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ABSTRACT 

Palmer amaranth is an invasive pigweed species, possessing rapid growth, posing a threat 

to the economy of crops including corn. Its early detection and mitigation are of utmost 

importance; however, it is visually similar to waterhemp in the early growth stages. In this study, 

automated approaches are employed to distinguish palmer amaranth from waterhemp, within two 

weeks after emergence, from their RGB images. Morphological characteristics of these weeds 

are estimated and fed to several Machine Learning (ML) models. To improve classification 

accuracy, RGB images are augmented, and a Convolutional neural network is trained on 16000 

images. Validated on images embedded with gaussian noise, it produced a better accuracy 

compared to ML approaches. Finally, YOLOv5, an object detection algorithm based on transfer 

learning, is successfully prepared. Tested on synthetic images consisting of both weeds, 

YOLOv5 successfully detected a significantly high number of palmer amaranth objects while 

also distinguishing it from waterhemp.  
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1. INTRODUCTION 

1.1. Motivation 

Palmer amaranth and waterhemp J. D. Sauer are two dioecious pigweed species [1, 2] 

which pose a severe threat to the productivity of several row crops, especially corn (Zea mays L.) 

and soybean (Glycine max (L.) Merr. [3–6]. Both these weeds are characterized by rapid growth 

under ideal growing conditions [7–10], competing with crops for essential resources namely, 

light, water, and nutrients thereby causing a drastic reduction in their yields [11–14]. However, 

palmer amaranth has shown to exhibit more aggressive growth or over 5 centimeters per day and 

up to 6 feet in 2 months [15] as compared to 3 centimeters of waterhemp [16], and up to 5 feet 

[17]. Waterhemp can produce about 250,000 seeds per plant [10] while on the other hand and 

owing to its rapid growth, palmer amaranth is more aggressive, capable of producing between 

100,000 and 500,000 seeds per plant [18]. In addition, Amaranth species seeds are very small 

and easily dispersed within and across fields using equipment in a weed-infested fields, thus 

sowing seeds in uninfested areas. As a result, palmer amaranth has been found in the Midwestern 

states since 2014 [19–21]. Palmer amaranth can reduce corn yields by 91% [11] and soybean 

yields by 79% [22] while waterhemp causes a reduction in corn yield ranging between 8 and 

36% [23] and a reduction of 43% in soybean yield [24]. Finally, palmer amaranth has developed 

resistance to various herbicide mechanisms.  

Jonathon and Christy [25] reported palmer amaranth resistant to six herbicide sites of 

action, including glyphosate. According to the study by Amit et. al. [26], palmer amaranth is one 

of the very few weeds in the United States to have evolved resistance to  herbicide groups with 

multiple mechanisms of action including 5-enol-pyruvylshikimate-3-phosphate synthase 
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inhibitors (EPSPS), microtubule assembly inhibitors, acetolactate synthase inhibitors (ALS)-, 

hydroxyphenylpyruvate dioxygenase inhibitors (HPPD) and photosystem (PS) II inhibitors [27].  

Hence, for the above reasons discussed, weed identification, management, and 

eradication in agronomic fields, especially palmer amaranth, is of paramount importance. As a 

management strategy for palmer amaranth, [26] suggested chemical control where i.e., pre-plant 

burndown should be followed by a PRE residual herbicide and one or two POST herbicide 

treatments or POST herbicide mixtures with a residual herbicide in order to minimize the 

development of palmer amaranth later in the growing season. Travis and Bill et.al. [28] reported 

that PRE corn herbicides with one or more active ingredients including atrazine, fluthiacet-

methyl, acetochlor, mesotrione, saflufenacil, alachlor, S-metolachlor, dimethenamid-P, 

flumioxazin, pyroxasulfone, or isoxaflutole can provide effective control of emerging palmer 

amaranth resistant to both glyphosate and ALS-inhibitors. Grichar et.al. [29] showed that 

atrazine, acetochlor, and flufenacet combined with isoxaflutole provided 78%, 95%, and 44% 

palmer amaranth control, respectively, 10–12 weeks after planting. HPPD inhibitors (mesotrione, 

tembotrone, and topramezone), auxin mimics (2, 4-D, dicamba, and diflufenzopyr), and PS II 

inhibitors (atrazine) are all common active components in POST herbicides. Acetochlor or S-

metolachlor mixtures with a POST herbicide serve as an effective tank-mixing option and will 

also aid in the control of palmer amaranth in the later stages of growth. The authors also 

suggested the use of cover crops and tillage as non-chemical control management strategies and 

the use of herbicide-resistant technologies namely, Enlist™ or the XtendiMax® weed control 

system to effectively control glyphosate-resistant (GR) palmer amaranth. Wiggins et.al. [30] 

assessed the effect of POST herbicides used after cover crops on the control of palmer amaranth 

and determining which pesticide and cover crop combination provided the most efficient palmer 
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amaranth control for corn growers. The study by Crow et.al. [31] evaluated the control of GR 

palmer amaranth in corn through the use of non-atrazine herbicides treatments alone and in 

combination with dicamba plus diflufenzopyr. Janak et.al. [32] evaluated the crop tolerance and 

efficacy of several preemergence herbicides applied alone and in mixtures for weed control in 

field corn. The study indicated control of palmer amaranth was at least 90% with the use of 

preemergence herbicides.  

Steckel and Sprague [33] reported a 50% reduction in corn yield when waterhemp 

emerged at the V6 [34] corn stage of growth. The efficiency of various postemergence herbicides 

in controlling triazine-resistant waterhemp was assessed by Anderson et.al. [35]. They reported 

atrazine plus bromoxynilor atrazine plus bentazon controlled less than 75% waterhemp while 

primisulfuron, 2,4-D ester, atrazine plus dicamba, dicamba, bentazon plus metribuzin, or 

dicamba plus primisulfuron controlled over 85% waterhemp. Shoup et al. [36]assessed the 

efficacy of herbicides mixtures for control protoporphyrinogen oxidase inhibitor-resistant 

waterhemp in cornThey found that all the herbicides provided 90% waterhemp control 8 WAPT 

(week after the postemergence herbicide treatment). Schuster et.al. [37] evaluated waterhemp 

control from herbicides alone or in mixtures at various timings in corn. Preemergence herbicides 

controlled waterhemp 7 to 34 days longer than the untreated control whereby strategies 

deploying multiple application timings controlled 84 to 100% waterhemp as compared to single 

herbicide treatment strategies which controlled  21 to 99 waterhemp. Waterhemp control from S-

metolachlor, atrazine, mesotrione, and bicyclopyrone mixtures sprayed PRE or POST in GR corn 

at two stages was evaluated by Amit et.al. [38]. The researchers concluded that herbicide 

mixtures applied PRE or early POST in GR corn successfully aided in thecontrol of waterhemp, 

even at lower doses, however, this pesticide should not be used late in the season to avoid 
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waterhemp interference and probable corn yield loss. A similar study was conducted by Legleiter 

et.al. [39] that aimed at determining herbicide strategies for use in conventional, GR, or 

glufosinate-resistant corn for the management of GR waterhemp. 

The above studies have been successful in the management of these weeds in their later 

stages of growth, however, at this stage, they may have already produced mature seeds that may 

have been transported to other parts of the field or to other locations. Thus, it is important to 

manage weeds in the early stages of growth i.e., within the first two weeks of emergence. An 

important step in the management of weeds is identification as palmer amaranth possesses a 

striking resemblance with waterhemp, especially in the early stages. As a result, it is difficult to 

tell them apart, leading to a possibility of misidentification. [40–43] describe the most commonly 

used morphological characteristics that aid in distinguishing palmer amaranth from waterhemp. 

These characteristics are summarized in Table 1.1 and aid in distinguishing between the two 

weeds i.e., weeks after emergence. However, in the first two weeks, they exhibit very similar 

morphological characteristics thereby making it very hard to distinguish between the two. Hence, 

This dissertation focuses on the drawbacks of the existing approaches and develops a novel 

approach for distinguishing between palmer amaranth and waterhemp in the first two weeks after 

emergence.  
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Table 1.1. Comparison between the morphological characteristics of palmer amaranth and 

waterhemp. 

Characteristic 

features 

Palmer amaranth Waterhemp 

Leaf shape Wide, oval leaves Long, slender leaves 

Petiole length Petiole i.e., the stalk that connects 

the leaf blade to the stem is longer 

in palmer amaranth 

The petiole length in waterhemp in 

shorter 

Watermark Leaves sometimes possess a V-

shaped watermark 

No presence of watermark  

Leaf-tip hair Leaves sometimes possess tiny hair 

at their tip  

No presence of leaf-tip hair 

Bracts Presence of spiny bracts (female 

plants) 

No presence of spiny bracts 

 

1.2. Research gaps 

The research gaps identified for this research are as follows. 

1. Palmer amaranth is a noxious weed posing a major threat to corn’s productivity and 

possesses an aggressive growth. It is important to identify the weed in cornfields especially in the 

early stage in order to reduce the spread of seeds to other parts of the field. It is essential to 

observe how the morphological characteristics of palmer amaranth evolve in the early stage of 

growth for successful identification. 

2. Palmer amaranth and waterhemp possess similar morphological characteristics in the 

early stages of growth. It would be interesting to see how the morphological characteristics of 

waterhemp evolve in the early stage and how different they are from palmer amaranth. 

3. Visual observation cannot aid in distinguishing between palmer amaranth and 

waterhemp, especially in the early stages due to similar morphological characteristics. Hence, 

automated approaches i.e., ML can be used to draw inferences from the morphological 

characteristics and aid in distinguishing palmer amaranth from waterhemp. 
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1.3. Research objectives 

The objectives of the research are as follows. 

1. To quantify the evolution of morphological characteristics of palmer amaranth and waterhemp 

in the early stages.  

2. To distinguish between palmer amaranth and waterhemp in the early stages.  

1.4. Dissertation organization 

  This dissertation is organized into two chapters. Chapter 1 provides a brief overview of 

the background required for the current research and lists the specific research objectives. 

Chapter 2 reviews the various ML methods used for identification of weeds in Corn. Chapter 3 

demonstrates the efficacy of ML and Deep Learning methods in distinguishing palmer amaranth 

and waterhemp within the first two weeks after emergence using a custom dataset. Chapter 4 

provides the conclusions while Chapter 5 discusses the future work. 
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2. A REVIEW OF MACHINE LEARNING TECHNIQUES FOR IDENTIFYING WEEDS 

IN CORN 

2.1. Introduction 

Corn is one of the most consumed commodities in the world including in the United 

States. The United States accounted for 26% of the world’s corn consumption during 2020-2021 

[44]. Likewise, the United States is the world’s largest corn producer, accounting for 345 million 

metric tons in 2019-2020 [44]. Corn is considered a highly productive crop because of its wide 

array of industrial and agricultural uses such as animal feeds, biofuels, and food sweeteners. 

According to the 2020 US corn usage issued by USDA (United States of Agricultural 

Department), a major proportion of the produced corn (roughly 46%) was used as animal feed 

and roughly 27% was used for biofuel production. A significant portion of the rest (roughly 

18%) was exported, the majorly to countries including Colombia, South Korea, Japan, and 

Mexico. South Korea and Japan rely on corn from the United States for their animal feed. The 

rest of the production (roughly 9%) was used in making products such as corn syrup, sweeteners, 

corn starch, cereals, and beverages. Corn-based deicing materials [46, 47], corrosion inhibitors 

[47-49], and coating materials [49–51] are recently being developed and these products can 

further expand corn usage in the domestic market. Corn being a highly productive crop plays a 

major role in the US economy The corn refining industry alone featured 47.5 billion dollars in 

economic output in the United States in 2020 according to a study conducted by Corn Refiners 

Association [52].  

One of the major challenges in achieving higher corn productivity is the control and 

management of weed growth. Weeds, in addition to competing with the corn for the nutrients 

and crop resources, introduce harmful bacteria, viruses, and other microorganisms which results 
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in significant yield loss. According to a study [53] based on the USDA-NASS (United States 

Department of Agriculture -National Agricultural Statistics Service) 2014 corn yield report, the 

interference of weeds in corn production resulted in an average 50% yield loss annually from 

2007 to 2013. In this period, weed interference resulted in an average loss of $26.7 billion 

annually in terms of economic value. Weeds are commonly controlled through the application of 

herbicides or removal through mechanical, thermal, and electrical means. Out of these two broad 

approaches, the application of herbicides is most common. However, the use of herbicides 

involves several drawbacks. Applying herbicides to the entire field is very expensive. Herbicides 

cost roughly $60 per acre which is 10% of the expected market revenue of the corn as per the 

2021 Purdue Crop Cost and Return Guide [54]. Excessive use of herbicides is also detrimental to 

soil fertility, the aquatic ecosystem, and human health. Furthermore, weeds develop resistance to 

herbicides over time. Selective spraying of herbicides would address these shortcomings and also 

cut down the cost of the herbicides. Selective spraying of herbicides or the removal of weeds 

requires precise identification of weeds. Hence, the identification of weeds plays an important 

role in the management and control of weeds. Given the scale of the problem, manual 

identification of weeds is either untenable or impractical in many situations. ML techniques are 

successfully applied for the precise identification of weeds. The use of ML techniques also made 

the automation of weed control and management possible.  

This review surveyed the various ML approaches that were applied over the years for the 

identification of weeds in cornfields. We also describe in full technical detail, the type of ML 

problem solved (classification, object detection etc.), the type of weeds identified, the type of 

data used, the type of error metrics used to evaluate the performances of these approaches. These 

ML approaches are grouped into three major categories namely, Support Vector Machines, 
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Neural Networks, and Miscellaneous. The rest of this chapter is organized as follows: Section 

2.2 explains Machine Learning; Section 2.3 discusses work corresponding to the first category, 

SVM; Section 2.4 discusses Neural Network approaches; and Section 2.5 elaborates on the 

miscellaneous ML techniques used in the past for the identification of weeds in cornfields; 

Section 2.6 explains the importance of data for the performance of the ML techniques and the 

various metrics that are used to evaluate the performance of these techniques; finally, Section 2.7 

briefly discusses the conclusion and future research directions of ML-based identification of 

weeds. 

2.2. Machine Learning 

ML is a class of Artificial Intelligence (AI) that focuses on aiding the computers in learn 

the underlying relationship between inputs and outputs from the given data and make accurate 

predictions [55]. ML algorithms employ statistical methods to learn from the exposed data 

without any explicit programming instructions [56]. The workflow of a typical ML model is as 

depicted in Fig. 1 and consists of the following phases: 

Data acquisition – gathering data (open-source datasets, sensors, etc.) 

Data pre-processing – involves cleaning the data, making the data suitable to be used by 

the model 

Dataset creation – involves splitting the data into training, validation, and testing sets  

Model training – the training set is used to train the model and the model learns 

appropriate input-output relationships 

Model testing and performance evaluation – the trained model is employed on the testing 

set and performance metrics are used to quantify the model’s accuracy 
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Model deployment – making the model available to the users via web/software 

application 

 

Fig. 1.1. Workflow of ML models. 

 

During the process of model training, the model’s performance may degrade due to 

seasonal/abrupt changes in data patterns that may occur over time, hence, the model must be 

updated, and the workflow cycle must be completed by returning to the data acquisition phase. 

Also, the parameters whose values are set before the start of a learning process i.e., 

hyperparameters need to be tuned to better the positive results achieved during the process of 

model evaluation. This is mainly done to control the overall behavior of the model. Model 

deployment has become an important element in the modern practice as it focuses on the 

production standpoint of the ML models. MLOps offer comprehensive steps and methodology to 

address the deployment aspect of the ML models. More details about MLOps can be found here 
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[57–60]. ML is split into the following categories depending on the sort of learning response 

accessible to a learning system: 

Supervised learning: Supervised learning includes training the ML algorithms with 

labeled data to perform tasks like classification or regression. Labeled datasets contain both the 

causal factors (input features) and their target responses or outcomes (output variables). The 

causal factors are the input features, and the target responses are the output variables. The 

objective of supervised learning is to identify the underlying relationship between input features 

and output variables so that they can predict the target responses for future unforeseen input 

features. Some of the applications of supervised learning in precision agriculture can be found in 

[61–63]. 

Unsupervised learning: Unsupervised ML algorithms are trained on an unlabeled dataset 

to identify patterns and structures in the given data. They are mainly used for tasks such as 

clustering and features association. K-means clustering, Principal Component Analysis (PCA), 

and Gaussian Mixture Models are popular unsupervised learning algorithms. Davis et al. [64–66] 

show some of the practical applications of unsupervised learning in precision agriculture.  

Reinforcement learning: Reinforcement learning is a paradigm of ML which involves a 

sequential decision-making process to achieve the end goal. In reinforcement learning, a 

computer agent learns to reach a defined goal optimally by navigating through the environment 

by choosing actions that yield higher rewards. SARSA, and Deep Q networks are some of the 

widely used algorithms for reinforcement learning. The application of reinforcement learning in 

precision agriculture can be found here [67–69] 

In the following three sections, we provide a brief introduction of popular ML methods 

and extensively analyze the use of these methods for identification of weeds in corn. 
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2.3. Support Vector Machines 

Support Vector Machines (SVMs) is a non-heuristic classification method that was 

initially introduced as a linear classifier by Vapnik and Chervonenkis in 1963 [70]. SVMs 

construct hyperplanes to classify the given data set. The most defining aspect of it is it tends to 

identify a hyperplane that maximizes the margin between the support vectors. The support 

vectors are planes that pass through the nearest data points of the individual classes. This 

maximization of margin leads to a reduction in the generalization error. SVMs can use two types 

of margins: hard margin and soft margin. Hard margin is employed when the given data is 

linearly separable and noiseless. However, the use of a hard margin often leads to the overfitting 

of the data so, the soft margin is used to improve the generalization of the noisy data set. In the 

soft margin approach, overlapping data points are weighed down to allow slack in the 

classification. Cortes and Vapnik [71] introduced the soft margin approach in 1995 and 

successfully applied it to recognize handwritten images. In 1992, Boser et al [72] further 

developed SVMs to solve non-linear classification problems using an approach called ‘Kernel 

Trick’. Kernel trick maps the inputs into a higher dimensional space so that it becomes separable 

by linear hyperplanes. SVMs are also extended to solve regression and multi-class classification 

problems [72, 73]. SVMs have now become a highly dependable tool for digital image 

classification, text categorization, character recognition, and many other AI-related tasks. Some 

of its recent advancements in SVMs can be found in [74-82]. 

SVMs are popularly used for the identification of weeds [84, 85]. Karimi et al. [61] 

evaluated the application of SVM for the detection of weed and nitrogen stress in corn. The 

weeds involved in the study were dominant grassy weeds namely, crabgrass (Digitaria 

ischaemum Schreb.), barnyardgrass (Echinochloa crusgalli (L.) P.Beauv.),  yellow nutsedge 

https://en.wikipedia.org/wiki/Carolus_Linnaeus
https://en.wikipedia.org/wiki/P.Beauv.
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(Cyperus esculenthus L. ), and dominant broad-leaves namely, common lambsquarters 

(Chenopodium album L.), canada thistle (Cirsium arvensis (L.) Scop.), redroot pigweed 

(Amaranthus retroflexus L.) and sow thistle (Sonchus oleraceus L.). The data contains 72 narrow 

bands ranging between 408.73 and 947.07 nm. The major factor considered was weed treatment 

while the sub-factors were three nitrogen application rates. The classification accuracy of the 

employed SVM model with RBF kernel yielded an accuracy of 69.2% when the nitrogen rates 

and weed infestation levels were combined, interestingly when the weed control and nitrogen 

rates are considered separately the classification accuracy was improved to be more than 80%. 

Wu and Wen [86] investigated SVM as a classifier to identify corn and weed seedlings 

with the use of texture features. The weeds were chinese sprangletop (Leptochloa chinensis (L.) 

Nees), yerbadetajo (Ecliptaprostrata L.), rice galingale (Cyperus iria L.), and copperleaf 

(Acalypha australis L.). The dataset comprising 66 color images (30 images of corn and 36 

images of weeds respectively) was transformed to gray-level following which their statistical 

properties were obtained from their histograms. These, along with GLCM were used to extract 

the following texture features: smoothness (R); mean (m); entropy (e); third moment (µ3); 

contrast (F1); energy (F2); homogeneity (F3); and correlation (F4); uniformity (u) and standard 

deviation (s). The features were replaced by their means i.e., mean of contrast (f1), mean of 

energy (f2), mean of homogeneity (f3), and mean of correlation (f4). 60% of the data was used to 

train the SVM while the remaining 40% was used for testing it. SVM with the following features 

as input vectors yielded the following results: 92.59% testing accuracy for F4 (consisting of f1, 

f2, f3, and f4) as input vector; 92.31% testing accuracy for F6 (consisting of m, s, R, m3, u and 

e); 100% testing accuracy for F8 (features selected by PCA, not mentioned) and 100% testing 

accuracy for F10 (all texture features). When the SVM was input with F8 as the input vector and 
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compared with a BP network, the results showed that the SVM with an accuracy of 100% 

outperformed the BP network that could only produce an accuracy of 80%.  

In a later study, Wu et al. [87] demonstrated the use of shape features as SVM inputs for 

the classification of corn and weed seedlings. The dataset consisted of 64 RGB images (40 used 

for training and 24 used for testing). The specific number of images of corn and weeds was not 

mentioned. The authors transformed the RGB images to HIS space, citing the images had better 

features in HIS space than in an RGB space as the reason. From these images, the following leaf 

shape parameters were obtained: R; M; L, and Roundness. These parameters were input to the 

SVM with three different kernel functions namely, RBF, sigmoid and polynomial. The 

classification accuracies read: 96.50% for RBF-SVM; 67.67% for sigmoid-SVM; 90.00% for 

polynomial-SVM and 83.20% for ANN (Artificial Neural Network) respectively.  

Ahmed et al. [88] demonstrated a texture-based weed classification in which LBP was 

used to obtain textural features. Broadleaf and grassy categories of weeds were studied. For the 

dataset consisting of 200 color images (100 of each category), ten-fold cross-validation was 

performed, and the dataset was randomly partitioned into 10 subsets where one of them was used 

for testing and the remaining nine for training. The LBP operator was used to compute the LBP 

code for each pixel of the input image thereby resulting in the formation of an encoded 

representation of the image. With the use of this, a histogram was obtained and used as the 

feature vector, this feature vector represented the image’s texture information. SVM with RBF 

kernel was used for classification and produced a classification accuracy of 98.5%. 

The study by Wong et al. [89] aimed at classifying weed seedlings using a multi-class 

SVM that produces the best probabilistic output. GA was used to select the features and fine-tune 

the classifier parameters, followed by which SVMs were used for classification purposes. The 
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weeds involved in the study were: chamber bitter (Phylanthus Urinuria L.); goatweed 

(Agerantum Conyzoides L.); palmer amaranth, and other dicotyledonous and monocotyledonous 

weeds. Three SVMs were trained to distinguish monocotyledonous weeds, goatweed and palmer 

amaranth from other weeds. The following features were selected: single-leaf/overall leaf shape; 

elliptical Fourier descriptors; regional shape parameters; fractal; Hu moment invariants; skeleton 

stats; boundary to the centroid; area, and color stats. The data consisting of 400 feature rows 

were divided into training and verification data in the ratio of 50:50 following which the SVMs 

were both trained and verified on it. The GA-optimized SVMs were then tested with 

unseen/external data consisting of 240 datasets in which 100 belonged to palmer amaranth and 

another 100 belonged to other weeds (no mention of what the remaining 40 belonged to). The 

population size was equal to 100 and the GA was set in such a way that it would stop when the 

best fitness does not exceed 40 generations. The dataset used for testing the classification 

consisted of image samples of weeds belonging to ten species. 450 images were used for testing 

purposes, and it was observed that all of the categories had a high true positive value of 100%.  

In work that deals with automatic spraying control, Siddiqui et al. [62], a system was 

developed for weed classification using wavelet transform, SWLDA, and SVMs. 46 wavelets 

belonging to six wavelet families were tested and decomposed up to four levels. The wavelet 

families included the biorthogonal wavelet family with 10 sub-wavelets, Symlet wavelet family 

with 10 sub-wavelets, Coiflet wavelet family with 5 sub-wavelets, reverse biorthogonal wavelet 

family with 10 sub-wavelets, Daubechies wavelet family with 10 sub-wavelets, and discrete 

Meyer wavelet family. The most meaningful features (not mentioned) were extracted using 

SWLDA. Finally, these features were fed to the SVMs for classification (into two categories: 

weeds with narrow leaves and weeds broad leaves respectively). The authors also included a pre-
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processing step that eliminated lighting effects thereby ensuring high accuracies in rea1-life 

scenarios. The data collected consisted of 1200 RGB images (500 each from narrow and broad 

categories respectively and 200 from an unknown category) which then underwent 

decomposition using the wavelets families before SWLDA extracted the most relevant features 

(not mentioned). The training set consisted of 600 images comprising 250 images of broad 

leaves, 250 of narrow leaves, and 100 of unknown, and cross-validation was also done. The 

testing set consisted of the other 600 images comprising of 250 broad leaves, 250 of narrow, and 

100 of unknown. The confusion matrix was used as the performance metric and the best result 

was given by Symlet-SWLDA-SVM (98.1% classification accuracy). The results for the 

wavelets were: biorthogonal (classification accuracy of 95.66%); Coiflet (classification accuracy 

of 94.66%); reverse biorthogonal (classification accuracy of 95.33%); Daubechies (classification 

accuracy of 95.0%), and discrete Meyer (classification accuracy of 93.33%).  

Another texture-based classification of weed and crop was demonstrated by Athani and 

Tejeshwar in their work [90]. The texture features involved in the study were entropy, mean, 

intensity, smoothness, uniformity, standard deviation, and third moment. Along with texture 

features, color features and shape features (region descriptors and boundary descriptors) were 

also considered. SVM was used for classification on a dataset consisting of 1000 color images 

(500 of maize and 500 of weed (the type/species of weed was not mentioned) and k-fold cross-

validation was used too. From this dataset, 450 images of each category were used for training 

while 50 from each were used for testing. The results showed that the accuracy of prediction for 

the SVM was 82%. 

Another use of shape features for crop and weed classification was demonstrated by 

Satvini [91]. The following shape features were involved in the study: eccentricity; area; major 
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axis length; perimeter, and minor axis length. Para grass (Brachiaria mutica (Forssk.) Stapf), 

Chrysanthemum, (Chrysanthemum indicum L.)and nutsedge were the weeds involved in this 

study. SVM (with RBF and polynomial functions) was used for classification purposes. 2560 

images comprised the dataset out of which, 1155 images of each class (weed and crop) were 

used for training purposes while 125 images of each class were used to validate the trained 

model. The performance of the SVM was as follows: correctly classified all 125 images of the 

crop as crop; correctly classified 104 out of 125 weed images of weed as weed and misclassified 

the remaining 21 as a crop. Table 2.1 summarizes all the above works that employed SVMs for 

the identification of weeds. 

Table 2.1. Summary of studies that employed SVMs for the identification of weeds. 

Study Research 

problem 

Dataset Accuracy 

[61] 

 

Detection of 

weed and 

nitrogen stress 

in corn  

 

 

20 data points of 9 treatments 

consisting of 4 replicates 

thereby resulting in a data set of 

720 entries. 50% of the data was 

used for training purposes while 

the remaining 50% was used for 

testing. 

 

Hardware used: A Compact 

Airborne Spectrographic Imager 

10-fold cross-validation used 

(testing data set).  

SVM: 66% to 76% for 

combined weed and nitrogen 

application rates.  

73% to 83% accuracy 83% to 

93% accuracy respectively for 

weed and nitrogen treatments 

separately.  

 

[86] Classification of 

weed and corn 

seedlings using 

textural features 

 

66 color images (30 corn 

seedlings, 36 weed images). 

60% used for training, 40% for 

testing 

 

Hardware used: A digital 

camera (resolution of 640x480 

pixels). 

SVM with different feature 

selections produced 92.31 to 

100%. 
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Table 2.1. Summary of studies that employed SVMs for the identification of weeds (continued). 

Study Research 

problem 

Dataset Accuracy 

[87] 

 

Using shape 

parameters to 

identify 

corn/weed 

seedling in fields  

 

64 color images (40-training 

set, 24-testing set) 

 

Hardware used: A digital 

camera (resolution of 640x480 

pixels).  

SVM (Sigmoid-96.5%, RBF-

67.67% and Polynomial-90% 

respectively)  

[88] 

 

Studying Local 

Binary Pattern 

for Automated 

Weed 

Classification  

 

200 images (100 each of 

broadleaf and grass 

respectively). Dataset is 

divided into 10 subsets. 1 

subset used as the testing set 

and 9 subsets for training. 

 

Hardware used: A digital 

camera (resolution 1200 x 768 

pixels) 

SVM: 98.5% 

 

 

[89] 

 

Categorize weed 

seedlings into 

groups for spot 

spraying and 

weed scouting 

400 features rows for training 

and verification. 240 external 

data sets were used for testing 

(100 data of palmer amaranth 

and 100 of other weeds).  

 

Weed species: chamber bitter, 

goatweed, palmer amaranth, 

and other weeds (dicotyledon 

and monocotyledon) 

 

Hardware used: Logitech 

c6I5 Webcam (resolution of 

1920 x 1050 pixels)  

SVM: True positive true value 

for all the groups (100%); for 

second variant group for 

goatweed (66.7%).  
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Table 2.1. Summary of studies that employed SVMs for the identification of weeds (continued). 

Study Research 

problem 

Dataset Accuracy 

[62] Classifying 

weed images 

using Wavelet 

Transform 

1200 images (500 of broad 

category, 500 of narrow 

category, and 200 of unknown 

category respectively). 

Training: 600 images (250 of 

broad leaves, 250 of narrow 

and 100 unknown weeds).  

Testing: Remaining 600 

images (250 images of broad 

leaves, 250 of narrow and 100 

unknown weeds). 

 

Hardware used: Not 

mentioned 

Symlet wavelet family: 98.1%  

[90] 

 

Classification of 

maize and weed 

 

 

1000 images (500 of crop, 500 

of weed). 450 of each were 

used for Training, 100 for 

Testing.  

 

Hardware used: Not 

mentioned 

82% 

 

[91] 

 

Performance 

comparison of 

algorithms used 

for identifying 

weeds 

 

 

2560 images. 1155 of each 

class (weed and crop) used for 

training and 125 images per 

class used to validate the 

trained model. 

 

Hardware used: A 10 MP 

digital camera 

SVM: 100% for crop and 83.2% 

for weed 

 

 

 

 

 

 

2.4. Neural networks 

Convolutional Neural Networks (CNNs) are a class of deep neural networks used for 

object/ image recognition, classification, and many other computer vision tasks. It mimics the 

visual cortex of the human brain in recognizing visual patterns and learning the important 

features and spatial connections in the images with the least amount of preprocessing possible. 
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Hubel and Weisel [92] 1962 discovered that complex cells in the visual cortex achieve spatial 

invariance by summing the output of different simple receptive cells. Inspired by their work, 

Fukishma [93] proposed the first-ever visual recognition model called “neocognitron”. The 

proposed neocognitron model consisted of two preprocessing layers called ‘S’(Simple) cells and 

‘C’(complex) cells mirroring the discovery of Hubel and Weisel. Waibel [94] developed a 

convolutional-like neural network called Time Delay Neural Networks (TDNN) in 1987 to 

achieve shift-invariance in the temporal dimension [95]. However, the CNN in its present form is 

first introduced by Lecunn et. al. [96] in 1998. The proposed convolutional neural network called 

‘LeNet-5’ was successfully applied to classify hand-written digital images. The convolutional 

block of LeNet-5 consisted of feature maps called ‘kernels’ or ‘filters’ and pooling layers. Even 

though LeNet-5 initiated a promising paradigm for computer vision, the non-availability of 

higher computational units and large image databases dampened its progress. But in 2012, 

Krizhevsky et al [97] were able to successfully scale up the LeNet to a deeper and broader 

network with a larger image database (Imagenet) and with the use of GPUs. Since then, many 

advanced neural networks have been developed, such as VGGNet [98], GoogLeNet [99], and 

ResNets [100].  

CNNs, in general consist of two blocks: 1. Convolutional block and 2. Fully connected 

neural network block. The convolutional block extracts important features and spatial 

connections from the images with minimal computation. Images are usually represented in the 

form of 2-D pixel matrices with multiple channels, for instance, an RGB image has 3 channels of 

2-D pixel matrices. These image input matrices are first operated upon by a convolutional block, 

and the extracted information is flattened into a single column feature vector. This flattened 

feature vector is then fed into a fully connected neural network and trained using a 
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backpropagation algorithm. In the convolutional block, image matrices are first subjected to 

convolution, followed by pooling. Convolution is mainly performed for feature extraction, and it 

is done using filters or kernels in the form of matrices. Kernel matrices are of a considerably 

smaller dimension and are chosen appropriately based on the nature of the problem. Convolved 

features are obtained by taking Hadamard product between the image and the kernel matrices. As 

the kernel matrices of smaller dimensions compared to image matrices, convolved features are 

generated by sliding the kernel matrices from left to right and top to bottom and taking the 

Hadamard product at each position of the kernel matrix on the image matrix.  The sliding of the 

kernel matrix is defined in terms of ‘strides’; for example, a stride of 1 allows the kernel filter to 

shift one column left and one row down. In addition to striding, convolution also involves 

padding, which adds additional rows and columns of zeros to the input matrices so that the pixel 

information present in the edges of image matrices is not lost.  The features extracted from 

convolution are sensitive to the location, and to achieve a translation invariance (less sensitive to 

the location) of these features, a down sampling operation called ‘pooling’ is carried out. Like 

the kernel filter, the pooling filter is also of smaller size compared to the feature maps. The size 

of the feature maps is usually halved when using pooling filters. For example, the size of 4×4 

will be converted to 2×2. Max pooling and average pooling include the two most common types 

of pooling filters used in CNN. Average pooling involves the extraction of the average value of 

map features, whereas max-pooling extracts the maximum value. The choice of pooling depends 

upon the nature of the given data. Average pooling tends to smoothen the image, whereas max-

pooling tends to brighten or select bright pixels from the image. After pooling, a fully connected 

layer is formed as a single column vector for each example and fed into the neural networks, and, 
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trained using a backpropagation algorithm. For classification problems, CNNs commonly use 

ReLU, eLU, and tanH for hidden layers and SoftMax activation functions for the output layer.  

Moshou et al. [101] proposed a new neural network architecture, SOM where the neurons 

are associated with local linear mappings for the classification of crop and weed from their near-

infrared reflectance spectra which were obtained with the help of an imaging spectrograph. The 

dataset consisted of 88 corn samples, 77 samples of the buttercup (Ranunculus repens L.), 79 

samples of Canada thistle (Cirsium arvense (L.) Scop.), 75 samples of charlock (Sinapis arvensis 

L.), 73 samples of chickweed (Stellaria media (L.) Vill.), 76 samples of dandelion (Tarraxacum 

officinale (L.) Webber), 80 samples of meadow grass (Poa annua L.), 78 samples of redshank 

(Poligonum persicaria L.), 75 samples of stinging nettle (Urtica dioica L.), 78 samples of wood 

sorrel (Onalis europaea L.) and 75 samples of yellow trefoil (Medicago lupulina L.) resulting in 

a dataset of 766 and 88 reflectance spectra for weed and corn respectively. A separability index 

was used to obtain five principal components and the following wavelengths: 539; 540; 542; 

545; 549; 557; 565; 578; 585; 596; 605; 639; 675; 687; 703; 814, and 840. Cross-validation 

divided the data into 10 equal sets and the neural network was trained and tested with 90% and 

10% of the data respectively for all the 10 sets. The classification accuracy (obtained by 

averaging the classification rates for all the test sets) was 96% for corn and 90% for weeds. The 

network also fared better when compared with other classifiers such as PNN (classification 

accuracy of 85% for corn and 77% for weeds), Multi-layer Perceptron (95% and 70% for corn 

and weed respectively), SOM (85% and 77% for corn and weeds, respectively), and Linear 

Vector Quantization (85% and 77% for corn and weeds, respectively). 

The work by Yang et al. [102] demonstrated an approach to classifying weeds in 

cornfields using ANN. The weeds studied in this work were: common lambsquarters; yellow 
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nutsedge; quackgrass, (Agropyron repens L.), and velvetleaf (Abutilon theophrasti Medik.). The 

original images (number/size not mentioned) were rotated by 90, 180, and 270 degrees, 

respectively thereby resulting in a larger dataset comprising 1,736 color images of corn, 772 of 

velvetleaf, 672 of quackgrass, 752 of common lambsquarters, and 1480 of yellow nutsedge. The 

greenness method was used to extract green content from the images followed by which the 

images were converted to grayscale images. Cross-validation was only supposed to be used when 

it was learned that the ANN was found to not be getting thorough training in the first case. ANN 

performed the best for corn with a recognition rate of 100%. The results for the weeds were: 

velvetleaf (92%); quackgrass (62%), and yellow nutsedge (80%).  

The work by Wu et al. [86] was also an earlier mentioned one that deals with the 

classification of weeds and corn seedlings using textural features. The same author demonstrated 

other research, Wu et al. [103] based on wavelet features and fractal dimensions aiming at the 

classification of weed and corn. The weeds studied were the monocotyledonous weeds 

(goosegrass and rice galingale) and the dicotyledonous weeds (copperleaf, common carpesium 

(Carpesium abrotanoides L.), and yerbadetajo). The dataset consisted of 84 digital color images 

(35 of corn and 49 of weed). These images were then converted to gray-level images with the use 

of the color index, ExG – ExR followed by which wavelet transform was used to extract features. 

Two-level wavelet transform was performed to extract the following components: approximation 

component; A2; detail components namely, H1, V1, D1, H2, V2, D2, and energy values namely, 

eA2, eH1 eV1 eD1 eH2, and eD2. These energy values were then input to a BP network which 

was able to separate the weeds species with an accuracy of 100% but not the corn and weeds. 

When the energy features were used as input vectors, it resulted in a classification accuracy of 

77.14%, whereas when the fractal dimensions of the images were used, it resulted in a 
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classification accuracy of 80%. Interestingly, when both the fractional dimensions and energy 

features were input to the network, they obtained an improved classification accuracy of 94.28%. 

The same author also demonstrated another application of the BP network in the identification of 

weeds and has been mentioned earlier, Wu et al. [87]. The work used shape parameters to 

accomplish this. 

Chen et al. [104] proposed a method to classify monocotyledonous and dicotyledonous 

weeds (species not mentioned) in a corn seedling using shape features. The dataset used for the 

task included 60 images of corn and 280 images of weeds, the nature or format (RGB or 

grayscale) of the image was not mentioned. The background was removed using Otsu’s threshold 

based on the Excess green method. 20 images of corn and 80 of weed were used for training a 

PNN while 40 images of corn and 200 of weed were used for testing purposes. The PNN made 

use of the following shape features: area ratio; aspect ratio; eccentricity, and roundness. From the 

confusion matrix, it was evident that 37 images of corn and 190 of weed were correctly 

classified, resulting in an accuracy of 92.5% for corn and 95% for weeds. The authors cited the 

time of image gathering as a possible reason for the misclassification i.e., gathering of images in 

the early stages of growth could have yielded better results. The performance of the PNN when 

compared with that of a BP network trained and tested on the same dataset, remained superior as 

the BP network could only yield accuracies of 87.5% and 93% respectively for corn and weeds.  

Another wavelet-based application was demonstrated by Sajad et al. [105] where wavelet 

analysis using a two-dimensional DWT extracted the appropriate features for classification 

(identifying weed in corn) using an ANN. The dataset consisted of 35 corn images and 50 weed 

images. The weeds involved in the study were: common lambsquarters; camelthorne (Alhagi 

maurorum Medik.); field bindweed (Convolvulus arvensis L.), and Amaranthus sp. For training 
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purposes, 20 corn and 30 weed images respectively were used while for testing purposes, 15 corn 

and 20 weed images were used. The images were segmented using Excess green index followed 

by which DWT was used to extract the following features: energy; entropy; inertia; contrast, and 

local homogeneity. The ANN produced a classification accuracy of 98.8%.  

Andrea et al. [63] demonstrated the use of CNNs for maize and weed (the types/species 

of weed were not mentioned) classification. The CNN architectures used were AlexNet, sent, 

cNet, and LeNet, and their performances were analyzed. The dataset consisted of 2835 RGB 

images of maize and 800 of weed. These images were segmented through Otsu’s thresholding to 

remove the unwanted elements like soil and other non-plants elements thereby separating the 

plant i.e., the target object from the background. To reduce overfitting and improve precision, the 

images were rotated every 30 degrees thereby resulting in an increased dataset of 34020 images 

of maize and 10560 images of weed. 25965 images of maize and 8560 of weed were used for 

training while 8325 of maize and 2000 of weed were used for validation purposes. When the 

training performances of all four CNN architectures were compared, cNet gave the best 

performance with an accuracy of 96.40%. Further, when cNets with 64 filters and 16 filters, 

respectively, were compared with each other, cNet with 16 filters gave a superior performance of 

97.26%. Another dataset (information not mentioned) consisting of 202 images of maize and 202 

images of weeds was used for testing purposes. The performances of both the cNets were 

compared on the following hardware: CPU; CPU with Raspberry Pi 3, and GPU. cNet with 16 

filters gave the best accuracy of 92.08% for maize and 89.11% for weeds, respectively, and an 

average classification time of 1.58 milliseconds for GPU. It gave exactly similar accuracies for 

the other two hardware too.  
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Another application of CNN was demonstrated by Dellia et al. [106] where CNN was 

used to discriminate i.e., object detection between weeds and maize using the context 

surrounding the images. The weeds studied were grass (foxtail) and grass-like (yellow nutsedge). 

224 aerial images of maize fields comprised the dataset which was divided into three categories: 

training (158); validation (33), and testing (33). The next step was to split the images into smaller 

ones of size 300 x 300 pixels by placing a grid of 300 x 300 pixels over the larger images. This 

was followed by manually labeling them as weed and non-weed thereby resulting in 8 times 

more images of non-weed than weed. Therefore, a data augmentation technique (not mentioned) 

was used to augment the existing weed images (number not mentioned). The dataset was then re-

split into training, validation, and testing respectively. Based on the idea of adding context 

(adding a 300-pixel border to the surrounding of the central square image of 300 × 300 pixels), 

two more datasets were created namely, a dataset consisting of rectangular images with full-

stretched context and a dataset consisting of square images with edge-stretched context. While 

the former was created by looking at the central image of 300  300 pixels and stretching any of 

its sides that did not possess a border of 300 pixels to the edge of the full-sized image, the latter 

was created by stretching the sides to 300 pixels only. Therefore, the former comprised 

rectangular images while the latter comprised square images. CNNs were implemented 3 times 

on each of the 3 datasets and each set of the three runs was averaged and their validation 

accuracies were compared. The results read: validation accuracy of 94.6% for no context; 97.1% 

for edge-stretched, and 96.3% full-stretched respectively. The best performing model was the 

edge-stretched context model which was tested on the test dataset and its performance was 

compared with the no-context model. The results read: accuracy (92.9% for no-context model 

and 95.7% for edge-stretched context model); precision (61.9% for no-context model and 75.5% 
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for edge-stretched context model), and recall (88.5% for no-context model and 88.6% for edge-

stretched context model). Heatmaps of the original drone images were created using the trained 

model following which the ES-context model was subject to a comparison with a human baseline 

(created by the Turkers drawing boxes around all the weeds detected by them in the image). A 

comparison was made between these responses and the heat maps created by the CNN. It was 

observed that the CNN could detect 150% more weed patches than the Turkers.  

Drymann et al. [107] demonstrated a pixel-wise classification of crops and weeds by 

using a CNN which is a modified version of VGG16. The crop involved in the study was maize 

and the type/species of weed were not mentioned but it was stated that the weeds belonged to 23 

different species. By randomly placing segmented plants on top of soil images, simulated field 

images were created and used for training a fully convolutional neural network. Ground truth 

segmented images where each pixel is labeled as a weed (marked as blue), soil (marked as red), 

or plant (marked as green) were used for creating simulated images. 8340 and 301 images of the 

segmented plants and soil respectively were used for generating modeled images. Training data 

was generated by using 80% of the plants' images while testing data was generated by using the 

remaining 20%. The images were then resized to 800  800 pixels thereby resulting in a dataset 

of 3463 images for training and 123 for verification. The performance of this plant segmented 

method was evaluated on 2 real images which were segmented by hand, one gathered in a 

healthy maize field, where the plant overlap is little and, another from a maize field possessing 

smaller maize plants and a higher weed coverage. For both the images, the algorithm 

successfully detected both the crop and weeds, with the classification accuracy for the first image 

being 98.3% and for the second, being 94.4%. Citing that this accuracy does not consider that 

there are a lot more soil pixels than that of crop or weed, the authors considered a metric, IOU, 
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for each class.  For the first image, IOU was 0.93, 0.98, and 0.79 for the crop, soil, and weeds, 

respectively, and for the second image, IOU was 0.71, 0.93, and 0.70 for the crop, soil, and 

weeds, respectively. Table 2.2 summarizes all the above works that employed neural networks 

for the identification of weeds. 

Table 2.2. Summaries of studies that employed Neural networks for the identification of weeds. 

Study Research 

problem 

Dataset Accuracy 

[101] 

 

A plant classifier 

based on neural 

networks 

88 corn samples, 77 samples of 

the buttercup, 79 samples of 

canada thistle, 75 samples of 

charlock, 73 samples of 

chickweed, 76 samples of 

dandelion, 80 samples of 

meadow grass, 78 samples of 

redshank, 75 samples of 

stinging nettle, 78 samples of 

wood sorrel, and 75 samples of 

yellow trefoil. 

 

Hardware used: Not 

mentioned 

PNN: 93% accuracy for corn and 

85% for weed, Multi-layer 

Perceptron: 96% for corn and 

71% for weed,  

SOM: 89% for corn and 77% for 

weed, 

Linear Vector Quantization: 

92% for corn and 84% for weed. 

 

[102] 

 

Identifying 

weeds in corn 

fields using 

ANN 

 

1,736 color images of corn, 

772 of velvetleaf, 672 of 

quackgrass, 752 of common 

lambsquarters, and 1480 of 

yellow nutsedge. 

 

Hardware used: A digital 

camera (Kodak DC50) 

ANN gave accuracies of 100% 

for corn, 92% for velvetleaf, 

62% for quackgrass and 80% for 

yellow nutsedge.  

[86] 

 

Using textural 

features for 

classification of 

weeds corn   

 

66 color images (30 corn 

seedlings, 36 weed images). 

60% used for training, 40% for 

testing 

 

Hardware used: A digital 

camera (resolution of 640 × 

480 pixels). 

SVM with different feature 

selections produced 92.31 to 

100%. 

 

BP: 80% 
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Table 2.2. Summaries of studies that employed Neural networks for the identification of weeds 

(continued). 

Study Research 

problem 

Dataset Accuracy 

[103] 

 

Identifying weed 

or corn using 

wavelet features 

and fractal 

dimension 

35 images of corn and 49 of 

weed. Training: 49 images (20 

images of corn and 29 images 

of weed). Testing: 35 images 

(15 images of corn and 20 

images of weed). 

  

Hardware used: A digital 

camera with a resolution of 

640  480 pixels 

BP network with seven wavelet 

energy parameters: 77.14%  

 

BP network with wavelet energy 

parameters and fractal dimension 

as input: 94.28%. 

 

[87] Using shape 

parameters to 

identify single 

corn or weed 

seedlings in 

fields  

 

200 images (100 each of 

broadleaf and grass 

respectively). Dataset was 

divided into 10 subsets. 1 

subset used as the testing set 9 

subsets for training. 

 

Hardware used: A digital 

camera (resolution 1200 768 

pixels) 

SVM (96.5%, 67.67% and 90% 

respectively), ANN (83.2%) 

[104] 

 

 

Identification of 

weeds in corn 

seedlings field 

 

 

60 color images of corn and 

300 of weed. Training: 120 (20 

of corn and 100 of weed). 

Testing: 240 (40 and 200 of 

corn and weed respectively)  

 

Hardware used: A digital 

camera with a resolution of 

640  480 pixels  

PNN: 92.5% recognition rate for 

corn seedlings and 95% 

recognition rate for weeds. 

 

[105] 

 

Wavelet-based 

crop detection 

and 

classification 

 

 

20 images of corn and 30 of 

weeds (all vegetation without 

corn) were used to build the 

ANN model. 15 images of 

corns and 20 of weeds were 

used to evaluate it. 

 

Hardware used: A digital 

camera (Canonixus) used to 

obtain digital images.  

98.8% classification accuracy.  
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Table 2.2. Summaries of studies that employed Neural networks for the identification of weeds 

(continued). 

Study Research 

problem 

Dataset Accuracy 

[63] 

 

Precise 

classification of 

maize and weed 

44,984 images (34,222- Maize, 

10,762- Weed). Training 

(25,695- maize, 8,560- weed), 

Validation (8,325- maize, 

2,000- weed) and Test (202- 

maize, 202- weed). 

 

Hardware used: A Raspberry 

Pi 3 with a V2.1 Pi camera  

cNET of 16 filters: maize 

(92.08%) and weed (89.11%) 

respectively.  

 

[106] 

 

Automated weed 

detection in 

aerial imagery 

 

 

224 aerial images. The dataset 

was divided into 3 categories: 

No context, Full stretched and 

Edge stretched data.   

 

Hardware used: Sony A6000 

mounted on a drone. 

Vallidation accuracy: 97.1% for 

edge-stretched, 94.6% for no 

context and 96.3% for full-

stretched. 

 

[107] 

 

CNN-based 

pixel-wise 

classification of 

crop and weeds 

 

 

8340 and 301 images of the 

segmented plants and soil 

respectively. 80% of the plant 

images were used to generate 

training data while 20% was 

used to generate testing data.  

 

Hardware used: No hardware 

used 

First image: IOU was 0.93, 0.98 

and 0.79 for crop, soil and weeds 

respectively. 

  

Second image: IOU was 0.71, 

0.93 and 0.70 for crop, soil and 

weeds respectively.  

 

 

2.5. Miscellaneous models for identification of weeds 

Apart from SVM and NNs, other ML approaches were also made use of for the 

identification of weeds in corn, this section describes all such works. The same authors [61] used 

DA and DT for the same classification problem [108]. Here again, the 72nd waveband was not 

considered. Among the 71 wavebands available, the most important bands were extracted using 

SAS software’s STEPDISC feature. Here again, there were three classification problems 

involved: just the three nitrogen application rates, just the three weed treatments, and the nine 
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weed and nitrogen treatment combinations. The STEPDISC approach was applied for all the 

three classification problems thereby resulting in the following sequence of bands for the three 

growth stages namely, early stage of growth, tasseling stage, and fully-grown stage: bands 34-

42-42; bands 26-32-31, and bands 28-19-19, respectively. DT chose a smaller number of 

wavebands for each of the three classification problems. Risk estimate values were derived by 

dividing the number of instances that were categorized incorrectly by the number of cases that 

were used in the classification. A lower risk estimate denoted a high categorization accuracy. 

When the performances of DA and DT were compared with that of ANN, it was observed that 

the DA provided a classification accuracy of 75% while ANN and DT only gave 58% and 60% 

respectively for the first classification problem. For the second problem, the classification 

accuracies were: 87%; 76%, and 68% respectively while for the third problem, the accuracies 

were: 83%; 81%, and 69%, respectively. While DT produced the greatest classification accuracy 

of 71% for the first classification problem at the tasseling stage, the ANN approach produced the 

most accurate results of 88% each for the other two classification problems. DA produced the 

best results for the combined case at the fully-grown stage (79%). Furthermore, the ANN gave 

the best results for the other two cases: weeds (85%), and nitrogen (88%). And for the early stage 

of growth, DA performed best for all three classification problems. 

An early work by Hossein et al. [109] demonstrated the real-time classification of the 

weed, Amaranth (pigweed) in corn with the use of FFT. The images were obtained from 

cornfields containing the weed. They were then preprocessed for color segmentation (Euclidean 

distance algorithm was applied to the red and green values of each pixel), conversion to 

grayscale, and detection of edges based on the difference in gray intensities between two 

adjacent pixels. The segmented images were divided into the background, crop, and weed based 
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on frequency, and density using two-dimensional FFT. Followed by this was the post-processing 

stage where regions of the images were re-checked to check for misclassifications and finally 

combined into a single image. The above stages were performed for the removal of the 

background and classification of the plant. When the performance of the proposed method was 

tested on 80 cornfield images, the results showed that FFT produced a classification accuracy of 

92.8%. The authors also mentioned the possibility of using the proposed method on a cultivator 

robot that would be equipped with a digital camera to capture images following which the 

classification would be performed and finally the weeds will be removed by the use of herbicide 

sprayers, cutting blades, etc.  

Gee et al. [110] proposed a method for real-time weed control by discriminating between 

crop and weed and estimating the inter-row WIR. The crops involved in the study were 

sunflower, maize, and wheat while the type/species of weed was not mentioned. Two types of 

images were involved in the study: 300 agronomic images (50 images each with WIRs of 0%, 

10%, 20%, 30%, 40%, and 50%, respectively) which were created by using a simulation engine 

and, 100 plus wide-view angle RGB images acquired from fields of sunflower (35 images), 

wheat (35 images), and maize (30 images) followed by processing in Matlab 6.5 software. On 

the RGB images, Excess Green thresholding was performed. Neither the angle of the light source 

with respect to its target surface nor its intensity seemed to affect the normalized RGB 

coordinates thereby resulting in just the green channel being considered. This was followed by 

the detection of crop rows using a DHT to detect only the crop rows present in the picture. 

Classical blob coloring analysis, a region-based segmentation technique was then used to 

discriminate between crop and weed. Based on spatial similarity and color, it grouped the linked 

pixels into areas. Given that identified lines were classified as crop, it was determined that if a 
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pixel of a straight line was observed to be belonging to an area, it should be classified as crop, 

otherwise it should be classified as weed. When the algorithm was tested on simulated images, it 

gave the following results: 100%, 100%, 94%, 92%, 89%, 82% crop row recognition rates for 

WIRs of 0%, 10%, 20%, 30%, 40% and 50%, respectively. When tested on in-filed images, the 

algorithm was able to recognize crop rows that had low WIRs i.e., 0 to 10% with an accuracy of 

88%. To differentiate between crops and weeds, a comparison was made between the detected 

WIR and the WIR initially fixed in the images that were simulated and the in-filed images that 

were segmented manually. When the algorithm was tested on 5 images of maize with medium 

WIR, the detected WIRs were 32.47, 18.74, 22.97, 15.96, and 12.47, respectively, while the 

manual WIRs that were estimated were 22.8, 19.16, 18.17, 17.36 and 29.24. respectively. 

The same authors proposed an approach based on wavelet transforms for the 

discrimination between crops and weeds [111]. Again, two types of images were involved in the 

study: 1530 grey synthetic images created by using a simulation engine and RGB images 

(number not mentioned). The following three possible image configurations were modeled for 

synthetic images based on the distinct weed spatial distributions: Punctual (Poisson process); 

Aggregative (Neyman-Scott process), and a combination of both thereby resulting in thirty series 

of images. Followed by this, 17 synthetic images were created for each series using different 

WIRinter-row (inter-row WIR) values ranging from 0% to 80%. The RGB images were then 

binarized using k-means clustering. 33 wavelet transforms from 6 wavelet basis functions 

(Daubechies, Symlet, Coiflet, biorthogonal, reverse biorthogonal, Meyer) were analyzed 

following which, the best two (Daubechies 25 and the Meyer) and the worst one (Biorthogonal 

3–5) wavelets were chosen. Crop rows were detected using a real bi-dimensional Gabor filter (a 

cosine signal modulating a Gaussian function). Through analysis of the confusion matrix and 



34 

 

 

comparison between the resulting and initial WIRs, a comparison was made between Gabor 

filtering and the three wavelet transforms. The terminologies used with respect to the confusion 

matrix were: False Crop (FC), True Crop (TC), False Weed (FW), and True Weed (TW). Using 

these terminologies, the followed were calculated: Initial WIR (Initial WIRinter-row); Initial 

Crop Rate (Initial CR); Detected WIRinter-row; Detected CR; True Weed Detection Rate 

(TWDR); True Crop Detection Rate (TCDR), and the error rates for the false detection of crop 

and weeds. For the synthetic images, the best results were obtained for the punctual image 

configurations: Meyer (overall accuracy of 89.4% and weed error percentage of 2.8); Daubechies 

25 (overall accuracy of 89.7% and weed error percentage of 2.8), and Gabor filtering (overall 

accuracy of 83.3% and weed error percentage of 14.9) thereby implying the superior 

performance of wavelet transforms. For the real images (i.e., the ones captured in RGB and 

binarized using K-means), the results read: Meyer (overall accuracy of 80.6% and weed error 

percentage of 5.8); Daubechies 25 (overall accuracy of 80.7% and weed error percentage of 5.8), 

and Gabor filtering (overall accuracy of 76.3% and weed error percentage of 18.5) thereby 

implying the superior performance of wavelet transforms again. 

The work by Asif et al. [112] presented a vision guidance system for an automated robot 

that is used for weed detection. Images were acquired from open sources and the type of 

crop/weed was not mentioned. k-means was then used for color segmentation followed by which 

ROI was automatically selected, the images were converted to grayscale, and edges were 

detected using Sobel edge detection. Hough Transform was then used to detect the crop 

boundaries and depending on its success, the robot was assisted in following the crop boundaries. 

If the HT did not detect the crop boundaries a certain number of times, then the ROI was 

widened. The tracking parameters, which indicated the orientation and location of the crop 



35 

 

 

borders with respect to the image's center, were obtained with the aid of HT. The developed 

system also aided in the successful detection and tracking of the crop boundaries. The errors on 

the synthetic images were less than ± 5 pixels and ± 10 degrees for translation (the robot’s 

current displacement with respect to the reference position) and orientation respectively. The 

authors also mentioned that the errors can be minimized further with the use of appropriate 

estimators like the Kalman filter algorithm and particle filtering algorithm.  

Longchamps et al. [113] investigated the ability of LDA to classify maize and weeds 

using their UV-induced fluorescence. The plants studied were corn hybrids namely, Monsanto 

DKC 26-78, Syngenta N2555 and Elite 60T05, and monocot/grass hybrids namely, 

barnyardgrass, smooth crabgrass (Digitaria ischaemum (Schreb.) ex Muhl.), green foxtail 

(Setaria glauca (L.) P. Beauv.)), and witchgrass (Panicum capillare L.), and dicot hybrids 

namely, common ragweed (Ambrosia artemisiifolia L.), common lambsquarters, shepherd’s 

purse (Capsella bursa-pastoris (L.) Medik.) and redroot pigweed. 1,440 spectral signatures of 

fluorescence were obtained from three experiments that were similar, performed at three 

different times. Some spectra were missing and hence, only 1,361 spectra were available and the 

most important information from these was obtained using PCA. Using the plant species, the first 

five principal components as inputs, and cross-validation, LDA was performed. The output was a 

confusion matrix with a prediction error of 37%. A second classification was performed by 

combining the hybrids into groups thereby resulting in a confusion matrix with a prediction error 

of 8.2%, indicating a classification accuracy of 91.8%. 388 spectra of grasses were correctly 

classified as grasses, 9 and 49 were misclassified as dicots and corn, respectively. 423 spectra of 

dicots were correctly classified as dicots while 17 were misclassified as grasses. 439 spectra of 

corn were correctly classified as corn while 36 were misclassified grasses. The author cited the 
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reason for the prediction error as the confusion between corn hybrid Pioneer 39Y85 and Setaria 

glauca L. (Beauv.) as corn and grasses belong to the same taxonomic family, Poaceae.  

Xavier et al. [114] demonstrated a Computer Vision system that uses real-time image 

processing to identify (classify and detect) weeds in maize. The weeds involved in the study 

were: devil’s trumpet (Datura Stramonium L.); fierce thornapple (Datura. Ferox L.); Johnson 

grass (Sorghum Halepense (L.) Pers.), and common cocklebur (Xanthium Strumarium L.) The 

data used in the study consisted of 6 videos with each one having an average duration of 12 

seconds or 300 frames thereby resulting in a total of 1,800 frames. Segmentation according to the 

threshold was done to obtain binary images where the pixels corresponding to the vegetation 

were separated from the ones corresponding to non-vegetation. The real-time image processing 

method/system involved two sub-systems namely, RCRD and FIP that were independent of each 

other but worked simultaneously. RCRD was used to detect pixels corresponding to the crop 

rows pixels. Using an AND operation i.e., producing an image with only the persisting 

vegetation pixels being retained, RCRD merged all the binary frames thereby resulting in a 

single image. And for the ones (images containing large patches of weed) for which the AND 

alone was not enough, the RCRD created crop rows to be used by the FIP. The crop row pixels 

of the image i.e., of crop rows that coincided with the group of positions that were marked by the 

FIP was preserved while the rest were discarded. The system was tested on many videos of 

maize obtained from different fields over different years, detecting an average of 85% of weed 

and 69% of the crop. It not only performed well under different conditions like varied 

illumination, soil humidity, and blurred conditions but also when it was presented with very 

difficult growth stages of crop and weed. When tested on good images i.e., the ones that had 

clearly visible crop rows, the system performed well by producing an average classification 
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accuracy of 95% for weed and a classification accuracy of 80% for crop. It also always 

maintained a very low rate of false negatives for weed (1%). 

The work by Liu et al. [115] was an object detection problem that used SVDD for the 

recognition of weed or corn. Seventy-five sub-images (256256 pixels) of corn and 43 sub-

images (256  256 pixels) of weed were extracted from originally gathered RGB images. The 

type/species of weeds were not mentioned. The excess green index was used to convert these 

into grey and binary ones following which the next task was to perform wavelet decomposition 

to extract morphological features and energy-based features. In order to do so, a two-dimensional 

multi-resolution analysis which is based on a Matlab algorithm was performed on the images to 

separate frequency components (both low and high). Discrete didactic wavelet transform was 

used to decompose images into the following four component groups: high-frequency 

components namely, H1, D1 (in x,y, and xy directions), and low-frequency component A1. 

Further decomposing A1 resulted in four more components of lower resolution namely, A2, V2, 

D2, and H2. The energy percentages of these 7 components were considered and the energy 

features were derived. 3 morphological features: Shape complexity indicator (C); Elongation 

factor (D), and Thickness (T) were selected. To further select better features, single-features 

SVDD models with these 10 features were constructed on the following dataset: 40 images of 

corn and 10 of weeds in the training set and 35 images of corn and 10 of weeds in the test set. 

The model’s performance was evaluated by using RATE as the metric where RATE was defined 

as the number of correctly classified objects divided by the total number of objects. The SVDD 

obtained when T is the input vector, gave the best performance with a testing rate of 88.2%. For 

further analysis, the three morphological characteristics and five wavelet-based features 

associated with a RATE>60% were chosen, and every possible combination of these features 
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was utilized to create SVDD models. The four-best performing SVDD models were: SVDD 

(eV2, T), SVDD (eH2, eV2, T); SVDD (eH2, eV2, C, D), and SVDD (eH2, eV2, C, D, T) with 

RATEs of  94.12%, 95.59%, 94.12% and 95.59%. respectively. SVDD (eH2, eV2, T), and 

SVDD (eH2, eV2, C, D, T) performed the best but considering the fact that the accuracy might 

be reduced if more features are considered, SVDD (eH2, eV2, T) was chosen as the best multi-

feature based SVDD. This model when compared with SVM and FLDA, proved superior in 

terms of performance even when the number of weed samples for training was gradually reduced 

from 25 to 5. The results read: SVM (75.17%); FLDS (66.04%), and SVDD (94.34%). 

The work by Montalvo et al. [116] demonstrated a method for the detection of crop rows 

in maize fields that contained high weed pressure (the type/species of weed was not mentioned). 

The image data consisted of 300 RGB images of maize (the first set of 200 images with high 

weed densities and the second set of 100 images where the weed density is exceptionally high). 

These images were transformed to grayscale using Excess green index following which a double 

Otsu approach was applied to separate the crop and weeds. The equations of straight lines 

associated with the crop rows were then computed using a linear regression technique that was 

based on total least squares. The performance of LR was compared with that of HT over images 

of various resolutions (1390  1044 (first set of images), 696  522 (first set of images), 720  

576 (second set of images), and 360  288 (second set of images)). The former outperformed the 

latter for every resolution mentioned above, with the best performance (percentage of 

effectiveness) being: LR (95.5%) over HT (89.3%) for the images with a resolution of 1,390  

1,044.  

Rainville et al. [66] presented a computer vision-based weed/crop classification using 

morphological analysis. The crops considered were corn and soybean and the type/species of 
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weed was not mentioned. The dataset consisted of 149 RGB images of corn and soybean. The 

images were segmented using PCA (used to extract the components that are associated with the 

vegetation) and Otsu thresholding (used to find the threshold to discriminate between the 

vegetation and soil). The crop rows were first identified using HT followed by which row 

borders were determined by analysis of the plants/vegetation that crosses the center lines of the 

row (these plants were considered a weed). Based on the data provided by these, PDFs of the 

weeds’ morphological characteristics (area, compactness, major axis) were computed. 

Considering that the plants that were present inside the rows were a mixture of both weed and 

crop, PDFs were deduced by utilizing the data from inside the rows. Following this, Naïve Bayes 

was used to discriminate the crop and weed that were present inside the rows. The data that was 

classified as the crop was then sent to GMM, another classifier that identified any leftover weed 

i.e., the weeds that were wrongly classified as crop. Any newly identified weeds were added to 

the list of previously classified weeds. As a measure of demonstrating classification accuracy, 

the authors worked on the sub-set of images (129 of the 149 images) for which the row 

positioning using Hough Transform was a success. The combination of the Bayesian classifier 

and GMM gave the following global classification performance average for the three 

morphological characteristics: area (90.8%); compactness (89.9%), and major axis (90.8%) with 

standard deviations of 4.4, 5.1, and 4.5, respectively.  

The potential of a LIDAR sensor to detect crop rows, as well as maize and weeds was 

evaluated by Dionisio et al. [117]. The weeds involved in the study were: catchweed (Galium 

aparine L.); red dead-nettle (Lamium purpureum L.); winter speedwell (Veronica persica Poir.), 

and barnyardgrass. The distance and reflection measurements for the vegetation were gathered 

using the LIDAR sensor followed by which the real heights of the plants were evaluated. 
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Compared with the RGB images collected from the same plants, a strong correlation of 0.75 was 

observed between the heights measured by the LIDAR sensor and the real height of the pants. 

The system's ability to distinguish between plant and soil was determined using regression 

analysis for which the following two scenarios were considered: (i) the LIDAR’s geometrical 

reliability, and (ii) the system’s capacity to distinguish between the presence and absence of 

vegetation (logistic binary regression was used for this purpose as the presence/absence of 

vegetation is a binary variable). For the LIDAR measurements, the logistic regression performed 

very well, demonstrating a high level of accuracy in predicting the presence/absence of 

vegetation. For a total of 1,558 sample units, it was observed that the predicted accuracies for 

logistic regression read: vegetation (95.3%), and soil (82.2%). CDA was used to distinguish 

between soil and vegetation and also between plants and weeds. Although the CDA was more 

successful than the logistic regression in separating the plant from the soil, it had a lower success 

rate. With an overall accuracy of 72.2 %, CDA was able to distinguish between the following 

four sorts of classes: monocots; dicots; maize, and soil. The accuracies were: 92.4% for soil; 

64.5% for dicots; 34.5% for monocots (accuracy was low since it was classified as crop), and 

74.3% for maize. 

The work by Amir and Ali [118] introduced a weed control robot capable of identifying 

weeds in cornfields by classifying pixels into corn and weed. The dataset consisted of 73 images 

taken in a cornfield, the type/species of weed was not mentioned. In order to extract plant pixels 

from the original images, the Excess green method was used followed by a clustering method 

(not mentioned). The hue plane of the image was extracted following which the clustering 

method was applied to it, and some morphological operation (not mentioned) was then 

performed. The features (not mentioned) were extracted by using wavelet transform and were 
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further used for classification. The entire method was implemented in LabVIEW software, which 

classified 70 of the 73 images thereby resulting in an accuracy of 95.89%. After the weed regions 

were identified, a hardware interface was used to send commands to the nozzles of the robot to 

spray herbicides.  

Shubham [119] demonstrated a method for the classification of weeds in a maize field. 

The dataset involved in the study consisted of 60 RGB images of a maize field, the type/species 

of weed was not mentioned. These RGB images were transformed to gray ones using Excess 

green index followed by which the weeds and crops were separated using a double thresholding 

Otsu approach. It was then extended across each crop row for the weed present in that crop using 

the PCA technique to identify crops from weed in high-density regions. PCA was able to classify 

55 of the 60 images correctly as weed or crop thereby resulting in an accuracy of 91.67%. 

Pantazi et. Al. [120] proposed a new active learning approach to discriminate between 

maize and different species of weed based on the variations in their spectral reflectance. The 

weeds involved in the study were: creeping buttercup (Ranunculus repens L.); common nettle 

(Urtica dioica L.); black medick (Medicago lupulina L.); annual meadow grass (Poa annua L.); 

canada thistle; sheep weed (Oxalis europaea L.); winterweed (Stellaria media (L.) Vill.); 

charlock (Sinapis arvensis L.); dandelion, and redshank (Polygonum persicaria Gray). Spectral 

features were extracted using a hyperspectral optical sensor that was mounted on a robotic 

platform. Through reflectance calculation, plant selection, NDVI, and spatial resolution and, 

spectral analysis, the following spectral bands were chosen: 550 nm; 580 nm; 660 nm, and 830 

nm. The weeds were recognized and rendered outliers using the one-class classifiers and then 

added to a new multi-class classifier that detected any new species of weed that appeared. This 

procedure was repeated until the multiple class classifier had all weed classes i.e., all the weed 
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classes were augmented in the multi-class classifier. The rest of the method was repeated for the 

following weed type, ensuring that the suggested technique can learn and enhance any new weed 

species forever. SVMs, autoencoders, MOG, and SOM were the ML methods used. Feature 

selection was performed on 110 spectra pertaining to maize plants thereby resulting in a dataset 

of 110 samples each of which had a vector of 4 features. The one-class classifiers were then 

tested to recognize the new species as outliers by using a total of 54 additional samples 

belonging to maize plants and 54 from a single weed species. Crop and the outlier spectra 

obtained from one species of weed were used as the baseline set in the next phase. The process 

of outlier detection was a repetitive one involving the addition of the first weed species to the 

data samples pertaining to the crop. Following that, the one-class classifiers were fed with a new 

weed species as well as the data from the already existing crop and weed species. If a new 

sample was discovered to be from one of the baseline set's crop or weed species, the outlier 

detection procedure had to be run for each class inside the baseline set, and the sample was 

classed as belonging to one of the baseline sub-classes. This process was iteratively repeated for 

every newly appearing weed species. While for crop recognition, the one-class MOG and one-

class SOM achieved a rate of 100%, the best recognition rates for weed species read: 98.15% 

(MOG) and 98.44% (SOM) for canada thistle; 90.74% (SOM) for charlock; 94.44% (MOG) and 

92.59% (SOM) for winterweed; 90.74% (SOM) for dandelion; 94.44% (SOM) for annual 

meadow grass; 94.44% (SOM) for redshank; 94.44% (SOM) for common nettle, and 94.44% 

(SOM) for black medick. Good recognition rates of 83.33%, 79.63%, and 85.19% were also 

obtained for annual meadow grass, dandelion, and black medick respectively while SOM 

provided a good rate of 85.19% for sheep weed and the autoencoder gave a good rate of 83.33% 

for black medick.  
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The integration of texture, shape, and spectral characteristics to classify crops and 

different species of weed was investigated by Zhang et al. [121]. The crop studied was corn and 

the weeds were dicotyledonous weeds namely, lobed leaf pharbitis (Pharbitis nil (L.) Choisy), 

redroot amaranth, leaf pharbitis (Pharbitis purpurea (L.) Voigt) and purslane (Portulaca 

oleracea L.) and monocotyledonous weeds namely, green foxtail,  and goose grass (Eleusine 

indica L.). SPCA was used to select the following relevant wavelengths: 710 nm; 516 nm; 843 

nm; 677 nm, and 749 nm. For classification, the following texture, shape, and spectral 

characteristics were employed using C 5.0 algorithm: texture features namely, homogeneity, 

entropy, and contrast for the wavelengths 677 nm, 843 nm, and 516 nm; shape features namely 

length, width, shape index and area, and spectral features namely, ratio of the bands 677 nm and 

710 nm, normalized difference index between the bands 749 nm and 710 nm, red index, and ratio 

vegetation index. The model produced both a global accuracy and kappa coefficient of over 95% 

when spectral and shape features were used.  

The work by Gao et al [122] investigated the potential of classifying weed and maize 

using hyperspectral imaging. The weeds in the study were: field bindweed; Rumex species, and 

Canada thistle. The dataset consisted of 24 hyperspectral images of each of the three weeds and 

25 of maize. ROIs of the leaves of the plants involved in the study were used and consisted of 

79, 80, 80, and 84 for filed bindweed, Rumex spp., Canada thistle, and maize, respectively. For 

each band, the calibrated reflectance of ROIs was calculated followed by which 80 NDVIs 

(ranging between 0 and 1) and 80 RVIs were calculated and used for feature construction. When 

these were subject to PCA, the redundancy was reduced and only the first five principal 

components were used for further analysis. Classifiers with different combinations of spectral 

features were built using RF. Following feature construction, importance scores determined the 
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30 most important features to be chosen by an accuracy-oriented feature reduction technique. 

Five-fold cross-validation (one set for testing and four for training) was used to evaluate RF. The 

results read:  Maize (94% precision and 100% recall); Rumex (70.3% precision); Canada thistle 

(65.9% precision), and field bindweed (95.9% precision). When the performance of RF was 

compared to that of KNN using a McNemar test, the optimal RF model performed better than 

KNN at a significance level of 0.05. 

Zheng at. al. [123] developed an efficient method to classify maize and weeds by using 

color features. RGB images of weeds (species not mentioned) and maize were gathered for the 

three consecutive years 2011, 2012, and 2013 and consisted of three classes: maize; weed, and 

soil. The images were then preprocessed for background removal using Excess Green followed 

by Otsu’s thresholding. PCA aided in the extraction of the following color features: single-color 

indices namely, Rn and Gn; two-color indices, ExR, and three-color indices namely, ExR, ERI, 

Gray, EGI, and CIVE. SVDD was used for classification and was trained on 197 image samples 

from the year 2011. 4333 samples of maize, 5730 of weed from 2011, 3573 samples of maize 

and 7976 of weed from 2012, and 1465 samples of maize and 7878 of weed from 2013 were 

chosen for testing purposes. When compared with LS-SVM, SVDD models performed better on 

the data for all three years based on the results evident from the confusion matrix. The results 

read: LS-SVM (accuracies of 89.08%, 87.87% and 90.44% respectively), and SVDD (accuracies 

of 90.19%, 92.36% and 93.87%, respectively). Citing lower sensitivity to canopy overlap, wind 

effect, leaf orientation, etc., the authors concluded that the use of color indices for classification 

is more practical than the use of shape/texture features. Table 2.3. summarizes all the above 

works that employed ML techniques other than SVMs or neural networks for the identification 

of weeds. 
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Table 2.3. Summaries of studies that employed miscellaneous models for the identification of 

weeds. 

Study Research 

problem 

Dataset Accuracy 

[108] 

 

Detection of 

weed and 

nitrogen stress in 

corn  

 

 

20 data points of 9 treatments 

consisting of 4 replicates 

thereby resulting in a data set 

of 720 entries. 50% of the data 

was used for training purposes 

while the remaining 50% was 

used for testing. 

 

Hardware used: A Compact 

Airborne Spectrographic 

Imager (CASI)  

DT: 71% for first classification 

problem at tasseling stage 

 

DA: 79% for third classification 

problem at full growth stage 

 

ANN: 71% for first 

classification problem at 

tasseling stage 

 

[109] 

 

Use of FFT to 

classify weed 

and corn 

 

 

Hardware used: Robotic 

cultivators with a digital 

camera to capture images and 

pre-processing was done to 

obtain RGB images. 

 

80 corn field images were used 

to test classification accuracy. 

5927 blocks of size 1024 x 768 

were detected as weed, 3217 as 

crop, and 8579 correctly 

classified. 

Accuracy was 92.8% 

[110] 

 

Discriminating 

crop and weed in 

agronomic 

images 

 

300 simulated images, 100 in-

field images (35 of wheat, 35 

of sunflower, and 30 of maize) 

Simulated images: 100% each 

for crops with low WIR, 94% 

and 92% respectively for 

medium, 89% and 82% 

respectively for high.  

 

100 in-field RGB images: 

88%.for 30 images of maize 

with low WIR  

[111] 

 

Discriminate 

between crop 

and weed using 

wavelet 

transform   

1530 images  

 

Hardware used: A digital 

camera (CANON Ixus 330) 

Daubechies 25: 80.7%  

Discrete approximation Meyer 

wavelets: 80.6%.  

[112] 

 

Vision-based 

autonomous 

weed detection 

No information about data 

 

Hardware used: Not 

mentioned 

Error < ± 5 and ± 10 pixels for 

translation and degrees for 

orientation respectively. 
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Table 2.3. Summaries of studies that employed miscellaneous models for the identification of 

weeds (continued). 

Study Research 

problem 

Dataset Accuracy 

[113] 

 

Crop and weeds 

classification 

based on their 

UV-induced 

fluorescence 

spectral 

signature 

No information about data 

 

Hardware used: Not 

mentioned 

LDA over PCA: 91.8% 

[114] 

 

Discrimination 

of crop and weed 

by using real-

time image 

processing 

 

 

6 video segments (each having 

an average 12 second duration 

i.e. 300 frames) thereby 

resulting in a total of 1800 

frames  

 

Hardware used: Sony DCR 

PC110E and JVC GR-DV700E 

(resolution of 720×576 pixels).  

Successfully detecting an 

average of 95% for weeds and 

80% of crops under different 

environmental conditions.  

 

[115] 

 

Recognizing 

images of weed 

and corn using 

SVDD 

 

118 color images. 40 images of 

corn and 10 of weed for used 

for training. 35 images of corn 

and 33 of weed were used for 

testing. 

 

Hardware used: Olympus FE-

280 digital camera with a 

resolution of 1280x960 pixels.  

SVDD (eH2, eV2, T): 95.59% 

SVDD (eH2, eV2, C, D, T): 

95.59% 

[116] 

 

Detection of 

crop rows in 

maize fields 

containing high 

weed pressure 

No information about data 

 

Hardware used: Basler scA 

1400-17fc camera (resolution: 

1392 x 1044 pixels) for first 

200 images. 

Sony commercial DCR 

PC110E camera (resolution: 

720 x 576 pixels) for second 

set of 100 images  

Images with resolution of 1392 x 

1044: HT (89.3%), LR (95.5%)  

Images with resolution of 696 x 

522: HT (86.4%), LR (92.9%)  

Images with resolution of 720 x 

576: HT (82.4%), LR (89.6%)  

Images with resolution of 360 x 

288: HT (80.1%), LR (88.1%) 
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Table 2.3. Summaries of studies that employed miscellaneous models for the identification of 

weeds (continued). 

Study Research 

problem 

Dataset Accuracy 

[66] Using Bayesian 

classification to 

isolate weeds in 

row crops  

 

149 images of crops (corn and 

soybean) and weeds 

 

Hardware used: Not 

mentioned 

An average of 94 % of corn and 

soybean plants were classified 

and 85 % of the weeds were 

classified 

[117] 

 

Using LIDAR to 

discriminate 

between maize 

and weeds 

1,558 sampling units 

 

Hardware used: Not 

mentioned 

CDA overall accuracy: 72.2%.  

Accuracy for dicots: 64.5%, and  

Accuracy for crop: 74.3%.  

[118] 

 

 

Automatic 

classification of 

weeds and corn  

73 images 

Hardware used: Digital 

camera (normal webcam). 

RBG images were captured 

with a size of 640 x 480 pixels  

95.89%. 3 images were 

misclassified 

 

[119] 

 

Detection of 

crop row and 

distinguishing 

between crop 

and weed in field 

with high weed 

pressure 

60 RGB images 

 

Hardware used: Not 

mentioned 

 

91.67%, 5 images misclassified 

 

[120] 

 

Recognizing and 

discriminating 

between weed 

and maize using 

hyperspectral 

imaging 

110 samples derived through 

feature selection from 110 

spectra pertaining to maize 

plants. The one-class 

classifiers were tested to 

recognize the new species as 

outliers by using 54 additional 

samples of maize plants and 54 

from a single weed species.  

Type of imaging: 

Hyperspectral  

 

Hardware used: Inspector V9, 

a 10-bit integration charge-

coupled device 

100% for both MOG and SOM. 

MOG based one-class classifier: 

between 31% to 98%.  

SOM based one-class classifier: 

between 53% to 94%.  

 

 



48 

 

 

Table 2.3. Summaries of studies that employed miscellaneous models for the identification of 

weeds (continued). 

Study Research 

problem 

Dataset Accuracy 

[121] 

 

Texture, space 

and spectral 

features-based 

classification of 

weeds and corn 

No information about data 

 

Hardware used: Field 

Imaging Spectrometer System 

(FISS), CCD camera 

Over 95% 

[122] 

 

Hyperspectral 

imaging-based 

classification of 

maize and weed  

Maize: 25 images, 24 each for 

C. arvensis, C. arvense and 

Rumex spp. 

 

Type of imaging: 

Hyperspectral  

 

Hardware used: Snapshot 

mosaic hyperspectral camera 

and sensor.4 OSRAM Halogen 

lamps  

Maize (94% precision and 100% 

recall), Rumex spp. (70.3% 

precision), C. arvensis (95.9% 

precision) and C. arvense 

(65.9% precision). 

[123] 

 

Identification of 

weed and using 

color indices  

Training data: 197 RGB image 

samples from 2011, 4333 

samples of maize, 5730 of 

weed from 2011, 3573 samples 

of maize and 7976 of weed 

from 2012  

Testing data: 1465 samples of 

maize and 7878 of weed from 

2013 were  

 

Hardware used: E450 

Olympus (resolution = 3648 x 

2736 pixels, focal length = 16 

mm). 

Accuracies of LS-SVM for three 

years: 89.08%, 87.87% and 

90.44%  

 

Accuracies of SVDD for three 

years: 90.19%, 92.36% and 

93.87%. 

 

2.6. Dataset size, data augmentation, transfer learning, and performance metrics 

Training a new classification model with the desired accuracy may require huge amounts 

of data and sophisticated computational tools to process the collected data. The size and quality 

of the dataset have a major impact on the image classification performance of ML models. In 
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general, smaller datasets result in poor classification accuracy. This has been shown in numerous 

previous studies [124–129]. The size of the dataset necessary for the desired accuracy is 

determined by a variety of criteria, including the number of classification categories, the 

complexity of the features present in the images that are to be classified, and class imbalance. 

For example, Luo et al showed that an image dataset size of 6,000 was required when the 

number of classification categories were three and when the categories was increased to eight, a 

dataset size of 40,000 was required to obtain 90% accuracy [130]. Smaller datasets also result in 

the overfitting of the model [131]. Overfit models tend to memorize the variance along with the 

underlying relationships and perform poorly on the testing and unseen future datasets [132]. Yet, 

in our domain, it is often too expensive or not viable to build a large dataset for training.  

The problem caused by the smaller datasets (especially overfitting) can be partially 

mitigated through data augmentation [133]. Data augmentation expands the original dataset 

through image manipulations, feature space augmentation, and adversarial training [134]. Image 

manipulations include geometric transformations, color space transformations, random erasing, 

introducing corruptive noises, and image mixing. Geometric transformations involve the 

modification of geometrical features through flipping, translation, rotation, and cropping of 

images [135]. Color space transformations use filters to modify the RGB space of images [136]. 

Random erasing is about randomly removing some of the image features [137]. In image mixing, 

new images are formed by combining the pixel values of pair of images [138, 139]. In contrast to 

all the image-based approaches discussed above, Devries and Taylor introduced a novel way of 

augmenting data in the feature space [140]. Instead of applying transformations to the input, they 

have applied transformations to the encoded versions of the inputs. Another interesting approach 

to data augmentation is the use of GANs [141]. GANs consist of two different competing 
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networks called generator and discriminator. The role of the generator is to confuse the 

discriminator that the artificially generated image is real whereas the discriminator’s role is to 

differentiate the real images from the synthetic images created by the generator. The 

simultaneous training of these two networks generates artificial images which share similar 

characteristics to original images.   

Though data augmentation offers a way to increase the size of the dataset to mitigate the 

overfitting of the model, it is computationally expensive and time-consuming. Another popular 

approach that allows us to bypass the requirement of a larger dataset is transfer learning [142, 

143]. Instead of developing a neural network (say for image classification) from the ground up, 

we can utilize the learned parameters of a neural network trained on different yet related domain 

tasks to train our new task of interest.  This approach is successfully applied in many domains 

including precision agriculture. For instance, Espejo-Garcia et al leveraged the trained neural 

network parameter of ImageNet for weed classification [144]. Suh et al again utilized the pre-

trained network on ImageNet dataset for the classification of sugar beet (Beta vulgaris L.)and 

volunteer potato (Solanum tuberosum L.) [145].  Kaya et al compared four different transfer 

learning models with the one developed from scratch for plant classification [146]. Currently 

there are various approaches available in transfer-learning and can be found elsewhere [147–

153]. 

We have discussed the importance of larger datasets for higher classification accuracy. 

But classification accuracy is just one of the parameters to evaluate the model’s performance and 

in many situations, accuracy alone is not sufficient enough to quantify the performance of an ML 

model. The other commonly used performance metrics are F1-score, precision, confusion matrix, 

recall, log-loss, and ROC-AUC [154]. The accuracy of a classifier is defined as the ratio of the 
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number of correct predictions to the total number of predictions. But it gives misleading 

performance evaluation when the dataset is imbalanced. In order to understand how to utilize 

other performance metrics, we need to understand some basic terminologies involved such as 

true positives, false positives, true negatives, and false negatives. The definitions of these terms 

are summarized in Table 2.4.  

Table 2.4. Definitions of a classifier predictions. 

Terminology       Definition 

True Positive TP Correctly identified an instance to a particular class 

False Positive FP Incorrectly identified an instance to a particular class 

True Negative TN Correctly identified an instance does not belong to a particular class 

False Negative FN Incorrectly identified an instance does not belong to a particular class 

 

The mathematical definitions of commonly used performance metrics are given in Table 

2.5.   

Table 2.5. Mathematical definitions of performance metrics. 

Performance metric Definition 

Precision (P) TP/(TP+FP) 

Recall (R) / True Positive Rate (TPR) TP/(TP+FN) 

Specificity (S) / True Negative Rate (TNR) TN/(TN+FP) 

Miss Rate / False Positive Rate (FPR) FN/(TP+FN) 

F1 Score 2PR/(P+R) 

Log Loss (for one-hot coded vectors) -log p 

Note: p – probability of an instance belonging to a class 

Though the confusion matrix is not strictly a performance metric, it gives an overview of 

positives and negatives predicted by the classifier. An illustration of the confusion matrix for 

binary classification is given in Fig.2. 
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Fig. 2.2. Confusion matrix for a binary classification. 

 

Precision measures the correctly predicted positives out of the total positives predicted. 

Higher precision indicates a smaller number of false positives in the model and is used in 

situations where the false positives in a model are highly undesirable. Recall or sensitivity or true 

positive rate talks about the ability of the model to predict the true positives out of total real 

positives. A higher recall is important in the identification of diseases. F1 measure gives equal 

weightage to the false positives and false negatives and a harmonic mean of recall and precision. 

Miss rate or false positive rate is the additive inverse of sensitivity and measures the proportion 

of correctly identified negatives with respect to the total predicted negatives. Log-loss measures 

the deviation of the predicted probability of an instance belonging to a class to that of the actual 

probability (in general 1) and is commonly used in binary classifications. The receivers operating 

characteristics (ROC) curve is an excellent performance standard used for binary classification 

models with imbalanced datasets [155]. It’s a plot between the true positive rate (on Y-axis) and 

false positive rate (on X-axis) for different classification thresholds (probability thresholds) as 

shown in Fig. 3.  

 



53 

 

 

 

Fig. 2.3. Receiver-Operating characteristic (ROC) curves. 

 

It is considered that a classifier model has a trade-off between true positives and false 

positives. A random model tuned to generate a higher number of true positives also may equally 

generate false positives. So, a random classifier, in this case, follows a 45° straight ROC line 

with 0.5 as the area under the curve (AUC). A poor classifier falls below this straight line and 

has an AUC value less than 0.5. Hence, any good classifier should have a ROC curve above this 

straight line with an AUC value of more than 0.5. A Perfect classifier has a true positive rate of 1 

for all classification thresholds. It is to be noted that unlike other performance measures ROC-

AUC is an index measure. Though ROC is mainly developed for binary classification, it can be 

extended to multi-class classification by clubbing the rest of the categories as one class. A 

detailed review of error metrics can be found here [156, 157].  

2.7. Conclusion and future research directions for the identification of weeds in corn 

This review surveyed 35 articles featuring ML approaches with full technical details. 

Twenty-seven of the presented articles were intended at solving a classification problem while 

seven were intended at solving the problem of object detection. There were also two articles that 
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solved both these problems. Figure 4 presents the distribution of these articles according to the 

type of ML problem.  

 

Fig. 2.4. Frequency distribution of different ML approaches used in the reviewed articles. 

 

Three ML approaches were used namely, SVM, Neural Networks and Miscellaneous 

(Bayesian networks, Decision Trees, Genetic Algorithms etc.). Eight of the presented articles 

used SVM as the ML approach, ten used Neural Networks, and seventeen used Miscellaneous 

approaches (Bayesian networks, Decision Trees, Genetic Algorithms etc.). Figure 5 depicts the 

distribution of these articles according to the ML approach used.  
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Fig. 2.5. Frequency distribution of different ML problems focused on the reviewed articles. 

 

It was found that the SVM with RBF kernel function was the most used type of SVM 

while BP network was the most used Neural Network, although CNNs were also commonly 

used. Among the Miscellaneous approaches, wavelet transforms were the popular ones while 

DT, PCA, customized Computer Vision systems etc., were also used. The most popular type of 

data that was used by these approaches was color data (images and videos) comprising twenty-

eight of the presented articles while in eight articles, spectral data (hyperspectral data, reflectance 

spectra, fluorescence spectra etc.) was also used. The distribution of articles based on the type of 

data involved is shown in Figure 6.  
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Fig. 2.6. Frequency distribution of different data types used in the reviewed articles. 

 

A variety of weeds belonging to different categories namely, broadleaf, narrow leaves, 

grassy, dominant grassy, dominant broad-leaves, monocotyledonous, dicotyledonous, etc., were 

involved in the articles.  

Industry, university academics, and the USDA (United States Department of Agriculture) 

are all working together to advance the identification of weeds in corn. More effort should be 

directed to the following areas, based on our review: 

1) Data acquisition and augmentation: Data plays an important role in aiding in the 

identification of weeds. Some works in this review made use of minimal to very little data to 

train the ML algorithms, and only two works among made use of data augmentation. This might 

not suffice for the task of identifying weeds, and most importantly, the results obtained by using 

low amounts of data do not justify the predictions of the trained algorithms.  

2) Early identification of weeds: Although most works in this review dealt with the data 

acquired when the weeds were in the early growth stages, some works dealt with data that was 

collected when the weeds were in the later stages of growth i.e., three weeks, six weeks or more. 
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This is a drawback because, at three to six weeks, weeds will display distinguishable features 

that can aid in manual identification relegating the need for identification through algorithmic 

means.  

3) Sanity checks: The need to check for model overfitting as well as to validate the model 

in various lighting conditions/environments cannot be undermined and falls under the realm of 

sanity checks. The models trained on the data should be tested on different modifications of the 

original data. Commonly used simple sanity checks include testing the trained model on cropped 

and resized images, images with altered brightness and contrast, and the addition of noise.  

4) Transfer learning: Transfer learning involves initializing the current neural network 

with the use of learned parameters of already trained neural networks employed for a different 

but related task. Transfer learning helps the network to achieve the generalizing ability with a 

smaller dataset. They also reduce the time required for the network training. There are several 

studies which utilize transfer learning for weed identification in crops [158–161], yet more 

research is required to address the pitfalls of transfer learning especially a phenomenon called 

‘negative transfer’ where the network performs poorly after the transfer. 

5. Interpretability: ML algorithms act as black-box models and offer little explanation on 

how the predictions are made. This lack of transparency questions the reliability of the 

predictions or conclusions made by the ML models. Hence, the interpretability of ML models 

used for the identification of weeds is highly desired to understand the embedded biases in the 

network and also to identify the important input features and conditions that led to the ML 

decision. Although some research [162, 163] focused on interpretability of neural networks 

employed for identification of weeds, more works are needed to understand the bias in the 
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network and the important input features responsible for the weed identification and 

classification. 
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3. DISTINGUISHING PALMER AMARANTH FROM WATERHEMP IN THE FIRST 

TWO WEEKS 

Palmer amaranth (Amaranthus palmeri S. Watson) is an annual broadleaf weed native to 

the arid southwestern United States and northwestern Mexico. Palmer amaranth can grow 

rapidly, consuming useful nutrients and towers over the crops, drastically reducing crop yields. 

Palmer amaranth was recently found in several counties of North Dakota and Minnesota, 

concerning the farmers, and threatening the agrarian economy of North Dakota. For this reason, 

Palmer amaranth was named the weed of the year in 2014 and 2015 by NDSU Plant Sciences 

department faculty. Early detection and eradication are considered the best strategy to mitigate 

the damage caused by Palmer amaranth. However, Palmer amaranth is visually similar to other 

pigweed species including waterhemp (Amaranthus tuberculatus) (Moq.) J. D. Sauer Powell 

amaranth (Amaranthus powellii S. Watson), and redroot pigweed (Amaranthus retroflexus L.) in 

the early stages of its growth and development. The goal of this research is to automatically 

distinguish Palmer amaranth from waterhemp in the first two weeks after germination. 

Palmer amaranth and waterhemp were grown in a controlled environment for over two 

weeks after emergence. Approximately 2,000 digital images of both weeds were acquired 

between 8-14 days after emergence (DAE). These images were utilized to track the 

morphological characteristics including length, width, area, perimeter, aspect ratio, circularity, 

and roundness of Palmer amaranth and waterhemp leaves. Several popular Machine Learning 

(ML) algorithms were trained on the estimated morphological features to classify the weed as 

either Palmer amaranth or waterhemp. A deep learning approach using a Convolutional Neural 

Network (CNN) was adopted to improve the classification accuracy. To this end, data 
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augmentation techniques were used to generate 14,000 additional images from the original 2,000 

images. A CNN was trained using 100% of the available data. The trained CNN was validated 

using the original 2,000 images embedded with Gaussian noise. Finally, YOLO V5, an object 

detection algorithm based on transfer learning, was successfully prepared and tested for the 

detection of Palmer amaranth in a set of synthetically generated images consisting of both 

Palmer amaranth and waterhemp.  

The rest of the dossier was organized as follows: image acquisition and pre-processing 

are explained in palmer amaranth and waterhemp image acquisition; quantification of 

morphological characteristics of palmer amaranth and waterhemp was described in 

Morphological Characteristics; a description of ML techniques used to distinguish palmer 

amaranth from waterhemp is discussed in Machine Learning; a description of CNN for the same 

purpose is provided in Deep Learning; Transfer Learning is explained in Object Detection and 

Transfer Learning; and the results of the study are discussed in Results. 

3.1. Palmer amaranth and waterhemp image acquisition 

Fifty palmer amaranth and waterhemp plants were grown in pots in a controlled 

greenhouse environment at North Dakota State University (NDSU), Fargo, North Dakota. The 

pots were continually irrigated and image acquisition was performed using a high-resolution 

camera (24.2 MP Canon EOS Rebel T7i DSLR) established on a stable platform perpendicular to 

the surface of the pots. The details of the experiment are provided in Table 2. RGB images 

pertaining to 27 days from the date of emergence were acquired between 1:00 PM and 3:00 PM 

on a daily basis. RGB images of size 4020  6024 pixels were acquired at three different 

orientations (first, 25 centimeters from the level of the soil, second, 20 centimeters from the level 
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of the soil, and third, close-up shots) as shown in Figure 3.1 and Figure 3.2, respectively, while 

the details of the experiment are provided in Table 3.1. Note that the lighting inside the 

greenhouse was turned off so as to ensure the light did not interfere with the process and care 

was also taken to ensure the samples were not affected/harmed in any way during the process 

i.e., neither the hands nor the camera touched/caused any damage to the plants.  

 

Fig. 3.1. Palmer amaranth captured 8 days after emergence: (a) 25 centimeters from the soil 

surface; (b) 20 centimeters from the soil surface, and (c) close to the soil surface. 
 

(a) (b) 

(c) 
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Fig. 3.2. Waterhemp captured 8 days after emergence: (a) 25 centimeters from the soil surface; 

(b) 20 centimeters from the soil surface, and (c) close to the soil surface. 

Table 3.1. Experiment details. 

Experimental data Value 

Number of pots involved 50 

Number of pots of palmer amaranth 25 

Number of pots of waterhemp 25 

Start date of experiment 01/19/2021 

End date of experiment 02/23/2021 

Time of image gathering 1 p.m. to 3 p.m. 

Date of emergence of palmer amaranth 01/28/2021 

Date of emergence of waterhemp 02/05/2021 

 

The pre-processing of images and their augmentation is described next. 

(a) (b) 

(c) 
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3.1.1 Pre-processing of images 

The images corresponding to the second week of growth i.e., 8 to 14 DAE were selected 

for pre-processing owing to the small size of the weeds during the first week of growth. A total 

of 2,000 images (1,000 each of palmer amaranth and waterhemp, respectively) were processed 

for background removal using the Image Segmenter tool in MATLAB. Background removal 

dealt with the removal of the soil (potted mix) and any other objects from the image to ensure 

that the sample (weed) is the only object present in the image thereby making it the region of 

interest (Figures 3.3 and 3.4).   

 

Fig. 3.3. (a) Original image of palmer amaranth, (b) Palmer amaranth after background removal. 

 

(a) (b) 
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Fig. 3.4. (a) Original image of waterhemp, (b) Waterhemp after background removal. 

 

3.2. Morphological characteristics 

A select set of 36 leaves corresponding to each weed species from the above-mentioned 

dataset were randomly chosen and their morphological characteristics were extracted using a 

pixel-count method. This was performed by placing a grid of 1  1 pixel on each image and 

counting the number of pixels corresponding to the morphological characteristic.  

The following characteristics were extracted:  

• Length (L) – the number of pixels corresponding to the length of the leaf i.e., the 

major axis 

• Width (W) – the number of pixels corresponding to the width of the leaf i.e., the 

minor axis 

• Area (A) – the number of pixels that correspond to the leaf in the image 

• Perimeter (P) – the number of pixels that outline the leaf in the image 

These parameters in turn, were used to estimate the following dimensionless 

characteristics namely, Aspect Ratio, Circularity, and Roundness.  

(a) (b) 
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Figures 3.5 to 3.10 visualize the evolution of these dimensionless characteristics between 

days 8 to 14 for both the weed species.  

 

Fig. 3.5. Evolution of aspect ratio for palmer amaranth (8 to 14 DAE). 
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Fig. 3.6. Evolution of circularity for palmer amaranth (8 to 14 DAE). 

 

Fig. 3.7. Evolution of roundness for palmer amaranth (8 to 14 DAE). 
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Fig. 3.8. Comparison of evolution of aspect ratio of palmer amaranth with that of waterhemp (8 

to 14 DAE). 

 

 

Fig. 3.9. Comparison of evolution of circularity of palmer amaranth with that of waterhemp (8 to 

14 DAE). 
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Fig. 3.10. Comparison of evolution of roundness of palmer amaranth with that of waterhemp (8 

to 14 DAE). 

 

Dimensionless characteristics were averaged and plotted against time with an aim of 

distinguishing palmer amaranth from waterhemp within the first two weeks of emergence. 

Figures 3.11 to 3.13 visualize the three dimensionless parameters (averaged for 36 leaves) for 

days 8 to 14 DAE.  
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Fig. 3.11. Aspect ratios of palmer amaranth and waterhemp (8 to 14 DAE). 
 

 

Fig. 3.12. Circularity of palmer amaranth and waterhemp (8 to 14 DAE). 
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Fig. 3.13. Roundness of palmer amaranth and waterhemp (8 to 14 DAE). 

 

3.3. Machine Learning 

ML algorithms learn from the data provided and use statistical methods to make 

predictions. Moreover, ML is known to be a less data hungry approach i.e., it is known to operate 

even with a small number of data points [164] thereby resulting in lesser training times. A 

dataset to train classical ML models was created using the above extracted morphological 

characteristics to help draw inferences from them and make predictions so as to successfully 

classify the weeds into either category. The dataset comprised 9 columns (length, width, area, 

perimeter, aspect ratio, circularity, roundness, day #, and species of weed) and 7 rows (day 8, day 

9, day 10, day 11, day 12, day 13, and day 14) thereby resulting in a dataset of 312 data points 

(156 each of palmer amaranth and waterhemp, respectively). This dataset was further divided 

into Training and Test sets in the ratio, 80:20. The following ML algorithms were used for 

classification purposes: Support Vector Machines; K-Nearest Neighbors; Random Forest, and 

Logistic Regression. 
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3.3.1. Support Vector Machines  

Support Vector Machines (SVMs) is one of the most widely used supervised ML 

algorithm, classifying the data through the construction of hyperplanes that maximize the margin 

between support vectors. A hard margin is used for linearly separable data while a soft margin is 

used in case of non-linear data. SVM also uses ‘kernel trick’ to deal with non-linear data, Linear, 

Polynomial, Radial Basic Function (RBF), Sigmoid etc. are some of the kernels used. In this 

study, an SVM with linear kernel was used.  

3.3.2. Random Forest 

A Random Forest classifier is comprised of a group of decision tree classifiers, also 

called estimators. Each estimator is generated by randomly sampling a vector from the input 

vector and classifies an input vector by casting a vote to a class thereby producing its own 

prediction [165]. Random Forest then predicts the output based on the class that is most voted by 

these estimators.  

3.3.3. K-Nearest Neighbors (KNN)  

For a given dataset, KNN uses distance functions to find a group of k instances that are 

closest to the unknown samples. Euclidean Distance, Minkowski Distance, Manhattan Distance, 

and Cosine Distance etc. include some of the distance functions that are used by KNN among 

which Euclidean Distance is the widely used one. KNN with a k value of 5 was used in this 

study.    

3.3.4. Logistic Regression 

Logistic regression models the input data using the sigmoid function and uses a loss 

function, Maximum Likelihood Estimation which is based on conditional probability. The 
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predictions of the model will be classified as belonging to classes 0 and 1 if the probability is 

greater and lesser than 0.5, respectively.  

Confusion matrix was used to evaluate the performance of the above algorithms. Table 

3.2 summarizes and compares the performances of each of these algorithms.  

Table 3.2. Performance comparison of different ML algorithms employed in the study.  

ML 

method 

Confusion Matrix Classification report 

Random 

Forest 

 Predicted class label 

A
ct

u
a
l 

cl
a
ss

 

la
b

el
 

 PA WH 

PA 17 15 

WH 4 28 

 

 Precision Recall F1-score 

PA 0.81 0.53 0.64 

WH 0.65 0.88 0.75 

 

Accuracy (%): 70.31 

SVM  Predicted class label 

A
ct

u
a
l 

cl
a
ss

 

la
b

el
 

 PA WH 

PA 21 11 

WH 12 20 

 

 Precision Recall F1-score 

PA 0.64 0.66 0.65 

WH 0.65 0.62 0.63 

 

Accuracy (%): 64.06 

Logistic 

Regression 

 Predicted class label 

A
ct

u
a
l 

cl
a
ss

 

la
b

el
 

 PA WH 

PA 18 14 

WH 8 2 

 

 Precision Recall F1-score 

PA 0.69 0.56 0.62 

WH 0.63 0.75 0.69 

 

Accuracy (%): 68.62 

kNN  Predicted class label 

A
ct

u
a
l 

cl
a
ss

 

la
b

el
 

 PA WH 

PA 18 14 

WH 6 26 

 

 Precision Recall F1-score 

PA 0.75 0.56 0.64 

WH 0.65 0.81 0.72 

 

Accuracy (%): 68.75 
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It was observed that a significant number of datapoints corresponding to palmer amaranth 

were misclassified as waterhemp, particularly in the case of Random Forest where 15 datapoints 

were misclassified. Interestingly, Random Forest also yielded a classification accuracy of 

70.31% which was the maximum among all the algorithms. The process of hand-crafting the 

features i.e., extracting the morphological characteristics and engineering them for further 

classification by ML models is labor-intensive and time-consuming. Moreover, the accuracies of 

each of the algorithms were not adequate. 

3.4. Convolutional Neural Networks (CNN) 

CNN is a widely used deep neural network that is popularly used for the analysis of 

visual data. A typical CNN (as shown in Fig. 3.14) consists of the following layers: 

Convolutional layer; Pooling layer, and Fully-connected layer.  

 

Fig. 3.14. Architecture of CNN employed in the study for the classification of palmer amaranth 

and waterhemp. 
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The convolution layer is the first layer in a CNN and is responsible for autonomously 

identifying features from the input image. The convolution process is concerned with extracting 

and preserving essential information from the image. It is a mathematical process that is carried 

out between the input image and a filter (of a specific size). By sliding the filter over the image, 

the dot product between the two is produced with respect to the filter's size, resulting in a feature 

map. The feature map contains information about the image (edges and corners) and is passed to 

the subsequent layers to learn additional features of the image. The pooling layer receives several 

such feature maps are applies pooling operation on them. Pooling decreases the spatial size of the 

convoluted feature by combining the output of one layer's neuron cluster into a single neuron in 

the following layer. Pooling comprises two types namely, max pooling and average pooling. The 

greatest value from each cluster of neurons from the preceding layer is used in max pooling, 

whereas the average value is used in average pooling. In our study, max pooling operation was 

used. These pooling operations are shown in Fig. 3.15.  

 

Fig. 3.15. Types of pooling operations used after convolution operations. 

 

The final output is supplied to the fully connected layer which is trained using a 

backpropagation technique following numerous layers of convolution and pooling. ReLU, tanH, 
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and eLU include commonly used activation functions for hidden layers and for output layers, 

SoftMax is used.  

A dataset consisting of 2,000 images (1,000 each of palmer amaranth and waterhemp, 

respectively) was created from the pre-processed images mentioned previously in palmer 

amaranth and waterhemp image acquisition. But Deep Learning models, especially, CNN 

requires large amounts of data for it to be generalizable. We employed several data augmentation 

techniques in order to increase the size of our data. 

3.4.1. Data augmentation 

Data augmentation was performed using MATLAB to significantly increase the diversity 

of the available data without collecting new data. The types of data augmentation that were 

performed on the original images of palmer amaranth are described in Table 3.3. Similar 

techniques were also applied to images of waterhemp. 

Table 3.3. Augmentation techniques applied to original images of palmer amaranth. 

Augmentation 

technique 

Technique 

description 

Original image 

(palmer 

amaranth) 

Augmented image 

(palmer 

amaranth) 

Change in 

brightness 

Slight increase the 

brightness of the image 

 

 

 

 

Change in 

contrast 

Slight increase the 

contrast of the image 
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Table 3.3. Augmentation techniques applied to original images of palmer amaranth (continued). 

Augmentation 

technique 

Technique 

description 

Original image 

(palmer 

amaranth) 

Augmented image 

(palmer 

amaranth) 

Conversion to 

black and 

white 

Convert the image to 

black and white 

 

 

 

 

Scaling Scaling the weed 

sample (palmer 

amaranth or 

waterhemp) by 2.0 

 

 

 

 

90-degree 

rotation 

Rotating the image by 

90 degrees 

 

 

 

 

180-degree 

rotation 

Rotating the image by 

180 degrees 

 

 

 

 

270-degree 

rotation 

Rotating the image by 

270 degrees 

 

 

 

 

 

This combined with the pre-processed 2,000 images that were acquired resulted in a large 

dataset of 16,000 images (8,000 each of palmer amaranth and waterhemp, respectively) and was 

further used for training the CNN. In order to make the make the deep learning model robust, 
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Gaussian noise of noise intensity 0.04 was applied on the pre-processed 2000 images (1,000 each 

of palmer amaranth and waterhemp, respectively) and comprised the test set. Fig 3.16 shows the 

images following the application of Gaussian noise.  

 

Fig. 3.16. (a) Palmer amaranth after addition of Gaussian noise, (b) Waterhemp after addition of 

Gaussian noise. 

 

The combination of the training set and the test set comprised DATASET 1 and was used 

for image classification by CNN. In order to reduce training time of the CNN, the images 

comprising DATASET 1 were reduced to 200 × 200 pixels. CNN and its ability to classify 

between the weeds into either category are described next. 

The CNN with the following network structure (Table 3.4) was built and trained on the 

training set. of DATASET 1.  

 

 

 

 

 

(a) (b) 
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Table 3.4. The network structure of CNN configured for the classification of palmer amaranth 

and waterhemp. 

Layer (type) Output Shape No. of trainable 

parameters 

conv2d (Conv2D) (None, 196, 196, 8) 608 

activation (Activation) (None, 196, 196, 8) 0 

max_pooling2d 

(Max_Pooling2D) 

(None, 39, 39, 8) 0 

conv2d_1 (Conv2D) (None, 35, 35, 16) 3216 

activation_1 (Activation) (None, 35, 35, 16) 0 

max_pooling2d_1 

(Max_Pooling2D) 

(None, 17, 17, 16) 0 

flatten (Flatten) (None, 784) 0 

dropout (Dropout) (None, 784) 0 

dense (Dense) (None, 2) 1570 

Activation_2 (Activation) (None, 2)  

Total params: 5,394 

Trainable parameters: 5,394 

No       Non-trainable 

parameters: 0 

  

 

Table 3.5 lists the hyperparameters used for training the network.  
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Table 3.5. Tuned hyperparameters for the employed CNN model. 

Parameter Value 

CNN filter size 5 x 5 

CNN pooling size 5 x 5 

Number of layers 8 

Number of training images 16,000 

Number of epochs 100 

Batch size 64 

Optimizer for network Adam 

Learning rate of Adam 0.001 

 

Table 3.6 shows the performance of the employed CNN model. 

Table 3.6. Actual and predicted class labels of palmer amaranth and waterhemp. 

 Predicted class label 

A
ct

u
a
l 

cl
a
ss

 l
a
b

el
  PA WH 

PA 855 145 

WH 0 1,000 

Table 3.6. PA denotes palmer amaranth and WH denotes waterhemp. 

Observations indicted all the images of waterhemp were correctly classified while 145 

images of palmer amaranth were misclassified as waterhemp. However, to identify and 

distinguish the weeds in more realistic scenarios, particularly, when they are spread across 

agronomic fields in a random fashion (both close and distant proximities), pertaining to different 

age groups etc., it is important to localize each object i.e., weeds in an image and distinguish it 

from other categories rather than just classifying an object contained in an image i.e., image 

classification. Hence, there is a need for identification of multiple objects in an image through 

Object Detection.  
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3.5. Object detection and transfer learning 

Object detection is a Computer Vision technique that determines the location of objects 

in an image i.e., object localization and its corresponding category i.e., classification [166]. 

Through the process of drawing bounding boxes around the objects detected, it locates the 

objects in the image.  

The various stages involved in the process of object detection include: 

• Informative region selection – scanning the entire image through a multiscale 

sliding window to find all the possible regions of objects  

• Feature extraction – extracting visual features of the objects in the image in order 

to recognize  

• Classification – distinguishing a target object from other categories of objects in 

the image 

Object detection models require a huge amount of data [167], comprised of lot of 

varieties to train, however, availability of such amounts of data might not be practically feasible. 

However, Transfer learning helps solve this problem. Transfer learning is an ML method that 

involves the use of knowledge learned from a task to improve the learning of a different but 

related task. The concept of transfer learning was first addressed by Stevo Bozinovski in [168] 

who explained it during the training process of a neural network. Ever since, numerous 

discussions have been made on the ML method namely, Meta Learning [169], Knowledge-based 

inductive bias [170], Learning to learn [171], Multi-tasking Learning [172], Incremental 

Learning [173], Life-long Learning [174], Context-sensitive Learning [175], Inductive transfer 

[176], Knowledge Transfer [177] and Knowledge Consolidation [178]. [180–182] defined 
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transfer learning as a combination of two concepts namely, domain and task. The domain, D is  

further comprised of a feature space, X and a marginal distribution,  P(X) such that X = {x1, 

x2…….xn} where xi ɛ X X, here represents a sample data point while xi is the ith term vector 

corresponding to some data point and X represents the space of all data points.  

The task, T is a combination of Y, the set of all labels (True, False) and a conditional 

probability P(Y|X) which is learned from the label pairs (xi, yi) where xi ɛ X and yi ɛ Y. 

Given the following: 

A source domain DS 

A target domain DT 

A source task TS and 

A target task TT  

Transfer learning aims at utilizing the knowledge gained from DS and TS where DS or TS 

are not equal to DT and TT respectively to help us learn the target conditional probability 

P(YT|XT) in DT. Transfer learning in the context of deep learning (Fig. 3.17) refers to the transfer 

of knowledge that was previously used to train a model for a certain task A to another model for 

a relatively similar task B.  
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Fig. 3.17. General architecture of Transfer learning. 

 

Most of the inner layers of the model remained untouched while the ones that are close to 

the output layers are altered. Also, the datasets on which the two models are trained may be 

similar or entirely different from one another.  

A simulated dataset for object detection, DATASET 2 was created by using the training 

set of DATASET 1 and annotating it in this study. Annotation was performed by creating 

bounding boxes around the objects i.e., weeds in the image, class labels created using LabelImg 

thereby resulting in 16,000 image labels and their corresponding coordinates. For testing 

purposes, a total of 132 RGB images of palmer amaranth and waterhemp, respectively, that were 

not part of the original 2000 images (DATASET 1) were used. These images were preprocessed 

using MATLAB for background removal following which the objects in the images i.e., palmer 

amaranth and waterhemp were carefully selected, cropped, and placed in a different image of a 

larger size. As a result, 12 images of size 4,000 × 4,000 were constructed by selecting samples of 
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palmer amaranth and waterhemp from the original images (pertaining to various ages ranging 

between 8 to 14 days) and randomly distributing them across the image. This was done in order 

to generalize to a real-world scenario where the weeds would occur in corn fields, spread out in a 

random fashion (both close and distant proximities) and pertaining to different ages. Two such 

constructed images are shown in Figure 3.18.  

 

Fig. 3.18. Samples of palmer amaranth and waterhemp from original images randomly 

distributed to construct images for object detection. 

 

A YOLO V5 model pre-trained on the COCO dataset, a large dataset consisting of 

bounding boxes, segmentation masks, labels for approx. 330,000 images pertaining to 80 

different general object categories (dog, cat, boat, airplane etc.) was used for object detection. 

YOLO V5 with the weights corresponding to this dataset was trained on a subset of the training 

set of DATASET 2 (consisting of 3,200 images with their bounding boxes and labels) formed by 

selecting 200 images each from the original set of 2,000 images as well as 200 each from each of 

the augmented sets pertaining to each weed category. Post training, the newly obtained weights 

were used to test the model’s performance on the 12 simulated images. Figure 3.19 shows the 

bounding boxes created by YOLO V5 around samples of palmer amaranth and waterhemp. The 

(a) (b) 
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bounding boxes in red represent the detection of palmer amaranth and the pink ones, waterhemp. 

It was observed that the model could also detect these objects irrespective of their age and 

proximity to each other thereby proving to be successful in a real-world like scenario.  

 

Fig. 3.19. Labelled images of individual samples of palmer amaranth and waterhemp obtained 

from the trained YOLO V5 model. YOLO V5 uses bounding boxes to localize individual image 

objects.  

 

The results of the object detection approach using YOLO V5 are summarized in Tables 

3.7 and 3.8, respectively.  

 

 

 

 

 

 

 

 

 

(a) (b) 
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Table 3.7. Summary of results obtained for Object detection using YOLO V5. 

Image 

No. 

No. of 

samples of 

palmer 

amaranth 

No. of 

samples 

correctly 

classified 

No. of 

samples of 

waterhemp 

No. of 

samples 

correctly 

classified 

Total 

no. of 

samples  

Total no. of 

samples 

correctly 

classified 

1 5 5 5 5 10 10 

2 5 5 5 5 10 10 

3 5 4 5 2 10 6 

4 5 4 5 5 10 9 

5 5 4 5 4 10 8 

6 5 5 5 4 10 9 

7 7 6 5 5 12 11 

8 6 4 5 4 11 8 

9 5 4 5 5 10 9 

10 5 4 5 5 10 9 

11 9 8 8 4 17 12 

12 6 5 6 5 12 11 

     132 112 

 

Table 3.8. Object detection results summary. 

Parameter Value 

Total no. of images 12 

Total no. of objects in all images combined 132 

Total no. of objects correctly classified 112 

Total no. of objects undetected or wrongly classified 20 

 

3.6. Results 

Confusion matrix was the performance metric used for the evaluation of the model’s 

performances. A confusion matrix measures the correctness of the model and its accuracy for 

binary or multi-class classification problems. In a binary class classification problem, the 

expected values are the actual values i.e., two values (for example, 0 and 1, or True and False) 
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while the ones that the model predicts represent the predicted values. The confusion matrix 

visualizes the classifier's (in this case, CNN) performance by showing expected vs predicted 

values in the form of a matrix. The expected values are represented by rows whereas the 

predicted ones, by columns. The diagonal values represent items where the predicted values were 

identical to the anticipated values i.e., expected values, while the off-diagonal values represent 

items where the classifier predicted incorrectly. The elements of the matrix include true 

positives, true negatives, false positives, and false negatives. True Positives represent the number 

of cases where both the actual and predicted values of a data sample is 1. True Negatives 

represent the number of cases where the actual value as well as the predicted value of a data 

sample is 0. On the other hand, False Positives represent the number of cases where the actual 

value 0 and the predicted value of the data sample is 1. False Negatives represent the number of 

cases where the actual value is 1 and the predicted value of the data sample is 0. From the above 

stated terminologies, it can be understood that the performance of the model is considered to be 

good if the number of True Positives and True Negatives respectively are higher and the number 

of False Positives and False Negatives respectively are lower. Therefore, a model needs to be 

trained so as to maximize the number of True Positives and True Negatives respectively and 

minimize the number of False Positives and False Negatives respectively.  

The performances of the various ML algorithms used i.e., Random Forest, SVM, Logistic 

Regression, and k-NN, along with their hyperparameters are provided in Table 3.2. From the 

table, it can be inferred that 17 and 28 datapoints of palmer amaranth and waterhemp, 

respectively, were correctly classified by Random Forest while 15 datapoints of palmer amaranth 

were misclassified as waterhemp and four datapoints of waterhemp were misclassified as palmer 
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amaranth resulting in a classification accuracy of 70.31%. Twenty-one and 20 datapoints of 

palmer amaranth and waterhemp, respectively, were correctly classified by SVM while 11 

datapoints of palmer amaranth and waterhemp were misclassified as waterhemp and 12 

datapoints of waterhemp were misclassified as palmer amaranth resulting in a classification 

accuracy of 64.06%. Logistic Regression correctly classified 18 and 24 datapoints of palmer 

amaranth and waterhemp, respectively, while it misclassified 14 and 8 datapoints of palmer 

amaranth and waterhemp, respectively, resulting in a classification accuracy of 65.62%. kNN 

fared the best after Random Forest, correctly classifying 18 and 26 datapoints of palmer 

amaranth and waterhemp, respectively, while wrongly classifying 14 datapoints of palmer 

amaranth and waterhemp, resulting in a classification accuracy of 68.75%. Table 3.6 shows the 

confusion matrix for the CNN model described in the previous section. From the table, it can be 

inferred that all the images of waterhemp were correctly classified while 145 images of palmer 

amaranth were misclassified as waterhemp thereby resulting in a classification accuracy of 

92.75%. 

The performance of the YOLO V5 model was evaluated on the 12 manually created test 

images consisted of both the weeds i.e., objects scattered all across the frame in a random 

manner. Manual evaluation revealed that the model was able to successfully detect 112 of the 

total 132 objects present in all the 12 images combined. The details such as the number of weeds 

i.e., objects of either category in each image, the number of objects successfully detected in each 

image, total number of successfully detected objects are summarized in tables 3.7 and 3.8, 

respectively.  
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4. CONCLUSIONS 

The ability of automated approaches for the early-stage distinguishing of palmer 

amaranth from waterhemp were demonstrated in this experiment. The following conclusion are 

drawn based on the analyses conducted in the study:  

1. The morphological characteristics namely, length, width, area, perimeter, aspect ratio, 

circularity, and roundness of the leaves of palmer amaranth and waterhemp pertaining to days 8 

to 14 DAE were extracted and later, compared. Visualization of these characteristics revealed 

that the aspect ratio of palmer amaranth was greater than that of waterhemp. However, the 

circularity and roundness were greater for waterhemp than palmer amaranth. Palmer amaranth 

could be clearly distinguished from waterhemp, through the visualization of morphological 

characteristics, however, the process of extracting the morphological characteristics is a 

laborious and time-consuming process, requiring immense focus. Moreover, as the size of the 

data increases i.e., the number of leaves increases, it becomes harder to extract these 

characteristics.  

2. A dataset of 312 datapoints comprising the morphological characteristics of palmer 

amaranth and waterhemp was created to train ML algorithms. Classical ML algorithms namely, 

Random Forest, SVM, KNN, and Logistic Regression etc. were trained using 80% of the 

available data. The trained algorithms were validated using the remaining 20% data. A 

significant number of datapoints corresponding to palmer amaranth were misclassified as 

waterhemp, particularly in the case of Random Forest where 15 out of 32 datapoints were 

misclassified. Interestingly, Random Forest also fared the best among all the classical algorithms 
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with an accuracy of 70.31%. Eleven, 14, and 14 datapoints of palmer amaranth were 

misclassified by SVM, Logistic Regression, and KNN, respectively.   

3. A deep learning approach using a CNN was adopted to increase the classification 

accuracy in categorizing a weed as either palmer amaranth or waterhemp. The CNN was trained 

on a dataset of 16,000 images and validated using 2,000 images embedded with Gaussian noise. 

The CNN correctly classified 855 of palmer amaranth and all 1,000 images of waterhemp while 

misclassifying 145 images of palmer amaranth thereby yielding a classification accuracy of 

92.75%. A possible reason for the misclassification could have been the similarities in terms of 

appearance of both palmer amaranth and waterhemp in the first few days (day 8 and 9). 

Although misclassifications of palmer amaranth were observed in case of both ML and the CNN, 

a significantly higher classification accuracy was achieved in the case of CNN.  

4. A YOLO V5 object detection model with pre-trained weights was re-trained on a 

subset (3200) of the image dataset which was annotated to distinguish palmer amaranth from 

waterhemp in more realistic scenarios, for example, when the weeds are spread across an 

agronomic field in a random manner. The model was then tested on 12 synthetic images 

consisting of a total of 132 objects of palmer amaranth and waterhemp. One hundred twelve of 

the 132 samples of the weeds were correctly detected.  

The results from the object detection performed in this study can play an important role 

in successfully distinguishing between palmer amaranth from waterhemp in their early stage, 

particularly when they exhibit similar morphological characteristics. These results also establish 

a convenient approach to detect these weeds in real-life scenarios where the occur together in the 

same field and in proximity of one another. 
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5. FUTURE RESEARCH DIRECTION 

While the early-stage distinguishing of palmer amaranth from waterhemp is 

advantageous, it was performed in cases where the background was eliminated after pre-

processing in the research. However, the proposed methodology could be extended to work in 

real corn fields which would constitute a more realistic scenario. In addition, considering palmer 

amaranth and waterhemp are Amaranthus species, the possibility of distinguishing palmer 

amaranth from other pigweed species namely redroot pigweed, smooth pigweed, powell 

amaranth etc. could also be explored as an extension to the work conducted in this research.     

Images of palmer amaranth and waterhemp were acquired in a greenhouse with 

controlled lighting settings in this research. Also, data augmentation was performed for the 

diversification of existing data i.e., preprocessed and augmented images following which there 

were used for distinguishing palmer amaranth from waterhemp. However, the proposed method 

does not account for the distinguishing in different conditions that are uncontrollable, for 

example, tilt angle of the device used for image acquisition, overlapping of the weeds’ leaves, 

and environmental conditions namely, light, temperature, weather etc. Hence, this method could 

be extended to distinguish palmer amaranth from waterhemp in such conditions. 

The only reliable way to differentiate palmer amaranth and waterhemp at this stage 

would be the use of genetic testing since they possess a striking similarity in the early stages of 

growth and look identical to an untrained eye. Genetic testing involves collecting seed samples 

of palmer amaranth and other related species, performing genomic sequencing on them, 

searching for specific genetic differences, and designing genetic markers to distinguish palmer 

amaranth from the other species based on DNA. Studies have shown genetic testing to be the 
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most reliable way for the process of distinguishing palmer amaranth from other species [183] 

with accuracies ranging between 99.7 to 99.9%. However, the process of genetic testing (both 

leaf tissue testing and seed sample testing) is expensive, with the testing of a single seed/tissue 

sample costing about $75 per sample [184]. Moreover, hundreds of samples are required for the 

purpose. The proposed method in this study could be extended to analyze ML as a possible, 

reliable, and cost-effective alternative to genetic testing that can provide similar or better 

efficacies in distinguishing palmer amaranth from other pigweed species including waterhemp in 

the early stages.  

The presence of palmer amaranth and waterhemp uncontrolled in cornfields reduces 

yields, causing economic losses. However, the proposed approaches provide effective solutions 

to this problem. Moreover, the financial benefits of distinguishing palmer amaranth from 

waterhemp in the early stage using the proposed approaches in cornfields is yet to be quantified 

and could be pursued in the near future. 
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