of a system can be used to plan efficient maintenance strategies. The 

advancement in technology brings sophistication that poses many challenging and interesting 

questions about condition monitoring and predictive analytics of complex engineering systems, 

including predicting the 𝑅𝑈𝐿 and maintenance planning. Solving these questions has recently 

gained much attention to improve the accuracy of predictions to achieve goals ranging from 

decreasing the system life cycle costs to protecting human life. We address three main questions 

in our research. 

The first question is how to perform the prognostic and reliability assessment of a complex 

system composed of multiple components that may be interdependent. In complex systems such 

as power grids, the failure or degradation of a component may lead to the failure of other 

interdependent components or accelerate their degradation processes. Existing reliability 

assessment approaches usually study simple one-unit systems or assume independence between 
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system components that leads to inefficient maintenance plans for complex systems [5]. The 

second question is how to perform the prognostic and reliability assessment of a system working 

under dynamic or time-varying operating conditions. The engineering systems in industrial 

applications usually work under dynamic operating conditions caused by environmental conditions 

such as temperature and humidity or operating profiles. For example, the lithium-ion batteries of 

electric vehicles are often influenced by time-varying ambient temperature and other factors like 

the discharge-charge rate. The temperature changes dynamically between day and night, between 

four seasons and different places, and discharge-charge rates vary from one user to another. 

Therefore, it is necessary to capture the effect of dynamic operating conditions on the degradation 

and failure processes to get a more accurate estimation of the system reliability and 𝑅𝑈𝐿. The third 

question is how to use the condition-based and reliability assessment data to find the optimal 

maintenance strategies of complex systems. Condition-based maintenance (CBM) based on 

condition-based data can effectively improve system reliability at reduced costs. Research on CBM 

has been rapidly growing due to the advancement of condition monitoring technologies. Because 

of the complexity of real-world systems, however, the application of CBM in practice is lagging 

behind.  

The mentioned challenging questions have enticed us to focus on developing models for 

prognostics, reliability assessment, and maintenance planning that can capture the dependency 

between interdependent components and incorporate the effect of dynamic operating conditions. 

The techniques and approaches developed in this research can be adopted and applied in numerous 

industrial applications. In 1981, the maintenance costs in the United States were estimated at 600 

billion dollars, a figure that at least doubled in the subsequent 40 years, that nearly one-half of the 
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costs were because of ineffective maintenance [6]. Certainly, this research has a significant 

potential to reduce maintenance costs and save billions of dollars. 

1.2. Research Challenges 

Prognostic, reliability assessment, and maintenance planning of complex systems that are 

functioning in dynamic operating conditions are important yet challenging research topics. In this 

section, we discuss their common challenges.  

Engineering systems often consist of many components, where different inter-component 

dependencies such as stochastic, structural, economic, and source dependence affect the 

availability of the system [7]–[10]. Stochastic dependence means the state of one component 

influences the lifetime distributions of other components. Structural dependence applies if 

components structurally form a part, so maintenance of a failed component also implies 

maintenance of other components. In economic dependence, maintenance costs can be reduced by 

performing maintenance of multiple components jointly instead of separately. Source dependence 

means multiple components are connected through, e.g., shared spares, tools, or maintenance 

workers. This research focuses on stochastic dependence (S-dependence) between components. 

We assume that either the failure or degradation process of a component affects the performance 

of other components in the system by accelerating their degradation process. Due to the presence 

of S-dependence, prognostics, reliability assessment, and maintenance planning of the system have 

challenging issues.  

Limited literature considers the S-dependence between components of a complex system 

[5][8]–[10]. However, some simple assumptions make them inappropriate for real-world 

problems. First, it is assumed that the interaction between system components is constant during 

the time and independent of the age and state of the system and its components. For many systems, 
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the interaction effect between components will change over time. For example, the failure of a 

component has higher impact on a degraded component compared to a new one. Further, the 

interaction effect is stochastic in nature, and may be influenced by other factors such as system 

environmental/operational conditions, including the state of non-critical components in the system. 

Second, most of the existing approaches for reliability assessment and 𝑅𝑈𝐿 prediction characterize 

the S-dependence between components by a specific model. They assume that the influence of 

each component on other components is observable and can be easily estimated. For a complex 

system, however, it is hard or even impossible to establish such specific models that can capture 

true interactions between components. This can be attributed to lack of knowledge about the 

system’s dynamics and the existence of many unknown factors that complicate the interaction 

among components. Therefore, it is necessary to develop methods that can face the challenges 

brought up by the complexity of real-world systems.  

Beside the system complexity, the dynamic operating conditions experienced by many 

practical systems throughout their life poses some challenges for prognostic, reliability assessment, 

and maintenance planning. The factors of the operating conditions include environmental 

conditions such as ambient temperature, humidity, pressure, vibration, shocks, and any other 

stresses or operational profiles such as speed, mission load, use rate, and so on. Most of the 

conventional predictive analytics rely on simple assumptions that the operating conditions are 

temporarily constant or irrelevant to the system health condition [11]. However, in practice, the 

system usually operates under complex and uncertain conditions that affect its useful lifetime. For 

example, increasing the load and speed of a rotating machine may accelerate the degradation of its 

components and causes its earlier failure. Therefore, capturing the effects of the operating 

conditions is an important issue, especially for the safety-critical systems, to get a reasonable 
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assessment of the reliability and find the optimal maintenance strategy. The limited literature that 

considers the effects of the operating conditions has key issues that we address three of them.  

First, the prognostics, reliability assessment, and maintenance optimization are mostly 

performed assuming the operating condition in the future is known and deterministic. This 

restrictive assumption leads to overestimation or underestimation of system reliability for the cases 

that the future operating condition evolves stochastically. Thus, it is necessary to model the 

evolution of dynamic operating conditions and capture its effects on the failure or degradation 

process of the system to get a reasonable estimation of system reliability. 

Second, some studies have made simple assumptions related to the statistical models of the 

degradation process, dynamic operating conditions, and the influence of operating conditions on 

the degradation and failure processes. It is challenging to obtain accurate and sufficient time-to-

failure data to build and validate these statistical models, especially for highly reliable systems. To 

model the changes of the dynamic operating conditions in future and incorporate them in an 

appropriate way, it is required to have a good understanding of their real changes in the future. 

Many studies use the continuous time Markov chain (CTMC) to model the progression of dynamic 

operating conditions. The estimation of the CTMC parameters needs sufficient historical data, and 

it is not appropriate for describing some practical conditions. Moreover, it is hard to model the 

effect of the operating condition on the system’s degradation or failure process for the cases where 

the effect may change during the life of the system. For example, a degraded battery compared to 

a new battery is more vulnerable to harsh temperatures. Therefore, modeling the influence of 

operating conditions without considering the current state of the system makes them inappropriate 

for real-world applications. 
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Third, the exact reliability evaluation of a phased mission system (PMS) is a time-

consuming and complicated task. A PMS is a system involving multiple, consecutive, and non-

overlapping phases of tasks during its mission, which abounds in complex technological systems 

such as aerospace systems, nuclear power plants, and high-performance computing systems. Due 

to the different operating conditions of each phase, the variation in system structure between 

phases, and the dependencies across different phases for each component of the system, the 

reliability evaluation of a PMS is a challenging problem. Although many approaches have been 

proposed for the reliability assessment of PMS, there is still the need for a robust and efficient 

algorithm relaxing the limitations of previous studies. 

1.3. Proposed Research  

This dissertation focuses on solving the forementioned challenges. Our research 

contributes to data-driven predictive analytics for effective prognostics, reliability assessment, and 

maintenance planning of complex engineering systems that are operating in the field. This 

dissertation is organized into eight chapters. Figure 1.1 provides an overview of two main research 

topics and the related chapters.  

CHAPTER 2: Degradation modeling literature review 

Degradation modeling is an effective approach for reliability assessment, remaining useful 

life prediction, maintenance planning, and prognostics and health management. In this chapter, we 

present a comprehensive review of existing data-driven degradation modeling approaches 

commonly used in engineering applications.  
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Figure 1.1: Overview of the research  

 

CHAPTER 3: Selective maintenance optimization for multi-state systems considering 

stochastically dependent components and stochastic imperfect maintenance actions 

In this chapter, we capture the S-dependency between interdependent components of a 

complex system through a continuous time Markov process with the transition rate depending on 

the state of system components. The key advantage of the proposed technique is that it considers 

stochastic interaction between components by capturing the effects of environmental/operational 

conditions and the state of non-critical components in the system. This technique helps get an 

accurate estimation of system reliability at the end of its mission. Then, we find the optimal 

maintenance strategy for complex systems considering stochastic imperfect maintenance actions 

along with the do-nothing and perfect maintenance actions. We formulate a selective maintenance 

optimization model with two objective functions to find robust solutions with higher reliability 

and reduced uncertainty. 
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CHAPTER 4: Predicting remaining useful life of a multi-component system based on instance-

based learning 

We propose a framework based on instance-based learning to predict 𝑅𝑈𝐿 of a complex 

system that establishing a specific model to capture true interactions between its components is 

hard or even impossible. To predict the 𝑅𝑈𝐿 of the operating system, we use the similarity between 

the degradation process of the operating system and the degradation process of the systems in the 

training set. The key advantage of this technique is that it can be used for highly complex systems 

with no need of having prior expertise on the system behavior and the S-dependency between 

components.  

CHAPTER 5: Selective maintenance optimization for multi-state systems operating in dynamic 

environments 

In this chapter, we incorporate time-varying operating conditions in the prognostics 

framework through a proportional hazards (PH) model with external covariates dependent on the 

operating condition and internal covariates dependent on the degradation state of the system. This 

technique allows incorporating the effect of time-varying operating conditions on the degradation 

rate of a system as well as the age and degradation state of the system to get reasonable estimation 

of the system reliability. We consider the fact that the influence of the operation condition on the 

degradation process depends on the current degradation state of the system. The proposed model 

is used in the selective maintenance optimization model to determine the best maintenance strategy 

of a multi-state series system.  

CHAPTER 6: Using LSTM neural network to predict remaining useful life of electrolytic 

capacitors in dynamic operating conditions 
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To overcome the challenge of predicting the 𝑅𝑈𝐿 of a complex system working in dynamic 

operating conditions, we propose a prognostic framework based on deep learning. This framework 

has two main steps, first identifying the degrading point and then developing the Long Short-Term 

Memory (LSTM) model to predict the 𝑅𝑈𝐿. This general framework can be used for many 

complex systems without the necessity of assuming any particular type of degradation process and, 

therefore, avoiding the requirement of establishing a specific link between model parameters and 

operating conditions. The effectiveness of the proposed framework is demonstrated by utilizing 

the degradation and temperature time series data of aluminum electrolytic capacitors. 

CHAPTER 7: Efficient algorithm for reliability evaluation of k-out-of-n PMS 

In this chapter, we propose an efficient algorithm for the reliability analysis of a PMS. The 

proposed recursive technique considers the dynamic of the system in each phase and the statistical 

dependence of components states across the phases, and also accounts for imperfect fault coverage 

for the components to get accurate reliability analysis.  

CHAPTER 8: Conclusion and future work  

This chapter summarizes the whole work and provides the future research direction.  

1.4. Statement of Authorship 

Most of the content of the chapters presented in this dissertation is based on the following 

journal and conference papers, which are published, accepted, or submitted for publication:  

• A. F. Shahraki, O. P. Yadav, and H. Liao, “A review on degradation modelling and 

its engineering applications,” published in International Journal of Performability 

Engineering, 2017. [Used in Chapter 2] 

• A. F. Shahraki, O. P. Yadav, and C. Vogiatzis, “Selective maintenance optimization 

for multi-state systems considering stochastically dependent components and 
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System Safety Journal, 2020. [Used in Chapter 3] 

• A. F. Shahraki, A. Roy, O. P. Yadav, and A. P. S. Rathore, “Predicting remaining 

useful life based on instance-based learning,” published in 2019 Annual Symposium 

on Reliability and Maintainability (RAMS). [Used in Chapter 4] 

• A. F. Shahraki and O. P. Yadav, “Selective Maintenance Optimization for Multi-

State Systems Operating in Dynamic Environments,” published in 2018 Annual 

Symposium on Reliability and Maintainability (RAMS). [Used in chapter 5] 

• A. F. Shahraki, S. Al-Dahidi, A. R. Taleqani, and O. P. Yadav, “Using LSTM neural 

network to predict remaining useful life of electrolytic capacitors in dynamic 

operating conditions,”published in Proceedings of the Institution of Mechanical 

Engineers, Part O: Journal of Risk and Reliability. [Used in Chapter 6] 

• A. F. Shahraki, S. Amari, and O. P. Yadav, “Efficient algorithm for reliability 

evaluation of k-out-f-n phased-mission systems considering the imperfect fault 

coverage”, 2022 ( submitted) [Used in Chapter 7] 
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2. LITERATURE REVIEW1 

Degradation modeling is an effective approach for reliability assessment, remaining useful 

life prediction, maintenance planning, and prognostics and health management. Degradation 

models are usually developed based on degradation data and/or prior understandings of the physics 

behind degradation processes of products or systems. Further, the effects of environmental or 

operational conditions on degradation processes and the knowledge about the dependency between 

degradation processes help improve the explanatory capabilities of degradation models. This 

chapter presents a comprehensive review of existing data-driven degradation modeling approaches 

commonly used in engineering applications.  

2.1. Introduction 

Degradation of a system is an inherent process influenced by internal and external factors 

including environmental and operating conditions. Degradation, such as damage accumulation 

over time, is usually an irreversible process leading to failure when the accumulated damage 

exceeds a natural or predetermined threshold level. For a critical system, such failures may cause 

severe losses. Therefore, it is imperative to understand and model the system’s degradation 

behavior for prediction and prevention of potential failures so that subsequent losses can be 

effectively avoided. For the past few decades, extensive research has been conducted in 

degradation modelling for reliability analysis and other applications.  

 

 

1 The present chapter is based on the following paper:  

A. F. Shahraki, O. P. Yadav, and H. Liao, “A review on degradation modelling and its 

engineering applications,” published in International Journal of Performability Engineering, 

2017.  

Contribution of Ameneh Forouzandeh Shahraki: review all research papers and drafting the 

paper. Contribution of Om Yadav and Haitao Liao: verification of the results and proofreading 

the draft paper.  
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Compared to failure time data, degradation data provide valuable information on product 

failure behavior for making quick reliability assessment and other logistic decisions. The 

characteristics of degradation data and the methods used for data collection play a significant role 

in selecting appropriate degradation models. Generally, such data come from laboratory tests, field 

applications and/or real-time condition monitoring data collected either at normal operating or at 

accelerated stress conditions. These data can be the direct measurements of degradation processes 

(e.g., crack growth, decrease in light intensity of light emitting diodes) or the measurements of 

other characteristics that are closely related to the product’s degradation process (e.g., vibration, 

change in output voltage, temperature).  

Sometimes complex systems may experience multiple degradation processes affected by 

randomly changing covariates, such as temperature, humidity, and voltage. So far, some research 

effort has been focused on capturing the interaction and dependency of degradation processes 

along with their influences on failure propagation, and on the impact of shocks that accelerate 

these failure processes. In a variety of engineering applications, more and many other complex 

situations must be dealt with. For a practitioner, it is critical to construct a proper degradation 

model that can capture the true degradation behavior of a product in the field.  

In recent years, degradation-based reliability analysis has gained momentum for getting 

some insights into product behavior and reducing the overall product development time. An 

increasing emphasis on accelerated degradation testing has created a need for further research on 

degradation modelling. Si et al. [12] focused their review on remaining useful life (RUL) 

estimation for a product. Their effort confined to statistical data-driven approaches that mostly rely 

on historical data. Statistical data-driven models are classified into stochastic process models, 

general path models, and others with a focus on stochastic models. Later, Zhang et al. [13] provided 
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a review on degradation model-based RUL estimation approaches for systems with heterogeneity. 

Because of the importance of degradation-based reliability analysis, Shahraki et al. [14] conducted 

a comprehensive review on the state-of-the-art of degradation modelling. The existing degradation 

modelling methods were classified into two broad categories: the data-driven and physics-of-

failure based models. Data-driven models are established using statistical fitting to the observed 

degradation data without considering degradation mechanisms. On the other hand, physics-based 

models capture the failure mechanisms or physical phenomena to build a mathematical description 

of the degradation process. This chapter covers data-driven approaches for modeling single 

degradation process and multiple degradation processes.  

2.2. Data-Driven Models for Single Degradation Process 

Data-driven models are becoming increasingly popular when it is difficult to capture and 

understand the physics behind a degradation process. These models can be classified into two 

subcategories: statistical models and artificial intelligence models. In the first subcategory, the 

general path and stochastic process models have been widely used. The artificial intelligence 

approaches, such as neural networks, have also been used in reliability estimation using 

degradation data. The following sub-sections provide more detailed discussion and recent 

advances in each of these subcategories.  

2.2.1. General Path Model 

In general statistical models for continuous degradation data, also called general path 

model, the degradation process is described as a function of time, possibly with a set of fixed-

effects parameters and a set of random-effects parameters. Lu and Meeker [14] presented a general 

nonlinear regression model to characterize the degradation path of a random population of units. 

The model can be represented as:  
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𝑦𝑖𝑗 = 𝐷𝑖𝑗 = 𝐷(𝑡𝑖𝑗; 𝜑, 𝜃𝑖) + 휀𝑖𝑗                                           (2.1) 

where 𝑦𝑖𝑗 represents the observed degradation, and 𝐷(. ) represents the  actual degradation of the 

𝑖𝑡ℎ unit at time (𝑡𝑖𝑗),  is the vector of fixed effect regression coefficients (common for all units), 

i is the vector of random-effect parameters representing characteristics of the 𝑖𝑡ℎ unit, and ij is 

associated random error of the 𝑖𝑡ℎ unit at time 𝑡𝑖𝑗 which is assumed to be normally distributed with 

𝑁(0,2).  

Several extensions of the general path model have been made by considering different 

types of statistical modelling approaches for different applications. For example, Freitas et al. [15] 

used a linear degradation path model to estimate the lifetime distribution of train wheels. They 

considered a single random parameter with lognormal, Weibull, and normal distributions. Yu [16] 

assumed a linear degradation path with a reciprocal Weibull-distributed degradation rate to 

determine the optimal design of an accelerated degradation test. Although the simplicity of linear 

random-effects model is an advantage, it might not be a good representative for the actual 

degradation path compared to a nonlinear random-effects model. Usually, nonlinear models may 

capture the degradation behavior better, and thus can provide better model fitting to the actual data. 

Bae and Kvam [17]  modelled the degradation path of highly reliable light display components as 

a nonlinear random- coefficient model, which allows for a non-monotonic degradation path to 

capture the burn-in characteristic of the component. Bae et al. [18] discussed additive and 

multiplicative degradation models to derive the lifetime distribution of degraded components. In 

the additive model, the random effects are added to the mean path of degradation, while in the 

multiplicative model, the random effects are multiplicative to the mean degradation.  

The general path models are widely used due to their simplicity, capability to model 

continuous processes and allow different variance-covariance structures of the response vector. 
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Nevertheless, sometimes these models might not well describe the actual degradation process 

because of oversimplification of reality. Further, general path models consider the inherent 

degradation to be deterministic and thus have difficulty in capturing the time-varying behavior of 

a product. Their inability to capture the temporal variability and the uncertainty inherent in the 

progression of deterioration over time limits their engineering applications [14].  

2.2.2. Wiener Processes 

Wiener process is also called Gaussian process or Brownian motion with drift. In general, 

a Wiener process can be expressed as [19]:  

W(t) = νΛ(t) + σB(Λ(t))                                                          (2.2) 

where ν is the drift parameter showing the rate of degradation, 𝜎 is the volatility parameter, 𝐵(. ) 

is the standard Brownian motion, and 𝛬(𝑡) is a monotone increasing function representing a 

general time scale. The process 𝑊(𝑡) is often used to represent system degradation and has the 

following properties: 

• 𝑊(0) = 0 almost certainly.  

• 𝑊(𝑡) is a continuous process having stationary and independent increments, i.e., 

𝛥𝑊(𝑡) = 𝑊(𝑡 + 𝛥𝑡) −𝑊(𝑡) is s-independent of 𝑊(𝑡), and Δ𝑊(𝑡)~𝑁(𝛽Λ(𝑡 +

Δ𝑡) − 𝛽Λ(𝑡), 𝜎2Λ(𝑡 + Δ𝑡) − 𝜎2Λ(𝑡)). 

Due to its useful mathematical properties and physical interpretations, the Wiener process 

has been extensively used for modeling degradation processes. When the mean of degradation is 

linearly increasing, the Wiener process with linear drift is used. Further, the distribution of the first 

passage time, i.e., the time when the degradation process first reaches the critical failure threshold, 

follows an inverse Gaussian distribution. For some nonlinear degradation processes, the mean 

degradation path can be linearized using appropriate transformation such as time-scale 
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transformation and log-transformation [20]. However, not all nonlinear degradation processes can 

be properly linearized. Therefore, nonlinear structures have been proposed to capture the dynamics 

of nonlinear degradation processes. Wang et al. [21] proposed a general degradation-modelling 

framework for hybrid deteriorating systems, which have both linear and nonlinear degradation 

components. Although Wiener processes have been used to model many degradation phenomena, 

they are not suitable for modelling monotonic degradation processes, such as wear or cumulative 

damage processes [14].  

2.2.3. Gamma Processes 

Abdel-Hameed [22] first suggested Gamma process as a useful model for degradation 

processes. It is appropriate to use Gamma process when the gradual damage is monotonically 

increasing or decreasing over time, such as fatigue, corrosion, crack growth, and corrosion of steel 

coatings. The basic Gamma process {𝑌(𝑡);  𝑡 ≥ 0} with shape function 𝜂(𝑡) > 0 and scale 

parameter 𝜇 > 0 is a continuous-time stochastic process with the following properties:  

• 𝑌(0) = 0 with certainty 

• 𝑌(𝑡) has independent non-negative increments, i.e.,  𝑌(𝑡 + u) − Y(u) and Y(s +

v) − Y(v) are independent for t + u >  u ≥  s + v >  v; 

•  𝑌(𝑡 + 𝑢) − 𝑌(𝑢)~𝐺𝑎𝑚𝑚𝑎(𝜂(𝑡 + 𝑢) − 𝜂(𝑢), 𝜇), where 𝜂(𝑡) is a monotone 

increasing function with 𝜂(0) = 0. 

Van Noortwijk [23] reviewed the application of Gamma process in maintenance, its 

statistical properties, and parameter estimation methods. Gamma process-based models can easily 

manage temporal variability in degradation process, while the unit-to-unit variability can be 

modelled by introducing random effects into the basic model.  
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The use of Gamma process for degradation modelling is getting popular as it has a physical 

interpretation, and its mathematical representations are straightforward. Moreover, the model 

considers the temporal variability of a degradation process. On the other hand, its Markov property, 

and the fact that it is strictly applicable to monotonic processes may restrict its application for 

some degradation processes [14].  

2.2.4. Inverse Gamma Processes 

The inverse Gaussian (𝐼𝐺) process has been used to model monotone degradation data 

when other processes do not fit the data well such as GaAs laser degradation data [24] and energy 

pipeline corrosion data [25]. The basic 𝐼𝐺 process {𝑌(𝑡);  𝑡 ≥  0} has the following properties:  

•  𝑌(0)  =  0 with certainty. 

•  𝑌(𝑡) has independent increments, i.e., 𝑌(𝑡2) − 𝑌(𝑡1) is independent of 𝑌(𝑡4) −

𝑌(t3) for 𝑡4 > 𝑡3 ≥  𝑡2 > 𝑡1 ≥ 0. 

•  Each increment follows an 𝐼𝐺 distribution, that is, 𝑌(𝑡)  −  𝑌(𝑠)~𝐼𝐺(𝜇(𝛬(𝑡)  −

 𝛬(𝑠)), 𝜆(𝛬(𝑡)  −  𝛬(𝑠))2) for 𝑡 > 𝑠 ≥ 0, where 𝛬 (𝑡) is nonnegative and monotone 

increasing function of time (𝛬 (0)  = 0).  

The 𝐼𝐺 probability density function 𝐼𝐺(𝜇Λ(t), 𝜆Λ(t)2) is defined by: 

𝑓𝐼𝐺(𝑦; 𝜇, 𝜆) = √
𝜆𝛬(𝑡)2

2𝛱𝑦3
𝑒𝑥𝑝 {

−𝜆

2𝑦
(
𝑦

𝜇
− 𝛬(𝑡))

2

}  𝑦, 𝜆 > 0 , 𝜇 ∈ 𝑅                    (2.3) 

where the process parameters, μ and λ, represent the degradation rate and degradation volatility, 

respectively. 

Recently, 𝐼𝐺 process has received more attention in modelling degradation data because of 

its mathematical properties and flexibility in dealing with random effects and covariates. Wang 

and Xu [24] proposed 𝐼𝐺 process to model the degradation data of GaAs lasers by incorporating 
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both the unit-to-unit variability and covariate information into the model. Later, Ye and Chen [26] 

developed two other random-effects models to make 𝐼𝐺 process more flexible than Gamma 

process in considering unit-to-unit variability. They also attempted to explain the physical meaning 

of 𝐼𝐺 process by presenting the relationship between the 𝐼𝐺 process and the compound Poisson 

process.  

There is an inverse relationship between Wiener and 𝐼𝐺 processes that allows many of 

Wiener process properties to be extended to the 𝐼𝐺 process. Moreover, the 𝐼𝐺 process is flexible 

for incorporating random effects and covariates in degradation data analysis. It is easier to 

determine the probability density function and cumulative distribution function of 𝑅𝑈𝐿 

analytically in an 𝐼𝐺 process model [14].  

2.2.5. Finite-State Degradation Models 

Unlike the Wiener process, Gamma process and Inverse Gaussian process models, a finite-

state Markov process is a stochastic process that evolves through a finite number of states. Due to 

the Markov property, the future state of the process is independent of past states given the current 

state. In Markovian-based degradation models, the transition probabilities (or rates) depend only 

on the states involved in the transition. In real-world applications, however, the transition 

probabilities (or rates) may also depend on other factors, such as the actual level of degradation, 

the time when the product reached the current state, the sojourn time, the total age of the system, 

and some covariates. Semi-Markovian models extend the application of Markovian-based models 

by incorporating the effects of these factors. Moghaddass and Zuo [27] and Moghaddass et al. [28] 

classified semi-Markov processes into four categories based on the type of transitions as shown in 

Figure 2.1.  
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Figure 2.1: Different categories of discrete-state space degradation models  

 

Discrete-time and continuous-time semi-Markov processes represent two classes of semi-

Markov processes. In homogeneous discrete-time and continuous-time semi-Markov processes, 

the time spent at the current state can affect the time-dependent transition rate (or the transition 

probability for a discrete-time process) between states [29]. In these models, however, the 

transition rates (or the transition probability for a discrete-time process) are independent of the age 

of the system. Therefore, these models are not applicable when the degradation process depends 

on both the sojourn time at each state and the total age of a system. On the other hand, 

nonhomogeneous discrete-time and continuous-time semi-Markov processes provide more general 

models that cover many other structures [28]. For example, the degradation transitions between 

states in a single system can follow non-identical structures and the transitions between states can 

depend on any combination of influential factors.  
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All the models depicted in Figure 2.1 are based on the assumption that the degradation 

process is directly observable. However, in many cases, the degradation level is not directly 

accessible due to the complexity of degradation process or nature of the product type. To deal with 

such cases, hidden Markov models (HMM) and hidden semi-Markov models (HSMM) have been 

developed. The HMM deals with two different stochastic processes: an unobservable degradation 

process and a measurable characteristic that is dependent on the actual degradation process. In 

HHMs, finding a stochastic relationship between the degradation process and the observation 

process is essential for condition monitoring and reliability analysis. HMMs have been used 

successfully in a wide range of applications.  

Despite the extensive use of Markovian-based models for degradation modelling, a few 

limitations restrict their wider applications. From a practical application point of view, defining 

the discrete degrading states and estimating corresponding transition probabilities or rates has been 

one of the biggest challenges [14].  

2.2.6. Other Models  

Artificial intelligence methods, such as neural networks and fuzzy logic, belong to another 

set of data-driven models for degradation modelling and prediction. A neural network model learns 

from given inputs in a way to produce the desired outcome. After learning from historical data, the 

network model can be used to predict system status. Gebraeel and Lawley [30] developed a neural 

network-based degradation model for computing the remaining life distributions of partially 

degraded components and updated those using in-situ condition monitoring signals. Malhi et al. 

[31] applied recurrent neural networks for long-term prediction of defect progression in machines. 

For the first time, Fink et al. [32] applied multilayer feed-forward neural networks with multi-

valued neurons to degradation modelling and reliability prediction. The main benefit of using 
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artificial neural networks is its ability to model complex multidimensional degradation signals, for 

which analytic models are difficult to obtain. However, the requirement for large amounts of 

training data limits the application of neural networks. Kan et al. [33] reviewed the application of 

artificial neural networks and discussed thoroughly their advantages and limitations.  

Another set of data-driven models uses fuzzy logic that maps an input data vector to a 

scalar output to handle non-linear, non-stationary, and complex system modelling. Zio and Di 

Maio [34] proposed fuzzy similarity analysis for estimating the 𝑅𝑈𝐿 of a system. Neuro-fuzzy 

systems, the combination of fuzzy logic and neural networks, have been used in many studies to 

take the advantage of both fuzzy logic and neural networks [35].  

2.3. Modeling Multiple Degradation Processes 

Failures of a complex engineering system may be caused by multiple degradation 

processes. As a result, it is important to consider multiple degradation processes simultaneously 

for system reliability assessment. Some of the earlier work on multiple degradation modelling 

assumed that the degradation measures are either independent or dependent with a multivariate 

normal distribution [36][37]. For example, Crk [36] assumed that system failure is governed by 

several independent mechanisms and presented an effective way to estimate the system’s 

reliability by monitoring each degradation measure. In practice, assuming independent degradation 

processes eases the modeling of multiple degradation processes, but it may not be realistic and can 

lead to poor or ineffective modelling of component and system reliability. To address this concern, 

Wang and Coit [37] proposed a multivariate degradation model based on a multivariate normal 

distribution. Recently, the use of copula in modelling dependent degradation measures has gained 

more attention. Pan and Balakrishnan [38] adopted a bivariate Birnbaum-Saunders distribution and 
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its marginal distributions to approximate the reliability function of a system with two Gamma 

degradation processes.  

Some researchers have attempted to model degradation processes of systems comprising 

of stochastically dependent components. The limited literature that considers stochastic 

dependency can be divided into two groups. In the first group, an external event or the failure of 

one component triggers the stochastic dependency between components. The triggering event can 

influence those affected components in three possible ways: leads to an immediate failure with a 

certain probability, increases degradation rate, or changes the degradation levels of remaining 

affected components [7].  

Another group of models focuses on scenarios where the degradation behavior of 

components is influenced by one another. To model this phenomenon, Bian and Gebraeel [10] 

considered that the degradation level of one component affects the degradation rate of other 

components in the system. They assumed that when the degradation signal of one component 

reaches a certain value, it triggers a change in the degradation rate of other interdependent 

components. Later, Bian and Gebraeel [9] extended their previous work by considering the fact 

that component interactions can occur on a continuous basis. They modelled multivariate 

component degradation signals using a linear system of stochastic differential equations. Similarly, 

Eryilmaz [39] considered two-component systems where degradation processes of the two multi-

state components follow a Markov process and modelled the dependence of the components using 

a copula. Recently, Dao and Zuo [40] considered a multistate series system with two types of 

stochastic dependency among components: the failure of a component can instantly cause 

complete failure of other components, and a component’s degradation affects the state and the 

degradation rate of components.  
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2.4. Summary 

This chapter presented a comprehensive review of data-driven degradation modelling 

methods. Different models for a single degradation process and the related work were provided 

for each of these categories. In addition, this review also included the methods for modelling 

multiple degradation processes. The modelling techniques developed so far need to be improved 

further to deal with more complex and hybrid systems. It is believed that there is a need to address 

the following research concerns.  

• Most of degradation models are developed based on several assumptions that 

simplify model formulation and reduce the computational complexity. Most of the 

current literature deals with a single degradation process. However, new hybrid 

technologies consisting of mechanical, electronic, software and several other 

elements result in more complex physical systems. These elements, sometimes 

miniaturized elements, of complex physical systems exhibit multiple degradation 

processes. To deal with multiple degradation processes, which could be dependent, 

in a complex system, more advanced stochastic models and statistical methods need 

to be developed with the help of the increasing capability of modern computational 

technology.  

• Engineering systems usually operate in time-varying operating conditions. The 

variation in operating conditions causes degradation processes to evolve in a complex 

manner. It is, therefore, important to develop loading-dependent degradation models 

that can capture the degradation behavior of the systems in response to the field 

operating conditions.  
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• The advancement in sensor technology has made it possible to simultaneously collect 

real-time data on multiple degradation processes. Such data could be collected from 

regions with different operating environments. The huge amount of data may be in 

different forms, such as time series or images. Those multi-dimensional data provide 

an excellent opportunity for future research on building more realistic degradation 

models for reliability prediction. This will require more refined analytical techniques 

to handle multi-dimensional data, and advanced data fusion techniques, such as 

multi-dimensional covariate analysis, noise reduction and Bayesian analysis.  

• New emerging research issues that need to be addressed are related to decision 

making in logistics. The analysis of real-time degradation data of a system in the field 

can facilitate 𝑅𝑈𝐿 prediction, real-time maintenance planning, and effective spare 

parts inventory management. To this end, more research is required to integrate 

degradation modelling into logistic decision-making strategies.  
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3. SELECTIVE MAINTENANCE OPTIMIZATION FOR MULTI-STATE SYSTEMS 

CONSIDERING STOCHASTICALLY DEPENDENT COMPONENTS AND 

STOCHASTIC IMPERFECT MAINTENANCE ACTIONS 2 

This chapter presents a selective maintenance optimization problem for complex systems 

composed of stochastically dependent components [41]. The components of a complex system 

degrade during mission time, and their degradation states vary from perfect functioning to 

complete failure states. The degradation rate of each component depends not only on its intrinsic 

degradation but also on the state of other dependent components of the system. The proposed 

approach captures the two-way interactions between components through system performance 

rates and uses Monte Carlo simulation to compute the reliability of the system in the next 

operational mission. Different maintenance actions such as do-nothing, perfect, and stochastic 

imperfect maintenance are considered during the maintenance break to improve the reliability of 

the system. The selective maintenance bi-optimization problem is modeled considering both the 

expected value and variance of the system reliability as objective functions. Time and budget are 

considered as constraints for finding the optimal maintenance strategy. Two illustrative examples 

are provided for a better understanding of the proposed approach and for demonstrating its 

effectiveness. The notations used in this chapter are given in the Table 3.1.  

 

 

 

 

2 The present chapter is based on the following paper:  

A.F. Shahraki, O. P. Yadav, and C. Vogiatzis, “Selective maintenance optimization for multi-

state systems considering stochastically dependent components and stochastic imperfect 

maintenance actions,”, in Reliability Engineering and System Safety Journal, 2020.  

Contribution of Ameneh Forouzandeh Shahraki: developing the mathematical models, analysis 

of the case study, discussion of the results, and drafting the paper. Contribution of Om Yadav 

and Chrysafis Vogiatzis,: verification of the results and proofreading the draft paper. 
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Table 3.1: Notations  

𝑎𝑖
(𝑙𝑖)

 Binary decision variable that is 1 if maintenance action with level 𝑙𝑖 performed 

on component 𝑖 

𝑐𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖) The cost of performing maintenance action with level li on component 𝑖 

𝐶0 Available maintenance budget 

𝐶𝑀  Total maintenance cost 

𝐷 Demand level 

𝑔𝑖(𝑡) Performance rate of component 𝑖 at time 𝑡 

𝑔𝑖,𝑘 Performance rate of component 𝑖 in state 𝑘 

𝐺𝐾 System performance rate in its perfect state 

𝐺𝑠(𝑡) System performance rate at time 𝑡 

𝐼 Index of the components, 𝑖 = 1,2,… , 𝑁 

𝑗 Index of the possible system states,  𝑗 = 1,2,… . , 2𝑀 

𝑘 Index of state of a component or system 𝑘 = 𝐾,𝐾 − 1,… , 0 

𝐾 + 1 Number of states for each component (or system) 

𝑙𝑖 Maintenance level of component 𝑖 

𝜆𝑖,𝑘 Intrinsic transition rate (degradation rate) of component 𝑖 from state 𝑘 to 

state 𝑘 − 1 

𝜆𝑖,𝑘
𝑚 (𝑡) Modified transition rate (degradation rate) of component 𝑖 from state 𝑘 to 

state 𝑘 − 1 

𝑀 Number of components with imperfect maintenance action 

𝑛𝐼(𝑡) Number of influencing components up to time 𝑡 

𝑁 Number of components in the system 

𝑁𝑈 Number of different 𝛿 values considered associated with the S-dependence 

𝑁𝑀𝐶𝑆 Number of MCS runs 

𝑃𝑖
𝐼𝑀 Probability of success for imperfect maintenance action performed on 

component 𝑖 

𝑃𝑖
𝑃𝑀 Probability of success for perfect maintenance action performed on component 

𝑖 

𝑃𝑘(𝑡) Probability that the multi-state system is in state 𝑘 at time 𝑡 

𝑃𝑠1,𝑠2,…,𝑠𝑁(𝑡) Probability that the state of each component 𝑖 at time 𝑡 is 𝑠𝑖 

𝑅𝑠(𝑡, 𝐷) System reliability at time t with demand level 𝐷 

𝑠𝑖(𝑡) State of component 𝑖 at time 𝑡,𝑠𝑖(𝑡) ∈ {0,1,… , 𝐾} 

𝑆𝑠(𝑡) State of the system at time 𝑡 

𝑡𝑖(𝑦𝑖 , 𝑦𝑖
+ 𝑙𝑖) 

Time of performing maintenance action with level 𝑙𝑖 on component 𝑖 

𝑇0 Available maintenance time 

𝑇𝑀 Total maintenance time 



 

28 

𝑋 State of the system at the beginning of the next mission 

𝑥𝑖 State of component 𝑖 at the beginning of the next mission 

𝑌 State of the system at the beginning of the maintenance break 

𝑦𝑖 State of component 𝑖 at the beginning of the maintenance break 

𝑧𝑖 Number of imperfect maintenance actions performed on component 𝑖 

𝜏 Operational mission duration 

�̅� Mean of system reliability  

𝜎𝑅
2 Variance of system reliability 

 

3.1. Introduction 

Recent technological advancements have resulted in the development of more complex, 

hybrid systems that can serve multiple functionalities. These complex systems consist of several 

sub-systems and components, and each of these components may be subject to one or more 

degradation processes. Assessing the reliability and planning the maintenance of such convoluted 

systems require a more realistic evaluation of the degradation states of its components and of the 

propagation of degradation processes in the future [14]. The existing literature on maintenance 

optimization presents several approaches that have considered such complex systems for reliability 

analysis [42]. Most of the approaches presented assume that system components are independent 

for two reasons. Primarily, this renders the problem easier to model and enables us to solve it; 

secondly, dependency is not a critical factor for some applications of interest [43][44]. However, 

in a complex and hybrid system, components can be viewed as inter-related and hence, it is 

important to consider component dependency when modeling the system degradation and plan for 

maintenance actions.  

Nicolai and Dekker [7] classify the dependencies among components as economic, 

structural, and stochastic dependence (S-dependence). In economic dependence, the maintenance 

cost can be reduced by performing maintenance on multiple components jointly instead of 

separately. Structural dependence assumes that certain components structurally form a unit, and 
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hence maintenance of a component in a unit implies maintenance of other components as well. 

Finally, S-dependence refers to system interaction where the degradation or failure process of one 

component is influenced by the degradation state of one or more inter-related and/or neighboring 

components of the system. Several researchers have considered S-dependence between 

components with either two possible degradation states (binary states) [45] or infinite degradation 

states (continuous degradation) [10][46][47] However, there has not been substantial progress to 

investigate S-dependence among multi-state components considering more than two but finite 

number of possible degradation states of each component [40].  

Many complex systems consist of multiple components structured in series, such as aircraft 

engines, wind turbines, and power generation systems, to perform consecutive missions. During 

the time interval between two consecutive missions, maintenance actions can be carried out to 

improve the probability of successfully executing the next mission. Since there are limited 

resources for completing maintenance activities, it is important to decide on the maintenance 

strategy (e.g., the subset of components to maintain and the level of maintenance actions) 

considering the system requirements. This type of maintenance, referred to as selective 

maintenance, has received increasing attention in the literature over the years [40][48][48][49]. 

Most of the earlier selective maintenance studies have proposed formulating it as an optimization 

problem under the assumption that all components are stochastically independent. However, most 

of the components in many complex engineering systems, especially in mechanical and electronic 

systems, do influence the degradation behavior of other components. For example, the degradation 

of a component in an electronics system may cause a significant increase in the temperature that 

in turn might increase the degradation rates of other temperature-sensitive components [50][51], 

which may or may not be directly connected. Similarly in power grids systems, the degradation of 
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generators or transformers in a subnetwork may increase the demand on other elements of the 

network causing increase in their loading profiles and in turn accelerating their degradation 

processes [10]. 

The performance of a multi-state system (MSS) depends on the state of its components, 

which are gradually degrading with usage time. When a component degrades, its state can be 

anywhere between perfect functioning and complete failure states. We can perform two different 

maintenance actions on each component during the maintenance break besides the do-nothing 

action. A perfect maintenance action entirely improves the state of a component, restoring its state 

to the perfect state. On the other hand, imperfect maintenance actions generally restore the state of 

components to any state between “as good as new” and “as bad as current”. Since imperfect 

maintenance actions do not necessarily achieve a perfect state, the maintenance cost will be lower 

as compared to a perfect action. However, the consideration of imperfect maintenance actions adds 

to the complexity of the selective maintenance optimization problem. Further, most of the existing 

research in selective maintenance setting has considered the quality of imperfect maintenance 

actions as deterministic [40]. To the best of our knowledge, there has not been a study on selective 

maintenance of MSS composed of multi-state components considering stochastic imperfect 

maintenance. It is exactly the literature gap that we aim to address while formulating a selective 

maintenance model for MSS. 

This chapter studies the selective maintenance optimization problem considering the S-

dependency between multi-state components of a series system. Specifically, we generalize the 

approach presented in Dao and Zuo [40], which considers that the performance rate of each 

component only affects the performance rate and degradation rate of subsequent components in 

the series structure. They assumed that there exist only one-way interactions between directly 
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connected components, i.e., a component is only affecting subsequent components, and a 

component can only be affected from its predecessors. However, there exist practical scenarios 

where the degradation state of a component may affect the degradation rate of its neighboring 

components, and may in turn be affected by the state of the other components, even when they are 

not in direct connection. For example, wear on a pulley may impact the rate of wear of a belt and 

vice versa. Moreover, there are many other factors such as the state of noncritical components and 

environmental/operational conditions that may affect the interaction as well. We, therefore, model 

the two-way interactions between multi-state components and capture the effects of unknown 

factors such as failure of non-critical components and environmental conditions on the degradation 

rate. This chapter also considers stochastic imperfect maintenance actions to capture uncertainty 

in the outcome of maintenance actions and its impact on MSS reliability in the next mission. The 

outcome of imperfect maintenance actions will be considered as a random variable with two 

possible states: success and not success. The uncertainty in the outcome of imperfect maintenance 

action is modeled as a function of the number of imperfect maintenance actions performed earlier, 

as well as the levels of maintenance actions carried out. In this way, we use the information of 

maintenance actions performed in the previous missions to make the best decision. Because of the 

uncertainty in the outcome of all imperfect maintenance actions, at the end of the maintenance 

break the system could be in a series of different possible states with certain respective 

probabilities. To further minimize the uncertainty in system reliability, we treat the variability in 

system reliability as a second objective in our selective maintenance optimization model. A 

nonlinear selective maintenance optimization model is, then, formulated to maximize the system 

reliability and minimize the variability (uncertainty) in system reliability in the next mission 

subject to maintenance time and cost constraints. The decision variables are the level of 
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maintenance actions for selected components. The overall contributions in this chapter can be 

summarized in the following highlights: 

• The proposed approach captures the S-dependence between components in a 

selective maintenance setting and models the two-way interactions as a function of 

the system performance rate and the number of influencing components. It also 

models the effects of unknown factors such as the state of non-critical components 

on the interaction by incorporating random effects.   

• Along with the do-nothing and perfect maintenance actions, the proposed framework 

considers stochastic imperfect maintenance actions for MSS and models their 

probability of success as a function of the number of imperfect maintenance actions 

performed earlier. 

• Finally, a selective maintenance optimization model is formulated considering a 

system reliability requirement and minimizing variability of system reliability as two 

objective functions to find robust solutions with higher reliability and reduced 

uncertainty. 

3.2. Relevant Literature 

The topic of selective maintenance for binary state system (BSS) considering a series-

parallel system was first discussed by Rice et al. [52]. While considering two maintenance actions 

-- do-nothing or replace the failed component -- at each maintenance break, the authors developed 

a nonlinear selective maintenance optimization model to maximize system reliability in the next 

mission subject to a limited maintenance time. Cassady et al. [48] extended this work by relaxing 

the assumption of identical components and added maintenance cost as another constraint of the 

problem. The authors formulated three different selective maintenance models, namely, 
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maximizing system reliability subject to both time and cost constraints, minimizing system repair 

costs subject to time and reliability requirement constraints, and minimizing total repair time 

subject to both cost and reliability requirement constraints. Cassady et al. [53] further studied the 

selective maintenance problem in a series-parallel system in which the lifetime of components 

follows a Weibull distribution. The authors considered different maintenance actions, such as 

replacement and minimal repair of failed components, and preventive replacement of surviving 

components. The optimization problem considered was like the one proposed by Rice et al. [30], 

where reliability maximization was considered as the objective function and maintenance time was 

treated as a constraint. Pandey et al.[54] also extended earlier work on selective maintenance of 

BSS by considering imperfect repairs as another available maintenance actions and showed that 

system reliability could be improved by performing imperfect maintenance actions.  

Further, with the increasing complexity of many engineering systems, research interest has 

shifted from binary state to multi-state systems (MSS), which led to the proposal of several 

approaches for selective maintenance in MSS. Chen et al. [55] proposed the selective maintenance 

approach for a multi-state series-parallel system, where replacing the failed component with a new 

one was the only maintenance action. They developed an optimization model to minimize the total 

cost of maintenance activities subject to a minimum system reliability requirement. Liu and Huang 

[56] investigated MSS where the system consisting of binary state components functions at several 

output performance levels. They considered imperfect maintenance action as another maintenance 

action and used the age reduction coefficient approach to formulate the improvement after 

imperfect maintenance action. Recently, Khatab and Aghessaf [57] studied the selective 

maintenance problem for a series-parallel system composed of binary state components when the 

quality of the imperfect maintenance actions is stochastic. They presented a stochastic age 
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reduction coefficient, which follows Beta distribution, to describe the maintenance improvement. 

Authors only considered binary state component assuming its age reduction coefficient is 

independent of the pervious imperfect maintenance actions performed on the component. 

However, in many real-world cases, the capability of improving the components will diminish 

with the number of imperfect maintenance actions performed in the previous missions. Moreover, 

system components continue to degrade with age and usage time and, hence, are expected to go 

through more than two states. Pandey et al. [58] extended selective maintenance to a MSS with 

multi-state components and proposed a generalized maintenance model considering deterministic 

imperfect maintenance actions along with the replacement and do-nothing actions. The authors 

formulated an optimization problem to achieve maximum system reliability during the next 

mission subject to limited maintenance resources. The components were assumed to be 

independent with constant transition rates between the component’s states.  

More recently, there have been studies on selective maintenance that are considering 

different forms of dependencies. For example, Dao et al. [59] proposed a selective maintenance 

model for a multi-state series-parallel system with identical and independent components with 

economic dependence. The authors adjusted repair cost and repair time for each of the components 

considering two types of economic dependency between multi-state components based on the 

shared -setting up and the advantage of repairing multiple identical components in each subsystem 

of the multi-state series-parallel system. Dao and Zuo [60] developed a selective maintenance 

optimization model for MSS, considering structural and economic dependencies with the goal of 

maximizing the system reliability. The authors calculated the total maintenance time and cost by 

adding up the maintenance time and cost of each component as well as the system disassembly 

time and cost, while subtracting the time and cost savings gained by simultaneously performing 
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maintenance actions on multiple components. Considering S-dependence between system 

components when deciding on a selective maintenance policy has been attempted in recent years. 

More specifically, Maaroufi et al. [61] investigated a selective maintenance model for BSS 

considering that failure of a component leads to the immediate failure of other neighboring or 

functionally related components. In their work, the authors used a fault tree method to analyze the 

dependence between components and evaluate the overall system reliability. Dao and Zuo [40] 

studied selective maintenance for a MSS taking into account two types of S-dependencies: 

immediate failure dependence (Type 1) and gradual degradation dependence (Type 2). The authors 

developed a selective maintenance optimization model for MSS to maximize the total system 

profit, considering the required reliability and the maintenance time as constraints. However, in 

their work, the authors made some assumptions that limit the broader application of the 

methodology. These assumptions include the limitation that only direct connections between 

components lead to S-dependence, the existence of only one-way interactions between 

components, and that the state of each component only affects the state and degradation rate of 

subsequent components in the series structure.  

In the proposed work, we extend the work of [40] by focusing on two-way interactions 

between multi-state components of the system even when they do not necessarily share a direct 

connection. Our work also models the effects of unknown factors on the interaction between 

components. In particular, this chapter presents a general selective maintenance model for MSS 

having S-dependent components and considers the influence of stochastic imperfect maintenance 

actions. These actions are not deterministic, but instead, have a probability of success which 

depends on previous maintenance actions performed on the components as well as the levels of 

maintenance actions carried out. 
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3.3. The System Model for S-Dependent Components 

In this section, we describe the multi-state system model we use. More specifically, we 

discuss the degradation model and how its reliability is derived.  

3.3.1. Degradation Model for MSS 

In this work, we focus on a multi-state system that consists of 𝑁 multi-state components in 

a series structure, which represents many real-life applications. Consider each component 𝑖 (𝑖 =

1,2, . . , 𝑁) has 𝐾 + 1 different states, each with different performance rate, 𝑔𝑘  (𝑘 = 0,1,… . , 𝐾). 

Using our notation, state 𝐾 is the perfect functioning state, state 0 is the complete failure state, and 

all states 𝑘 such that 0 < 𝑘 < 𝐾 are intermediate states for each component. Component 

degradation is assumed to follow a continuous time Markov process, with transition times between 

component states following an exponential distribution. It is also considered that system 

components degrade gradually, i.e., a component with current state 𝑘 must visit state 𝑘 − 1 before 

arriving at state 𝑘 − 2. A state transition diagram of a multi-state component is shown in Figure 

3.1. The parameter 𝜆𝑖,𝑘 is the intrinsic degradation or transition rate of component 𝑖 from state 𝑘 

to its immediately lower state, 𝑘 − 1: this parameter can be determined from historical data and 

expert elicitation. 

 
Figure 3.1: The state transition diagram of a multi-state component 

 

In a series system, each component is critical for the system performance, and failure of a 

single component can lead to complete system failure. Therefore, the state of the system at time 𝑡, 

denoted by 𝑆𝑠(𝑡), is defined by the state of the most degraded component as:  

𝑆𝑠(𝑡) = 𝑚𝑖𝑛{𝑠1(𝑡), 𝑠2(𝑡), … . , 𝑠𝑁(𝑡)}                                       (3.1) 

λi,1 λ i,2 λi,K-1 λi,K 

K K-1 1 0 … 
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In our proposed model, we consider S-dependencies between components. Specifically, if 

a component degrades to a lower state, it may influence the degradation rates of other neighboring 

and/or functionally inter-related components. Initially, when all components are at the perfect 

functioning state and there is no interaction between components, all of them degrade at their 

intrinsic degradation rates. However, when a component degrades to a lower state, it may 

deteriorate the state of the system, which in turn can affect the degradation rates of the remaining 

components.  

We define function 𝑓(∙) to capture the S-dependence between all correlated components 

of the system. We denote the modified degradation or state transition rate of component 𝑖 (𝑖 =

1,2, . . , 𝑁) from state 𝑘 to 𝑘 − 1 at time t as 𝜆𝑖,𝑘
𝑚 (𝑡), and can be expressed as:  

λ𝑖,𝑘
𝑚 (𝑡) =  λ𝑖,𝑘 ∙ 𝑓(𝐺𝑠(𝑡), 𝑛𝐼(𝑡), 𝛿), 𝑘 = 𝐾, 𝐾 − 1, . . . ,1                               (3.2) 

The modified degradation rate λ𝑖,𝑘
𝑚 (𝑡) consists of two elements: the intrinsic degradation 

rate 𝜆𝑖,𝑘, and the interaction effect on degradation rate 𝑓(∙) caused by other degrading components. 

We note that 𝑓(∙) is a function of the system performance rate 𝐺𝑠(𝑡) at time 𝑡 (𝐺𝑠(𝑡) =

min{𝑔1(𝑡), 𝑔2(𝑡), … , 𝑔𝑁(𝑡): 𝑔𝑖(𝑡) = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖} ), as well as the 

number of influencing components 𝑛𝐼(𝑡) transitioning to a lower state at time 𝑡. Further, the 

interaction effect is stochastic in nature, and is influenced by several other factors such as system 

environmental/operational conditions, including the state of non-critical components in the system. 

Hence, we include a parameter 𝛿 to capture the uncertainty caused by random variations in these 

factors. We assume that 𝛿 follows a normal distribution with a mean of zero and a standard 

deviation of σ. Since we assume that a random variation (uncertainty) caused by these factors lead 

to an increase in the degradation rates of the affected components, we only consider the absolute 
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value of 𝛿 (|𝛿|). Based on these considerations, the term 𝑓(∙) in Equation (3.2) can be expressed 

as: 

𝑓(𝐺𝑠(𝑡), 𝑛𝐼(𝑡), 𝛿) = (
𝐺𝐾

𝐺𝑠(𝑡)
+ |𝛿|)

𝑛𝐼(𝑡)/𝑁
 , 𝐺𝑠(𝑡) ≠ 0 and  𝑓(∙) ≥ 1                (3.3) 

When all components are in the perfect state, i.e., 𝑛𝐼(𝑡) = 0 and 𝐺𝑠(𝑡) = 𝐺𝐾, the value of 

𝑓(∙) is equal to 1, and λ𝑖,𝑘
𝑚 (𝑡) = λ𝑖,𝑘. When the system degrades to a lower state at time 𝑡 (𝐺𝑠(𝑡) <

𝐺𝐾) and the number of influencing components increases, the value of 𝑓(∙) will be greater than 1 

causing λ𝑖,𝑘
𝑚 (𝑡) > λ𝑖,𝑘. 

3.3.2. Reliability of MSS with S-Dependent Components 

After modeling the degradation rates of multi-state components, this subsection discusses 

the reliability of the MSS in the next mission and how it can be evaluated when considering the 

degradation of its S-dependent components. We define the system reliability as the probability that 

the system successfully executes the next mission of duration 𝜏. In other words, we associate the 

reliability with the probability that the system has not reached to a state with performance rate less 

than a specified demand level 𝐷. Therefore, the reliability of the MSS at time t is defined as: 

𝑅𝑠(𝑡, 𝐷) = 𝑃𝑟{𝐺𝑠(𝑡) ≥ 𝐷}                                                   (3.4) 

The system reliability can then be evaluated as the summation of probabilities of all 

acceptable states of the system: 

𝑅𝑠(𝑡, 𝐷) = ∑ [𝑃𝑘(𝑡)
𝐾
𝑘=0 ∙ 𝐼(𝐺𝑠(𝑡) ≥ 𝐷)],                                          (3.5) 

where 𝑃𝑘(𝑡) is the probability that the MSS is in state 𝑘 at time 𝑡 and 𝐼 is an indicator function 

with a value of 1, when the performance rate of the system is higher than the demand level (𝐺𝑠(𝑡) ≥

𝐷), and 0, in any other case. The states with a zero value at the indicator function can be regarded 

as system failure. The system state probability at time 𝑡 is given as:  

𝑃𝑘(𝑡) = 𝑃𝑟{𝑆𝑠(𝑡) = 𝑘} = ∑ 𝑃𝑠1,𝑠2,…,𝑠𝑁(𝑡)            𝑚𝑖𝑛{𝑠𝑖}=𝑘                       (3.6) 
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where 𝑃𝑠1,𝑠2,…,𝑠𝑁(𝑡) is the probability that the state of each component 𝑖(= 1 , 2,… ,𝑁) at time 𝑡 is 

𝑠𝑖. The state of the system at time 𝑡 is 𝑘, if and only if the state of at least one component is 𝑘 and 

the state of the other components is k or higher than 𝑘.  

The state probabilities of each component, 𝑃𝑠1,𝑠2,…,𝑠𝑁(𝑡), can be computed by solving the 

Chapman–Kolmogorov system of differential equations, following the paradigm in [62]. Since the 

transition rates are not deterministic because of stochastic interaction effect between degrading 

components (𝛿≠0), the method in [40] is not applicable to determine the state probabilities in 

Equation (3.6). Hence, to capture the stochastic interaction effects, we use two loop Monte Carlo 

simulation (𝑀𝐶𝑆) approach to estimate the system reliability. For this purpose, a large sample of 

the system life history is generated, and the estimated system reliability at time t is expressed as 

the fraction of times the system is functional at the end of the mission. We carry out 𝑁𝑈 iterations 

of 𝑀𝐶𝑆 and at each time, we randomly select 𝛿~𝑁(0, 𝜎2) value to reflect the uncertainty 

associated with the S-dependence between components. For each generated 𝛿, the system 

reliability is estimated using 𝑀𝐶𝑆 with 𝑁𝑀𝐶𝑆 runs, as discussed in the following paragraphs.   

The system state at time 𝑡 is shown as 𝑆𝑠(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡),… , 𝑠𝑁(𝑡)). To compute the 

probability of the system transition from its current state to the next state, the mission time is 

divided into small time intervals 𝛥𝑡. This is a common issue with time interval selection, and we 

must choose 𝛥𝑡 to be as small as possible so as to increase the accuracy of calculations. Then, at 

the end of each time interval 𝑡 + 𝛥𝑡, the system can be in any one of the 𝑁 + 1 states given the 

current state of the system 𝑆𝑠(𝑡) = (𝑠1, 𝑠2, … . , 𝑠𝑁). Figure 3.2 illustrates these 𝑁 + 1 different 

states that system can occupy at the end of each time interval.  
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Figure 3.2: The state transition diagram of a multi-state component 

 

In a continuous time Markov chain, the probability that the states of two components 

change simultaneously at the same time is zero [40]. Therefore, at each small time interval 𝛥𝑡, at 

most the state of one component will change, which can be illustrated as:  

𝑃𝑟{𝑠1(t + Δt) = 𝑠1, 𝑠2(t + Δt) = 𝑠2, … , 𝑠𝑁(t + Δt) = 𝑠𝑁  |𝑆𝑠(𝑡)}

+ 𝑃𝑟{𝑠1(t + Δt) = 𝑠1 − 1, 𝑠2(t + Δt) = 𝑠2, … , 𝑠𝑁(t + Δt) = 𝑠𝑁  |𝑆𝑠(𝑡)}

+ 𝑃𝑟{𝑠1(t + Δt) = 𝑠1, 𝑠2(t + Δt) = 𝑠2 − 1,… , 𝑠𝑁(t + Δt) = 𝑠𝑁  |𝑆𝑠(𝑡)} +⋯

+ 𝑃𝑟{𝑠1(t + Δt) = 𝑠1, 𝑠2(t + Δt) = 𝑠2, … , 𝑠𝑁(t + Δt) = 𝑠𝑁 − 1 |𝑆𝑠(𝑡)} = 1 

(3.7) 

where 𝑠𝑖(𝑡) and 𝑆𝑠(𝑡) represent the state of component 𝑖 and the system at time 𝑡, respectively.  

We can also assume that using a small enough 𝛥𝑡 results in the transition rates of all 

components being independent and constant during 𝛥𝑡. Therefore, the probability that the 

transition of component 𝑖 (𝑖 = 1,2, . . , 𝑁) from its current state 𝑠𝑖 to state 𝑠𝑖 − 1 does not occur in 

the next time interval 𝛥𝑡 can be approximated by: 

𝑝𝑖 = 𝑃𝑟{𝑠𝑖(t + Δt) = 𝑠𝑖|𝑠𝑖(t) = 𝑠𝑖} ≈ 𝑒
−λ𝑖,𝑠𝑖

𝑚 (𝑡)∗Δt
                        (3.8) 

We model the transition of the component 𝑖 at each time interval generating a random 

number 𝑈 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1). If 𝑈 is greater than 𝑝𝑖, then a transition occurs during this small 

time interval and alters the state of component 𝑖 from its current state, 𝑠𝑖, to state 𝑠𝑖 − 1. When the 

state of each component changes, it may influence the degradation rates of the remaining 

… 

λ𝑁,𝑠𝑁
𝑚  

λ2,𝑠2
𝑚  

λ1,𝑠1
𝑚  
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components. To capture the interaction effects between components after each transition, we 

determine the state of the system and the number of influencing components to update the 

interaction effect 𝑓(∙) and the transition rates of all components, as per Equation (3.2) and Equation 

(3.3). We then use these updated transition rates in Equation (3.8) to compute the transition 

probabilities of each component for the next time interval. The simulation stops when either time 

reaches the end of the mission, or the performance rate of the system falls below the demand level 

𝐷. We run each simulation for 𝑁𝑀𝐶𝑆 times and eventually calculate the reliability of the system 

given that the state of system at the beginning of the next mission is 𝑆𝑠(0) =

(𝑠1(0), 𝑠2(0),… , 𝑠𝑁(0) = 𝑆 as:  

𝑅𝑆
𝑢|𝑆 = 1 −

𝑐𝑜𝑢𝑛𝑡

𝑁𝑀𝐶𝑆
    , u = 1, 2, … , 𝑁𝑈                                              (3.9) 

where count represents the number of times that system failed in 𝑁𝑀𝐶𝑆  iterations of 𝑀𝐶𝑆. As 

noted, this 𝑀𝐶𝑆 process is performed 𝑁𝑈 times, and finally, the expected system reliability and its 

variability can be calculated as the following estimates:    

𝐸(𝑅𝑆|𝑆) =̇ ∑ 𝑅𝑆
𝑢|𝑆

𝑁𝑈
𝑢=1

𝑁𝑈
                                                         (3.10) 

𝑉𝑎𝑟 (𝑅𝑆|𝑆) =
1

𝑁𝑈
∑ (𝑅𝑆

𝑢|𝑆 − 𝐸(𝑅𝑆|𝑆))
2𝑁𝑈

𝑢=1                                     (3.11) 

3.4. Selective Maintenance Optimization Problem Considering Stochastic Imperfect 

Maintenance 

As noted earlier, any given complex system is expected to work for consecutive missions 

of duration 𝜏. This expectation essentially enforces carrying out all maintenance actions within the 

break between two consecutive missions to keep the system ready for next mission. However, 

maintenance resources (time, budget, and others) are limited and, hence, it is difficult to perform 

all desired maintenance actions on all the components with given resources. Therefore, it is 
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important to determine the components to be maintained as well as the level of the maintenance 

actions (𝑙𝑙) required for satisfying the mission requirements. In fact, in our work, the goal is to 

determine the maintenance action for each component in order to bring the system back to state 

𝑋 = [𝑥1, 𝑥2, . . , 𝑥𝑁] at the beginning of the 𝑚 + 1𝑡ℎmission, given the state of the system at the end 

of 𝑚𝑡ℎ mission is known and denoted as 𝑌 = [𝑦1, 𝑦2, . . , 𝑦𝑁]. This is pictorially shown in Figure 

3.3. We can now define the decision variables  𝑎𝑖
(𝑙𝑖) of the optimization problem as: 

𝑎𝑖
(𝑙𝑖) = {

1, if maintenance action with level 𝑙𝑖 performed on components 𝑖
0, otherwise                                                                                                     

      (3.12) 

Since the outcome of an imperfect maintenance action is considered stochastic, the system 

at the end of the maintenance break can be in several different possible states with certain 

probabilities. This, in turn, influences the reliability of the system at the end of the next mission. 

Consequently, it is necessary to take into consideration the variance of system reliability as a 

second objective function, leading to simultaneously maximizing the expected system reliability 

while minimizing the variance of the system reliability. Detailed explanations on the expected 

value and the variance of the system reliability, and the optimization model considering stochastic 

imperfect maintenance are presented in the following subsections.  

 
Figure 3.3: Two successive missions and the maintenance break between them. 
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3.4.1. Maintenance Actions and Resources 

As soon as the system enters its maintenance break, multiple maintenance actions can be 

performed on each component, including do-nothing, replacement with new component as 

corrective or preventive maintenance action, and an imperfect maintenance action. The state 𝑥𝑖 of 

the component 𝑖 (𝑖 = 1,2, . . , 𝑁) after each maintenance action could be anywhere between its 

current state 𝑦𝑖 and the perfect state 𝐾, which is represented as: 

𝑥𝑖 = {

𝑦𝑖                          if 𝑎𝑖
(0)
= 1                                    

𝐾                           if 𝑎𝑖
(𝐾−𝑦𝑖)  = 1                               

y𝑖 ≤ 𝑥𝑖 < K     if  𝑎𝑖
(𝑙𝑖)  = 1  , 0 < 𝑙𝑖 <   𝐾 − 𝑦𝑖 

                             (3.13) 

In Equation (3.13), 𝑎𝑖
(0)
= 1 implies that component i is not selected for maintenance and, 

hence, the state of the component does not change. The perfect preventive maintenance action or 

replacement action is represented by 𝑎𝑖
(𝐾−𝑦𝑖) = 1 and restores the component health condition to 

its perfect state, rendering it as good as new. We consider the result of the perfect maintenance 

action is deterministic, i.e., the state of each component after the maintenance is as good as new 

with probability 1 (𝑃𝑃𝑀 = 1). However, we note here that the cost of perfect maintenance actions 

is often high. 

On the other hand, imperfect maintenance actions change the condition of components to 

a state that can be anywhere between the as good as new state and the as bad as current states. The 

cost of imperfect maintenance is typically lower compared to a perfect maintenance action. As the 

state of each component after imperfect maintenance depends on several factors such as the quality 

of the maintenance action, the current condition of the component, and the availability of 

maintenance resources; the outcome of imperfect maintenance action can be considered stochastic. 

Hence, after performing an imperfect maintenance action on component 𝑖 with a specific 
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maintenance level 𝑙𝑖 (𝑎𝑖
𝑙𝑖  = 1), the component can acquire a new state 𝑥𝑖 = 𝑦𝑖 + 𝑙𝑖 with 

probability 𝑃𝑖
𝐼𝑀, or no changes in the current state 𝑥𝑖 = 𝑦𝑖 with probability 1 − 𝑃𝑖

𝐼𝑀 if the imperfect 

action was not effective. For example, if the current state of a component is 𝑦 = 1 and its perfect 

state is 𝐾 = 4, then that component can be maintained to three possible states 𝑥 = 2, 3, or 4 with 

different maintenance costs. If we select to perform an imperfect maintenance action with level 

𝑙 = 1(or 2), then the new state would be 𝑥 = 2 (or 3) with probability 𝑃𝐼𝑀(𝑜𝑟 �́�𝐼𝑀), or it will 

remain at its current state 𝑥 = 1 with probability 1 − 𝑃𝐼𝑀(𝑜𝑟 1 − �́�𝐼𝑀). 

Further, the probability of achieving the desired improved state is influenced by two main 

factors. First, it depends on the number of imperfect maintenance actions (𝑧) performed on the 

component in the past, i.e., the probability of success for each imperfect maintenance level action 

decreases with an increase in the value of 𝑧. This essentially means that the capability of an 

imperfect maintenance action to improve upon the health state of a component to a desired level 

diminishes with each maintenance action performed on the component. Secondly, the effect of z 

on 𝑃𝐼𝑀(. ) varies with the selected levels of the maintenance actions; in plain terms, the probability 

of success is lower if one expects to reach a higher level of improvement from an imperfect 

maintenance action. For example, the probability of achieving a 50% improvement in the health 

condition of a component from a maintenance action 𝑙𝑖 is significantly higher than the probability 

of expecting a 90% improvement from a maintenance action 𝑙�́� (𝑙𝑖 > 𝑙𝑖). Therefore, to capture both 

the impact of the number of imperfect maintenance actions performed earlier (𝑧𝑖) and the 

maintenance level (𝑙𝑖), the probability of success for a maintenance action on component 𝑖 (𝑖 =

1,2, . . , 𝑁) , 𝑃𝑖
𝐼𝑀(𝑧𝑖 , 𝑙𝑖), is updated as: 

𝑃𝑖
𝐼𝑀(𝑧𝑖 , 𝑙𝑖) = 𝑃𝑖

𝐼𝑀 ∗ exp (−𝑧𝑖 ∗
𝑙𝑖

𝐾
)                                      (3.14) 
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where 𝑃𝑖
𝐼𝑀 is the probability of successfully preforming the first imperfect maintenance action, 

which, as noted earlier, can be determined from a combination of historical data and expert 

knowledge.  

Because of the uncertainty in the outcome of all imperfect maintenance actions, at the end 

of the maintenance break the system could be in different possible states with certain probabilities. 

For example, if imperfect maintenance actions are performed on 𝑀 (𝑀 ≤ 𝑁) components of the 

system, the number of possible states the system can acquire is 2𝑀. Let us consider the following 

example of a series multi-state system consisting of three components. Each of the components 

has four states and the state of the system at the beginning of the maintenance break is 𝑌 = [1, 0, 1]. 

Further assume that the maintenance actions with level 𝑙1 = 1, 𝑙2 = 3, and 𝑙3 = 1 are selected for 

components 1, 2, and 3, respectively. As the actions performed on components 1 and 3 are 

imperfect maintenance actions, the state of components 1 and 3 at the end of maintenance break 

can be 𝑥1 = 1  or 2 and 𝑥3 = 1 or 2, respectively. However, the state of component 2 after 

performing perfect maintenance action will be 3 with probability 1 (𝑃2
𝑃𝑀 = 1). Therefore, the 

number of possible system states is 22 = 4 as: 𝑆1 = [1,3,1], 𝑆2 = [1,3,2], 𝑆3 = [2,3,1], or 𝑆4 =

[2,3,2] with certain probabilities. The probability that system acquires any one of the above 

possible states can be derived by multiplying the probability of the state of its components. Since 

each component acquires state 𝑥𝑖 = 𝑦𝑖 + 𝑙𝑖  with probability 𝑃𝑖
𝐼𝑀(. ), or 𝑥𝑖 = 𝑦𝑖 with probability 1-

𝑃𝑖
𝐼𝑀(. ), the probability that system will be in any one of the four states is given as the following 

expression: 

𝑝(𝑋 = 𝑆𝑗) =

{
 
 

 
 
 (1 − 𝑃1

𝐼𝑀(. )) ∗ 𝑃2
𝑃𝑀 ∗ (1 − 𝑃3

𝐼𝑀(. ))       𝑗 = 1  

(1 − 𝑃1
𝐼𝑀(. )) ∗ 𝑃2

𝑃𝑀 ∗ (𝑃3
𝐼𝑀(. ))              𝑗 = 2 

(𝑃1
𝐼𝑀(. )) ∗ 𝑃2

𝑃𝑀 ∗ (1 − 𝑃3
𝐼𝑀(. ))             𝑗 = 3

(𝑃1
𝐼𝑀(. )) ∗ 𝑃2

𝑃𝑀 ∗ (𝑃3
𝐼𝑀(. ))                     𝑗 = 4

   &∑ 𝑝(𝑋 = 𝑆𝑗) = 14
𝑗=1    
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Once the value of 𝑝(𝑋 = 𝑆𝑗) is available, the estimates of expected system reliability and 

its variability in the next mission are calculated as:  

𝐸(𝑅𝑆) = ∑ 𝐸(𝑅𝑆|𝑆𝑗) ∗ 𝑝(𝑋 = 𝑆𝑗)
2𝑀
𝑗=1                                        (3.15) 

𝑉𝑎𝑟 (𝑅𝑆) =∑ 𝑉𝑎𝑟 (𝑅𝑆|𝑆𝑗)

2𝑀

𝑗=1

∗ 𝑝(𝑋 = 𝑆𝑗)

+∑(𝐸(𝑅𝑆|𝑆𝑗))
2 ∗ 𝑝(𝑋 = 𝑆𝑗) − (∑𝐸(𝑅𝑆|𝑆𝑗) ∗ 𝑝(𝑋 = 𝑆𝑗)

2𝑀

𝑗=1

)2
2𝑀

𝑗=1

 

                                                                                                                                                 (3.16) 

where 𝑆𝑗  is the 𝑗𝑡ℎ possible state of the system. Furthermore, associated with each maintenance 

action is a certain amount of cost and time. Maintenance cost 𝑐𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖) and time 𝑡𝑖(𝑦𝑖 , 𝑦𝑖 +

𝑙𝑖) represent resources required to perform the necessary maintenance action on component 𝑖, 

which, in turn, depend on its current state 𝑦𝑖 and the chosen level of maintenance action 𝑙𝑖. If the 

selected action is do-nothing, which does not change the state of the component, both the 

associated cost and time will be zero. When replacing a degraded component by a new one, the 

state of the component changes to as good as new and the associated cost and time are represented 

as 𝑐𝑖(𝑦𝑖 , 𝐾) and 𝑡𝑖(𝑦𝑖 , 𝐾), respectively. Last, the cost and time required for imperfect maintenance 

actions are indicated as 0 < 𝑐𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖) < 𝑐𝑖(𝑦𝑖 , 𝐾) and 0 < 𝑡𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖) < 𝑡𝑖(𝑦𝑖 , 𝐾), 

respectively. The matrix forms of maintenance cost and time for component 𝑖 (𝑖 = 1,2, . . , 𝑁) are 

given by: 

𝑇𝑖 =

[
 
 
 
 
0 𝑡𝑖(0,1) ⋯ 𝑡𝑖(0,𝐾)
0 0 ⋯ 𝑡𝑖(1,𝐾)
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑡𝑖(𝐾 − 1,𝐾)
0 0 ⋯ 0 ]

 
 
 
 

                                      (3.17) 
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 𝐶𝑖 =

[
 
 
 
 
0 𝑐𝑖(0,1) ⋯ 𝑐𝑖(0, 𝐾)
0 0 ⋯ 𝑐𝑖(1, 𝐾)
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑐𝑖(𝐾 − 1, 𝐾)
0 0 ⋯ 0 ]

 
 
 
 

                                      (3.18) 

The values of the matrix are positive for all 𝑦𝑖 + 𝑙𝑖 > 𝑦𝑖; otherwise, they are 0. Also we 

have that 𝑡𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖) < 𝑡𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙�́�) and 𝑐𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖) < 𝑐𝑖(𝑦𝑖 + 𝑙�́�) if 𝑙𝑖 < 𝑙�́�, as well as 

𝑡𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖) > 𝑡𝑖(𝑦�́�, 𝑦�́� + 𝑙�́�) and 𝑐𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖) > 𝑐𝑖(𝑦�́�, 𝑦�́� + 𝑙�́�), if 𝑦𝑖 < 𝑦�́�  and 𝑦𝑖 + 𝑙𝑖 = 𝑦�́� + 𝑙�́�. 

Finally, the total cost incurred by performing maintenance on the selected components 

can be given as:  

𝐶𝑀 = ∑ 𝑐𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖)
𝑁
𝑖=1                                                  (3.19) 

Similarly, the total maintenance time is the summation of all required time during the 

maintenance actions for each individual component, and is calculated as: 

𝑇𝑀 = ∑ 𝑡𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖)
𝑁
𝑖=1                                                    (3.20) 

3.4.2. Selective Maintenance Optimization Model 

We formulate the selective maintenance optimization model to find the level of 

maintenance actions required to maximize system reliability in the next mission with decreased 

uncertainty (variability). The decision variables are the level of maintenance actions required on 

individual components as defined in Equation (3.12) while the total maintenance time and cost are 

treated as constraints. The bi-objective optimization problem is formulated as follows: 

𝑀𝑎𝑥 𝐸(𝑅𝑆) = ∑ 𝐸(𝑅𝑆|𝑆) ∗ 𝑝(𝑋 = 𝑆)𝑆∈𝑊                              (3.21𝑎) 

𝑀𝑖𝑛 𝑉𝑎𝑟 (𝑅𝑆) = ∑ 𝑉𝑎𝑟 (𝑅𝑆|𝑆) ∗ 𝑝(𝑋 = 𝑆)𝑆∈𝑊 + ∑ (𝐸(𝑅𝑆|𝑆))
2
∗ 𝑝(𝑋 = 𝑆)𝑆∈𝑊 −

(∑ 𝐸(𝑅𝑆|𝑆) ∗ 𝑝(𝑋 = 𝑆)𝑆∈𝑊 )2                                           (3.21𝑏) 

𝑆. 𝑡. 

∑ 𝑡𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖)
𝑁
𝑖=1 ≤ 𝑇0                                                (3.21𝑐) 
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∑ 𝑐𝑖(𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖)
𝑁
𝑖=1 ≤ 𝐶0                                               (3.21𝑑) 

𝑎𝑖
(0)
+ 𝑎𝑖

(𝐾−𝑦𝑖) +∑ 𝑎𝑖
(𝑙𝑖)𝐾−𝑦𝑖−1

𝑙𝑖=1
= 1       ∀ 𝑖 ∈ 𝐸                            (3.21𝑒) 

𝑎𝑖
(𝑙𝑖) ∈ {0, 1}    ∀ 𝑖 ∈ 𝐸  ; 𝑙𝑖 ∈ {0, 1, . . , 𝐾 − 𝑦𝑖 }. 

In the formulation, 𝑊 is a set which reveals all different possible states of the system after 

performing each maintenance strategy and is formally defined as 𝑊 = {𝑋: 𝑥𝑖 ∈ {𝑦𝑖}, ∀ 𝑖 ∈

𝐸0; 𝑥𝑖 ∈ {𝐾}, ∀ 𝑖 ∈ 𝐸1 ;  𝑥𝑖 ∈ {𝑦𝑖 , 𝑦𝑖 + 𝑙𝑖} , ∀𝑖 ∈ 𝐸2}. Note that 𝐸 = {1,2,… , 𝑁}, 𝐸0 = {𝑖 ∈

𝐸: 𝑎𝑖
(0)
= 1}, 𝐸1 = {𝑖 ∈ 𝐸: 𝑎𝑖

(𝐾−𝑦𝑖) = 1}, and 𝐸2 = {𝑖 ∈ 𝐸: ∑ 𝑎𝑖
(𝑙𝑖)𝐾−𝑦𝑖−1

𝑙𝑖=1
= 1} are three auxiliary 

sets representing the components selected for the three types of maintenance actions: do-nothing 

(𝐸0), replacement (𝐸1), and imperfect maintenance action (𝐸2), respectively. For the given 

example, we would have that 𝐸0 = ∅, 𝐸1 = {2}, and 𝐸2 = {1,3}. In that same example, we have 

𝑊 = {(1,3,1), (1,3,2), (2,3,1), (2,3,2)} and includes all four possible states (2𝑀 = 22 = 4 ) of the 

system after the given maintenance strategy (𝑎2
(3)
= 1,  𝑎1

(1)
= 1, and 𝑎3

(1)
= 1). 

In the above optimization model, Equation (3.21a) and Equation (3.21b) are the two 

objective functions for system reliability and variability in system reliability, respectively. 

Equation (3.21c) and Equation (3.21d) represent the total time and budget constraints. Finally, 

Equation (3.21e) states that only one maintenance action with specified maintenance level 𝑙𝑖 can 

be selected for each component. All decision variables are binary. As the optimization model is 

nonlinear and stochastic, we employ a genetic algorithm (GA) to find the best maintenance 

strategy. When the total number of the states of the system is small, we could use exact solution 

methods and enumerate all the states to find the optimal solution. Otherwise, in most real-life 

instances, we can use GA, as introduced by Holland [63]. GA is well suited to solve multi-objective 

optimization problems when the search space is large. The ability of GA to simultaneously search 
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different regions of a solution space enables us with finding a diverse set of solutions for difficult 

problems. Moreover, most multi-objective genetic algorithms do not require the decision maker to 

prioritize, scale, or weigh objectives. We can use non-dominated sorting genetic algorithm II 

(NSGAII) to find the Pareto-optimal solutions for the bi-objective optimization problem. The 

concept of constrained-domination is considered in the modified-NSGAII to tackle constraints in 

the optimization problem [64][65]. Based on this concept, during various stages of the algorithm, 

the crowded comparison operator is used in the selection process. At each iteration, both objective 

function values (i.e., the mean and variance of system reliability) and the constraint violation (𝐶𝑉) 

of every individual of the population are considered in the selection process. The CV, which is 

equal to zero for feasible solutions, is calculated for every individual as follows: 

𝐶𝑉 =
𝑀𝑎𝑥(𝐶−𝐶0,0)

𝐶0
+

 𝑀𝑎𝑥 (𝑇−𝑇0 ,0)

𝑇0 
                                          (3.22) 

where 𝐶 and 𝑇 are the maintenance cost and time of each individual of the population, and 𝐶0 and 

𝑇0 are the maintenance budget and time limit, respectively. As another solution approach, to 

efficiently solve the bi-objective optimization problem for large systems, we divide the solving 

approach into two phases like the work of Diallo et al. [66]. In the first phase, we find the system 

reliability for all feasible solutions (𝐶𝑉 = 0). Then, we find the optimal strategy between the 

feasible solutions solving a bi-objective integer problem.  

3.5. Numerical Studies and Results 

3.5.1. Example 1 

To demonstrate the applicability of the proposed model, we provide a numerical study of 

a two-component system (𝑖 = 1,2), where the components are stochastically dependent. In this 

example, we also assume that each component has four states 𝑠𝑖 = 0, 1, 2, 3 with corresponding 
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performance rates 𝑔𝑖 = 0, 1, 2, 3. The transition rates of the components are provided in Table 3.2. 

The maintenance cost (in $1000) and time (in days) for each component are given as follows: 

𝐶1 = [

0 4.5 9 14.5
0 0 4 12
0 0 0 9.5
0 0 0 0

] , 𝐶2 = [

0 3 8.5 15
0 0 6 12
0 0 0 4.5
0 0 0 0

] 

𝑇1 = [

0 0.5 1 1.5
0 0 0.5 1
0 0 0 0.5
0 0 0 0

] , 𝑇2 = [

0 0.5 1 1.5
0 0 0.5 1
0 0 0 0.5
0 0 0 0

] 

Table 3.2: The transition rates of components 

Component 
Transition rate (𝑌𝑒𝑎𝑟 −1) 

λ𝑖,3 λ𝑖,2 λ𝑖,1 

1 0.12 0.18 0.150 

2 0.09 0.15 0.05 

 

The state of the system at the beginning of the maintenance break is 𝑌 = [1, 1], and the 

number of imperfect maintenances performed on the components before the current maintenance 

break are 𝑧1 = 1 and 𝑧2 = 1. The initial probability of success for imperfect maintenance action 

on component 1 and component 2 are 𝑃1
𝐼𝑀 = 0.9 and 𝑃2

𝐼𝑀 = 0.9. Our goal is to find the best 

selective maintenance actions subject to a maintenance time limit of 𝑇0 = 2 (in days) and a 

maintenance budget limit of 𝐶0 =  10 (in $1000) to maximize the system reliability and minimize 

the variance of system reliability at the end of the next mission duration 𝜏 =  0.5 years. In addition, 

we assume that 𝛿~𝑁(0, 0.12). 

Using the above input data, the problem was coded and solved using Matlab R2016a. To 

show the impact of component dependency and the stochastic nature of the maintenance actions, 

we consider four different maintenance scenarios: (i) independent components and deterministic 

maintenance actions, (ii) independent components and stochastic imperfect maintenance actions, 

(iii) S-dependent components and deterministic actions, and (iv) S-dependent components and 
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stochastic imperfect maintenance actions. The obtained results from these scenarios are compared 

based on the system reliability goal (mean and variance of reliability), maintenance cost, and time.  

As noted earlier, a proper sample size needs to be found for the 𝑀𝐶𝑆. To find the best 

sample size for the 𝑀𝐶𝑆, we first run the 𝑀𝐶𝑆 considering the third scenario using different sample 

sizes. Our results indicate that the sample size of 𝑁𝑀𝐶𝑆 = 10000 provides convergence of both 

mean and variance of system reliability for all nine possible states of the system (𝑋𝑗 , 𝑓𝑜𝑟 𝑗 =

1,2,… ,9). The results for one such state, 𝑋 = [2,2], are shown in Figure 2.4a and Figure 2.4b. It 

is observed that there is no significant difference between the results obtained with 𝑁𝑀𝐶𝑆 =  10000 

and 𝑁𝑀𝐶𝑆 =  100000. However, the simulation effort (number of iterations) required with 𝑁𝑀𝐶𝑆 =

 100000 is nearly 10 times more than with 𝑁𝑀𝐶𝑆 =  10000. It clearly demonstrates that the sample 

size 𝑁𝑀𝐶𝑆 = 10000 is sufficient to achieve same result, which essentially validates our decision 

to use 𝑁𝑀𝐶𝑆 = 10000.  

 
Figure 3.4:  a) Mean of system reliability (left) b) variance of system reliability for different 

sample size of 𝑀𝐶𝑆 (right)  

 

In the first and second scenarios, the components are assumed to be independent of each 

other; however, in the second scenario the outcome of the maintenance action is treated as 

stochastic so as to capture the impact of uncertainty on the system reliability. When the imperfect 

maintenance actions are deterministic (scenario one), the maximum achievable system reliability 

is 0.9942 and is obtained by selecting the imperfect maintenance actions with level 1 for both 
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components to achieve system state 𝑋 = [2, 2]. In the second scenario, the maximum achievable 

system reliability is 0.9409 for selected maintenance level actions 𝐿 = [𝑙1, 𝑙2] = [1, 1]. This nearly 

5% decrease in system reliability along with a certain amount of variability (0.00218) in reliability 

estimate are good indicators of the impact of the stochastic nature of imperfect maintenance 

outcomes. This seems to corroborate the assumption that deterministic considerations lead to 

unrealistic overestimations of system reliability. Table 3.3 presents all feasible maintenance 

strategies (𝐶𝑉 = 0) of the second scenario. The maintenance strategy 𝐿 = [1, 1] results in the 

highest expected system reliability and the highest variance of system reliability between all 

feasible solutions. Despite the highest variance in system reliability, the maintenance strategy 𝐿 =

[1, 1] still provides significantly higher reliability in comparison of other feasible maintenance 

strategies given in Table 3.3. It is, therefore, important that the decision makers also consider the 

variability in system reliability estimate and its impact on mission requirements before selecting 

the appropriate maintenance strategy to implement among all feasible solutions.  

Table 3.3: Independent components & stochastic actions 

𝑙1 𝑙2 Reliability Variance of reliability CV CM TM 

0 0 0.8767 0 0 0 0 

0 1 0.9152 0.00082 0 6 0.5 

1 0 0.9044 0.00042 0 4 0.5 

1 1 0.9409 0.00218 0 10 1 

 

To understand the impact of S-dependence and the combined effect of S-dependence and 

the stochastic nature of imperfect maintenance on system reliability, we consider the last two 

scenarios. In the third scenario, the components are considered as S-dependent, and the outcome 

of imperfect maintenance actions is treated as deterministic. The results show that best 

maintenance strategy is 𝐿 = [1, 1] with system reliability 0.9826 and variance in system reliability 

as low as 0.00002. It is important to note that the variance estimate, though very small, is due to 
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the uncertainty in S-dependence between components. A comparison to the first scenario also 

indicates a decrease in system reliability estimate due to the interaction or dependency between 

components, which essentially strengthens the importance of capturing and including the 

interactions among components of the system. 

In the fourth scenario, we consider the S-dependence between components and the 

stochastic nature of imperfect maintenance to investigate a more realistic scenario, which captures 

all uncertainty introduced by several sources. As shown in Table 3.4, the optimization model 

provides the Pareto-optimal solutions including the maintenance strategy 𝐿 = [1, 1] with system 

reliability (0.8742) and variance (0.01110). Our comparative analysis with other scenarios clearly 

highlights the significant combined effect of both the S-dependence among components and the 

uncertainty in imperfect maintenance outcome on the obtained system reliability estimate. We 

notice a substantial drop in system reliability estimate accompanied by an increase in variability 

caused by the uncertainty stemming from these sources. This clearly supports our concern of 

studying a more realistic approach that captures interactions between system components and the 

uncertainty involved in the outcome of an imperfect maintenance action. 

Table 3.4: S-dependent components & stochastic actions 

𝑙1 𝑙2 Reliability Variance of reliability 𝐶𝑉  𝐶𝑀  𝑇𝑀 

0 0 07418 0.00023 0 0 0 

0 1 0.7768 0.00085 0 6 0.5 

1 0 0.8476 0.00631 0 4 0.5 

1 1 0.8742 0.01110 0 10 1 

 

To investigate the effect of other parameters on the system reliability estimate, we solve 

the optimization problem considering different values for these parameters. They include the 

random variation of the interaction effect caused by other factors, varying probabilities of success 

for imperfect maintenance actions, and the number of imperfect maintenance actions performed 
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on each of the components in the past. There are several factors that do influence degradation 

behavior and system performance (e.g., non-critical components, or operating conditions) but are 

difficult to quantify. This is the reason why we first experiment with the effect of the random 

variation of the interaction effects on system reliability for the maintenance strategy 𝐿 = [1, 1] in 

scenario 3. To do that, we consider five different values for the standard deviation  𝜎 of the random 

parameter 𝛿~𝑁(0, 𝜎2) to document its impact on the obtained reliability estimates. The results of 

the analysis, as shown in Table 3.5, reveal the impact of random parameters on both system 

reliability and variance estimates. It is, therefore, important to capture uncertainty or randomness 

caused by these factors in system reliability estimates, whenever they appear to be present. 

Ignoring the uncertainty caused by these factors might lead to overestimating system reliability 

and risking failure of the mission. 

Table 3.5: System reliability for 𝐿 = [1, 1] versus the random variation of S-dependence. 

Random variation 𝛿 = 0 𝛿~𝑁(0, 0.12) 𝛿~𝑁(0, 0.52) 𝛿~𝑁(0, 12) 𝛿~𝑁(0, 32) 

Mean of system 

reliability (�̅�) 0.9839 0.9826 0.9775 0.9674  

0.9274 

Variance of system 

reliability - 0.00002 0.00004 0.00021 

0.00296 

Standard deviation of 

system reliability (𝜎𝑅) - 0.00439 0.00639 0.014162 

0.05445 

 

 
Figure 3.5: Pareto-optimal solutions for different probability of success of imperfect maintenance 
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As described, another important factor in our study is the probability of success of the first 

imperfect maintenance action carried out on a component. We now investigate the effect of this 

probability on the system reliability estimate and the maintenance strategy selection. This is done 

through solving the optimization problem in scenario 2 using different values for 𝑃1
𝐼𝑀 and 𝑃2

𝐼𝑀 

denoted as 𝐵 = [𝑃1
𝐼𝑀 ,  𝑃2

𝐼𝑀]. Figure 3.5 represents the obtained Pareto-optimal solutions under 

varying probabilities of success. As can be seen in Figure 3.5, lower values of probability of 

success 𝐵 = [0.4, 0.4] not only result in the system reliability decreasing, but there is no significant 

difference between system reliability estimates of different optimal solutions. On the other hand, 

higher probabilities of success of imperfect actions 𝐵 = [0.9, 0.9] substantially improves system 

reliability in the next mission, while also providing a series of optimal solutions with significantly 

different reliability estimates. This understanding can help decision makers select an appropriate 

maintenance strategy from the available solutions. For example, if the probabilities of success of 

the first imperfect maintenance actions are considered to be 𝐵 = [0.9,0.9], the optimal 

maintenance strategy 𝐿 = [1, 1], which consumes all available resources, has the highest 

reliability. Contrary to this, if the probabilities of success are in fact equal to 𝐵 = [0.4, 0.4],  then 

the model provides multiple optimal solutions with reliability estimates that are not significantly 

different. Seeing as the resource requirements are different for these multiple optimal solutions, 

the decision makers could be better off selecting one which depletes fewer of the maintenance 

resources. Consider, as an example, two maintenance strategies 𝐿1 = [1, 1] and 𝐿2 = [0, 1], for 

which the system reliability estimates are not significantly different (�̅�1 = 0.8887 and �̅�2 =

0.8888). Since maintenance strategy 𝐿1 requires two times more resources than strategy 𝐿2, a 

decision maker would be better off selecting maintenance strategy 𝐿2, as that would allow them to 

meet the reliability requirements in the next mission with fewer resources. The results imply that 
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the probability of success of imperfect maintenance actions have a significant effect on system 

reliability and decision makers are encouraged to invest more resources to accurately determine 

these probabilities.  

To show the effect of the number of imperfect maintenance actions performed in the past 

on each component, we consider three different values (0,1,2) for 𝑧1 and 𝑧2. The system reliability 

of maintenance strategy 𝐿 = [1,1] in scenario 4 is shown in Figure 3.6. As can be seen, this strategy 

is sensitive to the changes in z values. Even though the system reliability of the maintenance 

strategy 𝐿 is higher than the reliability level 0.95 when 𝑧1 = 𝑧2 = 0, it starts decreasing for other 

values of 𝑧1 and 𝑧2. If we do not consider the past, then the system reliability is overestimated. 

Therefore, when there is not enough information available about the history of maintenance actions 

and when the unreliability cost is high, it is preferred to spend more maintenance resources and 

perform maintenance strategies that are less sensitive to the changes of 𝑧 values such as 𝐿 = [2,0] 

and 𝐿 = [2,2]. 

 
Figure 3.6: System reliability of 𝐿 = [1,1] with different values of 𝑧1 and 𝑧2 

 

Our results of all four scenarios are presented in Table 3.6 and Figure 3.7. In this example, 

we get different estimations of the expected value and variance of the system reliability under 
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importance of considering the actual scenario to determine the optimal maintenance actions in real 

world problems. 

Table 3.6: Selective maintenance results for different scenarios of example 1 

 

 

 

 

 

 

 

In the fourth scenario the mean of system reliability is 0.8742 and its variance is higher 

compared to the other scenarios. If the desired level of the system reliability is 0.9, then 

maintenance strategy 𝐿 = [1, 1] would not be optimal. Therefore, the decision makers must 

increase their time and budget limitations to turn a more robust maintenance strategy with higher 

reliability, such as 𝐿 = [2,1] and 𝐿 = [1,2]. 

 
Figure 3.7: The mean system reliability and standard deviation for strategy 𝐿 = [1, 1] in four 

scenarios. 

 

3.5.2. Example 2 

In the second example, we consider an MSS consisting of five multi-state components in 

the series structure given in [40]. Each component can be in one of four possible states, 𝑠𝑖 =

 Maintenance Scenario 𝑙1 𝑙2 �̅� 𝜎𝑅
2 �̅� + 𝜎𝑅 �̅� − 𝜎𝑅 

1 Independent components & 

deterministic actions 

1 1 

0.9942 

_ 

0.9942 0.9942 

2 Independent components & 

stochastic actions 

1 1 

0.9409 0.00218 0.9876 0.8942 

3 S-dependent components & 

deterministic actions 

1 1 

0.9826 0.00002 0.9870 0.9783 

4 S-dependent components & 

stochastic actions 

1 1 

0.8742 0.01110 0.9796 0.7688 
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0, 1, 2, 3, with corresponding performance rates 𝑔𝑖 = 0, 1, 2, 3. The intrinsic transition rates are 

given in Table 3.7. At the beginning of the maintenance break, the state of the system is 𝑌 =

[2,0,1,1,0]. The number of imperfect maintenance actions performed on the components before 

the current maintenance break are 𝑧1 = 𝑧2 = 𝑧4 = 𝑧5 = 0, 𝑧3 = 1, and the initial probability of 

success for imperfect maintenance actions are 𝑃1
𝐼𝑀 = 0.9, 𝑃2

𝐼𝑀 = 0.99, 𝑃3
𝐼𝑀 = 𝑃4

𝐼𝑀 = 1, and 

𝑃5
𝐼𝑀 = 0.9. The maintenance cost (in $1000) and time (in days) matrices for each component are 

given as follows: 

 𝐶1 = [

0 4.5 9 14.5
0 0 4 12
0 0 0 9.5
0 0 0 0

] , 𝐶2 = [

0 3 8.5 16
0 0 6 12
0 0 0 4.5
0 0 0 0

] ,  𝐶3 = [

0 2.5 6 10
0 0 4 8
0 0 0 3.5
0 0 0 0

] 

 𝐶4 = [

0 2.5 4.5 9
0 0 3 6.8
0 0 0 4
0 0 0 0

] ,  𝐶5 = [

0 3 6 10
0 0 3 5.5
0 0 0 2
0 0 0 0

] , 𝑇1 = [

0 1 2.5 3.5
0 0 1.5 2
0 0 0 1.5
0 0 0 0

] 

 𝑇2 = [

0 1.5 2 5
0 0 1.5 3
0 0 0 1
0 0 0 0

] , 𝑇3 = [

0 1 2.5 5
0 0 2 3.5
0 0 0 1
0 0 0 0

] , 𝑇4 = [

0 1 3 4.5
0 0 1.5 3
0 0 0 1.5
0 0 0 0

] 

𝑇5 = [

0 1.5 2 3
0 0 1 2.5
0 0 0 1.5
0 0 0 0

] 

 

Table 3.7: The transition rates of components  

Component 
Transition rate (Year -1) 

λ𝑖,3 λ𝑖,2 λ𝑖,1 

1 0.08 0.15 0.1 

2 0.06 0.11 0.05 

3 0.14 0.09 0.2 

4 0.18 0.1 0.15 

5 0.11 0.08 0.16 
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The goal is to find the optimal selective maintenance strategy, subject to the maintenance 

time limit of T0=12 (in days) and the maintenance budget limit of C0= 40 (in $1000). The goal is 

to maximize the system reliability and minimize the variance of system reliability at the end of the 

next mission of duration τ= 0.5 (in years). The additional system requirements are for a demand 

level D=2 and 𝛿~𝑁(0, 0.12).  

Given that demand level 𝐷 is equal to two, we consider the system states with performance 

rates higher than or equal to the demand level as acceptable states of the system at the beginning 

of the next mission. The total number of possible states that a system can acquire and are acceptable 

are 32 (each component can be in state 2 or 3). Out of these 32 possible states, only 20 states do 

not exceed the limit of maintenance time and budget constraints and, hence, compose our set of 

feasible solutions.  First, we compute the system reliability for all feasible states using the same 

approach as discussed in the previous example. We solve the optimization model to find the 

maintenance actions providing maximum system reliability with minimum variance in system 

reliability estimate considering S-dependency between components and stochastic maintenance 

actions. We also solve the selective maintenance optimization problem assuming that the system 

components degrade independently. Table 3.8 provides a comparison of the results obtained from 

our proposed approach with other approaches.   

Table 3.8: Selective maintenance results for example 2 

Optimal maintenance strategy for the system 

with 

System state CM TM �̅� 

Proposed approach (S-dependent components 

(two-way interaction) & stochastic actions) 𝑋1 = [3, 2, 3, 2, 3] 39 11.5 

 

0.8696 

Considering Independent components 𝑋2 = [3, 2, 3, 3, 2] 39 12 0.9069 

Approach proposed in [40] (S-dependent 

components) 
𝑋3 = [3, 3, 2, 2, 2] 38.5 12 0.8584 

 



 

60 

The proposed approach provides an optimal maintenance strategy with the highest system 

reliability (0.8696), which suggests replacing components 1, 3, and 5, and performing imperfect 

maintenance actions on components 2 and 4. The system reliability estimate provided by our 

proposed approach is higher than the one proposed in [40] but lower than the scenario where all 

components degrade independently, which, however, is not a realistic assumption. The 

maintenance resources used for all three system states are nearly the same. To further investigate 

the effectiveness and realism of the proposed approach, we estimated the reliability for system 

states 𝑋2 = [3, 2, 3, 3, 2] and 𝑋3 = [3, 3, 2, 2, 2] using the proposed approach (considering S-

dependent components and stochastic actions). The new reliability estimates of these two systems 

states (𝑋2 and 𝑋3) are 0.7834 and 0.5267, which are much lower than the reliability estimates of 

system state (𝑋1) provided by the proposed approach. This comparison and analysis clearly 

demonstrate that ignoring S-dependence between components and the effects of previous 

maintenance actions can provide an unrealistic estimate (overestimation) of system reliability that 

may lead to selecting a poor maintenance strategy. 

We further investigate the capability of this model to deal with higher reliability 

requirements and resource constraints. Assuming that the required system reliability in the next 

mission must be greater than or equal to 0.9, then the current solution (see Table 3.7) obtained by 

our approach does not satisfy this requirement. The insight is that to meet a higher target of system 

reliability, one would need more maintenance resources. However, it is not always true that 

increasing maintenance resources will necessarily lead to higher reliability estimates. We 

investigate two different scenarios to understand how the proposed approach helps select a 

maintenance strategy within given resource constraints. For example, the reliability of system state 

𝑋 = [3, 2, 3, 3, 3] is 0.9281 with total maintenance cost and time requirements as 42.8 and 13, 
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respectively. On the other hand, to get the system in state �́� = [3, 3, 2, 3, 3], the maintenance 

strategy requires even more resources (𝐶𝑀 = 46.3 and 𝑇𝑀 = 14.5) to implement as compared to 

the system state X. However, the system reliability for system state �́� is 0.6734, which is much 

lower than the reliability of system state 𝑋. This considerable difference in system state reliability 

estimates can be explained by the fact that in state �́�, component 3 is selected for imperfect 

maintenance assigning lesser maintenance resource even though component 3 appears to be more 

critical. Its lower probability of success after scheduling an imperfect maintenance action leads to 

a lower system reliability estimate. It is important to note that for achieving a certain system 

reliability target for the next mission, both flexibility in increasing the maintenance resources and 

assigning them to critical components are very important. The proposed approach facilitates the 

selection of critical components for assigning more resources to achieve the given reliability target 

and provides more effective maintenance strategy. 

3.6. Summary 

In this chapter, we studied the selective maintenance problem for multi-component series 

systems with multi-state components. The system performs several successive missions separated 

by scheduled breaks during which maintenance of its components takes place. A component can 

receive different maintenance actions characterized by various levels and different probabilities of 

success. For the first time, we considered the history of maintenance actions performed in previous 

breaks and modeled their effects on the probability of success of imperfect maintenance actions. 

Because of stochastic imperfect maintenance action, the system can be in different states with 

certain probabilities which lead to uncertainty in the reliability of the system in the next mission. 

Moreover, the S-dependence between components of the system as well as the stochastic 

interaction effects were considered. We used MCS to compute the reliability of the system in the 
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next mission considering the stochastic interaction between components. We also presented a 

selective maintenance optimization model to find the best maintenance strategy when maximizing 

the expected system reliability and minimizing the variance of system reliability in the next 

mission subject to time and cost constraints of the selected maintenance actions. We then 

demonstrated the importance of considering S-dependence between components and the stochastic 

imperfect maintenance actions solving the optimization problem for two different series systems. 

The examples and their results showed that stochastic imperfect maintenance actions can have 

significant effects on the obtained reliability estimates. Also, ignoring S-dependence can lead to 

overestimation of the system reliability. Overall, the outcome of this research provided a useful 

reference for selective maintenance optimization of multi-component series systems having an 

intractably large system state space. 
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4. PREDICTING REMAINING USEFUL LIFE OF A MULTI-COMPONENT SYSTEM 

BASED ON INSTANCE-BASED LEARNING3 

Condition-based maintenance (CBM) is an effective maintenance strategy that increases 

the safety and reliability of engineering systems. Prognostics, which is the basis of CBM, deals 

with predicting the future behavior and remaining useful life (𝑅𝑈𝐿) of systems. In many 

applications, the system is composed of multiple components that are stochastically dependent (S-

dependent). Most of the earlier works that characterize 𝑅𝑈𝐿 estimation of the multi-component 

systems are developed on the premise that components in a system are independent. The existing 

methods fail to perform when the components are interdependent. This chapter proposes a 𝑅𝑈𝐿 

prediction approach based on instance-based learning considering the S-dependency between 

multiple components of a given system. To show the effectiveness of the proposed approach, we 

used a simulated dataset. The superiority of the proposed method is demonstrated by comparing 

the obtained results with another popular approach and the state-of-the-art results on the same 

dataset [67].  

4.1. Introduction 

The prognostics and health management (PHM) discipline focuses mainly on predicting 

the remaining useful life (𝑅𝑈𝐿) of a system based on condition monitoring data or degradation 

signals [12], [14], [68], [69]. 𝑅𝑈𝐿 prediction is defined as predicting the duration from the current 

 

 

3 The present chapter is based on the following paper:  

A. F. Shahraki, A. Roy, O. P. Yadav, and A. P. S. Rathore, “Predicting remaining useful life 

based on instance-based learning,” published in 2019 Annual Symposium on Reliability and 

Maintainability (RAMS) 

Contribution of Ameneh Forouzandeh Shahraki: developing the mathematical models, analysis 

of the case study, discussion of the results, and drafting the paper. Contribution of Arighna Roy, 

Om Yadav, Ajay Rathore and: verification of the results and proofreading the draft paper. 
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time to the end of the useful life of a system [12]. The reliable and accurate prediction of 𝑅𝑈𝐿 

helps formulate the best preventive maintenance strategy to increase system reliability and safety, 

and to avoid sudden system shutdowns [4], [70]. In general, 𝑅𝑈𝐿 prediction can be implemented 

using model-based and/or data-driven approaches [12], [69]–[72]. The model-based approaches 

involve explicit mathematical functions, established empirical, or analytical models to capture the 

degradation and failure behavior of the system. On the other hand, data-driven approaches rely on 

historical data when it is impossible to apply the domain knowledge of system failure behavior, or 

the system complexity is very high. Data-driven approaches are relatively easy to be generalized 

and have recently become more attractive with advances in sensor technologies and data analyses 

methods.  

Numerous data-driven approaches have been proposed to predict the 𝑅𝑈𝐿 of a system [14]. 

Some approaches such as the general path models [73], [74] and stochastic process models [12] 

first monitor and predict the evolution of a degradation signal and then estimate the RUL as the 

time needed for the signal to reach the end of life criteria (failure threshold). These approaches 

require fixing and known failure thresholds. On the other hand, some approaches such as support 

vector machine (SVM) [75] and neural networks (NN) [76], [77], employ the time-to-failure data 

to learn a mapping between sensor signals and the corresponding 𝑅𝑈𝐿. These approaches are 

capable of obtaining promising results with abundant training data. However, degradation data are 

usually insufficient in real-world applications. The limitation serves as motivation for similarity-

based/instance-based methods, which have been proven effective in predicting 𝑅𝑈𝐿s with limited 

data [78], [79]. The similarity-based method addresses the prognostics problem by directly 

employing the historical time-to-failure data to estimate a test system’s 𝑅𝑈𝐿. It is easier to 
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implement with no necessity of having domain-specific knowledge to achieve satisfactory 

prognostic performance.  

Existing literature on 𝑅𝑈𝐿 prediction mostly has focused on the degradation process of a 

simple system, assuming a single degradation signal is able to fully characterize the degradation 

process of the system, and there is only a single failure mode. However, most of the engineering 

systems in real-world applications are complicated and composed of multiple components that 

lead to multiple failure modes. Prediction of the 𝑅𝑈𝐿 of such complex systems is challenging, 

especially when the components of these systems are S-dependent, i.e., the failure or degradation 

of some components in the system could affect the failure or degradation of other components in 

the system [8], [10]. Although some works have focused on interactions caused by the failure of a 

component, the number of publications considering degradation dependency is still limited. Bian 

and Gebraeel [10] assumed that the degradation interactions occur at discrete states, and the 

degradation rate of a component increases when the degradation state of other interdependent 

components increases in amplitude or intensity. They extended their work the cases that the 

degradation interaction may occur in a continuous manner [9]. They have made some assumptions 

that limit their application in practice. For example, in [10], the authors assumed that when the 

degradation state of the influencing component increases in amplitude, the degradation rates of the 

affected components increase by a constant amount (𝛿). Although it helps to easily model the 

degradation process of each component, the assumption of constant 𝛿 is difficult to satisfy for 

many applications that the change in the degradation rate may depend on parameters such as the 

age or degradation states of the interdependent components. Moreover, developing a specific 

model to capture the degradation process of a multi-component system and the interaction between 

its components is not possible without having domain-specific knowledge. We propose a novel 
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data-driven approach to directly estimate the 𝑅𝑈𝐿 of a complex system using the similarity 

between the test and historical time-to-failure (or called here degradation-to-failure) data without 

relying on these assumptions. It is easier to implement with no necessity to involve domain-

specific knowledge about the degradation trend of the historical data. 

4.2. The Problem Description 

We consider a system composed of 𝑁 critical interdependent components, Ci: i = 1,2, . . , N. 

The system performance depends on the performance of its components that their health status 

gradually deteriorates over time. We assume that when component Ci transitions to a more severe 

degradation state, it causes the increase in the degradation rates of other interdependent 

components by an amount that depends on the degradation state of both components and is not 

necessarily constant and may change during the time. As an illustration, consider a system with 

three interdependent components, which the degradation state of each of them influences the 

degradation rates of the remaining ones. A possible path of system degradation is depicted in 

Figure 4.1 for a system with series structure (a) and parallel structure (b). As we see, there are 

different change points that the degradation rates of the components will change. For example, in 

Figure 4.1 (a) at time 𝑡1 the degradation rates of 𝐶3 and 𝐶2 have changed because of the increase 

in the degradation level of 𝐶1. The difficulty of the considered problem comes from the fact that 

the dependency between components leads to variable degradation rates of each component during 

its lifetime.  
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Figure 4.1: A sample path of the degradation process for a system with (a) series structure (b) 

parallel structure 

 

4.3. The Proposed Methodology for RUL Prediction 

We predict the 𝑅𝑈𝐿 of a test system (operating system) based on 𝑅𝑈𝐿s of other systems 

with similar degradation behaviors. At time t = 0, all components of the test system start from 

perfect condition with the initial degradation level Di(t = 0) = 0 (∀i = 1,2,… , N). The 

degradation of each component is accumulated during time and monitored until prediction time 𝑡. 

Due to the degradation interaction between the components of the complex system, we derive the 

𝑅𝑈𝐿 of components and the system by bringing the state of all components into consideration. The 

𝑅𝑈𝐿 of the operating system is determined using an approach based on K-Nearest-Neighbor 

(KNN) algorithm. We consider the historical degradation-to-failure data to predict the RUL of the 

test system as the weighted average of 𝑅𝑈𝐿 of 𝐾 most similar trajectories to the test trajectory.  

The proposed methodology is composed of three steps to estimate the 𝑅𝑈𝐿 of the system 

in operation. The first step is to evaluate the distance/similarity between the trajectories of the test 

system and the historical trajectories considering the pointwise difference between the sequences 

of observations of their components. In [80]–[82], only the last observations of the test trajectory 

are used to find the similarity level. Because of the importance of all previous observations, we 
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consider all the observations from the beginning to prediction time 𝑡. The similarity measure 

between two different systems is calculated considering the similarities between their components. 

In the second step, we find the 𝐾 most similar systems to the test system. Finally, the weighted 

average of the 𝑅𝑈𝐿 of the 𝐾 selected systems is computed as an estimation of the 𝑅𝑈𝐿 of the test 

system. The weight of each system is related to its similarity to the test system. The algorithm of 

the prediction 𝑅𝑈𝐿 of the test system is shown in Figure 4.2. Note that we need to determine the 

best value of parameter 𝐾 in KNN to get the best possible prediction results. 

Input: A set of historical trajectories (𝕋 = {𝑻𝑟}𝑟=1
𝑅 ) and the test trajectory until prediction 

time 𝑡 (𝐓𝑡𝑒𝑠𝑡) 

Output: The predicted 𝑅𝑈𝐿 of test system at time 𝑡 (𝑅𝑈𝐿�̂�) 
for each 𝑻𝑟 in 𝕋 do 

separate the first 𝑡 time steps from the beginning of degradation process of all 𝑁 

components 

for component 𝐶𝑖 of the 𝑟𝑡ℎ system do 

compute the similarity between component 𝐶𝑖 of 𝑟𝑡ℎ system and test system 

end for 

compute the similarity between 𝑟𝑡ℎ system and test system (s𝑡
𝑟) 

end for  

find 𝐾 systems that have the lowest s𝑡
𝑟values 

compute the 𝑅𝑈𝐿 of the test system 𝑅𝑈�̂�𝑡 

Figure 1.2: The algorithm for predicting the 𝑅𝑈𝐿 

 

The historical trajectories contain the monitored degradation-to-failure data of 𝑅 systems. 

The components of each system may fail at different times that causes the time series of different 

components to have different lengths. For the series system, the failure of each component leads 

to the failure of the system as shown in Figure 4.1(a). Therefore, the time series of the failed 

component is complete, i.e. the degradation data until the failure time is available only for the 

failed component. 𝐓0:FTr
r = [T1,0:FTr

r , T2,0:FTr
r , … , TN,0:FTr

r ] (∀ r = 1,2,… ,R) represents 𝑁 time 

series data of 𝑟𝑡ℎ system from the beginning until the failure time (FTr). 𝐓0:t
test =
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[T1,0:t
test, T2,0:t

test, … , TN,0:t
test ] is time series data of 𝑁 test components from the beginning until time 𝑡. 

The pointwise difference between 𝐓0:t
test and 𝐓0:FTr

r  is calculated as follows: 

s𝑡
𝑟 = ∑ ∑ (𝑇𝑖𝑥

𝑡𝑒𝑠𝑡 − 𝑇𝑖𝑥
𝑟 )2

min (𝑙𝑒𝑛𝑔ℎ𝑡(𝑇𝑖
𝑡𝑒𝑠𝑡),𝑡)

𝑥=0
𝑁
𝑖=1        ∀r = 1, . . , R                       (4.1) 

The 𝑅𝑈𝐿s of the 𝐾 most similar system to test system, i.e., the systems that have the lowest 

s𝑡
𝑟 values, are used to get their weighted average as an estimation of 𝑅𝑈𝐿 (𝑅𝑈𝐿�̂�). The weight of 

𝑟𝑡ℎ  system (𝑤𝑟) and 𝑅𝑈𝐿�̂� are calculated as: 

 𝑤𝑟 = exp (−s𝑡
𝑟)                                                       (4.2) 

 𝑅𝑈𝐿�̂� =
∑ (𝑤𝑗∗𝑅𝑈𝐿𝑡

𝑗
)𝐾

𝑗=1

∑ 𝑤𝑗𝐾
𝑗=1

                                                     (4.3)  

To determine the 𝑅𝑈𝐿 of each system (𝑅𝑈𝐿𝑡
𝑗
), we need to consider its structure. For a series 

system, failure of any of the components leads to system failure. Therefore, the life of the system 

depends on the first failed component. On the other hand, in a parallel structure, the life of the 

system depends on the last failed component. Note that for a parallel system that we have complete 

data for all components, we can estimate 𝑅𝑈𝐿 of each component and plan their maintenance 

separately.  

4.4. Numerical Study and Results 

Different simulated data sets are used to verify the performance of our proposed approach. 

We consider a system consisted of three components that are degrading over time. We use the 

same baseline parameter values as the work of Bian and Gebraeel [10]. The generated dataset is 

composed of multiple multivariate time series signals. Each time series represents a degradation 

path of a component of the system. The components are interdependent, and their degradation 

processes are simulated using the Equation (4.4). The baseline parameters values [10] are given in 

Table 4.1. 
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Table 4.1: Baseline parameter values [10] 

Component Index Component 𝐶1 Component 𝐶2 Component 𝐶3 

𝑑𝑖 300 300 300 

𝑀𝑖 3 3 3 

𝜇𝑖 1.8 1.4 2.3 

𝜏𝑖 0.2 0.3 0.1 

𝜉𝑖  92 92 92 

𝜃𝑖 9.1 9.1 9.1 

𝛿1,𝑗 0 0.12 0.23 

𝛿2,𝑗 0.04 0 0.02 

𝛿3,𝑗 0.05 0.07 0 

 

𝐷𝑖(𝑡) = 𝐷𝑖(0) + ∫ [𝑘𝑖 + ∑ 𝛿𝑗,𝑖ℎ𝑗(𝐷𝑗(𝑣))𝑗≠𝑖 ]𝑑𝜐 + 휀𝑖
𝑡

0
(𝑡)                           (4.4) 

• 𝐷𝑖(𝑡) and 𝐷𝑖(0) are the degradation signals of the component 𝐶𝑖 at time 𝑡 and zero, 

respectively.  

• 𝑘𝑖 + ∑ 𝛿𝑗,𝑖ℎ𝑗(𝐷𝑗(𝑣))𝑗≠𝑖 : degradation rate of component 𝐶𝑖, is a linear function of its 

inherent degradation rate (𝑘𝑖) and the degradation states of other influencing 

components ℎ(𝐷(𝑡)).  

• h(𝐷(𝑡)) is a function of the degradation state of all components. 

• 𝛿𝑗,𝑖 represents the incremental change in the degradation rate of component 𝐶𝑗  when 

component 𝐶𝑖 transitions to a more severe state. 

• 휀𝑖(𝑡) is used to model the noise level of the degradation signal.  

• 휀𝑖(𝑡) = 𝐵𝑖(𝑡), 𝐵𝑖(𝑡) follows a stationary Brownian motion process with diffusion 

parameter 𝜎𝑖
2, i.e.,𝐵𝑖(𝑡)~𝑁(0, 𝜎𝑖

2t).  

• 𝑘𝑖 , 𝜎𝑖
2 are stochastic and change from one system to another: 𝜎𝑖

2~𝛤−1(𝜉𝑖 , 𝜃𝑖), 

𝑘𝑖|𝜎𝑖
2~𝑁(𝜇𝑖 , 𝜏𝑖𝜎𝑖

2) 

• (𝜃𝑖 , 𝛿𝑖,𝑗) ∈ {(𝑚1 × 𝜃𝑖 ,𝑚2 × 𝛿𝑖,𝑗)):𝑚1, 𝑚2 = 1,2,… ,20}.   
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• 𝑀𝑖 shows the number of states for each component.  

We also investigate the impact of two critical factors on the performance of 𝑅𝑈𝐿 prediction 

approach. These two factors, the level of the degradation signal noise and the value of the 

degradation interaction, are changed by changing the values of 𝑚1 and 𝑚2. We simulate 

degradation paths of three components for different systems considering different parameter 

settings.  

The simulated degradation data set for three components of different systems is divided 

into two groups. One group is the historical degradation dataset and another one is the test 

degradation dataset for different systems. The first group will be used to compute the 𝑅𝑈𝐿 of the 

test systems. First, we investigate the impact of the different levels of 𝐾 and training size on the 

𝑅𝑈𝐿 prediction of a system. Table 4.2 shows the 𝑀𝑆𝐸 computed at three life percentiles (50%, 

70%, and 90%) for different value of 𝐾. For example, the 50th life percentile implies that 50% of 

the system’s lifetime was attained at the time the prediction was evaluated. As we see, the 𝐾 = 2 

is the best value for KNN algorithm that leads to minimum 𝑀𝑆𝐸 values. 

Table 4.2: Prediction error for different 𝐾 values in a parallel system at three life percentiles  

 𝑀𝑆𝐸 

𝐾 50% 70% 90% 

1 29.5532 25.627 21.0386 

2 16.0416 15.7266 14.2064 

3 18.6172 18.594 17.0316 

4 19.6778 17.4674 16.2812 

5 24.3358 20.9458 17.5464 

6 26.5228 22.1388 17.7522 

 

Moreover, to verify the capability of the proposed approach to provide accurate 𝑅𝑈𝐿 

predictions, we compute the 𝑀𝑆𝐸 for 50 test trajectories considering different number of training 

trajectories. Although increasing the training size leads to smaller 𝑀𝑆𝐸, the value of 𝑀𝑆𝐸 in case 
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of limited number of training trajectories is still good enough (Figure 4.3). To determine the 

optimal training size, we must consider both the cost of collecting more training data and the value 

of the getting more accurate 𝑅𝑈𝐿 prediction. As we see, for training size bigger than 40, the change 

in 𝑀𝑆𝐸 value is not significant. Therefore, the decision makers must choose the optimal training 

size based on the degree of importance of the system 𝑅𝑈𝐿 prediction and the available budget.  

 
Figure 4.3: Comparison of the MSE value for different training size when 𝐾 = 2 

 

After determining the best value of 𝐾, we predict the 𝑅𝑈𝐿 for different test systems. As 

shown in Figure 4.4 for one series system at different life percentiles (10%,20%,30%,… , 90%), 

the estimated 𝑅𝑈𝐿 is reasonably close to the true 𝑅𝑈𝐿. Moreover, for 50 test systems, their 

predicted 𝑅𝑈𝐿 and true 𝑅𝑈𝐿 at 50% life percentile are shown in Figure 4.5.  

 
Figure 4.4: True and predicted 𝑅𝑈𝐿 for a series system 
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Figure 4.5: True and predicted 𝑅𝑈𝐿 for 50 test systems at 50th life percentile 

 

As mentioned before, the level of the degradation signal noise and the value of the 

degradation interaction are two main model parameters. Therefore, we evaluate the prediction 

errors for different levels of these two parameters as shown in Figure 4.6. The prediction errors 

are computed for 50 test systems for 20 different levels of parameters. As we see, the 𝑀𝑆𝐸 values 

increase as the value of signal noise increases (𝑚1). However, a different trend of the change in 

the 𝑀𝑆𝐸 values can be seen when the value of interaction (𝑚2) increases. Interestingly, our 

approach performs better when the effects of degradation interactions become more significant. 

We believe that one of the primary reasons for this improvement is that one component becomes 

critical component, i.e., most of the time this component (for example, 𝐶3) fails first and leads to 

failure of the series system. 

 
Figure 4.6: MSE values for different values of 𝑚1 and 𝑚2 
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To demonstrate the effectiveness of our approach, we calculated the mean parentage error 

(𝑀𝑃𝐸) using the method in [10]  and compared the obtained results with their results as shown in 

Table 4.3. The 𝑀𝑃𝐸 for different life percentiles using our approach is close or smaller than their 

𝑀𝑃𝐸. We can conclude that our approach outperforms their approach even. Another advantageous 

of our approach is that we did not make any assumption about the interaction between components. 

Therefore, it can be used when the degradation interaction is not necessarily constant and may 

change during the time. We solved the problem for a series system when the interaction between 

components is a function of age of the system. The mean prediction error for 50th, 70th, and 90th of 

life of the system are less than 1%. It shows that our approach is capable of successfully predicting 

the 𝑅𝑈𝐿 of system with different types of interaction between its components using historical 

degradation-to-failure. 

Table 4.3: Comparison results for three life percentiles when (𝑚1 ,𝑚2) = (20,20) 
Life percentile  50% 70% 90% 

𝑀𝑃𝐸 of our approach  2.6% 2.29% 2.01% 

𝑀𝑃𝐸 of approach in [10] 25% 12% 7% 

  

4.5. Summary 

In this chapter, we presented a data-driven approach for 𝑅𝑈𝐿 estimation of a complex 

system composed of S-dependent components using a similarity-based matching method. The 

proposed approach was successfully applied to predict the 𝑅𝑈𝐿 of simulated systems. The results 

showed that the approach can be applied for 𝑅𝑈𝐿 prediction of highly complex systems without 

prior expertise on the system behavior and the failure threshold. One limitation of our approach is 

the need to have big training trajectories, which can be a problem in some systems with limited 

history.  
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5. SELECTIVE MAINTENANCE OPTIMIZATION FOR MULTI-STATE SYSTEMS 

OPERATING IN DYNAMIC ENVIRONMENTS 4 

This chapter deals with the selective maintenance of a multistate series system working 

under time-varying environmental/operating conditions. The operating conditions are evolving 

dynamically during the mission and influence the degradation rate of each component and the 

whole system [83].  

5.1. Introduction  

Many complex systems consisted of multiple components such as wind turbines and power 

generation systems have to perform multiple consecutive missions [48]. As the components of the 

system deteriorate with usage, their reliability decreases. During the interval between any 

successive missions, the maintenance actions can be performed to keep the system in normal state 

and increase the probability of successfully executing the next mission. Since there are limited 

resources for the maintenance activities during the maintenance break, it is important to decide on 

the best maintenance strategy (e.g., the subset of components to maintain, the level of maintenance 

actions, etc.) considering the system's requirements. Research on selective maintenance has been 

focused on developing optimization frameworks and statistical models to intelligently distribute 

maintenance resources across all components of a system [40], [48], [54], [56], [60].  

 

 

4 The present chapter is based on the following paper:  

A. F. Shahraki and O. P. Yadav, “Selective Maintenance Optimization for Multi-State Systems 

Operating in Dynamic Environments,” published in 2018 Annual Symposium on Reliability and 

Maintainability (RAMS).  

Contribution of Ameneh Forouzandeh Shahraki: developing the mathematical models, analysis 

of the case study, discussion of the results, and drafting the paper. Contribution of Om Yadav 

verification of the results and proofreading the draft paper. 
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Most of the studies on selective maintenance have assumed that the operating conditions 

remain constant during the entire mission time or have no effect on the degradation and failure 

processes of the system. In practice, the operating conditions vary stochastically during the mission 

time and the system may be exposed to different operating conditions [84]. Under such 

circumstances, the degradation and failure process of the system can greatly decelerate or 

accelerate. For example, temperature changes directly affect the characteristics of electromagnetic 

relays and increase their degradation rate. For another example, an air conditioning system used 

in a warehouse operates at different power levels, depending on the external environment, to keep 

the warehouse temperature at a certain level. Generally, if a system works at a higher load, it will 

have a higher degradation rate [85]. Therefore, it is important to model the evolution of operating 

condition and capture its influence on the degradation process of the system.  

Observing that the operating condition often varies alternatively and cyclically, some 

researchers introduced a regime switching model to depict systems operating under time-varying 

operating condition, where the evolution process of the operating condition is modeled by a 

Markov process. In [86] a Markov regime switching model was used to describe two alternative 

environments. Later, this model was extended by considering a system that operates cyclically in 

multiple environments [81],[83],[84]. Generally, the effect of the operating condition is considered 

by modeling that one or more degradation parameters will vary with operating condition. Cekyay 

and  ̈Ozekici [87] considered a multi-state system, where the operating condition would affect the 

transition rate matrix of system states. Zhu et al. [89] adopted a Gamma process to model the 

degradation process and assumed that the operating conditions would affect the shape parameter 

of the Gamma process. Bian et al. [88] introduced the future operating profile into the drift 

coefficient in the Wiener process. In these studies, the consequence of operating condition on the 
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degradation process is independent of the current system degradation state. However, in many 

situations, the consequence of operating condition could vary at different health states due to 

varying strength of the system. Taking the fatigue crack growth for example, the consequence of 

loading condition is lower in the initial period of fatigue crack compared to next periods.  

Recently, a load and state dependent degradation rate model was proposed in [90] that 

captures the effects of the load applied on a component and its degradation state on the degradation 

rate of the component. One drawback of the defined model is that a degraded component compared 

to a new one has a lower degradation rate. However, as the component’s degradation level 

increases, the degradation rate of the component might increase, and the component resistance to 

failure might be reduced. Moreover, it was assumed that the load applied on the component is 

comprised of two parts: a known base-load profile that represents the load trend in the next mission 

and a random variation that captures the uncertainty associated with the future loading conditions. 

For many operating conditions like usage profiles, it is difficult to clearly determine the base 

function in the next mission. 

In this chapter, we extend the previous models by capturing the effects of age and 

degradation state (cumulative damage) of each component, as well as the effects of dynamic 

operating conditions on the degradation rate. A convenient method to integrate these effects in the 

degradation modeling is applying the proportional hazards (PH) model. PH model has been widely 

applied in the area of reliability analysis for various critical engineering systems [14][91]. The PH 

model uses internal and/or external covariates to compute the hazard rate function or instantaneous 

risk of failure over time [92]. We treat the degradation state as the internal covariate in the PH 

model. The degradation process of each component is modeled as a discrete degradation process 

by a multi-state deteriorating Markov process. When a component degrades gradually from one 
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state to another one, its cumulative damage starts increasing, which influences the degradation rate 

of the component. On the other hand, we consider the operating condition of the system as the 

external covariate in PH model. The dynamic operating condition in the next operating mission is 

modeled as a homogeneous Continuous-Time Markov Chain (CTMC) whose state dwell times are 

random. Since the degraded components compared to new ones are more vulnerable to harsh 

operating conditions, we consider that the effect of operating condition on the degradation rate of 

each component depends on its degradation state. Our model overcomes the identified limitations 

of previously studied models. We use the proposed model to determine the best maintenance 

strategy of a multi-state series system working under dynamic operating condition.   

5.2. Proposed Approach  

We consider a complex system that consists of 𝑁 multi-state components connected in 

series structure that reflects many real-world applications. Each component 𝑖 (𝑖 = 1,2, . . , 𝑁) has 

𝐾𝑖 + 1 different states 𝑠𝑖(= 0,1,… . , 𝐾𝑖) with different performance rates, 𝑔𝑖,𝑠𝑖 . The state 𝐾𝑖 is the 

perfect functioning state, the state 0 is the failure state, and the states between 0 and 𝐾𝑖 are the 

intermediate states of the 𝑖𝑡ℎcomponent. It is considered that transitions are only left-to-right, and 

a component goes from state 𝑘 to its next lower state 𝑘 − 1 before moving to state 𝑘 − 2. In a 

series system, failure of one component leads to the system failure. The state of the system at each 

time is defined as the state of its most degraded component.   

The system operates under dynamic operating conditions. The operating conditions vary 

stochastically according to CTMC with 𝑀 states. At each time, the system’ operating condition 

occupies one of the 𝑀 states. We assume that the total number of operating states is 𝑀 = 3. The 

state transition diagram of a multi-state component working in multi-state operating condition is 

shown in Figure 5.1. 𝜇𝑚,𝑛 is the transition rate of the operation condition from state m to state n 
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(𝑚 ≠ 𝑛) and 𝜇𝑚 = ∑ 𝜇𝑚,𝑛𝑚≠𝑛  is the total rate of leaving state m (𝑚 = 0,1,2). The transition rates 

of the operating condition can be obtained from historical data of previous missions. 𝜆𝑖,𝑘,𝑧 is the 

transition rate or failure rate of 𝑖𝑡ℎ component from state 𝑘 to lower state 𝑘 − 1 in condition state 

𝑧(z = 0,1,… ,M). The transition rate of each component depends on two states involved in the 

transition, the age of the component, and the state of the operating condition that their effects are 

captured using PH model. 

 
Figure 5.1: The state transition diagram of a multi-state component in CTMC operating 

conditions with 3 states 

 

The PH model is a convenient and widely used method to model hazard depending on 

covariates and recently has received attention from researchers in the reliability field. The basic 

PHM is given as: 

𝜆(𝑡; 𝒛(𝑡)) = ℎ0(𝑡)exp (𝜸𝒛(𝑡))                                         (5.1) 

where: 

•  𝜆(𝑡; 𝒛(𝑡)) is the hazard rate at time t for a component with covariates 𝒛(𝑡). 

•  𝒛(𝑡) is a vector of time dependent covariates such as temperature, humidity, and 

pressure 

• exp (𝜸𝒛(𝑡)) is an adjusting functional term that considers the key covariates and 

their weights. 
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•  𝜸 is the vector of regression coefficients indicating the degree of influence of each 

covariate on the hazard function. 

•  ℎ0(𝑡) represents the baseline hazard rate function.   

For many electrical components such as intermediate relays, the failure rate at time 

𝑡 depends on the degradation state (internal covariate) of the relay at time 𝑡 and the operating 

conditions experienced by them such as temperature (external covariate). Moreover, a degraded 

relay compared to a new one is more vulnerable to a higher temperature, i.e., the coefficient of 

external covariate depends on the degradation state. Therefore, we integrate the effects of both 

internal and external covariates at time t by modifying the Equation (5.1) as follows: 

𝜆𝑖
𝑟(𝑡, 𝑠𝑖(𝑡), 𝑧(𝑡)) = 𝜆0,𝑖(t)exp (𝜃𝑖 ∗ (𝐾𝑖 − 𝑠𝑖(𝑡))exp (𝑓(𝐾𝑖 − 𝑠𝑖(𝑡)) ∗ 𝑧(𝑡))           (5.2) 

where exp (𝜃𝑖 ∗ (𝐾𝑖 − 𝑠𝑖(𝑡)) captures the effects of cumulative damage, which is the difference 

between the perfect state 𝐾𝑖 and the current state 𝑠𝑖(𝑡), on the failure rate, and 𝜃𝑖 is the regression 

coefficient indicating the degree of influence of the cumulative damage of component i on its 

failure rate. exp (𝑓(𝐾𝑖 − 𝑠𝑖(𝑡)) ∗ 𝑧(𝑡)) captures the effect of operating condition (𝑧(𝑡)) on the 

failure rate at time 𝑡, and 𝑓(𝐾𝑖 − 𝑠𝑖(𝑡)) is non-decreasing function of cumulative damage that 

shows the influence of operating condition on the failure rate at time 𝑡. Here, we assume the 

baseline hazard function of component 𝑖 follows an exponential distribution with constant rate 𝜆0,𝑖. 

The exponential terms in Equation (5.2) can be replaced by any function depending on the physics 

of failure.  

After modeling the transition rates of multi-state components considering internal and 

external covariates, we estimate the reliability of MSS at the end of mission. The system reliability 

can be defined as the probability that it successfully completes the next mission with duration 𝜏. 

In the series structure, the system fails when any of its components fails. As the components are 
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independent, the reliability of each component (𝑅𝑖(𝑡)) and the reliability of the system (𝑅𝑠(𝑡)) at 

time 𝑡 are shown as: 

𝑅𝑖(𝑡) = Pr(𝑠𝑖(𝑡) ≥ 1) = ∑ Pr (𝑠𝑖(𝑡) = 𝑘)
𝐾𝑖
𝑘=1                                    (5.3) 

𝑅𝑠(𝑡) = ∏ 𝑅𝑖(𝑡) = ∏ Pr(𝑠𝑖(𝑡) ≥ 1) = ∏ ∑ Pr (𝑠𝑖(𝑡) = 𝑘)
𝐾𝑖
𝑘=1

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1                 (5.4) 

Since the operating condition is not stable during the mission, it is not possible to find the 

state probabilities by developing the system of differential equations as in [62]. The state of each 

component varies stochastically during the mission. Thus, a Monte-Carlo simulation (MCS) 

algorithm is proposed to estimate the reliability of system working in dynamic operating condition. 

The MCS method is based on the generation of random numbers repeated many times, and the 

occurrence number of a specific condition of interest is counted. Given the state of operating 

condition at the beginning of the mission, we simulate for 𝑁𝑀𝐶𝑆
1  times the operating conditions that 

the system may encounter during the mission. For each simulated condition, the sequence of 

operating states in the next mission is known, and only the dwell time for each state (time spent in 

each state) is a random variable, which is exponentially distributed by the mean of 1/𝜇𝑚. Then, 

we compute the reliability of system for each deterministic operating condition by dividing the 

mission time into smaller time intervals ∆𝑡. The state of the system and its components at the 

beginning of the mission are known 𝑆𝑠(0) = 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑁]. At each time interval, 

component 𝑖 stays in its current state 𝑠𝑖 with probability 𝑝𝑖(∆𝑡, 𝑠𝑖), and goes to lower sate by the 

probability 1 − 𝑝𝑖(∆𝑡, 𝑠𝑖). This probability for component 𝑖 (𝑖 = 1,2,… , 𝑁) can be approximated 

as follows: 

𝑝𝑖(∆𝑡, 𝑠𝑖) = 𝑃𝑟{𝑠𝑖(t + Δt) = 𝑠𝑖|𝑠𝑖(t) = 𝑠𝑖 , 𝑧(𝑡) = 𝑚 } ≈ 𝑒−𝜆𝑖
𝑟(𝑡,𝑠𝑖,𝑚)∗Δt             (5.5) 

It is assumed that the state of the operating condition does not change in a very small 

interval Δt. We model the transition of component 𝑖 at each time interval by generating a random 
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number 𝑈 ∼  𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1). If 𝑈 is greater than 𝑝𝑖, the transition occurs in the small time interval 

and changes the state of the component 𝑖 from state 𝑠𝑖 to state 𝑠𝑖 − 1. When the state of each 

component and/or the state of operating condition changes, it will influence the transition rate of 

the component. Therefore, we update the transition rates using Equation (5.2) and use them in 

Equation (5.5) to compute the transition probabilities of each component for the next time interval. 

The process stops when the time reaches the end of mission or any of the components fail. We run 

the simulation for 𝑁𝑀𝐶𝑆
2  times and calculate the reliability of the system for each operating 

condition given that the state of the system at the beginning of the next mission is 𝑆𝑠(0) = 𝑋 as:  

𝑅𝑆
𝑢|𝑋 = 1 − 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑒𝑑

𝑁𝑀𝐶𝑆
2 , u = 1,… ,N𝑀𝐶𝑆

1                          (5.6) 

Then, the expected system reliability in the next mission is calculated as:  

�̅�𝑠|𝑋 =
∑ (𝑅𝑆

𝑢|𝑋)
N𝑀𝐶𝑆
1

𝑢=1

N𝑀𝐶𝑆
1                                                          (5.7) 

In selective maintenance problems, maintenance actions can be performed to make the 

system ready for the next mission. During the maintenance break, one of these maintenance actions 

can be performed on each component: do-nothing (𝑥𝑖 = 𝑦𝑖), replacement with new component as 

corrective or preventive maintenance actions (𝑥𝑖 = 𝐾𝑖), and imperfect maintenance actions (𝑦𝑖 <

𝑥𝑖 < 𝐾𝑖). The cost 𝑐𝑖(𝑦𝑖 , 𝑥𝑖) and time 𝑡𝑖(𝑦𝑖 , 𝑥𝑖) of each maintenance action performed on 

component 𝑖 depend on the current state 𝑦𝑖 and state after maintenance 𝑥𝑖. Given the state of the 

system at the beginning of the maintenance break (𝒀 = (𝑦1, 𝑦2, … , 𝑦𝑁)), the goal is to find the 

states of the system at the beginning of the next mission (𝑿 = (𝑥1, 𝑥2, … , 𝑥𝑁)) in order to maximize 

the expected system reliability (𝑅̅̅ ̅𝑆) in the next mission considering the maintenance time and 

budget limitations (𝑇0, 𝐶0). The integer nonlinear optimization problem to find the best 

maintenance strategy is formulated as: 
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{
 
 
 

 
 
 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 �̅�𝑆                                                 
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                       

𝑇𝑀(𝑿) = ∑ 𝑡𝑖(𝑦𝑖 , 𝑥𝑖)
𝑁
𝑖=1 ≤ 𝑇0                    

𝐶𝑀(𝑿) = ∑ 𝑐𝑖(𝑦𝑖 , 𝑥𝑖)
𝑁
𝑖=1 ≤ 𝐶0                     

𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝐾𝑖            ∀ 𝑖 = 1,2,…𝑁        
𝑥𝑖 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                                              

                              (5.8) 

where 𝑇𝑀(X) and 𝐶𝑀(X) are the total maintenance time and cost, respectively. Solving the above 

model is time-consuming, especially for large systems, due to the difficulty of estimating the 

reliability of the system. Therefore, we use a two-phase solution approach. First, we generate all 

feasible patterns of the components, feasible combination of components, and related maintenance 

actions to be performed. Then, the evolutionary algorithm is used to find the best maintenance 

strategy that maximizes the system reliability.  

5.3. Numerical Example and Results 

To illustrate the practical value of the proposed approach, we apply the present model to 

find the optimal selective maintenance strategy for a series system composed of two components 

(𝑖 = 1,2). Each component has four states (𝑠𝑖 = 0,1,2,3) with corresponding performance rates 

(𝑔𝑖 = 0,1,2,3). The basic transition rate 𝜆0,𝑖 and the value of 𝜃𝑖 for each component are provided 

in Table 5.1. The state of the components of the system at the beginning of the maintenance break 

is 𝑌 = [1,1]. The demand level for this system is 𝐷 = 1. 

In the next mission, the operating condition evolves dynamically according to CTMC by 

the transition rates given in matrix form as Equation (5.9). The state of environmental condition at 

the beginning of the operational mission is 𝑧(𝑡) = 0.  

𝑄 = [
−0.4
0.2
0.1

0.2
−0.3
0.3

0.2
0.1
−0.4

 ]                                                          (5.9) 
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In our study, the function 𝑓 in the Equation (5.2) is defined as Equation (5.10) and the 

value of 𝛽𝑖 for each component is given in Table 5.1.  

𝑓(𝐾𝑖 − 𝑠𝑖(𝑡)) =
𝛽𝑖𝐾𝑖

𝑠𝑖(𝑡)
                                                       (5.10) 

Table 5.1: The transition rates of components & PH model parameters 

Component   𝑖 =  1 𝑖 = 2  

Transition rate λ0,𝑖 (/hours)  0.01 0.02 

𝜃𝑖 0.05 0.04 

𝛽𝑖 0.5 0.4 

 

The maintenance cost and time for each component are given as follows:  

𝐶1 = [

0 4.5 9 14.5
0 0 4 12
0 0 0 9.5
0 0 0 0

] , 𝐶2 = [

0 3 8.5 15
0 0 6 12
0 0 0 4.5
0 0 0 0

] 

𝑇1 = [

0 0.5 1 1.5
0 0 0.5 1
0 0 0 0.5
0 0 0 0

] , 𝑇2 = [

0 0.5 1 1.5
0 0 0.5 1
0 0 0 0.5
0 0 0 0

] 

The goal is to find the best selective maintenance actions considering the maintenance time 

limit 𝑇0 = 1 (in hours) and maintenance budget limit 𝐶0 = 12 (in $1000) to get the maximum 

expected system reliability in the next mission with duration 𝜏 =  15 (hours). 

To show the impact of variable operating conditions on the failure rate and the dependence 

between operating conditions and the degradation state of the components, we consider three 

different scenarios. In the first scenario, the operating condition is stable in the next mission (𝑧 =

0). In the second and third scenarios, the operating conditions are variable and the sequence of the 

operating condition states in the next mission is known as 0 → 1 → 2 → 0. In the second scenario, 

the effect of operating conditions on the failure rate of each component is independent of its 

degradation state and the function f is defined as 𝑓(. ) = 𝛽𝑖. However, in the third scenario, the 
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dependence between operating conditions and the degradation state of the components is captured 

using Equation (5.10).  

Using the given input data, the problem is solved using Matlab R2016a. To compute the 

reliability of the system, we use 𝑀𝐶𝑆 with sample size 𝑁𝑀𝐶𝑆
1 = 100 and 𝑁𝑀𝐶𝑆

2 = 1000. The results 

of three scenarios are shown in Table 5.2 for all nine different possible states of the system at the 

beginning of the next mission. As can be observed, the estimated system reliability in the first 

scenario is higher than the second and third ones. It shows that assuming the operating condition 

is stable during the next mission when it is varying stochastically, leads to overestimation of the 

system reliability. In addition, comparing the expected system reliability in the scenario 2 with 

scenario 3 shows the importance of considering the dependence between operating condition and 

the degradation state of the components. 

Table 5.2: The expected system reliability for three scenarios 

𝑠1 𝑠2 Scenario1 Scenario 2 Scenario3 𝐶𝑀 𝑇𝑀 

1 1 0.7151 0.6318 0.3219 0 0 

1 2 0.8283 0.7693 0.4342 6 0.5 

1 3 0.8499 0.8 0.5214 12 1 

2 1 0.842 0.7823 0.6846 4 0.5 

2 2 0.9773 0.9583 0.8933 10 1 

2 3 0.988 0.9758 0.9238 16 1.5 

3 1 0.8605 0.8105 0.7945 12 1 

3 2 0.9906 0.9797 0.9737 18 1.5 

3 3 0.9992 0.998 0.9934 24 2 

 

Based on the maintenance time and budget constraints, only some of the nine possible 

states are feasible solutions. The system state 𝑿 =  [2,2], performing imperfect maintenance 

actions on both components, is the optimal solution with reliability of 0.8933. If the decision 

makers are looking for a solution with higher system reliability, they must increase the budget 

and/or time limitation during the maintenance break. For example, if the desired system reliability 
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is 0.9, they must increase the maintenance budget limit to 16 unit to get the state 𝑋 = [2,3] with 

reliability 0.923. 

We assumed that the sequence of operating states in the next mission is known. In some 

cases, we just know the number of times that the system might encounter different states of 

operating condition and their order is unknown. For this case, we use our approach considering all 

the possible sequences to compute the average of system reliability. We consider that the number 

of visits to states 0, 1, and 2 are two, one, and one, respectively. Therefore, there are four different 

sequences given the beginning state is 𝑧 = 0 as: 

•  Sequence 1: 0 → 1 → 2 → 0,  

•  Sequence 2:  0 → 1 → 0 → 2,  

•  Sequence 3:  0 → 2 → 0 → 1,  

•  Sequence 4:  0 → 2 → 1 → 0.  

Table 5.3: The expected system reliability for four sequences 

𝑠1 𝑠2 Sequences �̅�𝑆 

1 2 3 4  

1 1 0.3219 0.5182 0.5999 0.6289 0.5172 

1 2 0.4342 0.6929 0.7432 0.7729 0.6608 

1 3 0.5214 0.7241 0.7619 0.7985 0.7014 

2 1 0.6846 0.7118 0.7572 0.7754 0.7322 

2 2 0.8933 0.9276 0.9418 0.958 0.9301 

2 3 0.9238 0.9564 0.9672 0.9754 0.9557 

3 1 0.7945 0.7527 0.7829 0.8063 0.7841 

3 2 0.9737 0.964 0.9712 0.9766 0.9713 

3 3 0.9934 0.9941 0.9961 0.9968 0.9951 

 

The system reliability for each sequence and their average are given in Table 5.3. The best 

maintenance strategy between all feasible solutions is performing imperfect maintenance actions 

on both components to get 𝑿 = [2, 2] with reliability 0.9301. The system reliability has different 
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values for each sequence. If the operating conditions are controllable, we can find the best 

sequence to increase the system reliability. In this case, the order of operating conditions could be 

another decision variable. 

5.4. Summary 

This chapter considered the selective maintenance problem for multi-component series 

systems with multi-state components functioning in multi-state operating conditions. The effects 

of operating condition and cumulative damage on the transition or failure rates were discussed. 

We presented a selective maintenance optimization model to capture the mean of system reliability 

as an objective function subjected to time and cost of maintenance actions. MCS was used to 

compute the expected reliability of the system in the next operating mission. 

The numerical study showed that the proposed approach can effectively capture the effects 

of dynamic operating conditions to get a reasonable estimation of system reliability and find the 

best maintenance strategy. Indeed, the results showed that neglecting the effect of dynamic 

operating conditions leads to overestimating the system reliability. Note that the problem discussed 

in this chapter can be considered a special case of a phased mission system (PMS) with two random 

variables, the sequence of the phases and the duration of phases.  
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6. USING LSTM NEURAL NETWORK TO PREDICT REMAINING USEFUL LIFE OF 

ELECTROLYTIC CAPACITORS IN DYNAMIC OPERATING CONDITIONS 5 

A critical aspect of prognostics and health management is predicting the remaining useful 

life (𝑅𝑈𝐿). The existing 𝑅𝑈𝐿 prediction techniques for aluminum electrolytic capacitors mostly 

assume the operating conditions remain constant for the entire prediction timeline. In practice, the 

electrolytic capacitors experience large variations in operating conditions during their lifetime that 

influence their degradation process and 𝑅𝑈𝐿. This chapter proposes a method based on deep 

learning for 𝑅𝑈𝐿 prediction. The proposed framework uses the original condition monitoring and 

operating condition data without the necessity of assuming any particular type of degradation 

process and, therefore, avoiding the requirement of establishing a link between model parameters 

and operating conditions. The proposed framework first identifies the degrading point and then 

develops the Long Short-Term Memory (LSTM) model to predict the 𝑅𝑈𝐿 of capacitors. The 

LSTM-based method can reduce computational time and complexity while ensuring high 

prediction performance. Its effectiveness is demonstrated by utilizing the simulated degradation 

process and temperature condition time series of aluminum electrolytic capacitors used in electric 

vehicle powertrains [93].  

 

 

5 The present chapter is based on the following paper:  

A. F. Shahraki, S. Al-Dahidi, A. R. Taleqani, and O. P. Yadav, “Using LSTM neural network to 

predict remaining useful life of electrolytic capacitors in dynamic operating 

conditions,”published in Proceedings of the Institution of Mechanical Engineers, Part O: Journal 

of Risk and Reliability, 2022. 

Contribution of Ameneh Forouzandeh Shahraki: developing the mathematical models, analysis 

of the case study, discussion of the results, and drafting the paper. Contribution of Sameer Al-

Dahidi, Ali RahimTaleqani, and Om Yadav: analysis and verification of the results and 

proofreading the draft paper. 
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6.1. Introduction 

The prognostics and health management (PHM) discipline focuses mainly on predicting 

the remaining useful life (𝑅𝑈𝐿) of a system based on condition monitoring data or degradation 

signals [12][69]. The reliable and accurate prediction of 𝑅𝑈𝐿 helps formulate the best preventive 

maintenance strategy to increase system reliability and safety, and to avoid sudden system 

shutdowns [70][4]. In general, 𝑅𝑈𝐿 prediction can be implemented using model-based and/or data-

driven approaches [14][71][72]. The model-based approaches involve explicit mathematical 

functions, established empirical, or analytical models to capture the degradation and failure 

behavior of the system. On the other hand, data-driven approaches rely on historical data when it 

is impossible to apply the domain knowledge of system failure behavior, or the system complexity 

is very high Data-driven approaches are relatively easy to be generalized and have recently become 

more attractive with advances in sensor technologies and data analyses methods. 

More recently, the use of power electronic modules in various critical engineering systems 

has grown significantly [94][95]. This has resulted in increased focus on the design and 

development of more reliable power electronic devices. At the same time, research on reliability 

analysis of power electronic systems and 𝑅𝑈𝐿 prediction of their components has gained 

momentum to support these efforts and ensure safe and reliable applications. Among the critical 

components of power electronic system, the aluminum electrolytic capacitor is responsible for 

almost 30% of the total failure incidents [94][96]. It is, therefore, vital to develop an effective 

approach for predicting 𝑅𝑈𝐿 of capacitors to prevent any catastrophic failures of critical 

engineering systems. 

The existing literature on 𝑅𝑈𝐿 prediction of electrolytic capacitors often relies on building 

degradation models using observed signals and subsequently estimating 𝑅𝑈𝐿 given a predefined 
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failure threshold. For example, Celaya et al. [97] developed a RUL prediction approach of 

electrolytic capacitors using Kalman filter. The authors applied a nonlinear least-squares 

regression algorithm to estimate the parameters of an exponential degradation model [98]. Later, 

Qin et al. [99] proposed an adaptive and robust prediction method to estimate the health state of 

electrolytic capacitors and predict 𝑅𝑈𝐿 using a combination of Verhulst and exponential models. 

The unscented Kalman filter was applied to generate proposal distribution of the particle filter to 

track degradation path. In general, these studies have three critical limitations. First, most have 

considered a simple exponential model to capture the degradation process limiting their use in 

modeling the degradation phenomena of complex systems [99]. Another cause of concern is the 

use of experimental data from controlled laboratory conditions to estimate the model parameters. 

These data may differ significantly from data of actual field operating conditions because of 

ignoring different sources of uncertainty. Finally, the 𝑅𝑈𝐿 prediction performance is impacted by 

assuming constant operating conditions during the lifetime of the electrolytic capacitors and/or 

difficulties in developing specific links between the degradation model parameters and dynamic 

operating conditions [84], [88], [100]–[105]. In reality, the operating conditions such as ambient 

temperature, humidity, or operating profiles vary significantly during the usage time and therefore, 

affect the life of the system. For example, the degradation rate of  electrolytic capacitors is greater 

at higher temperatures leading to shorter lifespans compared to electrolytic capacitors at lower 

temperatures [96][106]. On the other hand, the equivalent series resistance (ESR) of the capacitor 

increases during the aging process resulting in rising core temperatures and causing further 

acceleration of the aging process. These interactions among the capacitor degradation process, 

core temperature, and the operating conditions cannot be easily captured through mathematical 

modeling. 
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This chapter proposes a framework to predict the 𝑅𝑈𝐿 of the aluminum electrolytic 

capacitors considering dynamic operating conditions and degradation signals. The proposed RUL 

prediction model adopts methods that can capture the complex relationships between inputs and 

outputs, as well as the sequential dependencies in time series data. To process the sequential data, 

recurrent neural networks (RNN) have been used recently in 𝑅𝑈𝐿 prediction approaches [107], 

[108]. RNNs preserve, learn, and record historical information in sequence data through the 

periodic connection of the hidden layer nodes. However, one major drawback of standard RNNs 

is that error gradients vanish as they back propagate through multiple time steps making the 

learning of long-term relationships nearly impossible. The LSTM network, as a variant of RNN, 

is designed to handle these long-term dependencies more efficiently than standard RNNs [109]. 

The gating mechanism in LSTM regulates the flow of information through time and enables the 

network learning to keep, remove, and update information. LSTM cell ensures the cell states keep 

both long- and short-term memories and will not be directly renewed as RNN does.  

There have been some efforts in the past using LSTM for 𝑅𝑈𝐿 [110] [111]. For example, 

Wu et al. [111] used the LSTM network to predict 𝑅𝑈𝐿 of four types of problems of aircraft 

turbofan engines. They found that the LSTM network outperformed other benchmark models such 

as multilayer perceptron, standard RNN, and gated recurrent unit (GRU). Ma et al. [112] presented 

a grid LSTM model to study the long-term and short-term fuel cell aging experiments. Liu et al. 

[113] used the LSTM model for predicting the 𝑅𝑈𝐿 of a PEMFC system. Huang et al. [114] 

proposed a bidirectional LSTM based framework for 𝑅𝑈𝐿 prediction of engines under multiple 

operating conditions. Despite the high accuracy of LSTM network for 𝑅𝑈𝐿 prediction, existing 

prediction models mostly assume that the system degradation starts from the moment operations 

are initiated, and therefore, 𝑅𝑈𝐿 decreases linearly with time from the beginning of system’s life. 

https://www.sciencedirect.com/topics/engineering/data-sequence
https://www.sciencedirect.com/topics/engineering/hidden-layer-node
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However, in practice, there are several systems including an electrolytic capacitor that have 

degradation free phase. Most of these systems start degrading after a certain usage time, which is 

called a degrading point (DP). Thus, it is important to detect degrading points and capture the 

degradation phenomenon while training the model to ensure it reflects the true behavior of the 

failure process. 

To address the identified concerns in the current 𝑅𝑈𝐿 prediction approaches for electrolytic 

capacitors and overcome the limitation in existing LSTM models in the application of RUL 

prediction, we propose a general LSTM-based framework. Since a particular model for the 

degradation process and any domain-specific prior knowledge are not necessary, the proposed 

framework provides a general approach that can be easily adopted for complex systems working 

in dynamic operating conditions. This framework first develops a method to detect the degrading 

points of capacitors and then uses the degradation data beyond the identified degrading points to 

establish the RUL prediction model. The incorporation of the degradation free phase improves the 

RUL prediction performance and accelerates the prediction speed by ignoring irrelevant data. The 

proposed method then uses the original degradation and operating condition data to directly predict 

the RUL of the capacitor at each time step. Hence, it removes the need of a hand-crafted feature 

extraction procedure, which can be an inexact and time-consuming exercise for complex systems. 

Thereafter, a weighted RUL prediction is calculated to get stable and realistic results. The weighted 

RUL prediction considers information closest to the prediction time as well as information from 

earlier times to reduce the excessive influence of the dynamic operating conditions. To the best of 

our knowledge, it is the first LSTM-based framework to predict RUL of the aluminum electrolytic 

capacitors considering dynamic operating conditions. The performance of the proposed approach 
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is examined with respect to evaluation metrics from the literature and computational efforts. The 

obtained results show the superiority of the proposed framework.  

6.2. Aluminum Electrolytic Capacitor Degradation Process 

The primary degradation process of aluminum electrolytic capacitors is the vaporization of 

the electrolyte caused by the change in the core temperature of the capacitor. This causes regions 

of the capacitor plates to dry out decreasing the effective contact surface area between electrode 

and electrolyte resulting in an increase of the ESR of the capacitor. The continued increase in the 

ESR value indicates the capacitor degradation state. For many applications, capacitor failure is 

considered to occur when the ESR increases by 200% of its initial value [115] [116].  

In Zhou et al.[117] and Abdennadher et al.[118], the exponential model is used to capture 

the aging of capacitor at a constant temperature T as:  

𝐸𝑆𝑅𝑡(𝑇) = 𝐸𝑆𝑅0(𝑇). 𝑒
𝐶(𝑇).𝑡                                                (6.1) 

where 𝐸𝑆𝑅0(𝑇) is the initial ESR value of a capacitor at T, 𝑡 is the age of the capacitor, and 𝐶(𝑇) 

describes a temperature-dependent coefficient (degradation rate) of the capacitor. 𝐶(𝑇) is 

expressed as: 

𝐶(𝑇) =
𝐶0.𝑒

−𝐸𝑎2

𝑘.𝑇
                                                               (6.2) 

where 𝐶0 is base degradation rate, 𝐸𝑎2  is the activation energy, and 𝑘 is the Boltzmann constant. 

𝐸𝑆𝑅0(𝑇) is related to the capacitor’s geometry and basic material properties and expressed as: 

𝐸𝑆𝑅0(𝑇) =
𝑑

𝐴𝑐𝑎𝑝.𝜎
                                                           (6.3) 

where 𝐴𝑐𝑎𝑝  is the surface area of the electrolytic capacitor, d is the average distance, and 𝜎 is the 

conductivity which is a function of temperature.  
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Interestingly, the initial increase in ESR will cause further increase in the core temperature 

of the capacitor due to more dissipation power loss. This additional increase in core temperature 

further accelerates the degradation process, i.e., the capacitors with higher core temperatures will 

have higher degradation rate. Hence, it is important to consider both the increase in ESR and the 

core temperature to evaluate the performance of a capacitor. In Sun et al. [106], the core 

temperature of the electrolytic capacitor is considered to continuously rise as a function of time 

during the aging process. To get the accumulated ESR with consideration of the time-variable 

temperature, the Equation (6.1) is modified as 𝐸𝑆𝑅𝑡(𝑇(𝑡)) = 𝐸𝑆𝑅0(𝑇). 𝑒
∫ 𝐶(𝑇(𝑡)).𝑡
𝑡
0 . The operating 

temperature is assumed to be constant, and ESR is measured at constant temperature ignoring the 

effect of the measurement temperature. However, besides the degradation phenomena of the 

electrolytic capacitor, the measured ESR value can also change with the operating temperature 

even at its perfect state. This change can be explained by the increase of the electrolyte 

conductivity, which leads to the reduction in the ESR at higher temperature [119]. Therefore, the 

measured ESR value is not a suitable degradation indicator for a capacitor working in dynamic 

temperature conditions, especially at high temperatures. In Rigamonti et al.[96], the normalized 

ESR value (𝐸𝑆𝑅𝑡
𝑛𝑜𝑟𝑚), which is independent of the measurement temperature, is used as a 

degradation indicator. This indicator shows the relative variation of the measured ESR at time 

𝑡 (𝐸𝑆𝑅𝑡(𝑇)) with respect to 𝐸𝑆𝑅0(𝑇) at the same temperature T and is defined as: 

𝐸𝑆𝑅𝑡
𝑛𝑜𝑟𝑚 =

𝐸𝑆𝑅𝑡(𝑇)

𝐸𝑆𝑅0(𝑇)
                                                        (6.4) 

It is assumed that for a new capacitor, the relationship between the measured ESR and 

measurement temperature is known or can be easily obtained by performing a series of controlled 

laboratory tests. However, this relationship is either unknown, or finding a model that can capture 

the real relationship is not possible. Moreover, the core temperature of the electrolytic capacitors 
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is also influenced by operating temperature in addition to the power dissipation and thermal 

resistance of the capacitors [96]. The interactions between the capacitor degradation process, 

changes in the core temperature, and the operating temperature make RUL prediction of the 

capacitors a challenging issue that we address in the proposed framework.  

6.3. Proposed LSTM-Based Framework   

Given the original condition monitored sensor data from N electrolytic capacitors, the goal 

is to develop a RUL prediction model. Suppose 𝑺 = [𝑆1, 𝑆2, … , 𝑆𝑁]
𝑇represents the multivariate 

time series data of N capacitors. 𝑆𝑖 = [𝒔𝑖,1, 𝒔𝑖,2, … , 𝒔𝑖,𝑙(𝑆𝑖)]
𝑇contains the degradation data of 

capacitor 𝑖 and the operating conditions experienced by this capacitor during its lifetime, 𝑙(𝑆𝑖) time 

steps. For a test capacitor, 𝑆𝑡𝑒𝑠𝑡 = [𝒔𝑡𝑒𝑠𝑡,1, 𝒔𝑡𝑒𝑠𝑡,2, … , 𝒔𝑡𝑒𝑠𝑡,𝑡𝑝]
𝑇 are recorded from the beginning of 

its life until prediction time 𝑡𝑝. In the RUL prediction problem, more information can be obtained 

from the temporal sequence data compared with the data sampled at a single time step [120]. 

Therefore, we adopt a time window of size L to use multivariate temporal sequence data and 

predict the RUL at 𝑡𝑝 as: 

𝑅𝑈�̂�𝑡𝑝 = 𝑓(𝒔𝑡𝑒𝑠𝑡,𝑡𝑝−𝐿+1, 𝒔𝑡𝑒𝑠𝑡,𝑡𝑝−𝐿+2, … , 𝒔𝑡𝑒𝑠𝑡,𝑡𝑝−1, 𝒔𝑡𝑒𝑠𝑡,𝑡𝑝)                      (6.5) 

To solve the described problem and find 𝑓(. ), we establish a direct relationship between 

the original condition monitored sensor data and corresponding RUL in the proposed LSTM-based 

framework. As shown in Figure 6.1, the training stage of the framework has two main steps. Since 

the sensor data before the degrading point indicate no degradation and hence provide little 

information about the capacitor degradation process, we first identify the degrading points. Given 

that the capacitors work in dynamic operating conditions, one can expect large sensor data 

variation making it difficult to detect and establish the degrading points.  Therefore, we first set a 

degradation level (Ld) for sensor data. We, then, apply the “m/M” rule [121], if m out of M 
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consecutive points exceeds Ld, the degrading point is detected. The goal of setting this rule is to 

overcome the high variability of sensor data. The optimal values for Ld, m, and M are found by a 

grid search technique to obtain the best prediction performance on the training and validation sets. 

 

 
Figure 6.1: Proposed framework for RUL prediction of electrolytic capacitors. 
 

Next, the training sensor data beyond the degrading points are fed into the LSTM input 

layer via a data preparation process, where the sensor data is first normalized using Min-Max 

scaling such that each data point is within the range of [0,1]. Thereafter, the feature vectors for the 

training capacitors are generated using the time window of size L, while a label vector is generated 

for the corresponding RUL of the capacitor. The kth window (𝑘 = 1,2, . . , 𝑛𝑖) of the multivariate 

time series Si is 𝑇𝑊𝑖𝑘 = [𝒔𝑖,𝑘 , … , 𝒔𝑖,(𝐿+(𝑘−1))]. The time windows overlap because each window is 

obtained by sliding the previous window by one time step. We assume that there is no change in 

RUL of capacitors before the degrading point (𝑅𝑈𝐿𝑒𝑎𝑟𝑙𝑦) but after the degrading point, the RUL 

decreases linearly until it reaches to zero. Therefore, the training samples of the ith capacitor will 

be {(𝑇𝑊𝑖1, 𝑅𝑈𝐿𝑖1), (𝑇𝑊𝑖2, 𝑅𝑈𝐿𝑖2),… , (𝑇𝑊𝑖𝑘, 𝑅𝑈𝐿𝑖𝑘),… , (𝑇𝑊𝑖𝑛𝑖 , 𝑅𝑈𝐿𝑖𝑛𝑖)}, where time window 

𝑇𝑊𝑖𝑘 contains all sensor data within the kth window of the ith capacitor and 𝑅𝑈𝐿𝑖𝑘 represents the 

RUL from the last moment of the associated window. The total number of windows (ni) depends 

on 𝑙(𝑆𝑖) and 𝐿. The proper value of L depends on the characteristics of the degrading capacitor 

 Training data 

Online test data up to 

prediction time  
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e.g., the average lifetime or data sampling frequency. We investigate historical degradation data 

to find the appropriate value for L in Section 6.4.2.  

After preparing the training data set, we model the relationship between the sensor data of 

each window and its label using LSTM. The LSTM cell is composed of a cell state, a hidden state, 

an input gate, a forget gate, and an output gate. The gating mechanism in LSTM regulates the flow 

of information through time and enables the network learning to keep, remove, and update the 

information. For more details about the LSTM cell structure, hyper parameters, and model 

parameters of the network, readers can refer to literature that leveraged LSTM network for RUL 

prediction[122][111][113][123]. The number of LSTM hidden layers and the number of neurons 

in each of these layers are two main hyper parameters of the network to control its architecture. 

We find the best network architecture by tuning its hyper parameters considering the specific 

properties of the problem and defined evaluation metrics. The optimal hyper parameters will be 

used to determine the network parameters to minimize the desired loss function. The mean squared 

error (MSE) function is adopted as the network loss function to calculate the average error for 𝑁𝑇 

training samples as: 𝑀𝑆𝐸 =
1

𝑁𝑇
∑ 𝛿𝑖

2𝑁𝑇
𝑖=1 , where 𝛿𝑖 = 𝑅𝑈�̂�𝑖 − 𝑅𝑈𝐿𝑖 represents the difference 

between predicted 𝑅𝑈�̂�𝑖 and the true 𝑅𝑈𝐿𝑖. Resilient mean square backpropagation (RMSprop) is 

used to adaptively minimize the loss function of LSTM. The learning rate of RMSprop optimizer 

is another hyper parameter of the LSTM. Moreover, dropout technique and early stopping 

mechanism are used to reduce the risk of network overfitting problem. Dropout ignores randomly 

selected neurons during training, and hence reduces the sensitivity to the specific weights of 

individual neurons. The dropout rate (p) is a hyper parameter related to dropout technique, which 

is defined as the probability of retaining each hidden unit in the hidden layer. In addition, an early 

stopping mechanism monitors the performance improvement on a validation set. It stops the 
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training process when the validation error begins to rise with some patience (i.e., after some 

epochs). The details of tuning the hyper parameters of the LSTM model are discussed in Section 

6.4.2. 

Finally, the proposed framework is used for detecting the degrading point and predicting 

the RUL of a new test capacitor in real-time. Since RUL prediction results are used for making 

logistical decisions such as formulating the optimal maintenance strategy or designing a spare parts 

inventory plan, it is important to have reasonable predictions with minimum variability. Therefore, 

to reduce the influence of sudden changes in operating conditions, we calculate the weighted RUL 

prediction considering the RUL of all previous time windows before the prediction time. For this 

purpose, we estimate the failure time corresponding to each time window as: 𝑓 = 𝑅𝑈�̂� +

𝑙𝑎𝑠𝑡 𝑡𝑖𝑚𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤. The difference between the weighted estimation of failure 

times and prediction time is considered as the weighted RUL prediction of the test capacitor. 

6.4. The Case Study 

In this section, the effectiveness of the proposed method is demonstrated by considering a 

case study properly designed to mimic the degradation behavior of aluminum electrolytic 

capacitors used in electric vehicle powertrain [96][104] whose operation is characterized by 

continuously varying temperatures [124]. The performance of the proposed method for providing 

more realistic RUL predictions is compared with some existing benchmark methods.  

6.4.1. Dataset Description 

As stated previously, the 𝐸𝑆𝑅𝑛𝑜𝑟𝑚 is considered as a degradation indicator of the 

electrolytic capacitors [96]. The degradation process of 100 electrolytic capacitors is simulated by 

resorting to a physics-based model of the electrolyte vaporization represented by a first-order 

Markov process as [96][104][124]: 
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𝐸𝑆𝑅𝑡
𝑛𝑜𝑟𝑚 = 𝐸𝑆𝑅𝑡−1

𝑛𝑜𝑟𝑚 . 𝑒𝐶(𝑇𝑡−1) + 𝑝𝑡−1                                       (6.6) 

where 𝐸𝑆𝑅𝑡
𝑛𝑜𝑟𝑚 and 𝐸𝑆𝑅𝑡−1

𝑛𝑜𝑟𝑚 are the normalized ESR value at time 𝑡 and 𝑡 − 1, respectively. 

𝐶(𝑇𝑡−1) is the degradation rate as a function of temperature condition at time 𝑡 − 1, and 

𝑝𝑡−1~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.02) is the corresponding process noise.  

During usage time, two types of sensor data, the degradation signal (𝐸𝑆𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) and the 

temperature conditions (𝑇) experienced by the capacitor, are gathered at a regular time interval. 

Following the guidelines reported in Al-Dahidi et al. [125], the simulation of 𝐸𝑆𝑅𝑛𝑜𝑟𝑚, 

𝐸𝑆𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , and 𝑇 were carried out. 𝐸𝑆𝑅𝑛𝑜𝑟𝑚 was simulated by iteratively applying Equation 

(6.6) (with a time step of 1 hour), assuming an initial value equal to 100 ohms. The capacitor 

failure time was defined as the time when the 𝐸𝑆𝑅𝑛𝑜𝑟𝑚 signal value reaches to a predetermined 

failure threshold of 200 ohms. 𝐸𝑆𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 was simulated by iteratively using Equation (6.7) 

linking 𝐸𝑆𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 to 𝐸𝑆𝑅𝑛𝑜𝑟𝑚 as: 

𝐸𝑆𝑅𝑡
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐸𝑆𝑅𝑡

𝑛𝑜𝑟𝑚 . (𝑎 + 𝑏. 𝑒−
(𝑇𝑡
𝐸𝑆𝑅−273.15)

𝑐 ) + 𝑜𝑡                          (6.7) 

where 𝑎, 𝑏, and 𝑐 are the measurement parameters, 𝑇𝑡
𝐸𝑆𝑅 is the temperature experienced by the 

capacitor measured at time 𝑡, and 𝑜𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.002) is the measurement noise at time 𝑡. The 

temperature conditions experienced by the capacitor were simulated to show the seasonality 

pattern that arises in the operating temperature and the effects of aging on the core temperature 

[125].  

Figure 6.2 shows the simulated 𝐸𝑆𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  and 𝑇 of three different capacitors from the 

normal state to failure. As shown in Figure 6.2, the projected run-to-failure data of these samples 

are different ranging from 10000 to 35000 hrs. This large variation in failure times is mainly caused 

by variation in temperature conditions. It can be easily recognized that capacitor 3 (blue color) has 

shorter life than the other two capacitors since it experiences higher temperature conditions during 
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its usage time causing early and faster degradation. It is also clear that during the initial phase of 

life, the measured 𝐸𝑆𝑅 values are small and remain nearly unchanged until a certain usage time. 

We believe this is the degradation free phase or possibly the degradation initiation phase. Once the 

degradation process starts, it propagates at a relatively faster rate, as indicated by increasing values 

of 𝐸𝑆𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 .  

 
Figure 6.2: (a) ESR measurements (ESRmeasured), and (b) temperature conditions (T) 
 

6.4.2. Parameter Determination and Results Analysis 

To structure the prediction model, we divided the simulated run-to-failure data of 100 

electrolytic capacitors into two random parts: the data of 75 capacitors as training set and the data 

of 25 capacitors as test set. Further, 20% samples of the training set were randomly designated as 

cross validation set. The training and validation sets were used to build and improve the 

performance of the RUL prediction model while the trained model was used to predict RUL of test 

capacitors. In these sets, the time series data of some capacitors is composed of a large number of 

samples, for example 100000 samples. Generating deep learning models such as LSTM by direct 

use of these data as inputs incur too much computational burden. Therefore, the standard down-

sampling process is performed to reduce the data samples by representing a number of consecutive 

discrete time steps by only one longer time step [126]. For this case, the time series of hourly data 

https://www.sciencedirect.com/topics/computer-science/deep-learning-model
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was sampled down to time series consisting of 50-h time steps. Comparing the training time and 

prediction results of original and down-sampled data, we concluded that the computational time 

efforts were significantly reduced without seriously affecting the precision of the results. Note that 

we use the down-sampled time series data as the input data to all methods in this chapter.   

In order to separate out degradation data from initial non-degrading data, we determined 

the parameters of the method to detect the degrading points. The best combination of parameters 

was found by grid search on 𝐿𝑑 = (0.1, 0.11, 0.12, 0.13),𝑀 = (10,15,20,25),𝑚 = 𝑀 − 3,𝑀 −

4,𝑀 − 5. The best parameter combination is 𝐿𝑑 = 0.13,𝑚 = 12, and 𝑀 = 15. Considering the 

degrading points, we divided the gathered degradation data into two different groups: data before 

and after the degrading points (see Figure 6.3 a-c). The data after the degrading points (see Figure 

6.3 (b)), which reflects the degradation behavior of the capacitors, is used to model the relation 

between input sensor data and RUL. Using the approach proposed in Heimes[127], we set the 

initial RUL before the degrading points as 𝑅𝑈𝐿𝑒𝑎𝑟𝑙𝑦 = 210 considering the average length of the 

training time-series.  
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Figure 6.3: (a) ESRmeasured for three sample capacitors, (b) ESRmeasured after degrading points, (c) 

ESRmeasured before degrading points. 

 

In the second step, we first normalized the condition monitored sensor data using Min-Max 

scaling as: �́�𝑖𝑗𝑙 =
𝑠𝑖𝑗𝑙−min(𝑠𝑙)

max(𝑠𝑙)−min(𝑠𝑙)
, where 𝑠𝑖𝑗𝑙 and �́�𝑖𝑗𝑙 represent for lth sensor (𝐸𝑆𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  or 𝑇) the 

jth data point of the ith training capacitor before and after normalization, respectively. The scaling 

parameters, min( 𝑠𝑙) and max(𝑠𝑙), represent the minimum and maximum values of the lth sensor 

across all time points of all training capacitors, respectively. Consequently, the range of data for 

both 𝐸𝑆𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑and T is between 0 and 1 as shown in Figure 6.4 for one sample training 

capacitor. It should be noted that the obtained scaling parameters are used later to scale the sensor 

data of test capacitors. Thereafter, the input to the LSTM network was generated using the sliding 

time window procedure with size 𝐿 = 10. The effects of time window size to prediction 

performance and model training time will be discussed later in this section.  
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Figure 6.4: ESR measured and T before and after normalization for training capacitor 1 

 

To assess the performance of proposed approach for RUL prediction, the commonly 

applied evaluation metrics [128][111][123], root mean square error (𝑅𝑀𝑆𝐸) and scoring function 

(𝑆𝐹), were used. Smaller values of these evaluation metrics correspond to smaller errors between 

true and predicted values of the RULs, hence better prediction performance. The metrics are given 

below:  

𝑅𝑀𝑆𝐸 = √
∑ 𝛿𝑖

2𝑀𝑇
𝑘=1

𝑀𝑇
                                                        (6.8) 

𝑆𝐹 = ∑ 𝑆𝐹𝑖
𝑀𝑇
𝑖=1 , 𝑆𝐹𝑖 = {

𝑒
−𝛿𝑖
13 − 1, 𝑖𝑓 𝛿𝑖 = 𝑅𝑈�̂�𝑖 − 𝑅𝑈𝐿𝑖 < 0

𝑒
𝛿𝑖
10 − 1, 𝑖𝑓 𝛿𝑖 = 𝑅𝑈�̂�𝑖 − 𝑅𝑈𝐿𝑖 ≥ 0

                      (6.9) 

where 𝑆𝐹 is the total score,  𝑆𝐹𝑖 is the score of ith test capacitor, and 𝑀𝑇 is the total number of the 

test capacitors. 𝑅𝑀𝑆𝐸 equally penalizes underestimates (𝛿𝑖 < 0) and overestimates (𝛿𝑖 > 0) of the 

same magnitude. For electrolytic capacitors, however, 𝛿𝑖 < 0 is preferred over 𝛿𝑖 > 0 to avoid 
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their failures. Therefore, the scoring function was defined to emphasize more on prediction errors 

when the predicted RUL is larger than the true RUL. The scoring function and the value of its 

parameters can be modified based on the system requirements. If we consider the prediction results 

for more than one time step of each test capacitor, we first use Equation (6.8) and Equation (6.9) 

to calculate the metrics for each test capacitor, and then calculate their average as the final metric 

for all test capacitors.  

We constructed the LSTM network using the python deep learning library, Keras. The 

model training was executed with one Intel(R) Corei7 CPU 2.6 GHz processor and 16 GB RAM. 

As the hyper parameter interactions in LSTM are quite small [111], we tuned them independently. 

In the proposed framework, the effects of three main hyper parameters were investigated: the 

number of hidden layers of the LSTM network, the number of hidden neurons per hidden 

layers, and the network optimizer. It should be noted that we used different values of the other 

hyper parameters such as learning rate and dropout probability. However, it was found that 

small changes in these parameters did not have a significant effect on the prediction 

performance. To illustrate the effects of the main hyper parameters, the value of one parameter 

was varied while others were kept fixed. We first trained the model using RMSprop optimizer with 

learning rate of 0.001, dropout probability 0.2, batch size 100, and epoch 200 with different number 

of hidden layers. The number of hidden neurons per hidden layer was optimized via a 10-fold cross 

validation process. Similarly, the number of layers was set to two when different optimizers were 

tried. We ran the model for each set of hyper parameters 10 times and selected the best combination 

of hyper parameters considering the evaluation metrics and training time.  

Table 6.1 shows the effect of number of hidden layers on the model training time and 

evaluation metrics for the validation set. We observed that it takes a longer time to train the model 
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with more hidden layers. Considering all three indicators, LSTM with two hidden layers provides 

the optimal performance, the lowest SF and RMSE. Although increasing the network depth can 

capture more complex patterns, it leads to a larger number of parameters and is more likely to 

overfit. Figure 6.5 shows the training loss curve with various optimizers: Adagrad, AdaDelta, 

Adam, and RMSprop. We noticed that AdaDelta and AdaGrad optimizers do not converge during 

the training process causing their poor performance. On the other hand, the RMSprop and Adam 

converged quickly before the 25th and 75th epoch, respectively. The prediction performance of 

RMSprop and Adam optimizers was nearly the same and therefore, we selected the RMSprop as 

it converged faster, and the network reached steady state in less time. To further reduce the training 

time and prevent overfitting, we used the early stopping technique by setting patience as 10 epochs. 

Table 6.1: Performance with different number of hidden layers  

Hidden layer numbers 1 2 3 4 5 6 

RMSE 17.43 16.28 17.05 17.72 18.34 18.57 

SF 1893 1283 2085 1772 3721 2854 

Training time (second) 127.34 175.32 223.88 275.74 329.84 385.31 

 

 
Figure 6.5: Comparison of the training loss evolution with various optimizers 
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Figure 6.6: Performance with different time window size (L)  

 

Moreover, we investigated how the time window size (L) affects the prediction 

performance and training time when the number of hidden layers was set to two. As seen in Figure 

6.6, the model training time increases as more information is included in one training sample, i.e., 

a larger time window. It can be observed that there is significant reduction in RUL estimation error 

when L increases from 5 to 10. However, no further improvement in the prediction performance 

is achieved for 𝐿 > 10. The results of the SF were not shown since they presented very similar 

trends to the results of the RMSE. Finally, the optimized LSTM network consisted of two hidden 

layers each with 50 and 25 neurons was used to build the prediction model. The trained model was 

then used for the RUL prediction of test capacitors. RUL prediction results of four sample test 

capacitors are illustrated in Figure 6.7. The predicted RUL in the early period is close to 

𝑅𝑈𝐿𝑒𝑎𝑟𝑙𝑦 = 210, and afterward, the RUL prediction results follow almost a linear trend until the 

end of the life. Although, there is some variation between the predicted and true RUL, we get high-

precision RUL prediction results. 
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Figure 6.7: Four test capacitors RUL prediction results 

 

To further demonstrate the effectiveness of the proposed framework, we compared the 

performance of our proposed framework with some existing benchmark methods using the same 

training and test sets. The first method is the LSTM network that assumes there is no degradation 

free phase. We considered the same hyper parameters used in our framework. The second method 

is the Fuzzy Similarity-Based (FSB) approach. In the FSB approach, the similarity between the 

features of the test capacitor and all capacitors in the training set is evaluated to find the RUL of 

the test capacitor. Since the FSB approach does not require modeling of the degradation process 

and operating conditions, it is an appropriate candidate for comparison. The details on the FSB 

approach can be found in Maio and Zio [129]. The third method is a simple artificial neural 

network (ANN) with one layer consisting of 32 hidden neurons [130]. We also considered other 

structures of recurrent neural networks such as RNN [127] and GRU [131]. Table 6.2 shows the 

results of comparison of proposed framework with all other benchmark methods. The comparison 

was carried out based on SF and RMSE at different monitoring times with different remaining time 

steps to failure. All the results were averaged across 10 runs to reduce the effect of randomness. 
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For the proposed framework, the boxplot of RMSE on different monitoring times shows small 

variations in the RMSE between the 10 runs (Figure 6.8).  

 
Figure 6.8: Boxplot of RMSE on different monitoring times  

 

Table 6.1: Evaluation metrics of all methods on the test set    

Metric Method Time steps before failure 

50 40 30 20 10 5 

RMSE LSTM without DP 21.14 23.82 21.05 16.33 14.23 13.30 

FSB 20.40 18.95 17.19 13.94 13.03 12.15 

ANN 25.36 25.01 19.79 15.01 14.61 11.82 

RNN 18.04 18.80 18.74 17.55 17.37 18.24 

GRU 18.57 20.41 18.06 15.94 14.50 14.92 

Proposed framework 18.69 19.57 15.28 12.78 12.19 11.34 

SF LSTM without DP 468.17 377.90 261.26 116.85 107.97 79.85 

FSB 209.43 180.76 131.66 74.11 77.06 60.93 

ANN 527.38 751.11 199.04 99.75 100.53 57.93 

RNN 332.08 210.27 180.82 132.97 133.37 147.63 

GRU 366.21 303.03 159.18 117.79 91.56 92.80 

Proposed framework  342.09 269.72 105.59 87.56 63.96 55.39 

 

It can be observed that the proposed framework provides better prediction performance 

during most of the monitoring times. Since most of the methods show a downward trend for the 

evaluation metrics, we can expect more accurate RUL predictions as the capacitors approach the 

end of life. We believe, one possible reason is that more data is collected and used in the analysis 
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for each capacitor as they approach the failure time. Comparing the performance of the proposed 

framework with the first method (LSTM without DP) shows the advantage of detecting the 

degrading points. The consideration of degrading point in proposed framework helps obtain 

prediction results with better performance in shorter time period. ANN shows higher RMSE and 

SF values than the proposed framework and other methods during most of the monitoring times. 

It indicates that adding depth to the network and considering the dependency between sequence 

data in the proposed framework are crucial to achieve satisfactory prognostic performance in 

complex systems. Further, comparing the performance of proposed framework with RNN and 

GRU, we conclude that LSTM can handle the short- and long-term dependencies within complex 

structure of this study better than RNN and GRU.  

Based on the comparative study, the FSB approach seems to be the second-best method 

after the proposed framework. We, therefore, further compared the performance of the proposed 

framework with FSB over the entire lifetime of the test sample data. For this comparative study, 

we considered additional metrics such as Mean Absolute Error (MAE), Weighted Mean Absolute 

Error (WMAE), and Accuracy Index (AI) as defined in Al-Dahidi et al.[104]. Smaller values of 

these metrics indicate better prediction performance. The following equations are used to calculate 

these metrics:  

{
 
 

 
 𝑀𝐴𝐸 =

∑ |𝛿𝑖|
𝑀𝑇
𝑖=1

𝑀𝑇
            

𝑊𝑀𝐴𝐸 =
∑ |𝛿𝑖|
𝑀𝑇
𝑖=1

∑ 𝑅𝑈𝐿𝑖
𝑀𝑇
𝑖=1

     

𝐴𝐼 = ∑
|𝛿𝑖|

𝑅𝑈𝐿𝑖

𝑀𝑇−1
𝑖=1             

                                            (6.10) 

The results of comparative analysis are presented in Table 6.3. Comparing the prediction 

performance based on these metrics, we concluded that the proposed framework improves the 
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prediction performance and takes significantly less computational time for model training and RUL 

prediction. 

Table 6.3: Evaluation metrics and time comparison on test set 

 RMSE SF MAE WMAE AI Time (second) 

Proposed framework  14.52 884.69 12.01 0.12 0.32 186.05 

FSB 29.76 53768.07 23.87 0.25 0.44 4820886.645 

 

Finally, we calculated the weighted RUL predictions considering the results of all time 

windows before the prediction time. The exponential weighted moving average (𝐸𝑊𝑀𝐴) [132] of 

estimated failure times at time 𝑡 was computed recursively as 𝐸𝑊𝑀𝐴𝑡 = 𝛼 × 𝑓𝑡 + (1 −

𝛼) × 𝐸𝑊𝑀𝐴𝑡−1, where 𝑓𝑡 is the estimated failure time at time t and 𝛼 is the smoothing factor (a 

positive number less than 1). To get an appropriate value of smoothing factor 𝛼, we used the 

equation 𝛼 = 2 (𝑠𝑝𝑎𝑛 + 1)⁄  and considered 𝑠𝑝𝑎𝑛 = 20. It is important to note that we selected 

𝐸𝑊𝑀𝐴 and set the value of span for this study based on the prediction performance on the 

validation set. Based on 𝐸𝑊𝑀𝐴𝑡, the weighted RUL prediction was calculated as the difference 

between the EWMA𝑡 and prediction time t. Figure 6.9 shows the weighted RUL predictions and 

the predictions obtained using the last time window for one sample test capacitor. It can be seen 

that using the information of all time windows up to prediction time leads to more stable and 

smoother predictions. As shown in Figure 6.10, the weighted results provide slight improvement 

in the RMSE of most test capacitors.   
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Figure 6.9: 𝑅𝑈𝐿 prediction results of one test capacitor from (a) degrading point until failure, (b) 

last 50 time steps until failure 

 

 
Figure 6.10: 𝑅𝑀𝑆𝐸 for all test capacitors  

 

6.5. Summary 

A novel LSTM-based framework combining degrading point detection and RUL prediction 

model was proposed to predict the RUL of electrolytic capacitors working in dynamic operating 

conditions. While the approach was tested on the electrolytic capacitors, it is general enough and 

can be easily adapted to a variety of complex systems. The proposed framework uses original 

degradation and operating condition data beyond the degrading points. Therefore, it retains most 

of the information and does not rely on any specific model for the degradation process and the 

availability of domain-specific prior knowledge. We also calculated the weighted RUL prediction 

that considers the information closest to the prediction time and information of earlier times. This 

helped reduce the excessive influence of the dynamic operating conditions to improve the accuracy 

(a) (b) 
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of the prediction results for important decisions such as maintenance and spare part inventory 

planning.  

The case study on the degradation of electrolytic capacitors showed that the proposed 

framework outperforms the existing benchmark methods by achieving prediction results with 

higher accuracy in a reasonable computational time.   
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7. EFFICIENT ALGORITHM FOR RELIABILITY EVALUATION OF K-OUT-OF-N 

PHASED-MISSION SYSTEMS CONSIDERING THE IMPERFECT FAULT 

COVERAGE 

In this chapter, an efficient algorithm is proposed for reliability analysis of the phased-

mission systems (PMS) with imperfect fault coverage. The system is composed of several 

statically independent and non-identical k-out-of-n subsystems, where each subsystem contains 

multiple potentially non-identical components. The PMS behavior changes at different phases 

during the mission as it can have different configurations and success criteria, and experience 

various operational and environmental conditions in each phase. The proposed method considers 

both the dynamic of the system in each phase and the statistical dependence of components states 

across the phases. It also accounts for imperfect fault coverage for the components to get accurate 

reliability analysis.  

7.1. Introduction 

A PMS is often required to accomplish multiple non-overlapping phases or tasks of the 

operation in sequence to accomplish a mission task [133]. Examples of PMS in real-world 

applications include wireless sensor networks [134], the Mars orbiter mission system [135], body 

sensor networks [136], the space tracking, telemetry and command system [137], distributed 

computing system [138], modular multiprocessor system in a space station [139], and aircraft fleets 

[140]. For instance, an aircraft system needs to undergo various phases such as taxi, take-off, 

ascent, level flight, descent, and landing phases to successfully accomplish its mission. During 

each phase, a PMS may be subject to different operational stresses, environmental conditions, and 

reliability requirements. Thus, the component behavior, the reliability requirement, and the success 

criteria may vary from phase to phase, leading to complex and dynamic PMS [133]. In addition, 
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there exist statistical dependencies across different phases for each component. Specifically, the 

state of a component at the end of a phase should be identical to the state at the beginning of the 

next phase in non-repairable PMS [133], [138], [141]. Because of dependencies across the phases 

and the system dynamics, the reliability analysis of PMS is a challenging and complex problem. 

In the past, considerable efforts have been made to deal with the reliability modeling and 

assessment of the PMS. Generally, these studies can be divided into two main groups: the 

simulation and analytical methods [142], [143]. Simulation methods such as Petri-net based 

methods and Monte Carlo simulation-based methods can deal with systems having complex 

structures. However, they can be computationally inefficient and only offer approximate reliability 

results, which are difficult to use for further analysis [133], [137]. In contrast, analytical methods 

such as combinatorial methods, state-space model, and modular method can often provide accurate 

results with lower computational cost [144]. Despite considerable research efforts have been 

dedicated for developing analytical methods [135], [138], [145]–[147], until recently they are 

mostly limited to small-scale PMS models and are not appropriate for large-scale PMS with 

complex structure [148]. Recently, Amari et al. [148], [149] proposed an efficient recursive 

method for exact reliability evaluation of large-scale PMS. Although this method provides a fast 

and accurate analysis of system reliability, it is only applicable for a system with identical 

components. Moreover, it was assumed that the failures of any redundant component can be 

perfectly detected and recovered. 

In majority of PMS applications such as flight control and space mission, fault tolerance 

has been an essential architectural attribute to achieve high reliability [148]. Fault tolerance is 

generally achieved by using redundancy concepts. For a fault-tolerant system, the mechanism of 

fault detection, location, isolation, recovery, and reconfiguration play a critical role as a not-
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covered fault may lead to a system failure despite existence of adequate redundancy. The k-out-

of-n:G structure is the common form of redundancy in which a system consisting of n components 

functions if at least k components function properly. For example, an aircraft flight with two 

engines, in which a minimum of one engine must be functioning in the taxi phase, forms a 1-out-

of-2 system in this phase. Both series and parallel systems are special cases of k-out-of-n systems. 

The k-out-of-n system redundancy has been extensively studied in the literature. However, most 

of them only considered single-phase mission. In many practical situations, the system operates in 

different phases during a mission and the number of required working components may change 

for each phase. For aircraft flight example, the system has 2-out-of-2 redundancy structure in the 

take-off phase despite having 1-out-of-2 redundancy structure in the taxi phase. Moreover, the 

engines experience different stress levels during take-off phase compared to taxi phase. Therefore, 

the aircraft flight can be seen as an example of k-out-of-n PMS.  

For fault-tolerant PMS with k-out-of-n redundancy structure, the efficiency of automatic 

recovery and reconfiguration mechanisms influences the system reliability [150], [151]. Two-

engine aircraft requires at least one engine during the taxi phase. If the first engine fails, the 

automatic recovery and reconfiguration mechanisms isolate the failed engine and switch in the 

second one so that the aircraft can operate correctly in this phase. However, if the recovery 

mechanism could not successfully manage the occurred faults, the aircraft system may fail despite 

having a spare engine. Thus, to get an accurate reliability analysis of the k-out-of-n PMS, it is 

important to consider the probability of successfully recovering from a fault given that the fault 

has occurred, which is known as the fault coverage factor. For the imperfect fault coverage (IFC) 

systems that the recovery mechanism cannot successfully manage all faults, the fault coverage 

factor becomes less than unity [152].  
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 Some researchers studied the reliability of PMS subject to IFC [135], [139], [153]–[155]. 

Xing [135] and Xing and Dugan [153] proposed a binary decision diagram based algorithm for 

incorporating IFC into the analysis of PMS. Later Xing et al. [154] improved the computational 

time and memory requirements of previous works by presenting an efficient recursive formula to 

compute the overall mission reliability. Although the proposed method has no limitation on the 

type of failure distributions for the system components, it is only applicable for a system with 

identical components. Recently, Wang et al. [155] proposed two recursive algorithms based on 

record values that have less computational complexity compared to Xing et al. [154]. However, 

these studies are limited to systems composed of identical components and are not computationally 

efficient for large scale systems.  

This chapter proposes an exact and efficient method for the reliability analysis of PMS 

with several statically independent and non-identical k-out-of-n subsystems consisting of multiple 

potentially non-identical components. Since there is no possibility to do any manual interventions 

during the mission in some critical-mission systems such as space systems, we consider the 

components of PMS are non-repairable, i.e., the components cannot recover from a failure or any 

unusable conditions during the mission. However, we consider automatic recovery and 

reconfiguration mechanisms, which can be subjected to IFC, i.e., all the component failures cannot 

be perfectly detected and recovered [156]. The efficiency of the proposed method is demonstrated 

through the analysis of different systems with various scales. Our work makes the following new 

contributions: 

(i) the PMS consists of multiple non-identical subsystems and each subsystem has k-out-

of-n structure 
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(ii) the components of each subsystem are not necessarily identical and may have different 

characteristics, particularly, different types of time-to-failure distribution or parameter 

values, aging rates, and performances. 

(iii)  the recovery and reconfiguration mechanisms are subjected to IFC 

7.2. Description of PMS Model with Imperfect Fault Coverage 

A PMS performs a mission consisting of M non-overlapping phases that must be 

accomplished in sequence. The considered system consists of several statistically independent 

fault-tolerant k-out-of-n subsystems. Each subsystem has multiple components, which are 

statistically independent but not necessarily identical. The minimum number of required 

components for each subsystem may vary from phase to phase. The components have phase-

dependent and time-varying failure rates and are not repairable during the mission. If a component 

enters the failure state, it remains in this state for the rest of the mission time. Although no manual 

repairs are allowed, the model allows incorporation of automatic recovery and reconfiguration 

mechanisms. Since the automatic recovery and reconfiguration mechanisms are subject to IFC, the 

failures are covered with probability c (fault coverage factor). Any not-covered failure will cause 

the mission failure even when the remaining redundancy is still adequate. When a subsystem is 

not required for a specific phase, it is kept idle in this phase and its components are in a warm 

standby mode. The failure of idle subsystem components can cause the subsystem and the overall 

mission failure if imperfect fault coverage happens in this phase. The failure of any required 

subsystem because of not having required working components or the occurrence of any not-

covered failure causes the mission failure. 

To analyze the reliability of fault-tolerant PMS, it is important to know its behavior in 

response to a fault. This behavior is analyzed through a fault handling model, which is also 
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called coverage model  [135], [150], [153], as shown in Figure 7.1. The occurrence of any fault 

can have three possible outcomes: transient restoration (R), permanent coverage (C), and single-

point failure (S).  

 
Figure 7.1: The general structure of coverage model 

 

When the fault is transient and can be handled without discarding the component, exit R is 

taken. If the fault causes system failure, the exit S is taken. On the other hand, exit C is taken if the 

fault is determined to be permanent and successfully isolated and recovered. The three exits are 

mutually exclusive and complete. Therefore, the sum of their conditional probabilities given the 

fault has occurred is 𝑃𝑅 + 𝑃𝑆 + 𝑃𝐶 = 1. These probabilities can be determined by solving an 

appropriate coverage model [157]. As the exit R and C are considered successful actions of fault 

handling mechanism, the fault coverage factor is: 𝑃𝑅 + 𝑃𝐶. Since the state of a component is not 

changed with the events of fault activations that lead to R exit, the model is modified by ignoring 

R outcome. In this modified model, the failure rate of the component is multiplied by 1/(1 − 𝑃𝑅)  

to get the effective failure rate. Then, the probabilities of two outcomes C and S are modified as: 

�́�𝐶 = 𝑃𝐶/(1 − 𝑃𝑅) and �́�𝑆 = 𝑃𝑆/(1 − 𝑃𝑅). In this case, any failed component will be detected, 

isolated, and recovered with the fault coverage factor 𝑐 = �́�𝐶. Otherwise, it causes the overall 

system failure. In many cases, the probability of exit R is zero that leads the same results for 

modified and unmodified models. In the next section, we propose a method to evaluate the 
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reliability of a PMS subject to the IFC that consists of multiple subsystems where each subsystem 

uses a k-out-of-n structure. 

7.3. Mission Reliability Evaluation  

The considered PMS fails if at least one of its required subsystems fails in a phase. The 

failure of the system in any one of the mission phases, leads to the overall mission failure. Because 

of the dynamic system structure, the statistical dependency across the phases for a given 

component, and the existence of not-covered failures, reliability analysis of the considered PMS 

is a complex and challenging problem. Therefore, we first use the modularization method to reduce 

the computational complexity [148], [158]. This method is not limited to any specific type of 

redundancy structure, and different subsystems can use different redundancy structures, which 

makes it applicable for many problems. By employing the modularization method, the overall 

mission reliability of the system is calculated as the product of mission reliabilities of individual 

subsystems as: 

𝑅𝑃𝑀𝑆 = ∏ 𝑅𝑠
𝑁
𝑠=1                                                        (7.1) 

The reliability analysis of a k-out-of-n subsystem subject to IFC is a complex problem as 

discussed  in Amari et al. [150]. The analysis becomes even more complicated when the subsystem 

needs to operate in consecutive mission phases with different operating conditions and 

requirements. To reduce complexity, we consider two mutually exclusive failure modes: covered 

failure and not-covered failure modes. If at least one component fails in the not-covered state, it 

causes the failure of the subsystem despite the presence of sufficient redundancies. Alternatively, 

the subsystem fails in the covered state if the number of working components is less than the 

minimum required components in any phases, given no component fails in the non-covered state. 

We use the simple and efficient algorithm (SEA) proposed in Amari et al. [150] for incorporating 
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the IFC. SEA reduces the problem complexity and produces simple closed-form solutions [150], 

[153]. By considering two mutually exclusive failure modes, the reliability of subsystem 

𝑠 (∀s = 1,2,… , N) is calculated according to the total probability theorem as: 

Rs = Pr (A)  × Pr (E1) + Pr (D) × Pr (E2) = 0 × [1 − Psc]+Rsc × Psc = Rsc × Psc   (7.2) 

A = (susbsysem s functions | at least one not-covered failure) 

E1 = (at least one not-covered failure) 

D = (susbsysem s functions|no 𝑛𝑜𝑡 − 𝑐𝑜𝑣𝑒𝑟𝑒𝑑  failure) 

E2 = (no not-covered failure) 

For a k-out-of-n subsystem s, we only need to calculate the conditional reliability of 

subsystem over the entire mission when there is no not-covered failure (𝑅𝑠𝑐), and the probability 

that no component of the subsystem s experiences not-covered failure (𝑃𝑠𝑐). A recursive algorithm 

is proposed to calculate 𝑅𝑠𝑐 in next section. In the following, the way of calculating 𝑃𝑠𝑐 is explained 

in detail.  

Each component of the subsystem can be in one of 𝑀 + 2 states: covered failure in phase 

j (𝑗 = 1,2,… ,𝑀), not-covered failure in any mission phase, or no failure during the mission (or 

failure in phase 𝑀 + 1). The probability of each state depends on the condition of each mission 

phase. To get the probability of each state, we use the cumulative exposure model (CEM) to 

account for the effects of phase-dependent stress on the failure properties of components [159]. 

Using the accelerated failure time model (AFTM) to model the life-stress relationship, the stress-

dependent failure distribution of component i in phase j, denoted by 𝐹𝑖𝑗, can be represented as: 

𝐹𝑖𝑗 = 𝐹𝑖(𝛼𝑖𝑗𝑡)      ∀𝑖 = 1,2,… , 𝑛  , 𝑗 = 1,2,… ,𝑀                              (7.3) 
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where 𝐹𝑖(. ) is the baseline failure distribution function of component i and 𝛼𝑖𝑗 is an acceleration 

factor of component i during phase j. According to CEM, the cumulative failure probability of 

component i at the end of phase j can be calculated as: 

𝑄𝑖𝑗 = 𝐹𝑖(𝛼𝑖1𝜏1 +⋯+ 𝛼𝑖𝑗𝜏𝑗)                                              (7.4) 

where 𝜏𝑗 is the duration of phase j. As the component i is working at the beginning of the mission, 

thus 𝑄𝑖0 = 0. In addition, the component i either fails during the mission or after the mission (i.e., 

in phase 𝑀+ 1), so 𝑄𝑖,𝑀+1 = 1. The probability that component i first fails in phase j is:  

𝑓𝑖𝑗 = 𝑄𝑖𝑗 − 𝑄𝑖,𝑗−1                                                          (7.5) 

If component i fails in phase j, it will be covered by the probability 𝑐𝑗 (fault coverage rate). 

The computation of 𝑐𝑗 depends on the fault handling mechanism [156]. Thus, the probability that 

failure of component i occurs in phase j and it is covered, 𝑓𝑖𝑗𝑐, can be calculated by Equation (7.6). 

On the other hand, the probability that failure of component i occurs in phase j and it is not-covered, 

𝑓𝑖𝑗𝑢, can be calculated by Equation (7.7). 

𝑓𝑖𝑗𝑐 = 𝑓𝑖𝑗 ∗ 𝑐𝑗                                                            (7.6) 

𝑓𝑖𝑗𝑢 = 𝑓𝑖𝑗 ∗ (1 − 𝑐𝑗)                                                       (7.7) 

These failures are mutually exclusive. Hence, the probability that component i fails in not-

covered mode during the mission is: 

𝑆𝑖𝑢 = ∑ 𝑓𝑖𝑗𝑢
𝑀
𝑗=1                                                            (7.8) 

The obtained probabilities for 𝑀 + 2 states of component i are summarized in Table 7.1. 

Since the failures of a k-out-of-n subsystem are independent of each other, the probability that no 

component experiences a not-covered failure during the mission can be calculated as: 

𝑃𝑠𝑐 = ∏ (1 − 𝑆𝑖𝑢)
𝑛
𝑖=1                                                        (7.9) 
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Table 7.1: The states and state probabilities of components i 

State  1 … 𝑗 …. 𝑀 𝑀+ 1 𝑀 + 2 

State probability 𝑓𝑖1𝑐 … 𝑓𝑖𝑗𝑐 …. 𝑓𝑖𝑀𝑐 
1 − (𝑆𝑖𝑢 +∑𝑓𝑖𝑗𝑐

𝑀

𝑗=1

) 
𝑆𝑖𝑢 

 

 

To calculate the 𝑅𝑠𝑐 in the next section, we need to obtain the conditional failure 

probabilities of components in each phase. Let 𝑔𝑖𝑗 be the conditional probability that failure of 

component i occurs in phase j given no not-covered failure happens during the mission. The matrix 

of 𝑔𝑖𝑗  values, denoted as 𝑮, with the size 𝑛 × (𝑀 + 1) is calculated as: 

𝑮 = [

𝑔11 𝑔12 … 𝑔1(𝑀+1)
𝑔21 𝑔22 … 𝑔2(𝑀+1)
⋮ ⋮ … ⋮
𝑔𝑛1 𝑔𝑛2 … 𝑔𝑛(𝑀+1)

] 

{
 
 

 
 𝑔𝑖𝑗 =

𝑓𝑖𝑗𝑐

1−𝑆𝑖𝑢
          ∀ 𝑖 = 1,2,… , 𝑛, 𝑗 = 1,2,… ,𝑀  

𝑔𝑖(𝑀+1) = 1 −
∑ 𝑓𝑖𝑗𝑐
𝑀
𝑗=1  

1−𝑆𝑖𝑢
   ∀ 𝑖 = 1,2,… , 𝑛              

∑ 𝑔𝑖𝑗
𝑀+1
𝑗=1 = 1                                                              

  (7.10) 

7.4. Subsystem Conditional Reliability Analysis  

Any required k-out-of-n subsystem, e.g., subsystem s, fails in the covered failure mode if 

the number of working components is less than the minimum number of required components. Let 

𝑥𝑗 ( 𝑗 = 1,2,… ,𝑀) be the number of components of k-out-of-n subsystem s, that have failed before 

the completion of phase j. If 𝑥𝑗 < 𝑚𝑗 = 𝑛 − 𝑘𝑗 + 1 for all value of j, then the subsystem mission 

is successful. Hence, the subsystem conditional reliability can be evaluated as the sum of the 

probabilities of all combinations of 𝑥𝑗 values as: 

𝑅𝑠𝑐 = 𝑃𝑟{𝑥1 < 𝑚1; … ; 𝑥𝑗 < 𝑚𝑗 ; … ; 𝑥𝑀 < 𝑚𝑀}                               (7.11) 

One approach to evaluate 𝑅𝑠𝑐 is to get the summation of probabilities of all combinations 

of 𝑥𝑗 values, where 𝑥𝑗 < 𝑚𝑗 ∀ 𝑗 = 1,2,… ,𝑀. Since the number of combinations increases 

exponentially, this approach is computationally inefficient [148]. Another approach is using the 

relationship between PMS and generalized multi-state k-out-of-n system (GMSknS) to get a more 

efficient solution. In fact, GMSknS can be considered as dual for the PMS model. We propose a 
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recursive method closely related to the method proposed for the reliability evaluation of GMSknS 

with independent components in Tian et al. [160].  

For the k-out-of-n subsystem 𝑠, the minimum number of required components for each 

phase may be different. For the cases that 𝑘𝑗 ≤ 𝑘�́� ∀ �́� > 𝑗, satisfying the requirements of phase �́� 

guarantees satisfying the requirements of phase 𝑗. Therefore, we can merge these phases to have 

strictly decreasing k values (or strictly increasing m values). The phase merging helps to improve 

the computational efficiency of our proposed approach. As an example, consider a subsystem 

composed of 5 non-identical components that must function in a mission with 7 phases with vector 

of k values as: 𝒌 = [𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7] =  [1,5,2,2,4,3,1]. The vector of k values can be 

simplified as: [{1,5}, {2,2,4}, 3,1] = [5,4,3,1] and the number of phases is reduced to 4. The 

corresponding conditional failure probabilities of merged phases are added together and 𝑮 will be 

updated to a new matrix with size 5 × 5. As another example, the vector of k values 𝒌 =

[1,5,2,4,3,4,1] is simplified as [{1,5}, {2,4,3,4}, 1] = [5,4,1] after phase merging. The detailed 

algorithm to merge the phases is presented in Figure 7.2.  

After phase merging, we calculate the subsystem conditional reliability 𝑅𝑠𝑐(𝑛,𝒎,𝑮), using 

the recursive function as follows: 

𝑅𝑠𝑐(𝑛,𝒎,𝑮) =  ∑ 𝑔𝑛𝑗 × 𝑅𝑠𝑐(𝑛 − 1,𝒎
𝒋, 𝑮𝒏)𝑀+1

𝑗=1                                    (7.12) 

𝑅𝑠𝑐(𝑛,𝒎,𝑮) is a function of 𝑛, 𝒎, and 𝑮. 𝑛 is the number of components of the subsystem s, 𝒎 =

[𝑚1, … ,𝑚𝑗 , … ,𝑚𝑀] is the vector of 𝑚𝑗 = 𝑛 − 𝑘𝑗 + 1 values, and 𝑮 is the matrix of failure 

probabilities of 𝑛 components during the mission phases and phase (𝑀 + 1), which is calculated 

using the Equation (7.10). Note that the values of 𝑛,𝒎, and 𝑮 are different for each subsystem.  
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Inputs: 𝑀,𝒌 = [𝑘1, 𝑘2, … , 𝑘𝑀], 𝑮 

Outputs: Updated values of 𝑀,𝒌, 𝑮 after merging phases  

if 𝑀 = 1 , stop 

for 𝑗 =  𝑀 − 1 down to 1 

if 𝒌(𝑗 + 1) =  0 𝑜𝑟 𝒌(𝑗)  <=  𝒌(𝑗 + 1) 
 𝑮(: , 𝑗 + 1) = 𝑮(: , 𝑗) + 𝑮(: , 𝑗 + 1);  

𝒌(𝑗 + 1) = max(𝒌(𝑗) , 𝒌(𝑗 + 1));  
𝒌(𝑗)  =  [];  𝑮(: , 𝑗)  =  []     

end if 

end for  

Figure 7.2: Algorithm 1 for merging phases to get strictly decreasing k values 

 

First, we consider all states of the nth component: (1) the cases where 𝑛𝑡ℎ component has 

failed in any of the mission phases, or (2) stayed in phase (𝑀 + 1) – survived until the end of the 

mission. If we know this information about this component, we can express the reliability of a 

subsystem with 𝑛 components via evaluating the reliability of (𝑀 + 1) different simpler 

subsystems where each subsystem has only (𝑛 − 1) components. Hence, we need to update 𝒎 and 

𝑮 to get 𝒎𝒋 and 𝑮𝒏 for each state of the component n. When component-n fails in phase 𝑗 (𝑗 =

1,2,… ,𝑀), it means that it has worked in all phases before phase j but failed to support the 

subsystem in all subsequent phases starting phase j. Alternatively, the failure of component n in 

phase (𝑀 + 1) conceptually means that it has satisfied the mission requirement (failed after 

completing its mission). Thus, the vector 𝒎𝒋 is the same as the vector 𝒎, except that the values of 

its elements are decreased by one for 𝑗 ≤ indexes ≤ M as shown in Equation (7.13). In addition, 

𝑮𝒏 is obtained by deleting the nth row of the matrix 𝑮  as shown in Equation (7.14).  

𝒎𝒋 = [𝑚1
𝑗
, … ,𝑚(𝑗−1)

𝑗
, 𝑚𝑗

𝑗
, … ,𝑚𝑀

𝑗
] = [𝑚1, … ,𝑚(𝑗−1),𝑚𝑗 − 1,… ,𝑚𝑀 − 1]          (7.13) 

𝑮 = [

𝑔11 𝑔12 … 𝑔1(𝑀+1)
𝑔21 𝑔22 … 𝑔2(𝑀+1)
⋮ ⋮ … ⋮

𝑔(𝑛−1)1 𝑔(𝑛−2)2 … 𝑔(𝑛−1)(𝑀+1)

]                                    (7.14) 
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To improve the computational efficiency, we perform phase merging during the recursive 

method to get strictly decreasing k values (increasing m values). We need to check two special 

cases when updating 𝒎𝒋 and 𝑮𝒏. For the first case, if 𝑚𝑀
𝑗
> 𝑛, i.e., the k value for the phase M is 

zero, this phase will be absorbed by the adjacent upper phase. Thus, 𝑚𝑀
𝑗

 is deleted from 𝒎𝒋. Also, 

the values of last two columns of 𝑮𝒏 are added together as new value for the last column and the 

column M will be deleted. The next special case happens when any two phases have the same k 

values (or m values). We merge these phases to get strictly decreasing k values.  

To show the tasks of updating the vector of 𝑚 values and phase merging during the 

recursive method, we consider a sample subsystem composed of 5 non-identical components with 

k values as 𝒌 = [5,4,3,1], 𝒎 = [1,2,3,5]. The results for 5th and 4th components are discussed and 

showed in Table 7.2. We first consider all states of 5th component. This component either has failed 

in covered mode in phase 2, 3, or 4, or survived until the end of the mission. As shown in Table 

7.2, the values of vector 𝒎 are updated based on the component state and merged to get increasing 

m values. Similarly, all states of 4th component given the state of 5th component are shown in Table 

7.2. As we see for all states, it is needed to perform at the maximum only one phase merging.  

Beside the special cases for phase merging, the recursive method has two boundary 

conditions. For the first boundary condition (𝐵𝐶1), 𝑅𝑠𝑐(𝑛,𝒎,𝑮) = 0 when 𝑚𝑀 = 0. It means that 

the minimum number of working components required in phase 𝑀 is bigger than the number of 

components. For the second boundary condition (𝐵𝐶2), the PMS is reduced to a single-phase 

system when 𝑀 = 1. 
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Table 7.2: States of components and m values before and after phase merging  

States of 5th component: 𝒎 = [1,2,3,5], 𝑀 = 4, 𝑛 = 5 

𝑗 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

𝒎 NA 𝒎𝟐 = [1,1,2,4] 𝒎𝟑 = [1,2,2,4] 𝒎𝟒

= [1,2,3,4] 
𝒎𝟓 = [1,2,3,5] 

merged 𝒎  NA 𝒎𝟐 = [1,2,4] 𝒎𝟑 = [1,2,4] 𝒎𝟒

= [1,2,3,4] 
𝒎𝟓 = [1,2,3] 

States of 4th component given the 5th component has failed in phase 2: 𝒎 = [1,2,4], 𝑀 =
3,𝑛 = 4 

𝑗 Phase 1 Phase 2 Phase 3 Phase 4  

𝒎 NA 𝒎𝟐 = [1,1,3] 𝒎𝟑 = [1,2,3] 𝒎𝟒

= [1,2,4] 
 

merged 𝒎 NA 𝒎𝟐 = [1,3] 𝒎𝟑 = [1,2,3] 𝒎𝟒 = [1,2]  

States of 4th component given the 5th component has failed in phase 3: 𝒎 = [1,2,4], 𝑀 =
3,𝑛 = 4 

𝑗 Phase 1 Phase 2 Phase 3 Phase 4  

𝒎 NA 𝒎𝟐 = [1,1,3] 𝒎𝟑 = [1,2,3] 𝒎𝟒

= [1,2,4] 
 

merged 𝒎 NA 𝒎𝟐 = [1,3] 𝒎𝟑 = [1,2,3] 𝒎𝟒 = [1,2]  

States of 4th component given the 5th component has failed in phase 4: 𝒎 = [1,2,3,4], 𝑀 =
4,𝑛 = 4 

𝑗 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

𝒎 NA 𝒎𝟐 = [1,1,2,3] 𝒎𝟑 = [1,2,2,3] 𝒎𝟒

= [1,2,3,3] 
𝒎𝟓 = [1,2,3,4] 

merged 𝒎 NA 𝒎𝟐 = [1,2,3] 𝒎𝟑 = [1,2,3] 𝒎𝟒

= [1,2,3] 
𝒎𝟓 = [1,2,3] 

States of 4th component given the 5th component has survived in the mission: 𝒎 = [1,2,3], 
𝑀 = 3,𝑛 = 4 

𝑗 Phase 1 Phase 2 Phase 3 Phase 4  

𝒎 NA 𝒎𝟐 = [1,1,2] 𝒎𝟑 = [1,2,2] 𝒎𝟒

= [1,2,3] 
 

merged 𝒎 NA 𝒎𝟐 = [1,2] 𝒎𝟑 = [1,2] 𝒎𝟒

= [1,2,3] 
 

 

There are several algorithms to compute the reliability of single-phase k-out-of–n system 

with non-identical components [161]. In this work, we consider two algorithms proposed in [162], 

[163] and compare their performance. The details of the algorithms are shown in Figure 7.3. While 
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algorithm 2-A is a recursive algorithm, the algorithm 2-B is an iterative algorithm that only saves 

𝑘 + 1 values of 𝑅 in one dimensional array 𝑃.  

 

Figure 7.3: Algorithm 2-A and algorithm 2-B for subsystem conditional reliability evaluation 

when 𝑀 = 1 

 

 

 

 

 

Algorithm 2-A  

Inputs: 𝑛,𝑚,𝑮  

Output: 𝑅 = 𝑅𝑠𝑐(𝑛,𝑚, 𝑮) 
 𝑘 = 𝑛 + 1 − 𝑚 

 if 𝑘 > 𝑛  
 𝑅 = 0 

 else if 𝑘 = 0  
 𝑅 = 1 

 else  

 𝑅 = 𝑮(𝑛, 1)  ∗ 𝑅𝑠𝑐(𝑛 − 1,𝑚, 𝑮) + 𝑮(𝑛, 2) ∗ 𝑅𝑠𝑐(𝑛 − 1,𝑚 − 1,𝑮) 
 end if 

Algorithm 2-B 

Inputs: : 𝑛, 𝑚, 𝑮 

Output: 𝑅 = 𝑅𝑠𝑐(𝑛,𝑚, 𝑮 ) 
 𝑘 = 𝑛 + 1 − 𝑚 

 P= [] 

 𝑃(1) = 1 

 for 𝑗 = 2 𝑡𝑜 𝑘 + 1 

 𝑃(𝑗) = 0 

 end for 

 for 𝑖 = 1 𝑡𝑜 𝑛 

 for 𝑗 =  𝑘 + 1 𝑑𝑜𝑤𝑛𝑡𝑜 2 

 𝑃(𝑗) = 𝑮(𝑛, 2) ∗ 𝑃(𝑗 − 1) + 𝑮(𝑛, 1) ∗ 𝑃(𝑗) 
 end for  

 end for 

 𝑅 = 𝑃(𝑘 + 1) 
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The detailed description of the recursive algorithm to compute the conditional reliability 

of subsystem s (𝑅𝑠𝑐) is presented in Figure 7.4.  

Inputs: 𝑛,𝒎,𝑮 

Output: 𝑅 = 𝑅𝑠𝑐(𝑛,𝒎,𝑮) 
 𝑀 = 𝑙𝑒𝑛𝑔ℎ𝑡( 𝒎) 
 if 𝐵𝐶1 is satisfied (𝑚𝑀 = 0) 

 𝑅 = 0 

 else if 𝐵𝐶2 is satisfied (𝑀 = 1) 

 Compute 𝑅 using the algorithm 2A or 2B 

 else 

 𝑅 = 0 

. for 𝑗 =  1 𝑡𝑜 𝑀 + 1 

 # Update the matrix 𝑮 

 𝑮𝒏  = 𝑮(1: 𝑛 − 1, : )  
 # Update the vector 𝒎𝒔 

 𝒎𝒋 = 𝒎 

 if 𝑗 < (𝑀 + 1) 
 for 𝑖 = 𝑗 𝑡𝑜 𝑀 

 𝑚𝒊
𝒋
= 𝒎𝒊

𝒋
− 1 

 end for 

 end if 

 # Merge the phases to get strictly decreasing 𝑘 > 0 values  

 if  𝑚𝑀
𝑗
> 𝑛   

 Merge phase 𝑀 and 𝑀 + 1 (algorithm 1) 

 else  

 for  ℎ = 1 𝑡𝑜 𝑀 − 1 

 if 𝑚ℎ
𝑗
= 𝑚ℎ+1

𝑗
  

 Merge the phases with the same m 

values (algorithm 1) 

 end if 

 end for 

 end if 

 𝑅 = 𝑅 + 𝑮(𝑛, 𝑗) ∗ 𝑅𝑠𝑐(𝑛 − 1,𝒎
𝒋, 𝑮𝒏) 

 end for 

 end if 

Figure 7.4: Algorithm 3 for subsystem conditional reliability evaluation 

 

7.5. Numerical Examples and Results 

In this section, two examples are provided to illustrate the application and efficiency of the 

proposed method. In the examples, the reliability of the different PMS is calculated for system 
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with different numbers of subsystems and components that need to work in a mission with different 

phases.  

7.5.1. Example 1 

Consider a PMS with 4 subsystems that must accomplish a mission with 4 phases. The 

number of components of each subsystem (𝑛), the baseline failure distribution of each subsystem 

(𝐹), the parameter values of baseline failure distributions are shown in Table 7.3. The baseline 

failure distribution of the components in each subsystem are different. For subsystem 1, the initial 

ages of components are [85.4,137.3, 186.9,236.8]. Except components of subsystem 1, the initial 

ages of other components are zero. The cumulative distribution function for the Weibull, Gamma, 

Lognormal, and Exponential are shown in the following: 

• 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(, ): 𝐹(𝑡,, )) = 1 − 𝑒𝑥𝑝(−(𝑡/)^) 

• 𝐺𝑎𝑚𝑚𝑎(, ): 𝐹(𝑡,,)) = gammainc (
𝑡


, ), gammainc is incomplete gamma 

function 

• 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(,): 𝐹(𝑡,,) = ½+ 1/2erf ((𝑙𝑛𝑡 − 𝜇) √2𝜎2⁄ ), erf (•)  is error 

function 

• 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(): 𝐹(𝑡,) = 1 − 𝑒𝑥𝑝(−𝑡/) 

Table 7.3: Parameters of four subsystems 

 𝑛 𝐹 Distribution parameters for each component 

Scale 𝜂 𝑜𝑟 𝜇  Shape 𝛽 𝑜𝑟 𝜎 

Subsystem 1 4 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(, ) [1100,1200,1300,1400] 1.8 

Subsystem 2 5 𝐺𝑎𝑚𝑚𝑎(, ) [2200,2400,2600,2800,3000] 1.5 

Subsystem 3 3 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(,) [8.5953,8.6823, 8.7624] 2.5 

Subsystem 4 5 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙() [5500,6000,6500,7000,7500] NA 
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The duration (𝜏), fault coverage factor (𝑐), and the phase-dependent parameters (k and  

values) of all subsystems for each phase are given in Table 7.4. Subsystem 2 and subsystem 3 are 

idle during phases 2 and 3, respectively. As shown in Table 7.4, the k values for these subsystems 

in phase 2 and phase 3 are zero. The components in subsystem 2 can still fail in phase 2, even 

though the subsystem is kept idle during this phase because 𝛼 = 0.4.  

Table 7.4: Phase-dependent requirements and parameters 

 Phase 1 Phase 2 Phase 3 Phase 4 

𝜏 20 50 75 40 

𝑐 0.99 0.98 0.97 0.99 

phase-dependent parameters 

Subsystem 1 𝑘 3 3 2 1 

α 1 1.2 2 1.5 

Subsystem 2 𝑘 3 0 (Idle)  4 2 

α 2 0.4 4 3 

Subsystem 3 𝑘 1 2 0 (Idle) 2 

α 1 2 0 0.25 

Subsystem 4 𝑘 3 4 3 2 

α 1 4 3 2 

 

Based on the given parameters, we first calculated the conditional failure probabilities of 

components during the four phases as shown in Table 7.5. Then, for each subsystem, Psc  and Rsc 

were calculated using Equation (7.9) and the recursive algorithm 3, respectively. According to the 

Equation (7.2), the reliability of subsystem 𝑠 (RS) is the product of Psc  and Rsc. The mission 

reliability of the system was calculated as the product of the reliabilities of individual subsystems 

as in Equation (7.1), 𝑅𝑃𝑀𝑆 = 0.9323. For comparison, we also calculated the reliability of the 

subsystems and system considering the perfect coverage, 𝑅𝑃𝑀𝑆 = 0.9585. As shown in Table 7.6, 

if we consider perfect fault coverage while in fact there is IFC, we get an overestimated values for 

subsystems and system reliability.  
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The CPU time for solving this problem using MATLAB 2020 on a personal computer is 

0.0079 seconds using algorithm 2-A and 0.0481 seconds using algorithm 2-B. Therefore, we 

choose algorithm 2-A to compute the reliability when 𝑀 = 1.  

Table 7.5: Conditional component failure probabilities at each phase  

Subsystem Component Phase 1 Phase 2 Phase 3 Phase 4 

Subsystem 1 𝐶1 0.0046 0.0178 0.0665 0.0344 

𝐶2 0.0055 0.0197 0.0663 0.0328 

𝐶3 0.0061 0.0206 0.0651 0.0312 

𝐶4 0.0063 0.0210 0.0635 0.0298 

Subsystem 2 𝐶1 0.0018 0.0015 0.0407 0.0220 

𝐶2 0.0016 0.0013 0.0360 0.0196 

𝐶3 0.0014 0.0012 0.0321 0.0176 

𝐶4 0.0013 0.0010 0.0289 0.0160 

𝐶5 0.0011 0.0009 0.0262 0.0145 

Subsystem 3 𝐶1 0.0124 0.0503 0 0.0041 

𝐶2 0.0114 0.0473 0 0.0039 

𝐶3 0.0104 0.0445 0 0.0037 

Subsystem 4 𝐶1 0.0036 0.0349 0.0374 0.0132 

𝐶2 0.0033 0.0321 0.0345 0.0122 

𝐶3 0.0030 0.0297 0.0320 0.0113 

𝐶4 0.0028 0.0276 0.0298 0.0106 

𝐶5 0.0026 0.0258 0.0279 0.0099 

 

Table 7.6: Subsystems and system reliability 

 Imperfect fault coverage Perfect fault coverage 

 Psc  Rsc RS RS 

Subsystem 1 0.9889 0.9940 0.9829 0.9937 

Subsystem 2 0.9884 0.9939 0.9823 0.9877 

Subsystem 3 0.9966 0.9887 0.9854 0.9884 

Subsystem 4 0.9913 0.9886 0.9799 0.9881 

 𝑅𝑃𝑀𝑆 𝑅𝑃𝑀𝑆 

System 0.9323 0.9585 
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7.5.2. Example 2 

In this example, we consider a larger scale PMS consisted of large number of subsystems 

that needs to operate in a mission with many phases. Large scale PMS can exist in many 

applications such as computer networks, computer clusters, and cloud computing systems. For 

example, the PMS can correspond to a large computer cluster with large number of connected 

computers that work together to accomplish many sequential tasks with different requirements and 

operating condition. The parameters of simulated PMS are defined in a way to make it possible 

for verification and future research comparisons.  

The considered PMS has 8 subsystems (𝑠 = 1 𝑡𝑜 8). The k-out-of-n subsystem s has 𝑛𝑠 =

4 + 𝑠 components. The system must accomplish a mission with 𝑀 = 10 phases. The phase-

dependent requirements and parameters are given in Table 7.7. We use modulo operator to define 

the duration of phase j (𝑗 = 1,2,… ,10) as 𝜏𝑗 = (1 + 𝑚𝑜𝑑(𝑗, 5)) ∗ 20. Hence, the total duration of 

the mission is 𝑇 = 600 time units. The fault coverage factors during phase j are 𝑐𝑗 = 1 −

0.02 × 𝑚𝑜𝑑(𝑗, 10). Using the ceiling function, the 𝑘 and  values for subsystem s during phase j 

are defined as: 𝑘𝑗 = 𝑛𝑠– 𝑐𝑒𝑖𝑙(0.6 ∗ 𝑛𝑠 ∗ 𝑗/𝑀) + 1 and 𝛼𝑗 = 2 ∗ (𝑐𝑒𝑖𝑙(0.6 ∗ 𝑛𝑠 ∗ 1/𝑀)/𝑐𝑒𝑖𝑙(0.6 ∗

𝑛𝑠 ∗ 𝑗/𝑀) ∗ (1/𝑗). As an example, for subsystem 7 𝒌 = [11, 10, 10, 9, 8, 8, 7, 6, 6, 5] and  =

[2.0, 0.67, 0.5, 0.27, 1.0, 0.5, 0.27,0.17, 0.13, 0.57].  

Table 7.7: Phase-dependent requirements and parameters  

 Phase j 

𝜏 (1 + 𝑚𝑜𝑑(𝑗, 5)) ∗ 20 

𝑐 1 − 0.02 × 𝑚𝑜𝑑(𝑗, 10) 

phase-dependent parameters of subsystem s 

Subsystem s  𝑘 𝑛𝑠– 𝑐𝑒𝑖𝑙(0.6 ∗ 𝑛𝑠 ∗ 𝑗/𝑀) + 1 

α 2 ∗ (𝑐𝑒𝑖𝑙(0.6 ∗ 𝑛𝑠 ∗ 1/𝑀) ∗ 1/𝑐𝑒𝑖𝑙(0.6 ∗ 𝑛𝑠 ∗ 𝑗/𝑀) ∗ 𝑗) 
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For simplicity, we consider that the components of each subsystem can be categorized into 

two different groups. The parameters of subsystem s are given in Table 7.8. The number of 

components in group-1 of the subsystem s is: 𝑛𝑠,1 = 𝑐𝑒𝑖𝑙(𝑛𝑠/3) and the remaining components 

are in group-2. For example, there are 11 components in subsystem 7. Hence, there are 

𝑐𝑒𝑖𝑙(11/3) = 4 components in group-1 and 11 − 4 = 7 components in group-2. The baseline 

failure time distribution for all components is 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(,), where the distribution parameters 

for components belonging to group-1 of subsystem s are: 
𝑠,1
= 5 ∗ 𝑛𝑠 ∗ 𝑇 and 

𝑠,1
= 1 + 0.1 ∗

𝑚𝑜𝑑(𝑛𝑠 ,10). Weibull parameters for group-2 are the same as group-1, except the scale parameter 

is 
𝑠,2
= 1.2 ∗ 

𝑠,1
. For example, in case of subsystem 7, we have: 

7,1
= 

7,2
= 1.1, 

7,1
=

33,000, and 
7,2
= 1.2 ∗ 33,000. All components are brand new, i.e., their initial age is zero. 

Table 7.9 shows the reliability of 8 subsystems and system for imperfect and perfect fault coverage 

cases. The CPU time for solving this problem is 46.58 seconds for imperfect fault coverage case. 

Table 7.8: Parameters of subsystem s  

 𝑛 𝐹 Distribution parameters for each component 

Scale 𝜂𝑠  Shape 𝛽𝑠  

Group-1 𝑛𝑠,1 = 𝑐𝑒𝑖𝑙(𝑛𝑠/3) Weibull  
𝑠,1
= 5 ∗ 𝑛𝑠 ∗ 𝑇 

𝑠,1
= 1 + 0.1 ∗ 𝑚𝑜𝑑(𝑛𝑠 ,10) 

Group-2 𝑛𝑠,2 = 𝑛𝑠 − 𝑛𝑠,1 Weibull  
𝑠,2
= 1.2 ∗ 

𝑠,1
 

𝑠,2
= 

𝑠,1
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Table 7.9: Reliability of subsystems and system  

 Imperfect fault coverage Perfect fault coverage 

 Psc  Rsc RS RS 

Subsystem1 0.9980 0.9917 0.9897 0.9914 

Subsystem 2 0.9990 0.9975 0.9965 0.9974 

Subsystem 3 0.9994 0.9986 0.9980 0.9985 

Subsystem 4 0.9997 0.9992 0.9989 0.9992 

Subsystem 5 0.9999 0.9999 0.9998 0.9999 

Subsystem 6 0.9941 0.9765 0.9707 0.9760 

Subsystem 7 0.9964 0.9873 0.9838 0.9871 

Subsystem 8 0.9980 0.9933 0.9914 0.9932 

 𝑅𝑃𝑀𝑆 𝑅𝑃𝑀𝑆 

System 0.9306 0.9438 

 

7.6. Summary 

In this chapter, we presented a recursive method for the reliability analysis of PMS subject 

to IFC behavior. The proposed method is computationally efficient and applicable for subsystems 

with different components with any failure distribution. As demonstrated through numerical 

examples, the proposed mission reliability evaluation algorithm can be used to compute the 

reliability of large-scale PMS with any structure in reasonable CPU time. The proposed method 

facilitates determining the optimal number of components for each subsystem to get the best 

configuration of the system with maximum reliability.   
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8. CONCLUSION AND FUTURE WORK  

This dissertation has presented new predictive analytics methodologies for effective 

prognostics and health management, and reliability assessment of complex systems with 

interdependent components that are operating in dynamic operating conditions. The developed 

frameworks and methods led to improved maintenance planning. The main research results and 

new contributions of this dissertation are summarized as follows.  

New reliability models were proposed, and the optimal maintenance strategy was 

determined to fulfill the system requirement within the available maintenance resources. In chapter 

3, we captured the S-dependency between components of a complex system in a selective 

maintenance setting and modeled the interactions between components as a function of the system 

performance rate and the number of influencing components. We also captured the effects of 

unknown factors, such as the state of non-critical components, on the interaction. The results for 

two different series systems showed that stochastic imperfect maintenance actions could 

significantly affect the reliability of system. Also, ignoring S-dependence leads to overestimating 

the system reliability and improper maintenance actions. Our research contribution provided a 

useful reference for selective maintenance optimization of multi-component series systems. 

 In chapter 4, we adopted the instance-based method to directly predict the 𝑅𝑈𝐿 using the 

historical degradation process of similar systems. The proposed approach was successfully applied 

to predict the 𝑅𝑈𝐿 of simulated systems. The results showed that the approach can be applied for 

𝑅𝑈𝐿 prediction of highly complex systems where it is hard or even impossible to capture true 

interactions between interdependent components through specific models. 

Moreover, we considered three different cases for predictive analytics of a system 

functioning under dynamic operating conditions. In chapter 5, we modeled the dynamic operating 
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condition as a homogeneous CTMC, and the degradation rate as a function of the age and 

degradation state of the system as well as the dynamic operating conditions experienced by the 

system. We accounted for the reality that the influence of the operation condition on the 

degradation process depends on the current degradation state of the system. Because of the 

uncertainty of future operating conditions, the MCS algorithm was used to estimate the system 

reliability. The numerical study showed that the proposed approach can effectively capture the 

effects of dynamic operating conditions to get a reasonable estimation of system reliability. 

Moreover, we presented a selective maintenance optimization model to find the optimal 

maintenance strategy considering the mean of system reliability as the objective function and time 

and cost of maintenance actions as two constraints of the optimization model.  

In chapter 6, to predict the 𝑅𝑈𝐿 of the complex systems working in dynamic operating 

conditions, we proposed a novel LSTM-based framework that does not need any specific model 

for the degradation process, the operating condition, and the effects of the operating conditions on 

the degradation process. The proposed method used the original degradation and operating 

condition data to directly predict the 𝑅𝑈𝐿 of the system in two steps: finding the degrading point 

and using LSTM to predict the 𝑅𝑈𝐿. While the effectiveness of the proposed framework was 

showed using a simulated data set of electrolytic capacitors, this general framework can be easily 

adopted to a variety of complex systems. 

In chapter 7, we considered PMS that its behavior changes at different phases during the 

mission as it can have different configurations and success criteria, and experience various 

operational and environmental conditions in each phase. We proposed an exact and efficient 

method for the reliability analysis of a non-repairable PMS with several statically independent and 

different k-out-of-n subsystems consisting of multiple non-identical components. We also 
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considered the IFC, i.e., the component failures cannot be perfectly detected and covered. We 

demonstrated the effectiveness of this method by computing the reliability of two different 

systems. The proposed recursive method for the reliability analysis is computationally efficient 

and applicable for subsystems with different components with any failure distribution.  

In the future, one important and interesting research opportunity is to extend the current 

predictive modeling framework to other practical scenarios. In the following, several future scopes 

have been discussed briefly.  

• Our work in Chapter 3 provides two future directions. (1) To extend the proposed 

approach to find the optimal maintenance strategy considering all operational 

missions during the lifetime of the system instead of one mission. (2) To find an 

efficient method to solve the selective maintenance problem for large serial k-out-of-

n systems. 

• One extension of the work in Chapter 4 is to investigate the effect of variability of 

the other parameters of the model, such as the inherent degradation rate of different 

components, on the performance of the 𝑅𝑈𝐿 prediction results.  

• In chapter 6, LSTM has been considered for the 𝑅𝑈𝐿 prediction of complex systems. 

More sophisticated approaches, such as graph neural networks that can capture the 

spatio-temporal dependency between condition-based sensor data, can be 

investigated to get more accurate prediction of system 𝑅𝑈𝐿. Moreover, the proposed 

framework provides only point estimation of 𝑅𝑈𝐿. However, accurate interval 

estimations of the 𝑅𝑈𝐿 are crucial to understand the stochastic nature of degradation 

processes and perform reliable risk analysis and maintenance decision-making. 
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• In Chapter 7, we considered PMSs with the following failure dependencies: (1) 

phase-dependent failure characteristics, (2) dependencies of component states across 

the phases, and (3) imperfect fault coverage that causes system level failures. 

However, in some systems, other types of failure dependencies can exist. For 

example, a failure of a component will result in a higher load on each of the surviving 

components, thereby inducing a higher failure rate for them. Therefore, another future 

work is to compute the reliability of PMS considering the dependency between load-

sharing components. 
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