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ABSTRACT 

This study focusses on a decision making tool to assist an organization in planning for 

capacity needed for the Last Mile Delivery (LMD) services which is the most expensive part of 

the entire supply chain. Considering the use of Crowdsourcing for Logistics (CSL), the decision-

making tool’s objective is to provide an optimal combination of fulltime, seasonal and CSL 

resources that lead to minimum operational LMD costs and meet the variable demand.  

To achieve this, a three phased approach is used, where in the first analytical phase an 

expected cost model is numerically validated. In the second stochastic program phase, the 

capacity and cost of the CSL resources are varied.  Finally, in the third simulation phase, the 

approach is further extended to consider the daily employee attrition rate and unsatisfied demand 

being carried over to the next day. Lastly, the use of automation or newer technologies, such as 

robots, for LMD services is introduced in this simulation phase to show the benefits in terms of 

the operations costs.  

The results from the analytical model described the optimal values of fulltime and 

seasonal considering the utilization of CSL and experienced some penalty costs. In this case, the 

parameters being fixed, does not capture the differences due to the variability of CSL availability 

or costs, which is addressed in the stochastic program phase. Though the output from the 

stochastic model is higher, it does consider the variability in the CSL capacities and costs, which 

is practically observed.  The simulation section gives a further refined optimal combination of 

fulltime, seasonal and CSL that meets the demand considering the attrition rate of fulltime and 

seasonal, and rollover of the units by one day. Within this, the consideration of automated 

delivery systems like using a robot for LMD services leads to further cost savings opportunity. 



 

iv 

Here, the fulltime delivery cost is benefited, with low utilization of seasonal and CSL limited for 

optimizing delivery strategy.  

In conclusion a tool is provided for aggregate delivery capacity planning that would 

consider an optimal combination of fulltime, seasonal and CSL resources lowering the LMD 

costs and meeting the variable demand.    
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1. INTRODUCTION 

Within a Supply Chain Management (SCM) system, the logistics division (Ballou, 2004) 

focusses on movement of goods and services from a source to the end destination meeting the 

suppliers’ and the customers’ expectations.  The key expectations here are to have the products 

moved in the shortest possible time and at the lowest possible cost. An SCM system with its key 

functional areas are shown in Figure 1.     

 

Figure 1. SCM and key functional areas. 

The varying demand of the product, delay in procurement of raw materials, or any 

disruption in manufacturing, failing to provide output on time; stresses the logistics function to 

transport the output (mostly the finished goods) on time. Within these movements of the material 

SCM

Research 
and Design

Finance

Forecasting 
and 

Procuring

Marketing 
& sales

Information 

Technology

Production 
planning 

and control

Logistics

Customer 
service



 

2 

from source to a destination, various activities are involved. These activities are coordinated by 

the functions within SCM to move the products optimally from one point i.e. the source to the 

second point, the destination.  Figure 2 considers an example of a traditional flow, from raw 

materials being shipped to manufacturing plant and then the finished goods from the 

manufacturing plant to the end customer via the wholesalers and retailers. In this study, the 

portion of logistics dealing with the finished goods delivery with forward logistics is being 

considered, where the source will be the local warehouse/retailer site and the destination will be 

the end customer; a residential type for this scenario. Reverse logistics, dealing with the return of 

finished goods to the warehouse/retailer (for example warranty or returns) is not in the scope of 

this study.  

 

Figure 2. Material movement from source to destination. 

The logistics of moving material or products from the warehouse/retailer to the end 

customer, can be further divided into two broad categories, i.e. if shipping to a business entity or 

an individual noncommercial customer. It is also termed as business to business (B2B) and 
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business to consumer (B2C), respectively. The portion of logistics services of interest is the B2C 

scenario wherein the delivery of the goods is to the end customer or the end user, usually a 

noncommercial residential type. For example, an individual ordering an electronic device from 

an e-commerce company where the product is moved from the e-commerce company’s local 

warehouse/retailer to the end customer’s residence. Another example is an individual ordering 

groceries online from the convenience of their residence, and having it delivered from the local 

supermarket.  

For the raw materials, the sources would be the suppliers and the destination would be the 

manufacturing plant. For finished goods, the source is the manufacturing plant and destination is 

the warehouse/retailer or the end noncommercial customer. Though it is a possible scenario that 

the goods (finished goods or service parts) can be shipped directly from the manufacturing plant 

to the end customer, for this case, the scope is limited considering the finished goods flow from 

the local warehouse/retailer to the end customer’s residence.  

In this movement of goods, the most expensive is the final leg, i.e. from the local 

warehouse/retailer to the end customer’s residence. This logistic movement is popularly known 

as Last Mile Delivery (LMD). LMD is known to be the most expensive, challenging and least 

efficient (Perboli et al., 2021) when it comes to material movement. Research indicates that 

LMD accounts to anywhere between 13% and 75% of the overall supply chain costs (Gevaers et 

al., 2009).  

1.1. Last Mile Delivery 

LMD is the final leg of the product transportation for a logistics company (Wang et al., 

2016). It is primarily from a local warehouse/retailer to the hands of the end customer. The 

importance of optimizing LMD services was primarily due to it being most expensive part of the 
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supply chain system. Of recent, factors like an increase in e-commerce volumes, a push for 

sustainable transportation reducing carbon footprints, time constraints and an aging workforce 

are leading to the innovation in LMD services. Strategies like using an existing transportation 

pool, use of drones (Boysen et al., 2021), or use of storage points, have gained significant 

attention to address the expected boom in e-commerce with rapid urbanization.  

Top logistics companies are constantly in pursuit of optimizing their LMD strategy. For 

example, a recent press release (FedEx, 2020) shows how the growth in the e-commerce business 

is leading to optimization efforts at the organizational level. This impact is much more profound 

in cities with higher population density as e-commerce grows and thus needs optimization of 

LMD (Viu-Roig & Alvarez-Palau, 2020). Walmart being a top supermarket across the globe has 

its own innovative approaches. Concepts like owning delivery vehicles or partnering with a 

delivery services company (Walmart, 2019) were established by Walmart in various parts of the 

world.   

1.2. Optimizing LMD 

Today, LMD has gained profound interest (Mangiaracina et al., 2019) with the sole 

objective to optimize the final leg of logistics delivery making a big impact to cost savings. In 

the current state, the cost of delivery constitutes the delivery vehicle cost, the human resource 

used and the travel route. Given that LMD is the most expensive part of the supply chain and the 

growth in e-commerce there is a need for more cost efficient strategies (Vakulenko et al., 2019).  

There has been active research in the field of optimizing travel routes, pick up points, altering the 

type of vehicle (electric powered), aerial vehicles, robots and the use of lockers. Parcel deliveries 

in an urban setting have also been studied comparing vehicles and bikes (Perboli & Rosano, 

2019; Eliyan et al., 2021) to focus on sustainable benefits (McLeod et al., 2020). However, there 
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is one arena that can use more research in terms of aligning human resources to capacity. 

Organizations have been long struggling to achieve a fine balance of required human resources 

for the variation in capacity. Strategy like using third party logistics services (Ponce et al., 2020) 

for operations is also a popular method to lower the supply chain costs. With intense competition 

in the retail sector, further cost reduction opportunities have evolved with the human resources 

openly available in the region, which leads us to utilization of crowd for logistics services in the 

LMD portion of the supply chain. This sourcing of logistics services from crowd is termed as 

Crowdsourcing for Logistics (CSL) in this study. 

Among the mix of opportunities to optimize LMD, the use of CSL (Boysen et al., 2021; 

Cleary and McLarney, 2021; Mangiaracina et al., 2019) is one avenue that can help deliver 

product on time and achieve organizations’ focus on sustainability (economic and 

environmental) by reducing overall logistics costs. This can be achieved by using just CSL 

services, or by combining it with the existing workforce within an organization. Usable CSL 

services with real time information flow between systems has been the motivating factor along 

with the emerging need of consumers (Kafle et al., 2017). Businesses and/or consumers today 

are empowered with tools and knowledge to constantly demand more choice and flexibility in 

delivery options using CSL services (Ermagun & Stathopoulos, 2018) and with the objective of 

obtaining lowest possible cost (Perboli et al., 2021). Along with this flexibility, service quality 

has to be ensured.  

Crowdsourcing has always been in existence wherein an organization or a person can 

refer to the crowd for a solution, benefitting from the knowledge and wisdom of the crowd. 

Companies using crowd input for product feature designs or to test a new to be released software 

version (beta testing) has partly influenced the concept of using crowdsourcing for logistics 
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services. With the available potential of the crowd and information technology support, this 

arena has picked up its pace in little more than a decade from ride sharing services to grocery 

deliveries (Alnaggar et al., 2021; Punel et al., 2018). Furthermore, the lockdowns (Rodríguez 

García et al., 2021) during the pandemic situation mostly during the year 2020, has led to an 

improved customer online shopping pattern, specifically for fresh produce and groceries (Kim 

and Wang, 2021). 

1.3. Problem Statement 

The advancement in the field of information technology (Marzanoa et al., 2019) and the 

ability to create mobile applications (commonly known as apps) linking the available crowd 

resources for a business has fostered CSL services in recent years. CSL services have witnessed 

strong growth with outright participation of businesses and local populations (Carbone et al., 

2017) leading to a win-win situation. Doordash, Instacart, Shipt, and Ubereats are a few 

examples (Alnaggar et al., 2021) that have recently gained popularity with a promising outlook. 

There is a significant amount of research focusing on the employers’ and crowd’s willingness to 

participate in CSL for LMD (Le et al., 2019) and factors influencing the usage of CSL (Punel & 

Stathopoulos, 2017). The interest level between the two parties seems to be experiencing a 

positive trend, with strategies matching expectations of both the parties boosting the use of CSL. 

CSL provides an added price advantage over traditional logistics companies (Shen & Lin, 2020), 

which is a motivating factor. The same approach has been extended to grocery deliveries from a 

local retailer to the end customer. This strategy, has boosted the e-commerce sales or online 

ordering for groceries with all major retailers now offering this service (Wang & Zhou, 2015). 

Costs for delivering one order can fall between $10 and $20 (Boyer et al., 2009), along 

with the costs of preparing an order. Competition advertising to provide free order delivery 
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irrespective of order amount adds to the need for an efficient delivery strategy. A study that 

understands the effects of delivery strategies to customer needs and eventually how it impacts 

their expectations (Esper et al., 2003) shows that lower cost of delivery and higher speed impacts 

the online ordering preferences of customers. Consumer preference is heavily influenced by 

delivery speed and cost (Nguyen et al., 2019) and is now on the radar of top grocery chains and 

e-commerce organizations. This increase in online ordering for any organization, adds to the 

dilemma of utilizing existing full time staff, adding seasonal staff, or utilizing available CSL for 

LMD services while optimizing the operational costs ensuring timely and accurate deliveries.  

1.4. Significance of the Study 

The objective of this study is to propose a decision making tool for organizations when 

planning for capacity to meet LMD services for the given seasonal variation. It is of expectation 

that this kind of tool would assist managers in budgeting the resources by having chosen an 

optimal combination between fulltime, seasonal and CSL resources that would incur lowest 

expense while meeting the demand. In addition, the benefits of using an automated system such 

as a van-robot delivery is also explored, along with the change in the resource combinations that 

would assist an organization to keep their LMD operations costs lower.  

The recent trend in increasing online sales has led to an increase in revenue but at a cost, 

since LMD is the most expensive portion of logistics (Gdowska et al., 2018). Companies today, 

are facing intense competition to gain market share in grocery deliveries (along with existing e-

commerce business) with the likes of giant retailers like Walmart and Amazon. More and more 

grocery chains have joined in this concept of online ordering of groceries and having them 

delivered to residences. Thus, it is essential for an organization to provide utmost customer care 

by providing the right order at the right time. 
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CSL being a growing field (Le et al., 2019), still has its challenges to be implemented on 

a full scale and thus this approach to develop a decision making tool. The characteristics of the 

order profile like periodic variations, seasonal variations, fulltime and seasonal resources costs, 

delivery vehicle costs for fulltime and seasonal resources, costs of CSL services, availability of 

CSL services, fulltime and seasonal employee attrition rate, and rollovers of missed deliveries by 

one day; are all considered in this research to give an overview of resource needs at an aggregate 

capacity planning level and provide insights for managerial decision making.   
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2. LITERATURE REVIEW  

A study by Gevaers et al. (2009) emphasizes how the growth in the e-commerce business 

and the e-grocery market has influenced the LMD services. This LMD part of the supply chain 

being the most expensive has led to various innovations over the last few decades. Improvements 

were in the areas such as improving delivery fleet by use of electric vehicles, autonomous 

applications such as drones or robots, vehicle route optimization, scheduling, delivery window 

considerations, staffing levels, outsourcing of logistics services and use of cargo bikes to name a 

few. Apart from the fact that the LMD is most expensive part of the supply chain, it also is 

linked to causing environmental impact due to pollution. As a significance growth in e-

commerce is observed, so is the increase in traffic and congestion in a locality.  

Allen et al. (2020) have highlighted the fact that the increase in the last mile deliveries 

with the online orders and expectations of same day delivery has led to the increased traffic in a 

region. This further, highlights the negative environmental impact these services cause and call 

for policy makers to act on this situation by providing a discussion on key issues. Arnold et al 

(2018) have also highlighted that growth in the e-commerce distributions have resulted in traffic 

congestions or emissions. To alleviate this issue, the authors use a simulation approach to 

evaluate if alternate modes such as using bikes for deliveries. A two-echelon model has been 

proposed by Caggiani et al. (2021), where using electronic cargo bikes and electronic vans were 

considered against the traditional vehicles. Concerns were travel costs, vehicle investment costs, 

wage related costs and depot costs resulting into the economic comparison between the use of 

electronic cargo bike and electronic van. In this pursuit, a methodology is also proposed by Comi 

& Savchenko (2021) to choose the most sustainable option of using a bicycle or traveling by foot 

when fulfilling a delivery of small parcels in an urban setting. Similarly, approaches from 
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sustainable aspect to optimize LMD costs was studied by Gatta et al. (2019), where usage of 

lockers was considered inside or near public transit systems. Their summary concludes that CSL 

has good potential both ways, i.e. economically and environmentally.  

At the same time, a survey by Nogueira et al. (2021) has shown the customers preference 

in terms of contributing to environmental sustainability, where delivery speed was the top 

priority and concluded with the fact that this choice would be product dependent. Secondly, to 

educate the customers how they can contribute to sustainability aspect while choosing delivery 

options when ordering goods. On the same note, McLeod et al. (2020) have discussed about the 

benefits of using porters or cycle couriers for LMD services. Benefits here pertain to both the 

objectives of having lower operational costs and avoid negative environmental impact. As seen 

in the study by Perboli and Rosano (2019) where the authors highlight the need for making the 

LMD services more sustainable. The objective can be achieved by optimizing the traditional 

delivery flow by considering inclusion of contemporary practices such as cargo bikes among 

others, built into the parcel distributions.   

Boysen et al. (2020) in their paper have also highlighted the impact of the growth in the 

e-commerce and specifically how the LMD leads to traffic congestion and pollution. To address 

this have surveyed the novel approaches in LMD. Among the approaches reviewed by the 

author, the utilization of crowd for transportation also garnered interests with the evolution of 

digital platforms for taxi services or food delivery apps. Alnaggar et al. (2021) in their review 

paper have described an overview of evolution of the CSL delivery platforms, also discuss about 

their scheduling, matching and compensation schemes. In parallel to this, the authors also have 

described the research efforts that continued through the same timeline. The authors view point 

leads to numerous research agendas encompassing managerial decision making with scheduling, 
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matching, compensation and routing considering the current industry trends and how it can be 

optimized further. Behrend and Meisel (2018) discuss about integrating and item sharing and 

crowd shipping for small parcel deliveries. Here they have investigated three different modes of 

transfer of parcels. The results show that the integration of item sharing and crowdsourcing, and 

utilization of three modes of delivery leads to highest profits and service levels.   

Carbone et al. (2017) have studied the utilization of crowd for logistics services 

considering various initiatives around the world. It is intriguing to know that this type of service 

creates value and thus has a possibility of creating newer methods of delivery disrupting the 

traditional business models.  Castillo et al. (2021) explore the impact on cost and service level by 

considering the hybrid fleet of vehicles with crowdsourcing. A stochastic simulation integrating 

the discrete event, agent based methodologies lead to an understanding of the crowd based 

logistics services rates would impact the overall costs. The crowdsourcing rate at a median pay 

and a mix of hybrid vehicles were found be optimal in case of operational costs and meeting the 

service levels. Shen and Lin (2020) have also studied this innovative logistics service and have 

shown the price advantage for same day service in their analysis.  

Similarly, with Autry’s (2021) review paper has highlighted the very fact that with 

dynamically changing environment calls for innovative methodologies for logistics activities and 

CSL can be one good fit. The key question related to this study is the fact that how much CSL 

services would be needed when considering with existing resources. Several other studies like 

Cleary and McLarney (2021) and Mangiaracina et al. (2019) have also highlighted the use of 

CSL to be critical in optimizing LMD costs. Furthermore, Seghezzi and Mangiaracina (2021) 

explore the multi-parcel option. Asserting that CSL is a promising solution for lowering LMD 
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costs, the authors also explore the option of one CSL resource delivering multiple parcels in a 

given route.  

A study by Huang & Ardiansyah (2019) has also shown that a well-planned integration of 

CSL into LMD services can give the advantage of being flexible and save costs. The rate at 

which e-commerce is growing today and the need for parcel deliveries as mentioned by Guo et 

al. (2019) has led to the need effective last mile solutions. Pina-Pardo et al. (2022) have 

highlighted the fact that there has been a huge spike in retail sales and as a result, the LMD 

services will be a prominent area where cost effective solutions are the need. The authors used a 

two-stage stochastic program to design a two-echelon LMD network and provided managerial 

insights into the transportation modes, facility location, and benefits of outsourcing deliveries. 

Perboli et al. (2021) consider a satellite depot system and solving to provide the optimal cost. 

The authors use a mixed integer program and heuristics to solve the problem.  Nieto-Isaza et al. 

(2022) have proposed a model considering mini-depots for LMD. Here the authors used a 

benders decomposition approach. Lu et al. (2020) have mentioned about a similar concept with 

driver helpers for LMD services. Their study was inspired by the challenges faced by logistics 

companies during peak seasons and with an objective of keeping operational costs low.  

As seen so far, CSL does seem to be a favorable option among others to lower the LMD 

related costs. However, it is advisable to be mindful of the capacity availability and pricing 

structures of the CSL resources. Boysen et al. (2022) have studied an aspect where the 

employees of the retailers or distribution centers opt for delivering shipments on the way back 

from work to their residence. The success is attributed to the availability of resources for crowd 

based shipping. A study by Castillo et al. (2018) also evaluates the use of CSL and its 

performance in terms of logistics effectiveness. To achieve this, the authors here have used a 
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simulation approach to deliver goods from a warehouse to customers within a city highlighting 

the strategic benefits of the use of CSL with more deliveries done but might impact service level. 

With this advantage of utilizing the CSL, there is always a concern with level of resources to use 

and meet the demand. One approach that complements the resource utilization is where Le et al. 

(2021) highlight that the pricing must be determined for CSL models.  Le et al. (2019) in their 

research have reviewed the current state of the use of CSL considering the supply, demand, and 

operations and management. The authors focus lies more on the current state considering the 

various components interacting with each other, the challenges and benefits when shipping a 

package. Nevertheless, the authors do highlight the fact that CSL has a promising outlook and is 

at its early stages needing further research. Le et al. (2019), also analyze the willingness of CSL 

services, and specifically in terms of pay and distance travelled. This will definitely be a critical 

factor deciding the availability of CSL. Similarly, Le and Ukkusuri (2019) and Pourrahmani and 

Jaller (2021) have reviewed the factors and operational challenges and discussed research 

opportunities with the use of CSL.  

One approach of an analytical model observed in a literature was for e-commerce 

deliveries for B2C scenario was by Seghezzi & Mangiaracina (2021) for LMD. The authors here 

have highlighted the fact that the availability of economic analysis of the use of CSL in LMD is 

limited. Ermagun and Stathopoulos (2018) have reviewed the probability of receiving a bid and 

the counts of bid. This aspect is very critical when planning to make us of the CSL services. 

Furthermore, Ermagun et al. (2019) have studied the performance of CSL services from two 

years of data. This level of data assists in determining the effectiveness of CSL services when 

lowering LMD costs. Gdowska et al. (2018) discuss about the implications of a CSL service 

declining orders. This will become essential aspect for an organization to ensure service levels at 



 

14 

peak period are maintained and providing insights for managerial decision making, in this study.  

Punel et al. (2018) in their study have highlighted the growing trend of the CSL services. At the 

same time, considering the disadvantages listed by the authors in their study, service level is one 

aspect that is incorporated in this study, as it needs to be thoroughly evaluated when committing 

to CSL for LMD delivery services by any organization.  

LMD being the most expensive portion within the entire supply chain has been studied 

extensively to optimize operational costs, various strategies have been highlighted ranging from 

use of cost efficient equipment, optimized routes, optimal location of depots, automation such as 

drones or robots, and utilization of CSL for logistics services. Thus here is an approach targeting 

to lower the labor costs by incorporating CSL services, and at the same time reduce 

environmental pollution by making use of the existing traffic (owned and operated by CSL 

resources) in the neighborhood.  

The one avenue that is scarce on research is with the aggregate planning for capacity 

considering the use of seasonal and CSL resources in conjunction with existing fulltime staff for 

a logistics provider. This leads to the question of having optimal capacity for the LMD services 

while meeting the variable demand, and yielding the benefits the CSL services can provide 

benefits in both ways, economically and less environmental impact.  Yildiz & Savelsbergh 

(2019) studied the capacity model but were limited to short term capacity only and not at an 

aggregate level. A capacity planning model has been proposed by Dai & Liu (2020) where a 

combination of part time crowdsource, fulltime crowdsource and in house drivers are considered. 

Their approach specifically focusses more on the use of crowdsourced resource to fulfill order 

requirements. Ulmer and Savelsbergh (2020) have shown a similar approach of using CSL 
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services but with the workforce shift scheduling. Their aim being to reduce the impact of on 

service level due to any uncertainties in the availability of CSL.   

Considering the risks associated with the uncertainties in the capacity and cost efficient 

availability of CSL resources, the service level and the operational expenses are at stake. 

Moreover, during peak season as order volumes increases and with multiple businesses in the 

locality wanting to use the same pool of CSL capacity, challenges the timely sales of the 

businesses. Thus, it will be worthwhile to look at the resource distributions at an aggregate level 

and gain insights for long term capacity planning purposes, which is currently not available in 

literature.  

Thus, in this study, a long term strategic capacity planning tool is proposed, which 

determines the optimal combination of fulltime, seasonal and CSL resources to meet the seasonal 

demand. The objective here is to contribute to the efforts of lowering the LMD services related 

costs by creating providing an aggregate capacity planning tool, that would empower 

organization to make decisions with the need for resources like fulltime, seasonal and CSL when 

comparing to the periodic and seasonal variation. Finally, exceeding the customer service levels 

at the lowest LMD costs.     

 

 

 

 

  



 

16 

3. ANALYTICAL MODEL  

3.1. Analytical Model Objective  

The objective of the analytical model is to determine the lowest expected capacity cost 

for LMD services. This is achieved by using a combination of fulltime, seasonal and CSL 

resources to meet the demand which is seasonal in nature. This stylized model with random 

demand is numerically run considering uniform and normal distribution of demand. The results 

from this numerical analysis show the impact on the capacity levels, orders fulfilled and orders 

missed. Any missed orders are subject to a penalty cost, which eventually gets added to the total 

operational costs.    

In a way, the objective of determining optimal capacities for fulltime, seasonal and CSL 

resources when the actual demand is not yet known or continuously varies, is similar to a 

newsvendor model (Qin, et al., 2011). However, whereas in a newsvendor model the tradeoff is 

between having too much or too little inventory, for this model the tradeoff is between having 

too much or too little delivery capacity. With this in consideration, the model description is 

presented in the next subsection.  

3.2. Assumptions Used for Analytical Model 

 The model described here is derived from an expected cost for a logistics company to 

provide LMD services on a daily basis or per period as used in this model. It is assumed that the 

logistics company faces a random demand for each period and by seasons. The distribution of 

demand for each period in the respective seasons follow a PDF 𝑔𝑗(𝑥) and a CDF 𝐺𝑗(𝑥).  

At the beginning of every fiscal year, it is assumed that the logistics company considers 

to employ a steady count of fulltime resources ensuring a certain section of capacity is fixed. 
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Depending upon the random orders per period and season, the company wants to employ 

seasonal resources to meet the variation in demand.  

Furthermore, the company also wants to explore the option of using CSL resources to 

optimize LMD costs and service levels. As this capacity of CSL is also highly variable, it is of 

importance to understand the risks and have the knowledge for an informed decision making.  

3.3. Analytical Model Description  

The notations used in the model formulation are as below: 

𝑇 = Fulltime capacity. 

𝑇𝑗 = Seasonal capacity for season j.  

𝑇𝑗
∗= Optimal seasonal capacity in season j in number of deliveries. 

𝑇∗= Optimal value of T (minimizing expected costs) in number of deliveries. 

𝐻𝑗(𝑇) = Derivative of cost for seasonal capacity in season j. 

𝐸𝐹 = Expected error cost of one unit of demand being satisfied by fulltime capacity in USD. 

𝐹 = Per period cost of full-time capacity to satisfy one unit of demand in USD. 

𝑆 = Per period cost of seasonal (part-time) capacity to satisfy one unit of demand in USD.  

𝐸𝑆 = Expected error cost of one unit of demand being satisfied by seasonal capacity in USD.  

𝑈 = Per unit cost of CSL to satisfy demand which includes 𝐸𝑈, in USD. 

𝐸𝑈 = Expected error cost of one unit of demand being satisfied by CSL capacity in USD.  

𝑂 = Cost per unit of unsatisfied demand in USD.  

𝑛 = Number of seasons.  

𝑛𝑗  = Number of periods in season j.  

𝐺𝑗(𝑥) = CDF of demand for one period in season j.  

𝑔𝑗(𝑥) = PDF of demand for one period in season j. 

UD = Uniform distribution.  

ND = Normal distribution.  
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𝐶= CSL capacity. 

For the numerical analysis, three scenarios are considered based on the costs of CSL 

deliveries U. The three scenarios are:  

Scenario 1 - Assuming 𝑈 > 𝑆 + 𝐸𝑆 𝑎𝑛𝑑 > 𝐹 + 𝐸𝐹   

In Scenario 1, 𝑇𝑗  is obtained by solving equation 1 and 𝐻𝑗(𝑇) is as in equations 2 and 3. 

Corresponding equations are provided for 𝑇𝑗  and 𝐻𝑗(𝑇) with Scenarios 2 and 3 in equations 4-9. 

 𝑆 + (𝐸𝑆 − 𝑈) ∗ (1 − 𝐺𝑗(𝑇𝑗)) + (𝑈 − 𝑂) ∗ (1 − 𝐺𝑗(𝑇𝑗 + 𝐶)) = 0  (1) 

 𝐻𝑗(𝑇) = 𝐹 + (𝐸𝐹 − 𝑈) ∗ (1 − 𝐺𝑗(𝑇)) + (𝑈 − 𝑂) ∗ (1 − 𝐺𝑗(𝑇 + 𝐶) 𝑖𝑓 𝑇 ≥ 𝑇𝑗      (2) 

 𝐻𝑗(𝑇) = (𝐹 − 𝑆) − (𝐸𝐹 − 𝐸𝑆) ∗ (1 − 𝐺𝑗(𝑇))  𝑖𝑓 𝑇 < 𝑇𝑗   (3) 

Scenario 2 - Assuming 𝑆 + 𝐸𝑆 ≥ 𝑈 > 𝐹 + 𝐸𝐹   

 𝑇𝑗 = 𝐺𝑗
−1(

𝑂−𝑆−𝐸𝑆

𝑂−𝐸𝑆
)   (4) 

 𝐻𝑗(𝑇) = 𝐹 + (𝐸𝐹 − 𝑈) ∗ (1 − 𝐺𝑗(𝑇)) + (𝑈 − 𝑂) ∗ (1 − 𝐺𝑗(𝑇 + 𝐶) 𝑖𝑓 𝑇 + 𝐶 ≥ 𝑇𝑗   (5) 

𝐻𝑗(𝑇) = (𝐹 − 𝑆) + (𝐸𝐹 − 𝑈) ∗ (1 − 𝐺𝑗(𝑇)) + (𝑈 − 𝐸𝑆) ∗ (1 − 𝐺𝑗(𝑇 + 𝐶))  𝑖𝑓 𝑇 + 𝐶 < 𝑇𝑗 (6) 

Scenario 3 - Assuming 𝑈 <  𝐹 + 𝐸𝐹 𝑎𝑛𝑑 < 𝑆 + 𝐸𝑆           

 𝑇𝑗 = 𝐺𝑗
−1(

𝑂−𝑆−𝐸𝑆

𝑂−𝐸𝑆
)   (7) 

 𝐻𝑗(𝑇) = 𝐹 − (𝑂 − 𝐸𝐹) ∗ (1 − 𝐺𝑗(𝑇 + 𝐶)) 𝑖𝑓 𝑇 + 𝐶 ≥ 𝑇𝑗   (8) 

 𝐻𝑗(𝑇) = 𝐹 − 𝑆 − (𝐸𝐹 − 𝐸𝑆) ∗ (1 − 𝐺𝑗(𝑇 + 𝐶)) 𝑖𝑓 𝑇 + 𝐶 < 𝑇𝑗   (9) 

To obtain 𝑇∗, equation 10 is solved in Excel solver as a function of 𝑇.  

 ∑ njHj(T∗)
n

j=1
= 0    (10) 

Once 𝑇∗ is known, 𝑇𝑗
∗ is solved for using equation 11.  

 𝑇𝑗
∗ = (𝑇𝑗 − 𝑇∗)

+
  (11) 
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A detailed proof for scenario 1 is provided in Appendix A. Scenario 2 and 3 follow 

similarly. The scenario 1 expected cost model considers that demand will first be satisfied by 

fulltime capacity and once fulltime delivery capacity is used up, additional demand will be 

satisfied by seasonal capacity, followed by CSL capacity and finally a penalty is applied for each 

unit when demand exceeds the total capacity of fulltime, seasonal, and CSL. This reflects the fact 

that fulltime capacity and seasonal capacity are paid for whether or not they are used and it is 

expected that fulltime deliveries to have a lower expected error cost than seasonal which should 

in turn have a lower expected error cost than CSL.   

The parameter values for this numerical experiments are determined from multiple 

sources. The per period demand and seasonal demand was referenced from a postal company’s 

annual performance reports (USPS, 2021). Assuming it to meet town type setting, the volumes 

were scaled down. Wage rates were assumed to be competitive along the lines of industry trends 

considering a standard 8-hour work period and 5 periods per week assuming a total of 264 

periods per year. Resource capacity and vehicle depreciation costs were referenced from Boyer 

at al. (2009). In the case of full time and seasonal capacities, the operational cost of using a 

vehicle such as delivery is added into the cost of fulltime and seasonal capacities respectively. 

Appendix B and C summarizes the input values used for the analysis along with the assumptions 

used. The numerical analysis of this model including sensitivity analysis was performed in 

Microsoft Excel.  

3.4. Results From the Numerical Experiments 

To understand the influence of the variables, numerical experiments were performed 

using scenarios 1, 2 and 3, where in scenario 1 the cost of CSL is greater than fulltime and 

seasonal, in scenario 2 it is between fulltime and seasonal and in scenario 3 it is less than fulltime 
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and seasonal. The three scenarios are evaluated with demand following a uniform distribution 

(UD) and then repeated for demand following a normal distribution (ND) with the mean and 

standard deviation calculated from minimum and maximum when with UD and listed in Table 1. 

All numerical experiments use two seasons for determining the distribution of demand. The 

capacity for CSL is based on the maximum demand possible with UD and experiments used 

capacities of 0%, 25%, 50%, 75%, and 100% of the maximum demand value. These same CSL 

capacities were used with ND.  After evaluating baseline cases, a sensitivity analysis is 

performed by varying the minimum and maximum demand (VAR and LEVEL cases), and 

varying the length of the seasonality (SPIKE case). Table 1 gives the demand values for each 

case of UD and ND calculated using formula in Appendix D. 

Table 1. Minimum maximum values for UD, mean and standard deviation for ND.  

Case 
Uniform Distribution Normal Distribution 

Minimum Maximum Mean Standard Deviation 

BASE 
Season 1 109 1032 570.50 266.45 

Season 2 97 459 278.00 104.50 

VAR 
Season 1 309 1232 770.50 266.45 

Season 2 47 409 228.00 104.50 

LEVEL 
Season 1 59 982 520.50 266.45 

Season 2 297 659 478.00 104.50 

 

3.4.1. BASE case with demand following UD 

Under UD, the demand is characterized by the minimum and maximum values possible 

for any given period. These bounds for each of the two seasons in each of the three scenarios are: 

Scenario 1 with 𝑈 > 𝑆 + 𝐸𝑆 𝑎𝑛𝑑 𝐹 + 𝐸𝐹 . Season 1 109-1032, Season 2 97 - 459.  

Scenario 2 with 𝑆 + 𝐸𝑆 ≥ 𝑈 > 𝐹 + 𝐸𝐹. Season 1 109-1032, Season 2 97 - 459.  

Scenario 3 with 𝑈 <  𝐹 + 𝐸𝐹 𝑎𝑛𝑑 𝑆 + 𝐸𝑆. Season 1 109-1032, Season 2 97 - 459. 
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Figure 3 shows the optimal capacity for fulltime (𝑇) and seasonal (𝑇𝑗
∗) deliveries by the 

capacity for CSL (𝐶) deliveries. Note that the optimal seasonal capacity for season 2 is always 0 

since demand is lower in season 2 compared to season 1. From Figure 3, it can be seen that both 

𝑇 and 𝑇𝑗
∗ reduce with an increase in 𝐶. In scenario 3, it is observed that 𝑇 is reduced to 0 when 

the availability of 𝐶 is greater than or equal to 50% of maximum demand whereas 𝑇𝑗
∗ remains 

high compared to scenarios 1 and 2 so that demand can be met in season 1.  

 

Figure 3. 𝑇 and 𝑇𝑗
∗ for various capacities of 𝐶 in BASE case with demand following a UD.  

 

Figure 4. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in BASE case with demand following a UD in season 1.  
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Figures 4 and 5, show the percentage of deliveries being fulfilled by each type of capacity 

and the percent overcapacity for seasons 1 and 2, respectively. Figure 4 suggests that in season 1, 

the fulltime capacity is used for a lower percentage of deliveries, with use of seasonal and CSL 

leading to lower costs, whereas in season 2, based on Figure 5, fulltime capacity is used to 

perform  a significant percentage of deliveries except in scenario 3, where after the capacity of 

CSL, 𝐶 ≥ 25%, deliveries are dominated by CSL services.  

 

Figure 5. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in BASE case with demand following a UD in season 2. 

Across the three scenarios, when comparing 𝑇, 𝑇𝑗
∗ and 𝐶, it is observed that as 𝐶 

increases, 𝑇𝑗
∗ i.e., the seasonal employees are reduced at a faster rate and eventually not needed 

when capacity of 𝐶 is sufficiently large. With scenario 3, as the cost of the CSL resource is lower 

than the fulltime resource, the reliance on fulltime resources decreases more than the seasonal 

resources.   
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3.4.2. Base case under ND 

For the model with ND, the same experiments were performed by calculating the mean 

and standard deviation using the minimum and maximum values used in UD, as listed in Table 1.     

Scenario 1 with 𝑈 > 𝑆 + 𝐸𝑆 𝑎𝑛𝑑 > 𝐹 + 𝐸𝐹. Season 1 mean 570.5 and standard deviation 

266.45, Season 2 mean 278 and standard deviation 104.50. 

Scenario 2 with 𝑆 + 𝐸𝑆 ≥ 𝑈 > 𝐹 + 𝐸𝐹. Season 1 mean 570.5 and standard deviation 

266.45, Season 2 mean 278 and standard deviation 104.50.  

Scenario 3 with 𝑈 <  𝐹 + 𝐸𝐹 𝑎𝑛𝑑 < 𝑆 + 𝐸𝑆. Season 1 mean 570.5 and standard deviation 

266.45, Season 2 mean 278 and standard deviation 104.50.    

Figure 6 shows the optimal capacity for fulltime (𝑇) and seasonal (𝑇𝑗
∗) deliveries by the 

capacity for CSL (𝐶) deliveries. Note that the optimal seasonal capacity for season 2 is always 0 

since demand is lower in season 2 compared to season 1. As with the UD, both 𝑇 and 𝑇𝑗
∗ reduce 

with an increase in 𝐶, but with exceptions, T increases when 𝐶 is at 25% for scenario 2 and then 

decreases with increase in 𝐶. In scenario 3, it is observed that 𝑇 is reduced to 0 when the 

availability of 𝐶 is greater than or equal to 50% of maximum demand whereas 𝑇𝑗
∗ remains high 

compared to scenarios 1 and 2 so that demand can be met in season 1. 

 

Figure 6. 𝑇 and 𝑇𝑗
∗ for various capacities of 𝐶 in BASE case with demand following a ND.  
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Figure 7. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in BASE case with demand following a ND in season 1.  

Figures 7 and 8, show the percentage of deliveries being fulfilled by each type of capacity 

and the percent overcapacity for seasons 1 and 2, respectively. Figure 7 suggests that in season 1, 

the fulltime capacity is used for a lower percentage of deliveries, with use of seasonal and CSL 

leading to lower costs, whereas in season 2, based on Figure 8, fulltime capacity is used to 

perform  a significant percentage of deliveries except in scenario 3, where after 𝐶 ≥ 25% 

deliveries are dominated by CSL.  
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Figure 8. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in BASE case with demand following a ND in season 2.  

Across the three scenarios, when comparing 𝑇, 𝑇𝑗
∗ and 𝐶, it is observed that as 𝐶 

increases, 𝑇𝑗
∗ i.e., the seasonal employees are reduced at a faster rate with the exception of 

scenario 3 and eventually not needed when 𝐶 is sufficiently large. With scenario 3, as the cost of 

the CSL resource is lower than the fulltime resource, the reliance on fulltime resources decreases 

more than the seasonal resources.   

3.4.3. Sensitivity analysis in UD 

The sensitivity analysis is performed by varying the minimum and maximum value of the 

demand considering uniform distribution (VAR case and LEVEL case), and reducing the peak 

period (SPIKE case). 

3.4.3.1. VAR case 

The first minimum maximum change experiment is done by increasing the values of per 

period demand for the season 1 and reducing for season 2 as listed below.  

Scenario 1 with 𝑈 > 𝑆 + 𝐸𝑆 𝑎𝑛𝑑 > 𝐹 + 𝐸𝐹. Season 1 309-1232, Season 2 47 - 409.  
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Scenario 2 with 𝑆 + 𝐸𝑆 ≥ 𝑈 > 𝐹 + 𝐸𝐹. Season 1 309-1232, Season 2 47 - 409.  

Scenario 3 with 𝑈 <  𝐹 + 𝐸𝐹 𝑎𝑛𝑑 < 𝑆 + 𝐸𝑆. Season 1 309-1232, Season 2 47 - 409. 

Figure 9 shows the resources needed in case of fulltime employees (𝑇) and seasonal 

employees (𝑇𝑗
∗) needed for respective seasons. These two needs are based on the availability of 

CSL (𝐶), which is projected at 𝐶 for 0%, 25%, 50%, 75% and 100% of maximum demand of the 

peak period. Both, 𝑇 and 𝑇𝑗
∗ reduces with each case of increase in 𝐶, but with exceptions, T 

increases when 𝐶 is at 25% and 50% for scenario 2, and being steady when 𝐶 ≥ 25% for 

scenario 1. In case of scenario 3, it is observed that 𝑇 is reduced to 0 when the availability of 𝐶 

tends to be greater than or equal to 50% of demand whereas 𝑇𝑗
∗ is utilized at a higher number (𝐶 

at 25% and 50%) than scenarios 1 and 2, for season 1 to meet the demand. 

 

Figure 9. 𝑇 and 𝑇𝑗
∗ for various capacities of 𝐶 in VAR case with demand following a UD.  
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Figure 10. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in VAR case with demand following a UD in season 1.  

Figures 10 and 11, gives the percentage of orders being fulfilled by each type of 

resources and if any overcapacity penalty experienced for seasons 1 and 2 respectively. Figure 

10 suggests that in season 1, the fulltime capacity has a lower involvement, with use of seasonal 

and CSL leading to lower costs, whereas in season 2 per Figure 11, fulltime resources have a 

significant rate of order fulfillment except for scenario 3, where after 𝐶 ≥ 25% is dominated by 

the resource type 𝐶. 
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Figure 11. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in VAR case with demand following a UD in season 2. 

3.4.3.2. LEVEL case 

The second minimum maximum change experiment is done by decreasing the values of 

per period demand for the season 1 and increasing for season 2 as listed below.  

Scenario 1 with 𝑈 > 𝑆 + 𝐸𝑆 𝑎𝑛𝑑 > 𝐹 + 𝐸𝐹. Season 1 59-982, Season 2 297 – 659.  

Scenario 2 with 𝑆 + 𝐸𝑆 ≥ 𝑈 > 𝐹 + 𝐸𝐹. Season 1 59-982, Season 2 297 – 659.  

Scenario 3 with 𝑈 <  𝐹 + 𝐸𝐹 𝑎𝑛𝑑 < 𝑆 + 𝐸𝑆. Season 1 59-982, Season 2 297 – 659. 

 

Figure 12. 𝑇 and 𝑇𝑗
∗ for various capacities of 𝐶 in LEVEL case with demand following a UD.  
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Figure 12 shows the resources needed in case of fulltime employees (𝑇) and seasonal 

employees (𝑇𝑗
∗) needed for respective seasons. These two needs are based on the availability of 

CSL (𝐶), which is projected at 𝐶 for 0%, 25%, 50%, 75% and 100% of maximum demand of the 

peak period. Both, 𝑇 and 𝑇𝑗
∗ reduces with each case of increase in 𝐶. In case of scenario 3, it is  

observed that 𝑇 is reduced to 0 when the availability of 𝐶 tends to be greater than or equal to 

75% of demand whereas 𝑇𝑗
∗ is utilized at a higher number than scenarios 1 and 2, for season 1 to 

meet the demand. It is interesting to note that when compared to the first minimum maximum 

change as in the VAR case, T is very much preferred than utilization of seasonal. 

 

Figure 13. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in LEVEL case with demand following a UD in season 1. 

Figures 13 and 14, gives the percentage of orders being fulfilled by each type of 

resources and if any overcapacity penalty experienced for seasons 1 and 2 respectively. Figure 

13 suggests that in season 1, the fulltime capacity involvement reduces with increase in CSL 

capacity. Except for scenario 3, where after 𝐶 ≥ 75% is dominated by the resource type 𝐶. 

Whereas in season 2, per Figure 14, fulltime resources have a significant rate of order fulfillment 
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but keep reducing with increase in 𝐶, except for scenario 3, where after 𝐶 ≥ 25% is dominated 

by the resource type 𝐶. 

 

Figure 14. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in LEVEL case with demand following a UD in season 2. 

3.4.3.3. SPIKE case 

In this case, the peak period i.e., season 1 is shortened and season 2 is extended as below.  

Scenario 1 with 𝑈 > 𝑆 + 𝐸𝑆 𝑎𝑛𝑑 > 𝐹 + 𝐸𝐹. Season 1 66 days, Season 2 198 days.  

Scenario 2 with 𝑆 + 𝐸𝑆 ≥ 𝑈 > 𝐹 + 𝐸𝐹. Season 1 66 days, Season 2 198 days.  

Scenario 3 with 𝑈 <  𝐹 + 𝐸𝐹 𝑎𝑛𝑑 < 𝑆 + 𝐸𝑆. Season 1 66 days, Season 2 198 days. 
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Figure 15. 𝑇 and 𝑇𝑗
∗ for various capacities of 𝐶 in SPIKE case with demand following a UD.  

Figure 15 shows the resources needed in case of fulltime employees (𝑇) and seasonal 

employees (𝑇𝑗
∗) needed for respective seasons. These two needs are based on the availability of 

CSL (𝐶), which is projected at 𝐶 for 0%, 25%, 50%, 75% and 100% of maximum demand of the 

peak period. Both, 𝑇 and 𝑇𝑗
∗ reduces with each case of increase in 𝐶 with an exception for 

scenario 2, an increase in 𝑇 is observed when 𝐶 is at 50%. In case of scenario 3, it is observed 

that 𝑇 is reduced to 0 when the availability of 𝐶 tends to be greater than or equal to 50% of 

demand whereas 𝑇𝑗
∗ is utilized at a higher number than scenarios 1 and 2, for season 1 to meet the 

demand 
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Figure 16. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in SPIKE case with demand following a UD in season 1. 

Figures 16 and 17, gives the percentage of orders being fulfilled by each type of 

resources and if any overcapacity penalty experienced for seasons 1 and 2 respectively. Figure 

16 suggests that in season 1, the fulltime capacity has a lower involvement, with use of seasonal 

and CSL leading to lower costs, whereas in season 2, per Figure 17, fulltime resources have a 

significant rate of order fulfillment except for scenario 3, where after 𝐶 ≥ 25% is dominated by 

the resource type 𝐶. 



 

33 

 

Figure 17. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in SPIKE case with demand following a UD in season 2. 

3.4.4. Sensitivity analysis in ND 

For the model with ND, the same experiments were performed by calculating the mean 

and standard deviation using the minimum and maximum values used in UD, as listed in Table 1. 

The sensitivity analysis is performed by varying the demand considering normal distribution 

(VAR case and LEVEL case) and reducing the peak period (SPIKE case).  

3.4.4.1. VAR case 

The first minimum maximum change experiment is done by increasing the values of per 

period demand for the season 1 and reducing for season 2 as listed below.  

Scenario 1 with 𝑈 > 𝑆 + 𝐸𝑆 𝑎𝑛𝑑 > 𝐹 + 𝐸𝐹. Season 1 mean 770.5 and standard deviation 

266.45, Season 2 mean 228 and standard deviation 104.50.    

Scenario 2 with 𝑆 + 𝐸𝑆 ≥ 𝑈 > 𝐹 + 𝐸𝐹. Season 1 mean 770.5 and standard deviation 

266.45, Season 2 mean 228 and standard deviation 104.50.    
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Scenario 3 with 𝑈 <  𝐹 + 𝐸𝐹 𝑎𝑛𝑑 < 𝑆 + 𝐸𝑆. Season 1 mean 770.5 and standard deviation 

266.45, Season 2 mean 228 and standard deviation 104.50.    

 

Figure 18. 𝑇 and 𝑇𝑗
∗ for various capacities of 𝐶 in VAR case with demand following a ND.  

Figure 18 shows the resources needed in case of fulltime employees (𝑇) and seasonal 

employees (𝑇𝑗
∗) needed for respective seasons. These two needs are based on the availability of 

CSL (𝐶), which is projected at 𝐶 for 0%, 25%, 50%, 75% and 100% of maximum demand of the 

peak period. Both, 𝑇 and 𝑇𝑗
∗ reduces with each case of increase in 𝐶 except for, T in scenario 1 

which is steady for 𝐶 greater than 25%, T in scenario 2 which increases when 𝐶 is at 25% and 

then reduces. In case of scenario 3, it is observed that 𝑇 is reduced to 0 when the availability of 𝐶 

tends to be near 50% of demand whereas 𝑇𝑗
∗ is utilized at a higher number than scenarios 1 and 2, 

for season 1 to meet the demand.  
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Figure 19. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in VAR case with demand following a ND in season 1.  

Figures 19 and 20, gives the percentage of orders being fulfilled by each type of 

resources and if any overcapacity penalty experienced for seasons 1 and 2 respectively. Figure 

19 suggests that in season 1, the fulltime capacity has a lower involvement, with use of seasonal 

and CSL leading to lower costs, whereas in season 2, per Figure 20, fulltime resources have a 

significant rate of order fulfillment except for scenario 3, where after 𝐶 ≥ 25% is dominated by 

the resource type 𝐶. 
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Figure 20. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in VAR case with demand following a ND in season 2.  

3.4.4.2. LEVEL case 

The second minimum maximum change experiment is done by reducing the values of per 

period demand for the season 1 and increasing for season 2 as listed below.  

Scenario 1 with 𝑈 > 𝑆 + 𝐸𝑆 𝑎𝑛𝑑 > 𝐹 + 𝐸𝐹. Season 1 mean 520.5 and standard deviation 

266.45, Season 2 mean 478 and standard deviation 104.50.    

Scenario 2 with 𝑆 + 𝐸𝑆 ≥ 𝑈 > 𝐹 + 𝐸𝐹. Season 1 mean 520.5 and standard deviation 

266.45, Season 2 mean 478 and standard deviation 104.50.  

Scenario 3 with 𝑈 <  𝐹 + 𝐸𝐹 𝑎𝑛𝑑 < 𝑆 + 𝐸𝑆. Season 1 mean 520.5 and standard deviation 

266.45, Season 2 mean 478 and standard deviation 104.50. 
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Figure 21. 𝑇 and 𝑇𝑗
∗ for various capacities of 𝐶 in LEVEL case with demand following a ND.  

Figure 21 shows the resources needed in case of fulltime employees (𝑇) and seasonal 

employees (𝑇𝑗
∗) needed for respective seasons. These two needs are based on the availability of 

CSL (𝐶), which is projected at 𝐶 for 0%, 25%, 50%, 75% and 100% of maximum demand of the 

peak period. Both, 𝑇 and 𝑇𝑗
∗ reduces with each case of increase in 𝐶. In case of scenario 3, it is 

observed that 𝑇 is reduced to 0 when the availability of 𝐶 tends to be near 75% of demand 

whereas 𝑇𝑗
∗ is utilized at a higher number than scenarios 1 and 2, for season 1 to meet the 

demand.  
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Figure 22. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in LEVEL case with demand following a ND in season 1.  

Figures 22 and 23, gives the percentage of orders being fulfilled by each type of 

resources and if any overcapacity penalty experienced for seasons 1 and 2 respectively. Figure 

22 suggests that in season 1, the fulltime capacity has a considerable involvement, with use of 

seasonal and CSL leading to lower costs, whereas in season 2, per Figure 23, fulltime resources 

have a significant rate of order fulfillment when compared to season 1, except for scenario 3, 

where after 𝐶 ≥ 25% is dominated by the resource type 𝐶. In both the cases, the decrease in 

fulltime is observed as 𝐶 increases.  
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Figure 23. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in LEVEL case with demand following a ND in season 2.  

3.4.4.3. SPIKE case 

In this case, the peak period i.e., season 1 is shortened and season 2 is extended as below.  

Scenario 1 with 𝑈 > 𝑆 + 𝐸𝑆 𝑎𝑛𝑑 > 𝐹 + 𝐸𝐹. Season 1 66 days, Season 2 198 days.  

Scenario 2 with 𝑆 + 𝐸𝑆 ≥ 𝑈 > 𝐹 + 𝐸𝐹. Season 1 66 days, Season 2 198 days.  

Scenario 3 with 𝑈 <  𝐹 + 𝐸𝐹 𝑎𝑛𝑑 < 𝑆 + 𝐸𝑆. Season 1 66 days, Season 2 198 days. 

 

Figure 24. 𝑇 and 𝑇𝑗
∗ for various capacities of 𝐶 in SPIKE case with demand following a ND.  
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Figure 24 shows the resources needed in case of fulltime employees (𝑇) and seasonal 

employees (𝑇𝑗
∗) needed for respective seasons. These two needs are based on the availability of 

CSL (𝐶), which is projected at 𝐶 for 0%, 25%, 50%, 75% and 100% of maximum demand of the 

peak period. Both, 𝑇 and 𝑇𝑗
∗ reduces with each case of increase in 𝐶 except, for T in scenario 1 

showing to be steady after 𝐶 ≥ 50% and for T in scenario 2 showing and increase when 𝐶 is at 

50%. In case of scenario 3, it is observed that 𝑇 is reduced to 0 when the availability of 𝐶 tends 

to be greater than or equal to 50% of demand whereas 𝑇𝑗
∗ is utilized at a higher number than 

scenarios 1 and 2, for season 1 to meet the demand.  

 

Figure 25. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in SPIKE case with demand following a ND in season 1. 

Figures 25 and 26, gives the percentage of orders being fulfilled by each type of 

resources and if any overcapacity penalty experienced for seasons 1 and 2 respectively. Figure 

26 suggests that in season 1, the fulltime capacity has a lower involvement, with use of seasonal 

involvement, whereas in season 2, from Figure 26, fulltime resources have a significant rate of 
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order fulfillment except for scenario 3, where after 𝐶 ≥ 25% is dominated by the resource type 

C. 

 

Figure 26. Percentages of orders fulfilled using 𝑇, 𝑇𝑗
∗ and 𝐶, and percentage of orders missed for 

various capacities of 𝐶 in SPIKE case with demand following a ND in season 2. 

Within this sensitivity analysis exercise, it was observed that the change in the minimum 

and maximum values, reducing the peak period duration and considering the costs of CSL 

resource (the three scenarios; greater than fulltime and seasonal, between fulltime and seasonal 

and less than fulltime and seasonal) with uniform and normal distribution of demand data lead to 

a similar change in all the cases. Though the trend followed the same in uniform and normal with 

a few exceptions, the count of resources and percentages of orders fulfilled by respective 

resources varied as shown in the above graphs and charts in subsection 3.4. As the cost of the 

CSL services dropped and their capacity increases, the order fulfillment rate was observed to be 

improving with the optimal combination of resources for all three scenarios, with scenario 3 

leading to the lowest operational cost with high utilization of CSL resources.      
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3.5. Discussion of Results 

The results of the numerical experiments performed, give an overview of the total 

operational cost considering the variation in the capacities and costs of the CSL resources. As 

observed in the base case results, as the capacity of CSL increases, the fulltime and seasonal 

resource count reduces. Along with this, the order fulfillment rate also improves. Comparing the 

seasons 1 and 2, the season 2 has the highest order fulfillment probability with the use of fulltime 

and CSL resources. In case of scenario 1 where the cost of CSL was greater than the fulltime and 

seasonal, the usage of CSL resource was still observed. This was primarily due to the fact that 

this CSL resource is only utilized when needed and not committed for the entire year like 

fulltime. This CSL resource also, alleviated some costs that would be incurred by the seasonal 

resources for season 1, but to keep the costs lower the seasonal utilization can be varied as 

observed for seasonal trend with each increase of CSL capacity.    

As observed in the sensitivity analysis, when the peak season 1 demand increased and 

season 2 demand was decreased, the increase in seasonal resources was observed in both the 

distribution types. When this demand change was switched with season 1 decreased and season 2 

increased, the reliance on seasonal dropped with steady consideration of fulltime resources to 

even the operational costs. In either of the distributions considered, the CSL capacity had 

prominent impact with maximum benefit observed in scenario 3. Though scenario 3 provides the 

lowest overall cost since it has the lowest per delivery CSL cost, it is worth noting that it does 

not provide the highest service level in season 1 where in fact it provides the lowest service level 

with the highest percentage of demand exceeding overall capacity or undelivered units. Between 

fulltime and CSL resources, a CSL resource is more prone to delivery errors impacting the 

quality of service and profit margins. The advantage of CSL resource is that it only incurs a cost 
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if it is used, which assists in lowering the cost. Thus, the capacity and cost of the CSL resources 

becomes a prominent aspect to be considered when planning capacity for LMD services in a 

given region.   

Overall, it appears that when a small amount of CSL capacity is added to the model, it 

primarily substitutes for seasonal capacity, even when seasonal capacity is cheaper per delivery 

in case of scenario 1. For scenarios 1 and 2, as CSL capacity increases, it replaces all of seasonal 

capacity before beginning to reduce fulltime capacity. In contrast, in scenario 3 when a CSL 

delivery is cheaper than a fulltime delivery, CSL first reduces fulltime capacity and then seasonal 

capacity, despite fulltime capacity being cheaper per delivery. These price-capacity anomalies 

are likely driven by the fact that CSL capacity, like fulltime capacity, is available all year long 

while seasonal capacity is only available for one season.  

To summarize, in the model provides the optimal levels of fulltime, seasonal, and CSL 

capacities to minimize the expected cost of deliveries. However, this being an analytical model, 

many complexities have been left out of the model to facilitate analysis. Thus, this study in 

continued further by investigate the use of stochastic program to capture the complexities around 

the cost and capacity of CSL deliveries, as in practice both the costs and capacity of CSL 

deliveries are random variables rather than deterministic in nature.   
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4. STOCHASTIC PROGRAMMING SECTION 

In the last section, an analytical model was used to determine the minimum cost for LMD 

services by using a combination of resources between fulltime, seasonal and CSL to fulfill the 

seasonal demand. Based on the results, it was concluded that CSL can be utilized to reduce 

overall costs but service levels must be monitored to meet customer expectations. In addition, the 

CSL cost and capacity were considered known values at fixed slabs. However, in reality the cost 

and capacity will be random variables.  

Thus, to address the impact on operating costs due to the random nature of the CSL 

capacity and costs; in this section the problem is solved using a stochastic program. The 

stochastic program considers the randomness in the availability of CSL services and the costs to 

determine the optimal combination of resources to minimize LMD costs.  

4.1. Stochastic Program Objective 

In this portion of the study, stochastic programming is used to better understand the 

situation with certain uncertainties involved, primarily with the capacity and cost of CSL. The 

objective here is to minimize the costs of deliveries by considering the variable capacities and 

costs of CSL. Considering the analytical modeling section, and the utilization of stochastic 

programming for cost optimization in LMD services, in this section a refined optimal resource 

strategy is determined for aggregate capacity planning.  

Continuing the study from the analytical model in the previous section, the randomness in 

the CSL capacities and costs are considered in the stochastic program, in this section. The 

objective of this model is to capture the minimum cost considering that the demand in a given 

day of a season is satisfied with either fulltime capacity, seasonal capacity or CSL with varying 
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capacities and costs of CSL services. Any demand that was not fulfilled would initiate a penalty 

cost.  

4.2. Assumptions Used for Stochastic Programming  

The assumptions used in the analytical phase are still valid and continued for the 

stochastic program as well, with the exception of the capacity and cost for CSL becoming 

random variables. Also, continuing with the parameters and notation used in the analytical phase, 

in this phase additional aspects considered are as below.  

𝑃 = Percentage variation in the CSL costs for scenario 1, scenario 2 and scenario 3.  

𝐼 = Number of price points for CSL costs.   

The stochastic program is run using the BASE case of the analytical model. The costs and 

capacities for CSL are generated each day as follows. First, I price points are randomly generated 

from a UD over the interval [PUci,(1+P)Uci] where Uci is the cost of CSL used in Scenario i in 

the analytical model for i = 1, 2, and 3.   Next, for each price point the corresponding capacity is 

randomly generated using a Poisson distribution with mean Ca/I where Ca is the CSL capacity 

used in the analytical experiments. The demand per day is generated using a UD with the BASE 

case minimum and maximum values for seasons 1 and 2 respectively.  

4.3. Stochastic Program Description 

In this subsection, the stochastic program is described with the objective to minimize the 

total operational costs. The model will consider the fulltime cost per unit, fulltime error cost, 

seasonal cost per unit, seasonal error cost, number of periods, seasons, number of scenarios, 

demand for each scenario, and, varying CSL capacities (Ca) and CSL costs (Scenario 1, Scenario 

2 and Scenario 3). The CSL costs considered here includes the error cost caused by the CSL 

resource. The periods per season and the demand per season used in stochastic program are the 
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same as the BASE case in the analytical model. For the stochastic model formulation, parameters 

from the analytical section will be used. In addition, some newly defined parameters appear in 

table 2.  

Table 2. Additional parameters for stochastic program. 

Parameter Definition  

𝐽 Number of periods in planning horizon 

K Number of seasons in planning horizon 

𝐼 Number of intervals in piecewise linear CSL cost 

𝜎(𝑗) Season in which day j occurs 

𝐻 Number of scenarios 

 

In addition to the parameters in Table 2, there are random parameters defined to induce 

the variable nature of the CSL capacities and costs. Table 3, gives the random parameters and 

definitions that are used in this modeling section. 

Table 3. Random parameters for stochastic program. 

Random Parameter Definition 

𝐷𝑗ℎ Demand on day j for scenario h 

𝐶𝑖𝑗ℎ  Cost per unit of demand (including expected error cost) satisfied by CSL 

on day j in interval I in scenario h 

𝑏𝑖𝑗ℎ Available capacity at cost 𝐶𝑖𝑗ℎ 

 

The decision variables to be used for this model are defined in Table 4.  

Table 4. Decision variables for stochastic program. 

Decision Variable Definition 

𝑇 Fulltime capacity 

𝑇𝑘  Seasonal capacity in season k 

𝑋𝑖𝑗ℎ Units of demand satisfied at cost 𝐶𝑖𝑗ℎ 

𝑈𝑗ℎ Unsatisfied demand on day j in scenario h 

𝑓𝑗ℎ Units of demand satisfied by fulltime capacity on day j in scenario h 

𝑆𝑗ℎ Units of demand satisfied by seasonal capacity on day j scenario h 
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The objective of the stochastic program is to minimize operations cost for LMD services 

by using an optimal combination of resources to address demand in each season. Equation 12. 

gives the objective function for the stochastic program. Utilizing the available information, the 

stochastic model is run in SAS 9.4 for 72 different combinations of scenarios, P, Ca, and I. 

Appendix E gives one portion of the SAS stochastic program as an example. Two different 

percentage variations of mean costs are considered in this run, first it is varied by 25% and 

second 50% for each of the three scenarios with the cost of CSL. The capacities evaluated were 

at four levels, and three price points were considered for the SAS program run.  

 Min cost =∑ ∑ (𝑭𝑻 + 𝑺𝑻𝛔 (𝐣) 
𝐉

𝐣=𝟏
+ 

𝐇

𝐡=𝟏

∑ 𝑪𝒊𝒋𝒉 ∗  𝑿𝒊𝒋𝒉 + 𝑬𝒇 ∗  𝒇𝒋𝒉 + 𝑬𝒔 ∗ 𝑺𝒋𝒉 + 𝑶𝑼𝒋𝒉)
𝑰

𝒊=𝟏
       (12) 

The constraints identified for the stochastic program are: 

𝑓𝑗ℎ  ≤  𝑇 

𝑆𝑗ℎ ≤ 𝑇𝜎(𝑗) ∀   𝑗, ℎ 

𝑋𝑖𝑗ℎ  ≤ 𝑏𝑖𝑗ℎ ∀  𝑖, 𝑗, ℎ  

𝑓𝑗ℎ +   𝑆𝑗ℎ +  ∑ 𝑋𝑖𝑗ℎI
i=1 + 𝑈𝑗𝑠 ≥ 𝐷𝑗𝑠   ∀ 𝑗, ℎ 

Non-negativity for all variables. 

4.4. Results From the Stochastic Program 

The results obtained from the SAS program are displayed in the table in Appendix F. The 

table gives the optimal combination of resources to be used considering fulltime 𝑇 , seasonal 𝑇𝑘, 

and CSL x. The notation 𝑇 will be implying that the fulltime resource is for the entire year, 

whereas for 𝑇𝑘, x and U, there will be a suffix “1” or “2” for seasons 1 and 2 respectively. Where 

𝑇𝑘 [1] is the season 1 seasonal resource, x1 and x2 are the number of CSL deliveries in season 1 

and season 2 respectively, and U1 and U2 are the undelivered units for season 1 and season 2 

respectively. The results obtained are average values for each scenario considering the cost 
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variation percentage P, capacity of CSL Ca, and the number of cost intervals I for each of the 

cost categories per scenario 1, scenario 2 and scenario 3. The Appendix Figures, Figure G1 to 

Figure G12 shows the charts for these results observed for various combinations of scenario 1, 

scenario 2, scenario 3, P, Ca and I.  

To summarize, with an increase in the capacity of CSL, there is an increase in the 

utilization of CSL as well, for each case of scenario 1, scenario 2 and scenario 3. With the 

increase in utilization of the CSL capacity the seasonal capacity, 𝑇𝑘 first starts to reduce and 

finally the fulltime capacity is reduced. The number of price points does help in lowering the 

total cost which is dependent on the expected CSL capacity and the variation in the price points. 

The higher the variation in random CSL price points, the lower the expected operational cost.     

Figure 27 and Figure 28 give the trend of the optimal values of 𝑇 and 𝑇𝑘 when P = 0.25 

and 0.5 respectively. It is interesting to note that as CSL capacity increases, the reliance on 

seasonal reduces to zero, as in the case when Ca = 5, I = 3 in scenario 1 for P = 0.25 and Ca = 5, 

I = 3 and 5 for P = 0.5 for scenario 1 and for both cases of P, when Ca = 5, I = 1, 3 and 5 for 

scenario 2 and scenario 3.  
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Figure 27. Optimal 𝑇 and 𝑇𝑘 trend when P = 0.25, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

 

Figure 28. Optimal 𝑇 and 𝑇𝑘 trend when P = 0.5, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

As with increase in capacity, and the variation in cost of the CSL resource, it is observed 

that with the reduction in 𝑇, the utilization of x is also considerable in season 2 and increases 

where reduction in 𝑇 is observed, especially in cases where capacity is at maximum and the cost 
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of CSL is lowest per scenario 3, which is less than fulltime and seasonal as shown in the Figures 

29 and 30.  

 

Figure 29. Optimal x1 and x2 trend when P = 0.25, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

 

Figure 30. Optimal x1 and x2 trend when P = 0.5, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  
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The demand being seasonal in nature, where season 2 experiences lower volume, it is 

observed that the seasonal resources, 𝑇𝑘 are only utilized in season 1, and in season 2 fulltime 

resources and CSL are utilized. Another aspect to note is that as the utilization of x increases, the 

units that cause penalty also reduce, when comparing the two seasons, as shown in Figures 31 

and 32.  

 

Figure 31. Optimal U1 and U2 trend when P = 0.25, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  
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Figure 32. Optimal U1 and U2 trend when P = 0.5, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

4.5. Discussion of Results  

The results from the stochastic program generated an optimal combination of fulltime, 

seasonal and CSL resources that would lower the operational costs for LMD services and at the 

highest fulfillment rate. This combination was considering for each scenario, percentage 

variations, number of price points for CSL costs and various capacities of CSL. Within, each 

scenario, as the capacity of the CSL increases and being variable, the utilization of fulltime and 

seasonal reduces. Between fulltime and seasonal, the seasonal decrease is drastically observed 

whereas the fulltime utilization is steady minor rate of decrease observed. With this drastic 

decrease of seasonal, the utilization of CSL resource is observed to increase, implying that the 

drop in the utilization of seasonal resource is being compensated by this CSL resource and in all 

three scenarios. The resource count also accounts in the variability of the price points that would 

be practically observed as not all CSL resource would accept the same delivery fee. This further 

enables the model to predict the output replicating the expectations of a CSL resource.  



 

53 

From the stochastic program output is was observed that with the variation in CSL 

capacities and costs an optimal combination of resource combination would exists for each price 

point interval I. This model gives us a refined result when compared to the analytical model with 

added variabilities. However, this method does have some limitations in terms of considering the 

attrition rate observed with fulltime and seasonal resources and units that were missed due to this 

shortage of resources. Stochastic programming has some limitation in terms of capturing these 

nuances of daily operations. To refine it further, it would need an alternate solution methodology 

such as simulation approach, to capture the impact of employee attrition or missed/rollover 

orders being fulfilled the next day.  
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5. SIMULATION MODELING 

In the previous section, a stochastic program was used to understand the optimal 

combination of resources by inducing some variability in capacities and costs of CSL resources. 

One aspect that could not be considered was the attrition rate of the fulltime and seasonal 

employees. Thus in this section, a simulation is used to capture the impact of the orders having 

the possibility of getting missed due to fulltime or seasonal employees leaving. Simulating a 

process provides us with an explanation of the system and how they work in the real world 

where there are factors varying on a continual basis.  

Simulation will be used to further investigate the impact of CSL in LMD considering 

additional aspects of the last-minute variations that will take place. Variations with regards to 

employee attrition rate, missed deliveries and roll overs by one day will be accounted for in this 

simulation. How these additional variations will impact the daily delivery performance and the 

operating costs of the organization, will be investigated through the simulation. Simulation, 

being one of the most sought after decision making tools with its ability to add in real time 

variations, will assist us in complementing the analysis from the stochastic program.  

A simulation approach exploring how same day delivery services can be improved using 

the crowd sourcing approach considering the time window and daily demand was performed by 

Castillo et al. (2018), where OTD and total number of deliveries were taken into consideration 

for the simulation model. In one research by Guo et al. (2019), the authors explored how CSL 

(considering the e-commerce need, trust and technology) would help last mile delivery lower 

operational costs. To achieve this, the authors performed a simulation considering the inputs of 

population size, online vs supermarkets, deliverers, order arrival, delivery time, and associated 

costs.  They concluded with the fact that, though the CSL shows significant savings, a hybrid 
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delivery network will maintain the balance for challenges faced by each approach. Thus, this 

leads us to add the concept of service reliability, for which it is expected to see an optimum mix 

of fulltime, seasonal, and CSL resources.  

5.1. Simulation Modeling Objective 

Simulation modeling will be done in SAS software. Variations with employee attrition 

rate will be applied and simulated in each of the scenarios to study the impact on the costs to 

meet daily demand. Figure 33, gives us the basic simulation model flowchart where the impacts 

of the employee attrition rate will be added and the orders missed on the current day will be 

fulfilled the next day.  
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Figure 33. Basic simulation flowchart. 
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5.2. Assumptions for Simulation Model 

The formulation of the simulation model is comprised of the parameters and variables 

accounted for in the analytical and stochastic programming sections. The outputs from the 

stochastic programming section, specifically the 𝑇 and 𝑇𝑘 will be used as input values for the 

simulation. To determine the lowest possible operating cost, various combinations of 𝑇 and 𝑇𝑘 

will be simulated in this section. To that end, the combinations of  𝑇 and 𝑇𝑘 will vary within the 

ranges of  𝑇 − 50 𝑡𝑜 𝑇 +  50 for 𝑇 and 𝑇𝑘 − 50 𝑡𝑜 𝑇𝑘 + 50 for 𝑇𝑘. If the lower value of 𝑇𝑘 is 

less than zero, then it will be limited to 0. For each of the 𝑇 and 𝑇𝑘, an attrition rate will be 

applied and the model will calculate the impact of this attrition rate on the demand to be fulfilled 

and if any missed deliveries for the current day will be rolled over and added to the next day’s 

demand. Following that, the model will calculate the current day’s metric in terms of CSL used 

and any missed deliveries that might have resulted. Based on this, the simulation model will 

calculate the total cost for each case of scenario 1, scenario 2, scenario 3, P, Ca and I. From this 

total cost, it will have the lowest possible cost for each case of I, giving the optimal combination 

of resources considering the attrition rate of employees. This model will be a more refined 

solution when compared to the analytical results and the stochastic programming results.  

5.3. Simulation Model Formulation 

The data for the simulation model will be the same as used in the analytical and the 

stochastic programming sections. An 10% annual attrition rate is assumed for the fulltime and 

seasonal resources. It is also assumed that there is a hiring cost involved for the absent resource 

for a period of one day. Utilizing the available information, the simulation model is built and run 

in SAS 9.4 for 72 different combinations of scenarios, P, Ca, and I. Appendix H gives one 

portion of the SAS simulation as an example. Two different percentage variations of mean costs 
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are considered in this run, first it is varied by 25% and second 50% for each of the three 

scenarios with the cost of CSL. The capacities evaluated were at four levels, and three price 

points were considered for the SAS program run.  

5.4. Results From the Simulation Runs 

The results obtained from the SAS program simulation runs are displayed in the 

Appendix Table I1. The table gives the optimal combination of resources to be used considering 

fulltime 𝑇, seasonal 𝑇𝑘, and CSL x. For 𝑇𝑘, x and U, there will be a suffix “1” or “2” for seasons 

1 and 2 respectively. Where 𝑇𝑘[1] is the season 1 resource, x1 and x2 are the number of CSL 

deliveries in season 1 and season 2 respectively, and U1 and U2 are the undelivered units for 

season 1 and season 2 respectively. The results obtained are average values for each scenario 

considering the cost variation percentage P, capacity of CSL Ca, and the number of cost intervals 

I for each of the cost categories per scenario 1, scenario 2 and scenario 3. The Appendix Figures, 

Figure J1 to Figure J12 shows the charts for these results for various combinations of scenario 1, 

scenario 2 scenario 3, P, Ca and I. Appendix Table I2 gives the 95% confidence intervals of the 

results obtained from the simulation runs. 

To summarize, with an increase in the expected capacity of CSL, there is an increase in 

the utilization of CSL as well, for each case of scenario 1, scenario 2 and scenario 3. With the 

increase in utilization of the CSL capacity the seasonal capacity, 𝑇𝑘 first starts to reduce and 

finally the fulltime capacity is reduced. The number of price points does help in lowering the 

total cost which is dependent on the expected CSL capacity and the variation in the price points. 

The higher the variation in random CSL price points, the lower the expected operational cost.   

Figures 34 and 35 gives the trend of the optimal values of 𝑇 and 𝑇𝑘when P = 0.25 and 0.5 

respectively. It is interesting to note that as CSL capacity increases, the reliance on seasonal 
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reduces to zero, as in the case when Ca = 5, I = 5 for scenario 2 and when Ca = 5, I = 1 and 3 for 

scenario 3 when P is varied by 50% of the mean. 

 

Figure 34. Optimal 𝑇 and 𝑇𝑘 trend when P = 0.25, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

 

Figure 35. Optimal 𝑇 and 𝑇𝑘 trend when P = 0.5, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

As with an increase in capacity, and the variation in cost of the CSL resource, it is 

observed that with the reduction in 𝑇, the utilization of x increases where reduction in 𝑇 is 
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observed, especially in cases where capacity is at maximum and the cost of CSL is per scenario 

3, which is less than full time and seasonal as shown in the Figures 36 and 37.  

 

Figure 36. Optimal x1 and x2 trend when P = 0.25, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

 

Figure 37. Optimal x1 and x2 trend when P = 0.5, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

The demand being seasonal in nature, where season 2 experiences lower expected 

demand, it is observed that the seasonal resources, 𝑇𝑘 are only utilized in season 1, and in season 
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2 fulltime resources and CSL are utilized. Another aspect to note is that as the utilization of x 

increases, the undelivered units also reduce to 0 per Figures 38 and 39.  

 

Figure 38. Optimal U1 and U2 trend when P = 0.25, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

 

Figure 39. Optimal U1 and U2 trend when P = 0.5, Scenario 1 = 13.67, Scenario 2 = 10.03, 

Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

The impact of full-time capacity on cost is not the only concern when determining 

workforce size. Specifically, if the optimal full-time capacity is less than the current workforce 
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size, reducing capacity to match the model recommendations would require firing workers. As 

firing workers comes with many negative effects beyond just costs, we wanted to explore how 

sensitive the cost was to deviations from the optimal full-time capacity. To that end, we explored 

how the cost changes if a full-time capacity 10% greater than the optimal full-time capacity was 

used. Figures 40 and 41 show the percentage difference in the costs when the cost with the 

optimal full-time capacity is compared to the cost with 10% more full-time capacity. Figures 40 

and 41 show that as CSL capacity increases the percentage change in the cost decreases with 

full-time capacity. Hence, in environments with high levels of CSL capacity it may be 

advantageous to tradeoff levels of full-time capacity which are higher than suggested by the 

model with firing fewer current employees.  

 

Figure 40. Percentage difference in total cost when P = 0.25, Scenario 1 = 13.67, Scenario 2 = 

10.03, Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  
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Figure 41. Percentage difference in total cost when P = 0.5, Scenario 1 = 13.67, Scenario 2 = 

10.03, Scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

5.5. Discussion of Results  

The results from the simulation generated an optimal combination of fulltime, seasonal 

and CSL resources that would lower the operational costs from LMD services and at the highest 

fulfillment rate. This combination was considering for each scenario of costs, percentage 

variations, number of price points for CSL costs, various capacities of CSL and considering an 

10% attrition rate for fulltime and seasonal resources. Within, each scenario, as the capacity of 

the CSL increases and being variable, the utilization of fulltime and seasonal reduces. Between 

fulltime and seasonal, the seasonal decrease is drastically observed whereas the fulltime 

utilization is steady minor rate of decrease observed. With this drastic decrease of seasonal, the 

utilization of CSL resource is observed to increase, implying that the drop in the utilization of 

seasonal resource is being compensated by this CSL resource and in all three scenarios. The 

optimal resource combination is an extension of the output of the stochastic program, simulated 

for various combinations of fulltime and seasonal resource and considering attrition rate of these 

resources. This further enables the model to predict the output replicating the daily operations.  
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5.6. Simulation Considering the Use of Robots for LMD 

In this section, the impact of automation is evaluated for the case of LMD. Over recent 

years, incorporation of automation technologies, such a robot or drone (Aurambout, 2019; Yu et 

al., 2022; Swanson, 2019), has interested e-commerce companies to help reduce their overall 

LMD costs.  In this section, a combination van-robot delivery is assumed where a person is 

allocated to operate a set of robots.  

Pani et al. (2020) in their research have documented how consumer shopping preferences 

have been influencing the adaptation of autonomous delivery vehicles. The class of shoppers 

who use e-commerce extensively, omnichannel customers and consumers making decisions due 

to the pandemic situation tend to be the largest supporters of autonomous delivery concepts. 

Hesitancy in adopting this approach lies in the fact that companies doing so would have to bear 

the cost of such automation technologies. Similarly, Kapser and Abdelrahman (2020) supports 

the fact that the price of such services would be the top most determining factor for mass 

adoption. In contrast, Jennings and Figliozzi (2019), Reed et al. (2020), Patella et al. 2020, 

Simoni et al. (2020) and Lemardele et al. (2021) in their research have shown cost benefits when 

using autonomous delivery systems when compared to a traditional approach.  

The advancements in technology do lead to lower cost of ownership for robots with 

applications to certain portions of LMD activities. One such robot that has been experimented 

with across todays markets are the Starship robot (Starship, n.d.). The application of these robots 

is currently limited to packages matching their specifications. This is assumed to be in line with 

the cases described here in the earlier stochastic and simulation sections.  For this simulation, 

robot with similar characteristics and pricing referenced from the literature is used to calculate 

the improved fulltime costs as shown in Appendix K. The assumption is that, this operation will 
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involve a van or a truck with a person operating it, navigating to a scheduled staging location 

from where the robots will be dispatched to deliver orders in the neighborhood. Heimfarth et al. 

(2022), Alfandari et al. (2022), Ostermeir et al (2022), Boysen at al. (2018) and Yu at al. (2022) 

have all shown a similar concept to be cost effective. Thus, a similar concept is assumed here, 

where there is a van-robot set up fulfilling daily demand and thus leading to improved fulltime 

costs. Using this as input, the stochastic program is ran to determine the new optimal 

combination of 𝑇 and 𝑇𝑘. Following which the simulation program is run to determine the lowest 

cost combination for the 𝑇 and 𝑇𝑘 and corresponding count of CSL services used and calculating 

any undelivered units.  

5.7. Assumptions for the Simulation Model With Robot Delivery  

The assumptions used in the previous sections are valid and continued into this section 

with additional considerations as listed in Appendix K. The concept being that, a person would 

drive the van to a designated spot from where it would dispatch the allocated set of robots to 

deliver goods to the residential customers. The parameter values have been referenced from 

Ostermeier et al. (2022) where the authors have used a similar set up of delivery van and robots. 

The specifications of robots were referenced from a robot manufacturer’s website (Starship, n.d.) 

to determine the improved fulltime costs per unit. The Appendix K shows the calculations for 

deriving the new fulltime costs which is applied in the simulation.  

Using this new fulltime unit delivery cost, the stochastic program is run again in SAS to 

determine the optimal combination of 𝑇 and 𝑇𝑘.  Once the output from the stochastic program is 

obtained, the 𝑇 and 𝑇𝑘 will be used as input values for the simulation. To determine the lowest 

possible operations cost, various combinations of 𝑇 and 𝑇𝑘 will be simulated. As in the earlier 

simulation section, the combinations will vary over ranges of  𝑇 − 50 𝑡𝑜 𝑇 +  50 for 𝑇 and 𝑇𝑘 −
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50 𝑡𝑜 𝑇𝑘 + 50 for 𝑇𝑘. If the lower value of 𝑇𝑘 is less than zero, then it will be limited to 0. For 

each combination of the 𝑇 and 𝑇𝑘. the attrition rate (only for fulltime and seasonal) will be 

applied and the model will calculate the impact of this attrition rate on the demand to be fulfilled 

and if any missed deliveries for the current day will be rolled over and added to the next day 

demand. Following that, the model will calculate the current day’s metrics in terms of CSL used 

and any missed deliveries that might have resulted. Based on this the simulation model will 

calculate the total cost for each case of scenario 1, scenario 2, scenario 3, P, Ca and I. Form this 

total cost, it will have the lowest possible cost for each case of I, given the optimal combination 

of resources considering the attrition rate of employees. This solution will be based on the 

consideration of robots for LMD.  

5.8. Simulation Model Formulation With Robot Delivery 

The data for the simulation model will be the same as for the analytical and the stochastic 

programming sections. A 10% annual attrition rate is assumed only for the fulltime and seasonal 

resources. It is also assumed that there is a hiring cost involved for the absent resource for a 

period of one day. Utilizing the available information, the simulation model is built and run in 

SAS 9.4 for 72 different combinations of scenarios, P, Ca, and I. Two different percentage 

variations of mean costs are considered in this run, first it is varied by 25% and second 50% for 

each of the three scenarios with the cost of CSL. The capacities evaluated were at four levels, 

and three price points were considered for the SAS program run. The costs associated with the 

quantity of robots, amortized over time are all incorporated into the model to determine the cost 

and are incorporated in the simulation model mentioned in section 5.3.  
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5.9. Results From Simulation Runs for Robot Delivery 

The results obtained from the SAS program simulation runs are displayed in the 

Appendix Table L1. The table gives the optimal combination of resources to be used considering 

full time 𝑇 , seasonal 𝑇𝑘, and CSL x. For 𝑇𝑘, x and any unsatisfied demand U, there will be a 

suffix “1” or “2” for seasons 1 and 2 respectively. Where 𝑇𝑘[1] is the season 1 resource, x1 and 

x2 are the number of CSL deliveries in season 1 and season 2 respectively, and U1 and U2 are 

the undelivered units for season 1 and season 2 respectively.  The results obtained are average 

values for each scenario considering the cost variation percentage P, capacity of CSL Ca, and the 

number of cost intervals I for each of the cost categories scenario 1, scenario 2 and scenario 3. 

The Appendix Figures M1 to M12 show the charts for these results observed for various 

combinations of scenario 1, scenario 2, scenario 3, P, Ca and I. Appendix Table L2 gives the 

95% confidence intervals of the results obtained from the simulation runs. 

Regarding an increase in the expected capacity of CSL, there are different trends in the 

utilization of CSL for each of the three scenarios when compared with the simulation model in 

the previous section. The utilization of 𝑇𝑘 is significantly reduced when compared to the 

traditional simulation model. The number of price points does help in lowering the total cost 

which is dependent on the availability of CSL capacity and variation in the CSL price points. 

The higher the variation in random CSL cost, the lower the operational cost.   

Figures 42 and 43 give the trend in the optimal values of 𝑇 and 𝑇𝑘when P = 0.25 and 0.5 

respectively. It is interesting to note that as cost per unit of fulltime dropped below CSL costs 

when in scenario 3, the utilization of seasonal capacity is high when at capacity levels 2 and 3 for 

each price points.  
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Figure 42. Optimal 𝑇 and 𝑇𝑘 trend when P = 0.25, scenario 1 = 13.67, scenario 2 = 10.03, 

scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5.  

 

Figure 43. Optimal 𝑇 and 𝑇𝑘 trend when P = 0.5, scenario 1 = 13.67, scenario 2 = 10.03, scenario 

3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5. 

As with the increase in capacity, and the variation in cost of the CSL resource, it is 

observed that with the reduction in 𝑇, the utilization of x in season 2 is not so favored as 𝑇 is 

observed to be dominating through seasons and meet the demand. Except for cases where 
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capacity is at maximum and the cost of CSL is per scenario 3, as shown in Figures 44 and 45, the 

utilization of x is observed in season 2.  

 

Figure 44. Optimal x1 and x2 trend when P = 0.25, scenario 1 = 13.67, scenario 2 = 10.03, 

scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5. 

 

Figure 45. Optimal x1 and x2 trend when P = 0.5, scenario 1 = 13.67, scenario 2 = 10.03, 

scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5. 

The demand being seasonal in nature, where season two experiences lower demand, it is 

observed that the seasonal resources, 𝑇𝑘 are only utilized in season 1, and in season 2 fulltime 
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resources and CSL have limited use. Another aspect to note is that as the utilization of 𝑇 is 

favorable and x utilized on need basis, the units that cause penalty also reduce to 0 per Figures 

46 and 47.  

 

Figure 46. Optimal U1 and U2 trend when P = 0.25, scenario 1 = 13.67, scenario 2 = 10.03, 

scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5. 

 

Figure 47. Optimal U1 and U2 trend when P = 0.5, scenario 1 = 13.67, scenario 2 = 10.03, 

scenario 3 = 6.29, Ca = 2 to 5 and I = 1,3 and 5. 



 

71 

5.10. Discussion of Results  

The results from the simulation run with robots generated an optimal combination of 

fulltime, seasonal and CSL resources that would lower the operational costs from LMD services 

and at the highest fulfillment rate. This combination was considering for each scenario, 

percentage variations, number of price points for CSL costs, various capacities of CSL and 

considering an 10% attrition rate for fulltime and seasonal resources and utilizing an automated 

technology such as van-robot delivery. Within, each scenario, as the capacity of the CSL 

increases and being variable, the utilization of fulltime and seasonal reduces. Between fulltime 

and seasonal, the seasonal utilization is very less compared to the traditional simulation model. 

With this drastic decrease of seasonal, and that fulltime resource cost is now optimized, the 

utilization of CSL resource is also limited. This can be due to the fact that fulltime now costs less 

than CSL and that CSL is only utilized to address any spike in demand and on need basis. The 

optimal resource combination is an extension of the output of the stochastic program, simulated 

for various combinations of fulltime and seasonal resource and considering attrition rate of these 

resources with use of automated systems. This section highlights the benefits of considering 

contemporary methods while optimizing the LMD services.  

  



 

72 

6. CONCLUSION AND FUTURE RESEARCH 

In this study, a resource modeling tool was detailed for aggregate capacity planning for 

LMD services. Based on the inputs, the capacity allocations for fulltime and seasonal deliveries 

were determined to minimize cost of LMD operations to meet random demand under seasonality. 

Specifically, the model was used to explore how a CSL option impacted the aggregate plan. As 

an extension to the simulation exercise, the use of automated technology, such as a robot, was 

applied to see the impact on costs and the aggregate plan.    

6.1. Conclusion 

To better understand the need, the study involved three different solution methodologies, 

each refining the results of the previous one. An analytical model was done first, followed by a 

stochastic program where the cost and capacity of CSL were variable, and finally a simulation 

where the daily turnover of fulltime and seasonal employees was considered along with rolling 

over unmet deliveries to the next day and getting fulfilled.   

The results from the analytical section, which being a basic model without any 

complexities involved when compared to stochastic or simulation versions has a very basic 

output in terms or resource need and costs. One key aspect to note is that, in the scenario 3, when 

the cost of CSL is lower than fulltime and seasonal it takes into account 100 % use of CSL 

resources. This, might be a biggest risk in the event of the demand exceeding CSL capacity and 

negatively impacting the organization. This is when the stochastic version has an assumption to 

consider the variable CSL capacity and cost and to maintain a minimum service level. Table 5 

gives a comparison of costs between analytical and stochastic for scenarios 1 to 3 and capacities 

2 to 5.  
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Table 5. Comparison of costs between analytical and stochastic for scenarios 1 to 3 and 

capacities 2 to 5. 

Scenario Ca Total Cost AM Total Cost SP 

Scenario 3 2 $ 1,380,292.20 $ 1,756,161.44 

Scenario 3 3 $ 1,229,764.93 $ 1,476,159.96 

Scenario 3 5 $ 1,186,312.95 $ 1,397,116.38 

Scenario 3 5 $ 1,186,312.95 $ 1,397,635.14 

Scenario 4 2 $ 1,362,618.58 $ 1,701,425.88 

Scenario 4 3 $ 1,143,559.56 $ 1,385,756.24 

Scenario 4 5 $ 1,021,594.33 $ 1,236,354.90 

Scenario 4 5 $ 1,020,128.26 $ 1,183,948.48 

Scenario 5 2 $ 1,296,218.18 $ 1,639,990.00 

Scenario 5 3 $ 1,045,303.48 $ 1,285,204.58 

Scenario 5 5 $    831,445.48 $ 1,053,661.62 

Scenario 5 5 $    704,492.58 $    895,718.12 

 

As the model is simulated with further considerations of attrition rate and rollover 

capability, using the fulltime and seasonal count as input from the output of the stochastic; here it 

is running for various combinations of fulltime and seasonal to determine the lowest cost for the 

usage of fulltime, seasonal and CSL resources meeting the demand. Figures 48 and 49 give the 

total cost comparison for the output from stochastic and simulation runs.  

 



 

74 

 

Figure 48. Cost trend from stochastic model for scenarios 1-3, Ca, and P.  

 

Figure 49. Cost trend from simulation for scenarios 1-3, Ca, and P.  

Comparing the two Figures 48 and 49, simulation does lead to a lower operational cost 

for the optimal combination of fulltime and seasonal. Results lead us to the conclusion that a 

CSL resource is an option that could lead in operations savings and thus achieving an objective 

lowering LMD costs. When the capacity of CSL is high and cost is low, is when maximum 

utilization of CSL is experienced, followed by fulltime and lastly seasonal.  
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Furthermore, an exercise was also performed where newer automation concepts, like use 

of delivery robots for LMD services, were modeled in the simulation. It was shown that it further 

helps reduce costs of fulltime fixed resources and better addresses varying demand than seasonal 

and CSL capacity as shown in Figure 50 for certain combinations when compared with earlier 

simulation. This exercise showed us that automation will increase reliance on fulltime capacity 

while reducing the overall amount and cost of fulltime capacity. Appendix F and Appendix 

Tables I1 and L1, show the optimal combination of resources for stochastic, simulation and 

simulation with robot usage respectively.    

 

Figure 50. Cost trend from simulation with robot for scenarios 1-3, Ca, and P.  

One critical aspect to note between the three figures comparing stochastic Vs simulation 

Vs simulation with robot, is the shift between the scenarios that is observed when comparing the 

values at Ca = 2, P = 0.25 and Ca = 2 and P = 0.5, they all exhibit a downward trend as Ca 

increases. These shifts happen to capture the effects of the variables and provide an opportunity 

for decision making or utilize information for aggregate planning of capacity.  
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 Given the forecasts and market characteristics, it would be an added advantage to use 

this approach for decision making at a managerial level. Cost optimization or savings will always 

be a medium where the benefits can be transferred to end customers by offering free or reduced 

cost shipping, as well as timely service, to garner higher customer satisfaction and appreciation.  

6.2. Future Research 

This study can be further extended by considering additional aspects of the daily 

operations such as considering the perishable nature of goods and or returns of goods from 

customers to retailers.  Future research plans include considering perishable aspects of the 

products and how these costs can be added in the model to refine the total operational expenses 

and determine if they affect profits. With these perishable items having no return or salvage 

value it would be a direct hit to the operating expenses and thus this category of items will need 

to be delivered timely, especially in the case of groceries consisting of fresh produce. To 

complement this research, it will be intriguing to see how reverse logistics of these goods will 

impact labor costs. Addressing the role of CSL in reverse logistics could be an avenue to explore. 

Finally, regarding the use of automation or integration of new technologies in LMD services, to 

further lower the LMD costs more research can be done to understand the challenges and 

benefits new technologies will provide in the long run.  

Thus, in conclusion, an aggregate capacity planning tool is provided here to identify 

optimal capacity levels to meet random seasonal demand. This tool considers the utilization of 

available CSL resources in each region or locality. Utilizing the tool would provide cost efficient 

delivery capacity planning with little impact on revenue generation or profits by providing 

quality and timely service to end customers.  
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7. DISCUSSION OF RESULTS FROM ANALYTICAL, STOCHASTIC 

PROGRAMMING AND SIMULATION MODELS 

In the previous sections, the outputs from each model, analytical, stochastic 

programming, and simulation, gave key information with regards to the use of CSL for LMD 

services. From an aggregate planning level, it would give an organization a better opportunity to 

budget their labor resources needed for LMD services meeting random demand with seasonality.  

The models from the previous sections vary based on their inputs. The analytical model reflects a 

simplified high-level view of the problem, whereas the simulation captures more details of the 

problem with the stochastic program falling in between the two. A final analysis considered 

using advanced technologies, such as a robot, to deliver the goods for LMD services.  

Given the random seasonal demand, each model included fulltime capacity which was 

employed over the entire year. As well as seasonal capacity which was employed during the busy 

season. Demand which exceeded the combined fulltime and seasonal capacities was satisfied by 

CSL capacity, the quantity of which was exogenous to the models. In the analytical model the 

cost of a crowdsourced delivery and the CSL capacity were deterministic, whereas in the 

stochastic program and simulation they were random variables. Any demand which exceeded the 

CSL capacity incurred a penalty cost in the analytical model and stochastic program or was 

rolled over to be handled the following day in the simulation.      

7.1. Observations Regarding Delivery Capacity 

From the three exercises with analyzing the objective of achieving the lowest operational 

cost, it was intriguing to see how the optimal capacity levels varied.  As the cost of CSL 

decreases or the capacity of CSL increases, seasonal capacity first increases and then decreases 

as observed in the stochastic program section and decreases per simulation section. When CSL 
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cost is low, the lowest cost is achieved, but at a lower service level as measured by deliveries 

being made within total available capacity, compared to scenarios with higher CSL costs. This is 

due to a CSL resource being more prone cause delivery errors and that the CSL resource reduced 

fulltime capacity rather than seasonal capacity so that overall capacity was lower during the busy 

season. 

In the stochastic program and simulation, the cost and capacity of CSL are random. In the 

simulation, deliveries which could not be completed within capacity were rolled over to the next 

day. Also, the simulation incorporates attrition among fulltime and seasonal workers with a delay 

between replacing them. Looking at the output from stochastic from stochastic and simulation, 

similar results are found for both models. With the simulation model, the case of enabling the 

units to be rolled over is leading to an outcome where there is no penalty incurred, as there are 

enough resources to meet the new demand and thus no missed deliveries for both the seasons. In 

case if stochastic, there are some undelivered unit’s observed but most of them in season 1.    

Fulltime capacity follows a similar pattern for the stochastic program and simulation, i.e. 

decreasing or being steady when expected CSL capacity is at its maximum, expected CSL cost is 

at its lowest, and the variation in CSL cost increases. However, in other scenarios, fulltime 

capacity for the stochastic program tends to increase with the number of CSL price points, 

whereas in the simulation, it is either steady or decreasing in the number of price points. 

Seasonal resource in stochastic programming does follow s a similar between the percentage 

variation in the CSL costs, but in simulation influence of the percentage variation in the CSL 

costs seem to affect seasonal pattern especially when capacity is at 4 and at scenario 1. It is 

where the increased utilization of CSL can be observed in simulation model. In stochastic 

version the utilization of CSL tend to be similar, whereas in the simulation, increased utilization 
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is observed scenario 2 onwards and higher than P at 25%. Contributing factors, might be the 

variation in demand and the rollover units that were missed yesterday would need additional 

impromptu resources to meet the targets and this is when CSL resource add to the zero missed 

deliveries as observed in simulation output.  

7.2. Managerial Decision Making  

LMD services being the most expensive portion of the supply chain, continuously go 

through innovative improvements to achieve significant operational improvements and thus the 

resource needs vary between improvement cycles. Along with this, the evolution in the 

availability of CSL, can add further cost optimization opportunities for managerial decision 

making during aggregate capacity planning. The set up here is more prone to situations like a 

retail establishment or third-party logistics provider delivering products to residences. Cost 

savings when shared with the end customer, for example being able to provide free delivery will 

always be a plus and can increase the customer base, optimal plan is very important. In addition, 

growing competition and innovations lead to a very competitive environment and for a business 

to be sustainable, planning and budgeting will be key. After all, low capacities will affect 

delivery service and high capacities will impact profit margins.  

This model also helps in decision making when seasonal variations are accounted for 

with demand fluctuations. Having a steady resource is one thing, but being able to be flexible 

and adapt to spikes in demand is one of the strategies that gives managers better opportunities to 

reduce operational costs. As observed in the analytical, stochastic program and simulation 

sections, the total operational costs were optimized for the level of inputs considered. Between 

the stochastic program and simulation, the variation in price points and the varying capacities of 

CSL gives a completely new visibility when planning for resource capacity at an aggregate level. 
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Here the objective being the lowest total operational cost but at an expected service level to be 

ensured by the organization.  

The three approaches vary in their need for information, each providing a more refined 

solution for the given set of inputs. For an organization, the need for aggregate planning of 

resources stems up from meeting demand for a fiscal year and benefit from a tool to assist with 

the planning and budgeting of resources. Given the current environment it is important that such 

a tool consider the use of CSL as it can assist with spikes in demand without requiring a 

potentially unused resource commitment. Variations in demand on a daily basis, seasonal spikes, 

employee attrition, and employee hiring and onboarding are some of the issues that leadership is 

constantly dealing with while trying to optimize performance. This issues are relevant to fulltime 

and seasonal capacity, but the flexibility of CSL may provide added value to the overall 

objective of the organization to keep the LMD related costs to a minimum. With CSL readily 

available in the market, an organization can use it to their advantage but at the same time needs 

to ensure not to risk their service rate and thus needs a balance mix of resources. Depending on 

availability of CSL, an organization can assess their optimal labor needs for LMD services.  

Thus, from the above three exercises of running the analytical model, stochastic program 

and simulation, one can understand the impact of CSL on LMD services. This can help an 

organization at an aggregate planning level to determine the best combination of resources 

between fulltime, seasonal and CSL at the lowest operational cost with or without automation.   
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APPENDIX A. DETAILED PROOF OF SCENARIO 1 EQUATIONS 

Theorem 1: For Scenario 1, where 𝑈 > 𝑆 + 𝐸𝑆 𝑎𝑛𝑑 𝐹 + 𝐸𝐹 

𝐻𝑗(𝑇) is solved using equations A.2 and A.3, with 𝑇𝑗 being determined by solving 

equation A.1.  

 𝑆 + (𝐸𝑆 − 𝑈) ∗ (1 − 𝐺𝑗(𝑇𝑗) + (𝑈 − 𝑂) ∗ (1 − 𝐺𝑗(𝑇𝑗 + 𝐶)) = 0  (A.1) 

 𝐻𝑗(𝑇) = 𝐹 + (𝐸𝐹 − 𝑈) ∗ (1 − 𝐺𝑗(𝑇)) + (𝑈 − 𝑂) ∗ (1 − 𝐺𝑗(𝑇 + 𝐶) 𝑖𝑓 𝑇 ≥ 𝑇𝑗     (A.2) 

 𝐻𝑗(𝑇) = (𝐹 − 𝑆) − (𝐸𝐹 − 𝐸𝑆) ∗ (1 − 𝐺𝑗(𝑇))  𝑖𝑓 𝑇 < 𝑇𝑗    (A.3) 

The T* which is the optimal value of T which minimizes the expected cost is solved for 

using equation A.4.  

 ∑ njHj(T∗)
n

j=1
= 0    (A.4) 

Following that, the optimal seasonal capacity  𝑇𝑗
∗ is determined using equation A.5.  

 𝑇𝑗
∗ = (𝑇𝑗 − 𝑇∗)

+
      (A.5) 

Proof for scenario 1.  

The optimal seasonal capacity from equation A.5 is the difference between the seasonal 

capacity per period determined by equation A.1 and the optimal T determined by solving 

equations A.2, A.3 and A.4.  

The expected cost for scenario 1 with random variable demand x is given in the below 

equation where 𝐸𝑗  is expected the per period cost during season j.   
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𝐸𝑗 = 𝐹 ∗ 𝑇 + 𝑆 ∗ 𝑇𝑗  + 𝐸𝐹 ∗ (∫ 𝑥 ∗ 𝑔𝑗(𝑥)𝑑𝑥
𝑇

0
+ (1 − 𝐺𝑗(𝑇)) ∗ 𝑇) + 𝐸𝑆 ∗

(∫ (𝑥 − 𝑇) ∗ 𝑔𝑗(𝑥)𝑑𝑥 + (1 − 𝐺𝑗(𝑇 + 𝑇𝑗)) ∗
𝑇+𝑇𝑗

𝑇
 𝑇𝑗)  + 𝑈 ∗ (∫ (𝑥 − (𝑇 + 𝑇𝑗)) ∗

𝑇+𝑇𝑗+𝐶

𝑇+𝑇𝑗

 𝑔𝑗(𝑥)𝑑𝑥 + (1 − 𝐺𝑗(𝑇 + 𝑇𝑗 + 𝐶)) ∗ 𝐶) + 𝑂 ∗ ∫ (𝑥 − (𝑇 + 𝑇𝑗 + 𝐶)) ∗ 𝑔𝑗(𝑥)𝑑𝑥
∞

𝑇+𝑇𝑗+𝐶
  

Simplifying the equation.  

𝐸𝑗 = 𝐹 ∗ 𝑇 + 𝑆 ∗ 𝑇𝑗  + 𝐸𝐹 ∗ (∫ 𝑥 𝑔𝑗(𝑥)𝑑𝑥
𝑇

0
+ (1 − 𝐺𝑗(𝑇)) ∗ 𝑇) + 𝐸𝑆 ∗

(∫ (𝑥 − 𝑇) ∗ 𝑔𝑗(𝑥)𝑑𝑥 + (1 − 𝐺𝑗(𝑇 + 𝑇𝑗)) ∗
𝑇+𝑇𝑗

𝑇
 𝑇𝑗)  + 𝑈 ∗  (∫ 𝑥 ∗ 𝑔𝑗(𝑥)𝑑𝑥

𝑇+𝑇𝑗+𝐶

𝑇+𝑇𝑗
−

 (𝑇 + 𝑇𝑗) ∫ 𝑔𝑗(𝑥)𝑑𝑥
𝑇+𝑇𝑗+𝐶

𝑇+𝑇𝑗
+ (1 − 𝐺𝑗(𝑇 + 𝑇𝑗 + 𝐶)) ∗ 𝐶) +  𝑂 ∗ (∫ 𝑥 ∗ 𝑔𝑗(𝑥)𝑑𝑥

∞

𝑇+𝑇𝑗+𝐶
− (𝑇 +

𝑇𝑗 + 𝐶) ∫  𝑔𝑗(𝑥)𝑑𝑥)
∞

𝑇+𝑇𝑗+𝐶
                               (A.6) 

In the next few steps, the derivative of the equation A.6 w.r.t. 𝑇𝑗 is taken and equated it to 

zero to solve for equation A.1 which is used to solve for 𝑇𝑗.  

𝑆 + 𝐸𝑆 ∗ (𝑇𝑗 ∗ 𝑔𝑗(𝑇 + 𝑇𝑗) − 𝑇𝑗 ∗ 𝑔𝑗(𝑇 + 𝑇𝑗) + (1 − 𝐺𝑗(𝑇 + 𝑇𝑗)))  + 𝑈 ∗

( (𝑇 + 𝑇𝑗 + 𝐶) ∗ 𝑔𝑗(𝑇 + 𝑇𝑗 + 𝐶) − (𝑇 + 𝑇𝑗) ∗ 𝑔𝑗(𝑇 + 𝑇𝑗) − 𝐺𝑗(𝑇 + 𝑇𝑗) + 𝐺𝑗(𝑇 + 𝑇𝑗 + 𝐶) +

(𝑇 + 𝑇𝑗) ∗ (𝑔𝑗(𝑇 + 𝑇𝑗) −  𝑔𝑗(𝑇 + 𝑇𝑗 + 𝐶)) − 𝐶 ∗ 𝑔𝑗(𝑇 + 𝑇𝑗 + 𝐶)  +  𝑂 ∗ (¥ ∗ 𝑔𝑗(¥) −

 (𝑇 + 𝑇𝑗 + 𝐶) ∗ 𝑔𝑗(𝑇 + 𝑇𝑗 + 𝐶) − 𝐺𝑗(¥) + 𝐺𝑗(𝑇 + 𝑇𝑗 + 𝐶) + (𝑇 + 𝑇𝑗 + 𝐶) ∗ 𝑔𝑗(𝑇 + 𝑇𝑗 + 𝐶) =

0  

Simplifying and substituting 𝑔𝑗(¥) = 0 and 𝐺𝑗(¥) = 1, the equation becomes as below: 

𝑆 + 𝐸𝑆 ∗ (1 − 𝐺𝑗(𝑇 + 𝑇𝑗)) + 𝑈 ∗ (1 − 𝐺𝑗(𝑇 + 𝑇𝑗 + 𝐶) − 𝑈 ∗ (1 − 𝐺𝑗(𝑇 + 𝑇𝑗)) − 𝑂 ∗

(1 − 𝐺𝑗(𝑇 + 𝑇𝑗 + 𝐶)) = 0   

Further enhancements lead to equation as below. 
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𝑆 + (𝐸𝑆 − 𝑈) ∗ (1 − 𝐺𝑗(𝑇 + 𝑇𝑗)) + (𝑈 − 𝑂) ∗ (1 − 𝐺𝑗(𝑇 + 𝑇𝑗 + 𝐶)) =  0 . 

To solve for the optimal value of 𝑇𝑗, it is assumed that the value of T is equal to zero. 

Substituting this assumption in the above equation leads to equation A.1 repeated here for the 

reader’s convenience.  

 𝑆 + (𝐸𝑆 − 𝑈) ∗ (1 − 𝐺𝑗(𝑇𝑗) + (𝑈 − 𝑂) ∗ (1 − 𝐺𝑗(𝑇𝑗 + 𝐶)) = 0  (A.1) 

To prove for the correctness of  𝐻𝑗(𝑇), the derivative of equation A.6 w.r.t. T is taken 

considering if 𝑇 ≥ 𝑇𝑗  𝑜𝑟 𝑇 < 𝑇𝑗.  

Case I - 𝑇 ≥ 𝑇𝑗   

In the next few steps, the derivative of equation A.6, w.r.t. 𝑇 is taken, given that 𝑇𝑗
∗ = 0 

since 𝑇 ≥ 𝑇𝑗.  

𝐹 + 𝐸𝐹 ∗ (𝑇 ∗ 𝑔𝑗(𝑇) − 𝑇 ∗ 𝑔𝑗(𝑇) + (1 − 𝐺𝑗(𝑇))) + 𝑈 ∗ ( (𝑇 + 𝐶) ∗ 𝑔𝑗(𝑇 + 𝐶) − 𝑇 ∗

𝑔𝑗(𝑇) + 𝐺𝑗(𝑇 + 𝐶) − 𝐺𝑗(𝑇) − 𝑇 ∗ 𝑔𝑗(𝑇 + 𝐶) + 𝑇 ∗ 𝑔𝑗(𝑇)  − 𝐶 ∗  𝑔𝑗(𝑇 + 𝐶) +  𝑂 ∗ (¥ ∗

𝑔𝑗(¥) −  (𝑇 + 𝐶) ∗ 𝑔𝑗(𝑇 + 𝐶) − 𝐺𝑗(¥) + 𝐺𝑗(𝑇 + 𝐶) + (𝑇 + 𝐶) ∗ 𝑔𝑗(𝑇 + 𝐶)   

Simplifying and substituting 𝑔𝑗(¥) = 0 and 𝐺𝑗(¥) = 1 we get:  

𝐹 + 𝐸𝐹 ∗ (1 − 𝐺𝑗(𝑇)) + 𝑈 ∗ (1 − 𝐺𝑗(𝑇 + 𝐶) − 𝑈 ∗ (1 − 𝐺𝑗(𝑇)) − 𝑂 ∗ (1 −  𝐺𝑗(𝑇 + 𝐶))  

Further enhancements leads to equation A.2 (𝐻𝑗(𝑇) 𝑤ℎ𝑒𝑛 𝑇 ≥ 𝑇𝑗) repeated here for the 

reader’s convenience.  

 𝐹 + (𝐸𝐹 − 𝑈) ∗ (1 − 𝐺𝑗(𝑇)) + (𝑈 − 𝑂) ∗ (1 − 𝐺𝑗(𝑇 + 𝐶) 𝑖𝑓 𝑇 ≥ 𝑇𝑗     (A.2) 

Case II - 𝑇 < 𝑇𝑗   

In the next few steps, the derivative of equation A.6 w.r.t. 𝑇 is taken, given that 𝑇𝑗
∗ = 𝑇 −

𝑇𝑗 since 𝑇 ≥ 𝑇𝑗. 
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𝐸𝑗 = 𝐹 ∗ 𝑇 + 𝑆 ∗ (−𝑇) + 𝐸𝐹 ∗ (∫ 𝑥 𝑔𝑗(𝑥)𝑑𝑥
𝑇

0
+ (1 − 𝐺𝑗(𝑇)) ∗ 𝑇) + 𝐸𝑆 ∗

(∫ (𝑥 − 𝑇) ∗ 𝑔𝑗(𝑥)𝑑𝑥 + (1 − 𝐺𝑗(𝑇 + 𝑇𝑗)) ∗
0

𝑇
 𝑇𝑗)  + 𝑈 ∗  (∫ 𝑥 ∗ 𝑔𝑗(𝑥)𝑑𝑥

𝐶

0
−  (0) ∫ 𝑔𝑗(𝑥)𝑑𝑥

𝐶

0
+

(1 − 𝐺𝑗(𝐶)) ∗ 𝐶) +  𝑂 ∗ (∫ 𝑥 ∗  𝑔𝑗(𝑥)𝑑𝑥
∞

𝐶
− (𝐶) ∫  𝑔𝑗(𝑥)𝑑𝑥)

∞

𝐶
     

Eliminating U and O terms from above equation as their derivative w.r.t. 𝑇 is 0 leads to 

below equation -  

𝐸𝑗 = 𝐹 ∗ 𝑇 + 𝑆 ∗ (−𝑇) + 𝐸𝐹 ∗ (∫ 𝑥 𝑔𝑗(𝑥)𝑑𝑥
𝑇

0
+ (1 − 𝐺𝑗(𝑇)) ∗ 𝑇) + 𝐸𝑆 ∗

(∫ 𝑥 ∗ 𝑔𝑗(𝑥)𝑑𝑥 + 𝑇 ∗ ∫ 𝑔𝑗(𝑥)𝑑𝑥 
0

𝑇
+ (1 − 𝐺𝑗(0)) ∗

0

𝑇
 (−𝑇))     . 

Solving the equation further.  

𝐹 − 𝑆 + 𝐸𝐹 ∗ (𝑇 ∗ 𝑔𝑗(𝑇) − 𝑇 ∗ 𝑔𝑗(𝑇) + (1 − 𝐺𝑗(𝑇))) + 𝐸𝑠 ∗ (−𝑇𝑔𝑗(𝑇) − 𝐺𝑗(0) +

𝐺𝑗(𝑇) + 𝑇𝑔𝑗(𝑇) − 1 + 𝐺𝑗(0))   

Simplifying the above. 

𝐹 − 𝑆 + 𝐸𝐹 ∗ (1 − 𝐺𝑗(𝑇)) − 𝐸𝑆 ∗ (1 − 𝐺𝑗(𝑇))  

Further enhancements leads to equation A.3 (for 𝐻𝑗(𝑇) 𝑤ℎ𝑒𝑛 𝑇 < 𝑇𝑗) repeated here for 

the reader’s convenience.  

 𝐻𝑗(𝑇) = (𝐹 − 𝑆) − (𝐸𝐹 − 𝐸𝑆) ∗ (1 − 𝐺𝑗(𝑇))  𝑖𝑓 𝑇 < 𝑇𝑗    (A.3) 

The following observations can be made from this theorem:  

The optimal seasonal capacity  𝑇𝑗
∗ is determined once the optimal fulltime capacity 𝑇∗ is 

determined and compared with the maximum seasonal need 𝑇𝑗. From, this theorem it is 

understood how the minimum cost is expensed given the demand profile and the delivery costs 
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by capacity type. The optimal fulltime 𝑇∗ indicates the fulltime capacity needed for the entire 

year and at the lowest possible cost to meet the demand. Any demand beyond fulltime capacity is 

handled by seasonal or CSL capacity. Furthermore, it also considers the expected penalty cost for 

a given demand profile when demand exceeds capacity. A similar approach applies to the proofs 

for scenarios 2 and 3.   
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APPENDIX B. INPUTS USED FOR ANALYTICAL MODEL 

Organization information 

Parameter Definitions Value Note(s) 

CF 

Average Capacity of 

delivery per full time 

employee per day (per 8 

hour shift) 32  

Selecting value from literature 

approximating to 8-hour window with a 

certain customer density.  

FTRH 

Full time regular hours per 

day 8 Standard work day with no over time. 

CS 

Average Capacity of 

delivery per seasonal 

employee per day (per 4 

hour shift) 16 Assuming half of Full time capacity.  

SRH 

Seasonal employee regular 

hours per day 4 Seasonal = Part time employees.  

FTW Full time wages per hour  $ 22.00  Includes benefits. 

EPF 

Error percentage for full 

time delivery 2% Error percentage assumed. 

EPS 

Error percentage for 

seasonal delivery 4% 

Error percentage assumed to be higher 

than full time. 

EPV 

Error percentage for 

crowdsourcing delivery  6% 

Error percentage assumed to be higher 

than full time and part time. 

n Number of seasons 4 Fiscal year.  

nj 

Number of periods in 

season j 66 Assuming period = 1 day 8 hour shift. 

N 

Number of periods (j=1…n 

Ʃnj) 264 

Standard working days in year (4 seasons) 

and weekdays only. 

VCF 

Vehicle cost when using 

full time per 8 hour shift  $       64  

Referred from literature for delivery van 

annual depreciation cost and miles 

traveled per day. 

VCS 

Vehicle cost when using 

seasonal per shift  $       32  

Referred from literature for delivery van 

annual depreciation cost and miles 

traveled per day for part time hours.  

  



 

97 

APPENDIX C. CALCULATED INPUTS USED FOR ANALYTICAL MODEL 

Model information 

Parameter Definitions Value Note(s) 

F 

Per period cost of full time 

capacity to satisfy 1 unit of 

demand   $            7.49    

S 

Per period cost of seasonal (part 

time) capacity to satisfy 1 unit of 

demand   $          11.23   S = 1.5*F 

EF 

Expected error cost of 1 unit of 

demand being satisfied by full 

time capacity   $            0.15    

ES 

Expected error cost of 1 unit of 

demand being satisfied by 

seasonal (part time) capacity   $            0.45  

Error cost is assumed to be 

fixed by full time employee 

and in overtime 

U 

Per unit cost to satisfy with 

crowd sourcing includes 

Expected error cost of 1 unit of 

demand being satisfied by crowd 

sourcing  

$         13.67 

$          10.03 

$            6.29 

For scenario 1, 2 and 3 and 

includes error cost EU 

O 

Cost per unit of unsatisfied 

demand  $         59.88    
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APPENDIX D. SEASON 1 AND SEASON 2 VALUES FOR UD AND ND  

The mean and standard deviation for Normal Distribution were calculated referencing the 

minimum and maximum values of Uniform Distribution using the formula below.  

𝑀𝑒𝑎𝑛 𝑓𝑜𝑟 𝑁𝐷 =
𝑚𝑖𝑛𝑚𝑢𝑚 𝑑𝑒𝑚𝑎𝑛𝑑 + 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑚𝑎𝑛𝑑

2
 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑁𝐷 =
𝑚𝑖𝑛𝑚𝑢𝑚 𝑑𝑒𝑚𝑎𝑛𝑑 + 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑚𝑎𝑛𝑑

√12
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APPENDIX E. SAS PROGRAM FOR ONE COMBINATION AS AN EXAMPLE 

data seasonfile; 

infile 

'C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\SP\seasons.csv' 

firstobs =2 dlm=','; 

input Day Season; 

run; 

 

data demandfile; 

infile 

'C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\SP\demand.csv' 

firstobs =2 dlm=','; 

input Season Para1 Para2; 

run; 

proc optmodel; 

number Hi=0.17; 

number Low=0.17; 

number DemandMultiplier; 

number F=7.49/1000; 

number Ef=0.15/1000; 

number S=11.23/1000; 

number Es=0.45/1000; 

number O=59.88/1000; 

number U1=13.67/1000; /*scenario 1 = 13.67 for U > F and S */   

number U2=10.03/1000; /*scenario 2 = 10.03 for F < U < S*/ 

number U3=6.29/1000;  /*scenario 3 =  6.29 for U < F and S */ 

number Ca1=0; 

number Ca2=258; 

number Ca3=516; 

number Ca4=774; 

number Ca5=1032; 

number J=264; 

number K=2; 

number I=1; 

number H=100; 

set<num> Days=1..J; 

set<num> Days2; 

set<num> Scenarios=1..H; 

set<num> Intervals=1..I; 

set<num> Seasons=1..K; 

set<num> Seasons2; 

number Map{Days}; 

number Parameter1{Seasons}; 

number Parameter2{Seasons}; 

number Demand{Days,Scenarios}; 

number Cost{Intervals,Days,Scenarios}; 

number Capacity{Intervals,Days,Scenarios}; 

read data seasonfile into Days2=[Day] Map[Day]= col("Season"); 

read data demandfile into Seasons2=[Season] Parameter1[Season]= col("Para1"); 

read data demandfile into Seasons2=[Season] Parameter2[Season]= col("Para2"); 

number a; 

number b; 

number c; 

number Lambda; 

number xavgs1; /* average for season 1 */ 
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number xavgs2; /* average for season 2 */ 

number Dfavgs1; 

number Dfavgs2; 

number Dsavgs1; 

number Dsavgs2; 

number Uavgs1; 

number Uavgs2;  

number Cam; /* Ca mean*/  

Cam = Ca2/I; 

set<num> DaysA; 

DaysA = 1 to 132;  

set<num> DaysB;  

DaysB = 133 to 264; 

do b = 1 to H; 

 DemandMultiplier=1; 

 if RAND('UNIFORM') < Hi then DemandMultiplier = 2; 

 else if RAND('UNIFORM') < Low/(1-Hi) then DemandMultiplier = 0.5; 

 do a = 1 to J; 

Demand[a,b] = 

RAND('POISSON',(Parameter1[Map[a]]+Parameter2[Map[a]])*DemandMultiplier/2); 

 end; 

end; 

do c = 1 to I; 

do a = 1 to J; 

do b = 1 to H; 

 Cost[c,a,b] = (10.25+(13.67/2)*RAND('UNIFORM'))/1000;  

 Capacity[c,a,b] = RAND('POISSON',Cam); 

end; 

end; 

end; 

var TL >= 0; 

var TkL{Seasons} >= 0; 

var xL{Intervals,Days,Scenarios} >= 0; 

var UL{Days,Scenarios} >= 0; 

var DfL{Days,Scenarios} >= 0; 

var DsL{Days,Scenarios} >= 0; 

var ScenarioCostL{Scenarios} >= 0; 

var XSquareL >= 0; 

var SquareXL >= 0; 

constraint FullTimeL{a2 in Days, b2 in Scenarios}: DfL[a2,b2] <= TL; 

constraint SeasonalTimeL{a2 in Days, b2 in Scenarios}: DsL[a2,b2] <= 

TkL[Map[a2]]; 

constraint CrowdTimeL{c2 in Intervals, a2 in Days, b2 in Scenarios}: 

xL[c2,a2,b2] <= Capacity[c2,a2,b2]; 

constraint ShortageL{a2 in Days, b2 in Scenarios}: 

DfL[a2,b2]+DsL[a2,b2]+UL[a2,b2]+sum{c2 in Intervals}xL[c2,a2,b2] >= 

Demand[a2,b2]; 

constraint LogicalL: TkL[2]=0; 

constraint SetObjectiveL{b2 in Scenarios}: ScenarioCostL[b2] = sum{a2 in 

Days}(F*TL + S*TkL[Map[a2]] + sum{c2 in 

Intervals}(Cost[c2,a2,b2]*xL[c2,a2,b2]) + Ef*DfL[a2,b2] + Es*DsL[a2,b2] + 

O*UL[a2,b2]); 

constraint SetSquareXL: SquareXL = sum{b2 in Scenarios}(ScenarioCostL[b2]/H); 

Lambda = 0; 

solve; 

filename OUTTER 

'C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\SP\U1Ca2I1P25.csv'; 
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number Variance; 

Variance = 0; 

do b = 1 to H; 

end; 

number DummyXSquare; 

DummyXSquare = Variance; 

Variance = Variance - SquareXL*SquareXL; 

number TM;  

TM = TL; 

number TkM{Seasons}; 

do a = 1 to K; 

 TkM[a] = TkL[a]; 

end; 

number xM{Intervals, Days, Scenarios}; 

do c = 1 to I; 

do a = 1 to J; 

do b = 1 to H; 

 xM[c,a,b] = xL[c,a,b]; 

end; 

end; 

end; 

number UM{Days,Scenarios}; 

number DfM{Days,Scenarios}; 

number DsM{Days,Scenarios}; 

do a = 1 to J; 

do b = 1 to H; 

 UM[a,b] = UL[a,b]; 

 DfM[a,b] = DfL[a,b]; 

 DsM[a,b] = DsL[a,b]; 

end; 

end; 

number ScenarioCostM{Scenarios}; 

do b = 1 to H; 

 ScenarioCostM[b] = ScenarioCostL[b]; 

end; 

number SquareXM; 

SquareXM = SquareXL; 

file OUTTER; 

put 

'Lambda,T,Tk[1],meanvar,Mean,Variance,xavgs1,xavgs2,Dfavgs1,Dfavgs2,Dsavgs1,D

savgs2,Uavgs1,Uavgs2'; 

/*put Lambda ',' TL ',' TkL[1] ',' meanvarL ',' SquareXL ',' Variance ',' 

xavgs1 ',' xavgs2 ',' Dfavgs1 ',' Dfavgs2 ',' Dsavgs1 ',' Dsavgs2 ',' Uavgs1 

',' Uavgs2;*/ 

var T init TM >= 0; 

var Tk{a2 in Seasons} init TKM[a2]>= 0; 

var x{c2 in Intervals, a2 in Days, b2 in Scenarios} init xM[c2,a2,b2]>= 0; 

var U{a2 in Days, b2 in Scenarios} init UM[a2,b2] >= 0; 

var Df{a2 in Days, b2 in Scenarios} init DfM[a2,b2] >= 0; 

var Ds{a2 in Days, b2 in Scenarios} init DsM[a2,b2] >= 0; 

var ScenarioCost{b2 in Scenarios} init ScenarioCostM[b2] >= 0; 

var XSquare init DummyXSquare >= 0; 

var SquareX init SquareXM >= 0; 

min meanvar = (1-Lambda)*SquareX+Lambda*(XSquare-SquareX*SquareX); 

constraint FullTime{a2 in Days, b2 in Scenarios}: Df[a2,b2] <= T; 

constraint SeasonalTime{a2 in Days, b2 in Scenarios}: Ds[a2,b2] <= 

Tk[Map[a2]]; 
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constraint CrowdTime{c2 in Intervals, a2 in Days, b2 in Scenarios}: 

x[c2,a2,b2] <= Capacity[c2,a2,b2]; 

constraint Shortage{a2 in Days, b2 in Scenarios}: 

Df[a2,b2]+DsL[a2,b2]+U[a2,b2]+sum{c2 in Intervals}x[c2,a2,b2] >= 

Demand[a2,b2]; 

constraint Logical: Tk[2]=0; 

constraint SetObjective{b2 in Scenarios}: ScenarioCost[b2] = sum{a2 in 

Days}(F*T + S*Tk[Map[a2]] + sum{c2 in Intervals}(Cost[c2,a2,b2]*x[c2,a2,b2]) 

+ Ef*Df[a2,b2] + Es*Ds[a2,b2] + O*U[a2,b2]); 

constraint SetSquareX: SquareX = sum{b2 in Scenarios}(ScenarioCost[b2]/H); 

constraint SetXSquare: XSquare = sum{b2 in 

Scenarios}(ScenarioCost[b2]*ScenarioCost[b2]/H); 

problem Utility include T Tk x U Df Ds ScenarioCost XSquare SquareX meanvar 

FullTime SeasonalTime CrowdTime Shortage Logical SetObjective SetSquareX 

SetXSquare; 

do Lambda = 0.1 to 1 by 0.1; 

Use problem Utility; 

solve; 

Variance = Xsquare - SquareX*SquareX; 

xavgs1 =  (sum{c2 in Intervals, a2 in DaysA, b2 in Scenarios} 

x[c2,a2,b2])/(H*132);   

xavgs2 =  (sum{c2 in Intervals, a2 in DaysB, b2 in Scenarios} 

x[c2,a2,b2])/(H*132); 

Dfavgs1 = (sum{a2 in DaysA, b2 in Scenarios} Df[a2,b2])/(H*132); 

Dfavgs2 = (sum{a2 in DaysB, b2 in Scenarios} Df[a2,b2])/(H*132);  

Dsavgs1 = (sum{a2 in DaysA, b2 in Scenarios} Ds[a2,b2])/(H*132); 

Dsavgs2 = (sum{a2 in DaysB, b2 in Scenarios} Ds[a2,b2])/(H*132); 

Uavgs1 =  (sum{a2 in DaysA, b2 in Scenarios} U[a2,b2])/(H*132); 

Uavgs2 =  (sum{a2 in DaysB, b2 in Scenarios} U[a2,b2])/(H*132);  

put Lambda ',' T ',' Tk[1] ',' meanvar ','  SquareX ','  Variance ',' xavgs1 

',' xavgs2 ',' Dfavgs1 ',' Dfavgs2 ',' Dsavgs1 ',' Dsavgs2 ',' Uavgs1 ',' 

Uavgs2; 

end; 

closefile OUTTER; 
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APPENDIX F. SAS OPTIMAL COMBINATION OUTPUT FROM STOCHASTIC 

PROGRAM 

P U Ca I T Tk[1] xavgs1 xavgs2 Uavgs1 Uavgs2 

0.25 13.67 2 1 366 500 62 47 6 0 

0.25 13.67 2 3 401 466 62 39 6 0 

0.25 13.67 2 5 408 458 63 37 6 0 

0.25 13.67 3 1 316 294 127 60 6 0 

0.25 13.67 3 3 315 295 127 60 6 0 

0.25 13.67 3 5 313 297 127 61 6 0 

0.25 13.67 4 1 315 206 185 60 0 0 

0.25 13.67 4 3 305 137 253 63 0 0 

0.25 13.67 4 5 304 135 255 63 0 0 

0.25 13.67 5 1 315 207 184 60 0 0 

0.25 13.67 5 3 300 0 375 64 0 0 

0.25 13.67 5 5 304 5 368 63 0 0 

0.25 10.03 2 1 336 527 63 55 7 0 

0.25 10.03 2 3 341 521 63 54 7 0 

0.25 10.03 2 5 342 522 63 53 7 0 

0.25 10.03 3 1 294 312 127 66 7 0 

0.25 10.03 3 3 292 314 127 67 7 0 

0.25 10.03 3 5 292 315 127 67 7 0 

0.25 10.03 4 1 294 103 290 66 2 0 

0.25 10.03 4 3 291 101 294 67 2 0 

0.25 10.03 4 5 290 103 293 68 2 0 

0.25 10.03 5 1 277 0 397 74 0 0 

0.25 10.03 5 3 269 0 404 79 0 0 

0.25 10.03 5 5 270 0 403 78 0 0 

0.25 6.29 2 1 327 532 63 57 7 1 

0.25 6.29 2 3 329 532 63 56 7 0 

0.25 6.29 2 5 329 531 63 56 7 0 

0.25 6.29 3 1 278 325 128 74 7 0 

0.25 6.29 3 3 274 330 128 76 7 0 

0.25 6.29 3 5 273 330 128 77 7 0 

0.25 6.29 4 1 278 92 311 74 4 0 

0.25 6.29 4 3 274 94 312 76 4 0 

0.25 6.29 4 5 271 98 312 78 4 0 

0.25 6.29 5 1 142 0 530 187 2 0 

0.25 6.29 5 3 138 0 533 191 2 0 

0.25 6.29 5 5 135 0 536 194 2 0 
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P U Ca I T Tk[1] xavgs1 xavgs2 Uavgs1 Uavgs2 

0.5 13.67 2 1 364 501 63 48 6 0 

0.5 13.67 2 3 411 456 63 36 6 0 

0.5 13.67 2 5 418 450 62 34 6 0 

0.5 13.67 3 1 318 291 127 60 6 0 

0.5 13.67 3 3 314 297 127 61 6 0 

0.5 13.67 3 5 310 301 127 62 6 0 

0.5 13.67 4 1 316 208 183 60 0 0 

0.5 13.67 4 3 300 123 269 64 1 0 

0.5 13.67 4 5 298 127 267 65 0 0 

0.5 13.67 5 1 316 202 188 60 0 0 

0.5 13.67 5 3 290 0 384 68 0 0 

0.5 13.67 5 5 297 0 378 65 0 0 

0.5 10.03 2 1 338 524 63 54 7 0 

0.5 10.03 2 3 347 517 63 52 7 0 

0.5 10.03 2 5 349 515 63 52 6 0 

0.5 10.03 3 1 294 311 128 66 7 0 

0.5 10.03 3 3 291 316 127 67 7 0 

0.5 10.03 3 5 289 318 127 68 7 0 

0.5 10.03 4 1 294 105 289 66 1 0 

0.5 10.03 4 3 288 98 299 69 2 0 

0.5 10.03 4 5 285 107 294 70 2 0 

0.5 10.03 5 1 278 0 396 74 0 0 

0.5 10.03 5 3 254 0 419 91 0 0 

0.5 10.03 5 5 252 0 421 92 0 0 

0.5 6.29 2 1 327 534 63 57 7 1 

0.5 6.29 2 3 330 531 63 56 7 0 

0.5 6.29 2 5 331 530 63 56 7 0 

0.5 6.29 3 1 278 325 128 74 7 0 

0.5 6.29 3 3 270 333 128 78 7 0 

0.5 6.29 3 5 267 337 127 81 7 0 

0.5 6.29 4 1 278 92 311 74 4 0 

0.5 6.29 4 3 269 96 315 79 5 0 

0.5 6.29 4 5 261 107 312 85 4 0 

0.5 6.29 5 1 141 0 530 188 2 0 

0.5 6.29 5 3 134 0 537 194 2 0 

0.5 6.29 5 5 128 0 542 200 3 0 
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APPENDIX G. CHARTS FOR VARIOUS COMBINATIONS OF SCENARIOS 1-3, P, Ca 

AND I FROM STOCHASTIC PROGRAM. 

 

Figure G1. Optimal 𝑇 values for given case of Scenario 1, P, Ca and I.  

 

 

Figure G2. Optimal 𝑇𝑘 values for given case of Scenario 1, P, Ca and I.  
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Figure G3. Optimal x values for given case of Scenario 1, P, Ca and I.  

 

 

Figure G4. Optimal U values for given case of Scenario 1, P, Ca and I.  



 

107 

 

Figure G5. Optimal 𝑇 values for given case of Scenario 2, P, Ca and I.  

 

 

Figure G6. Optimal 𝑇𝑘 values for given case of Scenario 2, P, Ca and I.  
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Figure G7. Optimal x values for given case of Scenario 2, P, Ca and I.  

 

 

Figure G8. Optimal U values for given case of Scenario 2, P, Ca and I.  
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Figure G9. Optimal 𝑇 values for given case of Scenario 3, P, Ca and I.  

 

 

Figure G10. Optimal 𝑇𝑘 values for given case of Scenario 3, P, Ca and I.  
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Figure G11. Optimal x values for given case of Scenario 3, P, Ca and I.  

 

 

Figure G12. Optimal U values for given case of Scenario 3, P, Ca and I.  
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APPENDIX H. SIMULATION PROGRAM FOR ONE COMBINATION AS AN 

EXAMPLE 

data TTksp;  

infile         

'C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\Paper3\U1Ca2IxP25TT

k.csv'  

firstobs =2 dlm=','; 

input T Tk; 

run; 

 

data values; 

 set TTksp;  

  %LET mT = T;  

  %LET mTk = Tk;  

  CT = 32; 

  CTk = 16;   

  O = 59.88;  

  F = 7.49; 

  Ef = 0.15; 

  S = 11.23; 

  Es = 0.45; 

 hiring = 239.68; /* F*CT */   

  Ca2=258;  

  Ca2I1 = Ca2/1;  

  Ca2I3 = Ca2/3; 

  Ca2I5 = Ca2/5;  

   s1min=109; 

  s1max=1032; 

      s2min=97; 

      s2max=459; 

run; 

 

data Actual;  

 set values;  

 do i = 1 to 50;   

 

      do j = 1 to 132; 

  U1P25_1 = (10.25+(13.67/2)*RAND('UNIFORM'));  

  U1P25_2 = (10.25+(13.67/2)*RAND('UNIFORM'));  

  U1P25_3 = (10.25+(13.67/2)*RAND('UNIFORM'));  

  U1P25_4 = (10.25+(13.67/2)*RAND('UNIFORM'));  

  U1P25_5 = (10.25+(13.67/2)*RAND('UNIFORM'));  

      d=RAND('POISSON',(s1min + s1max)/2);  

      Tatt = RAND('POISSON',(0.04/100)*T);             

      Tact = &mT-Tatt;                                /* Tact = actual T */  

      hc = (&mT - Tact)/CT;                           /* hc = headcount */  

      hcT= hc * hiring;                                

      Tkatt = RAND('POISSON',(0.04/100)*Tk);            

      Tkact = &mTk - Tkatt;                           /* Tkact = actual Tk */  

 hck = (&mTk - Tkact)/CTk;  

 hcTk= hck * hiring; 

      Tk2 = Tk; 

      Tkact2 = Tkact;  

 hck2 = hck; 
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 hcTk2 = hcTk; 

    B1 = U1P25_1;  

    B31 = min(U1P25_1, U1P25_2, U1P25_3);  

    B32 = smallest(2, of U1P25_1, U1P25_2, U1P25_3);  

    B33 = smallest(3, of U1P25_1, U1P25_2, U1P25_3);  

    B51 = min(U1P25_1, U1P25_2, U1P25_3, U1P25_4, U1P25_5);  

    B52 = smallest(2, of U1P25_1, U1P25_2, U1P25_3, U1P25_4, U1P25_5);  

    B53 = smallest(3, of U1P25_1, U1P25_2, U1P25_3, U1P25_4, U1P25_5);  

    B54 = smallest(4, of U1P25_1, U1P25_2, U1P25_3, U1P25_4, U1P25_5); 

    B55 = smallest(5, of U1P25_1, U1P25_2, U1P25_3, U1P25_4, U1P25_5);   

    /* S1 when I =1 */   

    if d > (Tact + Tkact2) then xd1S1 = d - (Tact + Tkact2); 

    else xd1S1 = 0;  

 xc1S1 = RAND('POISSON',Ca2I1); /* capacity of x */  

 if xd1S1 > xc1S1 then U1S1 = xd1S1 - xc1S1;   

    else U1S1 = 0; 

 Ulag_lagU1S1 = lag(U1S1); 

    dnew1S1 = d + Ulag_lagU1S1;  

 if dnew1S1 > (Tact + Tkact2) then xdnew1S1 = dnew1S1 - (Tact + Tkact2); 

    else xdnew1S1 = 0;  

 if xdnew1S1 > xc1S1 then Unew1S1 = xdnew1S1 - xc1S1;  

 else Unew1S1 = 0; 

    if xdnew1S1 <= xc1S1 then xact11S1 = xdnew1S1; 

 if xdnew1S1 > xc1S1 then xact11S1 = xc1S1;  

 if j = 1 then Ulag_lagU1S1 = 0; 

    if j = 1 then dnew1S1 = d; 

    if j = 1 then xdnew1S1 = xd1S1; 

 if j = 1 then Unew1S1 = U1S1; 

 if j = 1 then xact11S1 = min(xc1S1,xdnew1S1); 

 TC11S1 = xact11S1*B1;              /* TC = Total cost */   

 TC1S1 = T * (F + Ef) + hcT + Tk2 * ( S + Es) + hcTk2 + TC11S1 +         

(Unew1S1 * O); 

    if d > (Tact + Tkact2) then xd3S1 = d - (Tact + Tkact2); else xd3S1 = 0; 

  xc31S1 = RAND('POISSON',Ca2I3);  

 xc32S1 = RAND('POISSON',Ca2I3);  

 xc33S1 = RAND('POISSON',Ca2I3); 

 if xd3S1 > (xc31S1+xc32S1+xc33S1) then U3S1 = xd3S1 - 

(xc31S1+xc32S1+xc33S1); else U3S1 = 0; 

 Ulag_lagU3S1 = lag(U3S1); 

      dnew3S1 = d + Ulag_lagU3S1; 

 if dnew3S1 > (Tact + Tkact2) then xdnew3S1 = dnew3S1 - (Tact + Tkact2);   

else xdnew3S1 = 0;  

 if xc31S1 => xdnew3S1 then xact31S1 = xdnew3S1;  

 else if xc31S1 < xdnew3S1 =< (xc31S1+xc32S1) then xact31S1 = xc31S1;  

 else if (xc31S1+xc32S1) < xdnew3S1 =< (xc31S1+xc32S1+xc33S1) then 

xact31S1 = xc31S1;   

 else if xdnew3S1 > (xc31S1+xc32S1+xc33S1) then xact31S1 = xc31S1; else 

xact31S1 = 0; 

 if xc31S1 < xdnew3S1 =< (xc31S1+xc32S1)  then  xact32S1 = 

min((xdnew3S1-xact31S1),xc32S1);  

 else if (xc31S1+xc32S1) < xdnew3S1 =< (xc31S1+xc32S1+xc33S1) then 

xact32S1 = xc32S1;  

 else if xdnew3S1 > (xc31S1+xc32S1+xc33S1) then xact32S1 = xc32S1; else 

xact32S1 = 0; 

    if (xc31S1+xc32S1) < xdnew3S1 =< (xc31S1+xc32S1+xc33S1) then xact33S1 = 

min((xdnew3S1-xact31S1-xact32S1),xc33S1);   
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 else if xdnew3S1 > (xc31S1+xc32S1+xc33S1) then xact33S1 = xc33S1; else 

xact33S1 = 0; 

 if xdnew3S1 > (xc31S1+xc32S1+xc33S1) then Unew3S1=dnew3S1-Tact-Tkact2-

xact31S1-xact32S1-xact33S1; else Unew3S1 = 0;  

 if j = 1 then Ulag_lagU3S1 = 0; 

    if j = 1 then dnew3S1 = d; 

    if j = 1 then xdnew3S1 = xd3S1; 

 if j = 1 then Unew3S1 = U3S1; 

 if j = 1 then xact31S1 = min(xc31S1,xdnew3S1); 

 if j = 1 then xact32S1 = min((xdnew3S1-xact31S1),xc32S1); 

 if j = 1 then xact33S1 = min((xdnew3S1-xact31S1-xact32S1),xc33S1); 

 TC31S1 = xact31S1*B31;  

 TC32S1 = xact32S1*B32; 

 TC33S1 = xact33S1*B33; 

 TC3S1 = T * (F + Ef) + hcT + Tk2 * ( S + Es) + hcTk2 + TC31S1 + TC32S1 

+ TC33S1 + (Unew3S1 * O); 

/* S1 when I =5 */ 

 if d > (Tact + Tkact2) then xd5S1 = d - (Tact + Tkact2); 

    else xd5S1 = 0; 

 xc51S1 = RAND('POISSON',Ca2I5);  

 xc52S1 = RAND('POISSON',Ca2I5);  

 xc53S1 = RAND('POISSON',Ca2I5);  

 xc54S1 = RAND('POISSON',Ca2I5);  

 xc55S1 = RAND('POISSON',Ca2I5);  

 if xd5S1 > (xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then U5S1 = xd5S1 - 

(xc51S1+xc52S1+xc53S1+xc54S1+xc55S1);  

 else U5S1 = 0; 

 Ulag_lagU5S1 = lag(U5S1); 

    dnew5S1 = d + Ulag_lagU5S1; 

  if dnew5S1 > (Tact + Tkact2) then xdnew5S1 = dnew5S1 - (Tact + Tkact2); 

    else xdnew5S1 = 0;  

 if xc51S1 >= xdnew5S1 then xact51S1 = xdnew5S1;  

 else if xc51S1 < xdnew5S1 =< (xc51S1+xc52S1)  then xact51S1 = xc51S1;   

 else if (xc51S1+xc52S1) < xdnew5S1 =< (xc51S1+xc52S1+xc53S1) then  

xact51S1 = xc51S1;  

 else if (xc51S1+xc52S1+xc53S1) < xdnew5S1 =< 

(xc51S1+xc52S1+xc53S1+xc54S1) then xact51S1 = xc51S1;  

 else if (xc51S1+xc52S1+xc53S1+xc54S1) < xdnew5S1 =< 

(xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then xact51S1 = xc51S1;  

 else if xdnew5S1 > (xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then xact51S1 = 

xc51S1; else xact51S1 = 0; 

 if xc51S1 < xdnew5S1 =< (xc51S1+xc52S1)  then  xact52S1 = 

min((xdnew5S1-xact51S1),xc52S1);  

 else if (xc51S1+xc52S1) < xdnew5S1 =< (xc51S1+xc52S1+xc53S1) then 

xact52S1 = xc52S1;  

 else if (xc51S1+xc52S1+xc53S1) < xdnew5S1 =< 

(xc51S1+xc52S1+xc53S1+xc54S1) then xact52S1 = xc52S1;  

 else if (xc51S1+xc52S1+xc53S1+xc54S1) < xdnew5S1 =< 

(xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then xact52S1 = xc52S1;   

 else if xdnew5S1 > (xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then xact52S1 = 

xc52S1; else xact52S1 = 0; 

    if (xc51S1+xc52S1) < xdnew5S1 =< (xc51S1+xc52S1+xc53S1) then xact53S1 = 

min((xdnew5S1-xact51S1-xact52S1),xc53S1);   

 else if (xc51S1+xc52S1+xc53S1) < xdnew5S1 =< 

(xc51S1+xc52S1+xc53S1+xc54S1) then xact53S1 = xc53S1;  

 else if (xc51S1+xc52S1+xc53S1+xc54S1) < xdnew5S1 =< 

(xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then xact53S1 = xc53S1;   
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 else if xdnew5S1 > (xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then xact53S1 = 

xc53S1; else xact53S1 = 0; 

 if (xc51S1+xc52S1+xc53S1) < xdnew5S1 =< (xc51S1+xc52S1+xc53S1+xc54S1) 

then xact54S1 = min((xdnew5S1-xact51S1-xact52S1-xact53S1),xc54S1);  

    else if (xc51S1+xc52S1+xc53S1+xc54S1) < xdnew5S1 =< 

(xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then xact54S1 = xc54S1;   

 else if xdnew5S1 > (xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then xact54S1 = 

xc54S1; else xact54S1 = 0; 

 if (xc51S1+xc52S1+xc53S1+xc54S1) < xdnew5S1 =< 

(xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then xact55S1 = min((xdnew5S1-xact51S1-

xact52S1-xact53S1-xact54S1),xc55S1);   

 else if xdnew5S1 > (xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then xact55S1 = 

xc55S1; else xact55S1 = 0; 

  if xdnew5S1 > (xc51S1+xc52S1+xc53S1+xc54S1+xc55S1) then 

Unew5S1=dnew5S1-Tact-Tkact2-xact51S1-xact52S1-xact53S1-xact54S1-xact55S1; 

else Unew5S1 = 0;   

      if j = 1 then Ulag_lagU5S1 = 0; 

      if j = 1 then dnew5S1 = d; 

      if j = 1 then xdnew5S1 = xd5S1; 

 if j = 1 then Unew5S1 = U5S1; 

 if j = 1 then xact51S1 = min(xc51S1,xdnew5S1); 

 if j = 1 then xact52S1 = min((xdnew5S1-xact51S1),xc52S1); 

 if j = 1 then xact53S1 = min((xdnew5S1-xact51S1-xact52S1),xc53S1);  

 if j = 1 then xact54S1 = min((xdnew5S1-xact51S1-xact52S1-

xact53S1),xc54S1); 

 if j = 1 then xact55S1 = min((xdnew5S1-xact51S1-xact52S1-xact53S1-

xact54S1),xc55S1);   

 TC51S1 = xact51S1*B51;  

 TC52S1 = xact52S1*B52;  

 TC53S1 = xact53S1*B53;  

 TC54S1 = xact54S1*B54;  

 TC55S1 = xact55S1*B55;  

 TC5S1 = T * (F + Ef) + hcT + Tk2 * ( S + Es) + hcTk2 + TC51S1 + TC52S1 

+ TC53S1 + TC54S1 + TC55S1 + (Unew5S1 * O); 

output; 

end; 

/* season 2 */  

do j = 133 to 264; 

 U1P25_1 = (10.25+(13.67/2)*RAND('UNIFORM'));  

      U1P25_2 = (10.25+(13.67/2)*RAND('UNIFORM'));  

  U1P25_3 = (10.25+(13.67/2)*RAND('UNIFORM'));  

  U1P25_4 = (10.25+(13.67/2)*RAND('UNIFORM'));  

  U1P25_5 = (10.25+(13.67/2)*RAND('UNIFORM'));  

      d=RAND('POISSON',(s2min + s2max)/2);  

      Tatt = RAND('POISSON',(0.04/100)*T);            /* Tatt = attrition  

     Tact = &mT-Tatt;                                 

     hc = (&mT - Tact)/CT;                            

     hcT= hc * hiring;                                

     Tkatt = RAND('POISSON',(0.04/100)*Tk);           

     Tkact = &mTk - Tkatt;                            

     hck = (&mTk - Tkact)/CTk;  

     hcTk= hck * hiring; 

    Tk2 = 0; 

    Tkact2 = 0;  

 hck2 = 0; 

 hcTk2 = 0; 

    B1 = U1P25_1;  
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    B31 = min(U1P25_1, U1P25_2, U1P25_3);  

    B32 = smallest(2, of U1P25_1, U1P25_2, U1P25_3);  

    B33 = smallest(3, of U1P25_1, U1P25_2, U1P25_3);  

    B51 = min(U1P25_1, U1P25_2, U1P25_3, U1P25_4, U1P25_5);  

    B52 = smallest(2, of U1P25_1, U1P25_2, U1P25_3, U1P25_4, U1P25_5);  

    B53 = smallest(3, of U1P25_1, U1P25_2, U1P25_3, U1P25_4, U1P25_5);  

    B54 = smallest(4, of U1P25_1, U1P25_2, U1P25_3, U1P25_4, U1P25_5); 

    B55 = smallest(5, of U1P25_1, U1P25_2, U1P25_3, U1P25_4, U1P25_5);   

/* S2 when I =1 */   

    if d > (Tact + Tkact2) then xd1S2 = d - (Tact + Tkact2); 

    else xd1S2 = 0;  

 xc1S2 = RAND('POISSON',Ca2I1); /* capacity of x */  

 if xd1S2 > xc1S2 then U1S2 = xd1S2 - xc1S2;   

    else U1S2 = 0; 

 Ulag_lagU1S2 = lag(U1S2); 

    dnew1S2 = d + Ulag_lagU1S2;  

 if j = 133 then Ulag_lagU1S2 = Ulag_lagU1S1; 

 if j = 133 then dnew1S2 = d+Ulag_lagU1S1;  

 if dnew1S2 > (Tact + Tkact2) then xdnew1S2 = dnew1S2 - Tact - Tkact2; 

    else xdnew1S2 = 0;  

 if xdnew1S2 > xc1S2 then Unew1S2 = xdnew1S2 - xc1S2;  

 else Unew1S2 = 0; 

 if xdnew1S2 =< xc1S2 then xact11S2 = xdnew1S2; 

 if xdnew1S2 > xc1S2 then xact11S2 = xc1S2;  

 TC11S2 = xact11S2*B1;    

 TC1S2 = T * (F + Ef) + hcT + Tk2 * ( S + Es) + hcTk2 + TC11S2 + 

(Unew1S2 * O);  

/* S2 when I =3 */  

    if d > (Tact + Tkact2) then xd3S2 = d - (Tact + Tkact2); 

    else xd3S2 = 0; 

  xc31S2 = RAND('POISSON',Ca2I3);  

 xc32S2 = RAND('POISSON',Ca2I3);  

 xc33S2 = RAND('POISSON',Ca2I3); 

 if xd3S2 > (xc31S2+xc32S2+xc33S2) then U3S2 = xd3S2 - 

(xc31S2+xc32S2+xc33S2);  

 else U3S2 = 0; 

 Ulag_lagU3S2 = lag(U3S2); 

    dnew3S2 = d + Ulag_lagU3S2; 

  if j = 133 then Ulag_lagU3S2 = Ulag_lagU3S1; 

 if j = 133 then dnew3S2 = d+Ulag_lagU3S1; 

 if dnew3S2 > (Tact + Tkact2) then xdnew3S2 = dnew3S2-Tact-Tkact2; 

    else xdnew3S2 = 0;  

 if xdnew3S2 =< xc31S2 then xact31S2 = xdnew3S2;  

 else if xc31S2 < xdnew3S2 =< (xc31S2+xc32S2) then xact31S2 = xc31S2;  

 else if (xc31S2+xc32S2) < xdnew3S2 =< (xc31S2+xc32S2+xc33S2) then 

xact31S2 = xc31S2;  

 else if xdnew3S2 > (xc31S2+xc32S2+xc33S2) then xact31S2 = xc31S2; else 

xact31S2=0; 

  if xc31S2 < xdnew3S2 =< (xc31S2+xc32S2) then xact32S2 = min((xdnew3S2-

xact31S2),xc32S2);  

 else if (xc31S2+xc32S2) < xdnew3S2 =< (xc31S2+xc32S2+xc33S2) then 

xact32S2 = xc32S2 

 else if xdnew3S2 > (xc31S2+xc32S2+xc33S2) then xact32S2 = xc32S2; else 

xact32S2=0; 

 if xdnew3S2 > (xc31S2+xc32S2+xc33S2) then Unew3S2=dnew3S2-Tact-Tkact2-

xact31S2-xact32S2-xact33S2; else Unew3S2 = 0;  

 TC31S2 = xact31S2*B31;  
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 TC32S2 = xact32S2*B32; 

 TC33S2 = xact33S2*B33; 

 TC3S2 = T * (F + Ef) + hcT + Tk2 * ( S + Es) + hcTk2 + TC31S2 + TC32S2 

+ TC33S2 + (Unew3S2 * O); 

/* S2 when I=5 */  

 if d > (Tact + Tkact2) then xd5S2 = d - (Tact + Tkact2); 

    else xd5S2 = 0; 

  xc51S2 = RAND('POISSON',Ca2I5);  

 xc52S2 = RAND('POISSON',Ca2I5);  

 xc53S2 = RAND('POISSON',Ca2I5);  

 xc54S2 = RAND('POISSON',Ca2I5);  

 xc55S2 = RAND('POISSON',Ca2I5);  

 if xd5S2 > (xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then U5S2 = xd5S2 - 

(xc51S2+xc52S2+xc53S2+xc54S2+xc55S2);  

 else U5S2 = 0; 

 Ulag_lagU5S2 = lag(U5S2); 

    dnew5S2 = d + Ulag_lagU5S2; 

  if j = 133 then Ulag_lagU5S2 = Ulag_lagU5S1; 

 if j = 133 then dnew5S2=d+Ulag_lagU5S1;  

 if dnew5S2 > (Tact + Tkact2) then xdnew5S2 = dnew5S2 - Tact - Tkact2; 

    else xdnew5S2 = 0;  

 if xc51S2 >= xdnew5S2 then xact51S2 = xdnew5S2;  

 else if xc51S2 < xdnew5S2 =< (xc51S2+xc52S2)  then xact51S2 = xc51S2;  

 else if (xc51S2+xc52S2) < xdnew5S2 =< (xc51S2+xc52S2+xc53S2) then 

xact51S2 = xc51S2;  

 else if (xc51S2+xc52S2+xc53S2) < xdnew5S2 =< 

(xc51S2+xc52S2+xc53S2+xc54S2) then xact51S2 = xc51S2;  

 else if (xc51S2+xc52S2+xc53S2+xc54S2) < xdnew5S2 =< 

(xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then xact51S2 = xc51S2;   

 else if xdnew5S2 > (xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then xact51S2 = 

xc51S2; else xact51S2 = 0; 

 if xc51S2 < xdnew5S2 =< (xc51S2+xc52S2)  then xact52S2 = min((xdnew5S2-

xact51S2),xc52S2);  

 else if (xc51S2+xc52S2) < xdnew5S2 =< (xc51S2+xc52S2+xc53S2) then 

xact52S2 = xc52S2  

 else if (xc51S2+xc52S2+xc53S2) < xdnew5S2 =< 

(xc51S2+xc52S2+xc53S2+xc54S2) then xact52S2 = xc52S2;  

 else if (xc51S2+xc52S2+xc53S2+xc54S2) < xdnew5S2 =< 

(xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then xact52S2 = xc52S2;  

 else if xdnew5S2 > (xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then xact52S2 = 

xc52S2; else xact52S2=0; 

    if (xc51S2+xc52S2) < xdnew5S2 =< (xc51S2+xc52S2+xc53S2) then xact53S2 = 

min((xdnew5S2-xact51S2-xact52S2),xc53S2);  

 else if (xc51S2+xc52S2+xc53S2) < xdnew5S2 =< 

(xc51S2+xc52S2+xc53S2+xc54S2) then xact53S2 = xc53S2;  

 else if (xc51S2+xc52S2+xc53S2+xc54S2) < xdnew5S2 =< 

(xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then xact53S2 = xc53S2;  

 else if xdnew5S2 > (xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then xact53S2 = 

xc53S2; else xact53S2 = 0;  

 if (xc51S2+xc52S2+xc53S2) < xdnew5S2 =< (xc51S2+xc52S2+xc53S2+xc54S2) 

then xact54S2 = min((xdnew5S2-xact51S2-xact52S2-xact53S2),xc54S2);  

    else if (xc51S2+xc52S2+xc53S2+xc54S2) < xdnew5S2 =< 

(xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then xact54S2 = xc54S2;   

 else if xdnew5S2 > (xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then xact54S2 = 

xc54S2; else xact54S2 = 0; 



 

117 

 if (xc51S2+xc52S2+xc53S2+xc54S2) < xdnew5S2 =< 

(xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then xact55S2 = min((xdnew5S2-xact51S2-

xact52S2-xact53S2-xact54S2),xc55S2);   

 else if xdnew5S2 > (xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then xact55S2 = 

xc55S2; else xact55S2 = 0; 

 if xdnew5S2 > (xc51S2+xc52S2+xc53S2+xc54S2+xc55S2) then 

Unew5S2=dnew5S2-Tact-Tkact2-xact51S2-xact52S2-xact53S2-xact54S2-xact55S2; 

else Unew5S2 = 0;  

 TC51S2 = xact51S2*B51;  

 TC52S2 = xact52S2*B52;  

 TC53S2 = xact53S2*B53;  

 TC54S2 = xact54S2*B54;  

 TC55S2 = xact55S2*B55;  

 TC5S2 = T * (F + Ef) + hcT + Tk2 * ( S + Es) + hcTk2 + TC51S2 + TC52S2 

+ TC53S2 + TC54S2 + TC55S2 + (Unew5S2 * O); 

 output; 

 end; 

end; 

run;  

 

ods csv 

file='C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\Paper3\U1Ca2Ix

P25 I1S1.csv'; 

Proc means data = Actual mean;   

Class T Tk; 

where j < 133;  

var T Tk d xdnew1S1 xact11S1 Unew1S1;  

run; 

ods csv close; 

 

ods csv 

file='C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\Paper3\U1Ca2Ix

P25 I1S2.csv'; 

Proc means data = Actual mean;   

Class T Tk;  

where j > 132;  

var T Tk d xdnew1S2 xact11S2 Unew1S2;  

run; 

ods csv close; 

 

ods csv 

file='C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\Paper3\U1Ca2Ix

P25 I3S1.csv'; 

Proc means data = Actual mean;   

Class T Tk;  

where j < 133;  

var T Tk d xdnew3S1 xact31S1 xact32S1 xact33S1 xc33S1 xc32S1 xc33S1 Unew3S1;  

run; 

ods csv close; 

 

ods csv 

file='C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\Paper3\U1Ca2Ix

P25 I3S2.csv'; 

Proc means data = Actual mean;   

Class T Tk;  

where j > 132;  

var T Tk d xdnew3S2 xact31S2 xact32S2 xact33S2 xc31S2 xc32S2 xc33S2 Unew3S2;  
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run; 

ods csv close; 

 

ods csv 

file='C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\Paper3\U1Ca2Ix

P25 I5S1.csv'; 

Proc means data = Actual mean;   

Class T Tk;  

where j < 133;  

var T Tk d xdnew5S1 xact51S1 xact52S1 xact53S1 xact54S1 xact55S1 xc51S1 

xc52S1 xc53S1 xc54S1 xc55S1 Unew5S1;  

run; 

ods csv close; 

 

ods csv 

file='C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\Paper3\U1Ca2Ix

P25 I5S2.csv'; 

Proc means data = Actual mean;   

Class T Tk;  

where j > 132;  

var T Tk d xdnew5S2 xact51S2 xact52S2 xact53S2 xact54S2 xact55S2 xc51S2 

xc52S2 xc53S2 xc54S2 xc55S2 Unew5S2;  

run; 

ods csv close; 

 

ods csv 

file='C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\Paper3\U1Ca2Ix

P25 TCS1.csv'; 

Proc means data = Actual mean;   

Class T Tk;  

where j < 133;  

var T Tk d TC1S1 TC3S1 TC5S1;  

run; 

ods csv close; 

 

ods csv 

file='C:\Users\Joseph.Szmerekovsky\Documents\Research\Raghavan\Paper3\U1Ca2Ix

P25 TCS2.csv'; 

Proc means data = Actual mean;   

Class T Tk;  

where j > 132;  

var T Tk d TC1S2 TC3S2 TC5S2;  

run; 

ods csv close; 
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APPENDIX I. SIMULATION OPTIMAL COMBINATION OUTPUT 

Table I1. SAS Simulation program output. 

P U Ca I T Tk[1] xavgs1 xavgs2 Uavgs1 Uavgs2 

0.25 13.67 2 1 316 408 0 0 0 0 

0.25 13.67 2 3 316 408 0 0 0 0 

0.25 13.67 2 5 316 408 0 0 0 0 

0.25 13.67 3 1 287 259 26 3 0 0 

0.25 13.67 3 3 283 244 44 4 0 0 

0.25 13.67 3 5 281 247 42 5 0 0 

0.25 13.67 4 1 294 252 26 2 0 0 

0.25 13.67 4 3 287 232 51 3 0 0 

0.25 13.67 4 5 285 146 139 4 0 0 

0.25 13.67 5 1 287 254 30 3 0 0 

0.25 13.67 5 3 286 236 48 3 0 0 

0.25 13.67 5 5 286 97 187 3 0 0 

0.25 10.03 2 1 286 471 0 3 0 0 

0.25 10.03 2 3 286 471 0 3 0 0 

0.25 10.03 2 5 286 471 0 3 0 0 

0.25 10.03 3 1 280 262 29 6 0 0 

0.25 10.03 3 3 271 262 38 11 0 0 

0.25 10.03 3 5 271 262 38 11 0 0 

0.25 10.03 4 1 291 153 126 2 0 0 

0.25 10.03 4 3 281 54 235 5 0 0 

0.25 10.03 4 5 281 53 236 5 0 0 

0.25 10.03 5 1 293 42 235 2 0 0 

0.25 10.03 5 3 274 1 295 9 0 0 

0.25 10.03 5 5 280 2 289 6 0 0 

0.25 6.29 2 1 277 481 0 7 0 0 

0.25 6.29 2 3 277 481 0 7 0 0 

0.25 6.29 2 5 277 481 0 7 0 0 

0.25 6.29 3 1 223 275 73 55 0 0 

0.25 6.29 3 3 223 275 73 55 0 0 

0.25 6.29 3 5 223 275 73 55 0 0 

0.25 6.29 4 1 221 42 307 57 0 0 

0.25 6.29 4 3 221 42 307 57 0 0 

0.25 6.29 4 5 221 42 307 57 0 0 

0.25 6.29 5 1 85 1 484 193 0 0 

0.25 6.29 5 3 85 1 484 193 0 0 

0.25 6.29 5 5 85 1 484 193 0 0 

0.5 13.67 2 1 314 400 0 0 0 0 

0.5 13.67 2 3 314 400 0 0 0 0 

0.5 13.67 2 5 314 400 0 0 0 0 

0.5 13.67 3 1 288 257 27 3 0 0 

0.5 13.67 3 3 275 242 53 8 0 0 

0.5 13.67 3 5 270 241 59 11 0 0 

0.5 13.67 4 1 288 250 33 3 0 0 

0.5 13.67 4 3 277 73 221 7 0 0 

0.5 13.67 4 5 282 76 212 5 0 0 

0.5 13.67 5 1 293 248 31 2 0 0 

0.5 13.67 5 3 281 1 289 5 0 0 
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Table I1. SAS Simulation program output (continued). 

P U Ca I T Tk[1] xavgs1 xavgs2 Uavgs1 Uavgs2 

0.5 13.67 5 5 278 7 285 7 0 0 

0.5 10.03 2 1 288 465 0 3 0 0 

0.5 10.03 2 3 288 465 0 3 0 0 

0.5 10.03 2 5 288 465 0 3 0 0 

0.5 10.03 3 1 276 262 33 8 0 0 

0.5 10.03 3 3 240 261 69 38 0 0 

0.5 10.03 3 5 240 261 69 38 0 0 

0.5 10.03 4 1 276 49 245 7 0 0 

0.5 10.03 4 3 259 49 263 20 0 0 

0.5 10.03 4 5 245 48 277 33 0 0 

0.5 10.03 5 1 269 1 300 12 0 0 

0.5 10.03 5 3 242 1 328 36 0 0 

0.5 10.03 5 5 207 0 363 71 0 0 

0.5 6.29 2 1 277 480 0 7 0 0 

0.5 6.29 2 3 277 480 0 7 0 0 

0.5 6.29 2 5 277 480 0 7 0 0 

0.5 6.29 3 1 218 275 77 60 0 0 

0.5 6.29 3 3 217 275 79 61 0 0 

0.5 6.29 3 5 217 275 79 61 0 0 

0.5 6.29 4 1 211 42 317 67 0 0 

0.5 6.29 4 3 211 42 317 67 0 0 

0.5 6.29 4 5 211 42 317 67 0 0 

0.5 6.29 5 1 78 0 493 200 0 0 

0.5 6.29 5 3 78 0 493 200 0 0 

0.5 6.29 5 5 78 3 490 199 0 0 
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Table I2. Confidence interval (95%) for SAS Simulation program output. 

Scenarios TC S1 TC S2 

P U Ca I Mean cost Standard error Lower limit Upper limit Mean cost Standard error Lower limit Upper limit 

0.25 13.67 2 1 7183.13 0.08 7182.97 7183.29 2415.95 0.13 2415.70 2416.20 

0.25 13.67 2 3 7183.13 0.08 7182.97 7183.29 2415.87 0.12 2415.64 2416.10 

0.25 13.67 2 5 7183.13 0.08 7182.97 7183.29 2415.84 0.11 2415.62 2416.06 

0.25 13.67 3 1 5576.90 3.63 5569.79 5584.01 2234.64 1.12 2232.45 2236.83 

0.25 13.67 3 3 5535.63 3.54 5528.69 5542.57 2215.18 1.18 2212.86 2217.50 

0.25 13.67 3 5 5515.30 3.32 5508.80 5521.80 2207.51 1.23 2205.10 2209.92 

0.25 13.67 4 1 5543.61 3.56 5536.64 5550.58 2268.05 0.76 2266.56 2269.54 

0.25 13.67 4 3 5516.13 3.59 5509.10 5523.16 2230.73 0.99 2228.79 2232.67 

0.25 13.67 4 5 5470.47 3.84 5462.93 5478.01 2219.94 1.02 2217.94 2221.94 

0.25 13.67 5 1 5577.04 3.67 5569.86 5584.22 2235.35 1.15 2233.10 2237.60 

0.25 13.67 5 3 5519.75 3.57 5512.76 5526.74 2224.88 1.02 2222.89 2226.87 

0.25 13.67 5 5 5451.31 4.09 5443.30 5459.32 2224.45 0.98 2222.54 2226.36 

0.25 10.03 2 1 7690.06 0.08 7689.89 7690.23 2220.78 0.88 2219.05 2222.51 

0.25 10.03 2 3 7690.06 0.08 7689.89 7690.23 2216.24 0.76 2214.75 2217.73 

0.25 10.03 2 5 7690.06 0.08 7689.89 7690.23 2214.81 0.72 2213.39 2216.23 

0.25 10.03 3 1 5570.12 3.59 5563.08 5577.16 2211.89 1.46 2209.03 2214.75 

0.25 10.03 3 3 5513.42 2.99 5507.56 5519.28 2176.85 1.49 2173.93 2179.77 

0.25 10.03 3 5 5481.95 2.67 5476.71 5487.19 2168.44 1.36 2165.77 2171.11 

0.25 10.03 4 1 5589.33 5.89 5577.78 5600.88 2251.26 0.89 2249.52 2253.00 

0.25 10.03 4 3 5137.39 6.36 5124.93 5149.85 2199.59 1.09 2197.45 2201.73 

0.25 10.03 4 5 5067.69 5.2 5057.50 5077.88 2196.74 1.01 2194.77 2198.71 

0.25 10.03 5 1 5657.33 9.1 5639.49 5675.17 2261.28 0.77 2259.77 2262.79 

0.25 10.03 5 3 5050.80 7.55 5036.00 5065.60 2184.78 1.43 2181.97 2187.59 

0.25 10.03 5 5 4945.75 5.85 4934.28 4957.22 2190.96 1.02 2188.97 2192.95 

0.25 6.29 2 1 7738.13 0.09 7737.96 7738.30 2162.22 0.79 2160.67 2163.77 

0.25 6.29 2 3 7738.13 0.09 7737.96 7738.30 2156.56 0.69 2155.22 2157.90 

0.25 6.29 2 5 7738.13 0.09 7737.96 7738.30 2154.58 0.65 2153.31 2155.85 

0.25 6.29 3 1 5375.20 2.03 5371.22 5379.18 2051.75 1.44 2048.94 2054.56 

0.25 6.29 3 3 5317.99 1.71 5314.64 5321.34 2008.65 1.21 2006.28 2011.02 

0.25 6.29 3 5 5300.21 1.61 5297.06 5303.36 1994.57 1.13 1992.36 1996.78 

0.25 6.29 4 1 4114.08 3.93 4106.38 4121.78 2048.53 1.47 2045.64 2051.42 

0.25 6.29 4 3 3909.58 2.89 3903.92 3915.24 2004.01 1.23 2001.60 2006.42 

0.25 6.29 4 5 3878.53 2.49 3873.66 3883.40 1988.85 1.13 1986.63 1991.07 

0.25 6.29 5 1 3707.25 5.7 3696.07 3718.43 1859.50 2.51 1854.58 1864.42 

0.25 6.29 5 3 3437.72 3.91 3430.05 3445.39 1711.49 1.85 1707.86 1715.12 

0.25 6.29 5 5 3379.38 3.26 3373.00 3385.76 1662.22 1.51 1659.26 1665.18 
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Table I2. Confidence interval (95%) for SAS Simulation program output (continued). 

Scenarios TC S1 TC S2 

P U Ca I Mean cost Standard error Lower limit Upper limit Mean cost Standard error Lower limit Upper limit 

0.5 13.67 2 1 7074.41 0.08 7074.25 7074.57 2401.22 0.19 2400.86 2401.58 

0.5 13.67 2 3 7074.41 0.08 7074.25 7074.57 2400.88 0.14 2400.61 2401.15 

0.5 13.67 2 5 7074.41 0.08 7074.25 7074.57 2400.78 0.13 2400.53 2401.03 

0.5 13.67 3 1 5572.11 3.84 5564.58 5579.64 2240.74 1.14 2238.51 2242.97 

0.5 13.67 3 3 5472.32 3.44 5465.58 5479.06 2184.76 1.4 2182.01 2187.51 

0.5 13.67 3 5 5420.03 3.09 5413.97 5426.09 2167.66 1.43 2164.86 2170.46 

0.5 13.67 4 1 5568.35 4.1 5560.32 5576.38 2240.66 1.15 2238.40 2242.92 

0.5 13.67 4 3 5223.47 7.78 5208.21 5238.73 2191.60 1.34 2188.97 2194.23 

0.5 13.67 4 5 5098.77 5.89 5087.23 5110.31 2199.76 0.96 2197.87 2201.65 

0.5 13.67 5 1 5552.82 4.09 5544.81 5560.83 2261.01 0.8 2259.44 2262.58 

0.5 13.67 5 3 5103.00 9.81 5083.78 5122.22 2201.34 1.14 2199.11 2203.57 

0.5 13.67 5 5 4969.78 7.39 4955.29 4984.27 2185.45 1.13 2183.24 2187.66 

0.5 10.03 2 1 7635.25 0.09 7635.08 7635.42 2229.80 0.82 2228.19 2231.41 

0.5 10.03 2 3 7635.25 0.09 7635.08 7635.42 2222.77 0.61 2221.57 2223.97 

0.5 10.03 2 5 7635.25 0.09 7635.08 7635.42 2220.40 0.54 2219.33 2221.47 

0.5 10.03 3 1 5503.24 3.07 5497.23 5509.25 2185.47 1.34 2182.84 2188.10 

0.5 10.03 3 3 5407.60 2.9 5401.92 5413.28 2119.88 1.81 2116.33 2123.43 

0.5 10.03 3 5 5351.57 2.45 5346.77 5356.37 2088.23 1.55 2085.20 2091.26 

0.5 10.03 4 1 5124.06 9.26 5105.90 5142.22 2183.83 1.36 2181.17 2186.49 

0.5 10.03 4 3 4551.83 6.68 4538.74 4564.92 2128.72 1.48 2125.82 2131.62 

0.5 10.03 4 5 4486.57 5.5 4475.80 4497.34 2095.01 1.5 2092.07 2097.95 

0.5 10.03 5 1 5043.22 11.1 5021.50 5064.94 2177.30 1.69 2174.00 2180.60 

0.5 10.03 5 3 4320.50 8.02 4304.78 4336.22 2119.25 1.75 2115.82 2122.68 

0.5 10.03 5 5 4263.61 6.77 4250.34 4276.88 2057.51 1.86 2053.86 2061.16 

0.5 6.29 2 1 7726.35 0.09 7726.18 7726.52 2161.44 0.84 2159.80 2163.08 

0.5 6.29 2 3 7726.35 0.09 7726.18 7726.52 2150.02 0.61 2148.83 2151.21 

0.5 6.29 2 5 7726.35 0.09 7726.18 7726.52 2146.31 0.53 2145.27 2147.35 

0.5 6.29 3 1 5364.62 2.58 5359.57 5369.67 2045.04 1.87 2041.38 2048.70 

0.5 6.29 3 3 5244.97 1.87 5241.31 5248.63 1947.37 1.38 1944.66 1950.08 

0.5 6.29 3 5 5205.74 1.58 5202.65 5208.83 1915.17 1.13 1912.96 1917.38 

0.5 6.29 4 1 4098.64 7.33 4084.27 4113.01 2034.08 2.01 2030.14 2038.02 

0.5 6.29 4 3 3698.67 4.94 3689.00 3708.34 1927.58 1.39 1924.85 1930.31 

0.5 6.29 4 5 3620.31 3.9 3612.67 3627.95 1893.19 1.12 1890.99 1895.39 

0.5 6.29 5 1 3679.24 11.2 3657.33 3701.15 1859.66 4.66 1850.53 1868.79 

0.5 6.29 5 3 3156.27 7.24 3142.09 3170.45 1539.21 3.12 1533.09 1545.33 

0.5 6.29 5 5 3054.36 5.73 3043.13 3065.59 1434.07 2.35 1429.45 1438.69 
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APPENDIX J. CHARTS FOR VARIOUS COMBINATIONS OF SCENARIOS 1-3, P, Ca 

AND I FROM SIMULATION. 

 

Figure J1. Optimal 𝑇 values for given case of scenario 1, P, Ca and I.  

 

 

Figure J2. Optimal 𝑇𝑘 values for given case of scenario 1, P, Ca and I.  
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Figure J3. Optimal x values for given case of scenario 1, P, Ca and I.  

 

 

Figure J4. Optimal U values for given case of scenario 1, P, Ca and I.  
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Figure J5. Optimal 𝑇 values for given case of scenario 2, P, Ca and I.  

 

 

Figure J6. Optimal 𝑇𝑘 values for given case of scenario 2, P, Ca and I.  
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Figure J7. Optimal x values for given case of scenario 2, P, Ca and I.  

 

 

Figure J8. Optimal U values for given case of scenario 2, P, Ca and I.  
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Figure J9. Optimal 𝑇 values for given case of scenario 3, P, Ca and I.  

 

 

Figure J10. Optimal 𝑇𝑘 values for given case of scenario 3, P, Ca and I.  
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Figure J11. Optimal x values for given case of scenario 3, P, Ca and I.  

 

 

Figure J12. Optimal U values for given case of scenario 3, P, Ca and I.  
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APPENDIX K. SIMULATION WITH ROBOT FULLTIME COST BENEFIT 

  

Component Value Unit Reference 

Robots purchase price 2,600.00$     USD Assumption from range of values observed

Amortization time 5 Years

Operation weeks per year 52

Days per week 5

Hours per day 8

Utilization rate - assuming continously utilized for shift hours in our case 100%

Robot cost per hour 0.25$             

Markup maintenance electricity 50%

Robot cost per hour w mark up 0.38$             

Max speed 6 Km/h

Operating time 12 Hours

Max load 10 Kg

Travel capacity of single robot in an 8 hr shift 28 Miles

Subtracting 30 mins from shift time to accommodate travel from WH to location 

and back, and converting to miles

One round trip distance from van to residence 4 Miles Assumption and one delivery per round trip

Total deliveries in an 8 hour window per robot 5 Orders Assuming 75% operating efficiency 

Total robots in the van 8 Per Ostermeier et al. 

Total deliveries in an 8 hour window 42

Daily robots in the van cost w mark up 24.00$           

Daily rate per FT including vehicle expenses 239.68$        

Per order rate for LMD 6.30$             

Ef 0.13$             

Assumptions -

Assuming Van robot combination used for distribution for residences within radius of cell B17 miles

Assuming one robot able to work for entire 8 hour shift and package weight within the robot capacity 

Increasing productivity of delivery resources, primarily FT

Assuming all deliveries happen to customer locations on ground level without any need for escalating steps

Assuming customer comfortable interacting with robot to unlock cargo area and pick up packages 

Pg 15, section 5.1 

Ostermeier, M, Heimfarth, A, Hübner, A. Cost-optimal truck-and-robot routing for 

last-mile delivery. Networks.. 2022; 79: 364– 389. 

https://doi.org/10.1002/net.22030

https://starshipdeliveries.com/industry/ 

https://www.uh.edu/news-events/stories/2019/november-2019/11102019-

starship-robots.php
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APPENDIX L. SIMULATION WITH ROBOT OPTIMAL COMBINATION  

Table L1. SAS Simulation with robot program output. 

P U Ca I T Tk[1] xavgs1 xavgs2 Uavgs1 Uavgs2 

0.25 13.67 2 1 494 49 29 0 0 0 

0.25 13.67 2 3 493 25 52 0 0 0 

0.25 13.67 2 5 495 27 48 0 0 0 

0.25 13.67 3 1 496 50 26 0 0 0 

0.25 13.67 3 3 493 26 51 0 0 0 

0.25 13.67 3 5 494 0 76 0 0 0 

0.25 13.67 4 1 477 50 43 0 0 0 

0.25 13.67 4 3 396 41 133 0 0 0 

0.25 13.67 4 5 396 40 134 0 0 0 

0.25 13.67 5 1 479 50 42 0 0 0 

0.25 13.67 5 3 312 37 221 0 0 0 

0.25 13.67 5 5 312 37 221 0 0 0 

0.25 10.03 2 1 473 1 96 0 0 0 

0.25 10.03 2 3 473 1 96 0 0 0 

0.25 10.03 2 5 473 1 96 0 0 0 

0.25 10.03 3 1 468 59 43 0 0 0 

0.25 10.03 3 3 468 3 99 0 0 0 

0.25 10.03 3 5 468 3 99 0 0 0 

0.25 10.03 4 1 328 50 192 0 0 0 

0.25 10.03 4 3 321 0 249 0 0 0 

0.25 10.03 4 5 321 0 249 0 0 0 

0.25 10.03 5 1 306 49 215 0 0 0 

0.25 10.03 5 3 284 3 284 4 0 0 

0.25 10.03 5 5 284 3 284 4 0 0 

0.25 6.29 2 1 301 141 128 0 0 0 

0.25 6.29 2 3 301 141 128 0 0 0 

0.25 6.29 2 5 301 141 128 0 0 0 

0.25 6.29 3 1 254 190 127 25 0 0 

0.25 6.29 3 3 254 190 127 25 0 0 

0.25 6.29 3 5 254 190 127 25 0 0 

0.25 6.29 4 1 254 0 316 25 0 0 

0.25 6.29 4 3 253 0 318 26 0 0 

0.25 6.29 4 5 254 0 316 25 0 0 

0.25 6.29 5 1 112 0 458 166 0 0 

0.25 6.29 5 3 96 0 474 182 0 0 

0.25 6.29 5 5 97 0 474 181 0 0 

0.5 13.67 2 1 482 61 29 0 0 0 

0.5 13.67 2 3 483 6 81 0 0 0 

0.5 13.67 2 5 483 9 78 0 0 0 

0.5 13.67 3 1 484 65 23 0 0 0 

0.5 13.67 3 3 480 0 91 0 0 0 

0.5 13.67 3 5 480 1 89 0 0 0 

0.5 13.67 4 1 484 46 40 0 0 0 

0.5 13.67 4 3 356 7 207 0 0 0 

0.5 13.67 4 5 355 4 211 0 0 0 

0.5 13.67 5 1 482 49 40 0 0 0 

0.5 13.67 5 3 288 1 282 3 0 0 
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Table L1. SAS Simulation with robot program output (continued). 

P U Ca I T Tk[1] xavgs1 xavgs2 Uavgs1 Uavgs2 

0.5 13.67 5 5 294 13 263 1 0 0 

0.5 10.03 2 1 453 2 115 0 0 0 

0.5 10.03 2 3 453 2 115 0 0 0 

0.5 10.03 2 5 453 1 116 0 0 0 

0.5 10.03 3 1 403 6 162 0 0 0 

0.5 10.03 3 3 402 1 168 0 0 0 

0.5 10.03 3 5 402 1 168 0 0 0 

0.5 10.03 4 1 302 1 267 0 0 0 

0.5 10.03 4 3 304 2 264 0 0 0 

0.5 10.03 4 5 302 1 267 0 0 0 

0.5 10.03 5 1 281 4 285 5 0 0 

0.5 10.03 5 3 274 1 295 9 0 0 

0.5 10.03 5 5 270 1 299 12 0 0 

0.5 6.29 2 1 305 118 147 0 0 0 

0.5 6.29 2 3 304 118 149 0 0 0 

0.5 6.29 2 5 304 118 149 0 0 0 

0.5 6.29 3 1 253 117 201 26 0 0 

0.5 6.29 3 3 253 117 201 26 0 0 

0.5 6.29 3 5 253 117 201 26 0 0 

0.5 6.29 4 1 250 0 321 28 0 0 

0.5 6.29 4 3 248 0 322 30 0 0 

0.5 6.29 4 5 248 0 322 30 0 0 

0.5 6.29 5 1 87 1 483 191 0 0 

0.5 6.29 5 3 81 0 489 197 0 0 

0.5 6.29 5 5 81 0 489 197 0 0 
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Table L2. Confidence interval (95%) for SAS Simulation with robot program output. 

Scenarios TC S1 TC S2 

P U Ca I Mean cost Standard error Lower limit Upper limit Mean cost Standard error Lower limit Upper limit 

0.25 13.67 2 1 4144.08 3.66 4136.91 4151.25 3177.51 0.03 3177.45 3177.57 

0.25 13.67 2 3 4090.49 3.69 4083.26 4097.72 3171.12 0.03 3171.06 3171.18 

0.25 13.67 2 5 4058.15 3.47 4051.35 4064.95 3183.95 0.03 3183.89 3184.01 

0.25 13.67 3 1 4127.36 3.58 4120.35 4134.37 3190.36 0.03 3190.30 3190.42 

0.25 13.67 3 3 4088.02 3.56 4081.05 4094.99 3171.16 0.03 3171.10 3171.22 

0.25 13.67 3 5 4044.95 3.48 4038.12 4051.78 3177.55 0.03 3177.49 3177.61 

0.25 13.67 4 1 4241.87 4.06 4233.91 4249.83 3068.18 0.03 3068.12 3068.24 

0.25 13.67 4 3 4612.63 4.06 4604.66 4620.60 2547.18 0.03 2547.13 2547.23 

0.25 13.67 4 5 4542.96 3.75 4535.61 4550.31 2547.13 0.03 2547.08 2547.18 

0.25 13.67 5 1 4234.22 4.07 4226.24 4242.20 3081.04 0.03 3080.98 3081.10 

0.25 13.67 5 3 5077.31 5.02 5067.47 5087.15 2008.39 0.18 2008.05 2008.73 

0.25 13.67 5 5 4975.18 4.43 4966.49 4983.87 2008.31 0.17 2007.98 2008.64 

0.25 10.03 2 1 4021.2 3.44 4014.45 4027.95 3042.43 0.03 3042.37 3042.49 

0.25 10.03 2 3 3919.24 3.03 3913.30 3925.18 3042.43 0.03 3042.37 3042.49 

0.25 10.03 2 5 3903.14 2.91 3897.44 3908.84 3042.43 0.03 3042.37 3042.49 

0.25 10.03 3 1 4243.63 3.99 4235.82 4251.44 3010.35 0.03 3010.29 3010.41 

0.25 10.03 3 3 4037.1 3.77 4029.71 4044.49 3010.34 0.03 3010.28 3010.40 

0.25 10.03 3 5 3968.12 3.35 3961.54 3974.70 3010.34 0.03 3010.28 3010.40 

0.25 10.03 4 1 5082.4 7.83 5067.06 5097.74 2109.89 0.04 2109.81 2109.97 

0.25 10.03 4 3 4565.03 6.61 4552.07 4577.99 2065.01 0.06 2064.89 2065.13 

0.25 10.03 4 5 4505.01 5.34 4494.55 4515.47 2065 0.06 2064.88 2065.12 

0.25 10.03 5 1 5210.85 8.45 5194.28 5227.42 1972.2 0.31 1971.59 1972.81 

0.25 10.03 5 3 4685.6 7.34 4671.22 4699.98 1866.84 0.95 1864.98 1868.70 

0.25 10.03 5 5 4582.42 5.70 4571.24 4593.60 1863.47 0.86 1861.78 1865.16 

0.25 6.29 2 1 4389.23 2.36 4384.61 4393.85 1940.14 0.21 1939.72 1940.56 

0.25 6.29 2 3 4323.79 2.09 4319.70 4327.88 1939.69 0.19 1939.32 1940.06 

0.25 6.29 2 5 4311.98 2.01 4308.04 4315.92 1939.55 0.18 1939.19 1939.91 

0.25 6.29 3 1 4650.11 2.36 4645.48 4654.74 1788.79 1.27 1786.31 1791.27 

0.25 6.29 3 3 4552.45 1.92 4548.69 4556.21 1769.49 1.09 1767.35 1771.63 

0.25 6.29 3 5 4531.81 1.83 4528.23 4535.39 1762.81 1.03 1760.79 1764.83 

0.25 6.29 4 1 3614 4.00 3606.17 3621.83 1790.7 1.26 1788.23 1793.17 

0.25 6.29 4 3 3421.79 2.92 3416.06 3427.52 1768.56 1.10 1766.40 1770.72 

0.25 6.29 4 5 3382.51 2.50 3377.61 3387.41 1764.52 1.02 1762.52 1766.52 

0.25 6.29 5 1 3592.5 5.43 3581.85 3603.15 1764.55 2.27 1760.11 1768.99 

0.25 6.29 5 3 3328.43 3.84 3320.91 3335.95 1621.44 1.79 1617.94 1624.94 

0.25 6.29 5 5 3275.72 3.24 3269.38 3282.06 1572.95 1.47 1570.07 1575.83 
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Table L2. Confidence interval (95%) for SAS Simulation with robot program output (continued). 

Scenarios TC S1 TC S2 

P U Ca I Mean cost Standard error Lower limit Upper limit Mean cost Standard error Lower limit Upper limit 

0.5 13.67 2 1 4206.26 3.96 4198.50 4214.02 3100.34 0.03 3100.28 3100.40 

0.5 13.67 2 3 4033.26 4.35 4024.73 4041.79 3106.77 0.03 3106.71 3106.83 

0.5 13.67 2 5 3993.18 3.83 3985.67 4000.69 3106.83 0.03 3106.77 3106.89 

0.5 13.67 3 1 4189.71 3.67 4182.52 4196.90 3113.26 0.03 3113.20 3113.32 

0.5 13.67 3 3 4013.61 4.23 4005.31 4021.91 3087.49 0.03 3087.43 3087.55 

0.5 13.67 3 5 3924.56 3.66 3917.39 3931.73 3087.56 0.03 3087.50 3087.62 

0.5 13.67 4 1 4199.74 4.41 4191.09 4208.39 3113.19 0.03 3113.13 3113.25 

0.5 13.67 4 3 4470.98 7.28 4456.72 4485.24 2289.89 0.03 2289.84 2289.94 

0.5 13.67 4 5 4371.76 5.85 4360.29 4383.23 2289.89 0.03 2289.84 2289.94 

0.5 13.67 5 1 4210.56 4.35 4202.03 4219.09 3100.38 0.03 3100.32 3100.44 

0.5 13.67 5 3 4737.48 9.61 4718.65 4756.31 1881.13 0.81 1879.54 1882.72 

0.5 13.67 5 5 4560.13 6.85 4546.70 4573.56 1904.19 0.51 1903.19 1905.19 

0.5 10.03 2 1 4087.79 5.06 4077.87 4097.71 2913.84 0.03 2913.78 2913.90 

0.5 10.03 2 3 3880.79 3.93 3873.08 3888.50 2913.84 0.03 2913.78 2913.90 

0.5 10.03 2 5 3843.07 3.54 3836.14 3850.00 2913.88 0.03 2913.82 2913.94 

0.5 10.03 3 1 4268.04 6.53 4255.24 4280.84 2592.19 0.03 2592.14 2592.24 

0.5 10.03 3 3 3878.93 4.71 3869.71 3888.15 2585.78 0.03 2585.72 2585.84 

0.5 10.03 3 5 3827.25 3.88 3819.64 3834.86 2585.78 0.03 2585.72 2585.84 

0.5 10.03 4 1 4630.12 9.91 4610.69 4649.55 1948.47 0.35 1947.78 1949.16 

0.5 10.03 4 3 3994.13 6.74 3980.91 4007.35 1958.55 0.22 1958.12 1958.98 

0.5 10.03 4 5 3934.37 5.29 3924.00 3944.74 1946.5 0.23 1946.05 1946.95 

0.5 10.03 5 1 4689.41 10.65 4668.53 4710.29 1862.52 1.15 1860.26 1864.78 

0.5 10.03 5 3 3985.53 7.30 3971.22 3999.84 1829.15 1.05 1827.08 1831.22 

0.5 10.03 5 5 3899.46 5.70 3888.28 3910.64 1813.88 1.06 1811.81 1815.95 

0.5 6.29 2 1 4267.72 3.85 4260.18 4275.26 1964.14 0.17 1963.80 1964.48 

0.5 6.29 2 3 4142.28 2.95 4136.49 4148.07 1957.56 0.15 1957.26 1957.86 

0.5 6.29 2 5 4117.26 2.63 4112.11 4122.41 1957.29 0.13 1957.04 1957.54 

0.5 6.29 3 1 4253.64 4.90 4244.03 4263.25 1788.77 1.40 1786.03 1791.51 

0.5 6.29 3 3 3990.4 3.47 3983.60 3997.20 1748.85 1.04 1746.82 1750.88 

0.5 6.29 3 5 3946.87 2.83 3941.32 3952.42 1734.57 0.88 1732.85 1736.29 

0.5 6.29 4 1 3611.61 7.44 3597.02 3626.20 1785.39 1.42 1782.60 1788.18 

0.5 6.29 4 3 3213.36 4.94 3203.67 3223.05 1738.04 1.07 1735.93 1740.15 

0.5 6.29 4 5 3140.7 3.97 3132.92 3148.48 1721.96 0.91 1720.17 1723.75 

0.5 6.29 5 1 3574.64 11.01 3553.06 3596.22 1758.6 4.49 1749.79 1767.41 

0.5 6.29 5 3 3050.51 7.17 3036.47 3064.55 1450.48 3.05 1444.50 1456.46 

0.5 6.29 5 5 2944.29 5.75 2933.02 2955.56 1354.99 2.33 1350.42 1359.56 
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APPENDIX M. CHARTS FOR VARIOUS COMBINATIONS OF SCENARIOS 1-3, P, Ca 

AND I FROM SIMULATION WITH ROBOT. 

 

Figure M1. Optimal 𝑇 values for given case of scenario 1, P, Ca and I.  

 

 

Figure M2. Optimal 𝑇𝑘 values for given case of scenario 1, P, Ca and I.  
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Figure M3. Optimal x values for given case of scenario 1, P, Ca and I.  

 

 

Figure M4. Optimal U values for given case of scenario 1, P, Ca and I.  
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Figure M5. Optimal 𝑇 values for given case of scenario 2, P, Ca and I.  

 

 

Figure M6. Optimal 𝑇𝑘 values for given case of scenario 2, P, Ca and I.  
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Figure M7. Optimal x values for given case of scenario 2, P, Ca and I.  

 

 

Figure M8. Optimal U values for given case of scenario 2, P, Ca and I.  
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Figure M9. Optimal 𝑇 values for given case of scenario 3, P, Ca and I.  

 

 

Figure M10. Optimal 𝑇𝑘 values for given case of scenario 3, P, Ca and I.  
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Figure M11. Optimal x values for given case of scenario 3, P, Ca and I.  

 

 

Figure M12. Optimal U values for given case of scenario 3, P, Ca and I.  


