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ABSTRACT

In the field of computational fluid dynamics, lattice gas and lattice Boltzmann methods are

powerful simulation methods derived from kinetic theory. These methods are renowned for their

simplicity of implementation and computational speed. In recent years, lattice Boltzmann has

risen in popularity for modeling hydrodynamic flows, diffusion, and more. However, a limitation of

these methods is the lack of fluctuations due to the continuous nature of the model. Fluctuations

arise from the discreteness found in nature, so including fluctuations presents difficulties. This

dissertation explores new and novel ways of improving lattice Boltzmann and lattice gas methods.

First, we present a new derivation for a fluctuating lattice Boltzmann method in a diffusive

system. Fluctuations are absent lattice Boltzmann since they were derived as a Boltzmann average

of discrete lattice gases. This lattice Boltzmann method is exact and includes density dependent

noise which models fluctuations to high accuracy.

Second, we extend diffusive lattice Boltzmann methods to apply to physical systems for

diffusion through barrier coatings. We found that these models were able to reproduce the behavior

from previous experiments and provided a simple tool for analyzing such systems. Higher order

corrections to lattice Boltzmann methods are explored for extending the range for successful lattice

Boltzmann implementations.

Recently, the implementation of an integer lattice gas with a Monte Carlo collision operator

by Blommel et al. provided a template for incorporating fluctuations through the discrete nature

of lattice gases. A sampling collision operator for integer lattice gases by Seekins et al. was able to

reproduce the fluctuating diffusion equation in the Boltzmann limit similar to the diffusive fluctu-

ating lattice Boltzmann. However, lattice gases have a more limited range of transport coefficients

than lattice Boltzmann methods, since lattice Boltzmann collisions are deterministic and allow for

the implementation of over-relaxation and lattice gas collisions are probabilistic and overrelaxation

in a lattice gas requires a probability greater than 1.

The final section of this dissertation presents a simple method for including overrelaxation

into an integer lattice gas using the sampling collision operator. It will be shown that this is possible

through a permutation of occupation numbers.
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1. INTRODUCTION

Since its inception in the late 1980s, the lattice Boltzmann method has been consistently

gaining traction as a computational method[1, 2]. With applications in fluid dynamics and beyond,

the method has shown to be reliable in accuracy and computational efficiency. Lattice Boltzmann

methods were originally developed from lattice gas cellular automata methods. Doing so eliminated

fluctuations removing the need for averaging of multiple simulations. It also allowed for a freely

chosen equilibrium distribution, which corrected some artifacts of the Boolean lattice gas methods.

The number of physical systems which are successfully modeled by lattice Boltzmann methods are

steadily growing and thus interest in applications of the methods is growing.

Lattice gas cellular automata (LGCA) methods were first introduced for simulating hydro-

dynamics by Frisch et al in 1986 [3]. This LGCA employs discrete particles on a hexagonal lattice.

The particles are restricted to motion along the six nearest neighboring lattice sites with respect

to a central point. LGCA treats the state of each lattice site as a Boolean operation in the manner

that there exists or does not exist a particle at that lattice site. The particles will “stream” or

propagate to the nearest lattice point which is determined by the velocity of the particle. The

method does not allow for occupation of more than one particle per lattice site [4]. If multiple

particles occupy a single point, then they will undergo a collision, which is defined by a set of rules

designed to conserve mass and momentum.

Due to the discrete particle nature of LGCA, fluctuations are inherently included in the

method. However, the noise associated with the discrete particles is difficult to control [5]. In

principle noise can be suppressed by increasing the number of particles per lattice site, however

traditional LGCA methods utilized Boolean occupation numbers. This is possible with integer

valued occupation number but this drastically affects the computational performance of the method.

Since LGCA methods were developed with the intention of simulating macroscopic flow of fluids,

the statistical noise which arises from LGCA was considered a drawback to the method [6].

Lattice Boltzmann methods, introduced by McNamara and Zanetti in 1988 [7], were devel-

oped as an alternative to LGCA methods. Instead of employing individual particles on a lattice,

lattice Boltzmann uses continuous distributions of particles. These particle distributions in lat-
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tice Boltzmann can be thought of as ensemble averages of particle occupation numbers. These

general distributions will remove the statistical noise which posed problems for the hydrodynamic

simulation in the LGCA methods. Thus, lattice Boltzmann became a commonly used method for

simulating hydrodynamics over the LGCA methods.

Since lattice Boltzmann methods remove fluctuations, this poses a problem for studying

systems in which fluctuations are important. Ladd presented a method which reintroduces fluctu-

tations to the lattice Boltzmann method by studying colloidal suspensions in lattice Boltzmann [8].

By reintroducing fluctuations, this spurred an active sub-field in lattice Boltzmann research with

the purpose of correctly implementing these fluctuations. These methods are known as fluctuating

Lattice Boltzmann methods.

Lattice Boltzmann has been applied to many physical systems beyond hydrodynamics in-

cluding diffusion [9, 10, 11], electrostatics [12], and quantum mechanics [1]. Lattice Boltzmann is

a versatile computational method which is constantly in development.

This introductory chapter will present the lattice Boltzmann method as derived from the

continuous Boltzmann equation rather than as the Boltzmann limit of a lattice gas. We will then

derive the hydrodynamic equations directly from the lattice Boltzmann equation. Following this,

we will briefly review how fluctuations have been reintroduced into the LBM.

Since fluctuations occur more naturally in discrete systems, we return our focus back to

LGCA with the goal to introduce recently developed integer lattice gases. To do this, we first

introduce the original Boolean lattice gases and then show how these models have been extended

to integer lattice gases.

Following the introductory chapter, we then present three published papers that form the

very core of this manuscript which are followed by brief concluding remarks.

1.1. The Lattice Boltzmann Equation

In its original inception, the lattice Boltzmann equation (LBE) was intended to model

the hydrodynamics equations. Unlike traditional computational fluid dynamics methods which

directly solve the Navier-Stokes equation, LBE does not directly solve these equations of motion.

Rather, a discretized form of the Boltzmann equation is introduced which utilizes discrete-velocity

distributions of particles. It can be shown through standard kinetic theory methods that the

Navier-Stokes equation can be recovered in the hydrodynamic limit. [13, 2, 14].

2



1.1.1. The Discrete-Velocity Distribution Functions

In order to accurately model these equations, we introduce a discrete-velocity particle dis-

tribution fi(x, t), which we will refer to as the distribution function [13, 2]. The distribution

function represents the density of particles moving with a discrete velocity set {vi} at position x

and time t. The velocity set {vi} is a set of vectors which connect the points on the lattice in

various ways and are used to determine the motion of the particles which are represented by the

distribution functions. The distribution functions can be used to find macroscopic quantities of a

system through weighted sums known as the velocity moments of fi(x, t). The conserved quantities

which can be defined through the velocity moments cannot be relaxed by a collision operator. For

a hydrodynamic system, the density ρ(x, t) and momentum ρ(x, t)u(x, t) can be defined through

ρ(x, t) =
∑
i

fi(x, t) (1.1)

ρ(x, t)u(x, t) =
∑
i

vifi(x, t). (1.2)

The distribution functions are discretized in position, velocity, and time, and are defined on a

chosen lattice which has a lattice spacing ∆x. The fi are also defined only at discrete time steps

∆t. In practice, it is common to define the lattice spacing and discrete time step as ∆x = 1 and

∆t = 1. The subscript i in fi refers to a corresponding velocity from a chosen weighted set of

velocity vectors {vi}.

The dimensionality is usually referred to by the DdQq nomenclature where d represents the

total number of spatial dimensions of the lattice and q represents the total number velocities in the

chosen set. Commonly employed LBM dimensions consist of D1Q3, D2Q9, D3Q15, and D3Q27,

however there are more possible combinations of spatial dimensions and velocity sets which can

be employed [2]. Increasing the number of spatial dimensions of the lattice and the number of

velocities can increase the accuracy of the algorithm, but these increases impact the computational

efficiency of the algorithm.

1.1.2. The Lattice Boltzmann Algorithm

The general lattice Boltzmann algorithm follows two steps: a collision step and a streaming

step [2, 14]. The collision step is a process in which the distribution functions are locally redis-
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tributed according to the rules of the collision operator. In general, the collision operator is written

as a function of the set of distribution functions {fi} and is defined as Ωi({fj}). The streaming step

is the movement of the distribution functions over the lattice according to the chosen velocity set

{vi}. The streaming step represents the discrete advancement of time by time step ∆t. Combining

the collision and streaming steps, the general lattice Boltzmann equation (LBE) can be written in

the form

fi(x + vi∆t, t+ ∆t) = fi(x, t) + Ωi({fj}). (1.3)

A further requirement for the lattice Boltzmann equation is that x + vi∆t must also refer to a

lattice point.

The LBE will govern the evolution of the distribution functions. The desired macroscopic

quantities can be extracted from the distribution functions subject to the moments being em-

ployed. For hydrodynamics, Eqns. (1.1–1.2) can be utilized to acquire density ρ and momentum

ρu respectively.

1.1.3. The Collision Operator

In order to model the dynamics of a desired system, the distribution functions must be

modified by particle collisions [5, 2, 15]. These collisions are defined by a general collision operator

Ωi({fj}). The collision operator in any lattice Boltzmann implementation must not modify the

conserved quantities of the system being modeled. For the case of hydrodynamics, the collision

operator must not change the mass and momentum. This can be achieved by requiring

∑
i

Ωi({fj}) = 0 (1.4)

∑
i

viΩi({fj}) = 0. (1.5)

The collision operator can take many forms. Two commonly implemented collision operators

in LBM are the multi-relaxation time (MRT) collision operator and the Bhatnagar, Gross, Krook

(BGK) collision operator [16]. Both of these collision operators use the concept of particle collisions

to relax the fi to a local equilibrium distribution, f0i , by a characteristic relaxation time τi. In

the case of the MRT collision operator, the subscript i refers to the specific mode being relaxed.

4



The following section will formally introduce the MRT collision operator and show that the BGK

collision operator is a simplification of the MRT collision.

1.1.3.1. The Multi-Relaxation Time Collision Operator and Moment Space Represen-

tation

The multi-relaxation time (MRT) collision operator requires an eigenvector basis called

moment space [2]. The MRT collision operator follows the idea that for each individual degree of

freedom in the distribution function, the collision will relax each relevant degree of freedom towards

equilibrium by a specific relaxation time τi, where the subscript i corresponds to the quantity of

interest. The MRT collision allows for independent access to each moment. In the case of FLBM,

the independent relaxation of each mode is highly desirable since the MRT collisions can offer a

higher degree of accuracy and numerical stability. To gain access to the individual moments, a

moment space representation is introduced. The moment space representation is a transformation

of the fi from velocity space in to moment space. The MRT collision operator will revise the

lattice Boltzmann algorithm so that the collisions will take place in moment space. The fi are

first transformed into moment space where the collisions are performed. Then, the distribution

functions are transformed back into velocity space where streaming can take place.

The transformation of the fi from velocity to moment space is written

Ma =
∑
i

ma
i fi (1.6)

where Ma is the distribution function moment corresponding to a specific parameter and ma
i is a

transformation matrix. To transform back to velocity space from moment space, the back transform

is

fi =
∑
a

naiM
a. (1.7)

In the back transform, nai is also a transformation matrix. In many cases, this is equivalent to the

matrix in the forward transformation, but in general ma
i 6= nai .

These transformations have the orthogonality relations

∑
i

naim
b
i = δab,

∑
a

ma
i n

a
j = δij . (1.8)
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The subscripts refer to a velocity space representation and the superscripts refer to the moment

space representation. These transformations allow for the free movement of the distribution func-

tions between velocity and moment space.

The elements of the transformations matrices must be known to properly transform between

fi and Ma. As is the case in the single-relaxation time BGK collision, the collisions must not modify

the conserved quantities of the system. For example, the zeroth moment which we denote as mass

will give the transformation

M0 = ρ =
∑
i

1fi (1.9)

which is equivalent to saying that the first row of the transformation matrix is

m0
i = (1, ..., 1) (1.10)

for a system of n velocities. For any DdQq representation, a Gram-Schmidt orthonormalization

can be performed to find the remaining elements of the transformation matrix.

If a single-relaxation time is assumed for all moments, the velocity space collision matrix

takes the form

Λij =
1

τ
δij . (1.11)

In moment space, the collision matrix is written

Λab =
∑
ij

ma
iΛijn

b
j =

1

τ
ma
i δijn

b
j =

1

τ
δab. (1.12)

To generalize this to a multi-relaxation time method, it is imposed that Λab be a diagonal matrix

Λab =
1

τa
δab (1.13)

where τa is the relaxation time which corresponds to moment a.

The MRT collision operator takes the form

Ωi({fj}) =
∑
j

Λij(f
0
j − fj)∆t (1.14)
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where Λij is a collision matrix with eigenvalues given by the relaxation times. In practice, this is

often performed by first transforming fi into an eigenvector basis of Λij , then perform the relaxation,

and then back transform into the velocity space. There is a special case where the relaxation times

are equal. This is known as the Bhatnagar, Gross, and Krook (BGK) collision operator [16]. For

equal eigenvalues, Λij simplifies to

Λij =
1

τ
δij . (1.15)

Since this is a diagonal matrix containing only a single relaxation time τ , Eqn. (1.14) can be

rewritten as

Ωi({fi}) =
1

τ
(f0i − fi)∆t. (1.16)

The BGK collision operator is simple and it is sufficient for many situations. Its simplicity makes

it very common in practical LBM implementations.

Using the BGK operator in Eqn. (1.16), the Eqn. (1.3) can be written in the form

fi(x + vi∆t, t+ ∆t) = fi(x, t) +
1

τ
(f0i − fi)∆t. (1.17)

For the remainder of the manuscript, a discrete time step will be chosen such that ∆t = 1. This

leads to the lattice Boltzmann equation with BGK operator

fi(x + vi, t+ 1) = fi(x, t) +
1

τ
(f0i − fi). (1.18)

The following section will derive the discrete local equilibrium distribution f0i from the

Maxwell-Boltzmann distribution and discuss the velocity set {vi} for a chosen lattice Boltzmann

implementation.

1.1.4. The Local Equilibrium Distribution

The local equilibrium distribution f0i can be found by a second order expansion of the

Maxwell-Boltzmann distribution,

f0(ρ,u,v, θ) =
ρ

(2πθ)D/2
e
−(v−u)2

2θ (1.19)
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where θ = kBT and D is the total number of spatial dimensions in the system [13]. Eqn. (1.19)

can be factorized into

f0(ρ,u,v, θ) =
ρ

(2πθ)D/2
e
−v·v
2θ e

2u·v−u·u
2θ . (1.20)

This expansion is valid for small Mach numbers, which are a dimensionless quantity representing

the ratio of flow velocity to the speed of sound of a local medium cs. The Mach number is written

Ma = u
cs

. For small Ma, a small macroscopic flow can be assumed. With this assumption, the

factorized form of Eqn. (1.20) is can then be expanded around u = 0. This gives

f0(ρ,u,v, θ) =
ρ

(2πθ)D/2
e
−v·v
2θ

[
1 +

v · u
θ

+
(v · u)2

2θ2
− u · u

2θ

]
+O(u3), (1.21)

where O(u3) refers to all orders of u three and higher which are neglected due to all terms of

higher order containing negligible contributions to the macroscopic behavior of the system. Further

discussion of this notation will be discussed in Section 1.1.5.1. This expanded form is weighted by

a normalized Boltzmann factor

w(v) =
e
−v·v
2θ

(2πθ)D/2
. (1.22)

This weighted Boltzmann factor is subject to the normalization condition

∫
w(v)dv = 1. (1.23)

This condition can be confirmed by exploiting Gaussian integrals. Including the weighting factor,

the equilibrium distribution is

f0(ρ,u,v, θ) = ρw(v)

[
1 +

u · v
θ

+
(u · v)2

2θ2
− u · u

2θ

]
+O(u3). (1.24)

This expanded form of the Maxwell-Boltzmann distribution is still in the continuous form.

In order to discretize the equilibrium distribution, the discrete velocity set {vi} must be considered

[2]. It is not enough to simply replace the continuous particle velocity v in Eqn. (1.24) with discrete

velocities vi. This does not reproduce the correct weighting factor. The weighting factor must also

be discretized to form a set of weights {wi} which correspond with the chosen velocity set {vi}.
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Figure 1.1. The graphical representation of the velocities which are contained in a D2Q9 model.

The weights {wi} are a normalized set of values which enforce the rotational isotropy of the

lattice which {vi} must obey. An isotropic lattice must be rotationally invariant in all directions.

The correct set of weights {wi} will depend on the spatial dimensionality of the lattice and the

choice of {vi}. In order to reproduce hydrodynamic behavior in two dimensions, the D2Q9 model

seen in Fig. 1.1 is commonly utilized[17]. To enforce isotropy in this example, the moments of the

weights are required up to fifth order [13, 2, 15]. These moments are

∑
i

wi = 1 (1.25)

∑
i

viαwi = 0 (1.26)

∑
i

viαviβwi = θδαβ (1.27)

∑
i

viαviβviγwi = 0 (1.28)

∑
i

viαviβviγviδwi = θ2(δαβδγδ + δαγδβδ + δαδδβγ) (1.29)

∑
i

viαviβviγviδviνwi = 0. (1.30)

The weights of odd order in velocity are required to be zero to preserve the symmetry of the lattice.

A further requirement states that all weights must be non-negative. The Einstein summation
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notation has now been introduced. The Einstein notation utilizes the Greek indices to refer to

spatial dimensions and repeated indices are explicitly summed over.

The conditions in Eqns. (1.25–1.30) are all required for a D2Q9 implementation of the

Navier-Stokes equations. In D2Q9, the velocity set can be written

{vi} =


 0

0

 ,

 1

0

 ,

 −1

0

 ,

 0

1

 ,

 0

−1


 1

1


 −1

1


 1

−1


 −1

−1


 .

(1.31)

Here, each vector will correspond with motion along the lattice. We can derive each weight in {wi}

in terms of θ. We must consider each dimension individually to the use of the Einstein notation.

In Eqn. (1.28), there are two constraints to consider, the first is the case in which all dimensions

are the same such that ∑
i

v3ixwi = 0 (1.32)

and the second is the case in which two dimensions are mixed in the form

∑
i

v2ixviywi = 0. (1.33)

These two constraints lead to the relations

w1 = w2, w3 = w4, , w6 = w7, w5 = w8. (1.34)

Now using Eqn. (1.27) for the case where there are two mixed dimensions, it follows that

∑
i

vixviywi = 0 =⇒ w5 = w6 = w7 = w8. (1.35)

This means that each vector which moves diagonally on the lattice is equivalently weighted. Using

Eqn. (1.29) has the constraint ∑
i

v2ixv
2
iywi = θ2. (1.36)
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Using the relations in Eqn. (1.35), it follows that

w5 = w6 = w7 = w8 =
θ2

4
. (1.37)

Returning to Eqn. (1.27) and using these definitions, it can be shown that

w1 = w2 = w3 = w4 =
θ − θ2

2
(1.38)

which correspond to the vectors which move along the x or y directions alone. With these defined,

Eqn. (1.25) can be examined and the final weight w0 can be found which takes the form

w0 = 1− θ(2− θ). (1.39)

This weight corresponds to the rest vector.

In practice, the lattice temperature θ must be known. Examining Eqn. (1.29) reveals a

case where all Greek indexed spatial coordinates would be of the same dimension. For example,

when all indices correspond to the x-dimension, it would be expected that this moment would be

equivalent to Eqn. (1.27). Using this fact, Eqn. (1.29) becomes

∑
i

v4ixwi = 3θ2. (1.40)

Now since v2ix = v4ix, it is clear that in order to recover Eqn. (1.27), it must be the case that

θ = 1/3. By this fact, this value for θ is required for an isotropic lattice.

With all the weights derived, the full set of weights {wi} can be constructed. For the D2Q9

velocity set, the set of weights is

{wi} =

{
1− θ(2− θ), θ − θ

2

2
,
θ − θ2

2
,
θ − θ2

2
,
θ − θ2

2
,
θ2

4
,
θ2

4
,
θ2

4
,
θ2

4

}
(1.41)

For this D2Q9 implementation requiring θ = 1/3 [2], the set of weights is

{wi} =

{
4

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

36
,

1

36
,

1

36
,

1

36

}
. (1.42)
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With a complete set of weights, the discrete equilibrium distribution function can be written

as

f0i (ρ,u,vi, θ) = ρwi

[
1 +

u · vi
θ

+
(u · vi)2

2θ2
− u · u

2θ

]
. (1.43)

The following section will utilize the local equilibrium distribution in connection with the

lattice Boltzmann in Eqn. (1.18) to derive various equations of motion based on different choices

of the equilibrium distribution. .

1.1.5. Deriving Equations of Motion from the Lattice Boltzmann Equation - The Hy-

drodynamic Limit

The macroscopic equations of motion of a system which is being modeled can be derived

from the lattice Boltzmann equation in Eqn. (1.18). We expand the LBE up to the desired order to

obtain a partial differential equation for the local equilibrium distribution f0i which only depends

on the conserved quantities.

1.1.5.1. Neglecting Higher Order Derivative Terms in the Hydrodynamic Limit

In the next section we introduce a Taylor expansion of the discrete Boltzmann equation

to derive partial differential equations that are the governing evolution equations for fluid flow.

An important facet of the hydrodynamic limit is that we neglect higher order derivatives from the

Taylor expansion which have negligible contributions to the macroscopic behavior of the system.

This runs contrary to the typical understanding of the nature of partial differential equations being

dominated by their highest order. For hydrodynamic systems, the opposite of this is accurate in

that the lowest orders of the partial differential equation tend to dominate the system.

A physical justification for this is that, in hydrodynamic systems, short wavelengths will

equilibrate quickly, where long wavelengths take a much longer time to reach equilibrium. When

examining a system in the hydrodynamic limit, the higher order derivatives in the expansion corre-

spond to shorter wavelengths. With this in mind, the longer wavelengths (lower order derivatives)

end up dominating the dynamics of the system. Since the lower order derivatives corresponding

to the long wavelengths dominate, the higher order derivative terms become negligible and are

considered to go to zero and thus vanish from the equation [18, 19]. This notion is explored further

in section 3.4.
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A common justification for neglecting higher order terms is related to how the derivatives

in the expansion, ∆t(∂t+vi∂α)n, scale with the Knudsen number. The following derivation is given

by Kruger et al. [2]. The Knudsen number is written

Kn =
lmfp
l

(1.44)

where lmfp is the mean free path and l is a macroscopic length scale. The Knudsen number can

also be related similarly to time using the speed of sound of the material, cs. cs is on the same

order of the average particle speed of the gas [20], so the average time between collisions is

Tmfp = O

(
lmfp
cs

)
. (1.45)

An acoustic time scale can be defined as

Tcs =
l

cs
, (1.46)

which is the time it takes for an acoustic effect to be felt across the length scale l. These relations

show that

Kn =
lmfp
l

= O

(
Tmfp
Tcs

)
. (1.47)

Since the distribution functions are relaxed towards equilibrium through the collision process

and it takes relatively few collisions to reach equilibrium, we know that the relaxation time τ is on

the order of Tmfp such that

τ = O(Tmfp) (1.48)

and

∆t = O(τ) (1.49)

through the discretization process of the method. Combining all of this together, we can examine

the order of each derivative in the Knudsen number by

O(∆t∂t) ∼ O
(
τ

Tcs

)
∼ O

(
Tmfp
Tcs

)
∼ O(Kn) (1.50)
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O(∆tvi∂α) ∼ O
(τcs
l

)
∼ O

(
Tmfp
Tcs

)
∼ O(Kn). (1.51)

With this result, we have shown that the order of the derivatives from the Taylor expansion are of

the same order of the Knudsen number such that

O(∂n) = O(Knn), (1.52)

thus satisfying the assumption that derivatives of third order and higher can be neglected, keeping

only the two lowest orders of the Knudsen number.

1.1.5.2. Taylor Expansion of the Lattice Boltzmann Equation

The first step in deriving the equations of motion for a system is to take a Taylor expansion

of the left hand side of Eqn. (1.18) to the second order [13] which gives

(∂t + viα∂α)fi +
1

2
(∂t + viα∂α)2fi +O(∂3) =

1

τ
(f0i − fi). (1.53)

In order to properly reproduce the equations of motion, it is required to write the distribution

functions fi in terms of the equilibrium distribution f0i . This can be done by solving Eqn. (1.53)

for fi giving

fi = f0i − τ
[
(∂t + viα∂α)fi +

1

2
(∂t + viα∂α)2fi

]
+O(∂3). (1.54)

In this form, there are still remaining fi terms. To remedy this, one can substitute Eqn. (1.54)

into itself until there are only f0i terms remaining to the degree of choice. In this application, the

desired degree is second order, so all third order and greater terms will be neglected.

fi = f0i − τ

{
(∂t+viα∂α)

[
f0i − τ

(
(∂t + viα∂α)fi +

1

2
(∂t + viα∂α)2fi

)]

+
1

2
(∂t + viα∂α)2

[
f0i − τ

(
(∂t + viα∂α)fi +

1

2
(∂t + viα∂α)2

)]}
+O(∂3).

(1.55)
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Any term which is operated upon by (∂t + viα∂α)3 or of higher degree can be neglected and

immediately falls into O(∂3). This leaves

fi = f0i − τ
[
(∂t + viα∂α)f0i − τ(∂t + viα∂α)2fi +

1

2
(∂t + viα∂α)2f0i

]
+O(∂3). (1.56)

At this point, there is still a term which still contains fi rather than f0i , so the substitution of Eqn.

(1.54) must be performed once again giving

fi = f0i − τ

{
(∂t+viα∂α)f0i − τ(∂t + viα∂α)2

[
f0i − τ

(
(∂t + viα∂α)fi +

1

2
(∂t + viα∂α)2fi

)]

+
1

2
(∂t + viα∂α)2f0i

}
+O(∂3)

fi =f0i − τ
[
(∂t + viα∂α)f0i − τ(∂t + viα∂α)2f0i +

1

2
(∂t + viα∂α)2f0i

]
+O(∂3)

=f0i − τ(∂t + viα∂α) +

(
τ2 − 1

2

)
(∂t + viα∂α)2f0i +O(∂3). (1.57)

This is now a second order representation of fi in terms of f0i . Eqn. (1.57) can be inserted into

Eqn. (1.53) leading to

(∂t + viα∂α)

[
f0i − τ(∂t + viα∂α)f0i +

(
τ2 − 1

2

)
(∂t + viα∂α)2f0i

]
+

1

2
(∂t + viα∂α)2

[
f0i − τ(∂t + viα∂α)f0i +

(
τ2 − 1

2

)
(∂t + viα∂α)2f0i

]
+O(∂3) =

1

τ
(f0i − fi).

(1.58)

Combining all the derivatives and neglecting all terms of O(∂3), we then arrive at

(∂t + viα∂α)f0i −
(
τ − 1

2

)
(∂t + viα∂α)2f0i +O(∂3) =

1

τ
(f0i − fi), (1.59)

which is a second order partial differential equation for the local equilibrium distribution.

Traditionally, this expansion is performed due to a perturbative method known as the

Chapman-Enskog expansion [1, 5, 2, 14, 15]. Similar to this derivation, Chapman-Enskog can
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derive the hydrodynamic equations from the Boltzmann equation. The Taylor expansion method

presented here and the Chapman-Enskog expansion have equivalent results.

1.1.5.3. Mass Conservation

The vast majority of LBM implementations are designed to conserve both mass and mo-

mentum. However, in our case, we are interested in highlighting the fundamental behaviors of

fluctuations. This is most easily done using a diffusive system where mass is the only conserved

quantity. Since hydrodynamic systems, which conserve both mass and momentum, often contain

difficulties related to Galilean invariance related to the macroscopic velocity u, we consider only

diffusive systems where Galilean invariance issues are not present. A full derivation of the Navier-

Stokes equations from the LBE is presented in the Appendix.

For a system which only conserves mass, the macroscopic velocity u and the lattice tem-

perature θ are fixed constants. We choose a local equilibrium distribution from Eqn. (1.43) of

f0i = ρwi, (1.60)

which is a simplified version of Eqn. (1.43) where the macroscopic velocity u = 0.

The macroscopic moments calculated from the distribution functions in Eqns. (1.1–1.2)

can also be extended to the local equilibrium distributions. These moments of the equilibrium

distributions can be calculated as finite sums in the same manner. If the only imposed conserved

quantity is mass, the given moments for Eqn. (1.60) are written

∑
i

f0i = ρ (1.61)

∑
i

viαf
0
i = 0 (1.62)

∑
i

viαviβf
0
i = ρθδαβ. (1.63)

It must be noted that these moments for Eqn. (1.60) will not be the same as the moments for Eqn.

(1.43).
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With these moments of f0i , it is possible to sum over all indices i in Eqn. (1.59) by

∑
i

(∂t + viα∂α)f0i −
∑
i

(
τ − 1

2

)
(∂t + viα∂α)2f0i +O(∂3) =

∑
i

1

τ
(f0i − fi). (1.64)

By doing this and using the moments of Eqns. (1.61–1.63), it follows that

∂tρ

(
τ − 1

2

)
(∂2t ρ+ ρθδαβ) +O(∂3) = 0. (1.65)

This equation has a similar form to the diffusion equation. The diffusion equation states

∂tρ(x, t) = D∂α∂βρ(x, t)δαβ (1.66)

where D is the diffusion coefficient of the medium. This case assumes that D is constant for the

total system. Eqn. (1.65) has an extraneous second order temporal derivative which is not in Eqn.

(1.66). This can be rectified by taking an additional derivative of the diffusion equation. This leads

to

∂2t ρ = D2∂α∂β∂γ∂δρ(x, t)(δαβδγδ + δαγδβγ + δαδδβγ). (1.67)

Inserting this into Eqn. (1.65) shows that the second order time derivative is equivalent to a fourth

order spatial derivative. By doing this, the ∂2t term is put into O(∂3). With this substitution, the

diffusion equation has been derived in the form

∂tρ =

(
τ − 1

2

)
∂α∂βρθδαβ. (1.68)

In the isothermal case where θ is constant, the diffusion coefficient is written

D =

(
τ − 1

2

)
θ. (1.69)

This diffusive lattice Boltzmann was first derived by Wolf-Gladow in 1995 [9]. The diffusive lattice

Boltzmann is a simple implementation of the lattice Boltzmann algorithm since it only conserves

mass.
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It bears noting that the Taylor expansion method (which is perturbative by nature) is

not the only way to derive the diffusion equation. Chopard et al. presented a non-perturbative

derivation of the diffusion equation for a cellular automaton for a simple D1Q2 model [15]. This

derivation recovers additional terms that are only relevant at long wavelengths.

To model hydrodynamic systems, in addition to mass conservation, momentum conserva-

tion is also required. Since this manuscript is focused on diffusive systems in which only mass

conservation is needed, the derivation for the equations of motion for hydrodynamic systems is

relegated to Appendix 1.

1.2. Fluctuating Lattice Boltzmann

A property of the general LBM is that, unlike the discrete particle behavior of LGCA,

fluctuations are not inherently included. In LGCA methods, the discrete particle behavior gives

rise to particle noise which can be thought of as fluctuations. An issue that arises from this discrete

particle noise is that the noise is uncontrollable for specific particle densities. LBM resolves this issue

by implementing the distribution functions. The fi in LBM can be thought of as ensemble averages

of the states of the discrete particles. Due to this fact, LBM is devoid of fluctuations. To model

systems where fluctuations play an important role, these fluctuations must be reintroduced into the

LBM. There is an active sub-field of lattice Boltzmann research which studies the reintroduction of

fluctuations in to the method. These revised methods are known as fluctuating lattice Boltzmann

methods (FLBM) [8, 21, 22].

As discussed previously, the general LBE in Eqn. (1.14) only includes collisions and stream-

ing of the distribution functions at each time step. At its core, there is nothing which would

contribute fluctuations to the method. To remedy this, the collision operator can be modified to

include a fluctuating term ξi which has moments

∑
i

ξi = 0 (1.70)

In moment space, these noise terms are defined in terms of a correlation function < ξaξb >. This

correlation function can be written terms of densities of the system and is written as

< ξaξb >= ρ
2τa − 1

(τa)2
(1− δa0δb0)δab, (1.71)
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which is a fully diagonal matrix representing uncorrelated noise terms. A full derivation of this

correlation function will be presented in chapter 2. Eqn. (1.71) is the fluctuation dissipation

theorem for a diffusive FLBM.

The MRT collision operator is desired since it allows for each degree of freedom to be relaxed

by its own independent relaxation time τi. The fluctuating MRT collision operator takes the form

Ωi({fj}) =
∑
j

Λij(f
0
j − fj) + ξi (1.72)

where Λij is the collision matrix which contains the independent relaxation time parameters. This

revision gives a new form of the LBE which is known as the fluctuating lattice Boltzmann equation:

fi(x + vi, t+ 1) = fi(x, t) +
∑
j

Λij(f
0
j − fj) + ξi. (1.73)

With proper forms of Λij and ξi, fluctuations will be reintroduced into the LBM.

1.3. Lattice Gas Methods

Although lattice Boltzmann methods have become of higher interest and practical use than

lattice gas methods, there are potential benefits to utilizing a lattice gas. The discrete nature of

lattice gas is that it is intrinsically noisy, which automatically includes fluctuations in the method

[6]. In the case of lattice Boltzmann, fluctuations are absent and must be included in the collision

operator ad hoc. The process of including fluctuations into a lattice Boltzmann method will be

discussed in chapter 2. In recent years, there has been renewed interest in research into lattice gas

methods which was initiated by Blommel et al. by successfully constructing a functional integer

lattice gas [17]. Traditionally, lattice gas methods were implemented where single particles existed

on a lattice as Boolean values in which only one particle could exist on any lattice point at any given

time. The fact that only a single particle could exist at a node was a limiting factor in the method

which could be resolved by extending the Boolean particles to particle distribution functions seen

in lattice Boltzmann methods. Blommel’s successful implementation served as proof that it was,

in fact, possible to construct lattice gases which allow for any integer number of particles to exist

on a lattice node at any given time.
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With a new model for integer lattice gas methods, research has continued to improve com-

putational efficiency. Seekins et al. were able to present a sampling collision operator which was

found to be equivalent to the BGK collision operator commonly utilized in lattice Boltzmann [23].

This was a major step forward in improving the likelihood for practical implementations of the

integer lattice gas method.

The following sections will present the traditional Boolean lattice gas methods and how

these methods were extended into integer lattice Boltzmann methods. Then, integer lattice gas

methods are introduced, followed by a derivation of the sampling collision operator which is utilized

in Sec. 1.2 to achieve overrelaxation in integer lattice gas methods.

1.3.1. The Boolean Lattice Gas Method

The first lattice gas method was developed in 1973 by Hardy et al. on a square lattice [24].

This method had the ability to model simple gas dynamics in a two dimensional system. This

model was built on a square lattice and allowed a individual particles to exist at any lattice node

at a given time. The particles were allowed to propagate along the lattice links and collide with

other particles in a manner that conserves mass and momentum. The square lattice for this simple

model utilized what would be referred today as a D2Q4 implementation, where each particle could

have one of four possible velocities which propagate the particles along the lattice links, but are

not allowed to stay at rest.

However, this method was unable to effectively model the Navier-Stokes equation to repro-

duce fluid flows. This inability to model the Navier-Stokes equation is due to an inherent lack of

symmetry in the stress tensor due to the fact that no x direction momentum can be transferred to y

direction momentum and vice versa. It was not until Frisch et al. [3] implemented a similar model

on a hexagonal lattice that fluids could be represented by these simple lattice gas models. Instead

of the four velocities utilized on the square lattice, the hexagonal lattice consisted of six velocities

which can propagate the particles to any of the neighboring lattice points. The implementation

of the hexagonal lattice provided sufficient isotropy on the lattice to effectively simulate fluid flow

[5, 1, 14]. An examples of the Boolean lattice gas velocity set and hexagonal lattice are seen in Fig.

1.2

The construction of lattice gases are similar to the lattice Boltzmann models presented

previously. A major distinction of lattice gas methods from lattice Boltzmann methods is that,
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Figure 1.2. (a) Velocity vectors for a Boolean lattice gas on a heaxagonal lattice. (b) The hexagonal
lattice structure used in Boolean lattice gas methods.

instead of utilizing continuous distribution functions, fi(x, t), to represent particle configurations,

lattice gas methods use discrete occupation numbers ni(x, t) that exist on a specific lattice point.

These early lattice gas models implemented Boolean occupation numbers which allowed for only one

particle of a certain velocity to exist at any given node on the lattice. The macroscopic quantities

of mass and momentum can be defined similarly to Eqns. (A.1-A.2) and take the form

N(x, t) =
∑
i

ni(x, t) (1.74)

N(x, t)u(x, t) =
∑
i

vifi(x, t), (1.75)

where N(x, t) is the total number of particles at a given lattice node.

The Boolean lattice gas algorithm follows collision-streaming rules to govern the time-

evolution of the system. The Boolean lattice gas (BLG) collision operator is discrete and proba-

bilistic by nature. The collision step implements a collision operator ΩLG
i (x, t) which must conserve
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mass and momentum

∑
i

ΩLG
i = 0 (1.76)

∑
i

viΩ
LG
i = 0. (1.77)

This collision operator will redistribute the occupation numbers. This redistribution process can

be represented mathematically as

n∗i (x, t) = ni(x, t) + ΩLG
i (x, t) (1.78)

where n∗i is the post-collision occupation and the collision operator is ΩLG
i ∈ {−1, 0, 1}. While the

collision rules implemented by the collision operator can vary widely [15], a common set of collision

rules is represented in Fig. 1.3 where incoming particles to a specific lattice point are redistributed

along neighboring lattice links through the collision process [25]. BLG collision rules allow for

multi-body collisions to occur. Fig. 1.3 shows examples of two, three, and four particle collisions.

The particles in BLG are subject to an exclusion principle which only allows for a single particle

of a velocity to be present at a lattice node at a given time. Thus the equilibrium distribution is

of the Fermi-Dirac variety as opposed to a Boltzmann distribution [26].

The streaming step for Boolean lattices gases works in the same manner as in lattice Boltz-

mann such that the post-collision particles, n∗i , will move exactly one lattice space over a single

time step, ∆t, based on the velocity of the particle

ni(x + vi∆t, t+ ∆t) = n∗i (x, t). (1.79)

The collision and streaming steps can be combined to define a general equation of motion for the

Boolean gas method taking the form

ni(x + vi∆t, t+ ∆t) = ni(x, t) + ΩLG
i (x, t). (1.80)
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Figure 1.3. Illustration of common Boolean lattice gas collision rules in which incoming particles
are redistributed to neighboring lattice nodes. These Boolean collision rules conserve both mass
and momentum. Examples of two, three, and four particle collisions are shown.

It is important to note that the structure of Eqn. (1.80) is identical to that of Eqn. (1.3)

except for the fact that the Boolean lattice gas utilizes the discrete Boolean occupation numbers

as opposed to the continuous distribution functions.

1.3.2. Deriving Lattice Boltzmann Methods from Boolean Lattice Gases

The original lattice Boltzmann methods were derived from Boolean lattice gases as a Boltz-

mann average by examining non-equilibrium ensemble averages of the discrete particle occupation

numbers. The particle distribution functions can be defined as

fi(x, t) = 〈ni(x, t)〉 (1.81)

where 〈〉 refer to a non-equilibrium ensemble average. This ensemble average connects the micro-

scopic realizations of the occupation numbers to the continuous macroscopic quantities within a

system. Thus taking a non-equilibrium average of the total number of particles at a lattice point,

we acquire the particle density such that

ρ(x, t) = 〈N(x, t)〉. (1.82)
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The same non-equilibrium averaging can be performed on the collision operator

Ωi({fi}) = 〈ΩLG
i (x, t)〉. (1.83)

This averaged lattice gas collision operator is equivalent to the lattice Boltzmann collision operator

Ωi in Eqn. (1.3). We can then take the ensemble average of Eqn. (1.80) such that

〈ni(x + vi∆t, t+ ∆t)〉 = 〈ni(x, t)〉+ 〈ΩLG
i (x, t)〉, (1.84)

which obtains the following evolution equation in terms of the particle distribution functions

fi(x + vi∆t, t+ ∆t) = fi(x, t) + Ωi({fi}). (1.85)

This equation is equivalent to the lattice Boltzmann equation shown in Eqn. (1.3).

A significant drawback to the BLG algorithm is that Galilean invariance is violated in the

hydrodynamic equations. This broken Galilean invariance is due to high order corrections to the

Navier-Stokes equation. The corrections are related to the discrete nature of the lattice and velocity

sets and the Galilean invariance violations arise when the macroscopic fluid velocity is no longer

negligible when compared to the microscopic particle velocities [27, 28].

The following section will discuss a recent implementation of a lattice gas which allows for

multiple particles of a given velocity to exist on a lattice node at any time. This integer lattice

gas method brings with it renewed interest in discrete lattice gas methods which inherently include

fluctuations.

1.3.3. Integer Lattice Gases

An integer lattice gas extends the traditional Boolean lattice gas method to include an

integer number of particles on a certain lattice point instead of only allowing for a single particle.

In other words, instead of Boolean occupation numbers as utilized in the Boolean lattice gas, the

integer lattice gas method incorporates integer valued occupation numbers. The multi-particle

integer lattice gas was a focus of interest in the late 1990s and there were developments relating to

implementing these methods [29, 30, 31, 32, 33]. Integer lattice gases were introduced by Boghosian

and Masselot [34, 35]. This article studied the thermodynamic behavior of the integer lattice gases
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focusing on energy conservation. This paper also introduces a sampling method for collisions which

only incorporates mass and momentum conservation. Section 1.3.3.2 presents a successful sampling

collision operator for a diffusive integer lattice gas.

In 1998, Chopard et al. introduced another version of the integer lattice gas which utilized

a collision which operates similarly to a BGK collision operator, which is commonly implemented

in lattice Boltzmann methods [36, 35]. This method resulted in a collision process that employed a

continuous probability distribution which was then sampled to acquire a new discrete distribution.

This process violated momentum conservation. To remedy this momentum conservation violation, a

random walk of the density is introduced which would proceed until the proper value of momentum

is found.

Although these early integer lattice gas methods showed promise, the rise of lattice Boltz-

mann methods halted a large amount of the research into integer lattice gases. Since Blommel et

al. introduced an integer lattice gas with a Monte Carlo collision operator in 2018 [17], there has

been renewed interest in the practical applications for integer lattice gas methods. This revitalized

method was the inspiration to explore overrelaxation in integer lattice gases in Sec. 4.3.

The idea behind Blommel’s Monte Carlo integer lattice gas is that it implements a Monte

Carlo based collision operator which conserves mass and momentum and explicitly recovers the

equilibrium distribution for a macroscopic velocity u = 0. A major difference from Boolean lattice

gas methods, is that this integer version can be constructed on a square lattice, as is common for

lattice Boltzmann methods. The collision-streaming process is still performed in a similar manner

as other lattice gas methods. In this case, ni(x, t) ∈ Z. Using integer-valued occupation numbers

removes the exclusion principle observed in Boolean lattice gases, thus leading to an equilibrium

distribution equivalent to a Boltzmann distribution where u = 0 rather than the Fermi-Dirac

distribution observed in Boolean lattice gases.

The integer-valued occupation numbers, ni(x, t), work similarly to the distribution functions

in lattice Boltzmann, however, these distribution functions are continuous such that fi(x, t) ∈ R.

The collision will redistribute these integer valued occupation numbers. The collision operator in

this case is represented by Ξi which leads to an evolution equation for the model in the form

ni(x + vi∆t, t+ ∆t) = ni(x, t) + Ξi({ni}). (1.86)

25



The main differences between this version from Eqn. (1.80) is the fact that the occupation numbers

are integers rather than Boolean valued and the construction of the collision operator, Ξi. The fol-

lowing section will develop the integer lattice gas (ILG) collision operator as presented by Blommel

et al. [17].

1.3.3.1. Monte Carlo Collision Operator for Integer Lattice Gases

The collision operator for integer lattice gas, Ξi, differs from the lattice Boltzmann collision

operator, Ωi, by the fact that Ξi is probabilistic where Ωi is deterministic. The ILG collision

operator utilizes a collection of binary (two-particle) collisions, removing the need for multi-particle

collisions as implemented in the collision rules for Boolean lattice gases.

In order to define the collision operator, Ξi, it is demanded that an equilibrium distribution

equivalent to the lattice Boltzmann equilibrium distribution in Eqn. (1.43) given by

feqi (ρ,u = 0) = ρwi, (1.87)

must be implemented. Since lattice gases inherently include fluctuations, it is imperative to discern

the global equilibrium, feqi , and the local equilibrium distribution f0i .

The probability that a collision between two particles with velocities vi and vj and resulting

in velocities vk and vl can be written as Pij→kl. Detailed balance is assumed, which means that

forward and backward collisions multiplied by the probabilities of these particles being in equilib-

rium must be equal. The probability of choosing a particle with velocity vi at a given lattice node

is wi, which are the weights defined by the lattice and velocity set. The detailed balance condition

can then be written as

wiwjPij→kl = wkwlPkl→ij . (1.88)

This gives the ratios of the forward and backward collisions in the form

Pij→kl
Pkl→ij

=
wkwl
wiwj

. (1.89)

This allows for transitions where ij = kl, however, for real collisions where ij 6= kl, the transition

probability is chosen as

Pij→kl ∝ min

(
1,
wkwl
wiwj

)
δ(vi+vj),(vk+vl), (1.90)
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where δ is the usual Kronecker delta. The transition probabilities must also add up to one

∑
kl

Pij→kl = 1 (1.91)

with Pij→kl ≥ 0. This probability can be achieved by introducing a proportionality factor, λij,kl.

This factor scales the rate at which certain collisions will occur. The factor is a constant value which

is input prior to beginning a simulation. Putting this together gives the full transition probability

for collisions in the form

Pij→kl =


λij,kl min

(
1, wkwlwiwj

)
δ(vi+vj),(vk+vl) ij 6= kl

1−
∑

k′l′ 6=ij Pij→k′l′ ij = kl.

(1.92)

We must require λij,kl = λkl,ij to guarantee that Eqn. (1.89) is satisfied. The Kronecker delta

function enforces mass and momentum conservation by ensuring that only collisions which conserve

mass and momentum have a non-zero probability.

As is the same for Boolean lattice gases, the total number of particles at a given lattice

node is given by

N(x, t) =
∑
i

ni(x, t). (1.93)

To perform the collision, at each lattice point, a pair of particles are chosen to collide by selecting

two evenly distributed random numbers between 1 and N . The two random numbers, r1 and r2,

are then mapped to the velocities of the chosen particles determined by


r1 → s1 for

∑s1−1
i=0 ni < r1 ≤

∑s1
i=0 ni

r2 → s2 for
∑s2−1

i=0 ni < r2 ≤
∑s2

i=0 ni.

(1.94)

The two numbers, s1 and s2, imply picking two particles with velocities vs1 and vs2 .

Next, the result of the collision must be determined by picking a pair of velocities, vs3

and vs4 with a probability of Ps1s2→s3s4 . The transition is completed by by picking an additional
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random number γ, where 0 < γ < 1, and choosing

s1s2 → s3(k)s4(k) for
k∑
i=0

Ps1s2→s3(i)s4(i) < γ ≤
k+1∑
i=0

Ps1s2→s3(i)s4(i), (1.95)

where a notation is introduced which will number pairs of velocities with an index value such that

s3(i) = i mod V

s4(i) = [i− (i mod V )]/V.
(1.96)

The total collision step is a collection of multiple binary collisions of this type. The total

number of collisions in each step is denoted by C and the index c is utilized to denote each indi-

vidual binary collision. The result of any of these binary collisions are given by a random variable

ϑci (s1, s2, s3, s4) and takes the form

ϑci (s1, s2, s3, s4) = δi,s3 + δi,s4 − δi,s1 − δi,s2 . (1.97)

This corresponds to the change in the total number of particles which have a velocity vi after the

collision has occurred. This process is repeated for all C collisions and we can define a full collision

operator as a sum of these random variables such that

Ξi =

C∑
c=1

ϑci (s1, s2, s3, s4). (1.98)

The occupation numbers are updated after each individual binary collision so that ϑci results from

a collision given by previous binary collisions in Eqn. (1.94).

It is interesting to note that for a D2Q9 implementation, this Monte Carlo ILG algorithm

leads to a global equilibrium distribution in the form

feqi (ρ,u) = ρ
∏
α

wviα [1 + 3viαuα + (3v2iα − 1)(
√

1 + 3u2α − 1)]. (1.99)

This global equilibrium distribution is equivalent to an equilibrium distribution of an entropic

lattice Boltzmann method [37, 38].
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Although this algorithm is computationally expensive, it provides the framework for an

ILG which conserves both mass and momentum. An additional drawback for ILG (and lattice

gas in general) is that the the range of usable transport coefficients is small compared to LBM.

A common technique in fluid dynamics to achieve low viscosities and low transport coefficients

is overrelaxation. Overrelaxation is a method of relaxation in which instead of relaxing directly

to the local equilibrium, the overrelaxed system will overshoot equilibrium and thus converge to

equilibrium in an oscillatory manner. This is routine used in LBM due to the deterministic nature

of the collision operator. However, since lattice gas collisions are probabilistic, overrelaxation was

thought to be impossible due to the requirement that overrelaxed collisions would be required to

occur with a probability greater than 1.

The subsequent section will introduce a sampling collision operator for diffusive systems

which drastically increases computational efficiency of the ILG algorithm and serves as inspiration

for investigation into the legitimacy of implementing overrelaxation in ILG.

1.3.3.2. Sampling Collision Operator for Integer Lattice Gases

The Monte Carlo integer lattice gas presented by Blommel serves as a template for successful

implementation of ILG methods. However, the algorithm presented is notably inefficient, thus the

range of practical applications for such an algorithm is minimal. Boghosian et al. [34] originally

proposed a method to sample a probability distribution to perform collision in an ILG, but this

sampling collision operator was never fully developed. Seekins et al. [23] were able to construct

a sampling collision operator for a simplified diffusive system based on Blommel’s Monte Carlo

ILG. The sampling collision operator presented by Seekins offers a remedy to the computational

efficiency issues which are present in Blommel’s method. The sampling collision operator performs

competitively with the corresponding fluctuating lattice Boltzmann method [39].

An integer lattice gas with a sampling collision operator will utilize the same evolution

equation utilized in the Monte Carlo ILG

ni(x + vi∆t, t+ ∆t) = ni(x, t) + Ξi({ni}) (1.100)

where ni are integer valued occupation numbers and Ξi is a stochastic operator that obeys all local

conservation laws. In the diffusive case, the collision operator will conserve the local number of
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particles, N(x, t) at a given lattice node, where

N(x, t) =
∑
i

ni(x, t). (1.101)

In Blommel’s ILG method, the collision operator was designed to conserve mass and momentum to

simulate hydrodynamics. This was achieved by combining the net effect of many binary collisions.

Since Seekins considered a diffusive case, only mass conservation is required. This leads to a

significant simplification in developing the sampling collision operator by only needing to consider

single particle collisions.

Similarly to the derivation for the Monte Carlo ILG, detailed balance is required in equilib-

rium seen in Eqn. (1.88). Since only unary collisions need to be considered for the diffusive case,

the detailed balance condition simplifies to the form

NwiPi→j = NwjPj→i (1.102)

and this gives the ratio of forward and backward collisions as

Pi→j
Pj→i

=
wj
wi
. (1.103)

This condition leads to transition probabilities

Pi→j =


λij min

(
1,

wj
wi

)
i 6= j

1−
∑

i,j(i 6=j) Pi→j i = j

(1.104)

where Eqn. (1.102) implies λij = λji. For the highest level of efficiency for the algorithm, λij

should be as large as possible which will give the best acceptance rate for each collision. For

maximal efficiency, we can choose

λij = max(wi, wj), (1.105)

which leads to

Pi→j = wj . (1.106)
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This satisfies the detailed balance condition presented in Eqn. (1.102). This equates to randomly

choosing a particle with velocity vs and reassigning it with velocity vt with probability wt. This

collision can be represented as a random variable in the form

ϑci = δt(c),i − δs(c),i, (1.107)

where c is the collision index and C is the total number of collisions. The collision operator can be

defined as the sum of these individual collisions

ΞCi =

C∑
c=1

ϑci . (1.108)

In principle, this completely defines an ILG for the fluctuating diffusion equation analogous to the

hydrodynamic case presented by Blommel. Since the computational efficiency of these algorithms

scale with the number of collisions, the idea is to replace the collision operator in Eqn. (1.108) with

a collision operator which samples the post collision distribution from an appropriate distribution

which can then perform all individual collisions in a single step.

When considering many collisions, a unique equilibrium probability for the set of occupation

numbers, {ni}, can be found. Since Eqn. (1.101) gives the total number of particles at a given

lattice node, the mean of the local equilibrium distributions is Nwi. The probability for a set of

occupation numbers to exist is given by the multinomial distribution

P ({ni}) =


N !
∏Q
i=1

w
ni
i
ni!

if
∑

i ni = N

0 otherwise.

(1.109)

This is equivalent to the combinatorial problem of cumulative occurrences of N trials with Q

outcomes with probability wi.

First, we consider the collision operator ΞCi in the limit of C →∞, which samples directly

out of the multinomial distribution. Using a software package such as GSL [40], a set of Q random

numbers can be sampled with the probability from Eqn. (1.109). This redistribution of N particles
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onto Q bins can be then be sampled with probability wi using


n̂0
...

n̂Q

 =


(XN

w0,...,wQ
)0

...

(XN
w0,...,wQ

)Q

 , (1.110)

where (XN
w0,...,wQ

)i is the ith component of the multinomial sample and n̂i is the redistributed

occupation number. This ensures that the collision conserves the total number of particles such

that ∑
i

n̂i = N. (1.111)

The collision operator, Ξi, can also be defined using a binomial sampling algorithm by

letting XN
p be a binomially distributed random number with probability

P (XN
p = n) =

N
n

 pn(1− p)N−n. (1.112)

Since there are N particles available, an occupation number associated to velocity v0 can be chosen

such that each particle has a probability w0 to be assigned to n0. This is written as

n̂0 = XN
w0
. (1.113)

This leaves

Ñ1 = N − n0 (1.114)

particles available. Then n1 particles from the remaining Ñ1 particles are chosen. Since there are

fewer particles available, the probability to assign a particle to n1 is increased to

w̃1 =
w1

1− w0
. (1.115)

With this increased probability, we choose

n̂1 = XÑ1
w̃1
. (1.116)
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This process is continued for the remaining occupation numbers and can be defined as

Ñi = Ñi−1 − ni−1, (1.117)

with a normalized probability of

w̃i =
wi

1−
∑i−1

i=1wi
. (1.118)

The left-over occupation numbers are then sampled as

n̂i = X
Ñi−1
wi . (1.119)

Since
∑

iwi = 1, the probability for the final weight becomes w̃Q = 1, such that all remaining

particles will be assigned to the occupation number nQ. Thus, this algorithm conserves the total

number of particles.

For the case of a finite number of random collisions, C, the particles will have a finite

probability that they will not experience a collision. This differs from the case where C → ∞,

where all particles undergo a collision and the fraction of particles experiencing a collision goes

to one. By defining the expectation value for the fraction of collided particles as ω, the sampling

collision operator is given by

Ξω→1
i = n̂i − ni. (1.120)

By forcing a fixed collision probability on each particle during a time step ∆t, each individual

particle will undergo a collision with probability ω. If a given lattice site has N particles, then an

average of Nω collisions will occur. The number of particles undergoing a collision is represented

by a binomial distribution in the form

P (N c) =

N

N c

wN
C

(1− ω)N−N
C
. (1.121)

The number of particles associated with velocity vi undergoing collisions is chosen by

nωi = Xni
ω . (1.122)
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Then, the sampling algorithm is enacted in the same manner, except that there are now only

N c =
∑

i n
ω
i particles left to be sampled. The redistributed particles from Eqn. (1.119) can be

defined as n̂ωi , which then gives the collision operator the form

Ξωi = n̂ωi − nωi . (1.123)

For ω = 1, the sampling collision operator from Eqn. (1.120) is recovered. Thus, a sampling

collision operator for any number of collisions has been defined. This sampling collision operator

was the basis and inspiration for investigating the implementation of overrelaxation for ILG which

is presented in Chapter 4.

1.4. Outline of the Dissertation

This dissertation first presents a FLBM for the diffusion equation in Chapter 2. This

FLBM method is self-contained and presents a density dependent and mode decoupled fluctuation

dissipation theorem. Following this, chapter 3 presents an application for diffusive lattice Boltzmann

for fluid transport through barrier coatings is presented. In this section, a higher order scheme for

lattice Boltzmann with the intention of error correction is presented. Finally in chapter 4.3, with the

revitalization of lattice gas methods from Blommel’s Monte Carlo integer lattice gas and Seekins’

sampling collision operator for integer lattice gases, a method for implementing overrelaxation in

integer lattice gases is provided.
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2. FLUCTUATING LATTICE BOLTZMANN METHOD FOR

THE DIFFUSION EQUATION1

We derive a fluctuating lattice Boltzmann method for the diffusion equation. The derivation

removes several shortcomings of previous derivations for fluctuating lattice Boltzmann methods for

hydrodynamic systems. The comparative simplicity of this diffusive system highlights the basic

features of this first exact derivation of a fluctuating lattice Boltzmann method.

2.1. Introduction

This paper introduces a new lattice Boltzmann method for the fluctuating diffusion equa-

tion. Much of this work was inspired by earlier work on fluctuating hydrodynamics which resulted

in very decent, but ultimately never quite exact discrete representations. This is why we focus here

on the arguably simplest lattice Boltzmann method to extend it to its fluctuating counterpart. As

we show below this derivation allows us to remove certain inexact assumptions of earlier methods

leading to a surprisingly exact and robust fluctuating method. Even the limit of low density, where

few particles reside on each lattice site on average, is well behaved. This is unexpected since in

a continuous method the noise starts to fully dominate the dynamics of the system at such low

densities, and for hydrodynamics fluctuating lattice Boltzmann methods this limit is ill behaved

[41].

Let us step back for a moment to consider the interplay of fluctuations and continuous

methods. Materials are composed of discrete particles that follow the deterministic evolution of

Newton’s second law (or more fundamentally the laws of quantum mechanics). The collective

evolution of many of these particles evolves through rules that can be discovered through kinetic

theory. In many cases there is a fast dynamic due to the local collisions between particles and a slow

dynamics of locally conserved quantities that are unchanged by the collisions. Due to the chaotic

nature of the collisions the evolution of the locally conserved quantities has a deterministic part

1The content of this chapter is published in “Alexander J. Wagner and Kyle Strand. Fluctuating lattice Boltzmann

method for the diffusion equation. Phys. Rev. E, 94(3):033302, 2016.” Kyle Strand’s contributions to this publication

were developing the code for the computer simulations, performing analysis on the simulations, creating figures, and

drafting and revising the content presented in this chapter.
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(i.e. the hydrodynamic equation) and a non-deterministic part that can often be well described as

an instantaneous random component. The amount of the random component will depend on the

amount of coarse-graining, and it is often assumed that for macroscopic systems these fluctuations

will be averaged out, leaving the fully deterministic hydrodynamic equations.

The reason for the fluctuations lies in the discrete nature of our world. It is often argued

that the explanation of random motion of small particles, known as Brownian motion, in terms

of individual collisions with the molecules of a fluid by Einstein[42] was the clinching argument in

favor of the particulate nature of matter. But a continuous description of nature has jettisoned

this fundamentally discrete nature of matter, and therefore fluctuations have to be artificially re-

introduced. This is achieved through the Langevin method, where the idea is to introduce random

forces such that the predicted level of fluctuation is recovered in equilibrium [43]. These fluctuations

obey a fluctuation-dissipation theorem where the irreversible dissipative parts of the evolution are

balanced by their fluctuating counterpart in equilibrium.

For the Navier-Stokes equation the fluctuating equivalent was derived by Landau and Lif-

shitz [44]. It consists of complementing the dissipative viscous stress tensor with a fluctuating stress

tensor. The first fluctuating lattice Boltzmann method, introduced by Ladd in 1993 [21, 8], used

this result and introduced a fluctuating stress tensor into the lattice Boltzmann method. However,

this only gives correct results in the hydrodynamic limit, i.e. for small wave numbers in a Fourier

representation.

Earlier work around 1970 of Fox and Uhlenbeck [45] as well as Bixon and Zwanzig [46]

generalized the linear Boltzmann equation into a Langevin equation by introducing a fluctuating

collision operator. Crucially this fluctuating collision operator not only introduces a fluctuating

stress tensor but additional fluctuating higher order modes. The idea of using this as a basis for

the development of fluctuating lattice Boltzmann even predates the approach by Ladd, and was

outlined in a conference proceeding by Dufty and Ernst in 1993 [47] around the same time as Ladd

introduced his method. Overcoming the difficulties with this approach was not achieved until 2005

when Adhikari et al. [22] presented a practical implementation. The key improvement introduced

here was to include fluctuations not only for the stress tensor, but for all non-conserved modes that

the collision operator relaxes. This significantly improved the behavior of the fluctuating lattice

Boltzmann method for larger wave numbers. This approach was then re-derived by Duenweg
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from considerations of a discrete lattice gas [48]. However, there were two inconsistencies in this

approach, both inherited from trying to apply the Fox-Uhlenbeck approach for a linear Boltzmann

equation to a BGK-collision operator. In the linear approach, the collision is assumed to bring the

local distribution function closer to the global equilibrium distribution (with special projections

that still ensure local conservation of conserved quantities) whereas the BGK approach consists of a

relaxation towards a local equilibrium distribution, corresponding to the local conserved quantities.

A key difference is that the hydrodynamic limit of the linear Boltzmann equation does not recover

the non-linear term ∇(ρuu) in the Navier-Stokes equation, whereas the BGK collision operator

does.

The first inconsistency occurred because in the derivation the local equilibrium distribution

was replaced by the global equilibrium distribution at a crucial juncture, a problem that has been

addressed by Kaehler et al. [49]. The second inconsistency occurred because it was assumed that

the fluctuations of the local equilibrium distribution around the global equilibrium distribution

could be neglected. At its heart, the current paper deals with avoiding this incorrect assumption,

albeit in the simpler case of a lattice Boltzmann method for diffusion, rather than hydrodynamics.

An extension to the hydrodynamic case appears also possible, but is more technically involved and

will be reserved for a later publication.

In this paper we first introduce the fluctuating lattice Boltzmann method, and derive the

form of the fluctuating collision operator for the diffusion equation. As usual for fluctuating lattice

Boltzmann methods since Adhikari et al. [22] this results in a multi-relaxation-time method [50].

While this method is distinct, lattice Boltzmann methods for diffusion phenomena were derived

by Wolf-Gladrow [9], and can be obtained in the limit of no flow from the more popular multi-

component lattice Boltzmann methods [51, 52]. A multi-relaxation time method related to the

current method (albeit with a slightly different collision matrix) can be found in Li et al. [53] and

Le [54] (all of these methods, however, exclude fluctuations). In the following section we show that

this method does indeed recover the fluctuating diffusion equation in the hydrodynamic limit and

the last section shows a number of verifications of our new method, and its fluctuating qualities.

We close by giving an outline of future research directions, particularly the impact of this work on

fluctuating lattice Boltzmann methods for multi-phase systems, a problem that has been previously

addressed by Gross et al. [55], Thampi et al. [56] and by Belardinelli et al. [57].
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2.2. Lattice Boltzmann Method

The lattice Boltzman equation is an evolution equation for densities fi defined on a regular

lattice associated with discrete velocities vi. These densities move in the direction of their associated

velocities, and the velocities are typically chosen so that the resulting position is again a lattice

position. Densities that collect at one lattice site then undergo local collisions. This can be formally

written as

fi(x + vi, t+ 1) = fi(x, t) + Ωi. (2.1)

Following Qian et al. [58] one typically makes the assumption that the collision is well approximated

by a BGK approximation as simply approaching a local equilibrium distribution f0i which is a

function of the locally conserved quantities. To include fluctuations we must consider not only the

dissipative relaxation towards the local equilibrium, but also an additional fluctuating term ξi. We

can then write the full collision term as

Ωi =
∑
j

Λij [f
0
j − fj(x, t)] + ξi (2.2)

where Λij is a collision matrix. The purpose of this paper is to derive a convenient (and exact)

form of the noise terms ξi as a function of the collision matrix Λij .

In this paper we will focus on the simplest case of an ideal gas. For an ideal gas of discrete

lattice particles associated with the discrete velocities vi, we expect their occupation numbers ni to

follow a binomial distribution. For a large enough system this is well approximated by the Poisson

distribution

P (ni) =
exp(−neqi )(neqi )ni

ni!
. (2.3)

Here we have defined the a priori unknown global equilibrium occupation numbers as

neqi = 〈ni〉, (2.4)

where 〈· · · 〉 denotes an equilibrium average. These fluctuations are independent for different veloc-

ities and different lattice sites. We show in the appendix, eqn. (A.22) that the second moment is
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given by

〈ni(x, t)nj(x′, t)〉 = neqi n
eq
j + neqi δijδxx′ . (2.5)

Let us briefly consider the difference between Binomial and Poisson distributed fluctuations. Since

the collisions are local, they cannot require knowledge of the system size. So we have to be able

to assume a Poisson distribution here. However a finite system size will introduce a correlation

between the densities, leading to a distribution that depends on the system size and is not identical

to the Poisson distribution.

There is a fundamental issue that the lattice Boltzmann densities are real numbers, not

integers, so strictly they cannot be Poisson distributed. Also there is no accepted generalization

of the Poisson distribution to continuous variables. Simply re-interpreting the factorial using a Γ-

function will alter the moments of the distribution function. We will see below that these difficulties

become noticeable when we attempt to use the lattice Boltzmann method for very small densities

where the discreteness becomes apparent.

These difficulties arise generally when one attempts to add fluctuations to a continuous

theory. Einstein’s famous 1905 paper [59] was celebrated for explaining Brownian motion as arising

from collisions with discrete solvent molecules, thereby unambiguously showing that even appar-

ently continuous liquids are made up of discrete atoms. Here we attempt to derive a continuous

theory that mimics the discrete fluctuating dynamics on length-scales that allow for a continuous

treatment.

To transfer our simple results for the discrete Poisson distribution to our lattice Boltz-

mann method we will simply require that the first two moments of the discrete and continuous

distributions agree. So we demand that

〈fi〉 = feqi , (2.6)

〈fifj〉 = feqi f
eq
j + feqj δij . (2.7)

The basic idea of the following derivation is now to use our knowledge of the distribution of the

〈fi〉 to predict the required fluctuation terms ξi that will generate them.
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As a brief aside we want to mention here that this raises an issue of the interpretation of the

continuous densities fi. They were originally derived as ensemble averages from discrete lattice gas

occupation numbers [50]. As such they should not experience fluctuations. Introducing fluctuations

now generates a new quantity that does fluctuate as if there were discrete particles but where the

occupation numbers remain continuous. This odd construct has the advantage of conserving the

freedom of using a much simpler BGK and more flexible collision operator of eqn (2.2).

Let us consider the connection between the local equilibrium distribution f0i and the global

equilibrium distribution feqi . We can average the lattice Boltzmann eqn. (2.1) to get

〈fi(x+ vi, t+ 1)〉 = 〈fi(x, t)〉+∑
j

Λij(〈f0j (x, t)〉 − 〈fj(x, t)〉) + 〈ξi(x, t)〉, (2.8)

feqi = feqi +
∑
j

Λij(〈f0j (x, t)〉 − feqj ) + 0 (2.9)

where we used the fact that the expectation values are translationally invariant and that 〈ξi〉 = 0,

since the noise term is designed to only contain deviations from the mean behavior. We further

demand that the collision matrix Λij be invertible to get

〈f0i (x, t)〉 = feqi (2.10)

so the expectation values of the local equilibria are the same as the expectation values of the

densities. We will use this insight below to derive the global equilibrium distribution from the

imposed local equilibrium distribution of the lattice Boltzmann method.

Next we calculate the expectation value of a lattice Boltzmann equation multiplied with

itself, which will give us the noise correlators 〈ξiξj〉. We get

〈fi(x+ vi, t+ 1)fj(x+ vj , t+ 1)〉

=〈fi(x, t)fj(x, t)〉+ 〈fi(x, t)Ωj〉

+ 〈Ωifj(x, t)〉+ 〈ΩiΩj〉.
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The first two terms cancel again, and we drop the spatial and temporal dependence for ease of

notation. We then get, substituting the BGK collision operator (2.2),

0 =
∑
k

Λjk〈fi(f0k − fk)〉+
∑
l

Λil〈(f0l − fl)fj〉

+
∑
kl

ΛikΛjl〈(f0k − fk)(f0l − fl)〉+ 〈ξiξj〉. (2.11)

We know (or more exactly require) the moment 〈fifj〉 from eqn. (2.7). All that remains is to find

〈fif0j 〉 and 〈f0i f0j 〉.

Up to this point we have not specified what the local equilibrium distribution is. The choice

of equilibrium distribution – and of the conserved quantities – determines the partial differential

equations simulated in the hydrodynamic limit.

In most cases the equilibrium distribution is simply a function of the locally conserved

variables, i.e. those quantities that cannot be relaxed by the collisions and are therefore the slow

variables. The evolution of these slow variables is then discovered in the hydrodynamic limit.

We can define the conserved quantities as linear combinations of the fi

M c =
∑
i

mc
ifi (2.12)

and we then have

f0i ({M c}), (2.13)

i.e. the local equilibrium is only a function of these conserved quantities. And therefore we know

the local equilibrium distribution in terms of the fi.

Up to this point our considerations have been entirely general. To progress from here we

now need to define the local equilibrium distribution function. Here we have only one locally

conserved quantity, the density, defined as

ρ(x, t) =
∑
i

fi(x, t). (2.14)
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To simulate the diffusion equation we demand the following moments for the equilibrium distribu-

tion:

∑
i

f0i = ρ, (2.15)

∑
i

f0i viα = 0, (2.16)

∑
i

f0i viαviβ = ρθδαβ. (2.17)

In section 2.3 we show that this choice of local equilibrium distribution leads to the diffusion

equation in the hydrodynamic limit. Here we are interested in a two-dimensional model, but the

derivations are near identical for a one or three dimensional model. The simplest two dimensional

velocity set consistent with these moments is

{vi} =


 0

0

 ,

 1

0

 ,

 −1

0

 ,

 0

1

 ,

 0

−1


 (2.18)

which is often also referred to as a D2Q5 model. This leads to the equilibrium distribution

f0i = ρwi (2.19)

with weights wi given by

w0 = (1− 2θ), w1...4 =
θ

2
. (2.20)

We can now calculate the global equilibrium distribution using eqn. (2.10):

feqi = 〈f0i 〉

=

〈
wi
∑
j

fj

〉

= wi
∑
j

feqj
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Let us define

ρeq =
∑
i

feqi (2.21)

and we get

feqi = ρeqwi. (2.22)

Here the global equilibrium function has exactly the same form as the local equilibrium function.

This result does not hold generally, in particular for instance for hydrodynamics models that con-

serve momentum [41].

Now we can calculate the equal time correlators we needed for eqn. (2.11). We obtain

〈fif0j 〉 =

〈
fiwj

∑
k

fk

〉

=
∑
k

(feqi f
eq
k + feqi δik)wj

= feqi ρ
eqwj + feqi wj

= (ρeq + 1)ρeqwiwj (2.23)

and

〈f0i f0j 〉 =

〈
wi
∑
k

fkwj
∑
l

fl

〉

=
∑
kl

wiwj(f
eq
k f

eq
l + feqk δkl)

= (ρeq + 1)ρeqwiwj . (2.24)

For this simple model both correlators are the same and we have

〈f0i fj〉 − 〈fifj〉 = ρeq(wiwj − wiδij). (2.25)

As a side note we would like to point out that earlier derivations of fluctuating lattice Boltzmann

methods [22, 48, 49] did not know how to treat these correlators and made an assumption equivalent

to neglecting the δij term. This resulted in formal results that did not require the fluctuations on
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conserved moments to vanish. This requirement was then added by hand on physical grounds, an

argument which this new derivation avoids, as will become clear below.

Using this result in (2.11) we obtain

〈ξiξj〉 = ρeq

[∑
kl

ΛikΛjl(wkwl − wkδkl)

−
∑
k

Λjk(wiwk − wiδik)

−
∑
l

Λil(wlwj − wlδlj)

]
.

This fluctuation dissipation relation is, in some sense, our answer, but it is not a nice answer.

We have a full correlation matrix for the noise terms, suggesting that the noise terms are not

independent.

This is not a surprise, but rather a consequence of the local conservation laws which require

∑
i

ξi = 0 (2.26)

since the fluctuations can’t create or destroy mass.

This suggests that moving to a different representation in velocity space which separates

out the conserved moment may be useful. This moment representation is analogous to what has

been used for deriving fluctuating hydrodynamics in the past since the paper by Adhikari [22].

Here we employ the moment transformation rather later in the derivation, which avoids having to

perform a rather cumbersome Fourier transform which complicated earlier derivations.

We now define moments through a general linear transformation

Ma =
∑
i

ma
i fi, (2.27)

which will include the conserved moments mentioned in eqn. (2.12), together with a back-transform

fi =
∑
a

naiM
a (2.28)
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so that we have the relations

∑
i

naim
b
i = δab

∑
a

ma
i n

a
j = δij (2.29)

and we can move freely between f and M space. We already know that we want M0 = ρ =
∑

i 1fi,

which is equivalent to

m0
i = (1, 1, 1, 1, 1). (2.30)

One additional consideration for choosing the moments is the collision matrix. If we use a

single-relaxation time collision matrix it is always diagonal. In f -space it is given by

Λij =
1

τ
δij (2.31)

and in moment space it is given by

Λab =
∑
ij

ma
iΛijn

b
j =

1

τ

∑
ij

ma
i δijn

b
j =

1

τ
δab. (2.32)

For a more general multi-relaxation time method we simply demand that Λab be diagonal:

Λab =
1

τa
δab. (2.33)

In moment space we then get

〈ξaξb〉 = ρeq

∑
ijkl

ma
im

b
jΛikΛjl(wkwl − wkδkl)

−
∑
ijk

ma
im

b
jΛjk(wiwk − wiδik)

−
∑
ijl

ma
im

b
jΛil(wlwj − wlδlj)

 . (2.34)

Careful inspection reveals that this simplifies if we choose

nai = ma
iwi. (2.35)
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The matrix of moments ma
i is generated by selecting physically relevant vectors 1, vix, viy, vixvix−

viyviy, and vixvix + viyviy and employing the Gram-Schmidt orthonormalization procedure with

respect to the scalar product

〈mamb〉M =
∑
i

ma
iwim

b
i

!
= δab. (2.36)

The resulting moment matrix is

ma
i =



1 1 1 1 1

0
√

1
θ −

√
1
θ 0 0

0 0 0
√

1
θ −

√
1
θ

0
√

1
2θ

√
1
2θ −

√
1
2θ −

√
1
2θ

−
√

2θ
1−2θ

√
1−2θ
2θ

√
1−2θ
2θ

√
1−2θ
2θ

√
1−2θ
2θ


(2.37)

It may be noted that this matrix differs from the one presented by Li et al. [53] or Le et al. [54].

The eigenvectors of the collision matrix in these approaches differ from the current ones only by a

factor and additions of conserved eigenvectors. Kaehler et al. [60] showed that this ensures that

the collision terms are equivalent.

For the equilibrium distribution in moment space we obtain

Ma,0 =
∑
i

ma
i f

0
i . (2.38)

For system with mass conservation the first moment is always given by m0
i = (1, 1, 1, 1, 1), and it

can be freely inserted as a factor. This implies

Ma,0 =
∑
i

ma
i f

0
i m

0
i = ρ

∑
i

ma
iwim

0
i = ρδa0 (2.39)

i.e. the local equilibrium density is ρ for the first moment and vanishes for all other moments by

virtue of the orthogonalization condition of the moments.

Note that this also implies ∑
i

ma
iwi = δa0. (2.40)
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We now obtain for the last term of the noise amplitudes of eqn. (2.34)

∑
jk

mb
jΛjkwkm

0
k

∑
i

ma
iwi −

∑
jk

mb
jΛikwkm

a
k

=Λb0ρeq − Λab

=ρ(δa0δb0 − 1)δab(1/τa)

and for the first term we get

∑
ik

ma
iΛikwkm

0
k

∑
jl

mb
jΛjlwlm

0
l

−
∑
ijkl

ma
iΛikwk

∑
c

mc
kwlm

c
lΛjlm

b
j

=Λa0Λb0 −
∑
c

ΛacΛbc

=(δa0δb0 − 1)δab(1/(τa)2).

With this we get

〈ξaξb〉 = ρeq
2τa − 1

(τa)2
(1− δa0δb0)δab. (2.41)

In this representation the noise terms are diagonal, i.e. no longer correlated, and we explicitly see

that the noise amplitude for the conserved mode is zero.

However, this does not quite restrict the noise amplitudes. This is fortunate since it seems

rather unsatisfactory that the noise should depend on some global average density, a bit of infor-

mation that should not be available to a local collision operator. This was first argued by Kaehler

et al. [49].Let us define 〈· · · 〉|ρ as the ensemble average over a all states for a cell with local density

ρ. We can then write a local noise term of the form

〈ξaξb〉|ρ = ρ
2τa − 1

(τa)2
(1− δa0δb0)δab. (2.42)

47



While local noise had been proposed before by Kaehler, we are now able to show that local noise

is consistent with (2.41), which was not possible in earlier derivations.

〈
〈ξaξb〉|ρ

〉
= 〈ρ〉2τ

a − 1

(τa)2
(1− δa0δb0)δab

= ρeq
2τa − 1

(τa)2
(1− δa0δb0)δab

which is now consistent with (2.41), and this local formulation does not require knowledge of the

whole system to determine the local noise amplitude. We will show below that local noise is required

to fully recover the correct behavior of the system, particularly for non-equilibrium systems with

large variations in the density.

2.3. Hydrodynamic Limit

We claimed earlier that the choice of equilibrium distribution given by the moments (2.15–

2.17) will lead the lattice Boltzmann method to simulate a diffusion equation. In this section we

will now derive the hydrodynamic limit of the fluctuating lattice Boltzmann method and show that

we recover a fluctuating diffusion equation.

This derivation follows the approach developed by Kaehler et al. [60]. We write the lattice

Boltzmann eqn. (2.1) in terms of a Taylor expansion to get

(∂t + viα∂α)fi +
1

2
(∂t + viα∂α)2fi =

∑
j

Λij(f
0
j − fj) + ξi. (2.43)

We can use this equation to express the distribution fi in terms of the local equilibrium distribution

and derivatives. Using that the collision matrix is invertible we get to first order

fi = f0i −
∑
j

Λ−1ij (∂t + vjα∂α)fj +
∑
j

Λ−1ij ξj . (2.44)
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Now we reinsert this expression into our expanded lattice Boltzmann eqn. (2.43) to get

(∂t + viα∂α)

f0i +
∑
j

Λ−1ij ξj


− (∂t + viα∂α)

∑
j

(
Λ−1ij −

1

2
δij

)
(∂t + vjβ∂β)fj

=
∑
j

Λij(f
0
j − fj) + ξi. (2.45)

We then reinsert eqn. (2.44) to also replace the remaining occurrence of fi on the left hand side

and sum the resulting equation over i to obtain the hydrodynamic equation for the evolution of the

density ρ. We get

∂tρ+ ∂α
∑
ij

viαΛ−1ij ξj

−
∑
i

(∂t + viα∂α)
∑
j

(
Λ−1ij −

1

2
δij

)

(∂t + vjβ∂β)

(
f0j +

∑
k

Λ−1jk ξk

)
= 0. (2.46)

The collision matrix should be isotropic, i.e. relaxation should be invariant under rotation.

This restricts the collision matrix (2.32) to be of the form

Λab = diag

(
1

τρ
,

1

τ j
,

1

τ j
,

1

τn
,

1

τ s

)
. (2.47)

Now let us consider viαΛ−1ij . Noting that we constructed the moment matrix such that viα =
√
θmα+1

i we can write

∑
i

viαΛ−1ij =
∑
i

∑
ab

√
θmα+1

i nai τ
aδabmb

j

=
√
θ
∑
b

δα+1,bτ bmb
j (2.48)

= τ jvjα. (2.49)
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This shows that the velocity viα is a left eigenvector of the inverse collision matrix with eigenvalue

τ j . Similarly 1i (i.e. a vector consisting entirely of ones) is also a left eigenvector with the eigenvalue

τρ. Note that this eigenvalue is arbitrary since the density is conserved due to eqn. (2.15). This

implies that all terms containing this arbitrary factor must cancel from the hydrodynamic equations.

For the second noise term we need to consider

∑
ij

viαΛ−1ij vjβΛ−1jk =
1

τ j

∑
j

vjαvjβΛ−1jk . (2.50)

For our D2Q5 model vixviy = 0 by construction, so we only need to worry about the vixvix and the

viyviy term in the expression above. We can write these in terms of the left eigenvectors as

vixvix =
1

4

(
m0
i +
√

8θm4
i +

√
1− 2θ

2θ
m5
i

)
(2.51)

and we get ∑
i

vixvixΛ−1ij = τρm0
i +
√

8θ τnm4
i +

√
1− 2θ

2θ
τ sm5

i . (2.52)

If we now define the macroscopic noise terms as

ηα = τ j
∑
i

viαξi = τ j
√
θξ1+α (2.53)

χαβ = δαβ
∑
i

[
τ s

1− 2θ

2
(vixvix + viyviy)

+τn(−1)δαy
1

2
(vixvix − viyviy)

]
ξi. (2.54)

We now get for (2.46)

∂tρ+ ∂αηα + ∂t(τ
ρ − 1

2
)(∂tρ+ ∂βηβ)

+ ∂α(τ j − 1

2
) [∂tηα + ∂β(ρθδαβ + χαβ)] = 0. (2.55)

The third term here contains of a time derivative of the first two terms and therefore is of third

order. The appearance of the irrelevant relaxation time τρ implies that this term will vanish not

only to third, but to all orders. It is therefore neglected. We then arrive at the macroscopic
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fluctuating diffusion equation

∂tρ+ ∂αηα + ∂α
D

θ
(∂αρθ + (∂tηα + ∂βχαβ)) = 0 (2.56)

where we introduced the diffusion constant

D =

(
τ j − 1

2

)
θ (2.57)

Now formally it may look as if ∂αηα was of order O(∂). However, in equilibrium this random part

of the diffusion current will be on average equal to the deterministic restoring part of the diffusion

current ∂α∂α(ρθ) and it will therefore also be of order O(∂2). Note that this is equivalent to the

way one shows that the forcing term in a lattice Boltzmann method has to be of order O(∂), see

e.g. Li et al. [61]. Therefore the terms

∂tηα + ∂βχαβ = O(∂3) (2.58)

are of third order.

We then get

∂tρ+ ∂αηα + ∂α
D

θ
∂αρθ = 0. (2.59)

For a constant temperature θ this leaves us with the standard fluctuating diffusion equation

∂tρ+ ∂αηα + ∂αD∂αρ = 0 (2.60)

where the noise current ηα obeys

〈ηα〉 = 0 (2.61)

〈ηαηβ〉 = τ jτ jθ〈ξ1+αξ1+β〉

= (2τ j − 1)ρeqθδαβ

= 2ρeqDδαβ (2.62)
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for the global noise implementation and

〈ηα〉 = 0 (2.63)

〈ηαηβ〉 = 2ρDδαβ (2.64)

for the local noise implementation.

2.4. Simulation Results

To fully determine the algorithm we need to briefly discuss our implementation of the noise

of eqn. (2.41) and (2.42). For simplicity we implement the uncorrelated ξa noise terms with a flat

distribution:

P (ξa) =


1

2da for − da < ξa < da

0 otherwise
(2.65)

with

da =

√
3ρeq

2τa − 1

(τa)2
(2.66)

for the global noise implementation and

da =

√
3ρ

2τa − 1

(τa)2
(2.67)

for the local noise implementation. For negative densities, which are unphysical but may appear

in this numerical method, this is treated as if the density was zero. This fully determines our

algorithm.

Now we need to test the consistency of the proposed algorithm and evaluate its limitations.

We have shown that the noise terms of eqn. (2.41) are necessary to reproduce imposed correlators

of the distribution functions in equilibrium given by eqn. (2.7). However, it is not clear that this is

sufficient. Past implementations for fluctuating hydrodynamics have shown noticeable deviations

from this expectation [49, 62].
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Figure 2.1. Difference of the predicted equilibrium distribution of eqn. (2.19) and the measured
equilibrium distribution as a function of the average density in the range of 0 to 120 for different
relaxation times. The results are for θ = 1/3 averaged over 106 iterations and show excellent
agreement. Results shown are for the local noise implementation, the global noise implementation
shows similarly small errors.

Firstly we need to check that the equilibrium distribution predicted by eqn. (2.22) is indeed

reproduced by our method. We compare this with a time and space average

〈fi〉exp =
1

T

T∑
t=1

1

L2

∑
x

fi(x, t) (2.68)

with the equilibrium distribution for different average densities in Fig. 2.1. Here we sum over the

whole two dimensional lattice, which for simplicity of notation is supposed to be square and have L

points in each of the two directions. We observe excellent agreement independent of the relaxation

times and even for low densities.

A small note: for hydrodynamic lattice Boltzmann methods there is a difference between

the effective temperature for local and global equilibrium distributions. However, this effect is

closely linked to momentum conservation, which is absent in the model considered here.

Next we examine the second order moments of the distribution functions

dij =
〈fifj〉 − feqi f

eq
j√

feqi f
eq
j

?
= δij (2.69)
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where we re-expressed eqn. (2.7) to give an expression that is intuitive to test. We numerically

evaluate dij by averaging over the whole lattice and over a large number of iterations as

dexpij =
1

T

1

L2

T∑
t=1

∑
x

fi(x, t)fj(x, t)− ρeqwiρeqwj
ρeq
√
wiwj

. (2.70)

Results of this averaging of eqn. (2.70) were acquired for different lattice sizes over 1.7 · 106

iterations. Other simulation parameters were kept constant at τ j = τ s = τn = 1, θ = 1/3,

ρeq = 120. The noise amplitude was given by eqn. (2.42). For a 3x3 lattice,

dexpij =

0.96268 −0.02643 −0.02622 −0.02624 −0.02638

−0.02643 0.98113 −0.01867 −0.01851 −0.01868

−0.02622 −0.01867 0.98113 −0.01770 −0.01888

−0.02624 −0.01851 −0.01770 0.98163 −0.01894

−0.02638 −0.01868 −0.01888 −0.01898 0.98085


.

For a 10x10 lattice,

dexpij =

0.99655 −0.00244 −0.00238 −0.00230 −0.00235

−0.00244 0.99828 −0.00172 −0.00164 −0.00164

−0.00238 −0.00172 0.99835 −0.00168 −0.00174

−0.00230 −0.00164 −0.00168 0.99854 −0.00171

−0.00235 −0.00164 −0.00174 −0.00171 0.99833


.
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For a 100x100 lattice,

dexpij =

0.99997 −0.00002 −0.00004 −0.00002 −0.00001

−0.00002 0.99998 −0.00002 −0.00001 −0.00002

−0.00004 −0.00002 0.99999 −0.00002 −0.00001

−0.00002 −0.00001 −0.00002 0.99996 −0.00002

−0.00001 −0.00002 −0.00001 −0.00002 0.99999


.

We observe that the second equality in eqn. (2.69) is not exactly fulfilled. However, the agreement

gets better the larger the lattice is. In eqn. (2.3) we assumed that the ni are Poisson distributed,

which is only true when we are dealing with an infinite system. For a finite system we would

have a binomial distribution. Physically the origin of this difference is a slight correlation of the

distribution function on finite lattices because of global conservation laws, similar to what Ollila et

al. [63] observed for momentum conservation. In particular the total density is conserved

∑
x

∑
i

fi(x, t) = L2ρeq. (2.71)

which implies that the fi are correlated. The importance of this correlation then depends on the

finite system size, and will vanish in the limit of large systems.

A useful way to separate out the globally conserved modes from non-conserved ones is to

express the densities in terms of their Fourier modes. We define the discrete Fourier sums for the

densities as

fi(k, t) =
∑
x

exp

(
2πi

L
k.x

)
fi(x, t) (2.72)
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Figure 2.2. Deviation of Fourier modes from eqn. (2.76) for a lattice of L = 10 averaged for
T = 336× 106 shows no discernable structure. Note that each of the f(k, t)f(−k, t) to be averaged
has values varying between about ±50, 000, so the remaining scale of ±7 after averaging is very
small.

where L is the total number of lattice points in each spatial direction (assuming a square lattice

for ease of notation). We then find a structure factor for the densities fi:

Sij(k) =〈fi(k, t)fj(−k, t)〉

=
∑
x

∑
x′

exp

(
2πi

L
k.(x− x′)

)
〈fi(x, t)fj(x′, t)〉

=
∑
x

∑
x′

exp

(
2πi

L
k.(x− x′)

)
[feqi f

eq
j + feqi δijδxx′ ]

=δk0L
4feqi f

eq
j + L2feqi δij (2.73)

which should be flat, except at k = 0. This result is also not expected to be entirely correct, since

we have mass conservation in our finite system. In contrast to the results for the dij , however,

the problem caused by mass conservation is limited to the k = 0 mode. We know that mass
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conservation requires

∑
ij

fi(k = 0, t)fj(k = 0, t)

=
∑
ij

∑
x

fi(x, t)
∑
x′

fj(x
′, t)

=L4(ρeq)2 (2.74)

whereas eqn. (2.73) predicts L4(ρeq)2 +L2ρeq. We therefore predict the full structure factor for the

fi to be

Sthij (k) = δk0L
4feqi f

eq
j + (1− δk0)L2feqi δij . (2.75)

In Fig. 2.2 we show the deviation

Sdiffij (k) =
1

T

T∑
t=0

fi(k, t)fj(−k, t)− Sthij (k) (2.76)

and see that, unlike in previous fluctuating methods, we were unable to detect any remaining

spurious structure.

The results so far show that we are able to recover the expected averages and variances

for the densities fi, at least in the limit of infinite system size or in Fourier representation for

non-zero Fourier modes. These are recovered for noise amplitudes that are dependent on a local

density of eqn. (2.42) or on the global density of eqn. (2.41), and the differences between these two

implementations are insignificant.

2.4.1. Limit of Low Density

As previously mentioned one might expect this method to fail in the limit of low density.

When lattice Boltzmann densities sum up to only a few particles or even a fraction of a particle

the corresponding Poisson distribution no longer resembles a continuous distribution. However, it

is important to know the limits of a numerical method. We therefore resolved to determine the

density at which our method ceases to give reasonable results.
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(a)

(b)

Figure 2.3. Correlators 〈fifj〉 divided by the predicted result of eqn. (2.7) as a function of the mean
densities. Ideally this expression would have a constant value of 1. Unsurprisingly for low densities
some deviations are observed. It is noted that the deviation for the global noise amplitude (a) sets
in below ρav ≈ 7, whereas it only sets in at about ρeq ≈ 3 for the local noise implementation (b),
and the agreement is quantitatively better.
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Table 2.1. The first three moments of the distributions of Fig. 2.4.

(a) ρeq = 30

〈f1〉 〈f21 〉 〈f31 〉
Poisson 5.000 30.000 205

Global noise 4.997 29.971 200
Local noise 5.001 30.005 202

(b) ρeq = 1

〈f1〉 〈f21 〉 〈f31 〉
Poisson 0.1666 0.1944 0.254

Global noise 0.1711 0.1710 0.091
Local noise 0.1666 0.2071 0.164

We examined the correlators 〈fi(x, t)fj(x, t)〉 for increasingly lower densities. The result is

shown in Fig. 2.3. Even for low average densities the second moments for the density are recovered

with surprising fidelity down to very small average numbers of particles. The error remains below

1% for an average density of ρeq of about 7 for the global noise implementation of eqn. (2.41),

but is noticeably better for the local noise implementation of eqn. (2.42). Here the threshold of

1% deviation is reached only at a density of ρeq ≈ 3. At this density about 5% of sites will have

negative densities, where we suspended the fluctuations. It is also interesting to note that global

noise leads to smaller fluctuations, whereas local noise increases the fluctuations at low densities.

We did not investigate the exact reasons for these deviations since they are small, and approach a

10% error only for densities of less than one particle per lattice site, where one should no longer

expect the continuous description to give good description of fluctuations.

We performed a closer comparison of the distribution of the densities. For the case of

f1 this analysis is shown in Fig. 2.4. We generated histograms with the local and global noise

implementations with a resolution of 1 particle and 1/10 of a particle and compared them to the

Poisson distribution.

For a total density of ρeq = 30 we find fairly good agreement, although the histograms do

not exactly match up with each other or the Poisson distribution. Most obviously we see that there

is a finite contribution from negative f1. A direct comparison of the first three moments of these

distribution functions is shown in Table 2.0a. We see that the first two moments match up nicely,
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Figure 2.4. Comparison of observed distribution functions for local and global noise amplitudes to
the Poisson distribution. We show the distribution for f1 for (a) feq1 = 5 (for ρeq = 30) and (b)
feq1 = 1/6 (for ρeq = 1). The small dots represent a histogram with smaller binning.
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with the error being slightly smaller for the local noise implementation, which would have been

expected from the results presented in Fig. 2.3.

So far we have only discussed the first two moments since those were the moments that our

theory intended to match. However it is reasonable to also look at the third moment, even though

there is no theoretical analysis that claims these moments should match. We see in Table 2.1 that

the agreement for these third moments is indeed noticeably worse, but the trend of a better fit for

the local noise continues.

Secondly we examined the distribution of f1 for only one particle per lattice site on average.

This is shown in Fig. 2.4b. The Poisson distribution consists essentially only of empty lattice cells

and cells with one particle. The continuous generalizations of the Poisson distribution generated

by the global and local noise algorithm differ slightly from each other, but both share the curious

feature of an apparent singular contribution for a distribution of exactly zero. We do not currently

understand this feature. It is not due to the cessation of noise application at zero density, since

this only applies to the local noise algorithm, not the global one. The matching of the moments to

the Poisson distribution, shown in Table 2.0b, is no longer as good. The first moments still match,

but there is a 10% deviation for the second moment in the local noise implementation, and slightly

more for the global one. The third moments now vary by much more, and the match between the

local noise implementation to the Poisson distribution is much better that the global noise one.

In the previous analysis we have only looked at one third order moment 〈f31 〉. For complete-

ness we also examined three other third order moments, i.e. 〈f30 〉, 〈f20 f1〉 and 〈f0f21 〉. Eqn. (A.23)

gives this prediction for these third order moments

〈fifjfk〉

?
=feqi f

eq
j f

eq
k + feqi f

eq
j δik + feqj f

eq
k δij + feqi f

eq
k δjk

+ feqi δijk = ζijk. (2.77)

The third moment of the Poisson distribution (a moment that we did not attempt to enforce)

shows moderate deviations from the values expected for the Poisson distribution. This is shown in
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(a)

(b)

Figure 2.5. Third moment correlators divided by the theoretical prediction ζ of eqn. (2.77) as a
function of the mean densities for both global (a) and local (b) noise. The mixed terms (〈f0f0f1〉,
〈f0f1f1〉) have more pronounced deviations from our expected value than the terms examined in
Table 2.4.
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Fig. 2.5. For larger densities the agreement increases, as might be expected from the central limit

theorem, since the Poisson distribution becomes a Gaussian distribution for large average densities.

We conclude here that, surprisingly, the method continues to reproduce the expected fluc-

tuations, even for very low densities, and becomes inaccurate only for average densities of about 3

particles per lattice site on average.

2.4.2. Non-Homogeneous Systems

So far we have only examined systems that are homogeneous and in equilibrium. Next we

will look at two systems where the dynamics are non-homogeneous. To make the effect as abrupt

as possible we examine two domains with a sharp interface where either the temperature or the

mobility is different which is highly relevant for the simulation of phase-separation fronts [64, 65].

First we examined a system where two regions are held at different imposed temperatures θ1

and θ2. Here particles will move more quickly in the region of high θ and therefore spend less time

in regions of high temperature. Averaging the hydrodynamic eqn. (2.59) we obtain the standard

diffusion equation in one dimension

∂tρ = ∂x
D

θ
∂x(ρθ). (2.78)

Quantitatively we can look at the stationary solution of this equation which implies that the two

different average densities in the two regions are given by

〈ρ1θ1〉 = 〈ρ2θ2〉. (2.79)

This situation is shown in Fig. 2.6a, and we see that the average densities in the two domains are

recovered without any noticeable artifacts at the sharp temperature boundary.

The second situation we consider is a system where two regions have different diffusion

constants. For this system eqn. (2.78) predicts a constant density. This situation is related to the

so-called Ito-Stratonovich dilemma. A single particle in this situation would undergo a random

walk, and the likelihood to find it in either region (of equal size) should be the same. However,

since the particle is moving more quickly in the region with high mobility the path length inside
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Figure 2.6. Effect of different mobilities (a) and different temperature (b) in two different regions on
the equilibrium behavior of the system. In the case of different temperatures with values θ1 = 1/3
and θ2 = 1/6 we find a density difference, whereas the case of different mobilities with diffusion
constants D1 = 1/30 and D2 = 1/3 leaves the densities constant. The insets show the numerical
solution divided by the analytical solution.
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Figure 2.7. Time correlators of eqn. (2.84) for an 81x81 lattice and ρeq = 120, D = 1/6 for different
k values. γ is the Fourier exponent given by Eqn. (2.85) and ∆t = 1. Values have been averaged
over 2 · 106 iterations.

this region has to be longer. This is only possible if there is an preferential reflection at the interface

between the two regions into the region with the higher mobility.

The way to modify the diffusion constant in a region is through the current relaxation time

τ j , which now becomes a function of space. The results of Fig. 2.6b show that the expected

behavior is recovered by our lattice Boltzmann method. We should also note that the presence of

fluctuations is incidental to this problem. The same behavior persists for the deterministic diffusion

equation simulated by lattice Boltzmann, but it worthwhile to note that this property is unaffected

by the introduction of noise.

2.4.3. Equilibrium Dynamics

A simple heuristic argument for the time-correlation function relies on the Fourier transform

of the diffusion equation. To predict the behavior of the discrete system we can start by examining

the lattice Boltzmann eqn. (2.1). This representation becomes simple for the special collision

operator of Λij = 1, i.e. the case where all relaxation times are one. In that case we get

fi(x+ vi, t+ 1) = wi
∑
i

fi(x, t) + ξi(x, t) (2.80)
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We can translate this equation by −vi and sum it over i. We then subtract the local density at

time t to obtain

ρ(x, t+ 1)− ρ(x, t)

=
∑
i

wi(ρ(x− vi, t)− ρ(x, t)) +
∑
i

ξi(x− vi, t). (2.81)

For the D2Q5 model employed in our example we can then write a discrete Fourier transform of

this equation to calculate the decay times for a particular Fourier mode (neglecting noise terms for

now, following Forster’s [66] phenomenological approach).

We believe that it is possible to perform a fully consistent analysis of time correlations,

only relying on the correlation of equal time 〈fi(x, t)fj(x′, t)〉 = feqi f
eq
j + feqi δijδxx′ by inserting the

evolution equation. However, initial investigation of this approach show somewhat lengthy results,

that would unreasonably expand this already lengthy paper.

We change our notation and write out the position vector as x = (x, y), as the results are

not fully isotropic, and therefore cannot be written in vector form. We have

∑
x,y

e
i2π( kxx

Lx
+
kyy

Ly
)
[ρ(x, y, t+ 1)− ρ(x, t)]

=D
∑
x

e
i2π( kxx

Lx
+
kyy

Ly
)
(ρ(x+ 1, y, t) + ρ(x− 1, y, t)

+ ρ(x, y + 1, t) + ρ(x, y − 1, t)− 4ρ(x, y, t))

=D(ei2π
kx
Lx + e−i2π

kx
Lx + e

i2π
ky
Ly + e

−i2π ky
Ly − 4)∑

x,y

e
i2π( kxx

Lx
+
kyy

Ly
)
ρ(x, y, t)

=2D(cos(π
kx
Lx

) + cos(2π
ky
Ly

)− 2)∑
x,y

e
i2π( kxx

Lx
+
kyy

Ly
)
ρ(x, y, t).

(2.82)

This is solved by

ρ(kx, ky, t) = ρ(kx, ky, 0)e
2D(cos(2π kx

Lx
)+cos(2π

ky
Ly

)−2)t
. (2.83)
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Figure 2.8. Plot of dynamics of diffusion front with initial density values of ρ1 = 120 and ρ2 = 20.
There is good agreement between simulation and theory.

We expect the same time behavior for the correlation function

c(k) =
〈ρ(kx, ky, 0)ρ(−kx,−ky, t)〉
〈ρ(kx, ky, 0)ρ(−kx,−ky, 0)〉

?
= e−γ(k)t (2.84)

with

γ(k) = 2D

[
2− cos

(
2π
kx
Lx

)
+ cos

(
2π
ky
Ly

)]
. (2.85)

This behavior is borne out, as is shown for a number of Fourier modes in Fig. 2.7. We performed

additional studies with different relaxation times which all gave similarly satisfactory results.

2.4.4. Non-Equilibrium Dynamics

So far we have only examined the behavior of our system in equilibrium situations. The

last test presented in this paper now focuses on an example of non-equilibrium behavior. We study

a system that initially represents a step function in the x-direction and which is initially the same

in the y-direction. It has a step between two densities ρ1 and ρ2. One can analytically solve

the averaged diffusion equation (2.78) in one dimension on a domain of length Lx with periodic

boundary conditions. Then for a constant diffusion constant D for a block of material with density
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ρ1 between 0.25Lx and 0.75Lx immersed in material with density ρ2 we obtain the analytic solution

ρth(x, t) =
∞∑

i=−∞

ρ2 − ρ1
2

[
erf

(
x− (i+ 0.25)Lx

2
√
Dt

)
− erf

(
x− (i+ 0.75)Lx

2
√
Dt

)]
. (2.86)

We set up a simulation with Lx = 100 and Ly = 10, 000 and averaged over all y positions. The result

of this averaging shows that our numerical solutions are in good agreement with this theoretical

solution, as shown in Fig. 2.8.

All this shows, however, is that the effect of the noise averages out as expected. More

interestingly we now examined the fluctuations, for which we expect

〈(ρ(x, y, t)− ρth(x, t))2〉 = ρth(x, t). (2.87)

For the global noise implementation, the result is shown in Fig. 2.9a, and the fluctuations are inde-

pendent of the local density. The key argument for originally proposing local noise implementations

given by Kaehler et al. [49] related to such non-equilibrium situations where the local densities can

vary significantly. For our local noise implementation we see that this is indeed borne out. This is

shown in Fig. 2.9b, where we see excellent agreement with our theoretical prediction of eqn. (2.87).

2.5. Conclusion

We presented the derivation of the simplest possible fluctuating lattice Boltzmann method

and, for the first time, were able to obtain a fully consistent derivation. The new derivation

allowed us to overcome several difficulties in the derivation of earlier fluctuating lattice Boltzmann

methods. The lattice Boltzmann method presented in this paper simulates the fluctuating diffusion

equation, but we anticipate that we will be able to use the same approach for deriving a fluctuating

lattice Boltzmann method for hydrodynamic systems. This is more complex though, because the

equilibrium distribution has more terms, making the calculation of eqns. (2.23) and (2.24) more

cumbersome.

The consistency of the derivation is reflected in the ability of the new method to recover

the expected behavior for all test cases that we have devised. In particular it is remarkable that
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Figure 2.9. Plot of variance for global (a) and local (b) noise implementaions for density ρ in
the form (ρ− ρeq) = 〈ρ〉, with initial density domains of ρ1 = 20 and ρ2 = 120. The densities
are calculated on a 100x10,000 lattice. The densities are averaged over the y-direction (each x-
dimensional lattice space is averaged over 10,000 y values). It is observed that applying noise to
ρeq gives a near constant variance which does not vary in time.
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no deviations of the fluctuation relation for any k-modes have been observed. Such deviations are

common for other fluctuating methods away from the hydrodynamic regime of small k.

The first derivations of fluctuating lattice Boltzmann methods insisted that the noise am-

plitude be constant. It was feared that making noise depend on a local density would introduce

cumbersome multiplicative noise. Kaehler et al. [49] suggested using a local noise term on physical

grounds, but since the derivation required a transition to Fourier space, this non-constant noise

amplitude generated insurmountable difficulties in the analysis. The new analysis presented in

this paper allowed us to show that using noise amplitudes that depend on a local density is fully

consistent and does not generate difficulties normally found with multiplicative noise. As should

be expected the difference between using a fixed noise amplitude and one depending on local noise

is most pronounced in non-equilibrium systems with large variations in the density.

A bare-bones implementation of this algorithm was published on GitHub [67] and is freely

available. This implementation only contains the core algorithm, but for ease of readability the

various analysis parts of the code have not been included.

In future work we will show how to extend this approach to non-ideal systems, allowing us

to apply this method to examine the dynamics in the vicinity of a critical point and in meta stable

systems undergoing nucleation.
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3. FOURTH-ORDER ANALYSIS OF A DIFFUSIVE LATTICE

BOLTZMANN METHOD FOR BARRIER COATINGS2

We examine the applicability of diffusive lattice Boltzmann methods to simulate the fluid

transport through barrier coatings, finding excellent agreement between simulations and analytical

predictions for standard parameter choices. To examine more interesting non-Fickian behavior

and multiple layers of different coatings, it becomes necessary to explore a wider range of param-

eters. However, such a range of parameters exposes deficiencies in such an implementation. To

investigate these discrepancies, we examine the form of higher-order terms in the hydrodynamic

limit of our lattice Boltzmann method. We identify these corrections to fourth order and validate

these predictions with high accuracy. However, it is observed that the validated correction terms

do not fully explain the bulk of observed error. This error was instead caused by the standard

finite boundary conditions for the contact of the coating with the imposed environment. We iden-

tify a self-consistent form of these boundary conditions for which these errors are dramatically

reduced. The instantaneous switching used as a boundary condition for the barrier problem proves

demanding enough that any higher-order corrections meaningfully contribute for a small range of

parameters. There is a large parameter space where the agreement between simulations and ana-

lytical predictions even in the second-order form are below 0.1%, making further improvements to

the algorithm unnecessary for such an application.

3.1. Introduction

Coating systems are used heavily in industry for the protection of materials and infras-

tructure. Common examples include the paints on cars, bicycles, and houses; the layered coating

systems used on boats and airframes; and the coatings used to protect bridges. In all cases, the goal

2The content of this chapter has been published in “Kyle T. Strand, Aaron J. Feickert, and Alexander J. Wagner.

Fourth-order analysis of a diffusive lattice Boltzmann method for barrier coatings. Phys. Rev. E, 95:063311,

2017.” Kyle Strand’s contributions include developing the fourth-order expansion of the lattice Boltzmann equation,

performing Fourier analysis on fourth order corrections, developing code, creating figures, and drafting and revising

contents appearing in this chapter.
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of the coating system is to protect the underlying substrate from ingress by aggressive particulate,

gaseous, or fluid materials while remaining aesthetically intact.

Crosslinked polymer networks, also called thermosets, are typically chosen in protective

applications due to their net-like structure. In such a structure, precursor materials are chemically

bonded through a crosslinking and curing process to form a three-dimensional structural network.

This network acts as a physical and chemical barrier that attempts to prevent permeation by water,

salt, particulate matter, and other environmental contaminants. Since substrates are often materials

susceptible to corrosion, like aluminum or steel, it is essential that moisture not be permitted to

reach the substrate in appreciable quantities.

As is known, most coatings permit, to some degree, moisture ingress [68]. This can be

due to imperfections in the preparation process [69], the formation of void space during curing or

cooling [70], or because of damage in service. To help detect coating formulations that may be

unsuitable for use in the field, accelerated weathering testing is used to determine failure rates and

modes in the lab. Much research has been devoted to the relationship between accelerated testing,

comparable real-world testing, and service life, but no complete and predictive model exists that

accurately correlates a coating’s performance in lab testing, performance in field testing, and failure

modes or lifespan that is likely to occur in service [71].

Since moisture entering the coating is conserved, the dynamics of fluid density ρ obey the

continuity equation

∂tρ+∇j = 0, (3.1)

where j is the mass current. Assuming an isotropic coating, mass current will be in the direction of

negative density current. We denote the proportionality between the current and negative gradient

by D, which in the simplest case is a constant. Later, we consider a more general D(ρ). We

therefore have j = −D∇ρ. With this constitutive relation for the mass current, we recover the

well-known diffusion equation.

Several methods exist to model idealized diffusion. Early work focused primarily on pre-

cise mathematical modeling and numerical solutions to boundary-matched differential equations

governing diffusion [72, 73]. Modern approaches include network connectivity models [74], Monte

Carlo simulations [75], and finite-element analysis [76] for more complex structures like porous
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media where an effective diffusivity is desired. However, approaches dealing with pore structures

may depend on the structure and porosity of the material in question, quantities that most often

unknown a priori. Additionally, finite-element models tend to be computationally complex and

often rely on commercial closed codes. As a whole, there is comparatively little known about the

precise dynamics of diffusion through polymeric coatings [77].

Additionally, different approaches exist when multiple layers are considered. In the case of

multiple hydrophobic barrier coatings, boundary-matching Fickian solutions can be used [73] and

matched to experiment via electrochemical methods. When a base coating is hydrophilic, as is the

case with some primers, an alternative approach couples Fickian diffusion for any overlying barrier

coatings with the assumption of an instantaneous reservoir for the base layer [78]. In either case,

different coatings in a multi-layer stackup differ in their effective diffusivity.

Any numerical technique used to model the progression of moisture in such a stackup must

stably account for a wide range of diffusion constants. Since laboratory testing of candidate barrier

coating systems typically includes cyclic exposure to moisture and dry ambient air over long periods

of time, simulations of cyclic processes must maintain numerical stability over correspondingly

longer time scales.

In this paper, we use lattice Boltzmann numerical techniques to determine the accuracy

of modeling moisture ingress through a finite coating system exposed to a reservoir and adhered

to an ideal substrate. Because of the necessity of modeling a wide range of saturation levels and

diffusivity in the case of multi-layer systems, we analyze the error introduced in the traditional

second-order approximation to the diffusion equation used in lattice Boltzmann approaches. To

investigate the nature of this error, we introduce a fourth-order correction and perform a Fourier

component analysis to confirm the correctness of our results. We show that the bulk of the second-

order error in such a system arises from the boundary conditions used, and comment on the proper

use of periodic systems to remove this error. Applications to multi-layer systems with variable

diffusivity are discussed in the context of our analysis.

3.2. Lattice Boltzmann Methods

The lattice Boltzmann approach models densities fi defined on a discrete lattice space

associated with discrete lattice velocities vi. After being displaced to a new lattice position x+ vi,

the densities at each lattice point are redistributed in a collision step. This method has been

73



used extensively to model hydrodynamic behavior [3, 58, 79], diffusion [9, 51], electrostatics [12],

and similar systems with high accuracy and computational efficiency. Notably, the hydrodynamic

partial differential equations underlying such systems are not the starting point for the method,

but rather emerge from it. Choices like the number of quantities conserved in the collision allow for

the freedom of recovering the governing equations for a variety of different systems, as mentioned

above.

A popular collision term defines a local equilibrium f0i that only depends on the conserved

quantities and then relaxes the actual density towards the local equilibrium. In this form the lattice

Boltzmann equation can be written as

fi(x+ vi, t+ 1) = fi(x, t) +
∑
j

Λij
[
f0j (ρ(x, t))− fj(x, t)

]
. (3.2)

Here f0j is the local equilibrium density, Λij is a collision matrix, and ρ(x, t) is the local density of

the system, given by

ρ(x, t) =
∑
i

fi(x, t). (3.3)

The form of the collision matrix allows for further control of the algorithm, but this freedom is

not explored in this paper. Most examples where this freedom has shown to be useful relate to

simulations of hydrodynamic systems with very low viscosity. Such low viscosities may give rise to

instabilities that can be controlled by a careful choice of the collision matrix. For diffusive systems

like the one considered here, the advantages of utilizing multiple relaxation times are less well

established (See Ginzburg [80]), so we will employ the particularly simple collision matrix

Λij =
1

τ
δij (3.4)

that was originally proposed by Qian [58], using a single relaxation time τ .

It is necessary to impose moments on the equilibrium distribution, following the method

of [9]. While not considered here, formulations of this method in the case of multiple components

[51] and multiple relaxation times [53, 54]. In particular, we impose the following (non-unique)
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moments on the distribution:

∑
i

f0i = ρ (3.5)∑
i

f0i viα = 0 (3.6)∑
i

f0i viαviβ = ρθδαβ (3.7)

where the Greek indices are spatial dimensions and follow the Einstein notation.

Local density conservation is assured by Eqn. (3.5), while Eqn. (3.7) introduces a spatially

uniform imposed temperature θ. Following [10], a second-order Taylor approximation using this

choice of moments leads to the lattice diffusion equation

∂tρ = ∇α
(
τ − 1

2

)
∇α(ρθ) (3.8)

and, if the temperature is constant, this recovers a diffusion equation with the diffusion constant

D =

(
τ − 1

2

)
θ. (3.9)

Testing for coating applications usually applies moisture somewhat homogeneously on the

sample, either in soak testing or weathering chambers; drying also proceeds evenly. This reduces the

problem of interest to an effectively one-dimensional case. For simulations, we use the simplest one-

dimensional lattice Boltzmann model with the velocities {vi} = {0, 1,−1}. This one-dimensional

lattice with the given velocities is known as a D1Q3 scheme. For this implementation of a diffusive

system, the local equilibrium distribution can be written as

f0i = ρwi, (3.10)
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where wi are the weights related to the magnitude of the velocities {vi}. To recover the necessary

moments, the weights are

w0 = 1− θ

w1 =
θ

2

w2 =
θ

2
. (3.11)

The D1Q3 implementation then allows for a full and self-contained simulation method for a diffusive

system.

3.3. Application to Water Content of Coatings

We wish to model the wetting of a single-layer coating via Fickian diffusion. Since coatings

are frequently examined in the laboratory on test panels using weathering chambers that subject

the coating to moisture, we will consider the case where the coating, represented by a lattice from

0 ≤ x ≤ Lx, is exposed to a reservoir of varying concentration ρb(t) at x = 0 and an impermeable

substrate at the right end of the simulation lattice. The meaning of ρb is the amount of water that

will be absorbed just inside the coating as it is exposed to the environment. For an immersion in

water, this corresponds to the maximal water content the coating can absorb, and we scale the

density so that this value corresponds to ρ = 1.

We must account for these two boundary conditions in our numerical simulation. We

implement the source term by setting

fi(0, t) = f0i (ρb(t)) (3.12)

and by replacing the streaming step at the right end by a bounceback algorithm, where the right-

moving f1(Lx) is reinserted as an f2 in the streaming step. The result for a step function ρb(t) =

Θ(t) in the exposure is shown in Fig. 3.1. We used a system with Lx = 100 lattice points, τ = 1,

θ = 0.5, ρ0 = 1, and ran the simulation for a variable number of iterations T . As expected, moisture

is at first located closely to the surface and then penetrates the sample.

To verify the correctness of the simulation results, we construct an analytical solution for

the concentration over time, using linear combinations of the well-known error function solution
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[72]. These are solutions of the diffusion equation for the initial condition of a step function in an

infinite system. If the initial step goes from 2ρ0 to zero, then the solution is

ρth,1(x, t) = ρ0

(
1− erf

(
x√
4Dt

))
. (3.13)

This solution has a fixed point ρbath(0, t) = ρ0 at x = 0, which corresponds to our boundary

condition. So ρth,1(x, t) for x ≥ 0 and t > 0 is the analytical solution for an infinite dry coating

exposed to a reservoir starting at time t = 0. Note that the long-time behavior gives ρth,1(x, t →

∞) = ρ0 as expected.

Suppose now that we have a finite one-dimensional coating extending from 0 ≤ x ≤ Lx. At

x = 0, the coating is exposed to a reservoir with fixed concentration ρ(x = 0, t) = ρ0. At x = Lx is

an impermeable substrate where ∇ρ(x = Lx, t) = 0.

To account for the vanishing current at the substrate, we use an image source reservoir at

x = 2Lx. This will ensure a vanishing gradient at x = Lx and, by symmetry, a vanishing current.

However, when the reflected concentration becomes nonzero at the reservoir again, we must subtract

another image source reservoir at x = −2Lx to maintain the correct boundary condition. Repeating

this process infinitely, we arrive at the final solution that includes both reservoir and substrate:

ρth(x, t) = ρ0

∞∑
i=0

(−1)i
[
2 + erf

(
x− 2(i+ 1)Lx√

4Dt

)
− erf

(
x+ 2iLx√

4Dt

)]
(3.14)

For practical purposes, we find ten terms of the infinite sum in Eqn. (3.14) are entirely sufficient

for most cases.

It is instructive to determine the correspondence between these numerical parameters and

a laboratory case. A typical barrier coating might have thickness X = 50 µm, diffusion constant

in water D ∼ 10−14 m2/s, and be exposed to moisture in a weathering chamber for T = 4 hours at

a time for testing. We can introduce reduced time, length, and density scales t′, x′, ρ′ such that

t = Tt′ (3.15)

x = Xx′ (3.16)

ρ = ρ0ρ
′ (3.17)
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Figure 3.1. Profiles of concentration ρ at τ = 1, θ = 0.5, ρ0 = 1 at various times (symbol), with
analytical solution ρ(x, t) (solid line). τ is relaxation time and θ is lattice temperature.

and 0 ≤ {t′, x′, ρ′} ≤ 1. Since the unit relationship T = X2/D holds by dimensional analysis, for

any given experimental setup the quantity

F ≡ TD

X2
(3.18)

is dimensionless and we have the scaled diffusion equation ∂t′ = −∇x′F∇ρ′. Using the experimental

parameters suggested above gives F = 5.76 × 10−2. In our simulations, we use total length X =

Lx = 100 lattice sites, reservoir concentration ρ0 = 1, θ = 0.5, and τ = 1. Since this gives a time

scale T ≈ 3500 iterations, this means one hour of equivalent macroscopic exposure corresponds to

approximately 875 simulation iterations. Further, the choice of τ = 1 yields immediate relaxation

of local distributions, so we would expect excellent agreement to theory.

We are now in a position to comment on the accuracy of this simulation method in com-

parison to the analytical solution ρth in Eqn. (3.14). For each of the exposure times in Fig. 3.1,

we compute the absolute error

ε(x) ≡
∣∣∣ρ(x, t)− ρth(x, t)

∣∣∣ (3.19)
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Figure 3.2. Absolute error profile ε between numerical and analytical concentration for exposure
over time.

across the lattice space profile. The result is plotted logarithmically in Fig. 3.2, showing excellent

agreement. It is interesting to observe how the error changes over time; initially, the error drops

substantially since moisture has not yet permeated through the entire coating lattice. This tail

increases as the entire lattice becomes wet, but then uniformly decays as the numerical solution

approaches saturation and agrees with the corresponding analytical solution.

While this method provides efficient and stable numerical modeling of a single coating, a

given coating system might consist of two or more barrier layers in a stackup, each with a different

diffusion constant that permits moisture ingress and egress at different rates from its neighbors. To

extend this method to the simplest multi-layer case, we might wish to model a two-layer stackup

consisting of idealized barrier coatings with different physical properties. To do so, our reservoir

model is modified slightly, with the outer barrier coating represented at lattice sites 0 ≤ x ≤ Lx/2

and the inner barrier coating at Lx/2 ≤ x ≤ Lx. Since the diffusion constant is controlled by the

parameter τ in Eqn. (3.8), the presence of two diffusion constants requires that τ be position-

dependent:

τ = τ(x) ≡

 τout , 0 ≤ x ≤ Lx/2

τin , Lx/2 ≤ x ≤ Lx
(3.20)
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Table 3.1. Values of τ and θ used in simulations, with corresponding diffusion constant D and time
scale T corresponding to four hours of macroscopic equivalent exposure with F = 5.76× 10−2 (all
in lattice units).

τ θ D T

0.55 0.5 0.025 23040
0.70 0.5 0.10 5760
1.0 0.5 0.25 2304
1.5 0.5 0.50 1152
2.0 0.5 0.75 768
10.0 0.5 4.75 121

Incidentally, changing the value of θ between the two regions will lead to different maximum water

uptake in the layers, an important relationship that will be explored elsewhere.

Although such a two-layer system is not investigated in this paper, it is essential to determine

the range of τ values for which numerical and analytical solutions agree sufficiently over time. For

efficient simulations, it is advantageous to choose τ as large as feasible, since this corresponds to a

large diffusion constant and hence a shorter simulation time. For a quick initial evaluation, we run a

series of lattice Boltzmann simulations with varying values of τ to the same macroscopic equivalent

time of four hours of exposure. After that time, we compute the absolute error ε between numerical

and analytical solutions across the entire lattice profile. Results are shown in Fig. 3.3. The choices

of τ , along with the corresponding time scale T , are shown in Table 3.1.

As shown earlier, the solutions agree very well for τ = 1. However, the error may be orders

of magnitude larger for τ 6= 1. Depending on the particular application, we may require ratios

of diffusion constants that vary significantly (such as in multi-layer systems); however, the errors

indicated here may cause the numerical method to appear less than ideal.

We therefore wish to examine the origin and nature of the τ -dependent error. Of note is

that the derivation of the lattice diffusion equation given above (and used heavily in the literature)

is done with only a second-order Taylor approximation. To determine the degree to which this

approximation leads to the errors shown, we next perform a fourth-order correction to this diffusion

equation.

3.4. Fourth-Order Limit of Diffusion Equation

In order to introduce a correction to the diffusion equation, we perform a Taylor expansion

of the lattice Eqn. (3.2) to account for higher orders. As shown by Wagner [81], this equation
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Figure 3.3. Absolute error profile ε between numerical and analytical concentration at various τ .
All simulations were run to the same scaled time, corresponding to four hours.

expanded to the fourth order takes the form

(∂t + viα∇α)f0i −
(
τ − 1

2

)
(∂t + viα∇α)2f0i +

(
τ2 − τ +

1

6

)
(∂t + viα∇α)3f0i

−
(
τ3 − 3

2
τ2 +

7

12
τ − 1

24

)
(∂t + viα∇α)4f0i +O(∂5) =

1

τ
(f0i − fi). (3.21)

Since we have now introduced higher-order powers into this expansion, we must utilize

moments up to the fourth-order. Using the form of the equilibrium distribution in Eqn. (3.10), we

calculate the higher-order moments:

∑
i

f0i = ρ (3.22)

∑
i

viαf
0
i = 0 (3.23)

∑
i

viαviβf
0
i = ρθδαβ (3.24)

∑
i

viαviβviγf
0
i = 0 (3.25)

∑
i

viαviβviγviδf
0
i =

ρθ

3
(δαβδγδ + δαγδβδ + δαδδβγ) (3.26)
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Summing over all indices of Eqn. (3.21) using these revised moments, we are left with

∂tρ−A(τ)(∂2t ρ+∇α∇βρθδαβ)+

B(τ)(∂3t ρ+ ∂t∇α∇βρθδαβ + ∂t∇α∇γρθδαγ + ∂t∇β∇γρθδβγ)−

C(τ)

(
∂4t ρ+ ∂2t∇α∇βρθδαβ + ∂2t∇α∇γρθδαγ + ∂2t∇α∇δρθδαδ + ∂2t∇β∇γρθδβγ

+ ∂2t∇β∇δρθδβδ + ∂2t∇γ∇δρθδγδ +∇α∇β∇γ∇δ
[
ρθ

3
(δαβδγδ + δαγδβδ + δαδδβγ)

])
+O(∂5) = 0

(3.27)

where we have defined the τ -dependent prefactors

A(τ) ≡ τ − 1

2

B(τ) ≡ τ2 − τ +
1

6

C(τ) ≡ τ3 − 3

2
τ2 +

7

12
τ − 1

24

for brevity.

This form is not particularly useful since there are mixed spatial and temporal derivatives

in the higher-order powers. In our one-dimensional implementation, we can drop our indices. We

use the diffusion equation to write the temporal derivatives in terms of the spatial derivatives as

∂tρ =

(
τ − 1

2

)
∇2
αρθ +O(∇3). (3.28)

It immediately follows that

∂2t ρ =

(
τ − 1

2

)2

∇2
α∇2

βρθ
2 +O(∇5). (3.29)

We can then introduce these two substitutions into Eqn. (3.27) and we have

∂tρ−
(
τ − 1

2

)
∇2ρθ −

(
τ − 1

2

)3

∇4ρθ2 +

(
τ2 − τ +

1

6

)(
τ − 1

2

)
3∇4ρθ2

−
(
τ3 − 3

2
τ2 +

7

12
τ − 1

24

)
∇4ρθ = 0. (3.30)
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Figure 3.4. Density field representation of α(τ, θ)/D(τ, θ), with contour lines which indicate a
values of α(τ, θ)/D(τ, θ) = 0 (solid), −1/π2 (dotted, predicted instability), 1/π2 (dashed, shown
for symmetry). α(τ, θ) is the correction term given by Eqn. (3.32), D(τ, θ) is the diffusion constant
given by Eqn. (3.9), τ is the relaxation time, and θ is the lattice temperature.

We then obtain the form of a corrected diffusion equation

∂tρ = D∇2ρ+ α∇4ρ (3.31)

with corrections up to the fourth power in spatial derivatives, where we define

α = α(τ, θ) ≡
(

2τ3θ − τ3 − 3τ2θ +
3

2
τ2+

5

4
τθ − 7

12
τ − 1

8
θ +

1

24

)
θ. (3.32)

This definition of α represents the expected error between the second-order diffusion equation and

the corrected fourth-order equation. For certain parameter values, such as τ = 1 and θ = 1/3, we

have α = 0, which accounts for higher accuracy observed for such parameters. We plot a density

field representation of the relative error quantity α(τ, θ)/D(τθ) in Fig. 3.4. We indicate a contour

where this quantity vanishes, as well as additional contours whose numerical importance will be

explained in later sections.
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The correction term has a similar form to a surface tension term in a Cahn-Hilliard equa-

tion. In this case, positive values of α would correspond to a negative surface free energy. This

implies that simulations with positive α should be unstable for high frequency perturbations. This

equation can be solved in Fourier space, allowing us to verify our analytical predictions with lattice

Boltzmann simulations. In the subsequent section, we perform this analysis.

3.5. Fourier Analysis of Correction Term

A Fourier transform of Eqn. (3.31) yields

∂tρ̂(k, t, α) = −Dk2ρ̂(k, t, α)− αk4ρ̂(k, t, α). (3.33)

Here k is any specific Fourier mode and ρ̂(k, t) is the k-space density represented by

ρ̂(k) =
1

2π

∫ Lx

0
ρ(x)e

2πikx
Lx dx, (3.34)

where Lx is the system size in the x-direction. Even though x is continuous, the finite periodicity

of 2π causes k to be discrete. This allows for our system to contain a finite number of k modes

which can be now examined independently. The form of Eqn. (3.33) is simple since different k

modes do not couple. In k-space, the initial profile at t = 0 is chosen by defining ρ(x, 0), which for

ρ̂(k, 0) gives Eqn. (3.34) and

ρ̂(k, t, α) = ρ̂(k, 0)e−(Dk
2t+αk4t). (3.35)

We reproduce the uncorrected diffusion equation by setting α = 0, obtaining

ρ̂(k, t, 0) = ρ̂(k, 0)e−Dk
2t. (3.36)

These predictions are implemented on a discrete lattice which implies that there will be a finite

number of k modes. From Eqn. (3.34), we have

k =
2π

Lx
(3.37)
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which implies a maximum allowed k mode when k = π and a minimum lattice dimension of Lx = 2.

In this finite system, we have the back transform

ρ(x, t) =
∑
k

eikxρ̂(k, t, α). (3.38)

It is now possible to verify this theoretical prediction by examining the decay of specific

Fourier modes by imposing an initial profile

ρ(x, 0) = sin(kx). (3.39)

Using this profile, the uncorrected and corrected k-space densities become, respectively,

ρ̂(k, t, 0) = sin(kx)e−tDk
2

ρ̂(k, t, α) = sin(kx)e−t(Dk
2+αk4). (3.40)

In practice, we change k by varying the system size Lx. An interesting point to note is that when

α < − D
π2 , it is predicted that the numerical simulations would be unstable. This is predicted due to

the fact that in Eqn. (3.40), the negative α term leads to a positive exponent and causes ρ̂(k, t, α)

not to decay.

3.6. Numerical Verification of Correction Term

To determine the validity of the prediction for the correction term shown in Eqn. (3.32),

we define a ratio between the two forms of k-space density in Eqn. (3.40) in a simple form such

that

R(k, t, α) ≡ ρ̂(k, t, 0)

ρ̂(k, t, α)
= eαk

4t. (3.41)

We can use this relation to measure α from numerical simulations. We do this by initializing

our probability distributions by fi(x, 0) = f0i (ρ̂(k, 0, α)) and then varying Lx. Our first prediction

is that ln(R(k, t)) is a linear function of t. We can find α from the time evolution of the density

through

αexp =
1

k4
d

dt
lnR(k, t) (3.42)

where we numerically calculate the temporal derivative using a finite difference method.
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Figure 3.5. The logarithm of ratio of corrected and uncorrected k space densities lnR(k, t) as a
function of discrete time steps for various values of the relaxation time τ and lattice temperature
θ = 1/3 and Lx = 200. It is observed that there is an initial offset in lnR(k, t). As the system
evolves, we see that the behavior does decay as expected. Since there is this initial offset, we cannot
use these early times when calculating the derivative in Eqn. (3.42).

To obtain R(k, t), we initialize a lattice Boltzmann simulation with an initial density of

fi(x, 0) = f0i (sin(2πx/Lx)). The numerical evaluation of Eqn. (3.41) using the numerical results

is shown in Fig. 3.5. At t = 0 we have R = 1 by construction, but for all τ 6= 1 we observe a

rapid transient change which manifests itself as a near instantaneous jump in Fig. 3.5. After this

transient period, the behavior of ln(R) is indeed linear, as expected. We then calculate

d

dt
lnR(k, t) ≈ lnR(k, t2)− lnR(k, t1)

t2 − t1
, (3.43)

where we take t1 when ρ̂(k, t, α) = 0.5 and t2 when ρ̂(k, t, α) = 0.01 to avoid any difficulties with the

offset. Eqn. (3.42) gives our correction polynomial as a function of any Fourier mode k. Using this

form, we can compare our predicted correction term in Eqn. (3.32) to a numerical representation.

Fig. 3.6 shows simulation data for d
dt [lnR(k, t)] for τ = 1 and θ = 0.1. We see a good fit for all k

modes between simulation and the prediction in Eqn. (3.42).

We first test the prediction comparing αexp in Eqn. (3.42) to our theoretical prediction for

α from Eqn. (3.32). Fig. 3.7 shows a comparison between αexp and our theoretical prediction for α

for various values of τ and θ as a function of Lx. For this analysis, we chose a known stable value
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Figure 3.6. Logarithmic representation of d
dt [lnR(k, t)] as a function of k from simulation data for

τ = 1 and θ = 0.1. Good agreement is observed between the simulation and the curve fit for up to
Lx = 200.

for either τ or θ and set the other parameter as a more extreme value. For a choice of θ = 1/3,

we set τ = 0.51 as the extreme value. In these cases, we see very good agreement between αexp

and our prediction. In the cases of θ = 1/3 with τ = 1.5 and θ = 0.9 and τ = 1 we observe good

agreement for Lx > 40, but as Lx becomes smaller, deviations begin to increase. This suggests that

there is a discrepancy in αexp for large k modes.

In the case where α = 0, it is interesting to note that the results match a 1
k6

rather than the

predicted 1
k4

fit. This implies that there are additional correction terms which may be relevant at

specific values of τ and θ. These higher-order corrections are not considered in the present analysis.

As discussed previously, Eqn. (3.40) predicts numerical instability when α < − D
π2 . The

density representation shown in Fig. 3.4 implies that this will happen as we increase τ and decrease θ

to extreme values (τ & 4 and θ . 0.3 simultaneously). A contour showing α(τ, θ)/D(τ, θ) = −1/π2,

the start of the region of instability, is shown in that figure.

It is instructive to examine α while holding either τ or θ fixed. Setting θ = 1
3 , we examine α

as a function of τ alone in Fig. 3.8, which shows excellent agreement to theory over 100 independent

k modes. We set τ = 1 and examine α as a function of θ alone in Fig. 3.9, with similarly excellent

agreement.
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Figure 3.7. Comparison of correction terms αexp (symbol) to theoretical prediction for α from Eqn.
(3.32) (solid line) for various values of θ and τ as a function of Lx. It is observed that for τ = 0.51
and θ = 1/3 that αexp matches the theoretical α well for all Lx. For sets of values τ = 1 with
θ = 0.9 and τ = 1.5 with θ = 1/3, there is a good match for Lx > 40 but deviations are observed
for small values of Lx.

Figure 3.8. Comparison of numerical results and theoretical for correction term α as a function of
the relaxation time τ , with a lattice temperature θ = 1

3 . Results are collected for Lx = 100.
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Figure 3.9. Comparison of numerical results and theoretical α of correction term as a function of
the lattice temperature θ, with relaxation time τ = 1. Results are collected over 100 independent
k modes.

3.7. Application of Correction to Reservoir diffusion

With the fourth-order correction term in hand and its correctness assured, we next deter-

mine its applicability to our reservoir coating system. Fig. 3.10 shows the absolute error profile

between lattice Boltzmann simulation results and a fourth-order corrected analytical solution. This

solution is produced by first setting up an appropriate initial step function

ρ(x, 0) =


2 , Lx < x < 3Lx

1 , x = Lx or x = 3Lx

0 , else

(3.44)

in a periodic lattice. This is entirely equivalent to the boundary conditions implied by the derivation

of the second-order error function solution in Eqn. (3.14). We transform this step function into k

space via a discrete Fourier transform, use the fourth-order correction to perform a time evolution,

and then transform the result back into real space. Strictly speaking, the method of Eqn. (3.14)

generates a continuous solution, while the Fourier transform approach yields a discrete solution.

We discuss the ramifications of this difference in the Appendix and conclude that the difference
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Figure 3.10. Absolute error profile ε between numerical and fourth-order Fourier analytical con-
centration at various relaxation times τ . All simulations were run to the same scaled time, corre-
sponding to four hours.

in solution discretization is very small and of the same order as the error produced in our best

numerical results.

We note no consistent improvement over the second-order shown in Fig. 3.3 from the

introduction of the fourth-order correction. However, the magnitude of the error, especially for

high values of τ , remains troubling. The nature of the finite simulation lattice is such that the

boundaries are treated independently of other lattice sites. In particular, the reservoir density

ρ is set manually and not strictly determined by local distributions. Since we have seen that τ -

dependent errors tend to accumulate near the reservoir boundary over an order of magnitude higher

than at the substrate boundary, the nature of using such a finite lattice is suspect. The case when

τ = 1 yielded excellent agreement throughout the finite lattice, but this is consistent with the

immediate relaxation of local equilibrium distributions and does not apply to other values of τ .

This τ -dependent error is consistent with the jump observed in Fig. 3.5, where setting

fi(x, 0) = f0i (ρ(x)) led to deviations. Indeed, Eqn. (3.21) implies that

fi = f0i − τ(∂tf
0
i (ρ) + viα∇αf0i (ρ)) +O(∂2), (3.45)
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Figure 3.11. Periodic system absolute error profile ε between numerical and second-order Fourier
analytical concentration at various relaxation times τ . All simulations were run to the same scaled
time, corresponding to four hours.

which suggests an approach that would allow us to increase the accuracy of our boundary conditions.

In our current case, however, we can avoid the cumbersome issue of the boundary condition

altogether by simply embedding the system into the periodic lattice used for establishing the initial

step function condition of the analytical Fourier solution. This permits a more standard lattice

Boltzmann approach that does not rely on manual density adjustment at the reservoir (here at

x = 3Lx) and uses symmetry to establish the substrate (at x = 4Lx) with no bounceback. With

this setup, we have removed the need for boundary conditions altogether; we therefore expect that

the τ -dependent error should be substantially reduced, especially at the reservoir boundary.

We again run two sets of simulations for our range of τ values to the same scaled time,

both using the periodically-embedded lattice simulation. The first set of simulations uses only the

traditional second-order approximation and is shown in Fig. 3.11. The second set applies our

fourth-order correction and is shown in Fig. 3.12.

As was hoped, the error at the reservoir is reduced by orders of magnitude when compared

to the finite system with imposed boundaries. This confirms that the accumulated error from the

finite system is due to the presence of boundary conditions that are only guaranteed to match at

τ = 1 when relaxation is immediate during collisions. However, contrary to expectation, there is
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Figure 3.12. Periodic system absolute error profile ε between numerical and fourth-order Fourier
analytical concentration at various relaxation times τ . All simulations were run to the same scaled
time, corresponding to four hours.

almost no benefit from the fourth-order α(τ, θ) correction, even though its validity was verified via

Fourier analysis.

It is natural at this point to wonder if there are any choices of parameters τ and θ for which

the fourth-order correction provides substantial benefit in our reservoir problem, especially since

its use in simulations incurs additional computational burden. Naturally, any such error analysis

depends heavily on the particular problem of interest, and therefore on the initial profile and desired

time evolution. For our system, we examine the parameter space 0.5 < τ ≤ 2.5 and 0.1 ≤ θ ≤ 1.0.

For each point in this space, we run a lattice Boltzmann periodic reservoir system simulation to

the same scaled time. After this time, we compute the ratio

ε ≡ ε4(τ, θ)

ε2(τ, θ)
, (3.46)

where

ε2,4 ≡

√√√√ 1

Lx

Lx∑
x=1

[ρ(x)− ρ2,4(x)]2 (3.47)

is the root mean square error between numerical concentration ρ and second- or fourth-order Fourier

analytical concentration ρ2,4. If ε ≈ 1, there is no appreciable correction from using the fourth-order
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solution; as ε → 0, the correction becomes more substantial. From a computational perspective,

there is a trade-off between the computational burden of the correction and the benefit (if any)

from using it. We do not comment on the appropriate balance for any particular situation.

Contrary to expectation, there are no regions of the given parameter space where ε <

0.9 during long times, indicating no appreciable benefit to the correction. Further, the fourth-

order analysis predicts numerical instability in the bulk region of parameter space where α <

−1/π2, although the numerical simulations and second-order analysis remain stable. This is a

surprising result overall: a fourth-order correction is not only unhelpful in increasing the accuracy

of solutions at long times, it is often worse than the second-order approximation and predicts

numerical problems incorrectly.

If we instead run the same analysis for a much shorter time (in the equivalent macroscopic

system, just 3.5 seconds), the results are more promising and shown in Fig. 3.13. For small values

of both τ and θ, the fourth-order correction increases accuracy by an order of magnitude. This is

largely due to the fact that the fourth-order theory accurately predicts some early time oscillations

at the sharp reservoir interface, as shown by the error reduction in Fig. 3.14. This discussion

of higher-order effects gives the rather surprising result that for our barrier coating application,

there is no noticeable improvement. This may also arise because even the second-order results are

accurate enough that any resulting errors are of the same order of magnitude as the difference

between continuous and discrete analytical solutions, as shown in Fig. A.1 in the Appendix.

3.8. Conclusions

In this paper we have examined whether a diffusive lattice Boltzmann method is an effective

tool for examining problems related to Fickian water diffusion in barrier coatings. This validation

was assisted by our ability to derive an analytical solution for a simple, but not trivial, coatings

problem. In Sec. 3.3 we presented a real-space solution for the water content of a dry coating

that is initially exposed to a constant moisture reservoir on the surface. A second analytical

solution in terms of Fourier components was presented in Sec. 3.5 that can be used both for the

standard Fickian diffusion case already examined in Sec. 3.3, as well as the more complex fourth-

order diffusion equation we derived as part of a higher-order hydrodynamic limit of the lattice

Boltzmann equation. The two equivalent analytical solutions differ slightly because our Fourier

series corresponds to a discrete system with only a finite number of Fourier terms.
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Figure 3.13. Error ratio ε, indicating bands comparing the second- and fourth-order Fourier solution
accuracy. All simulations were run to the same scaled time, corresponding to a macroscopic system
time of 3.5 seconds.

For a simple initial implementation of the inlet boundary, we found excellent agreement only

for a relaxation time τ = 1. Our analysis revealed that the disagreement for τ 6= 1 was caused by

assuming an equilibrium distribution as the reservoir boundary condition. Eventually we were able

to define a “perfect” boundary condition by doing away with the boundary altogether through an

embedding of the system in a large periodic system that only requires periodic boundary conditions.

Along the way of our examination, we discovered that we can indeed identify a fourth-order

accurate hydrodynamic limit of the diffusion equation. However, this higher-order correction was

found to be irrelevant for the coatings problem considered here, as we could only identify a small

region in parameter space where the fourth-order predictions were significantly more accurate. This

may act as a cautionary tale that validating a higher-order correction does not guarantee that such

predictions will always be more accurate for specific applications.
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Figure 3.14. Absolute error between numerical simulation results and second-order Fourier (circles)
and fourth-order Fourier (squares) analytical solutions. Simulation was run with relaxation time
τ = 0.55 and lattice temperature θ = 0.15 to the macroscopic equivalent time of 3.5 seconds.

However, for the best cases, the numerical solutions agree with our analytical solutions

almost as well as the two analytical solutions agree with each other, suggesting that the proposed

method is indeed an excellent candidate to be applied to coatings problems.
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4. OVERRELAXATION IN DIFFUSIVE INTEGER LATTICE

GAS3

One of the most striking draw-backs of standard lattice gas methods over lattice Boltzmann

methods is a much more limited range of transport parameters that can be achieved. It is common

for lattice Boltzmann methods to use overrelaxation to achieve arbitrarily small transport parame-

ters in the hydrodynamic equations. Here, we show that it is possible to implement overrelaxation

for integer lattice gases. For simplicity we focus here on lattice gases for the diffusion equation.

We demonstrate that adding a flipping operation to lattice gases results in a multi-relaxation time

lattice Boltzmann scheme with overrelaxation in the Boltzmann limit.

4.1. Introduction

Lattice Boltzmann methods have emerged as a highly successful numerical method for

many areas of fluid flow and beyond. However, particularly for fluctuating systems, the discrete

nature of earlier lattice gas methods seems much more appropriate, since fluctuations in nature

are directly related to the discreteness of matter. Original lattice gas approaches were inferior to

lattice Boltzmann methods in several respects. However, recent developments in integer lattice

gases by Blommel et al. [17] showed that many of the artifacts of traditional Boolean lattice gas

methods [3, 82] could be overcome by allowing for integer occupation numbers. One of the remaining

shortcomings of the integer lattice gas methods is that the resulting transport coefficients have a

more limited range than the transport coefficients that can be a achieved using lattice Boltzmann

methods. Lattice Boltzmann methods routinely use a collision operator that overrelaxes the local

distributions which allows them to achieve arbitrarily small transport coefficients. This motivated

us to further investigate the possibility of achieving overrelaxation in integer lattice gas methods.

Integer lattice gas (ILG), as developed by Blommel et al. [17] provided a template for

extending traditional lattice gas cellular automaton methods [3, 82]. Traditionally, lattice gases

3The content of this chapter for is published in “Kyle Strand and Alexander J. Wagner. Overrelaxation in a

diffusive integer lattice gas. Phys. Rev. E 105, L063301, 2022”. Kyle Strand’s contributions include developing

mathematics for flipping operator, implementing flipping operator into the integer lattice gas method, developing

code, performing analysis, and drafting and revising content appearing in this chapter.
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only allowed a single particle per lattice node, however Chopard et al. presented a scheme for multi-

particle ILG [15]. Im recent years, we have seen a reemergence of research in practical applications

of lattice gas methods [83, 84]. Blommel presented a novel way of allowing any integer number

of particles to occupy any node and be consistently re-distributed through binary collisions that

conserved both mass and momentum. Although this implementation solved issues such as Galilean

invariance which plagued lattice gas methods, it was computationally expensive thus limiting the

practical application of such a model. Seekins et al. [23], inspired by Boghosian and Chopard et

al. [34, 15, 36], presented a modification to the collision operator which, instead of following the

defined collision rules step-by-step, sampled a probability distribution to arrive at the same results

as presented in Blommel’s original model.

The success of the Seekins’ sampling collision operator in terms of computational practicality

sheds new light on what could be achieved using ILG methods. One key draw-back of lattice gas

methods is that they do not appear to allow for overrelaxation of the collision operator. Such

overrelaxation is routinely used in lattice Boltzmann methods to achieve lower transport coefficients.

This is particularly helpful for hydrodynamic simulations at high Reynolds numbers, which are

helped significantly if low viscosities are possible. The idea of overrelaxation is that instead of

local collisions moving a local distribution closer to local equilibrium the effect is to over-shoot this

approach and land beyond the equilibrium distribution. Such overrelaxation has been shown by

Bösch and Karlin to be disconnected from the standard kinetic theory domain from which lattice

Boltzmann methods are typically derived [85]. More recently Pachalieva et al. was able to show that

overrelaxation can also be obtained by a simple coarse-graining of Molecular Dynamics simulations

[86], giving a more direct link between overrelaxation and a physical system. This inspired us to

question the generally held idea that overrelaxation is not possible in lattice gas methods, and in

particular are revisiting this question for integer lattice gas methods.

In this manuscript, we present a simple and effective method which successfully performs

overrelaxation in a diffusive integer lattice gas. We extend the sampling collision operator presented

by Seekins to incorporate overrelaxation through a simple permutation of particles during the

collision. In section 4.2, we introduce the basics of the integer lattice gas method. Section 4.3

provides the necessary extensions for implementing overrelaxation in ILG methods. We derive the

Boltzmann average for the system in section 4.4 showing its correspondence with lattice Boltzmann
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methods and we show that we can derive the diffusion equation from the equation of motion for the

overrelaxed integer lattice gas. In section 4.5, we verify the validity of our refined collision operator

incorporating overrelaxation.

4.2. Integer Lattice Gas

We review here briefly the integer lattice Boltzmann method of Seekins et al. [23]. It

consists of an underlying regular lattice where neighboring lattice points are connected through

lattice velocities {vi∆t}. With each of these lattice velocities at each lattice point we associate

integer occupation numbers ni(x, t) that evolve through the lattice gas evolution equation

ni(x+ vi∆t, t+ ∆t) = ni(x, t) + Ξi({ni}). (4.1)

Here Ξi is a collision operator that redistributes the particles at each lattice site. This collision

operator is stochastic by nature and must obey all local conservation laws. In our case only mass

is conserved, so we require ∑
i

Ξi = 0. (4.2)

Seekins et al. [23] introduced a collision operator that picked a fraction ω of particles at random and

redistributed them to occupation number ni with a probability wi, where the wi are the familiar

weight functions used in the definition of lattice Boltzmann equilibrium distributions [87]. The

details of the algorithm that allows this to be done efficiently will not be discussed here, but are

detailed in the publication cited above.

For this lattice gas we can derive a lattice Boltzmann average through

fi(x, t) = 〈ni(x, t)〉, (4.3)

where the average 〈· · · 〉 implies a non-equilibrium average over all possible realizations of the

stochastic lattice gas. The same average is applied to the lattice gas collision operator to obtain

the lattice Boltzmann collision operator

Ωi = 〈Ξi〉. (4.4)
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This lattice Boltzmann collision operator was shown to be of the form

Ωi = ω(f0i − fi) (4.5)

where the local equilibrium distribution is given by

f0i (x, t) = ρ(x, t)wi (4.6)

with the local density

ρ(x, t) =
∑
i

fi(x, t). (4.7)

The resulting lattice Boltzmann equation

fi(x+ vi∆t, t+ ∆t) = fi(x, t) + ω[f0i (x, t)− fi(x, t)], (4.8)

can then be shown to have the diffusion equation as its hydrodynamic limit:

∂tρ(x, t) = ∇D∇ρ(x, t), (4.9)

where the diffusion constant is given by

D =

(
1

ω
− 1

2

)
θ, (4.10)

with

θ =
∑
i

wiv
2
i . (4.11)

In lattice Boltzmann simulations that are used as numerical methods in their own right, values of

ω ∈ {0, 2} are routinely used, but in lattice gas implementations the definition of ω as a probability

limits its range to ω ∈ {0, 1}. This limits the usefulness of lattice gas methods compared to their

lattice Boltzmann counterparts.

4.3. Overrelaxation in a Lattice Gas

The contribution of this paper is to show that it is indeed possible to construct lattice gas

methods that can access the ω ∈ {1, 2} range often used in lattice Boltzmann approaches. This is
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of interest not only for the diffusive systems considered here, but also for hydrodynamic systems,

which are the main forte of lattice Boltzmann methods. In those systems the transport coefficient

of interest is the viscosity, and obtaining low values for the viscosity is essential for simulations of

systems with high Reynolds numbers. In this manuscript we present a proof of principle that we

hope to extend to those even more important hydrodynamic LB models in the near future.

The range of ω ∈ {1, 2} is referred to as overrelaxation because the lattice Boltzmann

collision operator will overshoot the local equilibrium distribution in the relaxation process. ω = 1

corresponds to full relaxation, where the distributions reach local equilibrium in each step, and

ω < 1 implies under-relaxation. That there is a difficulty of deriving overrelaxation from, say, a

continuous Boltzmann equation was shown by Bösch et al. [85]. But aside from its obvious practical

utility it has now been shown by Pachalieva et al. [86] that overrelaxation in lattice Boltzmann

can also be obtained by coarse-graining Molecular Dynamics simulations.

As indicated by Bösch et al. overrelaxation cannot be obtained through a continuous

extension of the collision process. We propose here to augment the collision process with a flipping

operation such that

Fi(ni) = n−i. (4.12)

where we interpret negative indices such that v−i → −vi. This leads to the lattice gas evolution

equation

ni(x+ vi∆t, t+ ∆t) = Fi(ni) + Ξi({Fi(ni)}). (4.13)

Heuristically such a flipping operation will send particles back along the direction they just

came from, and it is reasonable to expect that this operation will completely suppress diffusion. It

is therefore reasonable to expect that this operation on its own will lead to something resembling

ω = 2, i.e. full overrelaxation. A closer examination of the collision operator Eqn. 4.5 shows that

this is not the full story as we will examine below.

This flipping operation is then augmented with an additional collision with a collision frac-

tion ω∗ ∈ {0, 1}. In the limiting case of ω∗ = 0, we only apply the flipping operation, leading to the

case of full overrelaxation, and the limiting case of ω∗ = 1 means that all particles are re-distributed,

making the flipping operation moot and leading to full relaxation. In the next section we will derive
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the Boltzmann limit of this augmented lattice gas and show that it indeed corresponds to a lattice

Boltzmann method with overrelaxation.

4.4. Boltzmann Approximation

We will now derive the Boltzmann average of the lattice gas including the flip operator of

Eqn. (4.13). This is most easily accomplished by separating the LB operation into a collision and a

streaming step and then transform the collision term into a moment space where the flip-operation

has a very simple interpretation. We obtain

fi(x+ vi∆t, t+ ∆t) = Fi[fi(x, t)] + ω{f0i (x, t)− Fi[fi(x, t)]}. (4.14)

Following the procedure presented by Wagner et al. [39], we transform the distribution functions

into moment space by defining a transformation matrix ma
i with which we obtain occupation

numbers in moment space

Ma =
∑
i

ma
i fi. (4.15)

The transformation matrix is orthogonal with respect to the Hermite norm defined through

∑
i

ma
iwim

b
i = δab, (4.16)

∑
a

ma
iwjm

a
j = δij . (4.17)

This allows us to obtain the fi from the Ma through

fi =
∑
a

wim
a
iMa. (4.18)

When designing a transformation matrix it is customary that the first moments should correspond to

the conserved quantities, the following moments to the hydrodynamic quantities, and the remainder

will represent so-called ghost modes, i.e. quantities that do not enter the hydrodynamic limit.
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For a simple one dimensional model with three velocities {vi} = {−1, 0, 1} (D1Q3) this

transformation matrix is written as [39]

ma
i =


1 1 1

−
√

1
θ 0

√
1
θ√

1−θ
θ −

√
θ

1−θ

√
1−θ
θ

 , (4.19)

where θ was defined in Eqn. (4.11). It is useful to give the moments Ma separate names related to

their physical significance:

Ma =


ρ

j

Π

 , (4.20)

where ρ is the particle density, j is the current density, and Π is related to the energy density

moments. A particularly nice property of this transformation matrix is that (in general) the value

of the non-conserved quantities of the equilibrium distribution in moment space are zero [49]:

Ma,0 =
∑
i

ma
i f

0
i =


ρ

0

0

 , (4.21)

We can now separate out the effect of the flipping operator and the collision process. The flipping

operator has a very simple representation in moment space:

F (Ma) =


ρ

−j

Π

 , (4.22)

and in general all even velocity moments are unaffected by the flipping operation and all odd

velocity moments acquire a negative sign. The effect of the collision is likewise simple: conserved

quantities are unaffected and non-conserved quantities are multiplied by the fraction ω. So we can
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write the effect of the collision operator in moment space as

Ma = Ma + Ωa =


0

−(1− ω)j

(1− ω)Π

 . (4.23)

This is equivalent to defining a new

ωj = 2− ω, (4.24)

so that we get the more usual

Ma =


0

(1− ωj)j

(1− ω)Π

 . (4.25)

With this we can write the lattice Boltzmann equation corresponding to the integer lattice gas with

the flipping operation as

fi(x+ vi∆t, t+ ∆t) =
∑
a

wim
a
i (1− ωa)ma

j (f
0
j − f j), (4.26)

where we introduced the ωa notation to refer to (ωρ, ωj , ω) and ωρ is arbitrary. The key result is

that this has the form of a standard MRT lattice Boltzmann equation. In the case where ωj ∈ [1, 2],

overrelaxation is observed, which achieves the primary goal of the flipping operation, F (Ma).

According to the derivation of the hydrodynamic limit of the lattice Boltzmann equation

in Eqn. (4.26) (see e.g. Kaehler et al. [60]), we obtain the diffusion equation

∂tρ = −D∇2ρ, (4.27)

in which we defined a diffusion constant

D = θ

(
1

ωj
− 1

2

)
. (4.28)
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As shown by Sorenson et al. [88], the evolution of the densities follows the diffusion equations for

features with wavelength λ ' 10π/ω. In the following we choose λ = 320 which is well in this

regime.

4.5. Results

In order to verify that this diffusive implementation does replicate Eqn. (4.27) in the

hydrodynamic limit, we analyze a system with a known analytic solution [17, 23]. We impose the

system with a sine wave as the density profile which takes the form

ρ(x, 0) = Nave

[
1 + sin

(
2πx

L

)]
. (4.29)

Here, Nave is the average number of particles which exist at each node on the lattice and L is the

size of the one-dimensional lattice. The time-evolution of this system has the analytical solution

ρ(x, t) = Nave

[
1 + sin

(
2πx

Lx

)
exp

(
−4π2Dt

L2

)]
(4.30)

= Nave +Ath(t) sin

(
2πx

L

)
, (4.31)

where we have a definition for the decay of the amplitude

Ath(t) = Nave exp

(
−4π2Dt

L2

)
. (4.32)

An issue arises due to the fact that Eqns. (4.29-4.32) are continuous, the ILG methods are

discrete by nature, and ni ∈ Z. To remedy this, we can impose our initial density profile which is

from a sinusoidal probability distribution

P (ρ) = Nave

[
1 + sin

(
2πx

L

)]
. (4.33)

This can be performed by choosing Poisson distributed random numbers for the occupation numbers

with an expectation value wiP (ρ) based on the weighting of the system [23]. This method allows

us to model continuous functions as fully integer valued which properly aligns with the discrete

nature of the ILG methods. In the same manner as Blommel, we are able to acquire the amplitude
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Figure 4.1. Decay of the amplitude of an initial sine wave with varying ωj values. ωj > 1 is in the
overrelaxed regime. We see good agreement between the measured simulation data (symbols) and
the theoretical prediction (solid lines) from Eqn. (4.32) both inside and outside the overrelaxation
regime. This data was a result of the average of 500 individual simulations on a D1Q3 lattice with
size L = 320 and Nave = 100.

of the profile at any point by

ALG(t) =

∑
x sin

(
2πx
L

)
N(x, t)∑

x sin2
(
2πx
L

) . (4.34)

This measured amplitude can then be compared to the theoretical prediction in Eqn. (4.32). We

illustrate this comparison in Figure 4.1 where we see excellent agreement between the measured

amplitudes and the theoretical prediction for the decay of the sinusoidal profile. For the values

1 < ωj < 2 in the overrelaxation regime, we find very good agreement between the measured

simulation and the theoretical prediction. The values without the flipping operation had previously

been verified by Seekins for ω ≤ 1 and are shown for completeness. It is interesting to point out

the behavior which occurs when ωj = 2. In this case, our collision probability is ω = 0. Here, the
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flipping operation is guaranteed to permute all particles back to their original position through the

collision with a probability of 1. This in combination with the streaming step will cause all the

particles in the system to continually permute which will not evolve the system at all. This data

was acquired using a D1Q3 lattice with a size of L = 320 with Nave = 100 particles per lattice

node averaged over 500 individual simulations.

4.6. Conclusions

We have presented a new method for successfully performing overrelaxation in diffusive

integer lattice gas models, which had previously been thought to be impossible. This method

introduces a simple permutation of the occupation numbers within the system to over shoot local

equilibrium. This is made possible by defining an effective collision probability which nullifies the

mathematically impossibility of utilizing probabilities greater than 1. This works in tandem with

the sampling collision operator presented by Seekins, but it is also generally possible to implement

on any collision operator. The ability to utilize overrelaxation in integer lattices gases will increase

the usefulness and practicality of the method. The example of diffusion has provided a pathway in

which we intend to develop a fully realized overrelaxed hydrodynamic integer lattice gas.
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5. CONCLUSIONS AND OUTLOOK

The motivation for the work contained in this dissertation was initially driven by a de-

sire to more effectively implement fluctuations into lattice Boltzmann methods. Although lattice

Boltzmann methods which utilized fluctuations had been studied previously, these early fluctuating

lattice Boltzmann models had theoretical shortcomings, such as requiring noise to be constant, or

requiring Fourier space, which limited practical use.

We presented a new fluctuating lattice Boltzmann model for diffusive systems which in-

cluded Poisson distributed noise with a fully decoupled fluctuation-dissipation theorem. This new

model was derived in a self-contained manner which gave density dependent noise and did not

require a transformation into Fourier space to include fluctuations to the system. Even though

this new method required a change to the moment space basis, the overall simplicity of the model

provides a strong argument for the practicality of this method.

The simplicity of the diffusive models which were utilized in fluctuating lattice Boltzmann

methods motivated interest in the practical applications for which diffusive lattice Boltzmann meth-

ods could be used. We investigated the applicability of diffusive lattice Boltzmann for fluid trans-

port through barrier coatings. It was found that a simple diffusive lattice Boltzmann model could

reproduce experimental data for such systems. The error between theory and experiment was

investigated through higher-order analysis on the equations of motion in the hydrodynamic limit

for the system. Although, the corrections which were developed through the higher-order analysis

did not significantly correct the error found in the systems, a consistent method for performing

higher-order analysis on lattice Boltzmann methods was presented.

After the presentation of Blommel’s Monte Carlo integer lattice gas, and the subsequent

development of a sampling collision operator for use in integer lattice gas, renewed interest was

found in lattice gas methods. The significant drawback of being unable to implement overrelaxation

for lattice gas model was brought to the forefront. Using these newly developed integer lattice gas

methods gave insight into the possibility of using overrelaxation in lattice gases. It was discovered

that, through a simple permutation of occupation numbers over a velocity set, overrelaxation was,
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in fact, possible in lattice gas, and we presented the first model which allows for overrelaxation in

the probabilistic integer lattice gas.

These novel developments for lattice Boltzmann and lattice gas methods have allowed for

the possibility of extending these methods for further practical application and further study. It is

of interest to continue research into the ideas presented in this manuscript.

5.1. Molecular Dynamics Lattice Gas for Diffusive Systems

The development of the Molecular Dynamics Lattice Gas (MDLG) analysis tool by Parsa et

al. allows for deriving lattice Boltzmann methods through a coarse graining process of a molecular

dynamics simulation [83, 84]. This analysis tool can gives new insight into the physical properties

of lattice Boltzmann methods. Pachalieva et al. were able to gain understanding of the physical

properties associated with overrelaxation [86] which were not previously understood. By examining

diffusive systems from molecular dynamics using MDLG, we can gain further understanding into

the behavior and construction of diffusive lattice Boltzmann and integer lattice gas methods.

5.2. Higher Order Analysis and Telegrapher’s Equation

Although diffusive lattice Boltzmann and integer lattice gas methods are simple to imple-

ment and provide good results, it has been argued by Chopard and Droz that these diffusive models

may not be modeling the diffusion equaiton, but rather the telegrapher’s equation [15]. The teleg-

rapher’s equation is similar to the diffusion equation except that there is an additional second order

temporal derivative. The telegrapher’s equation is written

∂tρ+
D

θ
∂2t ρ = D∇2ρ. (5.1)

This is a reasonable assumption since lattice Boltzmann and lattice gas methods are discrete and

must propagate information at a finite speed. This is not the case for the diffusion equation.

The second order time derivative in the telegrapher’s equation gives a finite speed for information

propagation.

As was discussed in section 3.4, we neglected second order time derivatives using the dif-

fusion equation itself by writing the temporal derivatives in terms of the spatial derivatives from

Eqns. (3.28-3.29) with

∂tρ =

(
τ − 1

2

)
∇2
αρθ +O(∇3) (5.2)
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∂2t ρ =

(
τ − 1

2

)2

∇2
α∇2

βρθ
2 +O(∇5). (5.3)

Since this is a further approximation, it is of sufficient interest to examine the diffusive lattice Boltz-

mann and integer lattice gas methods to verify if in fact these models reproduce the telegrapher’s

equation as opposed to the diffusion equation.

5.3. Overrelaxation for Integer Lattice Gases with Full Hydrodynamics.

The successful implementation of overelaxation for integer lattice gases for diffusion is of

particular interest. Utilizing overelaxation in integer lattice gases can extend the range of stable

transport coefficients in the method, which is directly related to a hydrodynamic implementation

due to the inclusion of viscous terms. The diffusive case does not contain viscous terms, so this

simple implementation serves as a proof of concept for further use of overrelaxation in the method.

Successfully implementing overrelaxation for a full hydrodynamic system could greatly expand the

usefulness and potential of integer lattice gases.
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APPENDIX

A.1. Mass and Momentum Conservation

In the previous section, the diffusion equation was derived from Eqn. (1.59) by imposing that

the only conserved quantity in the system was mass. If there is a system which includes mass and

momentum conservation, the macroscopic moments of the equilibrium distribution of Eqn. (1.43)

with fixed θ can be defined to reproduce momentum conservation. For systems which conserve

mass and momentum, the mass and momentum are defined through sums over the distribution

functions

ρ(x, t) =
∑
i

fi(x, t) (A.1)

ρ(x, t)u(x, t) =
∑
i

vifi(x, t) (A.2)

where u(x, t) is the macroscopic flow velocity. By imposing these definitions of the mass and

momentum, the definitions can be extended as moments of the equilibrium distributions such that

∑
i

f0i = ρ (A.3)

∑
i

viαf
0
i = ρuα (A.4)

∑
i

viαviβf
0
i = ρ(uαuβ + θδαβ). (A.5)

In the same manner as the diffusive case, beginning with Eqn. (1.59) and summing over all i with

the new macroscopic moments defined for mass and momentum conservation, the equation becomes

∂tρ+∂α(ρuα)−
(
τ − 1

2

)
{∂t(∂tρ+ ∂βρuβ) + ∂α [∂tρuα + ∂β(ρuαuβ + ρθδαβ)]}+O(∂3) = 0. (A.6)
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If ∂tρ + ∂α(ρuα) is iteratively substituted into itself, the first term under the τ − 1/2 will go to

O(∂3). By doing so, the equation becomes

∂tρ+ ∂α(ρuα) =

(
τ − 1

2

)
∂α [(∂tρuα + ∂β(ρuαuβ + ρθδαβ)] +O(∂3). (A.7)

At this point this mass conservation equation is in its simplest form. Now, if Eqn.(1.59) is multiplied

by an additional factor of vi and summed over i once again, a momentum conservation equation

can be found by a similar process

(∂t + viβ∂β)viβf
0
i −

(
τ − 1

2

)
(∂t + viγ∂γ)(∂t + viβ∂β)viαf

0
i +O(∂3) = Ωiviα

∂t(ρuα) + ∂β(ρuβuα + ρθδαβ) =

(
τ − 1

2

){
∂t [∂t(ρuα) + ∂β(ρuβuα + ρθδαβ)] +

∂γ

[
∂t(ρuγuα + ρθδαγ) + ∂β

∑
i

viαviβviγf
0
i

]}
+O(∂3). (A.8)

Once again, an iterative substitution of the left hand side of Eqn. (A.8) will bring the terms which

are second order under ∂t on the right hand side to O(∂3). This leaves

∂t(ρuα) + ∂β(ρuβuα + ρθδαβ) =

(
τ − 1

2

)
∂γ

[
∂t(ρuγuα + ρθδαγ) + ∂β

∑
i

viαviβviγf
0
i

]
+O(∂3).

(A.9)

If this is substituted into Eqn. (A.7), it is seen that all terms on the right hand side are of O(∂3).

With this, the equation becomes the mass conservation equation known as the continuity equation

which states

∂tρ+ ∂α(ρuα) +O(∂3) = 0. (A.10)

Now in returning to Eqn. (A.9), there is still an unknown moment which is yet to be

summed. Due to symmetry, it is expected that this third order moment should reproduce the first

order moment. With this, this unknown moment is defined as

∑
i

viαviβviγf
0
i = ρθ(uαδβγ + uβδαγ + uγδαβ). (A.11)
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Using this moment in Eqn. (A.9) yields

∂t(ρuα)+∂β(ρuβuα + ρθδαβ) =(
τ − 1

2

)
∂γ

{
∂t(ρuγuα + ρθδαγ) + ∂β [ρθ(uαδβγ + uβδαγ + uγδαβ)]

}
+O(∂3). (A.12)

Using the product rule to evaluate the derivatives on the left hand side gives the relation

∂t(ρuα) + ∂β(ρuβuα + ρθδαβ) = ∂t(ρ)uα + ρ∂tuα + ∂β(ρuβ)uα + ρuβ∂βuα + ∂βρθδαβ. (A.13)

This can be inserted into Eqn. (A.12) such that

∂t(ρ)uα + ρ∂tuα + ∂β(ρuβ)uα + ρuβ∂βuα + ∂βρθδαβ =(
τ − 1

2

)
∂γ

{
∂t(ρuγuα + ρθδαγ) + ∂β [ρθ(uαδβγ + uβδαγ + uγδαβ)]

}
+O(∂3). (A.14)

Applying the continuity equation to the left hand side, will allow for further simplification to the

form

ρ∂tuα + ρuβ∂βuα = −∂βρθδαβ+(
τ − 1

2

)
∂γ

{
∂t(ρuγuα + ρθδαγ) + ∂β [ρθ(uαδβγ + uβδαγ + uγδαβ)]

}
+O(∂3). (A.15)

The product rule can also be applied to the ∂t term on the right hand side. This becomes

∂t(ρuγuα + ρθδαγ) = ∂t(ρuγ)uα + ρuγ∂tuβ + ∂tρθδαβ. (A.16)

Using the continuity equation, these temporal derivatives can be written in terms of spatial derives.

This substitution gives

∂t(ρuγuα+ρθδαγ) = ∂β(ρuγuβ)uα+∂α(ρθδαγuα+ρuγuβ∂βuα+uγ∂γ(ρθδαγ) +∂βρuβθδαγ . (A.17)
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Now inserting this into Eqn. (A.15), after some simplification, a momentum conservation equation

can be reached as

ρ∂tuα + ρuβ∂βuα = −∂βρθδαβ +

(
τ − 1

2

)
∂γ [ρθ(∂αuβ + ∂βuα)] +O(∂3). (A.18)

This momentum conservation is an equivalent form of the Navier-Stokes equation. If the viscosity

is defined

η = ρθ

(
τ − 1

2

)
, (A.19)

a compact form can be written

ρ∂tuα + ρuβ∂βuα = −∂βρθδαβ + ∂γ [η(∂αuβ + ∂βuα)] +O(∂3). (A.20)

It has been shown that for a system which only conserves mass, the lattice Boltzmann

equation reproduces the diffusion equation. For a system in which mass and momentum are con-

served, there are two equations of motion which are reproduced: the continuity equation and the

Navier-Stokes equation. In principle, if energy was to be conserved by allowing variable θ, a third

equation of motion, the heat equation could be recovered. However, lattice Boltzmann methods

generally treat systems isothermally, so there is no energy conservation.

A.2. Moments of Poisson Distributed Random Variables

To calculate the expectation value of Eqn. (2.5) we only need to consider two distributions

at the same location, so we will drop the spatial dependence here:

〈ninj〉. (A.21)
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We need to distinguish the two cases of equal and different values for i and j. Let us first consider

i 6= j. We then get

〈ninj〉

=
∑
ninj

P (ni)P (nj)ninj

= exp(−neqi − n
eq
j )
∑
ninj

(neqi )ni(neqj )nj

ni!nj !
ninj

= exp(−neqi − n
eq
j )(neqi ∂neqi )(neqj ∂neqj )

∑
ninj

(neqi )ni(neqj )nj

ni!nj !

= exp(−neqi − n
eq
j )(neqi ∂neqi )(neqj ∂neqj )

∑
nnj

(neqi )n−nj (neqj )nj

(n− nj)!nj !

= exp(−neqi − n
eq
j )(neqi ∂neqi )(neqj ∂neqj )

∑
n

(neqi + neqj )n

n!

= exp(−neqi − n
eq
j )(neqi ∂neqi )(neqj ∂neqj ) exp(neqi + neqj )

= neqi n
eq
j

where we used the expression for the binomial formula in line

Now let us consider the case i = j. We get

〈nini〉

=
∑
ninj

P (ni)nini

= exp(−neqi )
∑
ni

(neqi )ni

ni!
nini

= exp(−neqi )(neqi ∂neqi )(neqi ∂neqi )
∑
ninj

(neqi )ni

ni!

= exp(−neqi )(neqi ∂neqi )[ni exp(neqi )]

= neqi n
eq
i + neqi

This can be summarized as

〈ninj〉 = neqi n
eq
j + neqi δij . (A.22)
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Similarly we get

〈ninjnk〉

=neqi n
eq
j n

eq
k + neqi n

eq
k δij + neqi n

eq
j δjk + neqj n

eq
k δik

+ neqi δijk (A.23)

A.3. Continuous and Discrete Solutions

The error function solution in Eqn. (3.14) solves the second-order diffusion equation with

the given boundary conditions in continuous real space (see [72] for a basic form of the derivation).

However, we later compute a solution by transforming the appropriate initial condition into Fourier

space, performing a second-order time evolution, and then transforming back into real space. This

process uses a finite number of k modes in each transform, and necessarily implies a discrete lattice

sampling of both the initial condition in real space and the time-evolved form in Fourier space. We

therefore expect a discrepancy when directly comparing the two solutions: the first is a solution

to the continuous diffusion equation that is examined at discrete lattice points for comparison to

the simulation, while the second is a sampled solution to the discrete lattice diffusion equation, the

continuous form of which would require (in theory) an infinite number of k modes to match the

continuous case.

To examine the extent to which these solution forms differ from each other, we compute

both at the same scaled four-hour time at each lattice site, and plot the absolute value of the

difference, ε, in Fig. A.1. The two solutions agree to within 10−5 of each other. Since this error

is on the order of the remaining error for the periodically-embedded simulation, we conclude that

any further correction of simulation results renders any error obscured by differences between the

discrete and continuous solutions to the diffusion equation, and is of no practical consequence.

A.4. Extension of Fourth Order Expansion to Arbitrary Order

Here we introduce the method of generalizing the fourth order expansion to arbitrary order

[89]. Beginning with Eqn. (3.21), we first recognize that this can be written as a series. We can

124



0 20 40 60 80 100
Lattice spaces

0

1e-05

2e-05

3e-05

4e-05

ε

Figure A.1. Absolute error profile ε between second-order error function and second-order Fourier
solutions to the continuous and discrete diffusion equation, respectively.

then rewrite this equation as

4∑
m=1

λm(τ)
(∂t + viα∂α)m

m!
(f0i + τFi) +O(∂5) = Ωi (A.24)

where λm(τ) are the Bernoulli polynomials for each specific order [90]. We can generalize this series

to arbitrary order by extending the limits on the sum such that

n∑
m=1

λm(τ)
(∂t + viα∂α)m

m!
(f0i + τFi) +O(∂n+1) = Ωi (A.25)

where n is the desired order of the expansion. For the sake of simplicity, we define the sum on the

left hand side as

χni ≡
n∑

m=1

λm(τ)
(∂t + viα∂α)m

m!
(f0i + τFi) +O(∂n+1). (A.26)

Now, to attain the equations of motion, we then sum both sides over all i and we are left with

∑
i

χni =
∑
i

Ωi. (A.27)
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This simple and concise form is valid for systems with a single conserved quantity, but this can

be generalized further to account for systems which require more than one conserved quantity. In

general, to acquire the equations of motion for additional conserved quantities, we multiply Eqn.

(3.21) by powers of viα which correspond to the moments in Eqns. (3.22-3.26). We can define a

product over these velocities in the form

ηc =
c∏
j=0

vjα (A.28)

with c representing the order of the moment which is required for any desired conserved quantity.

Combining these products with Eqn. (A.27), we then arrive at

∑
i

ηcχ
n
i =

∑
i

ηcΩi. (A.29)

This equation is a simple mathematical statement representing the hydrodynamic limit of any

lattice Boltzmann method to arbitrary order and conserved quantity.
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A.5. Code Sample for Fluctuating Lattice Boltzmann for Diffusion Equation

The following code sample is a simple fluctuating lattice Boltzmann simulation for modeling

the diffusion equation. The code presented is publicly available on GitHub [67]. This code requires

Wagner’s graphical user interface library for C [91].

/****************************************************************/

/* D2Q5 Fluctuating Lattice Boltzmann Simulation */

/* Diffusive System */

/* Kyle Strand: kyle.t.strand@ndsu.edu */

/* North Dakota State University */

/* 14 July 2016 */

/****************************************************************/

/* New lattice Boltzmann algorithm for fluctuating diffusion.

Requires Alexander Wagner’s Graph Library.

https://www.ndsu.edu/pubweb/~carswagn/GUI/index.html

The algorithm will follow the following methodology:

1) Forward matrix transformation

2) Collision step - Noise added here

3) Backward matrix transformation

4) Streaming step

Future edits will be added as they are completed.

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <mygraph.h>

#include <unistd.h>
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#include <time.h>

#include <complex.h>

#define xdim 100 // Number of x lattice points

#define ydim 100 // Number of y lattice points

double f[5][xdim][ydim], n[xdim][ydim];

double tau[5]={1,0.6,0.6,0.6,0.6};

double n0[2]={120,120}, theta = 1./3.;

int next = 0, Pause = 1, done = 0, repeat = 1, iterations;

//Haloing routine

void Halo() {

for (int y=0;y<ydim;y++) { // periodic boundary conditions

f[1][0][y]=f[1][xdim-2][y];

f[2][xdim-1][y]=f[2][1][y];

}

for (int x=0;x<xdim;x++) {

f[3][x][0]=f[3][x][ydim-2];

f[4][x][ydim-1]=f[4][x][1];

}

}

//Streaming routine

void Stream() {

memmove(&f[1][1][0],&f[1][0][0],(xdim-1)*ydim*sizeof(double));

memmove(&f[2][0][0],&f[2][1][0],(xdim-1)*ydim*sizeof(double));

memmove(&f[3][0][1],&f[3][0][0],(xdim*ydim-1)*sizeof(double));
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memmove(&f[4][0][0],&f[4][0][1],(xdim*ydim-1)*sizeof(double));

}

//Noise Routine

void Noise(double *M, int i, int j) {

double noise[5];

noise[0]=0;

for (int a=1; a<5; a++) {

noise[a]=sqrt(n[i][j]*12)*((double)rand()/RAND_MAX - 0.5);

M[a]=((1.-1./tau[1])*M[a]+1./tau[1]*(sqrt(2*tau[1]-1.) * noise[a]));

}

}

void init() { // Initializing Eq. Dists

iterations = 0;

for (int i = 0; i < xdim; i++) {

for (int j = 0; j < ydim; j++) {

n[i][j]=n0[0];

f[0][i][j] = n[i][j] * (1 - 2*theta);

for (int a=1; a<5; a++) f[a][i][j]=n[i][j]/2. * theta;

}

}

}

//void iteration(double m[5][5]) { // Iteration step

void iteration() {
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double M[5];

double m[5][5] = {

{1.,1.,1.,1.,1.},

{0.,sqrt(1./theta),-sqrt(1./theta),0.,0.},

{0,0,0,sqrt(1./theta),-sqrt(1./theta)},

{0,sqrt(1./(2.*theta)),sqrt(1./(2.*theta)),

-sqrt(1./(2.*theta)),-sqrt(1./(2.*theta))},

{-sqrt(2.*theta/(1.-2.*theta)),sqrt((1.-2.*theta)/(2.*theta)),

sqrt((1.-2.*theta)/(2.*theta)),sqrt((1.-2.*theta)/(2.*theta)),

sqrt((1.-2.*theta)/(2.*theta))}

}; // Transformation matrix*/

for (int i = 0; i < xdim; i++) {

for (int j = 0; j < ydim; j++) {

n[i][j] = f[0][i][j] + f[1][i][j] + f[2][i][j] + f[3][i][j] + f[4][i][j]; // Sum of Eq dists = density

for (int a=0; a<5; a++) M[a]=0;

// Forward transformation

for (int a=0; a<5; a++) {

for (int b=0; b<5; b++) {

M[a] += m[a][b] * f[b][i][j];

}

}

// call noise routine to add noise to moment space functions

Noise(M, i, j);

f[0][i][j] = f[1][i][j] = f[2][i][j] = f[3][i][j] = f[4][i][j] = 0;
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// Back transform

for (int a=0; a<5; a++) {

for (int u=0; u<5; u++) {

if (a == 0) f[a][i][j] += m[u][a] *(1-2*theta)*M[u];

else f[a][i][j] += m[u][a] * (theta/2) *M[u];

}

}

}

}

//Call halo and streaming routines

Halo();

Stream();

iterations++;

}

void GUI() {

static int Xdim = xdim;

static int Ydim = ydim; //

DefineGraphNxN_R("f0",&f[0][0][0], &Xdim, &Ydim, NULL);

DefineGraphNxN_R("f1",&f[1][0][0], &Xdim, &Ydim, NULL);

DefineGraphNxN_R("f2",&f[2][0][0], &Xdim, &Ydim, NULL);

DefineGraphNxN_R("f3",&f[3][0][0], &Xdim, &Ydim, NULL);

DefineGraphNxN_R("f4",&f[4][0][0], &Xdim, &Ydim, NULL);

DefineGraphNxN_R("n",&n[0][0], &Xdim, &Ydim, NULL);

NewGraph();

StartMenu("Fluctuating D2Q5",1);

DefineInt("Iterations",&iterations);
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StartMenu("Parameters",0);

DefineDouble("n0_x",&n0[0]);

DefineDouble("n0_y",&n0[1]);

DefineDouble("Theta",&theta);

StartMenu("Relaxation Times",0);

DefineDouble("Tau_0",&tau[0]);

DefineDouble("Tau_1",&tau[1]);

DefineDouble("Tau_2",&tau[2]);

DefineDouble("Tau_3",&tau[3]);

DefineDouble("Tau_4",&tau[4]);

EndMenu();

EndMenu();

DefineFunction("init",&init);

SetActiveGraph(0);

DefineGraph(contour2d_,"Graphs");

DefineInt("Repeat",&repeat);

DefineBool("Next",&next);

DefineBool("Pause",&Pause);

DefineBool("Close",&done);

EndMenu();

}

int main(int argc, char *argv[]) {

int newdata = 1;

int i;

init();

GUI();

while (done == 0) {
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Events(newdata);

DrawGraphs();

if (next || !Pause) {

newdata = 1;

next = 0;

for (i = 0; i < repeat; i++) {

iteration();

}

}

else sleep(1);

}

return 0;

}

133



A.6. Code Sample Implementing Flipping Operation for Overrelaxation for an Integer

Lattice Gas

The subsequent code sample is used as an example of how to practically implement the

flipping operation introduced in Sec. 4.3 which allows for over-relaxation in integer lattice gases.

Once again, this code sample uses the Wagner’s graphics library [91]. In this code, we have also

utilized GNU Scientific Library for sampling random numbers from various distributions [40].

/****************************************************************/

/* D1Q3 Diffusive Integer Lattice Gas with Flipping Operation */

/* Kyle Strand: kyle.t.strand@ndsu.edu */

/* North Dakota State University */

/* 22 March 2022 */

/****************************************************************/

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <mygraph.h>

#include <time.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

#define xdim 320

#define V 3

int n[3][xdim];

double w[3] = {2./3., 1./6., 1./6.};
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double omega = 1.;

double theta = 1./3.;

double N0 = 100.;

double rho[xdim];

int runcount = 1;

int writeamp = 0;

int iterations = 0;

int done = 0;

int Pause = 1;

int next = 0;

int repeat = 1000;

const gsl_rng_type * TYPE;

gsl_rng * RANDOM;

void CalculateDensity() {

for (int x = 0; x < xdim; x++) {

rho[x] = n[0][x] + n[1][x] + n[2][x];

}

}

void Initialize() {

iterations = 0;

for (int x = 0; x < xdim; x++) {

for (int i = 0; i < 3; i++) {

n[i][x] = gsl_ran_poisson(RANDOM, N0*w[i]*(1+sin(2.*M_PI*x/xdim)));

}

}
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CalculateDensity();

}

void WriteAmplitude() {

double Nsum = 0;

double Nave;

for (int x = 0; x < xdim; x++) {

Nsum += rho[x];

}

Nave = Nsum/xdim;

double Aexp;

double AsumNum = 0;

double AsumDen = 0;

double D = (1./omega - 0.5)*1./3.;

for (int x = 0; x < xdim; x++) {

AsumNum += sin(2.*M_PI*x/xdim)*rho[x];

AsumDen += pow(sin(2*M_PI*x/xdim),2);

}

Aexp = AsumNum/AsumDen;

//Output for specific simulation

char filename[100];

snprintf(filename,sizeof(filename),"Data/MultiRun/AmpDecayOmega%f.dat",omega);

FILE *data = fopen(filename, "a");

fprintf(data, "%i %e\n", iterations, Aexp);

fclose(data);

}

void Stream() {
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int tmp1 = n[1][xdim-1];

int tmp2 = n[2][0];

memmove(&n[1][1], &n[1][0], (xdim-1)*sizeof(int));

memmove(&n[2][0], &n[2][1], (xdim-1)*sizeof(int));

n[1][0] = tmp1;

n[2][xdim-1] = tmp2;

}

void Collision(double omegac) {

for (int x = 0; x < xdim; x++) {

int n0 = 0;

for (int i = 0; i < 3; i++) {

//pick a fraction of particles

int nl = gsl_ran_binomial(RANDOM, omegac, n[i][x]);

n[i][x] -= nl;

n0 += nl;

}

int nn[3];

gsl_ran_multinomial(RANDOM, V, n0, w, nn);

for (int i = 0; i < 3; i++) {

//add the Multinominally distributed particles back to the n[i][x]

n[i][x] += nn[i];

}

}

}

void FlipN() {

int flip[V]={0,2,1};

for (int x = 0; x < xdim; x++) {
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int nflip[V];

for (int i = 0; i < V; i++) {

nflip[i] = n[flip[i]][x];

}

for (int i = 0; i<V; i++){

n[i][x]=nflip[i];

}

}

}

void Iteration() {

double or;

int reverse=0;

if (omega>1){

reverse=1;

or=2-omega;

}

else or=omega;

if (reverse) FlipN();

Collision(or);

Stream();

if (writeamp == 1) {

WriteAmplitude();

if (iterations == 500000) {

if (runcount < 500) {

runcount++;

Initialize();

} else {
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omega += 0.25;

runcount = 1;

Initialize();

}

if (omega > 1) {

printf("All simulations complete.\n");

Pause = 1;

}

}

}

iterations++;

CalculateDensity();

}

void GUI() {

static int XDIM = xdim;

DefineGraphN_R("rho", &rho[0], &XDIM, NULL);

StartMenu("D1Q3 Diffusive LG", 1);

DefineInt("Iterations", &iterations);

DefineDouble("Omega", &omega);

DefineFunction("Initialize", &Initialize);

DefineGraph(curve2d_, "Graphs");

DefineBool("Write Amplitude", &writeamp);

DefineInt("Run Count", &runcount);

DefineInt("Repeat", &repeat);

DefineBool("Next", &next);

DefineBool("Pause", &Pause);

DefineBool("Quit", &done);
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EndMenu();

}

int main(int argc, char *argv[]) {

int newdata = 1;

gsl_rng_env_setup();

TYPE = gsl_rng_default;

RANDOM = gsl_rng_alloc(TYPE);

Initialize();

GUI();

while (done == 1) {

Events(newdata);

DrawGraphs();

if (next || !Pause) {

newdata = 1;

next = 0;

for (int i = 0; i < repeat; i++) {

Iteration();

}

}

else sleep(1);

}

}
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