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ABSTRACT 

This study explored utilizing tree-based machine learning models to identify associations 

in a range of 107 factors and DUI recidivism among first-time DUI offenders. Three tree-based 

machine learning models, Decision Tree, Random Forest, and Gradient Boosting were performed 

on 12,879 first-time DUI offenders during 2013-2017 using a three-year following period, to 

classify repeat DUI offenders. Study cohorts include 11,651 drivers without recidivism and 

1,228 drivers with recidivism. The models tested 107 variables/predictors, including the driver’s 

demographic factors, drinking behaviors, traffic violations, crash histories, DUI-related 

violations, social-economic factors, and health and safety factors based on the driver’s residence. 

oversampling technique was used to balance two classes in the training data in all three models. 

The top 15-20 predictors were selected from the feature impact analyses of these predictions. 

Lastly, multiple logistic regression analyses were performed to quantify the effects of selected 

factors/predictors on the outcome.  

Among the three models, Gradient Boosting achieved the best predictions on both the 

original and oversampled datasets. Oversample techniques did improve prediction performances 

by roughly 10% on the F1 score for Gradient Boosting. Results coalesced around two findings. 

First, male drivers with higher BAC values, younger age at first DUI citation, whose first DUI 

citation took place during the weekday, had at least one low-risk citation within three years 

before first DUI citation, and lived in counties with lower income inequality ratio and higher 

violent crime rate were more likely to commit a subsequent DUI offense. Second, male drivers 

who complied with a BAC test upon arrest, whose first DUI citation took place on a weekday, 

had at least one low-risk citation within three years before the first DUI citation, lived in a 

county with a lower income inequality ratio, and higher violent crime rate were more likely to 
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commit a subsequent DUI offense. Findings can be used by stakeholders in implementing and 

improving DUI prevention strategies. The study is limited to a single state, but the comparison of 

techniques and their shared findings suggest that a multitude and variety of approaches may be 

appropriate in future impaired driving prevention research. 
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1. INTRODUCTION 

1.1. General Introduction 

Alcohol-impaired driving or driving under the influence (DUI) of alcohol is a serious 

problem in the United States. In 2018, there were 10,511 fatalities in motor vehicle traffic 

crashes in which at least one driver was alcohol-impaired with a blood alcohol concentration 

(BAC) of 0.08 g/dL or higher, representing 29 percent of all traffic fatalities for the year 

(NHTSA, 2019). Every day, 29 people in the United States die in motor vehicle crashes that 

involve an alcohol-impaired driver. This is one death every 50 minutes (CDC, n.d). The annual 

cost of alcohol-related crashes totals more than $44 billion (CDC, n.d.). The effects of alcohol on 

drivers include but are not limited to impaired judgment, deteriorated reaction time, poor muscle 

coordination, impaired vision, interference with concentration, and a false sense of confidence 

(CDC, .n.d.).  

 

Figure 1.1. North Dakota percent alcohol-related fatal motor vehicle crashes, 2014-2018. Data 

source: NDDOT (2018). 
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As shown in Figure 1.1, alcohol contributes to about 43% of fatal crashes in North 

Dakota annually (NDDOT, 2018). Alcohol-related crashes are 100% preventable. Many lives 

would be saved each year if every driver consistently chose to be a sober driver. Reducing the 

number of alcohol-impaired drivers in the state is one of the North Dakota Department of 

Transportation (NDDOT) priorities.  

The impaired driving trends showed the Midwest region had the highest rate of impaired 

driving, with 643 episodes per 1,000 population (Bergen, Shults, and Rudd 2011). North Dakota 

had the highest self-reported impaired driving rate in the Midwest region Dakota (Bergen, 

Shults, and Rudd, 2011). A recent survey of North Dakota drivers also shows great propensity, 

with 35.2% of the population reporting they had operated a vehicle within two hours of 

consuming one or two alcoholic beverages (Vachal, Benson, and Kubas 2019). Besides, as 

shown in Tables 1.1 and 1.2, although the numbers of alcohol-related fatal crashes, fatalities, and 

injuries decreased in 2018, the numbers of alcohol-related fatal crashes and fatalities for 2019 

increased again. More work is needed to prevent alcohol-impaired driving. It is more important 

to recognize repeat offenders as a high-risk sub-population because they are more likely to be 

involved in fatal motor vehicle crashes (NHTSA, 2008; Dickson, 2013). 

Due to the limited number of law enforcement agencies, it is impossible to catch every 

DUI offense. Thus, DUI first-time offenders on record are very likely to be repeat offenders who 

just haven’t been caught by the law enforcement agency yet (Voas & Lacey, 1990; Beitel, Sharp, 

& Glauz, 2000; Wickens et al., 2018). Therefore, the actual number of convicted DUI offenders 

may be underestimated. The change in the recidivism rate of convicted DUI offenders is one way 

to evaluate the effects of countermeasures on deferring impaired driving (Kubas and Vachal, 

2019). The number of alcohol-related crashes may be affected by a lot of factors other than the 
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countermeasures, such as reduced traffic volume. The recidivism rate is relatively more 

independent of outside factors besides the efforts of law enforcement and actual recidivism.  

Table 1.1. North Dakota alcohol-related motor vehicle crashes, fatalities, and injuries, 2014-

2018. Data source: NDDOT (2018). 

Year Total fatal crashes Fatalities Injures 

2014 53 63 564 

2015 48 57 496 

2016 46 54 446 

2017 50 57 472 

2018 33 34 407 

 

Table 1.2. Fatal crash statistics-yearly totals. Data source: Vision Zero.   

 2017 2018 2019 

2020  

To Date As of 

8/04/2020  
# % # % # % # % 

Fatal crashes with Operator Positive 

BAC and/or LE Reported 

51 48.1% 30 35.0% 37 40.7% 12 23.1% 

Fatal crashes w/ Investigation Pending 
      

14 26.9% 

Fatalities from Alcohol Crashes 55 47.4% 31 29.5% 42 42.0% 13 24.5% 

 

1.2. Problem Statement  

This study intent to investigate the associated factors to DUI recidivism among first-time 

DUI offenders. DUI repeat offenders scored higher on the risk of DUI recidivism and are more 

likely to be involved in fatal motor vehicle crashes (NHTSA, 2008; Dickson, 2013; Wickens, 

2018). The ability to identify the contributing factors to a subsequent DUI recidivism will be an 

invaluable aid in determining appropriate judicial and administrative sanctions and 

countermeasures for all DUI offenders. Current literature mainly focuses on exploring driver 

profiles and their offense histories, results from age, gender, racial, geographic factors, drinking 
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behaviors, traffic violation histories, crash histories, criminal histories, mental health, and 

environmental factors in relation to recidivism occurrence using a traditional statistical method 

such as Chi-square analysis, t-tests, logistic regression, multivariate regression, survival analysis, 

etc. (Marowitz, 1998; Cavaiola et al., 2007; Portman et al., 2010; Chaudhary et al., 2011; Møller 

et al., 2015; MacLeod et al., 2017; Wickens et al., 2018; etc.).  

However, a research gap is evident in a cohesive study integrating these factors into one 

analysis. A possible reason might be that collecting all the factors into one dataset is difficult. 

Thus, the resulting dataset can have a complicated data structure that is unsuitable for analysis by 

traditional statistical methods. However, the results could be inaccurate without integrating these 

factors into one analysis. For example, the recidivism rate in an area could be higher than in 

other regions because more law enforcement agencies were patrolling in the area. In recent 

decades, less constrained tree-based machine learning models alleviate assumptions common in 

investigations aimed at target outcomes and predictors. 

This study intends to integrate drivers’ demographic factors, drinking behaviors, past 

traffic violations, crash histories, past DUI-related violations, social-economic factors, and health 

factors based on the driver’s residence in one analysis to evaluate their influences on DUI 

recidivism using a mixed model approach.  

1.3. Significance of the Study 

This study integrates factors from different aspects to analyze DUI recidivism 

comprehensively. From the limited administrative record provided by NDDOT, a list of variables 

representing driver profiles, conviction and crash histories, law enforcement indexes, behavior 

treatment interventions, and seasonal factors were selected. Secondary data were collected to 
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measure health and social-economic factors associated with the driver’s residence county. To the 

author’s knowledge, it is the first study that integrates all those factors into one study.  

Considering the complicated data structure in this study, three tree-based machine 

learning models- Decision Tree, Random Forest, and Gradient Boosting - were used to identify 

the associations in a range of 110 factors and DUI recidivism among first-time DUI offenders. 

Unlike traditional statistical methods, these three nonparametric models require no statistical 

assumptions and no underlying relationship between dependent and independent variables, so 

they are more suitable for the target data (Mitchell, 1997; Friedman, 2002; Wijenayake et al., 

2018;). However, machine learning models are often known as “black-box” models that are 

sufficiently complex and have low interpretability. To improve interpretability, this study 

performed multiple logistic regression analyses to quantify the effects of selected 

factors/predictors on the outcome. To the author’s knowledge, it is the first study that integrates 

machine learning models and statistical methods in the impaired driving literature.  

The sample data in this study was imbalanced, with repeat offenders only accounting for 

9.5% of the sample. Machine learning predictions made on such datasets might be less likely to 

favor the minority group – the repeat offenders and lead to misclassification. Thus, Synthetic 

Minority Oversampling Technique (SMOTE) - Tomek Links technique was used to oversample 

the minority groups so that the machine learning predictions were made on a balanced sample. 

SMOTE -Tomek Links technique did improve Gradient Boosting prediction. To the author’s 

knowledge, it is the first study that applied advanced oversampling techniques on sample data to 

improve machine learning predictions in the impaired driving literature.  
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2. LITERATURE REVIEW 

2.1. Background 

In North Dakota, the same as most states in the U.S., drivers with a blood alcohol 

concentration (BAC) of 0.08% or higher are considered alcohol-impaired by law, and sanctions 

will be applied to such drivers. However, drivers can be convicted of drunk driving even when 

their BAC is under that limit, e.g., a noticeable impairment. The average BAC among North 

Dakota DUI offenders is .17 - one of the highest in the country and is more than twice the legal 

limit of .08 (NDDOT, n.d.).  

Strategies implemented in North Dakota to reduce alcohol-impaired driving includes but 

are not limited to normal patrol, sobriety checkpoints, saturation, and roving patrols, a 24/7 

Sobriety Pilot Program, and administrative licensing sanctions. Sobriety checkpoints deter 

impaired driving, not increase arrests (Goodwin et al., 2015). It is a concentrated enforcement 

effort to identify and arrest impaired drivers. Law enforcement agencies stop vehicles at a 

preselected, highly visible location to check whether the driver is impaired. These checkpoints 

are selected based on high alcohol or drug-related incidences and will be established and 

published before each operation. Law enforcement agencies either stop every vehicle or stop 

vehicles at some regular interval, such as every third or tenth vehicle (Goodwin et al., 2015). 

A saturation patrol is a large number of law enforcement agencies patrolling a selected 

area during a selected period to increase enforcement visibility (Goodwin et al., 2015). 

Saturation patrol agencies mainly search for impaired-driving behaviors, such as problems 

maintaining proper lane position, driving without lights at night, failure to signal, aggressive 

driving, speeding, and following too closely (Goodwin et al., 2015; Richard et al., 2017). The 

primary purpose of saturation patrols, like sobriety checkpoints, is to deter alcohol-impaired 
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driving by increasing the perceived risk of arrest. Thus, saturation patrols are usually publicized 

extensively and conducted regularly (Goodwin et al., 2015; Richard et al., 2017). The advantages 

of saturation patrols compared to sobriety checkpoints include increased effectiveness, reduced 

staffing, and comparative ease of operation (Goodwin et al., 2015). 

The 24/7 Sobriety Program is used to monitor offenders at high risk for probation 

violations and notify offenders that there will be an immediate penalty after every probation 

violation. Consequently, these individuals remain sober to keep roadways safe from hazardous 

drivers (Kubas and Vachal, 2019).  The program mandated offenders are tested for alcohol twice 

daily for breath testing, wearing an ankle bracelet to monitor alcohol electronically, and using a 

drug patch or urine testing (Kubas and Vachal, 2019).   The project has strict enforcement to 

keep participants sober. If the offenders fail an alcohol screening test or do not show up to take 

it, then they will be sent directly to jail (Kubas and Vachal, 2019).    

House Bill 1302 mandated enrollment for repeat offenders. As part of the legislation 

enacted in 2013, second-time offenders now have a mandatory 12-month enrollment in the 24/7 

Sobriety Program. Third-time offenders also have a mandatory 12-month enrollment in the 

program but are further subjected to supervised probation. Fourth-and-subsequent offenders are 

required by law to be enrolled in the program for 24 months in addition to being placed on 

supervised probation. This law went into effect on August 1, 2013.  

2.2. DUI Recidivism 

DUI is a major public health and safety problem worldwide. Research from various 

perspectives (e.g., public health, legal, behavior science, road safety, etc.) reveled that repeat 

DUI offenders are a heterogeneous group, and only one or two characteristics are unlikely to 

account for the behavior of DUI offenders (Nochajski and Stasiewicz, 2006). Instead, multifactor 
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analyses are needed to help explain the complexity interplay of factors from various perspectives 

to predict or prevent future DUI recidivism (Nochajski and Stasiewicz, 2006). While studies 

regarding DUI recidivism have been done on various data sources, this study limited the 

literature review to past research that was conducted with at least one official record to fit the 

scope of this study.  

2.2.1. DUI Recidivism Defination 

There are several ways to define DUI recidivism in the literature. Factors associated with 

DUI recidivism can be different when the definitions were different. The broadest definition is 

driving under influence of any amount of alcohol, given that one drink might put some 

individuals at significantly higher risk for a crash than if they had not consumed any alcohol 

drink (Nochajski and Stasiewicz, 2006). According to this definition, the recidivism rate 

calculated by official driving records may underestimate the “true” recidivism rate. The estimate 

of the number of DUI occurrences that happen before an arrest has ranged from 50 trips to 1,000 

trips (Voas & Lacey, 1990; Beitel, et al., 2000). In this case, self-report information may provide 

more accurate estimates of DUI recidivism than the official driving record (Nochajski and 

Stasiewicz, 2001; Nochajski and Stasiewicz, 2006).  

In DUI literature, the most common definition of recidivism is a subsequent DUI arrest 

on official records. However, based on this definition, the chance of a driver being arrested and 

identified as a DUI repeat offender depends on the level of law enforcement in the community 

and the amount of time that a conviction remains on the driver’s official driving record 

(Nochajski and Stasiewicz, 2006). Therefore, it is important to take these two factors into 

account when examining DUI recidivism through official records. Unless otherwise noted, the 

literature reviewed in this study accorded this definition.  
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In recent decades, the number of drug-impaired offenses or driving under influence of 

drugs increased dramatically (Nochajski and Stasiewicz, 2006). Legislations have included illicit 

drugs and controlled medicinal drugs in the DUI law (Impinen et al., 2009). Unless otherwise 

noted, the literature reviewed in this study focused on alcohol-related DUI recidivism. 

2.2.2. Characteristics of Repeat DUI Offenders 

2.2.2.1. Demographic Characteristics 

In the literature, analyses of demographic characteristics revealed significant associations 

between DUI recidivism and gender, age, education, ethnicity, employment status, income, and 

marital status (Nochajski and Stasiewicz, 2006). Generally, repeated DUI offenders tend to be 

young – age under 34, unmarried, males, who consume more drinks, and often reside in rural 

areas where fewer alternative transportation choices are available (McMillen et al. 1992a; 

McMillen et al. 1992b; Reynolds et al., 1991; Chang et al., 1996; C’de Baca et al., 2001; 

Cavaiola et al., 2007; Impinen et al., 2009; Robertson et al., 2016; Greene et al., 2018; Weisheit, 

2020).  

Among all the demographic factors, the most consistent insight is that males are much 

more likely to commit a subsequent DUI offense than females. In terms of recidivism rate, male 

drivers tend to be 1.2 to 1.7 times as female drivers (Chang et al., 1996; C’de Baca et al., 2001; 

Impinen et al., 2009; Robertson et al., 2016). Though no research provided a decent explanation 

for this insight, results from Hubicka et al. (2010) might provide a possible answer by examining 

personality traits and mental health among severe DUI offenders in Sweden. Male offenders 

scored low on openness to experience domain than female offenders and normal populations. 

This insight indicated that male offenders had less intellectual curiosity, receptivity to the inner 
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world of fantasy and imagination, appreciation of art and beauty, openness to inner emotions, 

values, and active experiences, and can be resistant to rehabilitate (Hubicka et al. 2010).  

 Age is a second significant factor in the DUI recidivism literature (C’de Baca et al., 2001; 

Impinen et al., 2009; Dugosh et al.; 2013; Robertson et al., 2016). Young drivers with impaired 

driving skills might also be detected more easily from traffic because inexperienced drivers are 

affected more by impaired substances (Vaez and Laflamme 2005; Impinen et al., 2009). Dugosh 

et al. (2013) reveled that early age at the time of first arrest for any criminal action, early age at 

the time of first DUI conviction, and early age of onset of substance abuse were all significant 

indicators for DUI recidivism. Although Dugosh et al. (2013) didn’t define a range of “early 

age”, two other studies concluded more decent findings regarding this factor. For high-risk 

recidivism, 28-year-olds and younger were concluded by Baca et al. (2001), and 33-year-old and 

younger were concluded by Robertson et al. (2016).  

 Ethnicity, education, employment status, income, and marital status are also commonly 

used factors in cross-sectional studies (Nochajski and Stasiewicz, 2006).  Ethnicity and its 

relationship with repeat offender status vary in different regions of the country (Nochajski and 

Stasiewicz, 2006). The majority of repeat offenders tend to be White in the Northeast, Midwest, 

Northwest, and South regions, whereas the majority of repeat offenders tend to be Hispanic, 

African American, or Native American in the Southwest region (Chang et al., 1996; C’de Baca et 

al., 2001, Nochajski and Stasiewicz, 2006; Robertson et al., 2016).  

Less-educated drivers have a higher risk of recidivism (C’de Baca et al., 2001; Robertson 

et al., 2016), and they greatly benefit from remedial interventions/education programs that help 

offenders to improve their knowledge of and intentions to avoid drink-driving (Wickens et al., 

2018). While income level and employment status are highly related to education level, it is 
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understandable that drivers with lower income or unemployed are more likely to commit a 

subsequent DUI (Wieczorek & Nochajski, 2005; Nochajski and Stasiewicz, 2006). Finally, the 

marital status shows an association with repeat DUI offender status. Those who have never 

married or who have been divorced, separated, or widowed are more likely to receive a 

subsequent DUI than those who are married (C’de Baca et al., 2001; Nochajski & Wieczorek, 

2000; Wieczorek & Nochajski, 2005; Nochajski & Wieczorek, 2006). 

2.2.2.2. Alcohol-related Variables 

BAC level at arrestment is often used as an essential factor of DUI recidivism, and a 

consistent finding is that a higher BAC level leads to a higher chance of recidivism (McMillen et 

al. 1992a; Marowitz, 1998; C’de Baca et al., 2001; Impinen et al., 2009; Dugosh et al., 2013; 

Roma et al., 2019). Though BAC has been identified as a robust predictor for future DUI in the 

literature, other factors should be considered meanwhile when determining the risk of recidivism, 

so that appropriate treatment and/or intervention can be ordered for offenders to rehabilitate 

(Dugosh et al. 2013). 

 Marowitz (1998) investigated the effect of the BAC at arrest, driving history, and other 

demographic factors on the one-year post-arrest probability of recidivism for DUI offenders 

through logistic regression models. Results indicated that high BAC at the time of arrest and 

prior 2-year traffic convictions contributed significantly to DUI recidivism (Marowitz 1998). The 

recidivism rate was increased during the BAC range of 0.09 g/dL to 0.29 g/dL. A high 

recidivism rate at high BACs indicated that DUI offenders might have a high dependency on 

alcohol daily (Marowitz 1998).   

Roma et al. (2019) investigated DUI recidivism with BAC value on the license 

suspension report after DUI and the psycho-diagnostics tool Minnesota Multiphasic Personality 
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Inventory-2 (MMPI-2). Results showed that, compared to non-repeat offenders, repeat offenders 

had higher BAC at the time of their first conviction and more problematic MMPI-2 profiles, 

despite the presence of social desirability responding (Roma et al., 2019). The best prediction of 

recidivism was made with BAC and the scales of Lie (L), Correction (K), Psychopathic Deviate 

(4-Pd), Hypomania (9-Ma), and Low Self-Esteem (LSE) (Roma et al., 2019). 

Besides BAC values, the time of drinking and substance use mixture are two important 

factors that differentiate between first-time offenders and repeat DUI offenders. Impinen et al., 

(2009) examined the DUI rearrest rate concerning other substance use and drinking patterns 

through a 15-year record. Two Cox proportional hazards models were constructed. Model 1 

examined the difference among three subgroups: (1) alcohol only, (2) drug only, and (3) drugs 

combined with alcohol. Model 2 further examined the effects of different drug - alcohol 

combinations and the effects of alcohol only on the recidivism rate, with drug-drug mixtures 

excluded. Results of both models showed that young, males, with high BAC, DUI from Monday 

to Friday and from noon to midnight had the highest chance of recidivism (Impinen et al., 2009). 

It is important to note that the DUI recidivism defined here included drug-related DUI. In 

addition, to the best of the author’s knowledge, this is the first study and only study that 

examined the time of day and the day of the week related to DUI recidivism.  

2.2.2.3. Traffic Violations and Criminal History 

Previous violations, crimes, and crashes also differentiate repeat DUI offenders from 

first-time offenders. A study based on a 12-year follow-up period of first-time DUI offenders 

showed that a driving history of traffic violations and crashes before the first DUI offense was a 

predictor of later recidivism (Cavaiola et al., 2007). Non-traffic-related violations or crimes 

could also be predictors, such as having a prior summary of an alcohol- or drug-related offense, 
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having a prior misdemeanor offense, having a misdemeanor arrest for a crime against persons, 

having a prior treatment episode, or loss of employment or expulsion from school because of 

drug or alcohol use (Marowitz 1998; Nochajski et al., 2000; Schell et al., 2006; Bouchard et al., 

2012; Dugosh et al., 2013; Robertson et al., 2016).  

However, traffic violations or crime history often being viewed as one variable or index 

in the literature. Only Cavaiola et al. (2007) noted reckless driving violations as a subgroup of 

traffic violations that was a significant predictor of DUI recidivism. Reckless driving behaviors 

maybe an indicator of a poor decision-making lifestyle rather than alcohol abuse (Cavaiola et 

al.2007). Examining traffic violations or crime history in smaller categories may provide more 

information about the motions of drink and driving, and further help the court determine the 

more appropriate education or treatment programs that are mandated.  

2.2.2.4. Personality and Mental Health 

Personality can predict DUI recidivism, and Minnesota Multiphasic Personality 

Inventory-2 (MMPI-2; Hathaway & McKinley,1951; Graham, 1990) can be used to identify 

high-risk offenders in terms of DUI recidivism (Cavaiola et al., 2007). Iowa Gambling Task 

(IGT) can also be used to measure decision-making, and DUI reoffenders tend to have more 

disadvantageous decision-making (Bouchard et al., 2012). Antisocial attitudes can also be 

predictors of DUI (Jornet-Gibert et al., 2013), and the Jesness Inventory-Revised (JI-R; Jesness, 

1996) was used to assess attitudes toward antisocial behavior.  

2.2.3. Analytic Strategies 

When it comes to analytic strategies, all reviewed literature regarding DUI recidivism 

adopted traditional statistical methods, including Analysis of Variance (ANOVA), chi-square 

test, T-test, multivariate analysis of variance (MANOVA), logistic regression, and survival 



 

14 

analysis (e.g., C’de Baca et al., 2001; Cavaiola et al., 2007; Impinen et al., 2009; Hubicka et.al., 

2010; Bouchare et al., 2012; Robertson et al., 2016; Wickens et.al., 2018; Roma et al. 2019). 

These statistics methods were performed with well-developed softwares, such as SAS, SPSS, 

Stata, and R. These softwares are user-friendly and are easily operated by non-programmers, so 

they are popular among researchers from all practical research areas.  

However, each of these statistical methods has as least one underlaying assumption, and 

all assumptions should be verified before applying these methods. If one assumption is violated, 

then researchers should apply techniques to fix the data or alternative methods that are suitable 

for the data type. For example, one type of survival analysis, the Cox proportional hazards 

model, assumes that the hazard ratio is constant over time. If this assumption is violated, then 

stratification should be performed on the data to reduce the time-dependent feature of the dataset 

first, and the stratified Cox’s proportional hazards model should be applied for analysis then after 

(Lee and Wang, 2003; Hosmer et al., 2008). Fail to verify the underlying assumptions in 

statistical models or ignoring the violation of assumptions would lead to inaccurate results from 

the analysis (Lee and Wang, 2003; Hosmer et al., 2008). 

Unfortunately, assumptions verification might be sometimes ignored by researchers. In 

the DUI recidivism literature reviewed here, none of the studies stated that they have checked 

assumptions, nor provided any test statistics that indicated they have done assumption 

verifications. It is also possible that this information is not necessary for the main reader group of 

DUI recidivism research. Calculation cost can be another issue for assumption verification and 

modeling when evaluating too many factors at one study.  

In addition, among the statistical methods used in the DUI literature, the regression 

models are predictive analytics. Logistic regression and the survival analysis such as Cox 
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proportional hazards regression, are used to predict a likelihood. In the DUI literature, they can 

be used to predict the likelihood of DUI recisivism. However, researchers usually use logistic 

regression or survival analysis for explanation purpose, and no literature have demonstrated the 

predictions made from these regression models. A possible reason for this phenomenon is that 

the regression model may have high error rate and low prediction power. The regression 

algorithm only select strong predictors to enter in the model based on a significance level. These 

unselected weak predictors are not strong predictors when they are used individually, but the 

weak predictors can dramatically improve prediction accuracy when they are integrated together 

(Berk and Bleich, 2013). A prediction model with a lot weak predictors can be very difficult to 

interpret, so there is a trade-off between the interpretability and prediction accuracy (Berk and 

Bleich, 2013). Though weak predictors can somewhat improve the model prediction, easily 

interpretable functional forms are usually more popular.  

2.2.4. Summary 

The above subsections summarized insights from existing literature regarding the 

definition of DUI recidivism, the characteristics of repeat DUI offenders, and analytic strategies 

applied in these studies. There are three areas seems to be understudied: (1) evaluating traffic 

violations and crime in the subgroup, (2) evaluating the effects of environmental factors, (3) and 

a comprehensive study that integrates factors from multi-dimensions. Future studies can focus on 

these three areas.  

2.3. Machine Learning Applications in Recidivism Prediction 

A large database became available with the improved computer technologies in 

computing and storage in 1980. Some non-statistical ML methods were developed to process and 

analyze large complex datasets. These ML methods usually require no assumptions that are 
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usually needed by statistical methods and treat the data mechanism as unknown (Breiman, 2001). 

Generally, ML methods have two advantages over traditional statistical methods. Many of them 

can address non-linear relations between predicters and the response variable and automatically 

find interaction effects (Tollenaar & Van Der Heijden, 2019). In addition, ML methods can 

analyze complex data, such as noise data, with many correlated or irrelevant predictors 

(Tollenaar & Van Der Heijden, 2019). Traditional statistical methods usually can’t handle such 

complex data. Because of these advantages, ML methods are expected to improve the predictive 

performance when datasets contents complex interactions between variables or non-parametric 

variables (Tollenaar & Van Der Heijden, 2019). There is no machine learning application in DUI 

recidivism literature, so the review of this new method was based on crime recidivism in general.   

2.3.1. Machine Learning Prediction in Crime Recidivism 

In past decades, different ML methods have been tried to predict recidivism risks. In an 

early study of ML in recidivism, Liu et al. (2011) compared logistic regression (LR), 

classification and regression trees (CART), and neural networks (NN) in the prediction of violent 

recidivism using a sample of 1225 male prisoners in the United Kingdom, followed up for 

approximately three years after release. The violent recidivism rate was 28.0% in this cohort, 

namely, 343 prisoners were reconvicted for repeat violent offenses, whilst 882 prisoners had at 

most non-violent recidivism, including 499 prisoners with no convictions. Twenty items in 

Historical Clinical Risk Management–20 (HCR-20; Webster et al., 1997) were chosen as 

predictors. Although NN slightly outperformed LR and CART, this result did not reach 

significance. The overall accuracy of the three models varied between 59% and 67%. 

In Tollenaar and van der Heijden (2013), prediction results of LR and linear discriminant 

analysis about three response variables - general, violent, and sexual recidivism - were compared 
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with results from several ML methods based on available datasets of several offender databases 

in the Netherlands. The ML methods included in the comparison are recursive partitioning, 

adaptive boosting, logitBoost, NN, linear support vector networks, and k-nearest-neighbors 

classification. Overall, they found that the prediction accuracy of each method varied with 

datasets and predictors in the datasets and the predicted response variable, from 67% to 72.9%. 

They concluded that ML approaches to predicting criminal recidivism generally were not 

superior to traditional regression-based approaches. However, Tollenaar and van der Heijden 

(2013) didn’t state the distribution of classes in the sample, nor was any sampling method used 

to keep class distribution balanced. The general recidivism data for the population in Tollenaar 

and van der Heijden (2013), was 1.2% for general, 1.9% for violent recidivism, and 1.4% for 

sexual recidivism, so the original sample was likely to be imbalanced.  

However, Tollenaar and van der Heijden (2013) didn’t include two important tree 

ensemble methods, Gradient Boosting (GB) and Random Forest (RF). Therefore, the conclusions 

were considered premature (Berk & Bleich, 2013; Tollenaar & Van Der Heijden, 2019). Berk 

and Bleich (2013) concluded that tree-based ML methods should be included in the comparison 

since they have several advantages over LR: the ability to predict response variables with more 

than two classes.  

Berk and Bleich (2013) performed stochastic Gradient Boosting (SGB), RF, and LR on a 

dataset of 25,000 observations to predict rearrest for a serious crime within two years of release 

on probation, with eight predictors. The recidivism rate in this sample was approximately 13%, 

so this sample was class-imbalanced data. Berk and Bleich (2013) concluded that RF performed 

better than LG and SGB, while SGB performed as well as LR based on model error - class 

predicted incorrectly divided by the total number in that class. The author calculated accuracy, 
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precision, recall, and F1 score based on the confusion matrixes provided by Berk and Bleich 

(2013). For RF, the abovementioned indices were 71.0%, 26.3%, 62.8%, and 37.1%; for LG, 

these indices were 66.3%, 21.4%, 55.6%, and 30.9%; and for SGB, the abovementioned indices 

were 63.4%, 22.5%, 58.25 and 32.5%. Based on these indices, RF performed the best among the 

three algorithms.  

Hamilton et al. (2015) compared the predictive accuracy of the Washington State Static 

Risk (RSA) Assessment using traditional LR, NN, and RF methods in a large sample of all 

corrections clients (felony, drug, violent, sex) who were repeat offenders in the state of 

Washington (N = 297,600). LR and ML approaches demonstrate comparable performance. Since 

Hamilton et al. (2015) attempted to predict multiple offenses with each offense having multiple 

levels, the class distributions in this sample were not clearly described.  

Duwe and Kim (2017) further examined the performance of newer ML approaches 

relative to traditional methods in predicting recidivism.  They compared the predictive accuracy 

of 12 supervised learning algorithms. The data set used in the study was derived from that used 

to develop the Minnesota Screening Tool Assessing Recidivism Risk (MnSTARR; Duwe, 2014) 

and comprised 24,917 male offenders released from prisons in Minnesota. There were 4,497 

repeat offenders, which account for 18% of the sample. Results suggested that newer ML 

approaches such as LogitBoost (accuracy = 84.2%, precision=44.9%, recall=26.8%), RFs 

(accuracy = 83.7%, precision=51.7%, recall=24.1%), and MulitBoosting (accuracy = 84.1%, 

precision=44.8%, recall=26.8%) were found to yield better results for general recidivism.  

A few more recent studies reported some promising findings. Ozkan et al. (2020) 

examined 336 predictors in a sample of 3,061 juveniles in Florida about sexual offense 

recidivism.  In this sample, 317 juveniles recidivated with a new sex offense, representing 10.4% 



 

19 

of the sample. Ozkan et al. (2020) also found that RF models yielded strong findings with areas 

under the ROC curve (AUCs) of 0.71 for an “all-predictors model” and 0.65 for a “legal factors” 

model.  

Ghasemi et al. (2021) applied decision trees, random forests, and support vector 

machines to two datasets, with 72,725 records in dataset one and 26,450 records in dataset two. 

Both data were provided by the Ontario Ministry of Community Safety and Correctional 

Services (MCSCS). Recidivism for both data sets was defined as any criminal offense that led an 

individual returning to the MCSCS system on a reconviction, sentenced to either incarceration or 

community supervision (Ghasemi et al. 2021). The overall recidivism rate for the two datasets 

combined is 31.98%, indicating a class-imbalance issue in this sample. Accuracy for decision 

trees, random forests, and support vector machines were reported as a performance measure and 

were 69.5%, 73.6%, and 70.4% respectively. Again, random forest performed the best.  

2.3.2. Summary  

In the last decade, machine learning applications have made significant contributions to 

health care, business, and entertainment. Researchers in criminal justice decision-making also 

embraced these applications to assist with risk assessment. The performance of these 

applications varied with different data structures and the outcome of predictions. Among all 

machine learning models, the random forest seems to yield the best predictions.   

Crime recidivism is usually a low-chance event, which leads the dataset with a class-

imbalanced structure. Predictions made on class-imbalanced data may be less accurate than 

predictions made on balanced data. For example, for a sample that repeat offenders only account 

for 10%, a model can predict all records in test data as non-repeat offenders and still achieve 

90% accuracy. In this case, the model completely fails to detect recidivism, and the performance 
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measure, accuracy, fails to reflect this fact. Unfortunately, none of the crime recidivism literature 

reviewed here noted the class-imbalanced issue nor attempted to deal with it. 

In addition, since the prediction of recidivism is predicting human behaviors, there is one 

important rule to correctly understand the prediction: accurate predictions require the future be 

substantially like the past (Berk and Bleich, 2013). However, it is not always the case in the 

reality. People’s mind and behavioral patterns can change over time. A method that can make 

accurate prediction in the short period may not produce accurate forecast during a long time. The 

duration of recidivism research varies from two years to more than ten years, and it is likely that 

offenders’ behavioral patterns changed during this period.  

2.4. Class-Imbalanced Data Handling 

In real-world machine learning applications, the data imbalance imposes challenges to 

performing data analytics and producing accurate results. The raw dataset often suffers from the 

skewed data distribution of one class over the other class (Kaur et al. 2019). The performance of 

classifiers on such datasets leans towards the majority class. Thus, the solutions lean toward 

better accuracy in the majority class and result in poor accuracy in the minority class. The 

problem of imbalanced data distribution is a common problem in machine learning applications 

that try to detect rare events, such as fraud detection, crash detection, tumor detection, and so on. 

handling imbalanced datasets has been intensively studied by researchers (Wang, et al. 2020). 

Systematic reviews on data imbalanced issues and their solutions can be found in Haixiang et al. 

(2017), Spelmen and Porkodi (2018), and Kaur et al. (2019). Given the DUI recidivism is a rare 

event, techniques are needed to address the data imbalance issue.  

Among all the approaches proposed to handle imbalanced data by Kaur et al. (2019), the 

sampling method is the most widely used approach (Haixiang et al. 2017; Spelmen and Porkodi, 
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2018; Santos et al. 2018). There are three sampling method categories: oversampling, 

undersampling, and hybrid-sampling. Oversampling strategically replicates the minority classes, 

while undersampling strategically removes the majority classes. Hybrid-sampling is a mix 

application of the former two. Because oversampling approaches can keep the variations among 

the minority class (Haixiang et al. 2017; Spelmen and Porkodi, 2018), it is the most appropriate 

approach for data with a small sample size.  

It is important to note that oversampling techniques should be applied cautiously in a 

joint application with cross-validation (Santos et al. 2018). Cross-validation is a standard 

procedure to evaluate classification performance and select optimal hyperparameters. Incorrectly 

applying oversampling while performing cross-validation may derive from two main issues: 

overoptimism and overfitting (Santos et al. 2018). Oversampling should be performed in the 

training sets at each iteration of a cross-validation process. Meanwhile, the test sets at each 

iteration of a cross-validation process should be kept original during the whole process. 

Incorrectly oversampling the entire dataset would lead to a structure change in the test data. In 

this case, the size of the minority group also increased in the test data, and performance indices 

calculated based on this data structure fail to reflect the true evaluation of the original data 

structure. (Santos et al. 2018). 

Santos et al. (2018) compared 12 well-established oversampling algorithms based on data 

complexity analysis. The best oversampling techniques shared three key characteristics: the use 

of cleaning procedures, cluster-based example syncretization, and adaptive weighting of minority 

examples (Santos et al. 2018). Among all algorithms, the Synthetic Minority Oversampling 

Technique coupled with Tomek Links (SMOTE - Tomek Links) and Majority Weighted 

Minority Oversampling Technique (MWMOTE) achieved the best results. Both algorithms 
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changed the overlapping areas in the data and increased the discriminative power of data (Santos 

et al. 2018).  

There is a well-developed software program designed to achieve oversampling 

techniques. Lemaître et al. (2017) presented an integrated Python library called Imbalanced-

learn for data-level resampling for imbalanced classification. It can be treated as an extension of 

Scikit-learn, a Python library that integrates a wide range of state-of-the-art machine-learning 

algorithms and provides elementary methods to deal with class-imbalanced issues (Pedregosa et 

al. 2011). Imbalanced-learn library integrated many oversampling techniques including the 

SMOTE - Tomek Links, but MWMOTE is not available in the library. This library largely 

reduced the amount of coding to oversample the data and greatly benefited researchers with less 

programming skills to improve the predictions with a more balanced dataset.  
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3. DATA  

The scope of this study mainly focused on drivers in North Dakota. The state agency 

approved records from North Dakota Driver License (NDDL) administrative system for limited 

use within studies. This study was reviewed by the NDSU Institutional Review Board (IRB) with 

minimal risk to subjects.  

The data source from NDDL consists of six types of driver records: master files, 

conviction and crashes records, licensing files, arrests records, DUI/BAC record, and driving 

training record. Each driver has a unique record ID which will be used as the primary key to 

connect information from different records. These datasets were available from 2011 to 2020 for 

research purposes. Two separate data files regarding drivers’ total DUI count came from the 

administrative hearing results, and their intent to be organ donors was also provided by NDDOT. 

In addition, US Census County demographic and US Department of Justice law enforcement 

officer counts by county were collected (US Census Bureau 2018; US Department of Justice and 

Federal Bureau of Investigation 2019). By connecting the offender’s residence county with the 

ND county profile, the offender’s demographic information can be obtained, and law 

enforcement indexes can be estimated at the county level.  

This study selected DUI first-time offenders from 2013-2017 as a study group, with a 

follow-up period of 3 years (1095 days) from the dates of their first DUI citations.  A subsequent 

DUI citation within the follow-up period was considered DUI recidivism, and drivers in this 

group were defined as repeat offenders (ROs). Drivers without a DUI recidivism within the 

follow-up period were defined as non-repeat offenders (NROs). In the total of 12,879 records 

analyzed in this study, there are 11,651 offenders without recidivism and 1,228 offenders with 

recidivism. A binary response variable was created to define recidivism: 1 represents the record 



 

24 

with DUI recidivism - repeat offenders (ROs), while a value of 0 represents the record without 

DUI recidivism – non-repeat offenders (NROs).  

Health and social-economic factors were shown to associate with DUI (e.g., Room, 2005; 

Impinen et al., 2011; Wieczorek,2013). To measure community health and social-economic 

factors at the driver’s county of residence, the 2017 County Health Rankings for North Dakota 

were used. This data was provided by the University of Wisconsin Population Health Institute 

(UWPHI), aiming to build awareness of the multiple factors that influence health and support 

leaders in growing community power to improve health equity. This data contained more than 60 

measures of health factors of nearly every county in all 50 states. It provided indices for health 

behaviors (30%) and clinical care (20%). Social and economic factors (40%) and physical 

environment (10%) were modeled from more than 20 national data sources (UWPHI, 2017).  In 

this data source, 27 indices for all 53 counties in North Dakota were selected and linked to the 

driver’s county of residence for analysis. Table 3.1 described the list of variables examined in 

this study.  

The data preparation started with filtering the first- and second-time offenders in this 

dataset. Meanwhile, the conviction and crash records in was merged into the master file of that 

year for each year from 2013-2020, then the yearly datasets were aggregated into one aggregated 

dataset to include 7-year conviction and crash record. After that, the aggregated 7-year 

conviction and crash record was linked to the subset of the DUI count file by Record_id, to 

verify whether the total DUI count that came from the administrative hearing result matched the 

total number of DUI convictions in the system. North Dakota only kept DUI records for seven 

years in the system, and the offense that occurred in the eighth year will be re-counted as the first 

offense. The data was transformed to contain all the DUI convictions in one row for each ID.  



 

25 

For the first-time offender, the records with only one DUI conviction in 2013 - 2017, and no 

second DUI offense within 1095 days were selected. To select second-time offenders, three 

filters were applied: (1) only two DUI convictions in 2013-2020, (2) the first DUI conviction 

happened in 2013- 2017, and (3) the second DUI conviction happened within 1095 days of the 

first DUI conviction.  

To link the traffic violation and crash history, the conviction and crash records were 

aggregated again from 2011 to 2017 and linked to the filtered DUI offender list. Time interval 

markers were created to count the record of each citation category in Table 3.1 and crash in four 

monitoring time intervals: (1) 0 to 60 days prior, (2) 61 to 365 days prior, (3) 365 to 730 days 

prior; (4) 731 to 1095 days prior. The count of each citation category or crash in 3-year before 

the first DUI was the sum of the total counts in four monitoring time intervals. Then the binary 

version of each of these variables was created. Due to the data availability, the offenders who 

had their first DUI offense in 2013 had historical records of less than three years.  

Offenders’ BAC records came from the DUI/BAC subset. Because nearly one-third of 

the sample refused the BAC test on their first DUI date, data imputation was performed to fill in 

the missing values with the sample mean in that field. Machine learning models were performed 

in this imputed dataset, while the two logistic regression models were performed on the original 

data to test BAC values and BAC refusal status separately since the logistic regression models 

needed a much smaller calculation capacity.  

Health and social-economic factors were then linked to the data by the county code of the 

driver’s residence. US Census County demographic and US Department of Justice law 

enforcement officer counts were also linked to the data by the county code. As discussed in 

Section 2.2.1 that the level of law enforcement should be considered when evaluating DUI 
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recidivism based on official records (Nochajski & Wieczorek, 2006), so a law enforcement 

density index was created with the number of officers in each county divided by the population 

in that county.  

Table 3.1. List of Variables. 

Variable Name Variable Description 

Second DUI citation Target variable: yes=1, no=0 

RecID Driver identification variable 

Profile 

Gender  Driver’s gender:1=male, 0= female 

Age Age of first offense: date of birth - conviction date of first DUI 

Age was categorized into six groups:18-24; 25-34; 35-44; 45-54; 55-64; 

64+ 

County Residence county 

Court region ND District Court Region  

Population density Census population 2017 per square mile in the residence county 

Registered organ donor Yes=1, no=0 

Status1N Driver license status code at first DUI citation.  

1= LISPR; license suspended for 24/7 program 

2= LIS; license suspended for other reasons 

3=RO; license revoked 

4=other; all other licenses, with 90% being licensed 

Law enforcement index (LEI) 

Law enforcement density Number of officers in county/population in the county 

Behavioral treatment interventions 

Intervention The 24/7 Sobriety Program participant =1, no= 0 

Seasonal factors 

Weekend The first DUI conviction date was on the weekend: Yes=1, no=0 

Holiday The first DUI conviction date was on holiday: Yes=1, no=0 

Season Winter: Nov, Dec, Jan, Feb; 1 for winter 

Summer: Jun, Jul, Aug; 2 for summer 

Other: Mar, Apr, May, Sep, Oct; 3 for other 

(Table 3.1 List of variables continuing to the next page) 
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Table 3.1. List of variables (Continued)  

Variable Name Variable Description 

Traffic Violation and Crash History 

High-risk DUI-related 

citation binary* 

High-risk DUI-related citation before or during the study period: yes=1, 

no=0 for each time interval. ** 

High-risk DUI-related 

reckless driving citation 

binary* 

High-risk DUI-related reckless driving citation before or during the study 

period: yes=1, no=0 for each time interval. ** 

High-risk non-DUI-

related citations binary* 

High-risk non-DUI-related citations before or during the study period: 

yes=1, no=0 for each time interval. ** 

High-risk non-DUI-

related improper driver 

action citations binary* 

High-risk non-DUI-related citations before or during the study period: 

yes=1, no=0 for each time interval. ** 

High-risk non-DUI-

related careless driving 

citations binary* 

High-risk non-DUI-related related improper driver action citations before 

or during the study period: yes=1, no=0 for each time interval.** 

High-risk non-DUI-

related restriction 

violation citations 

binary* 

High-risk non-DUI-related restriction violation citations before or during 

the study period: yes=1, no=0 for each time interval.** 

High-risk non-DUI-

speeding citations 

binary* 

High-risk non-DUI-related speeding citations before or during the study 

period: yes=1, no=0 for each time interval.** 

Low-risk citation binary* Low-risk citation before or during the study period: yes=1, no=0 for each 

time interval. ** 

Low-risk improper driver 

action citation binary* 

Low-risk improper driver action citation before or during the study period: 

yes=1, no=0 for each time interval. ** 

Low-risk seatbelt 

citation_binary* 

Low-risk seatbelt citation before or during the study period: yes=1, no=0 

for each time interval. ** 

Low-risk speeding 

citation binary* 

Low-risk speeding citation before or during the study period: yes=1, no=0 

for each time interval. ** 

Low-risk road sign 

violation citation binary* 

Low-risk road sign violation citation before or during the study period: 

yes=1, no=0 for each time interval. ** 

Crash binary Crash before or during the study period: yes=1, no=0 for each time interval. 

** 

BAC highest The highest blood alcohol concentration (BAC) on record 

BAC mean The average blood alcohol concentration (BAC) on record 

BAC median The median blood alcohol concentration (BAC) on record 

BAC refusal BAC test was refused by the driver: yes=1, no=0 
*High-risk citations: citations with three or more points deduction on driver’s license;  
*Low-risk citations: citations with two or fewer points deduction on driver’s license 

**Monitoring Time Intervals around first DUI citation:  

Pre-DUI citation: (1) 0 to 60 days prior, (2) 61 to 365 days prior, (3) 365 to 730 days prior; (4) 731 to 1095 days 

prior; (5) prior 3-year  
 

(Table 3.1 List of variables continuing to the next page) 
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Table 3.1. List of variables (Continued)  

Variable Name Variable Description 

Health and Social-economic factors at the county level 

Poor or fair health Percentage of adults reporting fair or poor health (age-adjusted) 

Frequent physical 

distress 

Percentage of adults reporting more than 14 days physically unhealthy days 

in the past 30 days (age-adjusted) 

Frequent mental distress Percentage of adults reporting more than 14 days mentally unhealthy days 

in the past 30 days (age-adjusted) 

Adult smoking Percentage of adults who are current smokers 

Adult obesity Percentage of adults that report a BMI of 30 or more 

Food environment index Index of factors that contribute to a healthy food environment, 0 (worst) to 

10 (best) 

Physical inactivity Percentage of adults aged 20 and over reporting no leisure-time physical 

activity 

Access to exercise 

opportunities 

Percentage of population with adequate access to locations for physical 

activity 

Excessive drinking Percentage of adults reporting binge or heavy drinking 

Alcohol-impaired 

driving deaths 

Percentage of driving deaths with alcohol involvement 

Teen births Teen birth rate per 1,000 female population, ages 15-19 

Uninsured Percentage of population under age 65 without health insurance 

Primary care physicians The ratio of population to primary care physicians 

Mental health providers The ratio of population to mental health providers 

High school graduation Percentage of the ninth-grade cohort that graduates in four years 

Some college Percentage of adults ages 25-44 years with some post-secondary education 

Unemployment Percentage of population ages 16 and older unemployed but seeking work 

Children in poverty Percentage of children under age 18 in poverty 

Income inequality The ratio of household income at the 80th percentile to income at the 20th 

percentile 

Children in single-parent 

households 

Percentage of children that live in a household headed by a single parent 

Social associations Number of membership associations per 10,000 population 

Violent crime Number of reported violent crime offenses per 100,000 population 

Severe housing problems Percentage of households with at least 1 of 4 housing problems: 

overcrowding, high housing costs, or lack of kitchen or plumbing facilities 

Long commute - driving 

alone 

Among workers who commute in their car alone, the percentage that 

commutes more than 30 minutes 

Insufficient sleep Percentage of adults reporting not getting enough rest or sleep in the past 

30 days 

Median household 

income 
Median household income 

Rural Percentage of the population lives in the rural area 
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4. METHODOLOGY 

This study will use three tree-based machine learning algorithms to predict DUI 

recidivism: Decision Tree, Random Forest, and Gradient Boosting. The prediction power of the 

three algorithms was evaluated and compared. Decision Tree is a single tree method, while 

Random Forest and Gradient Boosting are ensemble methods based on a combination of multiple 

training Decision Trees. Thus, Random Forest and Gradient Boosting methods can be treated as 

the upgraded version of the Decision Tree method. All three algorithms can predict either the 

numerical response variable, the regression case, or the categorical variable, the classification 

case. Since the response variable in this study is a categorical variable with two classes, a DUI 

recidivism occurs on a driver and no DUI recidivism occurs, the classification version of these 

three algorithms was used. Detailed descriptions of these three algorithms are discussed in the 

subsection below.  

Generally, when building a machine learning algorithm, the original dataset was usually 

split into training and testing subsets. The training data is used to "teach" the model the concepts 

that are useful for prediction, and the testing data is reserved for testing if the trained model has 

successfully grabbed the essence of things. The confusion matrix was used to evaluate the final 

model performance.  

 Prediction performance is mainly depending on the hyperparameters used in the model. 

Thus, hyperparameter optimization is necessary to select model parameters for the best 

performance. This study used hyperparameter optimization with five-fold cross-validations to 

choose model parameters for their best performance. Python Package Scikit-learn (Sklearn) was 

used to perform hyperparameter optimization, classification, and model evaluation. 
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The dataset was imbalanced, with repeat offenders only accounting for 9.5% of the 

sample. Thus, predictions made on such datasets might be less likely to favor the minority group 

– the repeat offenders. To address this issue, Synthetic Minority Oversampling Technique 

(SMOTE) - Tomek Links technique was used to oversample the minority groups in the training 

data in all three models. Six predictions were made: Decision Tree, Random Forest, and Gradient 

Boosting based on the original dataset and prediction models created with the oversampled 

dataset. Python Package Imbalanced-learn was used to oversample the minority group.  

For practical research areas like impaired driving, prediction is not enough. Interpreting 

factors influencing the prediction is also important to help readers do the best research. Machine 

learning is also well-known as a black-box prediction, in which the variable interpretability is 

usually low. Machine learning models were used as variable selection methods to rank top 

performance variables to predict DUI recidivism to overcome this issue. The logistic regression 

model was used to quantify the effects of selected factors/predictors on the outcome. SAS 9.4 

was used to perform descriptive analysis and logistic regression analysis.  

4.1. Decision Tree 

The Decision Tree algorithm is a non-parametric supervised learning technique for 

regression and classification. This algorithm has a few advantages: (1) It can perform predictions 

with both categorical predictors (usually referred to as features in machine learning terminology) 

and numerical predictors (compared to the Support Vector Machine algorithm). (2) It starts the 

prediction with the most relevant feature to the least relevant feature so that it can rank the 

importance of input features.  Since the response variable in this study is a categorical variable 

with two classes, a DUI recidivism occurs on a driver and no DUI recidivism occurs, the 

classification tree algorithm will be used.  
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As shown in Figure 4.1, the training of a classification tree works like a flowchart that it 

inputs one feature at a time and applies a logic question of the feature to split the tree until it 

reaches a terminal node of the tree (Esposito & Esposito, 2020). Three steps complete this 

training process: 

1. The root node has a splitter that contains a logic question of a feature. Each branch, a 

child node or terminal node, from a splitter is an answer to the logic question of the 

feature in that splitter.  

2. Each child node then acts as a root node and splits again. 

3. Step 2 was repeated until all branches reached the terminal node, containing a pure set of 

one class. 

Thus, by default, each terminal node in the training step is a class of the response 

variable. After the training step, a portion of the dataset will be used as test data to test the 

model's accuracy. Once model accuracy reaches the acceptable level, the trained classification 

tree is ready to predict unknown outcomes using known features trained in the classification tree.  

During the training stage, there are two algorithms used for classifying the features, in 

other words, splitting a feature in a node: Classification and Regression Trees (CART) and 

Iterative Dichotomiser 3 (ID3)/C4.5 (an improved classification algorithm version of ID3). Both 

algorithms measure the inequality of the data distribution (impurity) of the dataset split in each 

node. The lower the impurity, the higher the homogeneity. However, CART and ID3/C4.5 

measure impurity differently. Because of the different measures in impurity, ID3/C4.5 is more 

susceptible than CART to outliers. As indicated in Equation 1, CART measures impurity using 

the Gini index, the sum of the squared frequency of feature values (Esposito & Esposito, 2020). 
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Figure 4.1. Sample Classification Tree Algorithm 

 

𝐺𝑖𝑛𝑖 (𝑆)  =  1 − ∑ 𝑃𝑖
2

𝑘

𝑖=1
 (Equation 1） 

Where 𝑆 is the full dataset at the root node or the sub-dataset at the child node before splitting, 𝐾 

is the number of the total categories in a feature (if a feature is a numerical variable, then K = 2; 

a categorical with values less than the mean value and one with values larger or equal to the 

mean value), 𝑃𝑖 is the frequency of 𝑖th category (categorical variable) or element within the 

given value (numerical variable) in the dataset.  

ID3/C4.5 measures impurity based on the concept of entropy, which results from the sum 

of the frequency multiplied by the logarithm of the frequency of the feature value, as shown in 

Equation 2 (Esposito & Esposito, 2020).  
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𝐻 (𝑆)  =  ∑ −𝑃𝑖 ∗ log2(𝑃𝑖)
𝑘

𝑖=1
 (Equation 2） 

Where 𝑆, 𝐾, and 𝑃𝑖 indicate the same parameter as in Equation 1.  

Besides, CART and ID3/C4.5 perform classification (splitting a feature in a node ) 

differently. CART can reuse the same feature over multiple splits, while ID3/C4.5 stops using a 

feature after a split has been made (Esposito & Esposito, 2020). This difference results in CART 

typically producing larger trees and more chances to contain better splits. However, on the other 

side, CART has more chances of overfitting. Overfitting happens when a model learns the 

training data so well that the noise or random fluctuations in the training data is considered and 

learned as concepts by the model. In contrast, these concepts do not apply to new data and 

negatively impact the model’s generalization ability. To save calculation costs, ID3/C4.5 was 

used in this study.  

4.2. Random Forest 

A single Decision Tree can make a good prediction but might not make the best 

prediction. For example, a Decision Tree algorithm tends to overfit training data which can give 

poor results when applied to the full data set. Having a forest of trees - the Random Forest 

algorithm - could limit overfitting without substantially reducing prediction accuracy. Random 

Forest is an ensemble method that takes multiple individual learning models and combines them 

to produce an aggregate model that is more powerful than any of its learning models alone. This 

is because each model might overfit a different part of the data. After combining other individual 

models into an ensemble, their mistakes were averaged to reduce the risk of overfitting while 

maintaining strong prediction performance.  

The Random Forest algorithm is a bootstrap aggregating algorithm (often shortened to 

bagging) and was introduced by Breiman (2001). It builds Decision Trees independently and 
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parallelly, then returns a weighted average or majority vote of their results from the trees as the 

final result. As a result, the final model is more likely to be balanced between potential bias 

(underfit) and variance (overfit) compared to the Decision Tree.  

The Random Forest algorithm has two important characteristics: (1) randomly selected 

features and (2) bagging (Esposito & Esposito, 2020). In the Random Forest algorithm, each 

training tree is constructed on a randomly selected subset of features, so the number of features 

used to split nodes for each Decision Tree is controlled. This characteristic can help to mitigate 

overfitting.  

Bagging is the process of building a combination of weak learners (e.g., Decision Trees) 

based on bootstrapping samples and aggregating (either majority voting or averaging) the models 

learned on each bootstrapping sample. Bootstrapping is a statistical resampling method used to 

create test samples by randomly selecting observations (rows) in the original dataset with 

replacement. The resulting bootstrap sample has the same number of rows as the original training 

set, but possibly some rows from the original dataset are missing, and others occur multiple 

times. This characteristic can help to mitigate the imbalance of the training dataset (e.g., for a 

feature with two classes, one class is in 90% of the rows while the other class in only in 10% of 

the rows). 
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Figure 4.2. Structure of a Random Forest  

 

Generally, the training process of a Random Forest classification algorithm follows four 

steps (Zhou et al., 2020): (1) The bootstrapping method was applied to randomly resample a 

dataset that has the same size as the original dataset to build a Decision Tree. (2) K features were 

randomly selected from total M features where K < < M (typically, K is chosen to be equal to the 

square root of M). (3) A combination of parallel Decision Trees was built by using the 

bootstrapping sample and chosen features from steps 1 and 2. (4) A majority vote was made on 

all the predictions made in steps (3). Figure 4.2 provides the structure of the Random Forest 

algorithm.  
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4.3. Gradient Boosting 

The Gradient Boosting method is another tree-based machine learning algorithm, and it is 

proposed by Friedman (2002, 2003) at Stanford University. Thus, it contains all the advantages 

of tree-based algorithms mentioned in section 4.1. The Gradient Boosting method is also a type 

of ensemble method, while it builds trees sequentially rather than in parallel (as with the Random 

Forest algorithm). The subsequent tree was built based on the errors captured in the previous 

tree. Thus, the Gradient Boosting algorithm reduces bias, making it more accurate than the 

Random Forest algorithm. Other advantages of the Gradient Boosting method include handling 

large datasets without pre-processing, resistance to outliers, handling of missing values, 

robustness to complex data, and resistance to over-fitting (Friedman and Meulman 2003; Lu et 

al. 2020). 

 

Figure 4.3. Steps of a Gradient Boosting algorithm  
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Generally, the training process of a Gradient Boosting algorithm can be described in three 

steps: (1) A Decision Tree was created and trained to fit the dataset at an acceptable level and 

contained a certain level of errors. (2) A subsequent Decision Tree was created and trained based 

on the residual errors of the previous tree. (3) Step (2) was repeated until errors were minimized 

or in any way acceptable for the problem at hand. Figure 4.3 provides a detailed graphical 

representation of the Gradient Boosting algorithm (Esposito & Esposito, 2020). 

A detailed algorithm of Gradient Boosting for binary classification can be described as 

follows:  

𝐹(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝑓(𝑥)

𝑚

𝑖=0

) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖

𝑚

𝑖=0
𝑓𝑖(𝑥)) (Equation 3） 

Where 𝐹(𝑥) is the final predict output that contains only two classes, +1 and -1, 𝑓𝑖(𝑥) is the 

classifier at 𝑖th steps, 𝛼𝑖 is the coefficients at 𝑖th steps to weight the classifier at that step (Freund 

& Schapire, 1999; Guestrin,2015; Esposito & Esposito, 2020; Lu et al., 2020). 

4.4. SMOTE -Tomek Links 

SMOTE is one of the most popular oversampling techniques developed by Chawla et al. 

(2002). SMOTE generates examples based on the distance between each data (often using 

Euclidean distance) and the minority class's nearest neighbors, so the created examples are 

distinct from the original minority class. Random oversampling only copies some random 

examples from the minority class. 

The procedure for creating the synthetic samples is, in essence, as follows. 

1. Choose random data from the minority class. 

2. Calculate the Euclidean distance between the random data and its k nearest neighbors. 

3. Multiply the difference with a random number between 0 and 1, then add the result to the 

minority class as a synthetic sample. 
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4. Repeat the procedure until the desired proportion of the minority class is met. 

In contrast to the original oversampling method, this method adds new "information" to 

the data since the generated synthetic data are reasonably close to the feature space of the 

minority class. 

Tomek Links is a modification from the Condensed Nearest Neighbors (CNN, not to be 

confused with Convolutional Neural Network) undersampling technique developed by Tomek 

(1976). The Tomek Links technique employs the rule to choose the pair of observations (let's 

say, a and b) that are fulfilled these qualities, as opposed to the CNN method, which just 

randomly selects the samples with its k nearest neighbors from the majority class that wants to be 

deleted. 

1. The observation a’s nearest neighbor is b. 

2. The observation b’s nearest neighbor is a. 

3. Observations a and b belong to a different class. That is, a and b belong to the minority 

and majority class (or vice versa), respectively. 

Mathematically, it can be expressed as follows. 

Let d(𝑥𝑖, 𝑥𝑗) den the Euclidean distance between 𝑥𝑖  and 𝑥𝑗, where 𝑥𝑖denotes the sample 

belonging to the minority class, and 𝑥𝑗 denotes the sample belonging to the majority class. If 

there is no sample, 𝑥𝑘 satisfies the conditions (1) d(𝑥𝑖, 𝑥𝑘) < d(𝑥𝑖, 𝑥𝑗), or (1) d(𝑥𝑗, 𝑥𝑘) < d(𝑥𝑖, 𝑥𝑗), 

then the pair of (𝑥𝑖, 𝑥𝑗) is a Tomek Link. By using this method, one can locate the desired 

samples of data from the majority class that have the smallest Euclidean distance from the data 

from the minority class (i.e., the data from the majority class that is closest to the minority class 

data, thus make it ambiguous to distinct), and then eliminate it. 
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SMOTE-Tomek Links was first introduced by Batista et al. (2003). It combines 

SMOTE's capacity to provide synthetic data for minority classes with Tomek Links' capacity to 

eliminate data from the majority class classified as Tomek links (that is, samples of data from the 

majority class are closest to the minority class data). The SMOTE - Tomek Links procedure is as 

follows:  

1. (Start of SMOTE) Choose random data from the minority class. 

2. Calculate the distance between the random data and its k nearest neighbors. 

3. Multiply the difference with a random number between 0 and 1, then add the result to the 

minority class as a synthetic sample. 

4. Repeat steps 2–3 until the desired proportion of the minority class is met. (End of 

SMOTE) 

5. (Start of Tomek Links) Choose random data from the majority class. 

6. If the random point’s nearest neighbor is the point from the minority class (i.e., create the 

Tomek Link), then remove the Tomek Link. 

4.5. Model Assessment 

The model assessment in this study was based on a confusion matrix tested on the test 

data part. Accuracy is a subtle indicator and might not be truly useful if taken alone. Accuracy 

measures the percentage of good predictions - when an offender with recidivism was recognized 

as a reoffender and when an offender without recidivism was recognized as an offender without 

recidivism.  However, in the case where a class is a minority class, the accuracy rate can be 

useless. For example, in the case of this study, the goal is to recognize reoffenders who account 

for 10% of the total data entries; a 90% accuracy rate can mean that none of the reoffenders was 
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recognized, and offenders without recidivism were recognized as reoffenders. Therefore, a 

confusion matrix is needed to produce three important indicators: precision, recall, and F1 score.  

A Confusion matrix is an N x N matrix used for evaluating the performance of a 

classification model, where N is the number of target classes. The matrix compares the actual 

target values with those predicted by the machine learning model. This matrix provided a holistic 

view of how well the classification algorithms perform and what errors they make. The 

confusion matrix is in a 2 x 2 matrix for a binary classification problem, as shown below in 

figure 4.4. The target variable has two values: positive (offender with recidivism) and negative 

(offender without recidivism). The columns represent the actual values of the target variable. The 

rows represent the predicted values of the target variable. There are four possibilities:  

1. True Positive (TP): The predicted value matches the actual value. The actual value was 

positive, and the model predicted a positive value, meaning that an offender with 

recidivism is predicted as an offender with recidivism.  

2. True Negative (TN): The predicted value matches the actual value. The actual value was 

negative, and the model predicted a negative value, meaning that an offender without 

recidivism is predicted as an offender without recidivism. 

3. False Positive (FP) – Type 1 error: The predicted value was falsely predicted. The actual 

value was negative, but the model predicted a positive value, meaning that an offender 

without recidivism is predicted as an offender with recidivism. FP is also known as 

the Type 1 error. 

4. False Negative (FN) – Type 2 error: The predicted value was falsely predicted. The 

actual value was positive, but the model predicted a negative value, meaning that an 
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offender with recidivism is predicted as an offender without recidivism. FN is also known 

as the Type 2 error. 

 

Figure 4.4. A sample 2 x 2 confusion matrix.  

Starting from this confusion matrix, two important performance indicators are generated 

to estimate the precision of the model: recall and precision. The calculation of recall is indicated 

in Equation 4 below: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (Equation 4） 

Recall indicates the percentage of true positives the model predicts with respect to the 

total number of actual positives in the dataset. The calculation of recall is indicated in Equation 5 

below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (Equation 5） 

Precision indicates the percentage of true positives the model predicts with respect to the 

total number of actual positives in the dataset. In addition, the model accuracy can also be 

calculated using a confusion matrix, as shown in Equation 6: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 (Equation 6） 

F1 score is the harmonic mean of the precision and recall, where an F1 score reaches its 

best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 

score are equal. The formula for the F1 score is: 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (Equation 7） 

Precision is important in music or video recommendation systems, e-commerce websites, 

etc. Wrong results could lead to customer churn and be harmful to the business. The recall is 

important in medical cases where it does not matter whether we raise a false alarm, but the actual 

positive cases should not go undetected. In this study, both indicators are important. The higher 

recall values, precision, and accuracy mean the models perform better. Thus, the F1 score was 

used as the primary evaluation metric for model performance. 

4.6. Logistics Regression 

Logistic regression (also known as the logit model) is often used for classification and 

predictive analytics. Logistic regression estimates the probability of an event occurring, such as 

recidivism occurring or not occurring, based on a given dataset of independent variables. Since the 

outcome is a probability, the dependent variable is bounded between 0 and 1. In logistic regression, 

a logit transformation is applied to the odds—the probability of success divided by the probability 

of failure. This is also commonly known as the log odds, or the natural logarithm of odds, and the 

following formulas represent this logistic function: 

 𝑙𝑜𝑔𝑖𝑡 (pi) = log(
p

1−p
). (Equation 8)  

 log (
𝑝

𝑝 + 1
) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑖𝑥𝑖 

(Equation 9) 
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Where pi is the probability of DUI recidivism; 𝑥i  is ith predictor variable; β0 is the intercept of the 

probability of the DUI recidivism; and βi  = parameter estimate of the ith predictor variable.                  

The predicted probability 𝑝𝑖 for 𝑖th record in the sample can be calculated as below: 

 
𝑝 =

exp (𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑖𝑥𝑖𝑗)

1 + exp (𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑖𝑥𝑖𝑗)
 

 (Equation 10) 

Log odds can be difficult to make sense of within a logistic regression data analysis. As a result, 

exponentiating the beta estimates is common to transform the results into an odds ratio (OR), 

easing the interpretation of results. The OR represents the odds that an outcome will occur given 

a particular event, compared to the odds of the outcome occurring in the absence of that event. If 

the OR is greater than 1, then the event is associated with a higher odd of generating a specific 

outcome. Conversely, if the OR is less than 1, then the event is associated with a lower odd of that 

outcome occurring. 

 𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓𝑎 𝑒𝑣𝑒𝑛𝑡 ℎ𝑎𝑝𝑝𝑒𝑛

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑒𝑣𝑒𝑛𝑡 𝑛𝑜𝑡 ℎ𝑎𝑝𝑝𝑒𝑛
= 

𝑝

1−𝑝
  (Equation 11) 

Logistic regression assumes that there is no severe correlation/multicollinearity among the 

explanatory variables. Multicollinearity occurs when two or more continuous variables are 

highly correlated to each other, such that they do not provide unique or independent information 

in the regression model. If the degree of correlation is high enough between variables, it can 

cause problems when fitting and interpreting the model. In the case that two variables have high 

correlations, one variable should be removed from modeling. Variance inflation factor (VIF) or 

Pearson correlation coefficient can be used to test correlations between two continuous variables. 

Chi-square test can be used for categorical variables.  Kruskal-Wallis H Test or t-test or ANOVA 

can be used to test correlations between a continuous and categorical variable.  
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5. RESULTS ANALYSIS 

This section first presented predictions made by Decision Tree, Random Forest, and 

Gradient Boosting on the original imbalanced sample (subsection 5.1) and the oversampled 

sample (subsection 5.2). Subsection 5.3 provided a summary of model predictions. Subsection 

5.4 presented results from statistical models to quantify associations and causation between 

predictors and the response variable and provided interpretation and understanding of the 

predictors.  

Figure 5.1. Sample Data Usage Allocation  

 

5.1. Machine Learning Model Prediction  

This subsection presented predictions made by Decision Tree, Random Forest, and 

Gradient Boosting on the original imbalanced sample. The sample data was fist split into two 

parts, training data and test data. A stratified split method was performed here so that the class 
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distributions were identical in training data and test data. Figure 5.1 shows the sample data usage 

allocation for these three predictions.  

For each of these three methods, hyperparameter optimizations were performed first on 

the training data to find the hyperparameter(s) that yield the highest prediction power for the 

minority group, the F1 score. Models were trained to fix the prediction while performing the 

hyperparameter optimation with the random state numbers. Performance indices were reported to 

select the best hyperparameter(s) based on the F1 score. After choosing the best 

hyperparameter(s), the models were tested on the test data that was held out in the beginning for 

final evaluation. Predictions results made with optimized hyperparameter(s) were then reported 

for each method.  

5.1.1. Decision Tree  

In the Decision Tree model, hyperparameter optimization consisted of two parts: 

hyperparameter tuning and pruning. The analysis started with a hyperparameter tuning on the 

training data part to find the best number of maximum depth, resulting in the highest F1 score. 

The GridSearchCV function in the Scikit-learn package was used to conduct the hyperparameter 

optimization. A set of nine candidates 2,4,5,6,8,10,12,15, and 20, were input to hyperparameter 

tuning with training data during 5-fold cross-validation. 15 was selected for the maximum depth 

of the tree, and the associated F1 score mean over five folds was 25.6%, with a standard 

deviation of 1.66%. A complete result summary of all nine parameters of maximum depth for the 

Decision Tree can be found in Table 5.1.  

Then, the cost complexity pruning (CCP) method was applied to prune nodes to prevent 

the overfitting of the tree further and reduce the overall misclassification error rate. The Minimal 

Cost-Complexity Pruning method in the Scikit-learn package was used to complete the pruning 
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process. Before applying the pruning method, a 5-fold cross-validation on the training data for 

maximum depth 15 without CCP was performed to collect baseline performance indices (Table 

5.2). The performance indices of the baseline model on test data were 88.1% for accuracy, 21.0% 

for recall, 32.1% for precision, and 25.4% for F1 score.   

The complexity hyperparameter α (alpha) was determined in three steps: (1) The F1 

scores were plotted with different α values on both training data and test data, and estimating the 

α value that resulted in the highest F1 score on the test set from the figure (Figure 5.2). 0.0007 

was estimated for α. The F1 score associated with this α value was approximately 30%. (2) A 5-

fold cross-validation was performed on the training data with the selected α value 0.0007 in step 

(1) to test for sensitivity of F1 scores. The F1 scores ranged from roughly 26% to 32%, with a 

mean of 29.44% and a standard deviation of 2.1% (Table 5.3). With pruning, the precision and 

F1 scores were increased. On average, the F1 score increased by roughly 4 percent, and accuracy 

improved by approximately 25 percent.  (3) On the training data, plot the mean of F1 scores with 

different α values using the 5-fold cross-validation, then a searching method was used to find the 

optimal value of α with the highest mean F1 value. In this case, the optimal value was in the 

interval between 0.0005 to 0.0015 (Figure 5.3), so a set of means of F1 test scores with α values 

was output to search for the optimal value. There were 52 data points in this interval. After 

sorting F1 mean values, 0.000729 was finally selected for the α value with a slightly higher F1 

mean of 29.6% and a standard deviation of 2.1%. Table 5.4 shows the performance indices from 

the validation set during hyperparameter optimization.  
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Table 5.1. Hyperparameter Tuning Results for Decision Tree on Original Dataset. 

Rank Hyperparameter Validation F1 Scores Mean SD 

 Max Depth Split 1 Split 2 Split 3 Split 4 Split 5   

1 15 23.19% 24.30% 27.46% 27.22% 26.01% 25.64% 1.66% 

2 12 24.10% 24.24% 26.14% 22.22% 24.92% 24.32% 1.27% 

3 20 21.64% 21.86% 25.27% 25.46% 23.40% 23.53% 1.62% 

4 10 24.03% 24.64% 23.74% 22.79% 20.61% 23.16% 1.41% 

5 8 20.69% 26.72% 21.37% 21.34% 20.41% 22.11% 2.34% 

6 5 16.95% 19.66% 21.01% 23.08% 18.26% 19.79% 2.13% 

7 6 16.46% 18.88% 18.93% 18.26% 16.59% 17.83% 1.09% 

8 4 10.05% 14.61% 20.34% 20.87% 16.59% 16.49% 3.98% 

9 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 

Table 5.2. Baseline Performance Indices for Decision Tree with Maximum Depth 15 Without 

CCP from 5-Fold Cross-Validation 

 Validation Accuracy Validation Recall Validation Precision Validation F1 

1 87.14% 20.41% 26.85% 23.19% 

2 88.21% 19.90% 31.20% 24.30% 

3 88.21% 23.47% 33.09% 27.46% 

4 88.06% 23.47% 32.39% 27.22% 

5 87.57% 22.96% 30.00% 26.01% 
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Figure 5.2. F1 Scores and Complexity hyperparameter α (Alpha) for Decision Tree on Single 

Test/Train Split Data Sets 

 

Table 5.3. Performance Indices for Decision Tree Maximum Depth 15 with α of 0.0007 from 5-

Fold Cross-Validation 

 Validation Accuracy Validation Recall Validation Precision Validation F1 

1 90.88% 17.35% 56.67% 26.56% 

2 91.21% 18.37% 63.16% 28.46% 

3 91.02% 19.90% 58.21% 29.66% 

4 90.25% 22.45% 47.31% 30.45% 

5 90.54% 23.47% 50.55% 32.06% 
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Figure 5.3. Mean F1 Score and Complexity hyperparameter α (Alpha) for Decision Tree from 

the 5-Fold Cross-Validation 

 

Table 5.4. Final Model Performance Indices for Decision Tree with Maximum Depth 15 with α 

of 0.000729 from 5-Fold Cross-Validation on Train Data 

 
Validation Accuracy Validation Recall Validation Precision Validation F1 

1 90.93% 17.35% 57.63% 26.67% 

2 91.17% 17.86% 62.50% 27.78% 

3 91.21% 20.41% 61.54% 30.65% 

4 90.39% 22.45% 48.89% 30.77% 

5 90.64% 23.47% 51.69% 32.28% 

Mean 90.87% 20.31% 56.45% 29.63% 
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After hyperparameter tuning and pruning, hyperparameter optimization for the Decision 

Tree was finished. The confusion matrix for test data was output in Figure 5.4. The performance 

indices on the test data were 91.5% for accuracy, 19.4% for recall, 72.7% for precision, and 

30.6% for F1 score. Hyperparameter tuning and pruning did improve model performance by 

enhancing the F1 score, mainly on the precision score.  On the other hand, the recall scores were 

relatively low across the optimization process, so this model was weak in predicting/identifying 

repeat offenders. Two hundred repeat offenders were not correctly identified (Figure 5.4).  

 

Figure 5.4. Confusion Matrix for Decision Tree on Test Data 
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Figure 5.5 shows the top 20 ranks and the magnitudes of the feature/variable impacts on 

the prediction. The variable impact magnitude was measured by the average of the absolute 

Shapley Additive exPlanations (SHAP) value of each variable calculated from 2,557 forecasts on 

the test data. SHAP values are applications of game theory and are unique, consistent, and 

locally accurate attribution values (Lundberg, 2019). A positive SHAP value of a variable 

indicates a positive impact on the prediction, and a negative SHAP value of a variable indicates a 

negative effect on the prediction.  

The highest BAC value on record had the most significant impact on the predictions, with 

an impact magnitude of approximately 0.2. The mean BAC value ranked second with an impact 

magnitude of roughly 0.16. The binary variable of driver's license status “licensed driver and 

another status” and the median BAC value ranked third and fourth, with a similar impact 

magnitude of approximately 0.125. The binary variable of license status, “License suspended,” 

ranked fifth with an impact magnitude of 0.025, followed by age at the first offense with an 

impact magnitude of 0.02. The impact magnitude for the rest of the variables was less than 0.02. 

The variable impacts to predict non-repeat offenders and repeat offenders were identical. The 

rest variables had minor impacts on this prediction.  



 

52 

 

Figure 5.5. Features Importance Plot for Decision Tree Prediction on Test Data 
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Figure 5.6 shows the top 20 rank and directionality of the feature/variable impact on the 

predictions. In this figure, the x-axis stands for SHAP value, and the y-axis has all the 

features/variables. Each point in the figure is one SHAP value for a prediction and variable. Red 

color means a higher value of a variable. Blue indicates a lower value of a feature. The 

distribution of the red and blue dots provided the variable’s directionality impact on the overall 

prediction. A positive SHAP value positively impacts prediction, leading the model to predict the 

repeat offender. A negative SHAP value means a negative impact, leading the model to predict 

the non-repeat offender. The directionality of the feature/variable impact should be considered 

cautiously when the prediction power of a model is low.  

Based on Figure 5.6, the likelihood of being a repeat offender decreased when the highest 

BAC value on a driver’s record increased. This insight contradicted findings from previous 

studies (e.g., Marowitz, 1998; C’de Baca et al., 2001; Roma et al., 2019). Also, note that there 

was a wide purple area between SHAP values 0 and 0.05. The highest BAC value was a 

numerical variable, and the purple areas could occur because (1) a lot of blues (low-value points) 

and red dots (high-value points) overlapped in this interval, and (2) the distribution of middle-

value points. This distribution further implied that the directionality of the impact might be 

complicated. Given the recall value on the test data was low in this prediction, insights from this 

figure can be disregarded.  

Figure 5.7 provides a visualization of the Decision Tree prediction process. This 

visualization helps understand the set of rules that cause the prediction. However, this 

visualization plot should be used cautiously when the prediction power is low. Given the recall 

value on the test data was low in this prediction, insights from Figure 5.7 were disregarded. 
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Figure 5.6. Feature Impact Directionality on Decision Tree Prediction on Test Data 
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Figure 5.7. Decision Tree Visualization 



 

56 

5.1.2. Random Forest 

In the Random Forest model, hyperparameter optimization was performed on 

hyperparameter tuning only. Pruning is unnecessary for optimizing ensemble models like 

Random Forest and Gradient Boosting since their algorithms have already been featured to 

reduce overfitting (Efron, 1993; Breiman, 1996; Breiman, 2001; Boehmke, 2020). Random 

Forest uses bootstrap aggregation (or sampling with replacement) along with a random selection 

of features for a split. The correlation between the trees (or weak learners) would be low. That 

means individual trees would have high variance, and the ensemble output will be appropriate 

(lower variance and lower bias) because the trees are not correlated. Gradient Boosting reduces 

overfitting by adding a feature at each iteration representing the prediction error (Breiman, 

2001).  

Tuning was performed on three hyperparameters – the number of estimators, maximum 

depth, and random state. The number of estimators represents the number of trees in the forest, 

and the random state fixes the randomness of the prediction so that the forecast can be replicated 

in the future. For hyperparameters, there were four candidates of a number of estimators/trees 

[20, 50, 100, 200], eight candidates of maximum depth [4, 5, 6, 8, 10, 12, 15, 20] and three 

candidates of random states [13, 16, 20]. In total, 96 combinations of hyperparameters were 

tested with training data with 5-fold cross-validation. The top 30 combinations with the highest 

F1 mean scores were reported in Table 5.5.  

Hyperparameter combination with a maximum depth of 18, 20 trees, and a random state 

of 20 achieved the best performance in terms of F1 score. However, the associated F1 score was 

6.84%, which was considered poor performance. The 5-fold cross-validation results associated 

with this hyperparameter combination on training data were reported in Table 5.6.  The recall 
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scores were extremely low across all five folds, indicating a low prediction power in identifying 

repeat offenders.  

Figure 5.8 presents the confusion matrix for test data. The performance indices on the test 

data were 90.4% for accuracy, 2 % for recall, 50% for precision, and 3.9% for the F1 score. 

Recall and F1 scores were too low to produce a good prediction.  Figure 9 and Figure 10 showed 

the rank, magnitude, and directionality of the feature impact on the predictions for test data. 

However, due to the model's poor performance, no further insights were obtained from Figures 

5.9 and 5.10.  
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Table 5.5. Top 30 of Hyperparameter Tuning Results for Random Forest on Original Dataset. 

Rank Parameters Validation F1 Scores Mean SD 

  Max Depth Estimators Random 

State 

Split 1 Split 2 Split 3 Split 4 Split 5     

1 18 20 20 4.81% 8.33% 9.57% 5.03% 6.45% 6.84% 1.86% 

2 20 20 13 4.76% 4.74% 10.33% 6.83% 7.24% 6.78% 2.05% 

3 18 20 16 6.64% 6.42% 6.83% 5.97% 7.34% 6.64% 0.45% 

4 20 20 20 4.72% 9.26% 5.77% 6.73% 5.53% 6.40% 1.57% 

5 18 20 13 6.60% 5.74% 5.80% 6.00% 3.62% 5.55% 1.01% 

6 20 50 16 4.74% 3.86% 6.86% 4.98% 7.27% 5.54% 1.31% 

7 20 20 16 3.79% 8.33% 5.80% 5.83% 3.70% 5.49% 1.70% 

8 20 50 20 2.90% 7.51% 5.77% 5.00% 5.61% 5.36% 1.49% 

9 18 75 20 3.88% 5.83% 5.88% 6.03% 4.69% 5.26% 0.84% 

10 18 50 20 4.74% 6.76% 6.80% 5.94% 1.90% 5.23% 1.83% 

11 20 75 16 4.74% 5.69% 4.95% 5.03% 5.50% 5.18% 0.36% 

12 20 100 20 2.93% 5.71% 5.88% 5.03% 5.56% 5.02% 1.09% 

13 20 180 16 3.86% 2.94% 4.00% 5.88% 7.34% 4.81% 1.59% 

14 20 50 13 1.91% 6.73% 4.93% 4.95% 5.50% 4.81% 1.59% 

15 18 100 20 3.86% 3.90% 5.91% 5.05% 4.65% 4.68% 0.76% 

16 18 50 13 2.94% 7.66% 5.88% 3.08% 3.74% 4.66% 1.83% 

17 20 120 20 2.93% 5.71% 4.95% 5.00% 3.76% 4.47% 1.00% 

18 20 100 16 2.90% 4.81% 4.02% 5.03% 5.50% 4.45% 0.91% 

19 20 75 20 1.96% 5.71% 3.96% 5.00% 5.56% 4.44% 1.38% 

20 18 120 20 4.81% 3.90% 4.95% 4.06% 3.74% 4.29% 0.49% 

21 20 150 16 4.85% 2.93% 4.00% 4.95% 4.65% 4.28% 0.75% 

22 18 50 16 3.85% 4.81% 3.94% 4.00% 4.69% 4.26% 0.41% 

23 20 120 16 3.86% 4.83% 3.02% 4.02% 5.53% 4.25% 0.86% 

24 20 200 16 3.86% 1.97% 3.00% 5.91% 6.45% 4.24% 1.70% 

25 20 150 20 2.96% 4.81% 3.98% 4.06% 4.67% 4.10% 0.66% 

26 15 20 13 2.90% 0.98% 6.86% 4.12% 5.58% 4.09% 2.05% 

27 18 75 13 2.93% 2.94% 4.00% 5.13% 4.69% 3.94% 0.90% 

28 20 200 20 2.96% 4.81% 3.98% 4.06% 3.76% 3.91% 0.59% 

29 18 180 13 3.90% 1.98% 3.00% 5.03% 5.61% 3.90% 1.32% 

30 15 20 20 0.99% 1.93% 4.88% 6.90% 4.67% 3.87% 2.14% 
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Table 5.6. Performance Indices for Random Forest from 5-Fold Cross-Validation on Train Data 

  Validation Accuracy Validation Recall Validation Precision Validation F1 

1 90.39% 2.50% 62.50% 4.81% 

2 90.39% 4.57% 47.37% 8.33% 

3 90.83% 5.15% 66.67% 9.57% 

4 90.83% 2.66% 45.45% 5.03% 

5 90.15% 3.48% 43.75% 6.45% 

Mean 90.52% 3.67% 53.15% 6.84% 

 

 

 

Figure 5.8. Confusion Matrix for Random Forest on Test Data 
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Figure 5.9. Features Importance Plot for Random Forest Prediction on Test Data 
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Figure 5.10. Feature Impacts on Random Forest Prediction on Test Data 
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5.1.3. Gradient Boosting 

For the Gradient Boosting model, hyperparameter optimization was completed with 

hyperparameter tuning only. The tuning process was performed on four hyperparameters – 

learning rate, the number of estimators, maximum depth, and random state. The learning rate 

controls the rate at which a tree learns from the data and the magnitude of the modification to the 

overall model, so it weighted the effect each tree has on the final prediction and improves the 

prediction power in the long run (Friedman, 2001; Friedman, 2002).  

For hyperparameters, there were seven candidates of learning rate [0.01, 0.025, 0.05, 

0.075, 0.1, 0.15, 0.2], seven candidates of number of estimators/trees [10, 20, 50, 100, 120, 150, 

200] seven candidates of maximum depth [4, 5, 8, 10, 12, 15, 20] and two candidates of random 

states [0, 13]. In total, 686 combinations of hyperparameters were tested with training data with 

5-fold cross-validation. The total calculation time was approximately 2 hours. The top 30 

combinations with the highest F1 mean scores were reported in Table 5.7.  

Hyperparameter combination with a learning rate of 0.2, maximum depth of 5, 150 trees, 

and random state of 13 achieved the best performance in terms of F1 score. The associated mean 

F1 score with this combination was 32.2% on the training data and was relatively low in model 

prediction power. The 5-fold cross-validation results associated with this hyperparameter 

combination on training data were reported in Table 5.8. Compared to the Decision Tree model 

prediction, the mean recall scores for Gradient Boosting prediction were slightly improved from 

20.31% to 22.98%, while the mean precision scores were slightly decreased from 56.45% to a 

mean of 54.57%. The prediction power of identifying repeat offenders, F1 score, was also 

improved slightly from 29.63% to 32.21%. 
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Table 5.7. Top 30 of Hyperparameter Tuning Results for Gradient Boosting on Original Dataset. 

Rank  Parameters Validation F1 Scores Mean SD 

  
Learning 

Rate 

Max 

Depth 
Estimators 

Random 

State 
Split 1 Split 2 Split 3 Split 4 Split 5     

1 0.2 5 150 13 34.3% 26.9% 32.9% 33.9% 33.1% 32.2% 2.72% 

2 0.15 5 200 13 35.3% 27.3% 28.3% 33.8% 35.9% 32.1% 3.61% 

3 0.2 5 200 13 37.7% 25.6% 30.7% 32.1% 34.0% 32.0% 3.98% 

4 0.15 5 150 13 33.7% 26.8% 29.9% 33.7% 35.5% 31.9% 3.13% 

5 0.2 4 200 0 33.9% 28.5% 28.2% 37.8% 31.0% 31.9% 3.62% 

6 0.2 5 200 0 37.9% 27.3% 29.0% 33.7% 31.6% 31.9% 3.70% 

7 0.2 5 120 13 33.5% 27.4% 31.0% 32.4% 33.7% 31.6% 2.30% 

8 0.2 5 150 0 34.7% 26.6% 29.6% 34.0% 32.4% 31.5% 3.01% 

9 0.2 4 150 0 32.7% 29.3% 28.7% 35.8% 30.6% 31.4% 2.58% 

10 0.15 5 200 0 36.2% 28.9% 29.6% 33.0% 28.8% 31.3% 2.90% 

11 0.2 4 120 0 34.3% 28.8% 27.0% 36.0% 30.4% 31.3% 3.36% 

12 0.15 8 150 0 37.5% 24.1% 28.4% 33.7% 31.8% 31.1% 4.58% 

13 0.15 8 120 0 37.2% 24.8% 29.1% 31.5% 32.0% 30.9% 4.04% 

14 0.15 4 200 0 35.4% 28.4% 29.5% 31.2% 30.1% 30.9% 2.43% 

15 0.2 4 200 13 33.7% 27.9% 28.3% 32.6% 30.7% 30.6% 2.29% 

16 0.2 5 100 13 32.6% 27.6% 30.0% 31.6% 31.4% 30.6% 1.73% 

17 0.2 5 120 0 32.2% 27.0% 29.6% 32.5% 31.4% 30.5% 2.04% 

18 0.1 5 200 0 31.7% 26.8% 28.4% 34.4% 31.0% 30.5% 2.65% 

19 0.1 5 200 13 32.0% 28.8% 28.2% 32.0% 31.1% 30.4% 1.60% 

20 0.15 4 200 13 32.6% 26.7% 28.3% 36.4% 27.8% 30.3% 3.62% 

21 0.15 8 200 0 35.8% 23.4% 28.0% 33.7% 30.7% 30.3% 4.36% 

22 0.2 8 200 13 35.8% 22.7% 31.0% 31.9% 29.9% 30.3% 4.26% 

23 0.1 4 200 13 30.8% 29.8% 26.7% 35.3% 28.2% 30.2% 2.93% 

24 0.2 5 100 0 32.6% 26.0% 29.3% 32.7% 29.5% 30.0% 2.48% 

25 0.2 4 100 0 33.7% 26.2% 27.4% 33.5% 29.1% 30.0% 3.09% 

26 0.15 5 120 13 30.8% 25.4% 28.7% 31.4% 33.3% 29.9% 2.71% 

27 0.15 5 150 0 33.2% 27.2% 30.5% 33.0% 25.6% 29.9% 3.04% 

28 0.1 4 200 0 31.4% 30.0% 27.4% 32.8% 27.7% 29.9% 2.11% 

29 0.15 8 100 13 36.1% 24.1% 28.3% 29.7% 31.1% 29.9% 3.90% 

30 0.15 5 120 0 32.5% 27.3% 29.1% 32.5% 27.6% 29.8% 2.26% 
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Table 5.8. Model Performance Indices for Gradient Boosting from 5-Fold Cross-Validation on 

Train Data 

  Validation Accuracy Validation Recall Validation Precision Validation F1 

1 91.27% 23.50% 63.51% 34.31% 

2 90.49% 18.27% 50.70% 26.87% 

3 90.88% 23.71% 53.49% 32.86% 

4 90.73% 26.06% 48.51% 33.91% 

5 90.78% 23.38% 56.63% 33.10% 

Mean  90.83% 22.98% 54.57% 32.21% 

 

 

 

Figure 5.11. Confusion Matrix for Gradient Boosting on Test Data 

Figure 5.11 presents the confusion matrix for test data. The performance indices on the 

test data were 91.3% for accuracy, 26.2 % for recall, 61.9% for precision, and 36.8% for F1 

score. Recall and F1 scores were low to produce a good prediction.  Figure 11 and Figure 12 

showed the rank, magnitude, and directionality of the feature impact on the predictions for test 
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data. However, due to the model's poor performance, insights obtained from Figure 11 and 

Figure 12 should be used cautiously.   

As shown in Figure 5.12, the top five predictors were the highest BAC value, the mean 

BAC value, the binary variable of driver license status “other,” the median BAC value, and age 

at first offense. In Figure 5.13, large purple areas with a SHAP value interval length of 1 were 

evident on the highest BAC value, the mean BAC value, and the median BAC value near the 

origin point. The purple areas extended to both sides of these three variables, indicating that the 

directionality of impacts of these three variables on the predictions can be complicated. Given 

the prediction power of the F1 score was low in this model, further analysis is needed to 

understand how the BAC values impact the likelihood of being a DUI repeat offender.  

In contrast, the impact directionality of the binary variable of driver's license status 

“other” was clear. A higher value when driver's license status was “other” leads to a lower 

chance of recidivism, and a lower value when driver's license status was either “suspended” or 

“revoked” leads to a higher chance of recidivism. Given drivers with a driver's license status of 

“suspended” or “revoked” have a higher chance of breaking the rules, it is reasonable to trust this 

insight.  

The directionality of age was also unclear. A large number of blue dots, the younger aged 

drivers, dominated the origin area, slightly towards the positive direction.  The SHAP value 

interval was short on both side, meaning the variable impacts for both the positive and negative 

directions was small.  Further analysis is needed to understand this variable. 
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Figure 5.12. Features Importance Plot for Gradient Boosting Prediction on Test Data 
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Figure 5.13. Feature Impacts on Gradient Boosting Prediction on Test Data 
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5.2. Model Prediction with Oversample Technique 

An oversampling technique was applied to balance two classes to address issues related 

to data imbalance. Specifically, this technique was applied twice in the sample to improve 

prediction. First, during hyperparameter optimization through 5-fold cross-validation, the 

oversampling technique was only applied to the sub-training data. Validation data remained 

original throughout the optimization process (Figures 5.14 and 5.15). Secondly, after 

hyperparameter optimization, the tuning process implemented oversampling on the entire 

training data with the hyperparameter selected. The model was trained to learn the prediction 

rule on the oversampled data. Test data was kept original to provide the final model evaluation 

(Figure 5.16).  

Figure 5.14 shows the overview of the oversampling implemented during hyperparameter 

optimization through 5-fold cross-validation. Figure 5.15 shows the details of the oversampling 

process in hyperparameter optimization. Fold 2 in iteration 1 contains 2,060 entries, with 1864 

NROs (90.5%) and 196 ROs (9.5%). After oversampling, the Fold 2 of iteration 1 contained the 

balanced class structure with 1,864 NROs (50%) and 1,864 ROs (50%). Note the total sample 

size in each fold was increased due to oversampling. Figure 5.16 shows the oversampling 

implementation on the entire training data to train the model with balanced data for prediction, 

and then the prediction was tested on the original test data.  
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Figure 5.14. Oversampling Implementation in Hyperparameter Optimization 
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Figure 5.15. The Details of Oversampling Process in Hyperparameter Optimization 
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Figure 5.16. Oversampling Implementation on the Entire Training Data 
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5.2.1. Decision Tree 

As discussed in section 5.1.1, Decision Tree prediction started with hyperparameter 

tuning and pruning. The same set of maximum depth [2, 4, 5, 6, 8, 10, 12, 15, 20] was tested 

with the oversampled dataset (illustrated in Figures 5.14, 5.15 and 5.16). Prediction with a 

maximum depth of 4 achieved the highest mean F1 score, so hyperparameter four was selected 

for further modeling. A complete result summary of all nine hyperparameters for the Decision 

Tree on oversampled data can be found in Table 5.9. The 5-fold cross-validation results 

associated with this hyperparameter on training data were reported in Table 5.10. Before CCP, 

the performance indices for Decision Tree with a maximum depth of 4 on the test data were 

71.9% for accuracy, 51.6% for recall, 17.5% for precision, and 26.1% for F1 score. 

Then, the cost complexity pruning (CCP) method was applied. Figure 5.17 shows the 

change of F1 values with different α values on both training data and test data. By observing the 

plots, the estimated α value that resulted in the highest F1 score was either at 0 or between 

intervals of 0.02 to 0.06. The F1 score stayed unchanged when the α value was between 0.02 and 

0.06. Thus, a comparison of model performance from 5-Fold Cross-Validation with complexity 

parameters α of 0 and 0.02 were reported in Table 5.11. By comparing the accuracy, recall, 

precision, and F1 score, the model performance with α of 0 was better than the model with α of 

0.02, indicating that no pruning was needed. Thus, the hyperparameter optimization ended with 

selecting a maximum depth of 4 and no pruning.  
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Table 5.9. Hyperparameter Tuning Results for Decision Tree on Resampled Dataset. 

Rank Parameter Validation F1 Scores Mean SD 

  Max Depth Split 1 Split 2 Split 3 Split 4 Split 5    

1 4 25.36% 25.26% 27.93% 24.24% 28.85% 26.33% 1.75% 

2 2 26.18% 23.76% 24.83% 23.96% 26.38% 25.02% 1.09% 

3 15 25.11% 25.27% 22.99% 23.53% 25.62% 24.50% 1.04% 

4 20 25.50% 24.07% 24.27% 23.93% 23.50% 24.26% 0.67% 

5 12 27.12% 22.08% 22.00% 22.41% 27.29% 24.18% 2.47% 

6 10 27.25% 23.61% 17.46% 24.86% 26.69% 23.98% 3.51% 

7 5 23.20% 22.61% 22.97% 24.19% 25.13% 23.62% 0.92% 

8 6 16.67% 23.02% 20.95% 24.06% 24.52% 21.84% 2.86% 

9 8 19.10% 21.88% 21.60% 19.10% 24.94% 21.32% 2.16% 

 

Table 5.10. Baseline Performance Indices for Maximum Depth 4 Without CCP from 5-Fold 

Cross-Validation for Resampled Data 

 

 

 

 

 

 

 

 

 

 Validation Accuracy Validation Recall Validation Precision Validation F1 

1 72.00% 49.00% 17.10% 25.36% 

2 65.55% 60.91% 15.94% 25.26% 

3 67.44% 67.01% 17.64% 27.93% 

4 74.51% 44.68% 16.63% 24.24% 

5 68.40% 65.67% 18.49% 28.85% 

Mean 69.58% 57.45% 17.16% 26.33% 
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Figure 5.17. F1 Scores and Complexity hyperparameter α (Alpha) on Single Test/Train Split 

Data Sets 

Table 5.11. Performance Indices for Maximum Depth 4 with α of 0 and 0.02 from 5-Fold Cross-

Validation 

Index  Validation Accuracy Validation Recall Validation Precision Validation F1 

Alpha  0 0.02 0 0.02 0 0.02 0 0.02 

Round 

1 72.0% 82.6% 49.0% 25.0% 17.1% 19.4% 25.4% 21.8% 

2 65.6% 81.8% 60.9% 20.8% 15.9% 15.7% 25.3% 17.9% 

3 67.4% 57.7% 67.0% 74.2% 17.6% 14.9% 27.9% 24.8% 

4 74.5% 58.1% 44.7% 72.3% 16.6% 14.4% 24.2% 24.0% 

5 68.4% 61.3% 65.7% 71.1% 18.5% 16.2% 28.9% 26.4% 

Mean  69.6% 68.3% 57.5% 52.7% 17.2% 16.1% 26.3% 23.0% 

SD  3.2% 11.4% 9.0% 24.4% 0.9% 1.8% 1.8% 2.9% 
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Figure 5.18. Confusion Matrix for Resampled Decision Tree Model on Test Data 

The confusion matrix of the optimized model for test data was output in Figure 5.18. 

Performance indices were 71.9% for accuracy, 51.6% for recall, 17.5% for precision, and 26.1% 

for F1 score. Compared to the Decision Tree model performance on the original data, the model 

with oversampling didn’t improve model performance. Only recall increased from 19.4% to 

51.6. Accuracy decreased from 91.5% to 71.9%, precision decreased from 72.7% to 17.5%, and 

F1 score decreased slightly from 30.6% to 26.1%. It was unacceptable that this model 

misclassified 604 non-repeat offenders to repeat offenders. Due to the poor performance on this 

prediction, no further insights were obtained from the feature importance plot (Figure 5.19 and 

Figure 5.20) and Decision Tree visualization (Figure 5.21).  
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Figure 5.19. Features Importance Plot for Decision Tree Prediction on Test Data 
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Figure 5.20. Feature Impacts on Decision Tree Prediction on Test Data 
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Figure 5.21. Decision Tree Visualization 
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5.2.2. Random Forest 

In the Random Forest model, hyperparameter optimization was performed on 

hyperparameter tuning only. Tuning was performed on three hyperparameters – the number of 

estimators, maximum depth, and random state. There were four candidates of number of 

estimators/trees [20, 50, 100, 200], eight candidates of maximum depth [4, 5, 6, 8, 10, 12, 15, 20] 

and three candidates of random states [13, 16, 20]. In total, 96 combinations of hyperparameters 

were tested with oversampled training data with 5-fold cross-validation, as illustrated in Figures 

5.14, 5.15 and 5.16. The total calculation time was approximately 90 minutes. The top 30 

combinations with the highest F1 mean scores were reported in Table 5.12.  

Hyperparameter combination with a maximum depth of 8, 20 trees, and a random state of 

13 achieved the best performance in terms of F1 score. The associated F1 score was 22.9%. The 

5-fold cross-validation results associated with this hyperparameter combination on training data 

were reported in Table 5.13. The recall and F1 scores improved across all five folds compared to 

the random forest performance on the original model. Mean recall increased from 3.67% to 

34.08%, and mean F1 score increased from 6.84% to 22.89%. However, accuracy and precision 

decreased. Mean accuracy decreased from 90.52% to 78.14%, and mean precision decreased 

from 53.15 to 17.25%. Based on the model performance reported from Hyperparameter 

optimization, the oversampling technique did not improve the performance of Random Forest.  
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Table 5.12. Top 30 of Hyperparameter Tuning Results for Random Forest on Resampled 

Dataset. 

Rank Parameters Validation F1 Scores Mean SD 

  
Max 

Depth 
Estimators 

Random 

State 
Split 1 Split 2 Split 3 Split 4 Split 5     

 
1 8 20 13 22.4% 18.9% 23.9% 22.3% 26.9% 22.9% 2.59%  

2 5 150 16 23.4% 19.5% 21.9% 23.0% 25.9% 22.7% 2.09%  

3 4 75 16 22.9% 21.1% 22.6% 22.4% 24.7% 22.7% 1.16%  

4 4 180 16 23.7% 20.1% 22.1% 23.1% 24.5% 22.7% 1.53%  

5 10 20 20 22.7% 18.9% 22.4% 24.0% 25.4% 22.7% 2.17%  

6 8 50 13 22.5% 20.3% 22.2% 22.7% 25.6% 22.7% 1.71%  

7 4 100 16 23.6% 20.7% 22.0% 22.9% 24.0% 22.6% 1.19%  

8 10 20 13 22.5% 19.2% 23.2% 23.6% 24.7% 22.6% 1.85%  

9 4 200 16 23.7% 20.4% 21.9% 23.0% 24.1% 22.6% 1.34%  

10 4 180 13 23.2% 20.6% 21.6% 23.4% 24.1% 22.6% 1.28%  

11 4 150 16 23.0% 20.4% 21.8% 23.1% 24.4% 22.5% 1.35%  

12 4 200 13 23.2% 20.3% 21.9% 22.8% 24.3% 22.5% 1.34%  

13 8 50 16 22.0% 16.7% 23.8% 24.7% 25.3% 22.5% 3.12%  

14 4 120 13 22.5% 19.8% 22.2% 23.7% 24.2% 22.5% 1.51%  

15 5 180 16 23.3% 19.0% 21.9% 23.4% 24.6% 22.5% 1.91%  

16 5 200 16 23.8% 18.8% 21.7% 23.4% 24.6% 22.4% 2.06%  

17 5 180 20 23.2% 19.0% 22.5% 22.5% 24.7% 22.4% 1.89%  

18 4 120 16 22.9% 20.3% 21.8% 22.7% 24.1% 22.4% 1.29%  

19 5 120 16 23.1% 19.0% 21.6% 22.7% 25.2% 22.3% 2.03%  

20 5 100 16 23.3% 19.4% 21.2% 22.3% 25.2% 22.3% 1.93%  

21 10 120 13 21.6% 17.8% 22.3% 21.9% 27.8% 22.3% 3.22%  

22 4 50 16 23.0% 21.5% 20.7% 22.1% 24.0% 22.3% 1.14%  

23 4 100 13 22.5% 19.8% 21.6% 23.3% 23.9% 22.2% 1.43%  

24 8 100 13 24.1% 18.0% 22.3% 21.4% 25.3% 22.2% 2.50%  

25 10 50 13 22.7% 16.9% 22.2% 23.3% 25.7% 22.1% 2.88%  

26 5 50 16 22.9% 19.9% 21.5% 21.4% 25.0% 22.1% 1.70%  

27 5 150 20 22.3% 19.3% 22.3% 22.1% 24.5% 22.1% 1.68%  

28 5 200 20 22.7% 18.7% 22.1% 22.4% 24.4% 22.1% 1.85%  

29 5 180 13 22.5% 19.0% 22.2% 22.8% 23.9% 22.1% 1.65%  

30 4 150 13 22.2% 19.8% 22.0% 22.5% 24.0% 22.1% 1.35%  
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Table 5.13. Final Model Performance Indices from 5-Fold Cross-Validation on Train Data 

  Validation Accuracy Validation Recall Validation Precision Validation F1 

1 77.15% 34.00% 16.71% 22.41% 

2 77.54% 27.41% 14.44% 18.91% 

3 78.07% 36.60% 17.75% 23.91% 

4 78.01% 34.57% 16.46% 22.30% 

5 79.95% 37.81% 20.88% 26.90% 

Mean 78.14% 34.08% 17.25% 22.89% 

 

 

 

Figure 5.22. Confusion Matrix for Resampled Random Forest Model on Test Data 
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Figure 5.22 presents the confusion matrix for test data. The performance indices on the 

test data were 79.4% for accuracy, 36.7% for recall, 19.6% for precision, and 25.5% for the F1 

score. Oversampling technique did not improve the model performance.  Recall and precision 

were low. Because of low precision, 374 non-repeat offenders were misclassified to repeat 

offenders, which was unacceptable. Thus, due to the model's poor performance, no further 

insights were obtained from Figure 5.23 and Figure 5.24 about features’ impact on the 

prediction. 
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Figure 5.23. Features Importance Plot for Random Forest Prediction on Test Data 
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Figure 5.24. Feature Impacts on Random Forest Prediction on Test Data 
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5.2.3. Gradient Boosting 

For the Gradient Boosting model, hyperparameter optimization was completed with 

hyperparameter tuning only. The tuning process is performed on four hyperparameters – learning 

rate, the number of estimators, maximum depth, and random state. There were seven candidates 

of learning rate [0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2], seven candidates of number of 

estimators/trees [10, 20, 50, 100, 120, 150, 200] seven candidates of maximum depth [4, 5, 8, 10, 

12, 15, 20] and two candidates of random states [0, 13]. In total, 686 combinations of 

hyperparameters were tested with oversampled training data with 5-fold cross-validation. The 

total calculation time was approximately 18 hours. The top 30 combinations with the highest F1 

mean scores were reported in Table 5.7.  

Hyperparameter combination with a learning rate of 0.2, maximum depth of 4, 200 trees, 

and random state of 13 achieved the best performance in terms of F1 score. The associated mean 

F1 score with this combination was 40% on the training data, which was acceptable in model 

prediction power. The 5-fold cross-validation results associated with this hyperparameter 

combination on training data were reported in Table 5.14. Compared to the Gradient Boosting 

prediction on the original data, the oversampling technique did improve the prediction power of 

this oversampled model in all four indices. Mean accuracy improved from 90.83% to 91.45%. 

Mean recall increased from 22.98% to 30.05%, and Mean precision increased from 54.57% to 

59.95%. The mean F1 score increased from 32.21% to 40.02%.  
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Table 5.14. Top 30 of Hyperparameter Tuning Results for Gradient Boosting on Resampled 

Dataset. 

Ran

k 
  Parameters Validation F1 Scores Mean SD 

  
Learnin

g Rate 

Max 

Dept

h 

Estimator

s 

Rando

m 

State 

Split 

1 

Split 

2 

Split 

3 

Split 

4 

Split 

5 
    

1 0.2 4 200 13 
45.8

% 

35.4

% 

38.2

% 

36.5

% 

44.2

% 

40.0

% 

4.22

% 

2 0.2 4 200 0 45.5% 34.4% 38.2% 36.2% 44.1% 39.7% 4.38% 

3 0.2 4 150 13 44.6% 36.7% 36.5% 35.9% 43.1% 39.4% 3.72% 

4 0.1 5 200 13 48.5% 33.2% 35.2% 36.8% 43.0% 39.3% 5.62% 

5 0.2 5 150 13 47.5% 33.6% 33.4% 36.0% 45.7% 39.2% 6.11% 

6 0.1 5 200 0 48.0% 33.7% 34.9% 36.6% 42.7% 39.2% 5.39% 

7 0.2 4 150 0 44.8% 36.2% 36.1% 35.6% 42.9% 39.1% 3.91% 

8 0.2 5 120 13 47.5% 34.8% 33.1% 35.5% 44.4% 39.1% 5.77% 

9 0.2 5 100 0 45.3% 33.1% 32.4% 38.2% 46.3% 39.1% 5.87% 

10 0.15 5 200 13 44.4% 33.0% 34.8% 37.7% 44.9% 39.0% 4.89% 

11 0.075 5 200 13 46.6% 33.2% 36.2% 35.9% 42.9% 38.9% 4.96% 

12 0.2 5 120 0 47.2% 31.8% 33.0% 36.7% 45.9% 38.9% 6.45% 

13 0.1 5 150 0 45.6% 32.4% 35.5% 37.2% 43.8% 38.9% 5.02% 

14 0.075 5 200 0 46.6% 33.3% 35.9% 35.9% 42.7% 38.9% 4.94% 

15 0.1 5 120 0 45.9% 31.8% 35.1% 37.1% 44.3% 38.8% 5.42% 

16 0.2 4 100 0 42.4% 36.3% 36.6% 36.9% 41.9% 38.8% 2.73% 

17 0.1 5 120 13 45.8% 31.7% 35.0% 36.8% 44.8% 38.8% 5.56% 

18 0.1 5 150 13 45.7% 32.4% 35.5% 36.5% 43.8% 38.8% 5.12% 

19 0.15 4 200 13 42.2% 35.5% 36.4% 38.1% 41.5% 38.8% 2.68% 

20 0.2 5 200 13 46.8% 33.7% 33.2% 35.5% 44.6% 38.7% 5.75% 

21 0.2 4 100 13 42.0% 36.1% 36.7% 36.9% 41.9% 38.7% 2.66% 

22 0.2 5 150 0 47.7% 32.6% 33.3% 36.1% 43.8% 38.7% 5.98% 

23 0.2 5 100 13 45.7% 32.9% 33.1% 36.8% 44.8% 38.7% 5.57% 

24 0.2 4 120 13 42.6% 35.5% 37.6% 36.1% 41.4% 38.6% 2.87% 

25 0.15 5 150 13 43.7% 32.5% 36.4% 37.2% 43.3% 38.6% 4.29% 

26 0.15 5 200 0 45.3% 32.6% 33.9% 36.3% 44.9% 38.6% 5.44% 

27 0.2 4 120 0 42.9% 35.6% 37.5% 35.5% 41.4% 38.6% 3.03% 

28 0.15 4 200 0 42.2% 35.7% 35.5% 37.9% 41.5% 38.6% 2.84% 

29 0.15 5 150 0 43.5% 33.2% 35.3% 37.3% 43.3% 38.5% 4.20% 

30 0.075 5 150 0 45.1% 33.1% 34.8% 36.7% 42.9% 38.5% 4.68% 
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Table 5.15. Final Model Performance Indices from 5-Fold Cross-Validation on Train Data 

  Validation Accuracy Validation Recall Validation Precision Validation F1 

1 92.09% 34.50% 68.32% 45.85% 

2 90.78% 26.40% 53.61% 35.37% 

3 91.36% 28.35% 58.51% 38.19% 

4 91.21% 27.66% 53.61% 36.49% 

5 91.80% 33.33% 65.69% 44.22% 

Mean  91.45% 30.05% 59.95% 40.02% 

 

 

 

Figure 5.25. Confusion Matrix for Resampled Gradient Boosting Model on Test Data 

Figure 5.25 presents the confusion matrix for test data. The performance indices on the 

test data were 92.0% for accuracy, 34.7% for recall, 66.2% for precision, and 45.5 % for F1 

score. The Recall was still low to produce a good prediction, but precision and F1 score were 

acceptable. All four indices improved from the indices in the Gradient Boosting model without 

oversampling. This model performed the best among all six models.  
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Figure 5.26 and Figure 5.27 showed the rank, magnitude, and directionality of the feature 

impact on the predictions for test data. However, because the model performance was acceptable, 

insights obtained from Figure 5.26 and Figure 5.27 should be used cautiously.   

As shown in Figure 5.26, the top five predictors were the highest BAC value, a binary 

variable of driver's license status “other,” and “license suspended,” binary variable of season 

“other” and “winter.” In Figure 5.27, a small purple area was evident on the highest BAC value 

in SHAP values -0.5 to -1. The purple tail extended to the negative side in SHAP values -2.2 to 

1. These purple areas indicated that the directionality of impacts of the highest BAC value could 

be complicated within these two intervals. However, the blue dot was distributed mainly at an 

interval less than -2.2, indicating a lower value for the highest BAC on record would lead to a 

lower chance of recidivism; the red dot was distributed mainly at an interval more significant 

than 0, indicating a higher value for the highest BAC on record would lead to a higher chance of 

recidivism. Further analysis is needed to understand the impact of the values in the purple area. 

The logistic model will further explain other categorical variables with more than two classes.  
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Figure 5.26. Features Importance Plot for Gradient Boosting Prediction on Test Data 
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Figure 5.27. Feature Impacts on Gradient Boosting Prediction on Test Data 
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5.3. Performance Comparison 

As shown in Table 5.16, for this imbalanced data sample, the F1 score was used to 

measure the prediction power. Among all six predictions, only the prediction from Gradient 

Boosting on the original data and the oversampled data was considered acceptable. In Berk and 

Bleich (2013), random forest prediction achieved 71.0% for accuracy, 62.8% for recall, 26.3% 

for precision, and 37.1% for F1, and gradient boosting achieved 66.3% for accuracy, 55.6% for 

recall, 21.4% for precision, and 30.9% for F1. The Gradient Boosting prediction in this study 

achieved comparable or better results. For the oversampled data, the F1 score was 45.5%, which 

was superior to Berk and Bleich (2013). 

Based on all four indices, Random Forest predictions made on original and oversampled 

data were the worst. Although surprised, this insight was reasonable. A single tree would be less 

likely to favor the minority group, and a parallel tree would be much less likely to favor the 

minority group. Although Random Forest performed with bagging and bootstrapping features, 

there are chances that the training process was performed heavily on the majority class. 

Oversampling didn’t significantly improve the performance for Random Forest, showing its 

limited power to improve prediction power. It may also indicate that the differences between two 

classes were small.  

For imbalanced data, an algorithm such as Gradient Boosting that build learner 

sequentially to lower the overall error rate in each step may be more appropriate. Although 

oversampling techniques did improve the model performance of Gradient Boosting, the 

improvement was limited. Further data cleaning to remove outliers in both classes might be 

needed to improve prediction power.  
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There were a few common leading factors from two Gradient Boosting predictions. They 

were highest BAC values, mean BAC values, median BAC values, BAC refusal, age, first DUI 

on weekend, gender, social associations index in driver’s county of residence, three driver 

license status code. Factor ranks from Random Forest and Decision Tree were disregarded due to 

their low prediction power.  
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Table 5.16. Model Prediction Summary 

Index Method  

Decision Tree  Random Forest Gradient Boosting  

No Oversampling Oversampling No Oversampling Oversampling No Oversampling Oversampling 

Accuracy 91.5% 71.9% 90.4% 79.4% 91.3% 92.0% 

Recall 19.4% 51.6% 2.0% 36.7% 26.2% 34.7% 

Precision 72.7% 17.5% 50.0% 19.6% 61.9% 66.2% 

F1 score 30.6% 26.1% 3.9% 25.5% 36.8% 45.5% 
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5.4. Factor Explanations 

Based on feature importance ranks produced by Gradient Boosting on an oversampled 

dataset, 15 variables were selected for logistic regression analysis to quantify their effects on the 

outcome. Driver’s license status code at the year of the first DUI was also chosen by the machine 

learning model initially. However, due to the complexity of the data recording process for this 

variable and uncleared causation with DUI recidivism, this variable was removed from the list to 

avoid misinterpretation.  

The list of selected variables and their descriptive statistics is shown in Table 5.17. 

Univariate logistics analyses were performed between these variables and DUI recidivism. 

Variables that were statistically significant in univariate analysis were reported in Table 5.17. 

Note the dataset was further inspected on the distributions of the selected variables. Ninety-six 

records were removed for three filters: (1) drivers aged 21 and older with a BAC value larger 

than 0.4 on age over 21; (2) drivers aged 21 and older with BAC less than 0.04; (3) drivers under 

21 with BAC less than 0.02. After removal, the dataset had 12,783 records, with 11,656 non-

repeat offenders (90.47%) and 1,218 repeat offenders (9.53%). The rate between non-repeat 

offenders and repeat offenders stayed identical. The statistics in Table 5.17 reflected this change.  

Among the selected variables, the associations between variables were first evaluated. 

Several variables were highly related to other variables, so only one of these variables was used 

for logistic regression modeling at a time. Prior 3-year low-risk citations included prior 1-year 

low-risk citation and prior second-year low-risk citation (360-730 days before first DUI), so 

Prior 3-year low-risk citations was tested alone in some models. In contrast, the latter two were 

tested together in other models. 
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In this sample, 31.1% of drivers refused to take the BAC test, and the remaining 68.9% of 

drivers took the BAC test. The blood alcohol concentration (BAC) record and BAC test refusal 

were mutually exclusive, so they were tested separately. Among those who took the BAC test, 

11.4% of drivers have more than two BAC values on record, so the highest BAC value, the mean 

BAC value, and the median BAC value were the same for 88.6% of the drivers. Based on 

descriptive statistics in Table 5.17, the mean BAC and median BAC were almost identical, so 

only the mean BAC was used. Thus, the highest BAC value and the mean BAC value were 

tested separately in logistic regression modeling.  

Correlations among the rest of the variables were also evaluated. Pearson’s correlation 

coefficient was used for the numerical variables: mean BAC mean, income inequality ratio, 

social associations ratio and violent crime ratio. As discussed in last paragraph, mean BAC 

mean, highest BAC and median BAC values were highly related, so only the mean BAC was test 

with other numerical variables for correlation.  Pearson’s correlation coefficients showed that 

there was no correlation between any of the pair of these numerical variables. ANOVA was used 

to test correlations between numerical variables and the categorical variables here, and results 

showed that there was no correlation between any of the pair of these variables. 

Chi-square was used to test correlations between categorical variables. Age and BAC test 

refusal have associations with other variables. Age group variable has associations with first DUI 

during weekend (p-value<0.0001, Cramer’s V statistics =0.0618), prior 3-year low-risk 

citation(s) (p-value<0.0001, Cramer’s V statistics =0.1098), gender (p-value<0.0001, Cramer’s 

V statistics =0.0484), and BAC test refusal (p-value<0.0001, Cramer’s V statistics =0.0703). In 

addition, BAC test refusal has association with gender (p-value=0.0199, Cramer’s V statistics 

=0.0206) and weekend (p-value<0.0001, Cramer’s V statistics =0.0624). An association is 
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considered as “little if any association” if Cramer’s V statistics is between 0 to 0.1, and an 

association is “low association” if Cramer’s V statistics is between 0.1 to 0.3 (Crewson, n.d.). 

Thus, all the associations between variables abovementioned were either “little if any 

association” or “low association”.  Age and BAC test refusal were kept on the list due to their 

importance in the impaired driving literature and low associations with other variables. In 

addition, interactive terms between these associated variables were also evaluated in the models, 

but none of them were statistically significant. 
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Table 5.17. Variable/Predictor Candidates and Their Descriptive Statistics 

Variables NROs (N=11,565) ROs (N=1,218) 

     N % N % 

BAC test refusal** 
    

   No   7,799  67.44%   1,009  82.84% 

   Yes   3,766  32.56%      209  17.16% 

Gender** 
    

   Female   2,968  25.56%      267  21.92% 

   Male   8,597  74.34%      951  78.08% 

Age at first DUI* 
    

   18-24   3,002  25.96%      355  29.15% 

   25-34   3,901  33.73%      398  32.68% 

   35-44   2,140  18.50%      214  17.57% 

   45-54   1,647  14.24%      168  13.79% 

   55-64      727  6.29%        71  5.83% 

   64+      148  1.28%        12  0.99% 

First DUI on the weekend** 
    

   No   3,955  34.20%      464  38.10% 

   Yes   7,610  65.80%      754  61.90% 

Registered for organ donor  
    

   No   5,985  51.75%      652  53.53% 

   Yes   5,580  48.25%      566  46.47% 

Prior 1-year low-risk citations* 
    

   No   9,893  85.54%   1,023  83.99% 

   Yes   1,672  14.46%      195  16.01% 

Prior second the year, low-risk citations 
    

   No   9,692  83.80%   1,018  83.58% 

   Yes   1,873  16.20%      200  16.42% 

Prior 3-year low-risk citations** 
    

   No   6,417  55.49%      622  51.07% 

   Yes   5,148  44.51%      596  48.93% 

Prior 3-year high-risk DUI citations 
    

   No 11,303  97.73%   1,181  96.96% 

   Yes 262  2.27%        37  3.04%  
Mean S.D. Mean S.D. 

Income inequity* 4.351 0.692 4.289 0.62 

Social association 15.518 6.828 15.243 6.429 

Violent crime rate* 240.4 109.68 249.18 105.82  
N=7,7991 N=1,0091 

The highest BAC value** 0.171 0.052 0.192 0.059 

The mean BAC value** 0.170 0.052 0.179 0.053 

The median BAC value** 0.170 0.052 0.179 0.053 
1The statistics were based on drivers who did not refuse the BAC test.  

Univariate analysis:  * p-value <0.05; **p-value <0.01 
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5.4.1. Factor Interpretations 

Eight variables were statistically finally quantified in two logistic regression models 

(Table 5.18 and Table 5.19). Both models were tested with the Hosmer and Lemeshow 

Goodness-of-Fit, and there is no evidence that the models were a poor fit. Test Both BAC record 

and BAC test refusal were statistically significant and had the most prominent effects on the 

likelihood of DUI recidivism in the models. As shown in Table 5.18, the first model consisted of 

seven variables: the mean BAC value, the first DUI citation on the weekend, gender, prior 3-year 

low-risk citation, age of first DUI offense, income inequality ratio in driver’s county of 

residence, and violent crime rate in driver’s county of residence.  

In Model 1, the mean BAC value had the most significant effect on predicting the 

likelihood of DUI recidivism. An increase of 0.01 in the driver’s mean BAC was associated with 

a rise of 45.9% in the odds of DUI recidivism. This finding affirmed insights from previous 

studies that identified driver’s BAC as a predictor of future DUI recidivism (e.g., Marowitz, 

1998; C’de Baca et al., 2001; Roma et al., 2019) 

Drivers whose first DUI took place on weekdays have a greater likelihood of recidivism 

than those on weekends (OR =1.172). This finding supported similar insights from Impinen et al. 

(2009). In addition, it is reasonable to believe that drivers who drink during weekdays might 

have some alcohol addiction, as they might rely on drinking alcohol to reduce negative emotions. 

Studer et al.(2014) found that alcohol use on weekdays was strongly related to coping motives to 

reduce a negative affect and obtain an internal reward, e.g., drinking to forget worries. Similar 

insight was found by Lau-Barraco et al.(2016) that weekday drinking was associated with 

tension-reduction expectancies among nonstudent emerging adults.  
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In Model 1, gender and past traffic violation history were also shown to be strong 

predictors. Males had a higher risk of recidivism than females (odds ratio (OR) =1.255). This 

finding was consistent with past studies (e.g., C’de Baca et al., 2001; Impinen et al., 2009; 

Robertson et al., 2016; Kubas et al., 2018; Kubas and Vachal, 2019). Drivers with at least one 

low-risk citation within three years before their first DUI had a higher risk than those without 

such citations (OR=1.201). Similar insights related to associations between traffic violations 

were found in previous studies (e.g., Marowitz, 1998; Hubicka et al., 2008; Robertson et al., 

2016 ) 

Two environmental factors, income inequality ratio and violent crime rate at driver’s 

county of residence were associated with DUI recidivism. However, further studies might be 

needed to understand their effects on DUI recidivism. Drivers who lived in counties with higher 

income inequality ratios had lower chances of DUI recidivism. This finding may be related to 

higher income inequality ratios in North Dakota’s urban areas, where alternative transportations 

were more accessible for drivers after drinking. Also, potentially more concentrated law 

enforcement presence. The violent crime rate in the driver’s county of residence was positively 

related to DUI recidivism, although the effect was small. One violent crime offense per 100,000 

population increased in driver’s county of residence is associated with a 0.1% increase in DUI 

recidivism. Further studies might be needed to understand the causation between DUI recidivism 

and violent crime rate in driver’s county of residence, as literature has shown a strong association 

between alcohol accessibility and violent crime (Gorman et al., 2001; Toomey et al., 2012; 

Trangenstein et al., 2018).  

 Surprisingly, the p-value of individual age groups did not meet the significance level of 

0.05 to predict the likelihood of recidivism in the multiple logistic regression model. However, if 
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the significance level for the overall effects loosed to 0.1, then age became a significant predictor 

(0.0998) since it improved the general prediction power. It is reasonable to allow age to stay in 

the model for three reasons: (1) it was a significant factor in univariate analysis at a 0.05 

significance level, and the odds ratios between age groups were similar to those in multiple 

logistic regression; (2) it had associations with first DUI on the weekend, gender, and prior 3-

year low-risk citations, and age would become significant at the 0.05 level if any of these three 

variables were removed from the model; (3) age was identified as a strong predictor of DUI 

recidivism in the literature, and finding that 18-24 cohort was the highest risk group among all 

age group supported insights from other studies (e.g., C’de Baca et al., 2001; Impinen et al., 

2009; Robertson et al., 2016). Thus, the findings from age in Model 1 were reported, although 

none of the age groups was statistically significant.  

Among all age groups, drivers whose age of first DUI offense was 64 and older had the 

lowest chance of recidivism. The 18-24 cohort had the highest probability of recidivism, which 

was 1.462 times of odds of the 64 and above cohort. The age 25-34 cohort and the age 45-54 

cohort were approximately 1.21 times of odds of the 64 and above cohort in terms of DUI 

recidivism. The age 35-44 cohort was 1.189 times the odds of having a DUI recidivism 

compared to the age 64 and above cohort.  
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 Table 5.18. Logistics Regression Model 1 

 

 

 

Parameter  DF Estimate 

Standard 

Error 

Wald 

Chi-

Square Pr > ChiSq 

Standardized 

Estimate Exp(Est) 

95% Confidence 

Limits 

Intercept  1 -3.1373 0.4102 58.4995 <.0001  0.043   

BAC mean  1 3.8481 0.6646 33.5302 <.0001 0.0919 46.905 12.648       171.222 

First DUI on weekend No 1 0.1585 0.0627 6.3955 0.0114 0.0416 1.172 1.036 1.324 

First DUI on weekend Yes* 0 0 . . . . .   

Gender Male 1 0.2274 0.0728 9.7525 0.0018 0.0545 1.255 1.09 1.45 

Gender Female* 0 0 . . . . .   

Prior 3-year low-risk citations Yes 1 0.1830 0.0610 8.9935 0.0027 0.0502 1.201 1.065 1.353 

Prior 3-year low-risk citations No* 0 0 . . . . .   

Income inequality  1 -0.1130 0.0502 5.0609 0.0245 -0.0428 0.893 0.808 0.984 

Violent crime  1 0.000634 0.000295 4.6044 0.0319 0.0373 1.001 1 1.001 

Age at first DUI 18-24 1 0.3800 0.3069 1.5335 0.2156 0.0922 1.462 0.836 2.812 

Age at first DUI 25-34 1 0.1906 0.3060 0.3877 0.5335 0.0496 1.210 0.693 2.324 

Age at first DUI 35-44 1 0.1735 0.3098 0.3135 0.5756 0.0371 1.189 0.675 2.298 

Age at first DUI 45-54 1 0.1926 0.3119 0.3812 0.5370 0.0371 1.212 0.685 2.351 

Age at first DUI 55-64 1 0.1455 0.3259 0.1992 0.6554 0.0194 1.157 0.633 2.294 

Age at first DUI 64/+* 0 0 . . . . .   

* The reference group among categorical variables. 
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Table 5.19. Logistics Regression Model 2 

Parameter  DF Estimate 

Standard 

Error 

Wald 

Chi-

Square Pr > ChiSq 

Standardized 

Estimate Exp(Est) 

95% Confidence

 Limits 

Intercept   1 -2.9888 0.2656 126.6657 <.0001   0.05   

BAC test refusal No 1 0.8703 0.0789 121.698 <.0001 0.2221 2.388 0.358 0.488 

BAC test refusal Yes 0 0 . . . . .   

First DUI on weekend No 1 0.2138 0.0628 11.5932 0.0007 0.0561 1.238 1.094 1.400 

First DUI on weekend Yes 0 0 . . . . .   

Gender Male 1 0.2261 0.0729 9.6179 0.0019 0.0542 1.254 1.088 1.449 

Gender Female* 0 0 . . . . .   

Prior 3-year low-risk citations Yes 1 0.1831 0.0607 9.0954 0.0026 0.0502 1.201 1.066 1.353 

Prior 3-year low-risk citations No 0 0 . . . . .   

Income inequality   1 -0.1032 0.051 4.0943 0.043 -0.039 0.902 0.815 0.995 

Violent crime   1 0.000775 0.000299 6.7393 0.0094 0.0456 1.001 1.000 1.001 

* The reference group among categorical variables. 
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Model 2 comprised the BAC test refusal, the first DUI citation on the weekend, gender, 

prior 3-year low-risk citation, income inequality ratio in driver’s county of residence, and violent 

crime rate in driver’s county of residence (Table 5.19). Surprisingly, the drivers who did not 

refuse the BAC test upon arrest have 2.388 times of chance of DUI recidivism as those who 

refused. Notably, age at first DUI citation was not significant in this model, even when the 

significance level was loosed to 0.1. However, a strong association between BAC test refusal and 

age group was evident. Drivers aged 18-24 were least likely to refuse a BAC test upon arrest 

among age groups. Given this youngest group has the highest risk of DUI recidivism, it is 

reasonable that drivers who complied with the BAC test had a higher risk of DUI recidivism than 

those who refused. The coefficients of other factors were similar to those in Model 1.  

5.4.2. Logistic Regression Predictions  

Like other regression model, logistic regression model is a predictive model. In the case 

here, it can be used to predict the likelihood of DUI recidivism for DUI offenders. Predictions of 

8 real cases from were described below as examples of real-world applications of this research. 

For each model, there were 4 prediction cases showed below, with 2 cases for the non-repeat 

offenders and repeat offenders.  
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5.4.2.1. Model 1 Case Prediction Demonstrations 

Case 1: This was a non-repeat offender, a male, aged 37, with mean BAC of 0.23, first DUI conviction on weekend, no prior 3-year 

low-risk citation, lived at Cass County that the income inequality rate was 4.27 and violent crime rate was 307.18 per 100,000 

population. His predicted likelihood of DUI recidivism was calculated with parameters in the “Estimate” field in Tabe 5.18, started 

with the intercept and the order of variables listed in the case description. Below is the likelihood of DUI recidivism for this driver: 

exp (−3.1373 + 0.2274 ∗ 1 + 0.1735 ∗ 1 + 0.23 ∗ 3.8481 + 0 + 0 − 0.1130 ∗ 4.27 + 307.18 ∗ 0.000634)

1 + exp (−3.1373 + 0.2274 ∗ 1 + 0.1735 ∗ 1 + 0.23 ∗ 3.8481 + 0 + 0 − 0.1130 ∗ 4.27 + 307.18 ∗ 0.000634)
= 0.1054 

Case 2: This was a non-repeat offender, a male, aged 20 (under the legal drinking age), with mean BAC of 0.16, first DUI conviction 

on weekday, had at least one prior 3-year low-risk citation, lived at McLean County that the income inequality rate was 4.12 and 

violent crime rate was 97.96 per 100,000 population. His predicted likelihood of DUI recidivism was calculated below: 

exp (−3.1373 + 0.2274 ∗ 1 + 0.38 ∗ 1 + 0.16 ∗ 3.8481 + 0.1585 ∗ 1 + 0.1830 ∗ 1 − 0.1130 ∗ 4.12 + 97.96 ∗ 0.000634)

1 + exp (−3.1373 + 0.2274 ∗ 1 + 0.38 ∗ 1 + 0.16 ∗ 3.8481 + 0.1585 ∗ 1 + 0.1830 ∗ 1 − 0.1130 ∗ 4.12 + 97.96 ∗ 0.000634))

= 0.1217 

Case 3: This was a repeat offender, a male, aged 28, with mean BAC of 0.29, first DUI conviction on weekday, had at least one prior 

3-year low-risk citation, lived at Stark County that the income inequality rate was 3.98 and violent crime rate was 218.32 per 100,000 

population. His predicted likelihood of DUI recidivism was calculated below: 
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exp (−3.1373 + 0.2274 ∗ 1 + 1901 ∗ 1 + 0.29 ∗ 3.8481 + 0.1585 ∗ 1 + 0.1830 ∗ 1 − 0.1130 ∗ 3.98 + 218.32 ∗ 0.000634)

1 + exp (−3.1373 + 0.2274 ∗ 1 + 1901 ∗ 1 + 0.29 ∗ 3.8481 + 0.1585 ∗ 1 + 0.1830 ∗ 1 − 0.1130 ∗ 3.98 + 218.32 ∗ 0.000634)

= 0.1718 

Case 4: This was a repeat offender, a male, aged 20, with mean BAC of 0.26, first DUI conviction on weekday, had at least one prior 

3-year low-risk citation, lived at Cass County that the income inequality rate was 4.27 and violent crime rate was 307.18 per 100,000 

population. His predicted likelihood of DUI recidivism was calculated below: 

exp (−3.1373 + 0.2274 ∗ 1 + 0.1906 ∗ 1 + 0.29 ∗ 3.8481 + 0.1585 ∗ 1 + 0.1830 ∗ 1 − 0.1130 ∗ 4.27 + 307.18 ∗ 0.000634)

1 + exp (−3.1373 + 0.2274 ∗ 1 + 0.1906 ∗ 1 + 0.29 ∗ 3.8481 + 0.1585 ∗ 1 + 0.1830 ∗ 1 − 0.1130 ∗ 4.27 + 307.18 ∗ 0.000634)

= 0.1718 

In these demonstrations, predicted likelihood for the repeat offender was only 17%. There was a large discrepancy between the 

predicted likelihood and the true outcome. Based on discussions in literature review, there were a few possible reasons for this 

phenomenon: (1) The current information was not enough to provide solid prediction. (2) The offender’s mindset and behavioral 

patterns has changed (3) The unselected variables can have aggregated effects that largely affect the model performance.  

5.4.2.2. Model 2 Case Prediction Demonstration 

Case 5 (the same driver as Case 1): This was a non-repeat offender, a male, complied with BAC test, first DUI conviction on 

weekend, no prior 3-year low-risk citation, lived at Cass County that the income inequality rate was 4.27 and violent crime rate was 

307.18 per 100,000 population. His predicted likelihood of DUI recidivism was calculated below: 
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exp (−2.9888 + 0.2261 ∗ 1 + 0.8703 ∗ 1 + 0 + 0 − 0.1032 ∗ 4.27 + 0.000775 ∗ 307.18)

1 + exp (−2.9888 + 0.2261 ∗ 1 + 0.8703 ∗ 1 + 0 + 0 − 0.1032 ∗ 4.27 + 0.000775 ∗ 307.18)
= 0.1096 

Case 6: This was a non-repeat offender, a female, refused BAC test, first DUI conviction on weekend, no least one prior 3-year low-

risk citation, lived at Stutsman County that the income inequality rate was 4.21 and violent crime rate was 212.32 per 100,000 

population. Her predicted likelihood of DUI recidivism was calculated below: 

exp (−2.9888 + 0 + 0 + 0 + 0 − 0.1032 ∗ 4.12 + 0.000775 ∗ 212.32)

1 + exp (−2.9888 + 0 + 0 + 0 + 0 − 0.1032 ∗ 4.12 + 0.000775 ∗ 212.32)
= 0.037 

Case 7 (same driver as Case 3): This was a repeat offender, a male, complied with BAC test, first DUI conviction on weekday, had at 

least one prior 3-year low-risk citation, lived at Stark County that the income inequality rate was 3.98 and violent crime rate was 

218.32 per 100,000 population. His predicted likelihood of DUI recidivism was calculated below: 

exp (−2.9888 + 0.2261 ∗ 1 + 0.8703 ∗ 1 + 0.2138 ∗ 1 + 0.1831 ∗ 1 − 0.1032 ∗ 4.27 + 0.000775 ∗ 307.18)

1 + exp (−2.9888 + 0.2261 ∗ 1 + 0.8703 ∗ 1 + 0.2138 ∗ 1 + 0.1831 ∗ 1 − 0.1032 ∗ 4.27 + 0.000775 ∗ 307.18)
= 0.1547 

Case 8: This was a repeat offender, a male, refused BAC test, first DUI conviction on weekday, had at least one prior 3-year low-risk 

citation, lived at Ward County that the income inequality rate was 3.67 and violent crime rate was 226.71 per 100,000 population. His 

predicted likelihood of DUI recidivism was calculated below: 

exp (−2.9888 + 0.2261 ∗ 1 + 0 + 0.2138 ∗ 1 + 0.1831 ∗ 1 − 0.1032 ∗ 3.67 + 0.000775 ∗ 226.71)

1 + exp (−2.9888 + 0.2261 ∗ 1 + 0 + 0.2138 ∗ 1 + 0.1831 ∗ 1 − 0.1032 ∗ 3.67 + 0.000775 ∗ 226.71)
= 0.0712 
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In Model 2, the discrepancy between predicted probability and the true outcome was even larger, 

especially in Case 7. It may be because this model was simpler than Model 1 and relied on less 

variable for the prediction. In practice, the court can set a cut-off point as the boundary to 

determine the judgement for offenders. For example, if the predicted likelihood of is larger than 

0.13, then this offender is considered high risk for recidivism. More assessment should be done 

to find out the treatment or rehabilitation program that the offender need.  
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6. CONCLUSIONS 

This study used a multi-model approach to determine the factors that affect the likelihood 

of DUI re-offense among drivers in North Dakota. It explored utilizing tree-based machine 

learning models to identify associations in a range of 107 factors and DUI recidivism among 

first-time DUI offenders. Three machine learning models were applied, including Decision Tree, 

Random Forest, and Gradient Boosting, to predict the likelihood of DUI recidivism. To improve 

predictions on imbalanced sample data, oversampling technique SMOTE - Tomek Links was 

applied to balance two classes in the sample data. To enhance interpretability, logistic regression 

analyses were performed to quantify the effects of top-ranked factors that the model selected 

with superior prediction power.  

In this study, gradient boosting performed the best when dealing with an imbalanced 

dataset in which the minority group is of interest. For an imbalanced dataset, the oversampling 

technique SMOTE - Tomek Links improved prediction by nearly 10% on the F1 score, reducing 

the number of false positives and false negatives. Logistic regression was a great supplement to 

gradient boosting in terms of interpreting associations between factors and the outcome.  

Results coalesced around two findings. First, male drivers with higher BAC values, 

younger age at first DUI citation, whose first DUI citation took place during the weekday, had at 

least one low-risk citation within three years before first DUI citation, and lived in counties with 

lower income inequality ratio and higher violent crime rate were more likely to commit a 

subsequent DUI offense. Second, male drivers who complied with a BAC test upon arrest, whose 

first DUI citation took place on a weekday, had at least one low-risk citation within three years 

before the first DUI citation, lived in a county with a lower income inequality ratio, and higher 

violent crime rate were more likely to commit a subsequent DUI offense.  
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The study also demonstrated a few cases to show how the logistic regression models can 

be used to predict the likelihood of recidivism for a particular offender. Suggestion was given on 

how to determine a high-risk offenders based on the prediction model. This practice can be used 

to assist court for judgement. 

The study is limited to a single state, but the comparison of techniques and their shared 

findings suggest that a multitude and variety of approaches may be appropriate in future 

impaired driving prevention research. In addition, only first-time DUI offenders among licensed 

North Dakota drivers and the single administrative record system for feature variable. Future 

research may broaden the population to consider other states and drivers with multiple DUI 

offenses. Linkages to other administrative records may present opportunity to consider variables 

such as court record, criminal records and social relationships that have proven valuable in other 

DUI prediction research.  In addition, assessment tools can be used to identify offenders with 

specific mental health disorders, so further and more particular treatments will help to improve 

offenders’ chances of rehabilitation.   
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