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ABSTRACT

The classic theory of locally optimal designs is developed on the center+error model

assuming Gaussianity and homoscedasticity for random error, in which, the Maximum

Likelihood Estimator (MLE) turns out to be the most efficient in model parameter estima-

tion. However, these assumptions are typically absent in practice. In this work, we study

the locallyD-optimal design based on our new oracle Second-order Least Square Estimator

(SLSE). We compare asymptotic efficiency of locally D-optimal designs obtained via SLSE,

the Maximum quasi-Likelihood Estimator (MqLE) and Maximum Gaussian Likelihood Es-

timator (MGLE), in the case where the underlying probability distribution of response

is non-Gaussian and heteroscedastic. We find that even with less stringent assumptions,

asymptotic efficiency of the locally D-optimal designs obtained via MqLE is comparable

to oracle SLSE in some cases, albeit lesser in general. As a demonstration of how the lo-

cally D-optimal design is numerically found, we apply our feasibility-based particle swarm

optimization algorithm to the locally D-optimal design based on the original SLSE.
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1. INTRODUCTION

In pre-clinical research, scientists’ aim is to identify a promising medicine from

thousands of feasible compounds. In the following clinical study, dozens of recruited pa-

tients (subjects) are assigned to several treatment groups of different doses within a range

of [L,U ] (log scale) for identification of the maximum tolerated dose (MTD) and recom-

mended phase II dose (RP2D). Given the total number of subjects allowed by the budget in

a clinical study, an optimal clinical design is to find the optimal doses and number of sub-

jects assigned to each treatment group, which satisfies certain optimality criteria related

to the precision with which model parameters of the response measure are estimated.

The classical theory of optimal designs is developed on the center+error model, in

which the response measure of each subject is assumed to be Gaussian distributed and ho-

moscedastic across all treatment groups. At any nominal value of the model parameters,

precision of the maximum Gaussian likelihood estimator (MGLE) or Fisher information of

the model parameters is locally optimal in the sense of Lowner ordering. (The word “lo-

cally” is henceforth omitted for simplicity.) The optimal design based on Fisher information

or MGLE, therefore, possesses the maximum design efficiency among other designs.

A response variable in practice, however, is typically heteroscedastic and its prob-

ability distribution is often unknown, much less Gaussian. Disregarding the underlying

distribution of the response measure, Gaviria and & López-Ŕıos (2014) suggested con-

structing D-optimal designs via Fisher information with respect to Gaussian distribution

with heteroscedasticity. Their work inadvertently exemplified an inefficient information-

based design in presence of probability model mis-specification. Assuming homoscedas-
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ticity of the error in the center+error model, Gao and Zhou (2014) and Yeh and Zhou

(2021) studied optimal designs based on the second-order least square estimator (SLSE),

a sort of generalized method of moments more robust and efficient than the least square

estimator if the underlying distribution of the error is skewed. The SLSE based optimal de-

signs in those works presume the skewness and kurtosis in addition to mean and variance

of the error. This method allows skewness in the underlying distribution, but still requires

homoscedasticity, which implicitly guarantees the resulted optimal design not relying on

the variance of the error. In a view of robustness to model mis-specification possessed by

the maximum quasi-likelihood estimator (MqLE), as argued by Nelder and Wedderburn

(1972) and Wedderburn (1974), Shen et al. (2016) proposed their MqLE based optimal

design, which requires only the structure of mean and variance of the response measure.

No assumption of Gaussianity or homoscedasticity is needed in this method. The MqLE

based optimal design turns out to be as efficient as the MLE based when the underlying

distribution is in one-parameter exponential family.

In this work, we start from the asymptotic variance of MLE, MqLE, MGLE and ora-

cle SLSE for the parameters in the Emax model, with a focus on efficiency of D-optimal

designs based on the precision of these estimators, in the case where Gaussianity and

homoscedasticity are absent from the underlying probability model for the response mea-

sures. As far as we know, no such comparison has yet been done. In light of no analytic

solution of the D-optimal designs for the Emax model, some numerical algorithm must

be applied in search of the optimal designs. In this work, we provide a brief review of

some popular D-optimal design searching algorithms of diverse streams, including the

sensitivity-based algorithms and population-based metaheuristic algorithms, as well as the
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algorithm based on disciplined convex programming. Theorem 2 by Yang (2010) and the

Equivalence theorem proposed by Kiefer and Wolfowitz (1959, 1960) play a vital role in

algorithmic search of optimal designs. The former limits the number of distinct dose lev-

els in an optimal design, while the latter helps verify whether a derived clinical design is

optimal.

We borrow the feasibility-based particle swarm optimization algorithm (PSO) from

the field of engineering in search of the D-optimal designs. All the resulted D-optimal

designs are verified by the Equivalence theorem.

This work is organized as follows. Chapter 2 introduces D-optimal designs based

on the four estimators and presents the main results concerning their asymptotic variance,

and this section also reports the locally D-optimal designs based on these estimators in

the case of the three underlying distributions for the response measure and compares their

efficiency. Chapter 3 reviews some classic searching algorithms for D-optimal designs

and works out some examples for demonstration of the feasibility-based PSO. Chapter 4

provides a brief discussion and conclusion. The tedious technical details are deferred to

Appendix.
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2. MODELS, D-OPTIMAL DESIGNS & EFFICIENCY

A clinical design involves desirable dose levels of medication and the number of

subjects assigned to each dose level, which is usually denoted as ξ = {(xi, ni)}di=1, where

xi ∈ [L,U ] is the dose level in log scale and ni is the number of subjects allocated to the

treatment group, satisfying
d∑
i=1

ni = n, the total number of recruited subjects is given by

some specific sample size calculation methodology under budget. A design ξ could be

alternatively denoted as ξ ≜ {(xi, wi)}di=1 (approximate design), where wi is the weight

of subjects allocated to the treatment group satisfying
d∑
i=1

wi = 1 and not constrained to

nwi being an integer for some n. For convenience, we consider only approximate designs

in this work, because any approximate design can be rounded to an exact design without

losing much efficiency, see Pukelsheim (2006), §12.

2.1. Models in clinical design

The classical center+error model plays an important role in the statistical theory of

clinical designs in which the response measure is modeled by

yij = µ(xi,θ) + σϵij, j = 1, 2, . . . , ni, i = 1, 2, . . . , d

where yij is the response measure of subject j in treatment group i; µ(xi,θ) is the mean

of treatment group at dose xi, which depicts the functional relationship between dose xi

and mean response, given the model parameter θ ∈ Rk; σ is the unknown dispersion

parameter; and ϵij is the random error satisfying ϵij
iid∼ N(0, 1). This model implies the

response measure yij
ind∼ N(µi, σ

2), where µi = µ(xi,θ).

4



A popular choice of the treatment mean function µ(x,θ) is the Emax model for

dose-response analyses in pharmacokinetics and pharmacodynamics, see Macdougall (2006),

Li and Majumdar (2008) and Shen et al. (2016), among many others. Assuming the re-

sponse measure yij
ind∼ N(µi, σ

2), Yang (2010) corroborated theEmaxmodel has minimally

supported optimal designs. For convenience, we use the Emax model in this study for the

treatment mean. The Emax model is defined as

µ(x,θ) =
θ1

1 + eθ2x+θ3
+ θ4, (2.1)

where the model parameter θ = (θ1, θ2, θ3, θ4)
′ ∈ R4.

• θ1: > 0, Emax, where Emax is the maximum effect attributable to the drug;

• θ2: −Hill’s coefficient;

• θ3: Hill’s coefficient × log(ED50), where ED50 is the dose producing half of Emax;

• θ4: The basal effect of response.

With the basal effect θ4=0, Michaelis and Menten (1913) first proposed the reduced Emax

model, the Michaelis−Menten model, which is defined as

µ(x,θ) =
θ1

1 + eθ2x+θ3
, (2.2)

where the model parameter θ = (θ1, θ2, θ3)
′ ∈ R3.

For the classical center+error model, θ̂MGL, the MGLE of model parameter θ en-

joys the minimum asymptotic variance among all the estimators in the sense of Loewner
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ordering. Although the assumption of Gaussianity and homoscedasticity is frequently re-

ported absent in practice and consequently the classical center+error model is still widely

used with diverse choices of the treatment mean function µ(xi,θ), simply because of its

mathematical convenience.

In order to accommodate heteroscedasticity of the response measure, we may set

var yij = νi ≜ ν(µi) for the treatment variance at dose xi, where µi = µ(xi,θ) is the treat-

ment mean at dose xi and ν(·) > 0 is some positive function. This setting actually includes

the case of homoscedasticity with the choice of νi to be a universal constant. Gaviria and

& López-Ŕıos (2014) considered modeling the response measure with N(µi, νi), where

ν(µi) = σ2µ2τ
i for some σ2, τ > 0. Shen et al. (2016) used Gaussian and Gamma distri-

bution, but followed Cook and Weisberg (1983) and Atkinson and Cook (1995), setting

ν(µi) = σ2ehµi for some constant h and σ2 > 0 instead.

2.2. Optimal designs

To obtain optimal designs based on an estimator θ̂ for the model parameter θ, it

is critical to find varξ θ̂ or its inverse, the precision of θ̂, for any design ξ. In particular

when the estimator θ̂ is θ̂ML, the maximum likelihood estimator (MLE), the precision of

θ̂ML is simply the Fisher information of θ. Let χ be the collection of all the clinical designs

ξ = {(xi, wi)}di=1 satisfying xi ∈ [L,U ], wi ≥ 0,
d∑
i=1

wi = 1 and d < +∞. In practice, the D-

optimal design ξ∗ = argminξ∈χ det(varξ θ̂) minimizing determinant of varξ θ̂, the E-optimal

design ξ† = argminξ∈χ λmax(varξ θ̂) minimizing the maximum eigenvalue of varξ θ̂, and

the A-optimal design ξ⋆ = argminξ∈χ tr(varξ θ̂) minimizing the trace of varξ θ̂, are of great

interest to statisticians among other alphabetic optimal designs. Indeed, the D-optimal

design seeks to minimize volume of the confidence ellipsoid of θ̂ and the E-optimal design
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aims to minimize the longest axis length of the confidence ellipsoid of θ̂; while the A-

optimal design intends to minimize sum of the variance of each component of θ̂. Of all

these optimal designs, only the D-optimal designs are invariant under reparametrization

of θ.

The Equivalence theorem proposed by Kiefer and Wolfowitz (1959) asserts that if

there exists a vector function f(x,θ) such that the precision of θ̂ with respect to design ξ

M∧(ξ,θ) ≜ [varξ θ̂]
−1 =

∫ U

L

f(x,θ)f ′(x,θ)ξ(dx) (2.3)

holds for any design ξ, where
∫ U
L
ξ(dx) is the Lebesgue integral with respect to ξ as a

probability measure, then ξ∗ is the θ̂-based D-optimal design iff max
x

d(x, ξ∗) ≤ k, where

d(x, ξ∗) ≜ f ′(x,θ)M−1
∧ (ξ∗,θ)f(x,θ) is the sensitivity function, k is the dimension of θ.

Furthermore, according to Silvey (1980), Lemma 5.1.3, if the locally D-optimal design ξ∗

is minimally supported, i.e., the number of supports of ξ∗ equals to the dimension of θ,

then ξ∗ must be a uniform design (equally weighted).

2.3. D-efficiency

An estimator based D-optimal design seeks to minimize the determinant of the

variance of the estimator. For the locally D-optimal design ξ∧0 based on an estimator θ̂ at

θ0, its relative D-efficiency is

eD(ξ
∧
0 ) ≜

{
det[M∧(ξ

∧
0 ,θ0)]

det[M∗(ξ∗0 ,θ0)]

}1/k

(2.4)

where, M∧(ξ
∧
0 ,θ0) = [varξ∧0 θ̂]−1 is the precision of θ̂ under its locally D-optimal design ξ∧0 ;

M∗(ξ
∗
0 ,θ0) = [varξ∗0 θ̂ML]

−1 is the precision of θ̂ML under its locally D-optimal design ξ∗0;
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and k is the dimension of parameter θ. Clearly, eD(ξ∧0 ) ∈ [0, 1] and the higher the value,

the larger the relative efficiency of the D-optimal design ξ∧0 .

2.4. Estimators: SLSE, MqLE, MGLE

In principle, construction of D-optimal designs shall be based on precision of θ̂ML

or the Fisher information of model parameter θ with respect to the underlying probability

model which, however, could be mis-specified or even unavailable in practice. Choos-

ing a reasonable estimator for model parameters then depends on how much informa-

tion concerning the probability distribution of the response measure is available, e.g., the

mean, variance, skewness and/or kurtosis. SLSE and MqLE are among other popular M-

estimators beside MLE for estimation of model parameter θ, which either maximizes or

minimizes the criterion function:

gn(y, x,θ) ≜
1

n

d∑
i=1

ni∑
j=1

g(yij, xi,θ)
p→
∫ U

L

E[g(y, x,θ)]ξ(dx) (2.5)

where g(yij, xi,θ) is the kernel of the criterion function. For these estimators and the MGLE

in particular, with the model specification µi = µ(xi,θ) and νi = ν(µi),

1. MLE: g(yij, xi,θ) = log f(yij, µi, νi), where f(yij, µi, νi) is the pdf/pmf of yij;

2. MGLE: g(yij, xi,θ) = log ϕ(yij, µi, νi), where ϕ(yij, µi, νi) is the pdf of N(µi, νi);

3. MqLE: g(yij, xi,θ) =
∫ µ(xi,θ)
−∞

yij−u
ν(u)

du;

4. SLSE: g(yij, xi,θ) = ρ′ij(θ)W (xi)ρij(θ), where ρij(θ) ≜ (yij − µi, y
2
ij − µ2

i − νi)
′, and

W (xi) is a user-specified 2×2 non-negative-definite matrix depending on xi. Accord-

ing to Wang and Leblanc (2008), the best choice of the weighting matrix W (xi) that
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yields the minimum variance of the estimator is W0(xi) ≜ {Eθ0 [ρij(θ0)ρ
′
ij(θ0)|xi]}−1,

where θ0 is the nominal value of θ. It turns outW0(xi) =
(

ν̃i
γ̃i+2µ̃iν̃i

γ̃i+2µ̃iν̃i
κ̃i−ν̃2i +4µ̃2i ν̃i+4µ̃iγ̃i

)−1,

where µ̃i = µ(xi,θ0), ν̃i = ν(µ̃i), γ̃i ≜ Eµ̃i(yij − µ̃i)
3 and κ̃i ≜ Eµ̃i(yij − µ̃i)

4.

SLSE with the choice of W0(xi) as the weighting matrix is an oracle, since it requires a

priori knowledge of the function γ(µ) = Eµ(y − µ)3 and κ(µ) = Eµ(y − µ)4.

Given the nominal value of parameter θ, the asymptotic variance of M-estimators

under design ξ as defined by Eq(2.5) have the well-known sandwich form,

{∫ U

L

Eθ(g̈)ξ(dx)

}−1{∫ U

L

Eθ(ġġ
′)ξ(dx)

}{∫ U

L

Eθ(g̈)ξ(dx)

}−1

, (2.6)

where, Eθ is the expectation operator under the distribution parametrized with θ, ġ =

∂g
∂θ
(y, x,θ) and g̈ = ∂2g

∂θ∂θ′ (y, x,θ). The asymptotic variance of θ̂ML (MLE) under design ξ

is therefore
{ ∫ U

L
[Eµl̇

2]µ̇µ̇′ξ(dx)
}−1, where µ̇ ≜ ∂µ

∂θ
and l̇ ≜ ∂

∂µ
log f(y, µ, ν(µ)) is the score

function. Shen et al. (2016) corroborated the asymptotic variance of θ̂MqL (MqLE) under

design ξ is
{ ∫ U

L
1
ν
µ̇µ̇′ξ(dx)

}−1. Correspondingly,

Proposition 2.4.1. The asymptotic variance of θ̂SLS (oracle SLSE) under design ξ is

{∫ U

L

[1
ν
+

(γ − ν̇ν)2

ν(κν − ν3 − γ2)

]
µ̇µ̇′ξ(dx)

}−1

, (2.7)

where ν̇ ≜ dν
dµ

, µ̇ ≜ ∂µ
∂θ

, γ ≜ Eµ(y − µ)3 and κ ≜ Eµ(y − µ)4. Consequently, the asymptotic

variance varξ θ̂SLS ⪯ varξ θ̂MqL in the sense of Loewner ordering.
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The D-optimal designs based on MLE, MqLE and oracle SLSE could be easily ob-

tained, since their precision under any design ξ all satisfy the assumption of the Equiva-

lence theorem as quoted in Eq(2.3).

The asymptotic variance of θ̂MGL (MGLE) under design ξ, in general, turns out to

be

{∫ U

L

(
1

ν
+
ν̇2

2ν2
)µ̇µ̇′ξ(dx)

}−1{∫ U

L

(
1

ν
− ν̇2

4ν2
+
ν̇γ

ν3
+
ν̇2κ

4ν4
)µ̇µ̇′ξ(dx)

}{∫ U

L

(
1

ν
+
ν̇2

2ν2
)µ̇µ̇′ξ(dx)

}−1

.

(2.8)

In the case of the response measure yij
ind∼ N(µi, νi), the asymptotic variance of θ̂MGL is

then reduced to
{ ∫ U

L
[ 1
ν
+ ν̇2

2ν2
]µ̇µ̇′ξ(dx)

}−1.

In the absence of the knowledge of the underlying distribution, Gaviria and & López-

Ŕıos (2014) suggested to use information Iξ ≜
∫ U
L
[ 1
ν
+ ν̇2

2ν2
]µ̇µ̇′ξ(dx) to derive the D-optimal

design. Actually, this Iξ is the Fisher information of θ with respect to the design ξ and

postulated Gaussian distribution, which is completely detached from the underlying prob-

ability model. Indeed, their MGLE based method provided an excellent example of infor-

mation based inefficient designs due to the model mis-specification when the underlying

distribution is non-Gaussian. Following Wang and Leblanc (2008), Yin and Zhou (2017)

and Gao and Zhou (2017) studied the SLSE based D-optimal design, which is essentially a

generalized method of moments allowing asymmetric distribution. Although the assump-

tion of Gaussianity is relaxed to some extent, it requires νi being some constant. In view of

this, we set a varying νi = ν(µi) as well for the oracle SLSE in this study. Shen et al. (2016)

proposed to obtain D-optimal designs based on MqLE, which obviates Gaussianity and ho-
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moscedasticity. The resulted D-optimal design is identical to that based on MLE when the

underlying distribution belongs to the one-parameter exponential family (OPEF).

In our following numerical study of relative efficiency of D-optimal design for the

Emax model in the case where Gaussianity or homoscedasticity is absent, we consider the

probability families as below with parameter ψ controlling model departure from OPEF

as the underlying distribution for the response measure. Note all the probability models

satisfy Eyij = µi and var yij = νi, and, intuitively, the larger the ψ value, the farther the

departure from the OPEF.

1. yij
ind∼ N(µi, νi) with νi = 300 + 60ψµi, symmetric, in OPEF if ψ = 0;

2. yij
ind∼ Gamma(

µ2i
νi
, µi
νi
) with νi = µ2

i + 60ψµi, asymmetric, in OPEF if ψ = 0;

3. yij
ind∼ IG(µi,

µ3i
νi
) (Inverse Gaussian) with νi = µ3

i + 60ψµi, asymmetric, in OPEF if

ψ = 0.

2.5. Numerical experiment

In our numerical study of relative efficiency of the D-optimal designs for the Emax

model as defined by Eq(2.1), the nominal value of θ is taken at θ0 = (340,−1, 4.6741, 60)′

and the range of dose x in log scale is set at [L,U ] = [log 10−3, log 500], as implemented

by Bretz et al. (2010) and Hyun et al. (2018). For the Emax model, [varξ θ̂ML]
−1 =∫ U

L
[Eµl̇

2]µ̇µ̇′ξ(dx), where µ̇ =
(

1
1+eθ2x+θ3 ,

−θ1xeθ2x+θ3

(1+eθ2x+θ3)2
, −θ1eθ2x+θ3

(1+eθ2x+θ3)2
, 1
)′ and Eµl̇

2 is the Fisher

information of µ, with respect to the governing probability distribution for y. As to obtain

the MLE based D-optimal design, we need an explicit expression of Eµl̇2 for each specified

distribution of y below parametrized with µ = Ey and ν = ν(µ) = var y.

Corollary 2.5.1. With y ∼ Gaussian(µ, ν), Eµl̇2 = 1
ν
+ ν̇2

2ν2
, where ν̇ = dν

dµ
.
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Corollary 2.5.2. With y ∼ Gamma(µ
2

ν
, µ
ν
), Eµl̇2 = α̇2 ∂2

∂α2 log Γ(α)+
αβ̇2

β2 − 2α̇β̇
β

, where α ≜ µ2

ν
,

β ≜ µ
ν
, α̇ ≜ dα

dµ
= 2µ

ν
− µ2ν̇

ν2
, and β̇ ≜ dβ

dµ
= 1

ν
− µν̇

ν2
.

Corollary 2.5.3. With y ∼ IG(µ, µ
3

ν
), Eµl̇2 = 1

ν
+ 1

2
( ν̇
ν
− 3

µ
)2.

As for the SLSE based D-optimal design, since [varξ θ̂SLS]
−1 =

∫ U
L

[
1
ν
+ (γ−ν̇ν)2

ν(κν−ν3−γ2)

]
µ̇µ̇′ξ(dx),

where γ ≜ Eµ(y − µ)3 and κ ≜ Eµ(y − µ)4, we need an expression for γ and κ in terms of

µ, ν for each specified probability distribution of y. It turns out

1. With y ∼ N(µ, ν), γ = 0 and κ = 3ν2;

2. With y ∼ Gamma(µ
2

ν
, µ
ν
), γ = 2ν2

µ
and κ = 3ν2 + 6ν3

µ2
;

3. With y ∼ IG(µ, µ
3

ν
), γ = 3ν2

µ
, κ = 3ν2 + 15ν3

µ2
.

The D-optimal designs based on MLE, oracle SLSE, MqLE and MGLE of θ for the

Emax model, denoted as ξ∗0 , ξSLS0 , ξMqL
0 and ξMGL

0 , respectively, are obtained in the case of

the response measure governed by the following probability distribution:

1. N(µi, νi), with νi = 300 + 60ψµi and ψ = 0, 1, 2, 3, 4;

2. Gamma(µ
2
i

νi
, µi
νi
), with νi = µ2

i + 60ψµi and ψ = 0, 1, 2, 3, 4;

3. IG(µi,
µ3i
νi
), with νi = µ3

i + 60ψµi and ψ = 0, 1, 2, 3, 4.

The obtained ξ∗0 , ξSLS0 , ξMqL
0 and ξMGL

0 are reported in Fig.2.1 - 2.3 with the con-

trolling parameter ψ = 4 in each of the governing probability distribution as specified

above. All the resulted D-optimal designs are verified by the equivalence plot, in which

the x-axis is dose x (log scale), the y-axis is the scaled sensitivity, and all the doses as

12



Figure 2.1. Locally D-optimal designs at θ0 under Gaussian(µi, 300 + 240µi)
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Figure 2.2. Locally D-optimal designs at θ0 under Gamma( µi
µi+240

, 1
µi+240

)
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Figure 2.3. Locally D-optimal designs at θ0 under IG(µi,
µ2i

µ2i+240
)
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specified in the D-optimal design attain the maximum sensitivity. All the D-optimal de-

signs are uniform. For the case of N(µi, νi), ξ∗0 = ξSLS0 = ξMGL
0 except for ξMqL

0 , because of

varξ θ̂ML = varξ θ̂SLS = varξ θ̂MGL for any design ξ in this case.

The relative efficiency curves of the resulted ξSLS0 , ξMqL
0 and ξMGL

0 (versus ξ∗0) are

plotted in Fig.2.4 with the controlling parameter ψ = 0, 1, 2, 3, 4 in each of the governing

probability distribution as specified above. The x-axis of the efficiency plot is the ψ value

and the y-axis is the relative D-efficiency eD(ξ
∧
0 ). The corresponding eD(ξ

∧
0 ) values are

reported in Tab.2.1 for each case. At ψ = 0, all the governing distributions are in OPEF,

thence eD(ξSLS0 ) = eD(ξ
MqL
0 ) = 1. As the ψ value increases, all the eD(ξ∧0 ) value decreases.

The left panel is for the case of N(µi, νi), in which eD(ξSLS0 ) = eD(ξ
MGL
0 ) = 1 at any ψ value

due to varξ θ̂ML = varξ θ̂SLS = varξ θ̂MGL; while eD(ξ
MqL
0 ) drops as ψ increases. The central

and right panel are for the case of Gamma(µ
2
i

νi
, µi
νi
) and IG(µi,

µ3i
νi
), respectively. Although
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Figure 2.4. Relative D-efficiency curve of ξSLS0 , ξMqL
0 , ξMGL
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eD(ξ
SLS
0 ) is as expected always higher than eD(ξ

MqL
0 ), the two are quite comparable and

significantly outperform eD(ξ
MGL
0 ) in both cases.

Table 2.1. Relative D-efficiency of ξSLS0 , ξMqL
0 , ξMGL

0

distribution ψ = 0 1 2 3 4
eD(ξ

SLS
0 ) 1.000 1.000 1.000 1.000 1.000

N(µi, 300 + 60ψµi) eD(ξ
MqL
0 ) 1.000 0.811 0.682 0.590 0.521

eD(ξ
MGL
0 ) 1.000 1.000 1.000 1.000 1.000

eD(ξ
SLS
0 ) 1.000 0.906 0.770 0.658 0.570

Gamma( µi
µi+60ψ

, 1
µi+60ψ

) eD(ξ
MqL
0 ) 1.000 0.873 0.712 0.588 0.496

eD(ξ
MGL
0 ) 0.692 0.477 0.336 0.250 0.194

eD(ξ
SLS
0 ) 1.000 0.988 0.956 0.909 0.855

IG(µi,
µ2i

µ2i+60ψ
) eD(ξ

MqL
0 ) 1.000 0.988 0.956 0.909 0.854

eD(ξ
MGL
0 ) 0.600 0.588 0.563 0.531 0.494

In our computation eD(ξMGL
0 ), the actual asymptotic variance of θ̂MGL with respect

to the design ξMGL
0 as quoted in Eq(2.8) is used. Indeed, the MGLE basedD-optimal design
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provides an excellent example that a mis-specified underlying distribution of the response

measure could lead to an inefficient MLE based D-optimal design.
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3. D-OPTIMAL DESIGN SEARCHING ALGORITHMS

3.1. Review of D-optimal design searching algorithms

As discussed in §2, ξ0, the locally D-optimal clinical design based on precision of

an estimator θ̂ is the one that minimizes the determinant of its asymptotic variance at

the nominal value of model parameters θ0, ie., ξ0 = argminξ Ψ(ξ,θ0), where Ψ(ξ,θ0) ≜

det(var(θ̂|ξ,θ0)) is the criterion function, ξ = {(xi, wi)}di=1 is an arbitrary clinical design

satisfying xi ∈ [L,U ], d< + ∞, wi ∈ (0, 1] and
∑
wi = 1. Evidently, on one hand, the

estimability condition of the model parameter θ requires the number of distinct dose of

ξ0, d ≥ k, where k is dimension of the model parameter θ; while on the other hand, by

Carathéodory’s theorem, d ≤ k(k + 1)/2. Yang (2010) further provided a tighter upper

bound of d in many cases including the Fisher-information based optimal designs for the

Emax model. Knowing the value of d being limited to a narrow range could help improve

efficiency in a numerical search of the D-optimal design, because instead of examining

innumerable candidate designs, one may work with a possibly much smaller complete

class of designs which contains the D-optimal design, see Yang and Stufken (2012) or Kim

(2017).

Motivated by the Equivalence theorem, Fedorov and Dubova (1968) and Fedorov

(1972) introduced the V-algorithm based on the sensitivity function d(x, ξ) to find D-

optimal designs, a forerunner of many other D-optimal design searching algorithms in

this stream. Yang et al. (2013) proposed their Yang-Biedermann-Tang (YBT) algorithm to

find optimal designs of a broad class of optimality criteria and/or by multistage strategy.

The YBT algorithm is considered as an extension of the Fedorov’s algorithm by adding an
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optimization step for the design weight in the iterations. Hyun and Wong (2015) further

modified the YBT algorithm by applying the V-Algorithm for a better set of initial doses in

the iterative search of the optimal designs. Hyun et al. (2018) further developed the VNM

R-package for implementation of the modified YBT algorithm for the multiple-objective

optimal designs. As the surface of the criterion function Ψ(ξ,θ0) is pretty rugged in the

case of the Emax model, numerical search of the D-optimal designs by the algorithms in

this stream often fails, if the initial design used in iterations is far away from the optimal

design.

Kim (2017) applied the linear constraint optimization approach for numerical search

of the D-optimal designs within the completed class of designs, which minimizes the cri-

terion function Ψ(ξ,θ0) with respect to ξ = {(xi, wi)}di=1 subjected to the box constraints

xi ∈ [L,U ], wi ∈ (0, 1], i = 1, · · · , d, and the linear constraint
d−1∑
i=1

wi ≤ 1. Although this ap-

proach also suffers from an unwitty choice of initial design, it could be easily implemented

in many computational software with some built-in function. In a view of the convexity

of criterion function Ψ(ξ,θ0) in weight {wi}di=1 for any design ξ given dose {xi}di=1, Gao

and Zhou (2017) and Wong and Zhou (2019) utilized the CVX programs in MATLAB (vide

Grant and Boyd (2008) for details) for search of the optimal designs. Yeh and Zhou (2021)

partitioned the space of dose [L,U ] with a mesh of tiny size and then applied the CVX pro-

gram to the criterion function Ψ(ξ,θ0) with design ξ exhaustively taking all the mesh nodes

as its target doses. They claimed the CVX program quite efficient in finding the optimal

designs though evaluation of the asymptotic variance at all the mesh nodes for Ψ(ξ,θ0) is

computationally expensive.
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Inspired by Darwin’s natural selection theory, Holland (1975) developed the genetic

algorithms (GA), an iterative optimization procedure that repeatedly apply the evolving

mechanism: recombination, mutation and selection to encode the solutions until the con-

vergence criterion is satisfied. Heredia-Langner et al. (2003) demonstrated GA for finding

nearly-optimal in highly constrained regions. Their method is possibly suitable for finding

the exact D-optimal designs only, where the total size of subjects allowed in the clinical

study is fixed.

Kennedy and Eberhart (1995) introduced particle swarm optimization (PSO) algo-

rithm, another nature-inspired metaheuristic algorithm, which could simulate the graceful

but unpredictable choreography of a bird flock or fish school to find optimum in param-

eter space for a user-specified criterion function. As in GA, PSO exploits a population of

potential solutions to probe the search space. Although as a technique appearing not long

time, PSO algorithm has received wide attentions and tons of literature have popped up

in recent years on the topic of its implementation, enhancement and applications, vide

Zhang et al. (2015) and Wang et al. (2017) for a review and overview of the PSO. Ma-

suda et al. (2010) introduced a penalty approach to handle inequality constraints in PSO,

in which a constrained optimization problem is transformed to an unconstrained problem

by adding an additional penalty term in the criterion function. Kaur and Kaur (2015)

discussed several mechanisms to deal with boundary constraints violation in PSO, which

includes bringing the infeasible solution back into the feasible search space, clamping and

re-initializing particles velocity in search of the solution.

Application of PSO variants to optimal design problem recently appears hot in liter-

tature, see Qiu et al. (2014) and Shi et al. (2019) among many other research works. Chen
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et al. (2022) provided a comprehensive review of the works in this line. As discussed in

the beginning of this section, in a numerical search of the optimal design, both types of

the constraints: the box constraints on the dose x and the linear constraint on weight w

of the design, need to be taken care of. While the box constraints could be easily handled

beforehand by a preset search space of x, the linear constraint on w needs to be dealt

with dynamically in the iterations. Although Qiu et al. (2014) tangentially mentioned of

pulling the particles which move outside of the searching space back to the boundaries

of the feasible space, unfortunately, both Qiu et al. (2014) and Shi et al. (2019) lack of

implementation details on how the linear constraint
∑
wi = 1 is handled in particular.

Motivated by Coello and Montes (2002), we apply a feasibility-based PSO approach here

to find locally D-optimal designs. The pseudo code of our feasibility-based PSO algorithm

for the optimal designs is given in next section.

3.2. Feasibility-based PSO algorithm for D-optimal designs

3.2.1. Vanilla PSO

For the minimization problem of finding ξ0 ∈ Rd such that ξ0 minimizes the criterion

function Ψ(ξ), ie., ξ0 = argminξ∈Rd Ψ(ξ), the vanilla PSO algorithm introduced by Kennedy

and Eberhart (1995) is implemented by iterations of the following procedure:

At iteration (t+ 1), the movement of the kth particle, k = 1, · · · , N , is updated by:


v
(t+1)
k = w(t) · v(t)k + c1 · u(t)1,k ⊙ (ζ

(t)
k − ξ

(t)
k ) + c2 · u(t)2,k ⊙ (ξ(t) − ξ

(t)
k ),

ξ
(t+1)
k = ξ

(t)
k + v

(t+1)
k .
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where,

t: index of iterations (t = 0, 1, · · · );

k: index of particles (k = 1, 2, · · · , N); N : user-specified size of the swarm;

w(t) ∈ (0, 1) user-specified inertia weight at iteration t;

c1, c2: user-specified cognitive, social learning factor;

ξ
(t)
k , v(t)k : position and velocity of particle k at iteration t;

u
(t)
1,k, u

(t)
2,k

iid∼ U [0, 1];

ζ
(t)
k = argmin

ξ
(s)
k , 0≤s≤t

Ψ(ξ
(s)
k ,θ0), ξ(t) = argmin

ζ
(t)
k , 0≤k≤N

Ψ(ζ
(t)
k ,θ0);

“⊙”: component-wise product.

3.2.2. Feasiblility-based PSO

In the problem of finding a locally optimal design ξ0 at a nominal value of the model

parameter θ0, let Ψ(ξ,θ0) be the optimality criterion function, then

ξ0 = argminξ∈χΨ(ξ,θ0),

where ξ ≜ {(xi, wi)}di=1 is an arbitrary design of d doses, d<+∞,

and χ ≜ {ξ|xi ∈ [L,U ], wi ≥ 0,
d∑
i=1

wi = 1} is the design space of ξ.

Under the one-one mapping φ: φ(ξ′) = ξ, where ξ′ ≜ (x1, · · · , xd, w1, · · · , wd−1),

one has φ(χ′) = χ, where χ′ ≜
{
ξ′|xi ∈ [L,U ], wi ≥ 0,

d−1∑
i=1

wi ≤ 1
}

. Then the problem is

equivalent to find ξ′0 = argminξ′∈χ′ Ψ(φ(ξ′),θ0). For ease of notation, we still use ξ instead

of ξ′ in the pseudo code outlined below for our feasibility-based PSO algorithm for optimal

designs. Note that the optimization problem is implicitly subjected to the box constraints,

xi ∈ [L,U ], wi ∈ [0, 1] and the linear constraint
d−1∑
i=1

wi ≤ 1.
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Step 1. At t = 0, initialize ξ(0)k and v(0)k ∈ χ′.

Step 2. At iteration t+ 1, update


v
(t+1)
k = w(t) · v(t)k + c1 · u(t)1,k ⊙ (ζ

(t)
k − ξ

(t)
k ) + c2 · u(t)2,k ⊙ (ξ(t) − ξ

(t)
k ),

ξ
(t+1)
k = ξ

(t)
k + v

(t+1)
k .

where ζ
(t+1)
k = argmin

ξ
(s)
k , 0≤s≤t+1

Ψnew(φ(ξ
(s)
k ),θ0), ξ(t+1) = arg min

ζ
(t+1)
k , 0≤k≤N

Ψnew(φ(ζ
(t+1)
k ),θ0),

and

Ψnew(φ(ξ
(t+1)
k ),θ0) =


Ψ(φ(ξ

(t+1)
k ),θ0), if ξ(t+1)

k ∈ χ′,

+∞, otherwise.

Step 3. Repeat Step 2 till ∥ξ(t+1) − ξ(t)∥ < ϵ, where ϵ is the pre-specified error tolerance.

Step 4. Report ξ0 = ξ(t+1) and Ψnew(φ(ξ0),θ0).

3.3. An application of feasibility-based PSO to locally optimal designs

As demonstrated in §2.5, the locally D-optimal designs for the Emax model at

nominal value θ0 = (340,−1, 4.6741, 60)′ are all uniform with possibly different supports

for different estimators. Applying the feasibility-based PSO, we work out here one more

example of the regular-SLSE-based D-optimal design for the Michaelis-Menten model,

where the response measure is modeled by the homoscedastic center+error model, i.e.,

yij = µ(xi,θ) + σϵij with error ϵij
iid∼ WN(0, 1), and σ is the unknown dispersion parameter.

The Michaelis-Menten model is a special case of the Emax model in Eq(2.1) with θ4 = 0,

i.e., µ(x,θ) = θ1
1+eθ2x+θ3 . Clearly, the dimension of the model parameter θ ≜ (θ1, θ2, θ3)

′,
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k = 3 in this case. The locally D-optimal design below is derived at nominal value

θ0 = (340,−1, 4.6741)′ with the range of support (for dose x), [L,U ] = [log 10−3, log 500].

According to Wang and Leblanc (2008), the asymptotic precision of the regular

SLSE θ̃SLS with respect to design ξ under this setting, is

[varξ θ̃SLS]
−1 =

1

(1− τ)σ2

{∫ U

L

µ̇µ̇′ξ(dx)− τ

∫ U

L

µ̇ξ(dx)

∫ U

L

µ̇′ξ(dx)

}
,

where µ̇ =
(

1
1+eθ2x+θ3 ,

−θ1xeθ2x+θ3

(1+eθ2x+θ3)2
, −θ1eθ2x+θ3

(1+eθ2x+θ3)2

)′, γ = Eµ(y − µ)3, κ = Eµ(y − µ)4, and

τ = γ2

σ2(κ−σ4)
is the skewness index. Note that in this setting, σ2, γ and κ are all universally

constant across different levels of dose, and τ ∈ [0, 1), particularly, τ = 0 for symmetric

errors. The regular-SLSE-based D-optimality criterion for the Michaelis-Menten model is

Ψ(ξ,θ0) = log(det(varξ θ̃SLS)). In a view that the regular-SLSE-based locally D-optimal de-

sign for Michaelis-Menten model depends on value of the skewness index τ , we exemplify

the resulting optimal design with τ = 0.15 and τ = 0.85 here.

Referring to Theorem 2 in Yang (2010), we have the following result regarding the

number of distinct doses x in the optimal design for this case, which helps confine our

numerical search of the optimal design to the complete class of designs ξ = {(xi, wi)}4i=1.

Corollary 3.3.1. The regular-SLSE-based locally D-optimal design for the Michaelis-Menten

model has at most 4 support points (distinct doses).

Note that a D-optimal design of the MM model with 3 distinct doses is minimally sup-

ported, and hence, by Silvey (1980), Lemma 5.1.3, must be uniform.

Following Kennedy and Eberhart (1995), we set the number of particles N = 100,

the cognitive learning factor c1 = 2 and the social learning factor c2 = 2. Instead of
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adopting a linearly decreasing inertia weight w(t) at iteration t, we set w(t) = 0.4 + 0.5t−1

and the error tolerance ϵ = 10−6 in our feasibility-based PSO algorithm. To kick off, we

initialize all the v
(0)
k and ξ

(0)
k , k = 1, · · · , N , with {(xi, wi)}4i=1, where xi

iid∼ Unif (L,U),

i = 1, 2, 3, 4 and (w1, w2, w3, w4) ∼ Dirichlet(1, 1, 1, 1). The algorithm stopping criterion is

successfully met after about 120 iterations.

The resulting D-optimal design of both cases are presented in Table 3.1. In the case

of τ = 0.15, it is a uniform design with 3 doses, while in the case of τ = 0.85, it is a non-

uniform design with 4 doses. They are both verified by the equivalence plot, see Figure

3.1. The trace plot of the criterion function Ψ(ξ(t),θ0) by Figure 3.2 shows how fast the

search converges to the optimum. The intermittent stagnation of the value of Ψ(ξ(t),θ0) is

due to the nature of vanilla PSO and probably rejection of infeasible solutions ξ(t) in the

iterations.

Table 3.1. Locally D-optimal designs for Michaelis-Menten model based on regular SLSE

τ locally D-optimal design ξ0

0.15
(
3.10 4.90 6.21
1/3 1/3 1/3

)
0.85

(
−6.91 3.10 4.90 6.21
0.13 0.29 0.29 0.29

)
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Figure 3.1. Equivalence plot for regular-SLSE-based locally D-optimal designs
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Figure 3.2. Trace plot of criterion function Ψ(ξ(t),θ0)
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4. CONCLUSION & DISCUSSION

The Fisher information or MLE based optimal designs require full knowledge of the

governing probability distribution for the response measure which, nonetheless, is often

absent or mis-specified in practice. Our numerical experiment in §2.5 exemplifies that the

MGLE based D-optimal design under the mis-specified Gaussianity could be very ineffi-

cient as compared with the oracle SLSE or MqLE based D-optimal design, yet both the

mean and variance of the Gaussian distribution are correctly structured. The MqLE based

D-optimal design, on the other hand, requires only partial knowledge of the probability

distribution: the structure of mean and variance. It demonstrates a fairly comparable effi-

ciency performance to our novel oracle-SLSE based D-optimal design, but the latter relies

on additional knowledge of the structure of skewness and kurtosis of the distribution. In

literature, heteroscedasticity is typically modeled by var yij ≜ νi = σ2v(µi), where σ2 is the

dispersion parameter of no interest, and v(·) > 0 is some positive function of µ. This cov-

ers the well-known Tweedie distribution family with v(µ) = µp, which itself embraces the

distribution of N(µ, σ2) when p = 0, quasi-Poisson(µ) when p = 1, Gamma(σ−2, σ−2µ−1)

when p = 2, and IG(µ, σ−2) when p = 3. Our consideration of the three probability mod-

els for the response measure is thus motivated in this study. Indeed, including σ2 in var yij

would not change the MqLE based D-optimal design; however, it would make the SLSE

based D-optimal design depend on the nuisance parameter σ2, i.e., even with the same

nominal value of the model parameter θ, a different σ2 value would result in a different

SLSE based D-optimal design. Instead, for a fair comparison of both we adopt the one-
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parameter model νi = ν(µi) for heteroscedasticity in this study to get rid of the impact of

the undesirable σ2 on the oracle SLSE based optimal design.

On the other hand, under the homoscedastic center+error model with unknown

dispersion parameter σ2 for the response measure, the regular SLSE based locally D-

optimal design relies only on the skewness index τ which is fully determined by the ancil-

larity of error, instead of magnitude of σ2. We apply our feasibility-based PSO algorithm

proposed in this work to demonstrate numeric search of the locally D-optimal designs

based on the regular SLSE. The resulting D-optimal designs are also verified by the Equiv-

alence theorem.

Although this study is focused on the D-optimal designs in the case of the Emax

model with respect to the three underlying probability distributions for the response mea-

sure, our work can be extended to other optimality criteria and other scenarios.
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APPENDIX A. TECHNICAL DETAILS

1. Proof of Proposition 2.4.1 for the asymptotic variance of oracle SLSE, varξ θ̂SLS.

Proof. For θ̂SLS, the kernel of criterion function in Eq(2.5) is g(yij, xi,θ) = ρ′ij(θ)W0(xi)ρij(θ),

where ρij(θ) ≜ (yij−µi, y2ij−µ2
i −νi)′ and W0(xi) =

(
ν̃i

γ̃i+2µ̃iν̃i

γ̃i+2µ̃iν̃i
κ̃i−ν̃2i +4µ̃2i ν̃i+4µ̃iγ̃i

)−1. As demon-

strated by Wang and Leblanc (2008),

ġ(yij, xi,θ) = 2

{
∂ρ′ij(θ)

∂θ
W0(xi)ρij(θ)

}
,

g̈(yij, xi,θ) = 2

{
∂ρ′ij(θ)

∂θ
W0(xi)

∂ρij(θ)

∂θ′ + (ρ′ij(θ)W0(xi)⊗ I4)
∂

∂θ′ [vec(
∂ρ′ij
∂θ

)]

}
,

where ⊗ is the Kronecker product, vec is the vec operator and I4 is the identity matrix of

dimension 4. At θ = θ0, note Eθ[ρij(θ)] = 0 and Eθ[ρij(θ)ρ
′
ij(θ)] = W−1

0 (xi), then

Eθ[g̈(yij, xi,θ)] = 2
[∂ρ′ij(θ)

∂θ
W0(xi)

∂ρij(θ)

∂θ′
]
,

Eθ[ġ(yij, xi,θ)ġ
′(yij, xi,θ)] = 4Eθ

[∂ρ′ij(θ)
∂θ

W0(xi)ρij(θ)ρ
′
ij(θ)W0(xi)

∂ρij(θ)

∂θ′
]

= 4
[∂ρ′ij(θ)

∂θ
W0(xi)W

−1
0 (xi)W0(xi)

∂ρij(θ)

∂θ′
]

= 4
[∂ρ′ij(θ)

∂θ
W0(xi)

∂ρij(θ)

∂θ′
]
.

Observe
∂ρ′ij
∂θ

=
∂ρ′ij
∂µi

⊗ µ̇i, then at θ = θ0,

∂ρ′ij(θ)

∂θ
W0(xi)

∂ρij(θ)

∂θ′ = (
∂ρ′ij
∂µi

⊗ µ̇i)(W0(xi)⊗ 1)(
∂ρij
∂µi

⊗ µ̇′
i) =

[∂ρ′ij
∂µi

W0(xi)
∂ρij
∂µi

]
µ̇iµ̇

′
i.
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Plug in
∂ρ′ij
∂µi

= (−1,−2µi − ν̇i) and W0(xi) =
(

νi
γi+2µiνi

γi+2µiνi
κi−ν2i +4µ2i νi+4µiγi

)−1, then

∂ρ′ij(θ)

∂θ
W0(xi)

∂ρij(θ)

∂θ′ =
[ 1
νi

+
(γi − ν̇iνi)

2

νi(κiνi − ν3i − γ2i )

]
µ̇iµ̇

′
i.

Applying the design weights and then using the sandwich form of the asymptotic variance

of M -estimators in general, it follows varξ θ̂SLS =
{ ∫ U

L

[
1
ν
+ (γ−ν̇ν)2

ν(κν−ν3−γ2)

]
µ̇µ̇′ξ(dx)

}−1.

For the claim of superiority of the oracle SLSE to MqLE, observe that

κν − ν3 − γ2 = ν(κ− ν2)− γ2 = Eµ(y − µ)2Eµ[(y − µ)2 − ν]2 − {Eµ(y − µ)3}2

≥ Eµ{(y − µ)[(y − µ)2 − ν]}2 − {Eµ(y − µ)3}2 = {Eµ(y − µ)3}2 − {Eµ(y − µ)3}2 = 0.

It follows varξ θ̂SLS =
{ ∫ U

L

[
1
ν
+ (γ−ν̇ν)2

ν(κν−ν3−γ2)

]
µ̇µ̇′ξ(dx)

}−1 ⪯
{ ∫ U

L
1
ν
µ̇µ̇′ξ(dx)

}−1
= varξ θ̂MqL.

2. Proof of Eq(2.8), the asymptotic variance of MGLE, varξ(θ̂MGL).

Proof. For θ̂MGL, the kernel of criterion function in Eq(2.5), g(yij, xi,θ) = log ϕ(yij, µi, νi),

where µi = µ(xi,θ), νi = ν(µi). Let µ̇i = ∂µi
∂θ

, µ̈i = ∂2µi
∂θ∂θ′ , ν̇i = dνi

dµi
and ν̈i =

d2νi
dµ2i

. Note

log ϕ(yij, µi, νi) = −1
2
log(2πνi)− (yij−µi)2

2νi
, then

ġ(yij, xi,θ) = −1

2

[
ν̇i
νi

+
2(µi − yij)

νi
− (yij − µi)

2ν̇i
ν2i

]
µ̇i,

g̈(yij, xi,θ) = −1

2

[
ν̈i
νi

− ν̇2i
ν2i

+
2

νi
+

4(yij − µi)ν̇i
ν2i

− (yij − µi)
2ν̈i

ν2i
+

2(yij − µi)
2ν̇2i

ν3

]
µ̇µ̇′

−1

2

[
ν̇i
νi

− 2(yij − µi)

νi
− (yij − µi)

2ν̇i
ν2i

]
µ̈i.
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It follows

Eθ

[
− g̈(yij, xi,θ)

]
= (

1

νi
+

ν̇2i
2ν2i

)µ̇iµ̇
′
i,

Eθ

[
ġ(yij, xi,θ)ġ

′(yij, xi,θ)
]
= (

1

νi
− ν̇2i

4ν2i
+
ν̇iγi
ν3i

+
ν̇2i κi
4ν4i

)µ̇iµ̇
′
i.

Applying the design weights and then using the sandwich form of the asymptotic variance

of M -estimators in general, Eq(2.8) holds.

3. Proof of Corollary 2.5.2, the Fisher information of µ w.r.t Gamma(µ
2

ν
, µ
ν
) distribution.

Proof. With y ∼ Gamma(α, β), where α ≜ µ2

ν
is the shape and β ≜ µ

ν
is the scale of the

distribution, the log-likelihood of µ is l(µ) = α log β + (α− 1) log y − log Γ(α)− βy.

Let l̇ = dl
dµ

, l̈ = d2l
dµ2

, α̇ = dα
dµ

and β̇ = dβ
dµ

, then

l̇ = α̇
[
log y + log β − d

dα
log Γ(α)

]
− β̇(y − α

β
),

l̈ = α̈
[
log y + log β − d

∂α
log Γ(α)

]
− β̈(y − α

β
) +

2α̇β̇

β
− αβ̇2

β2
− α̇2

[ d2
dα2

log Γ(α)
]
,

where α̈ = d2α
dµ2

and β̈ = d2β
dµ2

. Note ∀µ, Eµl̇ =0 implies α̇Eµ
[
log y + log β − d

dα
log Γ(α)

]
= 0,

then α̈Eµ
[
log y + log β − d

dα
log Γ(α)

]
= 0. So Eµl̇2 = −Eµl̈ = α̇2

[
d2

dα2 log Γ(α)
]
+ αβ̇2

β2 − 2α̇β̇
β

.

α̇ = 2µ
ν
− µ2ν̇

ν2
and β̇ = 1

ν
− µν̇

ν2
result from the definition of α and β as given above.

4. Proof of Corollary 2.5.3, the Fisher information of µ w.r.t IG(µ, µ
3

ν
) distribution.

Proof. With y ∼ IG(µ, λ), where µ is the mean and λ = µ3

ν
is the shape of the distribution,

the log-likelihood of µ is l(µ) = 3
2
log µ − 1

2
log ν − 1

2
log 2πy3 − µ(y−µ)2

2νy
. Let l̇ = dl

dµ
, l̈ = d2l

dµ2
,
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then

l̇ =
3

2µ
− ν̇

2ν
− (y − µ)2

2yν
+
µ(y − µ)

yν
+
µν̇(y − µ)2

2yν2
,

l̈ = (− 3

2µ2
− ν̈

2ν
+

ν̇2

2ν2
− µ2ν̈

ν2
+

2µ2ν̇2

ν3
+

2

ν
− 4µν̇

ν2
)

+(
ν̇

ν2
+
µν̈

2ν2
− µν̇2

ν3
)y + (

3µ2ν̇

ν2
+
µ3ν̈

2ν2
− µ3ν̇2

ν3
− 3µ

ν
)y−1.

Note Ey = µ and E(y−1) = 1
µ
+ ν

µ3
, then Eµl̇2 = −Eµl̈ = 1

ν
+ 1

2
( ν̇
ν
− 3

µ
)2.

5. Proof of Corollary 3.3.1, the upper-bound of number of support points in the regular-

SLSE-based D-optimal designs for the Michaelis-Menten model.

Proof. Let θ = (θ1, θ2, θ3)
′, µ(x,θ) = θ1

1+eθ2x+θ3
and c = eθ2x+θ3, then

µ̇ ≜
∂µ

∂θ
= (

1

1 + eθ2x+θ3
,
−θ1xeθ2x+θ3
(1 + eθ2x+θ3)2

,
−θ1eθ2x+θ3

(1 + eθ2x+θ3)2
)′

= (
1

1 + c
,−θ1

θ2

c(log c− θ3)

(1 + c)2
,

−θ1c
(1 + c)2

)′.

The regular-SLSE-based locally D-optimal design equivalently maximizes det(EξIθ)

(1−t)σ2 , where

Iθ =

(
1√
tµ̇

√
tµ̇′

µ̇µ̇′

)
=



1
√
t

1+c
−

√
tθ1
θ2

c(log c−θ3)
(1+c)2

−
√
tθ2c

(1+c)2

√
t

1+c
1

(1+c)2
− θ1
θ2

c(log c−θ3)
(1+c)3

− θ2c
(1+c)3

−
√
tθ1
θ2

c(log c−θ3)
(1+c)2

− θ1
θ2

c(log c−θ3)
(1+c)3

θ21
θ22

c2(log c−θ3)2
(1+c)4

θ21
θ2

c2(log c−θ3)
(1+c)4

−
√
tθ1c

(1+c)2
− θ1c

(1+c)3
θ21
θ2

c2(log c−θ3)
(1+c)4

θ21c
2

(1+c)4


.

36



It turns out Iθ = P (θ)C(θ, c)P ′(θ), where

P (θ) =



1 0 0 0

0 1 0 0

0 θ1θ3
θ2

− θ1
θ2

− θ1θ3
θ2

0 −θ1 0 θ1


,

and

C(θ, c) =



1
√
t

1+c

√
tc log c

(1+c)2

√
t

(1+c)2

√
t

1+c
1

(1+c)2
c log c
(1+c)3

1
(1+c)3

√
tc log c

(1+c)2
c log c
(1+c)3

c2log2c
(1+c)4

c log c
(1+c)4

√
t

(1+c)2
1

(1+c)3
c log c
(1+c)4

1
(1+c)4


.

Note C(θ, c) can be transformed into the matrix (Ψij)
4
i,j=1 in Yang (2010), Eq(2.2) by using

the k = 8 functions, namely, Ψ1(c) ≜ 1
(1+c)4

, Ψ2(c) ≜ 1
(1+c)3

, Ψ3(c) ≜
c log c
(1+c)4

, Ψ4(c) ≜ 1
(1+c)2

,

Ψ5(c) ≜ c log c
(1+c)3

, Ψ6(c) ≜ 1
1+c

, Ψ7(c) ≜ c log c
(1+c)2

, and Ψ8(c) ≜ c2 log2 c
(1+c)4

. The fl,t functions in

Eq(3.2) thereof may be tediously achieved using Eq(3.1) and the Ψ(·) functions above,

which results in f1,1 = − 4
(1+c)5

, f2,2 = 3
4
, f3,3 = 3c+1

3c2
, f4,4 = 4c(3c+2)

(3c+1)2
, f5,5 = 9c3+15c2+7c+1

c2(3c+2)2
,

f6,6 =
9c(3c+2)
9c2+6c+1

, f7,7 = 3c+1
3c2

, f8,8 = 2
3c2

. Therefore, F (c) ≜
8∏
l=1

fl,l(c) = − 8(9c3+15c2+7c+1)
(1+c)5c6(9c2+6c+1)

< 0,

for c > 0. By Yang (2010), Theorem 2, case (d), the upper-bound of number of supports

in the optimal design is k/2 = 4.
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