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ABSTRACT 

Matching is a popular method to use with observational data to replicate desired features 

of a randomized control trial. A common problem encountered in observational studies is the 

lack of common support or the limited overlap of the covariate distributions across treatment 

groups. A new approach, cardinality matching, leverages mathematical optimization to directly 

balance observed covariates. When conducting cardinality matching, the user specifies the 

tolerable balance constraints of individual covariates and the desired number of matched 

controls. The algorithm then finds the largest possible match given these constraints. Profile 

matching is a newly proposed method that uses cardinality matching, in which the user can 

specify a target profile directly and find the largest cardinality match that is balanced to the target 

profile. We developed an R package called ProfileMatchit that will employ profile matching. We 

employed the new package in the setting of hospital quality assessment using a real-world 

dataset. Profile matching has not yet been used in hospital quality assessment but may be an 

improvement over current approaches, which have limitations in the ability to find sufficient 

matches in a heterogeneous sample. This application would be the culmination of our work to 

develop an improved version of cardinality matching and provide a new application of profile 

matching and a better approach to hospital quality assessment.  
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INTRODUCTION 

The ideal experimental design to estimate treatment effects is a randomized control trial 

(RCT). In an RCT, the treated and control groups only randomly differ from one another on all 

covariates, both observed and unobserved[1]. Thus, any difference in outcomes can be attributed 

to the treatment rather than differences between individuals. However, an RCT is not always 

possible or feasible because of ethical considerations or the nature of the treatment.  

Many studies rely on observational studies[2] when a randomized experiment is not 

possible or feasible. Observational studies are biased if there are differences in the treatment 

groups that matter for the outcomes under investigation[2]. This bias may be overt if the 

differences are observed or hidden if the differences are unobserved.  

Matching can be used to estimate treatment effects with observational data when the 

treated and control groups have not been randomly allocated[3–7]. Treated and control 

individuals with similar covariates are compared, and thus matching replicates desired features 

of randomized experiments by creating groups that only randomly differ from one another on the 

observed covariates[1]. Matching highlights areas where there is insufficient overlap in the 

observed covariates between the treated and control groups.  

When individuals are grouped in some way, for example patients within clinics or 

students within classrooms, the data structure is “multilevel” or “nested.” With multilevel data, 

special consideration must be given to use matching techniques that properly account for the 

clustering[8]. Many-to-one matching can increase the precision of the treatment effect estimate 

in a single-level (i.e., non-nested) setting due to decreased variability, but also typically leads to 

an increased bias of the treatment effect because each additional matched control is less like the 

treated subject.  
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Cardinality matching[9] maximizes the size (or “cardinality”) of the matched sample that 

satisfies the specified constraints for covariate balance. This approach uses recent advances in 

mathematical integer programming to solve an optimization problem subject to given constraints. 

The marginal distributions of the covariates in the treated and control groups are constrained to 

be similar, and the largest proportional match that keeps them similar is found. The algorithm is 

indifferent to which specific individuals are paired, so many solutions may achieve the same 

maximum cardinality.  

Profile matching is a new multivariate matching method that finds the largest possible 

matched sample that is balanced relative to a reference covariate profile[10]. It is directly related 

to cardinality matching, which seeks to maximize the number of matched controls subject to 

balance constraints of the treated group. Profile matching seeks to maximize the size of both the 

treated group and the matched control group subject to the balance constraints of a provided 

profile.  

The original implementation of cardinality matching was with the R package 

designmatch[11]. With designmatch, the user specifies the target and the tolerable difference 

from the target to the matched sample. For example, the user could specify the covariate means 

of the treated group as the target and set the tolerance to 0.05 standard deviations of the treated 

group. The treated and control groups would then be matched to the target; thus, the entire 

treated group would be retained. The means of the control group for each covariate would then 

be within 0.05 standard deviations of the treated group. In this example, the estimand is the 

average treatment effect for the treated (ATT)[1]. Alternatively, if the focal group of interest was 

the control, the estimand is the average treatment effect for the control (ATC). 
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Instead, the user could set the target to the be means of the entire sample (the treated and 

control groups combined), and the estimand would be the average treatment effect (ATE)[1]. 

The ability to specify the target directly makes the approach very flexible and in fact, the user 

could instead choose an external population to serve as the target to generalize inferences to 

another population, a method known as profile matching[10]. Additionally, the target is not 

limited to means. The user could also choose to impose balance constraints on higher order 

moments of the covariates. The limitation of designmatch is that it only finds a one-to-one match 

between the treatment groups. 

The MatchIt[12] R package has also added cardinality matching to its suite of matching 

algorithms. It has the added benefit of allowing the user to specify many-to-one matching. 

Additionally, it can be used to find the largest possible subset that is balanced with respect to 

either the treated group, control group, or overall sample. For example, if the ATT is the 

estimand of interest, MatchIt can be used to select the largest possible control group that is 

balanced with respect to the treated group. The treated group remains intact by selecting the 

number of matched controls as infinity[12]. For the ATE, the largest possible sample from the 

full dataset that is balanced with respect to the combined treated and control group would be 

selected. 

There are desirable features of the cardinality matching implementation from both the 

MatchIt and the designmatch packages. Thus, we created our own package, ProfileMatchit, 

which combines the desired features of each. Specifically, we have added the option to specify 

the target profile when conducting the cardinality matching method into the MatchIt package. 

The user can specify the desired target directly (as in designmatch) using our R package 

(ProfileMatchit) which can be used to conduct 1) traditional cardinality matching to estimate the 
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ATT, ATC, or ATE with one-to-one matching or many-to-one matching, 2) profile matching in 

which the user specifies a target profile directly, or 3) find the largest representative sample by 

setting the number of matched controls to infinity.  

In brief, the user supplies a vector indicating the treatment group, a matrix of covariates, 

a target vector for each covariate, a vector of tolerable differences between the covariates and the 

target vector, the total number of matches (either a finite number for many-to-one matching or 

infinity to indicate largest possible subset), and the desired estimand (ATT, ATC, or ATE). The 

ProfileMatchit package then conducts mathematical optimization to find the largest possible 

matched sample that is balanced with respect to the target and tolerances given.  

In this dissertation, we present the new R package called ProfileMatchit that will conduct 

many-to-one or largest subset profile matching. Then, we conducted a simulation study to 

examine the relative trade-offs of one-to-one matching, many-to-one matching, or largest subset 

selection and examined increasing the number of matched controls on bias, precision, accuracy, 

and coverage of the treatment effect estimate with multilevel data. We also compared a single-

level linear model and a linear mixed effects model that accounts for the clustering of the control 

group to estimate the treatment effect in the matched sample. Then, we provide an example 

implementation of the ProfileMatchit package using real data in the context of hospital quality 

assessment. 
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BACKGROUND 

Matching Methods 

There are four main stages in matching: 1) defining closeness, i.e., which variables to 

include and the distance measure used to determine whether an individual is a good match for 

another; 2) implementing a matching method given the measure of closeness; 3) assessing the 

quality of the matched samples, and 4) analysis of the outcome and estimated treatment effect[1].  

Propensity Score Matching 

A commonly used distance measure for matching is the propensity score[13], which is 

the probability of assignment to the treated group, given a set of covariates. Matching on the 

propensity score yields balance in observed covariates between the treated and control groups on 

the distribution of the covariates. Differences in outcomes between treated and control 

individuals with similar propensity scores give unbiased estimates of the treatment effect. If 

treatment assignment is ignorable given the covariates, then the treatment assignment is also 

ignorable given the propensity score.  

Propensity scores are most often estimated using logistic regression. With propensity 

score estimation, the resulting balance of the covariates is of interest rather than with the 

parameter estimates of the model. Thus, concerns with collinearity do not apply and standard 

approaches for model selection, such as model fit statistics identifying classification ability or 

stepwise selection models, are not useful for variable selection[14–16]. Studies have shown that 

misestimation of the propensity model, such as excluding a squared term of a covariate, is not as 

severe as misspecification of the outcome model[17–20]. 

With propensity score matching, individuals are matched on a one-dimensional 

propensity score so that the resulting matched pairs are heterogeneous in the covariates, but the 
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heterogeneity in the covariates is unrelated to the treatment, and thus tends to balance out in the 

treated and control groups. However, while randomization balances both observed covariates and 

unobserved covariates, matching only balances observed covariates[1]. The difference in the 

outcomes between the treated and control groups may then be due to differences in the treatment 

or may instead reflect some pretreatment differences in an unobserved covariate. Thus, matching 

can address overt biases but not necessarily hidden biases. 

Many-to-One Matching 

When there are many potential controls from which to match to a limited number of 

treated individuals, it may be desirable to match multiple controls to each treated individual, 

referred to as “many-to-one matching.” With many-to-one matching, each treated individual is 

typically matched to one control, and then additional controls are added sequentially from the 

remaining controls (i.e., a second match is found for all treated individuals, then a third match is 

found for all treated individuals, and so on). This approach ensures that each treated individual is 

matched to its single best control individual.  

Matching with more than one control can increase precision due to decreased variability 

of the estimated treatment effect[21, 22]. However, a trade-off is made because higher matching 

ratios typically increase bias in the estimated treatment effect because each additional matched 

control will be less similar to the treated subject, and fewer controls will be available later in the 

pool of matches[22]. The total number of controls that are matched may be either fixed (“fixed 

ratio matching”) or may be allowed to vary (“variable ratio matching”) so that each treated 

individual is matched to up to 𝐿 controls. Ming and Rosenbaum showed that matching with a 

variable number of controls greatly reduced the bias compared to fixed ratio matching[23]. 

Studies have shown that matching ratios of up to 4-to-1 elicit the lowest bias in treatment 
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effect[21, 24, 25]. However, with cardinality matching, the user specifies a priori the tolerable 

differences between the treated and control groups, so concerns about balance are minimized 

because each matched control will be within the tolerable range on all covariates to be included. 

Linden and Samuels, 2013 proposed the following approach[24] for selecting the optimal 

number of matched controls: 1) conduct the matching algorithm for one-to-one matching and 

iterating until the maximum number of desired potential controls per treated subject is reached, 

2) for each iteration, test covariate balance, and 3) generate numeric summaries and graphical 

plots of the balance statistics across all iterations to determine the optimal solution. Austin 

(2010) conducted a Monte Carlo simulation to determine the optimal number of matched 

controls to estimate the treatment effect[22]. They varied the sample size, the proportion of the 

sample that was treated, the strength of the relationship between the observed covariates and the 

probability of treatment, and the strength of the relationship between observed covariates and the 

outcome[22]. The findings from this study indicated that increasing the number of matched 

controls increased the bias of the treatment effect but decreased the variance of the treatment 

effect. Thus, the authors recommended that studies using propensity score matching should use 

one or two matched controls for each treated subject[22]. 

Limited Overlap of Covariate Distributions 

A common problem encountered in observational studies is the lack of common support 

or the limited overlap of the covariate distributions across treatment groups[26] which can lead 

to estimates that are sensitive to model misspecification[27, 28]. Overlap refers to the range of 

the data that is the same across treatment groups[29]. Complete overlap exists if the range of the 

data is the same between the treated and control groups[29]. When there is a lack of overlap 

between treatment groups, regression models rely on extrapolation[1, 29]. When the treated and 
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control groups do not completely overlap, regression models are inherently limited in the 

treatment effect estimation outside the region of overlap. The options are to either restrict the 

inferences to the regions of overlap or to rely on the model to extrapolate outside the region of 

overlap[29]. Importantly, the overlap is not the same as the imbalance. Imbalance does not 

necessarily imply a lack of complete overlap, nor does the lack of complete overlap imply 

imbalance[29].  

Matching highlights areas of limited overlap. The traditional approach to handling the 

lack of covariate imbalance with matching is trimming the sample, such as discarding all 

individuals with estimated propensity scores outside the range of 0.1 and 0.9[28, 30]. If a large 

portion of the sample is lost after trimming regions of non-overlap, it could indicate insufficient 

overlap between the treated and control groups[31]. Cardinality matching[9] handles the setting 

of limited covariate overlap by directly balancing the original covariates and finding the 

maximum number of observations that satisfy any given covariate balancing criteria. With 

cardinality matching, the marginal distributions of the covariates in the treated and control 

groups are constrained to be similar, and the largest matched sample that keeps them similar is 

found.  

Profile Matching 

The goal of matching is to find similar individuals across the treatment groups to 

replicate a randomized experiment. Propensity score matching does not guarantee adequate 

balance between treatment groups. Because matching is generally conducted using the estimated 

propensity score (due to the true propensity score being unknown), propensity score model 

misspecification can yield problems[32]. If there is limited overlap in the distribution of the 

covariates between treatment groups, propensity score matching may require treated individuals 
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to be discarded[33] or important covariates to be excluded from the propensity score model, 

which limits the utility of the matching method. 

To overcome these limitations, advances in matching methods have been made that 

leverage optimization. Examples of these methods include mixed integer programming[34], 

genetic matching[35], optimal matching with refined covariate balance[36], cardinality 

matching[9], and optimal matching using Glover’s algorithm[37]. Profile matching is the latest 

advancement that solves an optimization problem that maximizes the sample size conditional on 

covariate balance restraints[10].  

Profile matching is a new multivariate matching method that finds the largest possible 

matched sample that is balanced relative to a reference covariate profile[10]. It is directly related 

to cardinality matching and can be implemented using the existing designmatch[11] software in 

R. While cardinality matching seeks to maximize the cardinality of the matched controls subject 

to balance constraints of the treated group, profile matching seeks to maximize the cardinality of 

the matched controls subject to balance constraints of a provided profile. 

Profile matching was introduced as a flexible approach that can aid in the generalization 

of causal inferences to a new target population or personalize causal inferences for an individual. 

Cohn and Zubizarreta illustrate this method in a simulation study that generalizes a randomized 

trial to a new target population, which may not have been well represented in the original 

trial[10]. This approach could be used for hospital performance comparisons; however, it has not 

yet been used in this context[10]. A conceptual diagram of profile matching in the context of 

matching patients in hospitals is presented in Figure 1.  
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Figure 1. Diagram of Profile Matching  

Note: A profile is established from the target population. In this example, we consider the 

proportion of females, the proportion of older age, and the proportions of five diagnosis groups. 

The hospital before matching had a notably different breakdown than the profile. Patients are 

selected from the hospital so that the overall population resembles the target. 
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Hospital Benchmarking 

Patients are not randomly allocated to hospitals, and thus, hospital comparisons are 

limited by differences in patient case-mix and illness severity. Comparisons of patient outcomes 

between hospitals must consider these differences. Hospital performance assessment is 

traditionally done using regression models that adjust for differences in patient illness severity 

and other characteristics (e.g. age, diagnoses, comorbidities) to derive case-mix adjusted 

standardized mortality ratios so that comparisons between healthcare providers (such as a 

hospital) can be made[38, 39]. For example, the US Center for Medicare and Medicaid Services 

uses risk-adjustment to assign hospitals a star ranking by using average scores on five measure 

groups: mortality, the safety of care, readmission, patient experience, and timely and effective 

care[40]. There is some controversy about whether variation in standardized mortality ratios 

reflects differences in quality of care[41–45], but the practice is still in widespread use across 

hospital systems[39, 46–49] as part of their assessment of hospital quality. 

The standardized mortality ratio is defined as the ratio of observed to expected deaths for 

a given hospital. It is derived from a statistical model that adjusts for the patient and/or 

hospitalization characteristics. A multilevel model that accounts for the nesting of patients in 

hospitals should be used to avoid the overestimation of systematic between-hospital effects[50–

54]. However, a major limitation is that regression can yield biased estimates if there is 

insufficient overlap in patient covariates between the hospitals, as it relies heavily on 

extrapolation. In a heterogeneous hospital system, there may be limited overlap between the 

case-mix of patients between hospitals, and it is unlikely that any two hospitals have the same 

case-mix[55]. Additionally, multilevel regression models smooth the performance of low-

volume hospitals towards the average (i.e., “shrinkage towards the mean”), precluding them from 
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being positive or negative outliers[56, 57]. To overcome these limitations, studies have examined 

the feasibility of matching in the context of hospital performance[58–64]. Matching methods 

have been used to compare outcomes between teaching and non-teaching hospitals[65, 66] and to 

compare the value of better and worse nursing environments[67]. Other methods have been 

proposed as a means of comparing hospital outcomes in a more general setting. 

There are two ways to compare hospital outcomes after risk adjustment, either direct 

standardization or indirect standardization[68]. Direct standardization compares a hospital’s 

patient outcomes to an external reference population and ultimately answers the question: “How 

does this hospital compare to other hospitals if all hospitals treated the same population of 

patients?”. Indirect standardization instead examines the outcomes of a given hospital’s patient 

population and assesses: “How would the outcomes of patients at a given hospital change had 

they instead gone to a different hospital that treats similar patients?”.  

Direct standardization and indirect standardization can yield different results. A hospital 

may have particularly good outcomes for some types of patients and poorer outcomes for other 

types of patients. A hospital that does not see the types of patient conditions that it cannot treat 

effectively may score well in indirect adjustment and poorly in direct adjustment. Conversely, a 

hospital that frequently sees the types of patient conditions that it cannot treat well may score 

poorly in both indirect and direct adjustment.  

Indirect standardization approaches, such as the standard regression-based observed over 

expected (O/E) approach utilize the case-mix of the hospital’s specific patients when estimating 

outcomes. Importantly, this approach relies on a model to appropriately adjust for each hospital’s 

case mix. Model-based indirect standardization comparisons across hospitals require an adequate 

estimation of the “expected” number of deaths. Additionally, hospitals are compared on the 
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relative performance of their own case-mix to the other hospitals' relative performance on their 

case-mix, which may not be of clinical relevance[68]. A new method, called indirect 

standardization matching (ISM), was developed to address the limitations of a model-based 

indirect standardization approach using matching. 

Studies have examined the feasibility of matching in the context of hospital 

performance[58–64]. The first approach, template matching[59], uses a common sample of 

patients to which all hospitals are matched. Another proposed approach is hospital-specific 

template matching[60], in which each hospital has a customized template, and hospitals are only 

compared to other hospitals that treat similar patients. Additional details of these approaches are 

provided in the next section. 

Template Matching 

 Template matching[59] uses a common sample of patients to which all hospitals are 

matched, and is therefore a form of direct standardization. With template matching, a randomly 

selected and representative sample of 𝑁 hospitalizations from the population serves as the 

“template.” At each hospital, one hospitalization is matched to each of the 𝑁 hospitalizations in 

the template so that the resulting sample consists of 𝑁 hospitalizations from each hospital. 

Hospitals can then be directly compared on patient outcomes, and hospitals are only being 

compared on the outcomes of similar patients. A conceptual diagram of TM is presented in 

Figure 2. Studies have found template matching feasible in a relatively limited population, such 

as within limited diagnoses[58, 62, 69] or surgical type[59], but fail in a more heterogeneous 

population[61, 63].  

When this approach was originally introduced, Silber et al. (2014) illustrated the method 

using a limited set of Medicare patients admitted for orthopedics and common general, 
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gynecologic, and urologic procedures Illinois, New York, and Texas[59]. Template matching has 

also been used to compare hospitals on their resource allocation of children with complex 

chronic conditions[62] and to compare hospital practice style and resource utilization in treating 

pediatric asthma patients[69]. Vincent et al. (2019) employed template matching in a more 

heterogeneous population, the nationwide Veterans Affairs medical, surgical, and psychiatric 

hospitalizations for one year[63]. It was found that hospitals differed significantly in the 

covariate distributions of their patients and that the limited covariate overlap between hospitals 

made adequate matching impossible[63]. Thus, important covariates would have to be excluded 

for template matching to work in this setting[61, 63].  
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Figure 2. Diagram of Template Matching 

Note: With Template Matching, each hospital is matched to a common template. All hospitals 

are compared on a similar set of patients. Template Matching is a form of direct standardization. 
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Hospital-Specific Template Matching 

Silber et al. extended template matching to what they referred to as “hospital-specific 

template matching” (HS-TM)[60]. A conceptual diagram of HS-TM is presented in Figure 3. 

With HS-TM, each hospital has a unique template of hospitalizations that is representative of its 

population. Only those comparator hospitals that could be matched to each hospitalization in the 

template are used in the comparison. Thus, hospitals are only compared to other hospitals that 

treated patients like their own patients rather than all hospitals. This approach has been shown to 

be a feasible approach in a more heterogeneous population[64]. However, because each hospital 

is assessed on a sample of its population, it may be sensitive to the specific template selected or 

may not be representative of the hospital’s total case-mix[64]. 

A customized comparison is in contrast with template matching[59, 63], which compares 

all hospitals on the same patients, regardless of how well those patients represent a given 

hospital’s true patient population. HS-TM should not be used to rank hospitals since each 

hospital’s performance assessment is customized to its own case-mix. When extended to the 

Veterans Affairs health system, this approach was feasible, and each of 122 hospitals was 

compared to between 6 and 64 other hospitals[64]. 
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Figure 3. Diagram of Hospital-Specific Template Matching  

Note: With Hospital-Specific Template Matching, each hospital has its own template and is only 

matched to hospitals that treated similar patients. Each hospital is then assessed by comparing 

the outcomes at its hospital and comparing to the outcomes of hospitals that treated similar 

patients. For example, the red hospital is compared on the outcomes in its template relative to the 

templates of the blue, black, and green hospitals. 
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Indirect Standardization Matching 

Indirect Standardization Matching (ISM)[68] compares a given hospital’s patient 

population to the outcomes of similar patients treated elsewhere. With ISM, each patient at the 

hospital undergoing the performance assessment is matched to one (or more) patient(s) from the 

rest of the hospital system. This approach allows a hospital to examine patient outcomes of its 

own patient population relative to the outcomes of similar patients treated elsewhere.  

In the initial demonstration of ISM[68], Medicare patients admitted for orthopedics and 

common general, gynecologic, and urologic procedures in Illinois, New York, and Texas from 

2004 to 2006 were included. There were 620 hospitals, and two demonstrative hospitals were 

used separately as the “focal” hospital (i.e., the hospital being evaluated). For every patient in the 

focal hospital, a ten-to-one matched comparison was found at the remaining 619 hospitals. An 

exact match was required for the procedure code, and optimal matching using a propensity score 

and Mahalanobis distance with a caliper for the propensity score and each of the risk scores was 

used. A caliper is the tolerable difference allowed between the treated and control groups for a 

match to be permitted. 

For each hospital, a propensity score (i.e., the predicted probability of being a patient at 

the focal hospital) was derived. The propensity score model for each hospital included age, sex, 

emergency department admission, transfer-in status, principal procedure, and clinical risk 

factors. This propensity score, along with age, sex, predicted probability of 30-day mortality, 

predicted probability of intensive care unit admission, predicted length of stay, predicted in-

hospital cost, predicted anesthesia time, emergency department admission, transfer-in status, and 

21 comorbidities were used in the Mahalanobis distance. A total of 10 control individuals were 

then matched to each of the treated individuals using optimal matching on the Mahalanobis 
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distance. It is unknown how ISM performs for assessing overall hospital quality in a more 

diverse hospital setting. 
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METHODOLOGY 

In this section, we present the statistical methodology and background used for the 

simulation study and real data application study. 

Causal Inference 

Rubin Causal Model 

The Rubin Causal Model (RCM)[70, 71] is a framework for conducting causal inference. 

Causal inference is the design and analysis for evaluating the effects of a treatment or a 

manipulation. The “causal effect” is the comparison of different treatment conditions for the 

same individuals. There are two essential parts of the RCM. The first part is defining the 

scientific situation using “potential outcomes” to define the causal effect estimand. Causal 

effects are thus described by comparing the values that would be observed if the active treatment 

were applied to the values that would be observed if the control treatment were applied[72]. We 

will go into more detail about the potential outcomes framework in the next section.  

The second part of the RCM is the probabilistic model for the assignment of 

“treatments,” such as the propensity score model. The estimated propensity score[13] for 

individual 𝑖 is the conditional probability of being assigned to the treatment given a vector of 

observed covariates 𝒙𝑖: 

𝑃̂(𝒙𝑖) = 𝑃(𝑍𝑖 = 1|𝒙𝑖), (1) 

where 𝑍𝑖 = 1 for treated (and 𝑍𝑖 = 0 for control). The propensity score is most often estimated 

using a logistic regression model: 

𝑃̂(𝒙𝑖) =
exp(𝛽0 + β1𝑥1𝑖 + ⋯ + β𝑝𝑥𝑝𝑖)

1 + exp(𝛽0 + β1𝑥1𝑖 + ⋯ +β𝑝𝑥𝑝𝑖)
, (2) 

for  𝑖 = 1, 2, ⋯ , 𝑁 individuals and 𝑝 independent predictors. The logit of the propensity score is 

often used for propensity score matching, defined as: 
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logit (𝑃̂(𝑋𝑖)) = log (
𝑃̂(𝒙𝑖)

1−𝑃̂(𝒙𝑖)
) = 𝛽0 + β1𝑥1𝑖 + ⋯ + β𝑝𝑥𝑝𝑖. (3)

The assignment mechanism describes why (based on the observed covariates) some individuals 

received the treatment, and other individuals received the control. 

 Potential Outcomes Framework for Causal Inference 

The potential outcomes framework is a commonly used statistical framework for causal 

inference[73]. Only one of the potential outcomes is observed for each individual, and thus the 

potential outcomes framework can be thought of as a missing data problem. This is known in the 

causal inference literature as the “fundamental problem of causal inference”[71]. 

Each individual 𝑖 can be potentially assigned to one of two treatment groups. Let 𝑍𝑖 be 

the binary variable indicating whether individual 𝑖 is in the treated (𝑍𝑖 = 1) or control (𝑍𝑖 = 0) 

group. Additionally, we have a vector 𝒙𝑖 of 𝑝 measured covariates for each individual. Let  

𝒛 = (𝑍1, 𝑍2, ⋯ , 𝑍𝑛)′ be the 𝑁 −vector of treatment indicators and 𝑿 = (𝒙1
′ , 𝒙2

′ , ⋯ , 𝒙𝑛
′ ) be the 

𝑁 × 𝑝 covariate matrix. Each individual has a potential outcome 𝑌𝑖(𝑍𝑖) under each treatment 

assignment. Each individual has two potential outcomes, 𝑌𝑖(1) and 𝑌𝑖(0).  

To estimate the average treatment effect (ATE), we are estimating the difference between 

the average potential outcomes had all individuals in a population taken the treatment versus had 

all individuals in a population not taken the treatment. The ATE is defined as:  

𝐸[𝑌𝑖(1) − 𝑌𝑖(0)]. (4) 

Each individual 𝑖 has four quantities {𝑌𝑖(0), 𝑌𝑖(1), 𝑍𝑖 , 𝒙𝑖}, but only the outcome under the 

treatment they were assigned is observed (i.e., 𝑌𝑖
𝑜𝑏𝑠 = 𝑌𝑖(𝑍𝑖)) and the other potential outcome is 

missing (i.e., 𝑌𝑖
𝑚𝑖𝑠 = 𝑌𝑖(1 − 𝑍𝑖)). The observed outcome is then defined as: 

𝑌𝑖
𝑜𝑏𝑠 = 𝑌𝑖(1)𝑍𝑖 + 𝑌𝑖(0)(1 − 𝑍𝑖). (5) 
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The problem of causal inference is then to infer the unobserved quantities using only the 

observed quantities.  

Assumptions of Causal Inference 

One of the assumptions of causal inference is the ignorable treatment assignment 

mechanism[74]. This assumption states that an assignment mechanism is ignorable conditional 

on the covariates 𝒙𝒊 if it does not depend on the potential outcomes. Formally, 

𝑃(𝑍𝑖|𝑌𝑖(0), 𝑌𝑖(1), 𝒙𝒊) = 𝑃(𝑍𝑖|𝒙𝒊), 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑛. (6) 

Additionally, there is a positive probability of receiving each treatment for all values of 𝒙, stated 

formally as: 

0 < 𝑃(𝑍𝑖 = 1| 𝒙𝒊) < 1, ∀𝒙𝒊, 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑛. (7) 

Another assumption is the Stable Unit Treatment Value Assumption (SUTVA)[1, 2, 75]. The 

SUTVA states that the potential outcomes for any individual do not vary with the treatments 

assigned to any other individual. The SUTVA is the implicit assumption under the potential 

outcomes framework[76]. Without SUTVA, the dimensionality of potential outcomes for each 

individual can be easily unmanageable even for a handful of observations. For example, suppose 

we have two individuals with observed outcomes and treatment assignment given as 

(𝑌1, 𝑍1) and (𝑌2, 𝑍2). If the potential outcomes of the first individual (𝑌1) depended not only 

on 𝑍1 but also on 𝑍2, then there would four scenarios (𝑍1 ∈ (0,1) and 𝑍2 ∈ (0,1)). We would 

need four potential outcomes for 𝑌1 and four potential outcomes for 𝑌2. The number of potential 

outcomes needed would increase as the number of individuals increase. 

Doubly Robust Approach for Assessing the Treatment Effect 

Model misspecification can lead to biased estimates when using a regression model, but it 

is impossible to check this assumption in practice because the true relationship between the 



  

23 

dependent and independent variables is unknown[77]. Although we balance the included 

covariates within a tolerable threshold with matching, imbalance in the covariates between 

treatment groups may remain. To overcome some of these limitations, matching and regression 

can be combined in what is known as a doubly robust approach[77–81]. With propensity score 

matching, doubly robust estimation will yield accurate estimates of the treatment effect if either 

the propensity score model or the outcome model are correctly specified[79, 80, 82, 83]. Bias 

due to unmeasured confounders would be reduced if the unmeasured confounders were 

correlated with measured confounders included in the regression model and/or the matching 

algorithm[77].  

We present the definition[83] of the doubly robust estimator in the context of propensity 

score matching because propensity score matching is one of the first matching methods used. 

The same ideas can then be extended to other forms of matching.  

The doubly robust estimator for the ATE is: 

𝐴𝑇̂𝐸 = 𝐸̂[𝑌𝑖(1)] − 𝐸̂[𝑌𝑖(0)] 

=
1

𝑁
∑ (∑

𝑍𝑖(𝑌𝑖 − 𝜇̂1(𝒙𝑖))

𝑃̂(𝒙𝑖)
+ 𝜇̂1(𝒙𝑖)) −

1

𝑁
∑ (

(1 − 𝑍𝑖)(𝑌𝑖 − 𝜇̂0(𝒙𝑖))

1 − 𝑃̂(𝒙𝑖)
+ 𝜇̂0(𝒙𝑖)) , (8) 

where 𝑃̂(𝒙𝑖) is the estimated propensity score (through logistic regression),  𝜇̂1(𝑥) is the 

estimation of the potential outcome under the treated condition (𝑌𝑖(1)) using linear regression, 

and 𝜇̂0(𝑥) is the estimation of the potential outcome under the control condition (𝑌𝑖(0)) using 

linear regression. To show that the doubly robust estimator will be unbiased if either the 

propensity score model or the outcome model were correctly specified, consider the first part of 

Equation 8 without loss of generality: 
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𝐸̂[𝑌(1)] =
1

𝑁
∑ (

𝑍𝑖(𝑌𝑖 − 𝜇̂1(𝒙𝑖))

𝑃̂(𝒙𝑖)
+ 𝜇̂1(𝒙𝑖)) . (9) 

If we assume that the specification of the outcome model 𝜇̂1(𝑥) is correct, then  

𝐸[𝑍𝑖(𝑌𝑖 − 𝜇̂1(𝒙𝑖))] = 0. This is because multiplication of 𝑍𝑖 selects only the treated individuals, 

and by definition, the residual of 𝜇̂1 (i.e., 𝑌𝑖 − 𝜇̂1(𝒙𝑖)) on the treated have a mean of 0. 

Therefore, the reliance on the propensity score is eliminated and so it does not matter whether 

the propensity score model was correctly specified. Equation 9 becomes: 

𝐸̂[𝑌(1)] =
1

𝑁
∑(𝜇̂1(𝒙𝑖)) , (10) 

which is 𝐸[𝑌(1)] by assumption, and thus the estimator is unbiased. The same logic can then be 

extended to 𝐸̂[𝑌(0)]. 

 Now, let us consider if instead the propensity score model was correctly specified. 

Equation 9 can be re-arranged as follows: 

𝐸̂[𝑌(1)] =
1

𝑁
∑ (

𝑍𝑖(𝑌𝑖 − 𝜇̂1(𝒙𝑖))

𝑃̂(𝒙𝑖)
+ 𝜇̂1(𝒙𝑖)) (11) 

=
1

𝑁
∑ (

𝑍𝑖𝑌𝑖

𝑃̂(𝒙𝑖)
−

𝑍𝑖𝜇̂1(𝒙𝑖)

𝑃̂(𝒙𝑖)
+ 𝜇̂1(𝒙𝑖)) (12) 

=
1

𝑁
∑ (

𝑍𝑖𝑌𝑖

𝑃̂(𝒙𝑖)
− (

𝑍𝑖

𝑃̂(𝒙𝑖)
− 1) 𝜇̂1(𝒙𝑖)) (13) 

=
1

𝑁
∑ (

𝑍𝑖𝑌𝑖

𝑃̂(𝒙𝑖)
− (

𝑍𝑖

𝑃̂(𝒙𝑖)
− 1) 𝜇̂1(𝒙𝑖)) . (14) 

If the propensity score model, 𝑃̂(𝒙𝑖), is correctly specified, then 𝐸[𝑍𝑖 − 𝑃̂(𝒙𝑖)] = 0, and 

therefore the reliance on the outcome model, 𝜇̂1(𝒙𝑖), is eliminated. Equation 14 would then 
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reduce to the mean of the propensity score weighting estimator 
𝑍𝑖𝑌𝑖

𝑃̂(𝒙𝑖)
, which was correct by 

assumption. Thus, 𝐸̂[𝑌(1)] would be unbiased. The same logic can then be extended to 𝐸̂[𝑌(0)]. 

Mathematical Optimization 

Linear programming, a form of mathematical optimization, is the problem of minimizing 

a linear cost function subject to linear equality and inequality constraints[84]. In a general linear 

programming problem, we have a vector 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑛), called the linear cost vector, which 

is a vector of the coefficients of the objective function. We also have a linear constraint matrix A 

and a vector 𝒃 = (𝑏1, 𝑏2, . . . 𝑏𝑚)′ of linear constraints. Additionally, we have a vector  

𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛)′. The variables 𝑥1, … , 𝑥𝑛 are called decision variables. With linear 

programming, we minimize a linear objective function 𝑓(𝑥) = 𝒄𝒙 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛, 

subject to a set of linear equality and inequality constraints 𝑨𝒙 ≤ 𝒃. A vector 𝐱 satisfying all 

constraints is called a feasible solution. The feasible solution that minimizes the objective 

function is called the optimal solution.  

There are a variety of solvers available that can be used to solve optimization problems, 

including CPLEX, XPRESS, GLPK, and Symphony. However, Gurobi outperforms others, and 

can solve problems that others cannot and in less time[85, 86]. The Gurobi package is a 

commercial program, but there is a free academic license.  

Cardinality Matching 

With cardinality matching, there are initially 𝑇 treated individuals and 𝐶 control 

individuals and the total number of individuals in the treated and control groups is 𝑁. Each 

treated individual 𝑡 and control individual 𝑐 has a vector of observed covariates 𝒙. A cardinality 

match is a solution to the optimization problem. The linear objective vector, 𝒂, is the vector of 
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matched pairs between the treated and the control group. Let 𝑎𝑡𝑐 = 1 if treated individual 𝑡 is 

initially matched to control individual 𝑐, and 𝑎𝑡𝑐 = 0 otherwise. The goal is to find  

𝒂 = (𝑎11, 𝑎12, ⋯ , 𝑎𝑇𝐶) as the solution to: 

𝑚𝑎𝑥 ∑ ∑ 𝑎𝑡𝑐 𝐶
𝑐=1

𝑇
𝑡=1  (15)

subject to 𝑎𝑡𝑐 ∈ {0,1}, 𝑡 = 1, 2, ⋯ , 𝑇, 𝑐 = 1, 2, ⋯ , 𝐶 

∑ 𝑎𝑡𝑐 𝑇
𝑡=1 ≤ 1 for 𝑐 = 1, 2, ⋯ , 𝐶, 

∑ 𝑎𝑡𝑐 𝐶
𝑐=1 ≤ 1 for 𝑡 = 1, 2, ⋯ , 𝑇, 

𝔹𝑘, 𝑘 = 1, 2, ⋯ , 𝐾. 

In words, the solution to the cardinality matching problem is the largest matched sample that 

meets the user’s supplied balance constraints. The constraint ∑ 𝑎𝑡𝑐 ≤ 1𝑇
𝑡=1 𝑓𝑜𝑟 𝑐 = 1, 2, ⋯ , 𝐶 

requires that each control individual can be used at most one time, and the constraint  

∑ 𝑎𝑡𝑐 ≤ 1𝐶
𝑐=1  𝑓𝑜𝑟 𝑡 = 1, 2, ⋯ , 𝑇 requires that each treated individual can be used at most one 

time.  

As outlined in Zubizarreta, 2014, the covariate balance constraint 𝔹𝑘 is a linear inequality 

constraint[9]: 

𝔹𝑘: −𝑏𝑘 ∑ ∑ 𝑎𝑡𝑐 ≤ 

𝐶

𝑐=1

𝑇

𝑡=1

∑ ∑ 𝑎𝑡𝑐𝑣𝑘𝑡𝑐 ≤ 𝑏𝑘 ∑ ∑ 𝑎𝑡𝑐,

𝐶

𝑐=1

𝑇

𝑡=1

 

𝐶

𝑐=1

𝑇

𝑡=1

 (16) 

where 𝑣𝑘𝑡𝑐 is a function of observed covariates and 𝑏𝑘 ≥ 0 is a given constant. We use 𝑣𝑘𝑡𝑐 in 

the form 𝑣𝑘𝑡𝑐 = 𝑓(𝑥𝑡) − 𝑓(𝑥𝑐), for some function 𝑓(∙). For example, let event 𝑀 indicate male 

gender, then 𝑓(∙) would be the indicator function for male gender defined as: 

𝑓(∙) = 𝕀𝑴(𝑥) ≔  {
1 𝑖𝑓 𝑥 ∈ 𝑀 
0 𝑖𝑓 𝑥 ∉ 𝑀 

 (17) 
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and then 

𝑣𝑘𝑡𝑐 = 𝑓(𝑥𝑡) − 𝑓(𝑥𝑐) = 𝕀𝑀 (𝑥𝑡) − 𝕀𝑀 (𝑥𝑐). (18) 

Therefore, the proportion of males differs by at most 𝑏𝑘 between the treated and control groups. 

If 𝑏𝑘 = 0, then the matched controls would have the same number of males as in the treated 

group, without consideration about which specific individuals are matched. So, for example, the 

treated and matched control groups will have the same number of males, but a male and a female 

may be matched to each other. Matching exactly on a covariate in this way is known as “fine 

balance”[32]. Alternatively, if we let 𝑏𝑘 = 0.01, for example, we limit the imbalance of the 

condition by at most 1%, which is referred to as “near fine balance”[87]. Or 𝑓(∙) could be the 

mean age, requiring that the mean age between the treated and control groups differ by at most 

𝑏𝑘.  

The covariate balance constraint 𝔹𝑘 says that the mean of 𝑣𝑘𝑡𝑐 is within [−𝑏𝑘, 𝑏𝑘] for the 

matched individuals (matched individuals defined by 𝑎𝑡𝑐 = 1). This can be shown by 

rearranging the balance constraint formula in Equation 16: 

−𝑏𝑘 ≤
(∑ ∑ 𝑎𝑡𝑐𝑣𝑘𝑡𝑐) 𝐶

𝑐=1
𝑇
𝑡=1

(∑ ∑ 𝑎𝑡𝑐
𝐶
𝑐=1

𝑇
𝑡=1 )

≤ 𝑏𝑘. (19) 

 Profile matching could also be used to identify an optimal sample that is representative of 

a population of interest[88], but it has not yet been used in this setting. Rather than finding a 

representative treated group and control group that resemble a profile of interest, the objective 

function could instead be changed to find the largest possible representative sample from a 

population. Consider the setting in which data were not uniformly sampled from a population or 

were sampled from a different population than the population of interest. Typically, sampling 

weights are used so that the resulting weighted distribution is representative of the population of 
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interest[1, 89, 90]. Instead, we may consider subsampling from the larger population so that the 

selected sample is representative of the target population.  

Profile Matching 

The original implementation of cardinality matching was with the R package 

designmatch[11]. With designmatch, the user specifies the target and tolerances. For example, 

the user could specify the covariate means of the treated group as the target and set the tolerance 

to 0.05. The treated and control groups would then be matched to the target; thus, the entire 

treated group would be retained. In this example, the estimand is the “ATT,” or the average 

treatment effect on the treated[1]. Instead, the user could set the target to the means of the entire 

group (treated and control), and the estimand would be the “ATE” or the average treatment 

effect[1]. The ability to specify the target directly makes the approach very flexible and in fact, 

the user could instead choose an external population to serve as the target to generalize 

inferences to another population, a method known as profile matching[10]. Additionally, the 

target is not limited to means. The user could also choose to impose balance constraints on 

higher order moments of the covariates. The limitation of designmatch is that it only finds a one-

to-one match between the treatment groups. 

The MatchIt[12] R package has also added cardinality matching to its suite of matching 

algorithms. It has the added benefit of allowing the user to specify many-to-one matching. 

Additionally, it can be used to find the largest possible subset that is balanced with respect to 

either the treated group, control group, or overall sample. For example, if the ATT is the 

estimand of interest, MatchIt can be used to select the largest possible control group that is 

balanced with respect to the treated group and keeps the treated group intact. For the ATE, the 
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largest possible sample from the full dataset would be selected that is balanced with the 

combined treated and control group. 

Profile matching could also be used to identify an optimal sample that is representative of 

a population of interest[10], but it has not yet been used in this setting. Rather than finding a 

representative treated group and control group that resemble a profile of interest, the objective 

function could instead be changed to find the largest possible representative sample from a 

population. Consider the setting in which data were not uniformly sampled from a population or 

were sampled from a different population than the population of interest. Typically, sampling 

weights are used so that the resulting weighted distribution is representative of the population of 

interest[1, 89, 90]. Instead, we may consider subsampling from the larger population so that the 

selected sample is representative of the target population.  

Linear Mixed Effects Models for Multilevel Data 

A simple linear regression model[91] takes the form:  

𝑦𝑖 = 𝛽0 + β1𝑥𝑖 + 𝜖𝑖 (20) 

for  𝑖 = 1, … , 𝑛 individuals. This model can be extended to a multiple linear regression model 

which links a response to 𝑝 independent predictors: 

𝑦𝑖 = 𝛽0 + β1𝑥1𝑖 + β2𝑥2𝑖 + ⋯ + β𝑝𝑥𝑝𝑖 + 𝜖𝑖, for 𝑖 = 1, 2, ⋯ , 𝑛. (21) 

One of the assumptions of standard linear regression is that the error terms of individuals 

are independent of one another, and thus, after accounting for the independent variables there are 

no relationships between the individuals[92]. However, this assumption is violated in the setting 

of multilevel data because individuals within a cluster (such as schools or hospitals) tend to be 

more alike one another than individuals between clusters. Not considering the correlation that 

exists between individuals within clusters can lead to underestimated standard errors because the 



  

30 

total variance is underestimated[93]. There are several reasons why individuals within a cluster 

tend to be more similar[94]. In some cases, individuals self-select their cluster membership, such 

as within neighborhoods or doctors’ offices and thus there may be other similarities between 

individuals that select the same cluster. There is also potential for all members of a cluster to be 

affected simultaneously by cluster-level variables, such as the skill of a particular physician 

impacting patient outcomes. Additionally, members of the same cluster may interact and 

therefore influence each other. 

Linear mixed effects models (also commonly referred to as multilevel models or 

hierarchical models) are an extension of general linear models. The data are structured in groups 

and coefficients can vary by groups[29]. Linear mixed effects models are widely used when data 

have a multilevel structure, such as patients in hospitals or students in schools[95]. 

There are different ways to model linear mixed effects models, including random 

intercept models and/or random-slope models[29]. The basic form of a random intercept model 

for an individual 𝑖 in cluster 𝑗 for is: 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑥1𝑖𝑗 + β2𝑥2𝑖𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑖𝑗 + 𝜖𝑖𝑗 , (22) 

where 𝑦𝑖𝑗 is the dependent variable, 𝛽0𝑗 is the random intercept for cluster 𝑗 (and thus varies by 

cluster), 𝛽1 … 𝛽p are the fixed slopes for the independent variables and 𝜖𝑖𝑗 is the random 

error. 

For a random slopes model: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑗𝑥1𝑖𝑗 + 𝛽2𝑗𝑥2𝑖𝑗 + ⋯ + 𝛽𝑝𝑗𝑥𝑝𝑖𝑗 + 𝜖𝑖𝑗, (23) 

and thus, the random slopes 𝛽1𝑗 … 𝛽𝑝𝑗 vary by cluster, but the intercept 𝛽0 is constant. In a 

random slopes model, the random slope is the interaction between the independent variable and 
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the cluster indicator[29]. A model can also have a random slope and a random intercept and thus 

would be in the form: 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥1𝑖𝑗 + 𝛽2𝑗𝑥2𝑖𝑗 + ⋯ + 𝛽𝑝𝑗𝑥𝑝𝑖𝑗 + 𝜖𝑖𝑗. (24) 

Assumptions of Linear Mixed Effects Models 

With linear mixed effects models, we assume that the variance between clusters is 

independent of one another (i.e., the random intercept and random slopes are independent across 

clusters). Additionally, we assume that the cluster-level errors are independent of the individual- 

level errors. As with typical regression, we also assume that the residual variance is normally 

distributed with a mean of 0 and variance 𝜎2. Finally, the random intercept and slope(s) are 

assumed to have a multivariate normal distribution with a constant covariance matrix. 

Intraclass Correlation Coefficient 

 The amount of correlation that exists between individuals within clusters can be 

estimated by using the intraclass correlation (ICC). The ICC is the proportion of the variation in 

the outcome variable that occurs between clusters relative to the total variation of the 

outcome[92]. The ICC ranges from 0, which indicates that there is no variance between clusters 

and the grouping contains no additional information, and 1, which indicates that there is no 

variance within clusters and all values within the cluster are the same[29, 92]. The ICC can be 

thought of as the amount of correlation for the dependent variable for two randomly selected 

individuals from the same cluster. Or alternatively, the amount of variation in the dependent 

variable can be attributed to the cluster rather than individuals. In the context of patients nested 

in hospitals, the cluster-level variance can be thought of as the hospital-level effect, and the ICC 

is the amount of variation in the outcome that can be attributed to the hospital rather than the 

patient. Formally,  
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𝐼𝐶𝐶 =
𝜎𝑗

2

𝜎𝑤
2 + 𝜎𝑗

2 , (25) 

where 𝜎𝑗
2 is the between-cluster variance and 𝜎2 is the within-cluster variance, and thus 

𝜎𝑤
2 + 𝜎𝑗

2 is the total variance of the outcome[29]. 

Matching with Multilevel Data 

The use of matching in the context of multilevel data requires special considerations. 

Thoemmes and West (2011) extended propensity score matching to clustered data in two 

contexts[8]. The first is when the cluster level is the central feature of the design. An example is 

students within schools are randomized to treatment. There may be variations in treatment 

implementation and interaction between students within the schools. The treatment effect of 

individuals (students) within the cluster (school) and across clusters is the main interest of the 

study. The propensity score analysis attempts to approximate a multisite randomized trial in 

which individuals are randomized within individual clusters.  

The second scenario is when the cluster is incidental to the experimental design, and the 

desire is to “adjust for” the clustering. An example is randomly selected individuals who are 

randomized to complete a training that is delivered in a group setting. In this case, the treatment 

effect of the population is the focus of the study. And thus, the propensity score analysis attempts 

to replicate a single-level randomized experiment on individuals who are consequently clustered. 

However, there has been little work in examining matching designs in which the “treatment” is 

given to the cluster itself, and thus the cluster is the unit of analysis. 

Assessing Balance After Matching 

A commonly used numeric balancing diagnostics is the standardized mean difference 

(SMD). The SMD for a given covariate 𝑚 is defined as: 
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𝑆𝑀𝐷𝑚 =
|𝑥̅𝑚1 − 𝑥̅𝑚0|

√𝑠𝑚1
2 + 𝑠𝑚0

2

2

, (26)
 

where 𝑥̅𝑚1 is the mean of covariate 𝑚 for the treated group, 𝑥̅𝑚0 is the mean of covariate 𝑚 for 

the control group, 𝑠𝑚1
2  is the variance of covariate 𝑚 for the treated group, and 𝑠𝑚0

2  is the 

variance of covariate 𝑚 for the control group. Thus, the numerator is the absolute difference in 

means between the treated and control groups and the denominator is the pooled standard 

deviation. For a binary variable, the SMD for a given covariate 𝑚 is defined as: 

𝑆𝑀𝐷𝑚 =
|𝑝̂𝑚1 − 𝑝̂𝑚0|

√𝑝̂𝑚1(1 − 𝑝̂𝑚1) + 𝑝̂𝑚0(1 − 𝑝̂𝑚0)
2

, (27)
 

where 𝑝̂𝑚1 is the proportion of covariate 𝑚 for the treated group and 𝑝̂𝑚0 is the proportion of 

covariate 𝑚 for the control group. Thus, the numerator is the absolute difference in proportions 

between the treated and control groups and the denominator is the pooled standard deviation. 

Higher values of SMD indicate a greater imbalance across covariates. There are different 

recommendations for thresholds for SMD that are considered “balanced,” including 0.1[24, 96] 

or 0.25 for regression to be trustworthy[1, 97]. 

For many-to-one matching, a weighted SMD can be used to assess balance[98]. The 

weighted mean is defined as: 

𝑥̅𝑤 =
∑ 𝑤𝑖𝑥𝑖

∑ 𝑤𝑖
, (28) 

while the weighted sample variance is defined as: 

𝑠𝑤
2 =

∑ 𝑤𝑖

(∑ 𝑤𝑖)2 − ∑ 𝑤𝑖
2 ∑ 𝑤𝑖 (𝑥𝑖 − 𝑥̅𝑤)2. (29) 

Each treated individual is given a weight of 1 and each matched control is given a weight 

𝑤𝑖 equal to the reciprocal of the number of matched controls. For one-to-one matching, the 
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weights are 1 for both the treated and control individuals. For 2-to-1 matching 𝑤𝑖 = 1/2 for the 

matched controls and 𝑤𝑖 = 1 for the treated individuals and for ten-to-one matching, 𝑤𝑖 = 1/10 

for the matched controls and 𝑤𝑖 = 1 for the treated individuals. The weighted means and 

weighted variances are computed separately for the treated group and matched control group, 

and then used in Equation 26 to compute the weighted SMD for continuous variables. 
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SIMULATION STUDY 

The objective was to examine the impact of increasing the number of matched controls 

on the estimation of the treatment effect for studies conducting profile matching with multilevel 

data. We considered 1 through 10 matched controls and the largest possible representative 

subset[99]. Additionally, we compared using a linear model to a linear mixed effects model after 

matching. 

Methods 

Data Generation 

We simulated a population of 100,000 individuals nested in clusters, comprised of 1,000 

“treated” and 99,000 “control” individuals. We considered the scenario in which the entire 

treated group came from a single cluster, such as a school or hospital. The control group was 

comprised of individuals from 99 other clusters. We randomly assigned individuals to the 99 

clusters with equal probability, so that the clusters would be similar in size, but not exactly equal 

size. For each cluster, we generated a random cluster-level intercept 𝛾𝑗 from a normal 

distribution, such that the intraclass correlation (ICC) was 0.03, 0.05, or 0.10, based on ICCs 

reported in other studies[100–103]. In the context of a model with patients nested in hospitals, 

the ICC is the proportion of the variation in the patient outcome that can be explained by the 

hospital rather than the patient characteristics.  

For each individual, we generated 10 normally distributed variables to represent the 

measured covariates. Variables from the treated and control groups were generated from 

different distributions to control the amount of covariate overlap between the groups. The 

covariates for the control group came from the standard normal distribution. The covariates for 

the treated group came from a normal distribution with a variance of 1 and with the mean shifted, 
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such that the mean of the SMD of the covariates between the treated and control groups was the 

desired value.  

For our simulated data, since each covariate in the control group has a mean of 0 and both 

groups have a variance of 1, the SMD is the absolute difference of the means of the covariates 

between the treated and control groups. We varied the means for the covariates in the treated 

group so that the mean SMD was either 0.3, 0.4, or 0.5, depending on the scenario.  

We also simulated one additional covariate from the standard normal distribution for both 

the treated and control groups to represent an unmeasured covariate. The data were simulated so 

that the measured covariates explained approximately 80% of the variance in the outcome. There 

was no treatment effect, and therefore, any differences in the outcomes between the treatment 

groups were due to differences in the covariate distributions. 

Without loss of generality, the covariate overlap of a single covariate 𝑥1 is depicted in 

Figure 4 when the SMD is 0.1, 0.3, and 0.5. On the right, we display the corresponding overlap 

in the propensity score using all 10 measured covariates. When the SMD for a given covariate is 

0.1, which is typically considered “balanced,” we see a fair overlap in the propensity score. As 

the SMD increases, the distribution of the propensity scores starts to separate. There is still 

overlap between the two groups when the SMD is 0.5, but the overlap is limited. This implies 

that finding sufficient matches will be more difficult.  



  

37 

 

Figure 4. Covariate Overlap and Propensity Score Overlap 

Note: On the left, we display the covariate overlap for the treated group (blue) and the control 

group (pink) for a single covariate. The standardized mean difference (SMD) between the treated 

and control groups is 0.1 (row 1), 0.3 (row 2), and 0.5 (row 3). On the right, we show the 

corresponding propensity score overlap when each of the 10 covariates has the given SMD. 
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The outcome for individual 𝑖 in cluster 𝑗 was:  

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑖𝑗 + ⋯ + 𝛽11𝑥11𝑖𝑗 + 𝛾𝑗 + 𝜖𝑖𝑗, (30) 

for 𝑖 = 1, 2, ⋯ , 100,000, and 𝑗 = 1, 2, ⋯ , 100, where 𝛾𝑗 ~
𝑖𝑖𝑑

𝑁(0, 𝜎𝑗
2) and 𝜖𝑖𝑗 ~

𝑖𝑖𝑑
𝑁(0,1). For our 

simulation, we assumed that all covariates have equal contributions to the outcome, so we 

arbitrarily assigned the model intercept 𝛽0 = −1 and each of the beta coefficients 𝛽1 through 𝛽11 

to 1 for all clusters, and thus we used a random-intercepts model. We varied the cluster-level 

variance 𝜎𝑗
2 so that the ICC was either 0.03, 0.05, or 0.10.  

The outcome is the sum of 11 independent random variables, the cluster-level variance, 

and the residual error variance for the simulated data. The total variance of the model is: 

𝜎𝑡𝑜𝑡𝑎𝑙
2 = 12 + 𝜎𝑗

2. (31) 

Thus,  

𝐼𝐶𝐶 =
𝜎𝑗

2

12 + 𝜎𝑗
2  (32) 

and we set the ICC to the desired level (either 0.03, 0.05, or 0.10) and solved for 𝜎𝑗
2. The 

corresponding variance for each ICC level was 0.3711, 0.6316, and 1.3333, respectively. We 

then simulated 𝛾𝑗 from a normal distribution with a mean of 0 and a variance of 𝜎𝑗
2. Overall, we 

conducted nine scenarios: three levels of covariate overlap in the measured covariates and three 

levels of ICC. Each scenario was run 1,000 times.  

Matching Approach 

For each simulated dataset, we conducted 1-to-1  matching, then 2-to-1 matching, etc., 

up to 10-to-1 matching. Additionally, we found the largest possible subset of the control group 

that was representative of the treated group. We included the 10 measured covariates in the 

matching procedure (i.e., the “unmeasured” covariate was not included in the matching 
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procedure). We used cardinality matching with tolerances set so that the maximum mean SMD 

between the treated and control groups was 0.05 for each covariate, thus requiring that each 

measured covariate was balanced between the treatment groups, with SMD<0.1. As a sensitivity 

analysis, we also simulated the data such that the tolerable differences between the treated and 

control group were 0.10 for each covariate. Cardinality matching was conducted using the 

ProfileMatchit package in R and the Gurobi optimization software[104]. We set the target to be 

the means of the treated group, and thus we were estimating the average treatment effect of the 

treated (ATT).  

Assessing Covariate Balance 

After matching, we computed the balance of the matched sample by determining the 

SMD between the treated group and matched control group for each measured covariate. We 

then calculated the mean of the SMD to get an overall measure of balance across the 10 

covariates. For the many-to-one matched samples, we used the weighted SMD[98].  

Estimating the Treatment Effect 

After a matched sample was constructed, we estimated the treatment effect in two ways. 

First, we estimated the difference between the outcome 𝑌 in the treated and matched control 

groups using a linear regression model with the treatment group as the only covariate. Next, we 

used a linear mixed effects model in which we included the cluster as a random intercept to 

control for the clustering of the control group. As an additional sensitivity analysis, we also 

considered a doubly robust approach, wherein the models were adjusted for the 10 measured 

covariates in addition to the treatment indicator.  
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Bias, Precision, Accuracy, and Coverage 

Separately for the linear and linear mixed effects models, we computed the bias of the 

treatment effect, defined as the difference between the estimated treatment effect and the true 

treatment effect (which was simulated to be 0, and thus there was no treatment effect). We 

reported the mean bias and 95% confidence intervals across the 1,000 simulations for each 

scenario. To measure the precision of the estimate, we calculated the variance of the estimated 

treatment effect across the 1,000 simulations. We also calculated the mean squared error (MSE) 

of the estimated treatment effect across the 1,000 simulations, which is a measure of the 

accuracy of the estimator. The MSE is the sum of the variance of the estimator and the square of 

the bias of the estimator[105]. 

Additionally, we determined the coverage of the estimator, which is the proportion of the 

1,000 simulations that contained the true treatment effect in the 95% confidence interval for the 

estimate. Our objective in determining the optimal number of matched controls is to identify the 

number of matched controls that resulted in minimal bias, minimal sample variance, minimal 

MSE, and maximal coverage. However, trade-offs must be made between these, so we reported 

the number of matched controls for each scenario that minimized the MSE, minimized the 

measured absolute bias, minimized the sampling variance, and maximized the coverage.  

Results 

The covariates of the unmatched simulated data were imbalanced between the treated and 

control groups by design. The standardized mean difference for the unmatched data was 0.3, 0.4, 

or 0.5. After matching one control, the treated and control groups were balanced (as defined by 

having a mean SMD<0.1). The balance remained as the number of matched controls increased. 

Figure 5 displays the SMD of the measured covariates of the simulated data. The initial amount 
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of imbalance (i.e., the initial SMD) between the treated and control groups had little impact on 

the overall balance after matching (Figure 5). The tolerances were set at .05 standard deviations 

for each covariate, and thus the maximum SMD between the treatment group is 0.05. For each of 

the 1,000 simulations and 9 scenarios, the range of balance (SMD) in the resulting matched 

samples ranged between 0.032 and 0.050, while the overall mean SMD across the 1,000 

simulations ranged from 0.047 to 0.050 depending on the scenario (Appendix Table A1). 

 

Figure 5. Standardized Mean Difference of the Overall Balance of Measured Covariates 

Note: The initial imbalance of the measured covariates is provided in the inset. The unmatched 

data has a standardized mean difference that corresponds to the initial imbalance of 0.3, 0.4, or 

0.5. The number of matched controls is depicted on the x-axis.
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Figure 6. Bias of the Treatment Estimate 

Note: ICC=intraclass correlation. SMD=standardized mean difference. On the left is the bias of the treatment estimate using a 

single-level linear model and on the right is the bias of the treatment effect using a linear mixed effects model. The x-axis is the 

number of matched controls (where 11 indicates the largest possible subset), and the y-axis is the bias of the treatment estimate. 

The inset provides the initial simulated imbalance of the measured covariates. The colored lines denote the initial intraclass 

correlation.  
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Figure 6 displays the bias of the treatment effect for each additional matched control. 

Because we were able to balance the treated and control groups, the initial imbalance of the 

covariates did not impact the absolute bias of the treatment effect estimate. The estimated bias 

for each scenario for the unmatched, one through ten matched controls, and the largest subset is 

provided in Appendix Table A2. The linear mixed effect model resulted in estimates that were 

less biased than when used a linear model when matching one through ten controls. However, 

when using the largest possible subset, the bias was the same for a linear model and a linear 

mixed effects model. Indeed, the bias was worse when using a linear mixed effects model with 

the largest possible subset than when using a linear mixed effect model with one-to-one 

matching and when using many-to-one matching.  

After matching to one control, the bias decreased for all scenarios by a mean of 87% 

(range 72% to 93%) when using a linear mixed effects model relative to the unmatched sample. 

Matching to an additional matched control increased the bias by a mean of 3% (range 0% to 6%). 

Using the largest subset resulted in an increased bias of 7% (range 5% to 10%) compared to 

using one match. Overall, the level of bias was consistent across the number of matched controls, 

with the smallest observed bias occurring at eight or nine matched controls, depending on the 

scenario. However, the relative reduction in bias using eight or nine controls was minimal 

relative to matching one control. 

Figure 7 displays the coverage of the confidence interval for the treatment estimate across 

the 1,000 simulations. Using a linear model resulted in coverage of at most 31% across all 

scenarios. However, the use of a linear mixed effects model yielded adequate coverage across 

scenarios. After matching to one control, the coverage improved by a mean of 87 percentage 

points (range: 72 to 93 percentage points) across the simulations using a mixed effects model 
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(Appendix Table A3). Additional matches decreased the coverage by a mean of 3 percentage 

points for two controls up to a mean of 5 percentage points for the largest subset. 

The MSE is provided in Appendix Table A4, and the variances are in Appendix Table 

A5. Matching to one control decreased the MSE by an average of 93% (range 85% to 98%). 

Increasing the number of matched controls had little impact on the MSE. The variance was 

reduced by a mean of 80% (range 58% to 93%) after matching to one control, and then changed 

marginally for each additional matched control.  

We conducted two sensitivity analyses. First, we estimated the treatment effect using a 

doubly robust approach. With a doubly robust approach, regression adjustment is used to remove 

the small remaining residual covariate imbalance between treatment groups[1]. The number of 

matched controls had little effect on the bias, coverage, MSE, or variance of the treatment effect 

estimate when using a model that adjusted for covariates. In our simulations, the tolerable 

imbalance between treatment groups was small (SMD≤ 0.05) (Appendix Table A1); however, 

there was a slight bias in the treatment effect estimate after matching. The use of a doubly robust 

approach nearly eliminated the remaining bias (Appendix Table A6). Figure 8 presents the bias 

of the treatment effect estimate using a model that adjusted for the measured covariates, and 

Figure 9 presents the coverage of the treatment effect estimate confidence interval for a model 

that adjusted for the measured covariates. The coverage of the models adjusted for covariates is 

presented in Appendix Table A7, while the MSE is presented in Appendix Table A8 and the 

variance in Appendix Table A9. 
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Figure 7. Coverage of the Treatment Estimate 95% Confidence Interval 

Note: ICC=intraclass correlation. SMD=standardized mean difference. On the left is the coverage of the treatment estimate 95% 

confidence interval using a single-level linear model and on the right is the coverage of the treatment effect 95% confidence 

interval using a linear mixed effects model. The x-axis is the number of matched controls (where 11 indicates the largest subset). 

The y-axis is the proportion of iterations in which the 95% confidence interval of the treatment estimate contained the true 

treatment effect. The inset provides the initial simulated imbalance of the covariates. The colored lines denote the intraclass 

correlation of the cluster. 
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Figure 8. Bias of the Treatment Estimate Using a Covariate-Adjusted Model 

Note: ICC=intraclass correlation. SMD=standardized mean difference. On the left is the bias of the treatment estimate using a 

single-level linear model adjusted for the measured covariates and on the right is the bias of the treatment effect using a linear 

mixed effects models adjusted for the measured covariates. The x-axis is the number of matched controls (where 11 indicates the 

largest possible subset), and the y-axis is the bias of the treatment estimate. The inset provides the initial simulated imbalance of the 

measured covariates. The colored lines denote the initial intraclass correlation.  
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Figure 9. Coverage of the Treatment Estimate 95% Confidence Interval Using a Covariate-Adjusted Model 

Note: ICC=intraclass correlation. SMD=standardized mean difference. On the left is the coverage of the treatment estimate 95% 

confidence interval using a single-level linear model and on the right is the coverage of the treatment effect 95% confidence 

interval using a linear mixed effects model. The x-axis is the number of matched controls (where 11 indicates the largest subset). 

The y-axis is the proportion of iterations in which the 95% confidence interval of the treatment estimate contained the true 

treatment effect. The inset provides the initial simulated imbalance of the covariates. The colored lines denote the intraclass 

correlation of the cluster. 
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Next, we re-ran the simulations with the tolerances set at 0.10 standard deviations rather 

than 0.05 standard deviations. Using this threshold keeps the covariates balanced according to 

published guidelines[15, 28]. We found that the mathematical optimization process finds an 

acceptable cardinality match that resulted in a SMD very close to the tolerance level specified 

(Figure 10). When the threshold was set at 0.05 standard deviations, the resulting matched 

sample attained a balance between 0.047 and 0.050. When the threshold was set at 0.10 standard 

deviations, the attained balance was between 0.094 and 0.100. Matches are easier to obtain with 

a higher tolerance, and indeed it may not be possible to find matches with a lower tolerance. 

However, we found that using the higher tolerance resulted in biased estimates (Figure 11) that 

did not attain adequate coverage (Figure 12), even when using a mixed effect linear model. 

Adjusting for covariates reduced the bias (Figure 13) and increased the coverage (Figure 14), but 

the estimates were still biased and had coverage less than 0.95.  
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Figure 10. Standardized Mean Difference of the Overall Balance of Measured Covariates with 

Tolerances Set at 0.10 Standard Deviations 

Note: The initial imbalance of the measured covariates is provided in the inset. The unmatched 

data has a standardized mean difference that corresponds to the initial imbalance of 0.3, 0.4, or 

0.5. The number of matched controls is depicted on the x-axis. 
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Figure 11. Bias of Treatment Effect Estimate with Tolerances Set at 0.10 Standard Deviations 

Note: ICC=intraclass correlation. SMD=standardized mean difference. On the left is the bias of the treatment estimate using a 

single-level linear model adjusted for the measured covariates and on the right is the bias of the treatment effect using a linear 

mixed effects models adjusted for the measured covariates. The x-axis is the number of matched controls (where 11 indicates the 

largest possible subset), and the y-axis is the bias of the treatment estimate. The inset provides the initial simulated imbalance of the 

measured covariates. The colored lines denote the initial intraclass correlation.  
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Figure 12. Coverage of the Treatment Estimate 95% Confidence Interval with Tolerances Set at 0.10 Standard Deviations 

Note: ICC=intraclass correlation. SMD=standardized mean difference. On the left is the coverage of the treatment estimate 95% 

confidence interval using a single-level linear model and on the right is the coverage of the treatment effect 95% confidence 

interval using a linear mixed effects model. The x-axis is the number of matched controls (where 11 indicates the largest subset). 

The y-axis is the proportion of iterations in which the 95% confidence interval of the treatment estimate contained the true 

treatment effect. The inset provides the initial simulated imbalance of the covariates. The colored lines denote the intraclass 

correlation of the cluster. 
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Figure 13. Bias of Treatment Effect Estimate with Tolerances Set at 0.10 Standard Deviations Using a Covariate-Adjusted Model 

Note: ICC=intraclass correlation. SMD=standardized mean difference. On the left is the bias of the treatment estimate using a 

single-level linear model adjusted for the measured covariates and on the right is the bias of the treatment effect using a linear 

mixed effects models adjusted for the measured covariates. The x-axis is the number of matched controls (where 11 indicates the 

largest possible subset), and the y-axis is the bias of the treatment estimate. The inset provides the initial simulated imbalance of the 

measured covariates. The colored lines denote the initial intraclass correlation.  
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Figure 14. Coverage of the Treatment Estimate 95% Confidence Interval with Tolerances Set at 0.10 Standard Deviations Using a 

Covariate-Adjusted Model 

Note: ICC=intraclass correlation. SMD=standardized mean difference. On the left is the coverage of the treatment estimate 95% 

confidence interval using a single-level linear model and on the right is the coverage of the treatment effect 95% confidence 

interval using a linear mixed effects model. The x-axis is the number of matched controls (where 11 indicates the largest subset). 

The y-axis is the proportion of iterations in which the 95% confidence interval of the treatment estimate contained the true 

treatment effect. The inset provides the initial simulated imbalance of the covariates. The colored lines denote the intraclass 

correlation of the cluster. 
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INDIRECT STANDARDIZATION PROFILE MATCHING FOR HOSPITAL QUALITY 

ASSESSMENT USING REAL DATA 

The objective was to extend profile matching to perform indirect standardization 

matching using a newly proposed cardinality matching algorithm for the setting of hospital 

quality assessment. We proposed a hybrid method that combined profile matching[10] and 

indirect standardization matching[68], which we refer to as indirect standardization profile 

matching (IS-PM). Profile matching was first introduced as an approach to generalize causal 

inferences of a new target population or personalize causal inferences for an individual[10]. It 

has not yet been used in the setting of hospital performance assessment, but the methodology has 

a natural extension to this setting. Indirect standardization matching[68] was first introduced to 

conduct hospital performance assessments to overcome the limitations of standard regression-

based approaches. It was proposed in a limited set of hospitals that performed general, urologic, 

or gynecologic surgical procedures in Medicare patients in three states. In the original 

implementation, 10-to-1 Mahalanobis distance matching was used. In this chapter, we used 

profile matching, an extension of cardinality matching[9, 26, 106], to balance the covariates in 

the matched samples directly. 

Methods 

Data Source 

We used data from the eICU Collaborative Research Database[107, 108]. The eICU is a 

multi-center intensive care unit database for over 200,000 admissions to intensive care units 

monitored by eICU Programs across the United States. Highly granular patient data is included, 

including vital signs and laboratory measurements, the severity of illness measures, and 
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diagnoses. The database is de-identified and publicly available after approval. Table 1 provides a 

summary of the data tables available in the eICU database that were used. 

Table 1. Summary of Selected Data Tables Available in the eICU Database 

Concept eICU Data Table Description 

Demographics patient Contains patient demographics and admission and 

discharge details for hospital and intensive care unit 

stays. 

Hospital hospital Contains details of hospitals covered by the eICU 

telehealth program. 

Care Plan carePlanGeneral Documentation relating to care planning, continuously 

updated over a patient stay. 

APACHE score apacheApsVar Contains the variables used to calculate the acute 

physiology score III for patients. 

APACHE score apachePredVar Provides variables underlying the APACHE predictions. 

APACHE consists of a group of equations used for 

predicting outcomes in critically ill patients. APACHE 

is based on the acute physiology score (which uses 12 

physiologic values), age, and chronic health status 

within one of 56 disease groups. 

APACHE score apachePatientResult Provides predictions made by the APACHE score 

(versions IV and IVa), including the probability of 

mortality, length of stay, and ventilation days. 

Note: APACHE=Acute Physiology and Chronic Health Evaluation. APS=Acute Physiology 

Score. 

Acute Physiology and Chronic Health Evaluation (APACHE) IV 

The acute physiology and chronic health evaluation system (APACHE) is a widely 

known predictive tool for in-hospital mortality and length of stay for patients in critical 

care[109]. APACHE scores are generated using demographic factors, physiologic measures, and 

diagnoses from the first 24 hours of a patient’s intensive care unit stay. The current version is 

APACHE IV, which was developed in 2006 as a recalibration and improvement over the 

APACHE III score model[109].  

The APACHE was developed using data from approximately 110,000 admissions from 

104 intensive care units. The model had an area under the receiver operating curve of 0.88 for 
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the prediction of hospital mortality using the validation population. It had a Hosmer-Lemeshow 

p-value of 0.08, where p>0.05 indicates good calibration. The Hosmer-Lemeshow test is a 

common method of assessing calibration and runs a chi-square test calculation to test whether the 

model matched the results expected from perfect calibration[110]. For a well-calibration model, 

the mortality probabilities should be consistent with the underlying mortality probability 

distribution. That is, in a well-calibrated model, approximately 50% of patients who had a 

predicted probability of mortality of 50% should have observed mortality. 

APACHE is composed of three parts: acute physiology, age, and chronic conditions. The 

acute physiology score ranges from 0 to 252, the chronic conditions score ranges from 0 to 23, 

and the age score ranges from 0 to 24. The APACHE score is the sum of these three scores, and 

thus the permissible range is from 0 to 299.  

Acute Physiology Score 

The Acute Physiology Score (APS) III is an established method for summarizing patient 

severity of illness on admission to the intensive care unit. The APS variables include 

neurological abnormalities based on Glasgow Coma Scale[111, 112], pulse rate, mean blood 

pressure, temperature, respiratory rate, 𝑃𝑎𝑂2/𝐹𝑖𝑂2 ratio (or 𝑃(𝐴 − 𝑎)𝑂2 for intubated patients 

with 𝐹𝑖𝑂2 ≥ 0.5), hematocrit, white blood cell count, creatinine, urine output, blood urea 

nitrogen, sodium, albumin, bilirubin, glucose, and acid-base abnormalities[109]. Each of the 

individual variables is available in the eICU data table “apacheApsVar.” The worst recorded 

value (i.e., the value that has the highest deviation from normal) from the first 24 hours of the 

intensive care unit stay is recorded in raw form, so the variables need to be scored according to 

the APACHE IV point system. The APS is the sum of the points. Missing APS variables are 

assumed to be normal and thus receive an APS value of 0. The points assigned to each element 
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of the APS are provided in Appendix Table A10. The Glasgow coma scoring is provided in 

Appendix Table A11, and the APACHE scoring for the Glasgow Coma Score is in Appendix 

Table A12. 

Chronic Conditions Score 

There are seven chronic conditions included in the APACHE with corresponding points. 

These include AIDS (23 points), hepatic failure (16 points), lymphoma (13 points), metastatic 

cancer (11 points), immunosuppression (10 points), leukemia or myeloma (10 points), and 

cirrhosis (4 points)[113]. Comorbid conditions are excluded for elective surgery patients[113]. 

Age Score 

The APACHE assigns weights to the age of the patient as follows[113] ≤44 (0 points), 

45-59 (5 points), 60-64 (11 points), 65-69 (13 points), 70-74 (16 points), 75-84 (17 points), and 

≥85 (24 points).  

Other APACHE variables 

The APACHE also incorporates intensive care unit admission source (floor, emergency 

department, operating/recovery room, stepdown unit, direct admission, other intensive care unit, 

another hospital, another admission source), length of stay before intensive care unit admission, 

emergency surgery (Y/N), thrombolytic therapy for patients with acute myocardial infarction 

(Y/N), mechanical ventilation (Y/N), and intensive care unit admission diagnoses.  

The APACHE admission diagnoses were categorized to match the Australian and New 

Zealand Intensive Care Society Adult Patient Database. Admission diagnoses are either “post-

operative” or “non-operative.” The APACHE III-J diagnoses categories include cardiovascular, 

respiratory, gastrointestinal, neurological, sepsis, trauma, metabolic, hematological/endocrine, 

renal/genitourinary, musculoskeletal/skin, and gynecological[114]. 
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Exclusion 

APACHE hospital mortality prediction is not conducted for patients less than 16 years 

old, burn patients, in-hospital intensive care unit readmissions, transplant patients (except hepatic 

and renal transplants), patients with a length of stay >365 days, patients with a length of stay <4 

hours, or if there is no diagnosis within the first day of the intensive care unit. Thus, we excluded 

all patients for which an APACHE prediction was not made for this study, consistent with other 

researchers[115, 116]. We also excluded patients at hospitals with fewer than 300 

hospitalizations. 

Matching Variables 

The variables that we matched are the key variables commonly used for illness severity 

adjustment: age, sex, laboratory measures on hospital admission, admission diagnoses, comorbid 

conditions, and admission source. Laboratory values are provided a score in APACHE III-J[109, 

113] to account for the non-linear relationships and severity, and thus the scores were used in the 

analyses. Patients with similar diagnoses were grouped into clinically meaningful categories, as 

provided in APACHE III-J. We used the comorbidity score from the APACHE.  

Profile Matching Procedure 

Each hospital was separately used as the focal hospital, and the remaining 112 hospitals 

served as the control group. The target profile was established as the mean of each variable for 

the focal hospital. The tolerances were set at 0.05 standard deviations for each covariate, thus 

ensuring that the standardized mean difference between the groups would be less than 0.1 and 

therefore balanced[24, 96]. A one-to-one matched sample from the remaining 112 hospitals was 

found such that the selected matched control group was within the allowable tolerances of the 

targets. We used a one-to-one matched cohort because we found in the previous simulations in 
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Chapter 2 that including additional matched controls did not improve estimates. However, we 

additionally considered a ten-to-one matched cohort as was conducted in the original indirect 

standardization matching study[68]. We examined how the results changed relative to a one-to-

one matched sample as a sensitivity analysis. 

Assessing Hospital Quality 

After matching, we compared the focal hospital’s rate of in-hospital mortality to the rate 

of in-hospital mortality in the matched control group. We used a doubly robust approach to 

account for any remaining imbalance between the treated and control groups on key variables. 

Specifically, we used a multilevel logistic regression model that included a fixed effect with a 

binary indicator for being in the focal hospital, and adjusted for gender, post-operative status, 

emergency department admission, age, diagnosis category, comorbidity score, and APACHE 

score. The model also included a random intercept for the hospital to account for the multilevel 

nature of the data. We examined whether the indicator for the focal hospital was statistically 

significant to indicate whether the focal hospital had significantly higher or lower mortality than 

its matched control group. 

Comparison to the Standard Approach of Assessing Hospital Quality 

We compared the profile matching assessment to the standard regression-based ranking. 

We assessed the rate of in-hospital mortality using a multilevel logistic regression model that 

adjusted for patient-level and hospitalization-level covariates and included a random intercept for 

the hospital. The model adjusted for the same covariates that were included in the matching 

algorithm. Hospitals with a significantly positive random intercept had significantly higher 

mortality than the mean while those with significantly negative random intercepts had 

significantly lower mortality. 
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The general form[29] for a multilevel logistic regression model for individual 𝑖 at cluster 

𝑗 is: 

log (
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
) = 𝛽0𝑗 + 𝛽1𝑥1𝑖𝑗 + ⋯ 𝛽𝑝𝑥𝑝𝑖𝑗 + 𝜖𝑖𝑗. (33) 

For this analysis, we considered the model where 𝑝𝑖𝑗 was the probability of in-hospital mortality 

for individual 𝑖 at hospital 𝑗, and the covariates included gender, post-operative status, 

emergency department admission, age, diagnosis category, comorbidity score, and APACHE 

score. 

Results 

There were 125,026 patients at 113 hospitals included. The descriptive characteristics of 

the patients are provided in Table 2. We computed each hospital’s mean for continuous variables 

or total frequency for binary variables for each variable. The hospital-level median and range of 

these means are presented in Table 2 to illustrate the spread of the case-mix across hospitals. 

Notably, the primary diagnosis for patients varied substantially by the hospital. For example, the 

median hospital rate of cardiovascular diagnosis was 31%, but the hospital with the lowest rate 

of cardiovascular diagnosis only had 5%, while the highest hospital rate was 89%. There were 

some hospitals that had no patients with specific diagnoses: gastrointestinal, hematological/ 

endocrine, metabolic, musculoskeletal/skin, and trauma. The range of hospitals’ rates of post-

operative patients ranged from 1% to 62%, with the median hospital with 16%. Similarly, there 

was wide variation in the use of the emergency department as the admission source to the 

intensive care unit, with hospitals ranging from 3%-83% of all admissions through the 

emergency department. 
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Table 2. Descriptive Characteristics of Patients in eICU 

Variable Overall Hospital Median 

(IQR) 

Hospital 

Range 

Age (every 1 year) 63.0 (17.1) 63.1 (61.5-65.0) 54.5-71.5 

Gender (reference: Female) 67883 (54.3%) 54% (52%-57%) 43%-63% 

Post-Operative 25410 (20.3%) 16% (10%-25%) 1%-62% 

Emergency Department Admission 48910 (39.1%) 43% (30%-57%) 3%-83% 

Laboratory & Vital Sign Scores    

  Acid Base (pH, PCO2) 0.49 (1.74) 0.49 (0.28-0.66) 0-1.39 

  Albumin 0.82 (2.50) 0.81 (0.53-1.21) 0-2.99 

  Bilirubin  0.29 (1.61) 0.27 (0.19-0.36) 0-0.92 

  Blood urea nitrogen  3.56 (4.29) 3.59 (3.18-4.05) 1.94-5.56 

  Creatinine  1.54 (2.79) 1.52 (1.36-1.76) 0.64-2.48 

  Glucose  0.92 (1.82) 0.93 (0.8-1.06) 0.19-1.42 

  Hematocrit 2.13 (1.36) 2.17 (1.85-2.33) 1.32-2.79 

  PaO2  1.34 (3.43) 1.03 (0.67-1.62) 0-3.26 

  Sodium  0.36 (0.82) 0.34 (0.27-0.44) 0.14-0.68 

  Urine Output 2.50 (4.08) 2.3 (1.26-3.98) 0-6.35 

  WBC count  0.38 (1.62) 0.37 (0.29-0.45) 0.08-0.77 

  Heart Rate 3.68 (4.25) 3.74 (3.38-4) 2.09-5.30 

  Mean Arterial Blood Pressure 10.3 (4.10) 10.27 (9.43-10.84) 7.4-11.92 

  Respiratory Rate 8.10 (4.76) 7.46 (3.46-13.19) 3.46-13.19 

  Temperature 0.71 (2.67) 0.55 (0.08-1.87) 0.08-1.87 

Glasgow Coma Score (every 1 point) 6.45 (12.6) 4.95 (1.79-17.35) 1.79-17.35 

Comorbidity Score (every 1 point) 0.70 (2.87) 0.68 (0.54-0.86) 0.09-2.2 

Diagnoses     

  Cardiovascular 40162 (32.1%) 31% (25%-38%) 5%-89% 

  Gastrointestinal 12284 (9.8%) 10% (8%-12%) 0%-19% 

  Hematological/Endocrine 871 (0.7%) 1% (0%-1%) 0%-2% 

  Metabolic 10467 (8.4%) 9% (6%-13%) 0%-23% 

  Musculoskeletal/Skin 1521 (1.2%) 1% (1%-1%) 0%-9% 

  Neurological 18173 (14.5%) 10% (7%-15%) 1%-66% 

  Renal/Genitourinary 3098 (2.5%) 3% (2%-3%) 0%-6% 

  Respiratory 16548 (13.2%) 13% (10%-16%) 3%-32% 

  Sepsis 16239 (13.0%) 13% (10%-18%) 1%-33% 

  Trauma 5663 (4.5%) 2% (1%-4%) 0%-23% 

Note: Statistics are provided as numbers and percentages for binary variables or mean and 

standard deviation for continuous variables. IQR=Interquartile range.  
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For the one-to-one matched cohort, the overall SMD between the focal hospitals and their 

matched control group ranged from 0.024 to 0.040 across the 113 hospitals for covariates 

included in the match (median: 0.032). There were 30 (26.5%) hospitals that were significantly 

different than their matched comparison; 11 (9.7%) hospitals had significantly higher mortality, 

and 19 (16.8%) hospitals had significantly lower mortality than their matched comparison. With 

the ten-to-one matched cohort, the overall mean SMD for the covariates included in the matching 

algorithm ranged from 0.022 to 0.045 across there 113 hospitals (median: 0.040). There were 3 

(2.7%) hospitals that had significantly higher mortality, and 11 (9.7%) hospitals had significantly 

lower mortality. The agreement between the one-to-one and ten-to-one matched cohorts is 

presented in Figure 15. The Pearson correlation between the estimate using the one-to-one 

matched sample and the ten-to-one matched sample was 0.877. The main discrepancy between 

the two is which individual hospitals were significantly different than their comparison. 

In Figure 15, the scatter plot depicts the estimate associated with being in the focal 

hospital using one-to-one matching (x-axis) relative to ten-to-one matching (y-axis). The color 

indicates whether the effect was significant using one-to-one matching. Green indicates that the 

hospital under evaluation had a significantly lower mortality rate than its comparator using one-

to-one matching. Red indicates that the hospital under evaluation had a significantly higher 

mortality rate than its comparator using one-to-one matching. Gray and black indicate that there 

was not a significant difference between the hospital under evaluation and its comparator using 

one-to-one matching. The shape indicates whether the effect was significant using ten-to-one 

matching. The triangle indicates that the hospital under evaluation had a significantly lower 

mortality rate than its comparator using ten-to-one matching. The square denotes significantly 

higher mortality at the hospital under evaluation using ten-to-one matching. The circle indicates 
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that there was not a significant difference using ten-to-one matching. The line of best fit (solid) 

and the line of perfect agreement (dotted) are provided for reference. 

 

Figure 15. Comparison of One-to-One and Ten-to-One Matched Cohort Hospital Mortality 

Estimates 

Note: The scatter plot depicts the estimate associated with being in the focal hospital using one-

to-one matching (x-axis) relative to ten-to-one matching (y-axis).  
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Table 3. Fixed Effects for the Linear Mixed Effects Model of In-Hospital Mortality 

Variable Coefficient (95% Cl) OR (95% CI) 

Age (every 1 year) 0.04 (0.03, 0.04) 1.04 (1.03, 1.04) 

Gender (reference: Female)  -0.02 (-0.06, 0.03) 0.98 (0.94, 1.03) 

Post-Operative  -0.88 (-0.97, -0.8) 0.41 (0.38, 0.45) 

Emergency Department Admission -0.12 (-0.17, -0.07) 0.89 (0.84, 0.93) 

Laboratory and Vital Sign Scores   

  Acid Base (pH, PCO2) 0.08 (0.07, 0.09) 1.08 (1.07, 1.09) 

  Albumin 0.06 (0.05, 0.07) 1.06 (1.05, 1.07) 

  Bilirubin  0.08 (0.07, 0.09) 1.09 (1.07, 1.1) 

  Blood urea nitrogen  0.02 (0.01, 0.03) 1.02 (1.01, 1.03) 

  Creatinine  0.07 (0.06, 0.08) 1.07 (1.06, 1.09) 

  Glucose  0.05 (0.04, 0.06) 1.05 (1.04, 1.06) 

  Hematocrit -0.17 (-0.19, -0.15) 0.84 (0.83, 0.86) 

  PaO2  0.05 (0.04, 0.06) 1.05 (1.04, 1.06) 

  Sodium  0.08 (0.06, 0.11) 1.09 (1.06, 1.11) 

  Urine Output 0.01 (0.01, 0.02) 1.01 (1.01, 1.02) 

  WBC count  0.07 (0.06, 0.08) 1.08 (1.07, 1.09) 

  Heart Rate 0.08 (0.08, 0.09) 1.08 (1.08, 1.09) 

  Mean Arterial Blood Pressure 0.05 (0.04, 0.06) 1.05 (1.04, 1.06) 

  Respiratory Rate 0.01 (0.01, 0.02) 1.01 (1.01, 1.02) 

  Temperature 0.08 (0.07, 0.09) 1.08 (1.08, 1.09) 

Glasgow Coma Score (every 1 point) 0.04 (0.04, 0.04) 1.04 (1.04, 1.04) 

Diagnoses (ref: trauma)   

  Cardiovascular -0.19 (-0.32, -0.07) 0.82 (0.73, 0.93) 

  Gastrointestinal -0.19 (-0.33, -0.05) 0.83 (0.72, 0.95) 

  Hematological/Endocrine -0.03 (-0.31, 0.25) 0.97 (0.73, 1.28) 

  Metabolic -1.60 (-1.80, -1.39) 0.20 (0.17, 0.25) 

  Musculoskeletal/Skin -0.25 (-0.55, 0.05) 0.78 (0.58, 1.05) 

  Neurological 0.06 (-0.07, 0.19) 1.07 (0.94, 1.21) 

  Renal/Genitourinary -0.63 (-0.84, -0.43) 0.53 (0.43, 0.65) 

  Respiratory 0.11 (-0.02, 0.24) 1.12 (0.98, 1.27) 

  Sepsis -0.04 (-0.17, 0.08) 0.96 (0.84, 1.09) 

Comorbidity Score (every 1 point) 0.04 (0.04, 0.05) 1.04 (1.04, 1.05) 

Note: OR=Odds Ratio. CI=Confidence Interval. Ref=reference category.  
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The patient-level fixed effects are provided in Table 3. Overall, of the 113 hospitals, 26 

(23.0%) hospitals had a mortality that was significantly higher than the mean, and 20 (17.7%) 

hospitals had significantly lower mortality. The ICC was 0.035, indicating that 3.5% of the 

variance in the outcome was attributed to the hospital rather than patient characteristics.  

The caterpillar plot depicting the random intercept for the hospital from the multilevel 

logistic regression model using the entire hospitalization data (the standard approach to hospital 

benchmarking) is provided in Figure 16. The gray dashed line indicates a random intercept of 0. 

Hospitals above the line have a higher hospital-level effect of mortality, and hospitals below the 

line indicate lower hospital-level mortality using the standard regression approach. The colors 

indicate whether the hospital was identified as having significantly lower (green), higher (red) or 

no different (black) mortality relative to the matched comparison using indirect standardization 

profile matching. Overall, there are consistent trends in hospitals with significantly higher or 

lower mortality rates using indirect standardization profile matching versus the standard 

regression approach. However, there are fewer hospitals with significant mortality differences 

when using the larger matched cohort relative to the one-to-one matched cohort. 
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Figure 16. Caterpillar Plot of Hospital Random Intercept Compared to Indirect Standardization 

Profile Matching 

Note: Random intercept (dot) and 95% confidence intervals (vertical bars) for 113 hospitals from 

a linear mixed effects model of in-hospital mortality with all hospitalizations, adjusted for patient 

covariates. On the top is the one-to-one and on the bottom is the ten-to-one matched cohorts. 
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CONCLUSION 

In this dissertation, we developed an R package called ProfileMatchit that can be used to 

employ profile matching. The user can specify a target profile directly and find the largest 

cardinality match that is balanced with respect to the target profile. In the next chapter, we 

conducted a simulation study using our package. We tested the impact of increasing the number 

of matched controls when conducting cardinality matching with multilevel data. In the 

simulation study, we found that the use of a linear mixed effects model with multilevel matched 

data was important, even when the ICC was low or if conducting one-to-one matching, to have 

sufficient coverage. The most important modeling consideration is using a linear mixed effects 

model to account for the clustering of the control group. There was not a significant benefit to 

conducting many-to-one matching. However, it is important to consider if the data structure will 

allow for the appropriate fitting of a multilevel model in this context. If there are problems with 

model singularity, adding additional matched controls may allow for the estimation of the 

random effects. 

Additionally, we showed that the a priori established tolerance level is important because 

the algorithm finds a solution that meets the tolerance and does not seek to find the best solution. 

Specifically, suppose the tolerance is set at 0.10 standard deviations. In that case, the solution 

attained may result in a final matched sample that differs by approximately 0.10 standard 

deviations, even though it may be possible to find a solution that differs by 0.05 standard 

deviations. We showed in our simulations that this is the case and that the matched sample that 

differed by 0.10 standard deviations was biased. However, the bias was reduced to a very low 

level if a doubly robust approach was used. A doubly robust approach adjusted for the remaining 
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covariate imbalance between the treated and control groups, while the linear mixed effects model 

accounted for the nesting of the control group. 

In the next chapter, we employed profile matching to the setting of hospital quality 

assessment using a real-world dataset. This application was the culmination of our work to 

develop an improved version of cardinality matching and provide a new application of profile 

matching and a better approach to hospital quality assessment.  

We proposed a hybrid method that combined profile matching[10] and indirect 

standardization matching[68] for hospital quality assessment, which we refer to as indirect 

standardization profile matching (IS-PM). With IS-PM, each patient at the focal hospital is 

compared to similar patients treated elsewhere. Each hospital in turn serves as the focal hospital, 

and thus the comparisons are customized to each hospital. The user pre-specified the tolerable 

differences of each covariate between the treated and control group, and a matched sample is 

found that is balanced by design. Each hospital is compared to their matched comparison, and 

the in-hospital mortality rates are assessed using a doubly robust approach, i.e., a linear mixed 

effects model that is adjusted for covariates. With a doubly robust approach, if either the 

matching process or the outcome model were correctly specified, the estimated treatment effects 

will be unbiased. 

We found differences in the conclusions about whether a hospital significantly differed in 

their in-hospital mortality rates when using a one-to-one matched sample relative to a ten-to-one 

matched sample when conducting IS-PM. However, there was a relationship between the 

treatment estimates, with a high correlation coefficient (𝜌 = 0.88) between the estimates 

generated from the one-to-one and ten-to-one matched samples. It may be important to consider 
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the overall treatment effect estimate when assessing hospital quality rather than whether there 

was a significant difference.  

A major advantage of the proposed approach of IS-PM is that each hospital’s comparison 

is customized to its individual patient case-mix, and thus is a fairer way of assessing patient 

outcomes. As we showed, there was substantial variation in the distribution of diagnoses 

between the hospitals. In fact, there were some hospitals that did not treat any patients with some 

diagnoses. And yet, the traditional regression-based assessment would extrapolate the estimates 

for those hospitals to the types of patients diagnoses they do not treat. Additionally, the entire 

patient panel at a given hospital can be included in the assessment, as opposed to hospital-

specific template matching which uses a sample of a hospital’s patient population to serve as the 

template by which hospitals are compared. The proposed IS-TM leverages the benefits of 

matching while also including all patients from a given hospital in the assessment. 

Limitations and Future Research 

A limitation of cardinality matching, and thus profile matching, is that the cardinality 

matching algorithm does not necessarily find the matched sample that results in the minimum 

imbalance between the treatment groups but rather finds a solution in which the tolerance is met. 

Careful consideration should be given to which variables to include in the matching algorithm 

and the importance of the balance of each variable between the treatment groups and specifying 

the tolerances for each variable accordingly. Additionally, a doubly robust approach with a linear 

mixed effects model should be used to address the residual bias. A limitation of the real data 

study was that it used a publicly available dataset to illustrate the proposed approach and that the 

sample that we used was not representative of a true hospital system. Further refinement of the 
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approach may be necessary to extend it to other specific hospital systems based on the specific 

patient case-mix and variation across hospitals. 

An opportunity for future research is to examine the impact of missing data when using 

cardinality matching and profile matching. Multiple imputation (MI) is one of the most 

commonly used approaches for the handling of missing data, but there has been little guidance 

on how best to use MI with matching[117, 118]. There has been some work examining MI with 

propensity score matching. Granger et al. (2019) and Leyrat et al. (2019) independently showed 

that MI needs to first impute the propensity scores and then conduct a full MI analysis rather 

than simply taking the mean of the multiply imputed propensity scores and using them in a single 

analysis[119, 120]. The use of MI with cardinality matching has not been examined.  

There is extensive research on matching for binary treatments[1, 2, 13, 121–123], but 

generalizations to multiple treatment groups are limited. The most common approach is the use 

of a generalized propensity score for a multileveled treatment[124–128]. The generalized 

propensity score is the conditional probability of each individual receiving the treatment 

condition, given observed covariates[128, 129]. Accounting for all values of treatment in a single 

model ensures that the treatment effect is estimated for observations that had a non-zero 

probability of receiving each treatment, thus that the assumption of common support is 

valid[124, 130]. However, propensity scores generated using multinomial logistic regression are 

susceptible to extreme propensity scores in the presence of model misspecification[131]. To 

overcome this limitation, Lopez and Gutman proposed including only those individuals in the 

region of common support for all treatments[132]. Cardinality matching addresses the issue of 

common support directly, and thus future research should examine the extension of cardinality 

matching to the setting of multiple treatment groups.  
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APPENDIX A. SUPPLEMENTAL TABLES 

Table A1. Mean Standardized Mean Difference Across the Measured Covariates 

Parameters Number of Matched Controls 

SMD ICC 0 1  2 3 4 5 6 7 8 9 10 Inf 

Linear Model 

0.3 0.03 0.300 0.047 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

0.3 0.05 0.300 0.047 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

0.3 0.10 0.300 0.047 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

0.4 0.03 0.400 0.048 0.049 0.049 0.049 0.050 0.050 0.050 0.049 0.049 0.049 0.050 

0.4 0.05 0.400 0.048 0.049 0.049 0.049 0.050 0.050 0.050 0.049 0.049 0.049 0.050 

0.4 0.10 0.400 0.048 0.049 0.049 0.049 0.050 0.050 0.050 0.049 0.049 0.049 0.050 

0.5 0.03 0.500 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

0.5 0.05 0.500 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

0.5 0.10 0.500 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

Linear Mixed Effects Model 

0.3 0.03 0.300 0.047 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

0.3 0.05 0.300 0.047 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

0.3 0.10 0.300 0.047 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

0.4 0.03 0.400 0.048 0.049 0.049 0.049 0.050 0.050 0.050 0.049 0.049 0.049 0.050 

0.4 0.05 0.400 0.048 0.049 0.049 0.049 0.050 0.050 0.050 0.049 0.049 0.049 0.050 

0.4 0.10 0.400 0.048 0.049 0.049 0.049 0.050 0.050 0.050 0.049 0.049 0.049 0.050 

0.5 0.03 0.500 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

0.5 0.05 0.500 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

0.5 0.10 0.500 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 

Note: SMD=standardized mean difference. ICC=intraclass correlation coefficient. Inf indicates 

largest subset. 
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Table A2. Bias of the Treatment Estimate for Unadjusted Models 

Parameters Number of Matched Controls 

SMD ICC 0 1  2 3 4 5 6 7 8 9 10 Inf 

Linear Model 

0.3 0.03 8.38 1.26 1.31 1.34 1.33 1.34 1.34 1.33 1.23 1.18 1.21 1.37 

0.3 0.05 8.37 1.24 1.29 1.32 1.32 1.33 1.32 1.32 1.22 1.17 1.19 1.36 

0.3 0.10 8.48 1.37 1.41 1.45 1.44 1.45 1.45 1.44 1.34 1.29 1.31 1.48 

0.4 0.03 11.18 1.28 1.33 1.34 1.28 1.30 1.28 1.27 1.05 1.11 1.16 1.38 

0.4 0.05 11.17 1.28 1.32 1.34 1.27 1.29 1.27 1.26 1.04 1.11 1.15 1.37 

0.4 0.10 11.15 1.26 1.30 1.32 1.25 1.27 1.25 1.25 1.02 1.09 1.13 1.35 

0.5 0.03 13.98 1.30 1.33 1.33 1.21 1.26 1.24 1.24 1.16 1.17 1.22 1.37 

0.5 0.05 13.97 1.30 1.32 1.32 1.20 1.25 1.24 1.24 1.15 1.17 1.21 1.37 

0.5 0.10 13.96 1.29 1.31 1.31 1.19 1.24 1.22 1.22 1.14 1.15 1.20 1.36 

Linear Mixed Effects Model 

0.3 0.03 8.38 1.25 1.31 1.34 1.33 1.34 1.34 1.33 1.24 1.18 1.21 1.37 

0.3 0.05 8.37 1.24 1.30 1.32 1.32 1.33 1.32 1.32 1.22 1.17 1.19 1.36 

0.3 0.10 8.48 1.37 1.42 1.45 1.44 1.45 1.45 1.44 1.34 1.29 1.31 1.48 

0.4 0.03 11.18 1.28 1.33 1.34 1.28 1.30 1.28 1.27 1.05 1.12 1.16 1.38 

0.4 0.05 11.17 1.28 1.32 1.34 1.27 1.30 1.27 1.26 1.04 1.11 1.15 1.37 

0.4 0.10 11.15 1.26 1.30 1.32 1.26 1.28 1.25 1.25 1.02 1.09 1.13 1.35 

0.5 0.03 13.98 1.30 1.33 1.33 1.21 1.26 1.24 1.24 1.16 1.17 1.22 1.37 

0.5 0.05 13.97 1.30 1.32 1.32 1.20 1.25 1.24 1.24 1.16 1.17 1.21 1.37 

0.5 0.10 13.96 1.28 1.31 1.31 1.19 1.24 1.22 1.22 1.14 1.15 1.20 1.36 

Note: SMD=standardized mean difference. ICC=intraclass correlation coefficient. Inf indicates 

largest subset. The bias is the difference between the estimated treatment effect and the true 

treatment effect (0). Presented is the mean of the bias of the treatment effect across the 1,000 

simulations.  
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Table A3. Coverage of the Treatment Effect Estimate 95% Confidence Interval for Unadjusted 

Models 

Parameters Number of Matched Controls 

SMD ICC 0 1  2 3 4 5 6 7 8 9 10 Inf 

Linear Model 

0.3 0.03 0.000 0.314 0.256 0.236 0.221 0.216 0.207 0.204 0.203 0.210 0.203 0.143 

0.3 0.05 0.001 0.236 0.178 0.161 0.153 0.148 0.143 0.140 0.155 0.136 0.150 0.106 

0.3 0.10 0.007 0.225 0.194 0.175 0.169 0.166 0.155 0.159 0.150 0.164 0.156 0.112 

0.4 0.03 0.000 0.293 0.244 0.220 0.224 0.214 0.212 0.208 0.209 0.196 0.200 0.127 

0.4 0.05 0.000 0.269 0.218 0.191 0.196 0.180 0.180 0.174 0.183 0.173 0.171 0.128 

0.4 0.10 0.001 0.177 0.142 0.128 0.124 0.120 0.116 0.111 0.126 0.103 0.115 0.070 

0.5 0.03 0.000 0.291 0.233 0.210 0.204 0.199 0.180 0.167 0.184 0.170 0.164 0.123 

0.5 0.05 0.000 0.258 0.211 0.188 0.186 0.175 0.159 0.154 0.167 0.147 0.141 0.121 

0.5 0.10 0.000 0.216 0.179 0.164 0.152 0.152 0.135 0.126 0.124 0.130 0.124 0.094 

Linear Mixed Effects Model 

0.3 0.03 0.002 0.927 0.891 0.884 0.883 0.877 0.879 0.881 0.887 0.898 0.896 0.868 

0.3 0.05 0.034 0.895 0.850 0.794 0.780 0.762 0.747 0.743 0.758 0.759 0.744 0.724 

0.3 0.10 0.231 0.946 0.922 0.926 0.925 0.926 0.923 0.920 0.924 0.934 0.918 0.918 

0.4 0.03 0.000 0.907 0.886 0.872 0.872 0.880 0.882 0.873 0.892 0.894 0.893 0.872 

0.4 0.05 0.002 0.932 0.907 0.905 0.912 0.906 0.909 0.909 0.915 0.918 0.914 0.905 

0.4 0.10 0.046 0.895 0.832 0.801 0.774 0.766 0.750 0.742 0.777 0.753 0.747 0.737 

0.5 0.03 0.000 0.863 0.851 0.861 0.878 0.877 0.870 0.877 0.889 0.891 0.891 0.872 

0.5 0.05 0.000 0.900 0.900 0.898 0.911 0.906 0.909 0.912 0.915 0.913 0.912 0.904 

0.5 0.10 0.011 0.935 0.920 0.921 0.928 0.929 0.927 0.925 0.927 0.928 0.930 0.922 

Note: SMD=standardized mean difference. ICC=intraclass correlation coefficient. Inf indicates 

largest subset. The coverage is the proportion of the 1,000 simulations in which the true 

treatment effect is included in the 95% confidence interval for the estimated treatment effect. 

Coverage is much higher when using a linear mixed effects model than when using a linear 

model. 
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Table A4. Mean Squared Error of the Treatment Estimate for Unadjusted Models 

Parameter Number of Matched Controls 

SMD ICC 0 1  2 3 4 5 6 7 8 9 10 Inf 

Linear Model 

0.3 0.03 93.1 5.7 5.9 5.9 5.9 6.0 6.0 5.9 5.7 5.5 5.6 6.1 

0.3 0.05 95.4 8.2 8.3 8.4 8.4 8.4 8.4 8.4 8.2 7.9 8.0 8.5 

0.3 0.10 105.2 15.9 16.0 16.0 16.1 16.1 16.1 16.0 15.7 15.5 15.6 16.2 

0.4 0.03 162.9 5.8 5.9 6.0 5.8 5.9 5.8 5.8 5.2 5.3 5.4 6.1 

0.4 0.05 165.2 8.4 8.4 8.6 8.3 8.5 8.3 8.4 7.7 7.9 8.0 8.6 

0.4 0.10 171.3 15.1 15.1 15.3 15.0 15.2 15.0 15.1 14.4 14.6 14.7 15.3 

0.5 0.03 252.6 5.8 5.9 5.9 5.5 5.7 5.8 5.7 5.4 5.5 5.6 6.1 

0.5 0.05 254.9 8.4 8.5 8.5 8.1 8.3 8.4 8.3 7.9 8.0 8.1 8.6 

0.5 0.10 261.2 15.3 15.3 15.4 14.9 15.2 15.3 15.2 14.8 14.9 15.0 15.5 

Linear Mixed Effects Model 

0.3 0.03 93.1 5.7 5.9 5.9 5.9 6.0 6.0 5.9 5.7 5.5 5.6 6.1 

0.3 0.05 95.4 8.2 8.3 8.4 8.4 8.4 8.4 8.3 8.2 7.9 8.0 8.5 

0.3 0.10 105.2 15.8 16.0 16.0 16.1 16.1 16.1 16.0 15.7 15.5 15.6 16.2 

0.4 0.03 162.9 5.8 5.9 6.0 5.8 5.9 5.8 5.8 5.2 5.3 5.4 6.1 

0.4 0.05 165.2 8.4 8.4 8.6 8.3 8.5 8.4 8.4 7.7 7.9 8.0 8.6 

0.4 0.10 171.4 15.1 15.1 15.3 14.9 15.2 15.1 15.1 14.4 14.6 14.7 15.3 

0.5 0.03 252.6 5.8 5.9 5.9 5.5 5.7 5.8 5.7 5.4 5.5 5.6 6.1 

0.5 0.05 254.9 8.4 8.5 8.5 8.1 8.3 8.4 8.3 7.9 8.0 8.1 8.6 

0.5 0.10 261.2 15.3 15.4 15.4 15.0 15.2 15.3 15.2 14.8 14.9 15.0 15.5 

Note: SMD=standardized mean difference. ICC=intraclass correlation coefficient. Inf indicates 

largest subset. The means squared error is a measure of precision of an estimator, and is defined 

as the sum of the variance of the estimator and the square of the bias of the estimator across the 

1,000 simulations. 

  



  

86 

Table A5. Variance of the Treatment Effect Estimate for Unadjusted Models 

Parameter Number of Matched Controls 

SMD ICC 0 1  2 3 4 5 6 7 8 9 10 Inf 

Linear Model 

0.3 0.03 23.0 4.1 4.2 4.2 4.2 4.2 4.2 4.1 4.2 4.1 4.1 4.2 

0.3 0.05 25.4 6.6 6.7 6.6 6.7 6.7 6.7 6.6 6.7 6.6 6.6 6.7 

0.3 0.10 33.3 14.0 14.0 13.9 14.0 14.0 14.0 13.9 13.9 13.8 13.9 14.0 

0.4 0.03 38.0 4.2 4.1 4.2 4.1 4.2 4.2 4.2 4.1 4.1 4.1 4.2 

0.4 0.05 40.4 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.6 6.7 6.7 6.8 

0.4 0.10 47.0 13.5 13.4 13.5 13.4 13.5 13.5 13.6 13.3 13.4 13.4 13.5 

0.5 0.03 57.3 4.1 4.1 4.2 4.1 4.1 4.2 4.2 4.0 4.1 4.1 4.2 

0.5 0.05 59.7 6.7 6.7 6.7 6.6 6.7 6.8 6.8 6.6 6.6 6.6 6.8 

0.5 0.10 66.4 13.7 13.6 13.7 13.5 13.6 13.8 13.7 13.5 13.6 13.6 13.7 

Linear Mixed Effects Model 

0.3 0.03 23.0 4.1 4.2 4.2 4.2 4.2 4.2 4.1 4.2 4.1 4.1 4.2 

0.3 0.05 25.4 6.6 6.7 6.6 6.7 6.7 6.7 6.6 6.7 6.6 6.6 6.7 

0.3 0.10 33.3 14.0 14.0 13.9 14.0 14.0 14.0 13.9 13.9 13.8 13.9 14.0 

0.4 0.03 38.0 4.2 4.1 4.2 4.1 4.2 4.2 4.2 4.1 4.1 4.1 4.2 

0.4 0.05 40.4 6.7 6.7 6.8 6.7 6.8 6.7 6.8 6.6 6.7 6.7 6.8 

0.4 0.10 47.0 13.5 13.4 13.5 13.4 13.6 13.5 13.6 13.4 13.4 13.4 13.5 

0.5 0.03 57.3 4.1 4.1 4.2 4.1 4.1 4.2 4.2 4.0 4.1 4.1 4.2 

0.5 0.05 59.7 6.7 6.7 6.8 6.6 6.7 6.8 6.8 6.6 6.6 6.6 6.8 

0.5 0.10 66.4 13.7 13.7 13.7 13.5 13.7 13.8 13.7 13.5 13.6 13.6 13.7 

Note: SMD=standardized mean difference. ICC=intraclass correlation coefficient. Inf indicates 

largest subset. Reported are the variance of the treatment effect estimates across the 1,000 

simulations. The sampling variance was only marginally impacted by the number of matched 

controls. 
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Table A6. Bias of the Treatment Estimate for Covariate-Adjusted Models 

Note: SMD=standardized mean difference. ICC=intraclass correlation coefficient. Inf indicates 

largest subset. The bias is the difference between the estimated treatment effect and the true 

treatment effect (0). Presented is the mean of the bias of the treatment effect across the 1,000 

simulations.  

  

Parameters Number of Matched Controls 

SMD ICC 0 1  2 3 4 5 6 7 8 9 10 Inf 

Linear Model 

0.3 0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 

0.3 0.05 -0.03 -0.04 -0.04 -0.03 -0.04 -0.04 -0.03 -0.03 -0.04 -0.03 -0.03 -0.03 

0.3 0.10 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.09 0.09 

0.4 0.03 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

0.4 0.05 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

0.4 0.10 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 

0.5 0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

0.5 0.05 -0.03 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

0.5 0.10 -0.04 -0.04 -0.05 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 

Linear Mixed Effects Model 

0.3 0.03 -0.02 -0.03 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

0.3 0.05 -0.03 -0.04 -0.03 -0.03 -0.03 -0.04 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

0.3 0.10 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

0.4 0.03 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

0.4 0.05 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

0.4 0.10 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 

0.5 0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

0.5 0.05 -0.03 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

0.5 0.10 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 
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Table A7. Coverage of the Treatment Effect Estimate 95% Confidence Interval for Covariate-

Adjusted Models 

Parameters Number of Matched Controls 

SMD ICC 0 1  2 3 4 5 6 7 8 9 10 Inf 

Linear Model 

0.3 0.03 0.108 0.148 0.131 0.124 0.121 0.121 0.122 0.126 0.118 0.116 0.112 0.113 

0.3 0.05 0.254 0.279 0.278 0.274 0.259 0.260 0.261 0.263 0.259 0.255 0.260 0.253 

0.3 0.10 0.067 0.073 0.073 0.077 0.070 0.068 0.071 0.069 0.070 0.066 0.071 0.068 

0.4 0.03 0.111 0.144 0.130 0.122 0.118 0.115 0.120 0.115 0.114 0.116 0.113 0.114 

0.4 0.05 0.085 0.114 0.105 0.099 0.097 0.092 0.089 0.093 0.090 0.093 0.091 0.087 

0.4 0.10 0.250 0.251 0.252 0.251 0.252 0.249 0.243 0.246 0.247 0.250 0.253 0.251 

0.5 0.03 0.113 0.149 0.137 0.128 0.120 0.115 0.118 0.112 0.110 0.115 0.113 0.113 

0.5 0.05 0.086 0.117 0.101 0.100 0.098 0.091 0.091 0.087 0.086 0.091 0.090 0.087 

0.5 0.10 0.075 0.086 0.076 0.072 0.076 0.073 0.076 0.073 0.074 0.075 0.073 0.073 

Linear Mixed Effects Model 

0.3 0.03 0.945 0.942 0.946 0.942 0.942 0.944 0.943 0.942 0.941 0.942 0.942 0.942 

0.3 0.05 0.938 0.942 0.945 0.944 0.941 0.943 0.940 0.941 0.938 0.940 0.941 0.941 

0.3 0.10 0.943 0.942 0.943 0.945 0.944 0.946 0.943 0.945 0.944 0.944 0.942 0.942 

0.4 0.03 0.945 0.938 0.942 0.944 0.941 0.945 0.944 0.943 0.940 0.944 0.941 0.941 

0.4 0.05 0.943 0.941 0.942 0.943 0.944 0.944 0.944 0.943 0.939 0.940 0.942 0.941 

0.4 0.10 0.938 0.941 0.943 0.939 0.940 0.941 0.937 0.939 0.941 0.940 0.944 0.942 

0.5 0.03 0.945 0.946 0.941 0.943 0.944 0.944 0.945 0.942 0.945 0.942 0.941 0.941 

0.5 0.05 0.943 0.944 0.942 0.942 0.943 0.945 0.945 0.942 0.943 0.943 0.944 0.941 

0.5 0.10 0.943 0.945 0.941 0.944 0.945 0.945 0.944 0.943 0.943 0.942 0.942 0.942 

Note: SMD=standardized mean difference. ICC=intraclass correlation coefficient. Inf indicates 

largest subset. The coverage is the proportion of the 1,000 simulations in which the true 

treatment effect is included in the 95% confidence interval for the estimated treatment effect. 

Coverage is much higher when using a linear mixed effects model than when using a linear 

model. 
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Table A8. Mean Squared Error of the Treatment Estimate for Covariate-Adjusted Models 

Parameter Number of Matched Controls 

SMD ICC 0 1  2 3 4 5 6 7 8 9 10 Inf 

Linear Model 

0.3 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.3 0.05 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 

0.3 0.10 13.4 13.5 13.5 13.5 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 

0.4 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.4 0.05 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

0.4 0.10 13.1 13.1 13.1 13.1 13.1 13.0 13.0 13.1 13.1 13.1 13.1 13.1 

0.5 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.5 0.05 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

0.5 0.10 13.3 13.3 13.2 13.3 13.2 13.2 13.3 13.3 13.3 13.3 13.3 13.3 

Linear Mixed Effects Model 

0.3 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.3 0.05 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 

0.3 0.10 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 

0.4 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.4 0.05 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

0.4 0.10 13.1 13.1 13.0 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 

0.5 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.5 0.05 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

0.5 0.10 13.3 13.2 13.2 13.3 13.2 13.3 13.3 13.3 13.3 13.3 13.3 13.3 

Note: SMD=standardized mean difference. ICC=intraclass correlation coefficient. Inf indicates 

largest subset. The means square error is a measure of precision of an estimator, and is defined as 

the sum of the variance of the estimator and the square of the bias of the estimator across the 

1,000 simulations. 
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Table A9. Variance of the Treatment Effect Estimate for Covariate-Adjusted Models 

Parameter Number of Matched Controls 

SMD ICC 0 1  2 3 4 5 6 7 8 9 10 Inf 

Linear Model 

0.3 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.3 0.05 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 

0.3 0.10 13.4 13.5 13.4 13.5 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 

0.4 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.4 0.05 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

0.4 0.10 13.1 13.1 13.1 13.1 13.1 13.0 13.0 13.1 13.1 13.1 13.1 13.1 

0.5 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.5 0.05 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

0.5 0.10 13.3 13.3 13.2 13.3 13.2 13.2 13.3 13.3 13.3 13.3 13.3 13.3 

Linear Mixed Effects Model 

0.3 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.3 0.05 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 

0.3 0.10 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 

0.4 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.4 0.05 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

0.4 0.10 13.1 13.1 13.0 13.1 13.1 13.1 13.0 13.1 13.1 13.1 13.0 13.1 

0.5 0.03 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 

0.5 0.05 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

0.5 0.10 13.3 13.2 13.2 13.3 13.2 13.3 13.3 13.3 13.3 13.3 13.3 13.3 

Note: SMD=standardized mean difference. ICC=intraclass correlation coefficient. Inf indicates 

largest subset. Reported are the variance of the treatment effect estimates across the 1,000 

simulations. The sampling variance was only marginally impacted by the number of matched 

controls.
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Table A10. APACHE Points for the Acute Physiology Score 

APS Variable APS Points 

Heart Rate (beats per minute) 

≤39: 8 

40-49: 5 

50-99: 0 

100-109: 1 

110-119: 5 

120-139: 7 

140-154: 13 

≥155: 17 

Mean Arterial Blood Pressure (mmHg) 

≤39: 23 

40-59: 15 

60-69: 7 

70-79: 6 

80-99: 0 

100-119: 4 

120-129: 7 

130-139: 9 

≥140: 10 

Temperature (Celsius) 

≤32.9: 20 

33.0-33.4: 16 

33.4-33.9: 13 

34.0-34.9: 8 

35.0-35.9: 2 

36.0-39.9: 0 

≥40.0: 4 

Respiratory Rate (breaths per minute) 

≤5: 17 

6-11: 8 

12-13: 7 

14-24: 0 

25-34: 6 

35-39: 9 

40-49: 11 

≥50: 18 

 

For ventilated patients,  

if respiratory rate 6-12: 0 
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Table A10. APACHE Points for the Acute Physiology Score (continued) 

APS Variable APS Points 

Acid Base (pH, pCO2) 

pH < 7.20 & pCO2< 50: 12 

pH < 7.20: 4 

 

pH < 7.30 & pCO2< 30: 9 

pH < 7.30 & pCO2< 40: 6 

pH < 7.30 & pCO2<50: 3 

pH < 7.30 & pCO2≥ 50: 2 

  

pH < 7.35 & pCO2< 30: 9 

pH < 7.35 & pCO2< 45: 0 

pH < 7.35 & pCO2≥45: 1 

  

pH < 7.45 & pCO2<30: 5 

pH < 7.45 & pCO2< 45: 0 

pH < 7.45 & pCO2≥45: 1 

  

pH < 7.50 & pCO2< 30: 5 

pH < 7.50 & pCO2< 35: 0 

pH < 7.50 & pCO2< 45: 2 

pH < 7.50 & pCO2≥ 45: 12 

  

pH < 7.60 & pCO2< 40: 3 

pH < 7.60 & pCO2≥40: 12 

  

pH ≥7.60 & pCO2< 25: 0 

pH ≥ 7.60 & pCO2< 40: 3 

pH ≥ 7.60 & pCO2≥40: 12 

Albumin (g/l) 

<2.0: 11 

2.0-2.4: 6 

2.5-4.4: 0 

≥4.5: 4 

Bilirubin (mg/dL) 

<2.0: 0 

2.0-2.9: 5 

3.0-4.9: 6 

5.0-7.9: 8 

≥8.0: 16 
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Table A10. APACHE Points for the Acute Physiology Score (continued) 

APS Variable APS Points 

Blood Urea Nitrogen (mg/dL) 

<17: 0 

17-19: 2 

20-39: 7 

40-79: 11 

≥80: 12 

Creatinine (mg/dL) 

ARF if creatinine≥1.5 & urine<410 and dialysis=0 

For ARF=1: 

<1.5: 0 

≥1.5: 10 

For ARF=0: 

<0.5: 3 

0.5-1.49: 0 

1.5-1.94: 4 

≥1.95: 7 

Glucose (mg/dL) 

<40: 8 

40-59: 9 

60-199: 0 

200-349: 3 

≥350: 5 

Hematocrit 

≤40: 3 

41-49: 0 

≥50: 3 

PaO2 (%) or Alveolar–arterial gradient* for 

intubated patients with 𝐹𝑖𝑂2 ≥ 0.5) 

 

 

≤49: 15 

50-69: 5 

70-79: 2 

≥80: 0 

If patient is intubated, and 𝐹𝑖𝑂2 ≥ 0.5, use Alveolar–

arterial gradient 

<100: 0 

100-249: 7 

250-349: 9 

350-499: 11 

≥500: 14 

Sodium (mEq/L) 

<120: 3 

120-134: 2 

135-154: 0 

≥155: 4 
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Table A10. APACHE Points for the Acute Physiology Score (continued) 

APS Variable APS Points 

Urine Output (mL) 

<400: 15 

400-600: 8 

600-899: 7 

900-1499: 5 

1500-1999: 4 

2000-3999: 0 

≥4000: 1 

WBC Count (x 109/L) 

<1.0: 19 

1.0-2.9: 5 

3.0-19.9: 0 

20.0- 24.9: 1 

≥25.0: 5 

Glasgow Coma Scale See Appendix 0A11 and Appendix Table A12. 

Note: For intubated patients with 𝐹𝑖𝑂2 ≥ 0.5, we use Alveolar–arterial gradient (A-a gradient). 

The formula for A-a Gradient= 𝐹𝑖𝑂2(𝑃𝑎𝑡𝑚 − 𝑃𝐻2𝑂) −
𝑃𝐶𝑂2

𝑅
[133]. Here, 𝐹𝑖𝑂2 is the fraction of 

inspired oxygen, 𝑃𝑎𝑡𝑚 is the atmospheric pressure (760 mm HG at sea level), 𝑃𝐻2𝑂 is the water 

partial pressure in alveolus (= 47 mmHg at sea level, 100% saturated), and R is the respiratory 

quotient (normally 0.8). To match the acute physiology score computed in the eICU database, we 

let R=1, although it is typically set to 0.8, and we assumed sea level[133]. 
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Table A11. Glasgow Coma Score 

Score Best eye response 

1 No eye opening 

2 Eye opening to pain 

3 Eye opening to verbal command 

4 Eye opening spontaneously 

Score Best verbal response 

1 No verbal response 

2 Incomprehensible sounds 

3 Inappropriate words 

4 Confused 

5 Oriented 

Score Best motor response 

1 No motor response 

2 Extension to pain 

3 Flexion to pain 

4 Withdrawal from pain 

5 Localizing pain 

6 Obeys command 

Note: A Glasgow coma score of 13 or higher correlates with a mild brain injury, 9-12 is a 

moderate injury, and 8 or less a severe brain injury  
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Table A12. Acute Physiology Score Points for the Glasgow Coma Scale 

Eyes (range: 1-4) Verbal (range: 1-5) Motor (range: 1-6) APS Score 

1 

1 

1 or 2 48 

3 or 4 33 

5 or 6 16 

2, 3, 4, or 5 

1 or 2 29 

3 or 4 24 

5 or 6 Not clinically feasible 

2, 3, or 4 

1 

1 or 2 29 

3 or 4 24 

5 or 6 15 

2 or 3 

1 or 2 29 

3 or 4 24 

5 13 

6 10 

4 

1, 2, 3, or 4 13 

5 8 

6 3 

5 
1, 2, 3, 4, or 5 3 

6 0 
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APPENDIX B. R CODE 

Simulations 

library(plyr) 

library(dplyr) 

library(tidyverse) 

library(parallel) 

library(lme4) 

library(lmerTest) 

library(performance) 

library("ProfileMatchit") 

 

generate_data<-function(nt, nc, orig.SMD, orig.icc, treatment.effect){ 

   

#SET-UP THE PARAMETERS FOR THE DATA GENERATION 

  #measured covariates based on chosen orig.SMD. options are either 0.1, 0.4, 0.3, 0.5 

 if(orig.SMD==0.1){mu<-c(0.05, 0.10, 0.15, 0.05, 0.10, 0.15, 0.05, 0.10, 0.15, 0.10)} else 

   if(orig.SMD==0.3){mu<-c(0.1, 0.2, 0.3, 0.4, 0.5, 0.1, 0.2, 0.3, 0.4, 0.5)} else 

   if(orig.SMD==0.4){mu<-c(0.2, 0.3, 0.4, 0.5, 0.6, 0.2, 0.3, 0.4, 0.5, 0.6)} else 

   if(orig.SMD==0.5){mu<-c(0.3, 0.4, 0.5, 0.6, 0.7, 0.3, 0.4, 0.5, 0.6, 0.7)} else 

{stop("ERROR: Choose another parameter for the covariate overlap (0.1, 0.3, 0.4, 0.5)")} 

   

  #GENERATE THE DATA 

   

  #Generate covariates for the treated group 

  xt<-data.frame(x1=rnorm(nt, mean=mu[1], sd=1), x2=rnorm(nt, mean=mu[2], sd=1),  

                 x3=rnorm(nt, mean=mu[3], sd=1), x4=rnorm(nt, mean=mu[4], sd=1),  

                 x5=rnorm(nt, mean=mu[5], sd=1), x6=rnorm(nt, mean=mu[6], sd=1),  

                 x7=rnorm(nt, mean=mu[7], sd=1), x8=rnorm(nt, mean=mu[8], sd=1),   

                 x9=rnorm(nt, mean=mu[9], sd=1), x10=rnorm(nt, mean=mu[10], sd=1), 

                 x11=rnorm(nt, mean=0, sd=1),  

                 Treatment=1,  

                 eta=rnorm(nt, mean=0, sd=1)) 

   

  #Generate covariates for the control group 

  xc<-data.frame(x1=rnorm(nc, mean=0, sd=1), x2=rnorm(nc, mean=0, sd=1),  

                 x3=rnorm(nc, mean=0, sd=1), x4=rnorm(nc, mean=0, sd=1),  

                 x5=rnorm(nc, mean=0, sd=1), x6=rnorm(nc, mean=0, sd=1),  

                 x7=rnorm(nc, mean=0, sd=1), x8=rnorm(nc, mean=0, sd=1),   

                 x9=rnorm(nc, mean=0, sd=1), x10=rnorm(nc, mean=0, sd=1), 

                 x11=rnorm(nc, mean=0, sd=1),  

                 Treatment=0,  

                 eta=rnorm(nc, mean=0, sd=1)) 
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#Randomly distribute patients into 100 hospitals (treatment is all one hospital) 

  xt$hospital.id=1 

  xc$hospital.id=sample(2:100, nc, replace=TRUE) 

   

  sample<-rbind(xt, xc) 

    #parameters for each covariate in the outcome model 

  beta<-c(1,1,1,1,1,1,1,1,1,1) 

   

#Add a hospital level variance parameter from normal distribution. Variance set so that ICC is 

desired level 

   

hosp.var<-(sum(beta^2)+treatment.effect^2)*orig.icc/(1-orig.icc) 

   

sample<-sample%>% 

group_by(hospital.id)%>% 

mutate(hosp.effect=rnorm(1, mean=0, sd=sqrt(hosp.var))) 

  

#GENERATE THE OUTCOME 

sample<-sample%>%  

    mutate(Y=-1 + beta[1]*x1 + beta[2]*x2 + beta[3]*x3 + beta[4]*x4 + beta[5]*x5  

           + beta[6]*x6 + beta[7]*x7 + beta[8]*x8 + beta[9]*x9 + beta[10]*x10  

           + beta[11]*x11                               #unmeasured covariate 

           + treatment.effect*Treatment        #Treatment effect 

           + hosp.effect                                  #variance associated with hospital 

           + eta)                                             #random error 

  return(sample) 

 } 

 

## Matching 

 

runsim<-function(nt, nc, orig.SMD, orig.icc, nmatches, treatment.effect){ 

   

  r.square<-matrix(NA, ncol=1, nrow=(2*nmatches)+4) 

  all.results<-data.frame() 

  results<-data.frame() 

   

  sample<-generate_data(nt, nc, orig.SMD, orig.icc, treatment.effect) 

   

#Determine the amount of variation in outcome that can by explained by the measured covariates 

#Output the adjusted R^2 for the measured covariates 

r.square<-summary(lm(Y~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+Treatment, 

data=sample))$adj.r.squared  

 

  mean<-aggregate(sample[,1:10], list(sample$Treatment), FUN=mean) 

  treated<-sample[which(sample$Treatment==1), 1:10] 

  sd.treated<-apply(treated,2, sd) 
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  all.smd<-abs(mean[1,-1]-mean[2,-1])/sd.treated 

  all.smd<-apply(all.smd,1,mean) 

   

#Estimate the treatment effect with multilevel model using all data, unadjusted for the measured 

covariates 

  model1<-lmer(Y~Treatment+(1|hospital.id), data=sample) 

  estimate1<-coef(summary(model1))[2,1:2] #Treatment Estimate and SE 

  estimate1[3]<-estimate1[1]-1.96*estimate1[2] 

  estimate1[4]<-estimate1[1]+1.96*estimate1[2] 

  estimate1<-as.data.frame(t(estimate1)) 

  

  #Output the ICC from the model 

  icc<-icc(model1)[1] 

   

  estimate1<-cbind(estimate1,icc) 

  colnames(estimate1)<-c("Estimate", "SE", "lower", "upper", "icc") 

   

  estimate1<-estimate1%>% 

    mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

           bias=Estimate-treatment.effect) 

   

  estimate1$nmatches<-0 

  estimate1$model<-"Multilevel Unadjusted" 

  estimate1<-cbind(estimate1, all.smd) 

   

   

#Estimate the treatment effect with multilevel model using all data, adjust for the measured 

covariates 

model1b<-lmer(Y~Treatment+x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+(1|hospital.id), 

data=sample) 

  estimate1b<-coef(summary(model1b))[2,1:2] #Treatment Estimate and SE 

  estimate1b[3]<-estimate1b[1]-1.96*estimate1b[2] 

  estimate1b[4]<-estimate1b[1]+1.96*estimate1b[2] 

  estimate1b<-as.data.frame(t(estimate1b)) 

   

  #Output the ICC from the model 

   icc<-icc(model1b)[1] 

   

  estimate1b<-cbind(estimate1b,icc) 

  colnames(estimate1b)<-c("Estimate", "SE", "lower", "upper", "icc") 

   

  estimate1b<-estimate1b%>% 

  mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

           bias=Estimate-treatment.effect) 

   

  estimate1b$nmatches<-0 
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  estimate1b$model<-"Multilevel Adjusted" 

  estimate1b<-cbind(estimate1b, all.smd) 

    

  #Model without random effect 

  model2<-glm(Y~Treatment, data=sample) 

  estimate2<-coef(summary(model2))[2,1:2] #Treatment Estimate and SE 

  estimate2[3]<-estimate2[1]-1.96*estimate2[2] 

  estimate2[4]<-estimate2[1]+1.96*estimate2[2] 

  estimate2<-as.data.frame(t(estimate2)) 

  colnames(estimate2)<-c("Estimate", "SE", "lower", "upper") 

  estimate2$icc<-NA 

   

  estimate2<-estimate2%>% 

    mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

           bias=Estimate-treatment.effect) 

   

  estimate2$nmatches<-0 

  estimate2$model<-"Singlelevel Unadjusted" 

  estimate2<-cbind(estimate2, all.smd) 

   

   

  model2b<-glm(Y~Treatment+x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=sample) 

  estimate2b<-coef(summary(model2b))[2,1:2] #Treatment Estimate and SE 

  estimate2b[3]<-estimate2b[1]-1.96*estimate2b[2] 

  estimate2b[4]<-estimate2b[1]+1.96*estimate2b[2] 

  estimate2b<-as.data.frame(t(estimate2b)) 

  colnames(estimate2b)<-c("Estimate", "SE", "lower", "upper") 

  estimate2b$icc<-NA 

   

  estimate2b<-estimate2b%>% 

    mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

           bias=Estimate-treatment.effect) 

   

  estimate2b$nmatches<-0 

  estimate2b$model<-"Singlelevel Adjusted" 

  estimate2b<-cbind(estimate2b, all.smd) 

   

estimates<-rbind(estimate2, estimate2b, estimate1, estimate1b, make.row.names=FALSE) 

estimates$controls<-nc 

   

rm(estimate1, estimate2, estimate1b, estimate2b, model1b, model2b, model1, model2, icc, 

all.smd) 
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#Cardinality Matching 

#Loop through conducting one-to-one, 1-to-2, ..., 1-to-n cardinality matching. 

   

targets<-apply(sample[,1:10],2,mean) 

tols<-.05*sd.treated 

   

for (L in 1:nmatches){ 

m2<-ProfileMatchit::profilematchit(treat=sample$Treatment, covs=sample[,1:10], 

               targets=targets, tols=tols, estimand = "ATT", 

               ratio = L, #number of controls for each treated (1-to-L matching), 

               solver="gurobi", time=5*60) 

     

    #Output the matched sample 

    matched2<-match.data(m2, data=sample) 

    

    mean<-aggregate(matched2[,1:10], list(matched2$Treatment), FUN=mean) 

    treated<-matched2[which(matched2$Treatment==1), 1:10] 

    sd.treated<-apply(treated,2, sd) 

     

    all.smd<-abs(mean[1,-1]-mean[2,-1])/sd.treated 

    all.smd<-apply(all.smd, 1, mean) 

     

    #Estimate the treatment effect with multilevel model 

    model1<-lmer(Y~Treatment+(1|hospital.id), data=matched2) 

    estimate1<-coef(summary(model1))[2,1:2] #Treatment Estimate and SE 

    estimate1[3]<-estimate1[1]-1.96*estimate1[2] 

    estimate1[4]<-estimate1[1]+1.96*estimate1[2] 

    estimate1<-as.data.frame(t(estimate1)) 

    #Output the ICC from the model 

    icc<-icc(model1)[1] 

 

    estimate1<-cbind(estimate1,icc) 

    colnames(estimate1)<-c("Estimate", "SE", "lower", "upper", "icc") 

     

    estimate1<-estimate1%>% 

      mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

             bias=Estimate-treatment.effect) 

     

    estimate1$nmatches<-L 

    estimate1$model<-"Multilevel Unadjusted" 

    controls<-sum(matched2$Treatment==0) 

    estimate1<-cbind(estimate1, all.smd, controls) 
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#Estimate the treatment effect with multilevel model, adjusted for covariates 

model1b<-lmer(Y~Treatment+x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+(1|hospital.id), 

data=matched2) 

    estimate1b<-coef(summary(model1b))[2,1:2] #Treatment Estimate and SE 

    estimate1b[3]<-estimate1b[1]-1.96*estimate1b[2] 

    estimate1b[4]<-estimate1b[1]+1.96*estimate1b[2] 

    estimate1b<-as.data.frame(t(estimate1b)) 

     

    #Output the ICC from the model 

    icc<-icc(model1b)[1] 

     

    estimate1b<-cbind(estimate1b,icc) 

    colnames(estimate1b)<-c("Estimate", "SE", "lower", "upper", "icc") 

     

    estimate1b<-estimate1b%>% 

      mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

             bias=Estimate-treatment.effect) 

     

    estimate1b$nmatches<-L 

    estimate1b$model<-"Multilevel Adjusted" 

    controls<-sum(matched2$Treatment==0) 

    estimate1b<-cbind(estimate1b, all.smd, controls) 

    

    #Model without random effect 

    model2<-glm(Y~Treatment, data=matched2) 

    estimate2<-coef(summary(model2))[2,1:2] #Treatment Estimate and SE 

    estimate2[3]<-estimate2[1]-1.96*estimate2[2] 

    estimate2[4]<-estimate2[1]+1.96*estimate2[2] 

    estimate2<-as.data.frame(t(estimate2)) 

    colnames(estimate2)<-c("Estimate", "SE", "lower", "upper") 

    estimate2$icc<-NA 

 

    #Compute bias and coverage 

    estimate2<-estimate2%>% 

      mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

             bias=Estimate-treatment.effect) 

     

    estimate2$nmatches<-L 

    estimate2$model<-"Singlelevel Unadjusted" 

    estimate2<-cbind(estimate2, all.smd,controls) 

     

    model2b<-glm(Y~Treatment+x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=matched2) 

    estimate2b<-coef(summary(model2b))[2,1:2] #Treatment Estimate and SE 

    estimate2b[3]<-estimate2b[1]-1.96*estimate2b[2] 

    estimate2b[4]<-estimate2b[1]+1.96*estimate2b[2] 

    estimate2b<-as.data.frame(t(estimate2b)) 
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    colnames(estimate2b)<-c("Estimate", "SE", "lower", "upper") 

    estimate2b$icc<-NA 

     

    #Compute bias and coverage 

    estimate2b<-estimate2b%>% 

      mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

             bias=Estimate-treatment.effect) 

     

    estimate2b$nmatches<-L 

    estimate2b$model<-"Singlelevel Adjusted" 

    estimate2b<-cbind(estimate2b, all.smd,controls) 

     

estimates<-rbind(estimates, estimate2, estimate2b, estimate1, estimate1b, row.names=NULL) 

    results<-cbind(orig.SMD=orig.SMD, orig.icc=orig.icc, estimates, row.names = NULL)     

    } 

   

  #Largest possible subset 

   

  m3<-ProfileMatchit::profilematchit(treat=sample$Treatment, covs=sample[,1:10], 

                                     targets=targets, tols=tols,  

                                     estimand = "ATT", 

                                     ratio = Inf,  

                                     solver="gurobi", 

                                     time=5*60) 

   

  #Output the matched sample 

  matched3<-match.data(m3, data=sample) 

   

  mean<-aggregate(matched3[,1:10], list(matched3$Treatment), FUN=mean) 

  treated<-matched3[which(matched3$Treatment==1), 1:10] 

  sd.treated<-apply(treated,2, sd) 

   

  all.smd<-abs(mean[1,-1]-mean[2,-1])/sd.treated 

  all.smd<-apply(all.smd, 1, mean) 

   

  #Size of the Control Group 

  controls<-sum(matched3$Treatment==0) 

   

  #Estimate the treatment effect with multilevel model, unadjusted 

  model1<-lmer(Y~Treatment+(1|hospital.id), data=matched3) 

  estimate1<-coef(summary(model1))[2,1:2] #Treatment Estimate and SE 

  estimate1[3]<-estimate1[1]-1.96*estimate1[2] 

  estimate1[4]<-estimate1[1]+1.96*estimate1[2] 

  estimate1<-as.data.frame(t(estimate1)) 
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  #Output the ICC from the model 

  icc<-icc(model1)[1] 

    estimate1<-cbind(estimate1,icc) 

  colnames(estimate1)<-c("Estimate", "SE", "lower", "upper", "icc") 

   

  estimate1<-estimate1%>% 

    mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

           bias=Estimate-treatment.effect) 

   

  estimate1$nmatches<-Inf 

  estimate1$model<-"Multilevel Unadjusted" 

  estimate1<-cbind(estimate1, all.smd, controls) 

   

#Multilevel model, adjusted for covariates 

model1b<-lmer(Y~Treatment+x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+(1|hospital.id), 

data=matched3) 

  estimate1b<-coef(summary(model1b))[2,1:2] #Treatment Estimate and SE 

  estimate1b[3]<-estimate1b[1]-1.96*estimate1b[2] 

  estimate1b[4]<-estimate1b[1]+1.96*estimate1b[2] 

  estimate1b<-as.data.frame(t(estimate1b)) 

   

  #Output the ICC from the model 

  icc<-icc(model1b)[1] 

   

  estimate1b<-cbind(estimate1b,icc) 

  colnames(estimate1b)<-c("Estimate", "SE", "lower", "upper", "icc") 

   

  estimate1b<-estimate1b%>% 

    mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

           bias=Estimate-treatment.effect) 

   

  estimate1b$nmatches<-Inf 

  estimate1b$model<-"Multilevel Adjusted" 

  estimate1b<-cbind(estimate1b, all.smd, controls) 

   

  #Model without random effect, unadjusted 

  model2<-glm(Y~Treatment, data=matched3) 

  estimate2<-coef(summary(model2))[2,1:2] #Treatment Estimate and SE 

  estimate2[3]<-estimate2[1]-1.96*estimate2[2] 

  estimate2[4]<-estimate2[1]+1.96*estimate2[2] 

  estimate2<-as.data.frame(t(estimate2)) 

  colnames(estimate2)<-c("Estimate", "SE", "lower", "upper") 

  estimate2$icc<-NA 
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#Compute bias and coverage 

  estimate2<-estimate2%>% 

    mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

           bias=Estimate-treatment.effect) 

    estimate2$nmatches<-Inf 

  estimate2$model<-"Singlelevel Unadjusted" 

  estimate2<-cbind(estimate2, all.smd, controls) 

   

  #Singlelevel model, adjusted for covariates 

  model2b<-glm(Y~Treatment+x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=matched3) 

  estimate2b<-coef(summary(model2b))[2,1:2] #Treatment Estimate and SE 

  estimate2b[3]<-estimate2b[1]-1.96*estimate2b[2] 

  estimate2b[4]<-estimate2b[1]+1.96*estimate2b[2] 

  estimate2b<-as.data.frame(t(estimate2b)) 

  colnames(estimate2b)<-c("Estimate", "SE", "lower", "upper") 

  estimate2b$icc<-NA 

   

  #Compute bias and coverage 

  estimate2b<-estimate2b%>% 

    mutate(coverage=if_else(lower<treatment.effect & upper>treatment.effect, 1, 0), 

           bias=Estimate-treatment.effect) 

   

  estimate2b$nmatches<-Inf 

  estimate2b$model<-"Singlelevel Adjusted" 

  estimate2b<-cbind(estimate2b, all.smd, controls) 

   

  estimates<-rbind(estimate2,estimate2b, estimate1,estimate1b, row.names=NULL) 

  resultsa<-cbind(orig.SMD=orig.SMD, orig.icc=orig.icc, estimates, row.names = NULL) 

rm(estimate1, estimate2, estimate1b, estimate2b, model1, model2, icc, m3, matched3, all.smd, 

controls) 

 

all.results<-rbind(all.results, results, resultsa) 

all.results<-cbind(all.results, r.square) 

return(all.results) 

} 
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eICU Data Cleaning 

library(sqldf) 

library (deSolve) 

library(dplyr) 

library(lubridate) 

library(ggplot2) 

library(plotly) 

library(MLmetrics) 

library(table1) 

library(tidyverse) 

library(purrr) 

library(fastDummies) 

 

patient = read("patient.csv.gz", show_col_types = FALSE) #200859 

hospital = read("hospital.csv.gz", show_col_types = FALSE) #208 

apachePatientResult = read("apachePatientResult.csv.gz", show_col_types = FALSE) #297064 

apacheApsVar = read("apacheApsVar.csv.gz", show_col_types = FALSE) #171177 

apachePredVar = read("apachePredVar.csv.gz", show_col_types = FALSE)#171177 

#Exclude ICU readmissions 

patient_filtered = patient %>%  

filter(unitstaytype!="readmit") %>% 

left_join(hospital, by="hospitalid")  

 

#Categorize everyone 89 and older as 90 to protect patient privacy 

patient_filtered = patient_filtered %>%  

mutate(age_numeric = if_else(age == "> 89", "90", age) %>% as.numeric())  

 

#Limit to those 16 and older 

patient_filtered = patient_filtered %>%  

filter(age_numeric >= 16) 

 

#Add in APACHE variables 

patient_filtered = patient_filtered %>%  

left_join(apachePatientResult %>%  

filter(apacheversion == "IVa" & apachescore>0) %>% 

select(patientunitstayid, acutephysiologyscore, apachescore, predictedhospitalmortality, 

                     actualhospitallos, actualhospitalmortality), by = "patientunitstayid")  

#Limit to those without missing apache 

patient_filtered = patient_filtered %>%  

filter(!is.na(apachescore) & apachescore>0 & predictedhospitalmortality>0)      

 

#Limit to patients with a diagnosis 

patient_filtered = patient_filtered %>% filter(!is.na(apacheadmissiondx))      
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#APACHE score for age 

patient_filtered = patient_filtered %>%  

 mutate(age_score = case_when(age_numeric<=44 ~0, 

                               age_numeric>=45 & age_numeric<=59~5, 

                               age_numeric>=60 & age_numeric<=64~11, 

                               age_numeric>=65 & age_numeric<=69~13, 

                               age_numeric>=70 & age_numeric<=74~16, 

                               age_numeric>=75 & age_numeric<=84~17, 

                               age_numeric>=85~24)) 

 

#Chronic Conditions score 

patient_filtered = patient_filtered %>%  

left_join(apachePredVar %>%  

select(patientunitstayid, admitdiagnosis, aids, hepaticfailure, lymphoma,  

metastaticcancer, leukemia, immunosuppression, cirrhosis, electivesurgery,  

thrombolytics, diedinhospital, diabetes), by = "patientunitstayid")  

 

patient_filtered = patient_filtered %>%  

  mutate(comorbid_score = case_when(   

    electivesurgery==1 ~ 0L,  

    aids==1 ~ 23L, 

    hepaticfailure==1 ~ 16L, 

    lymphoma==1 ~ 13L, 

    metastaticcancer==1 ~ 11L, 

    leukemia==1  ~ 10L, 

    immunosuppression==1 ~ 10L, 

    cirrhosis==1 ~ 4L, 

    TRUE ~ 0L 

  )) 

 

#Acute Physiology Score 

#APACHE Scoring 

apacheApsVar2 = apacheApsVar %>%  

  mutate(temp_score = case_when( 

    temperature == -1 ~ 0L, 

    temperature < 33.0 ~ 20L, 

    temperature < 33.5 ~ 16L, 

    temperature < 34.0 ~ 13L, 

    temperature < 35.0 ~ 8L, 

    temperature < 36.0 ~ 2L, 

    temperature < 40.0 ~ 0L, 

    temperature >= 40.0 ~ 4L, 

    is.na(temperature) ~0L 

  )) 
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apacheApsVar2 = apacheApsVar2 %>%  

  mutate(map_score = case_when( 

    meanbp == -1 ~ 0L, 

    meanbp <   40 ~ 23L, 

    meanbp <   60 ~ 15L, 

    meanbp <   70 ~ 7L, 

    meanbp <   80 ~ 6L, 

    meanbp <  100 ~ 0L, 

    meanbp <  120 ~ 4L, 

    meanbp <  130 ~ 7L, 

    meanbp <  140 ~ 9L, 

    meanbp >= 140 ~ 10L, 

    is.na(meanbp)~ 0L 

  )) 

 

apacheApsVar2 = apacheApsVar2 %>%  

  mutate(hr_score = case_when( 

    heartrate == -1 ~ 0L, 

    heartrate < 40 ~ 8L, 

    heartrate < 50 ~ 5L, 

    heartrate < 100 ~ 0L, 

    heartrate < 110 ~ 1L, 

    heartrate < 120 ~ 5L, 

    heartrate < 140 ~ 7L, 

    heartrate < 155 ~ 13L, 

    heartrate >= 155 ~ 17L, 

    is.na(heartrate)~ 0L 

  )) 

 

apacheApsVar2 = apacheApsVar2 %>%  

  mutate(rr_score = case_when( 

    respiratoryrate == -1 ~ 0L, 

    vent == 1 & respiratoryrate <=12 & respiratoryrate>=6 ~ 0L, 

    respiratoryrate <   6 ~ 17L, 

    respiratoryrate <  12 ~ 8L, 

    respiratoryrate <  14 ~ 7L, 

    respiratoryrate <  25 ~ 0L, 

    respiratoryrate <  35 ~ 6L, 

    respiratoryrate <  40 ~ 9L, 

    respiratoryrate <  50 ~ 11L, 

    respiratoryrate >= 50 ~ 18L, 

    is.na(respiratoryrate)~ 0L 

  )) 
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apacheApsVar2 = apacheApsVar2 %>%  

  mutate(acidbase_score = case_when( 

    ph == -1 |  pco2== -1~ 0L, 

    ph < 7.20 & pco2 < 50 ~ 12L, 

    ph < 7.20 ~ 4L, 

     

    ph < 7.30 & pco2 < 30 ~ 9L, 

    ph < 7.30 & pco2 < 40 ~ 6L, 

    ph < 7.30 & pco2 <50 ~ 3L, 

    ph < 7.30 & pco2 >= 50 ~ 2L, 

     

    ph < 7.35 & pco2 < 30 ~ 9L, 

    ph < 7.35 & pco2 < 45 ~ 0L, 

    ph < 7.35 & pco2 >=45 ~ 1L, 

     

    ph < 7.45 & pco2 <30 ~ 5L, 

    ph < 7.45 & pco2 < 45 ~ 0L, 

    ph < 7.45 & pco2 >= 45 ~ 1L, 

     

    ph < 7.50 & pco2 < 30 ~ 5L, 

    ph < 7.50 & pco2 < 35 ~ 0L, 

    ph < 7.50 & pco2 < 45 ~ 2L, 

    ph < 7.50 & pco2 >= 45 ~ 12L, 

     

    ph < 7.60 & pco2 < 40 ~ 3L, 

    ph < 7.60 & pco2 >=40 ~ 12L, 

     

    ph >= 7.60 & pco2 < 25 ~ 0L, 

    ph >= 7.60 & pco2 < 40 ~ 3L, 

    ph >= 7.60 & pco2 >= 40 ~ 12L, 

    is.na(ph)~ 0L 

  )) 

 

apacheApsVar2 = apacheApsVar2 %>%  

  mutate(sodium_score = case_when( 

    sodium == -1 ~ 0L, 

    sodium <  120 ~ 3L, 

    sodium <  135 ~ 2L, 

    sodium <  155 ~ 0L, 

    sodium >= 155 ~ 4L, 

    is.na(sodium)~ 0L 

  )) 
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apacheApsVar2 = apacheApsVar2 %>%  

mutate(arf = if_else(creatinine >= 1.5 & urine < 410 & urine>-1 & dialysis==0, 1,0,    

missing=0)) %>% 

  mutate(creatinine_score = case_when( 

    creatinine == -1 ~ 0L, 

    arf == 1 & creatinine <  1.5 ~ 0L, 

    arf == 1 & creatinine >= 1.5 ~ 10L, 

    arf == 0 & creatinine <  0.5 ~ 3L, 

    arf == 0 & creatinine <  1.5 ~ 0L, 

    arf == 0 & creatinine <  1.95 ~ 4L, 

    arf == 0 & creatinine >= 1.95 ~ 7L, 

    is.na(creatinine)~ 0L 

  )) 

 

apacheApsVar2 = apacheApsVar2 %>%  

  mutate(uo_score = case_when( 

    urine == -1 ~ 0L, 

    urine < 400 ~ 15L, 

    urine < 600 ~ 8L, 

    urine < 900 ~ 7L, 

    urine < 1500 ~ 5L, 

    urine < 2000 ~ 4L, 

    urine < 4000 ~ 0L, 

    urine >= 4000 ~ 1L, 

    is.na(urine)~ 0L 

  )) 

 

apacheApsVar2 = apacheApsVar2 %>%  

  mutate(bun_score = case_when( 

    bun == -1 ~ 0L, 

    bun <  17.0 ~ 0L, 

    bun <  20.0 ~ 2L, 

    bun <  40.0 ~ 7L, 

    bun <  80.0 ~ 11L, 

    bun >= 80.0 ~ 12L, 

    is.na(bun)~ 0L 

  )) 

 

apacheApsVar2 = apacheApsVar2 %>%  

  mutate(hct_score = case_when( 

    hematocrit == -1 ~ 0L, 

    hematocrit < 41.0 ~ 3L, 

    hematocrit < 50.0 ~ 0L, 

    hematocrit >= 50.0 ~ 3L, 

    is.na(hematocrit)~ 0L 

  )) 
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apacheApsVar2 = apacheApsVar2 %>%  

  mutate(wbc_score = case_when( 

    wbc == -1 ~ 0L, 

    wbc <   1.0 ~ 19L, 

    wbc <   3.0 ~ 5L, 

    wbc <  20.0 ~ 0L, 

    wbc <  25.0 ~ 1L, 

    wbc >= 25.0 ~ 5L, 

    is.na(wbc)~ 0L 

  )) 

 

apacheApsVar2 = apacheApsVar2 %>%  

  mutate(bilirubin_score = case_when( 

    bilirubin == -1 ~ 0L, 

    bilirubin >= 8 ~ 16L, 

    bilirubin >= 5 ~ 8L, 

    bilirubin >= 3 ~ 6L, 

    bilirubin >= 2 ~ 5L, 

    bilirubin < 2  ~ 0L, 

    is.na(bilirubin)~ 0L 

  )) 

 

apacheApsVar2 = apacheApsVar2 %>%  

  mutate(albumin_score = case_when( 

    albumin == -1 ~ 0L, 

    albumin <= 1.9 ~ 11L, 

    albumin <= 2.4 ~ 6L, 

    albumin <= 4.4 ~ 0L, 

    albumin >= 4.5 ~ 4L, 

    is.na(albumin)~ 0L 

  )) 

 

apacheApsVar2 = apacheApsVar2 %>%  

  mutate(glucose_score = case_when( 

    glucose == -1 ~ 0L, 

    glucose < 40 ~ 8L, 

    glucose < 60 ~ 9L, 

    glucose < 200 ~ 0L, 

    glucose < 350 ~ 3L, 

    glucose >= 350 ~ 5L, 

    is.na(glucose)~ 0L 

  )) 
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apacheApsVar2 = apacheApsVar2 %>%  

  mutate(pao2_score = case_when( 

    pao2 == -1 ~ 0L, 

    pao2 < 50 ~ 15L, 

    pao2 < 70 ~ 5L, 

    pao2 < 80 ~ 2L, 

    pao2 >=80 ~ 0L, 

    is.na(pao2)~ 0L)) 

 

#If Fio2>50% use aa gradient 

 

#Formula: 

apacheApsVar2$fio2<-if_else(apacheApsVar2$intubated==0 & apacheApsVar2$fio2==-1, 21, 

apacheApsVar2$fio2) 

 

#atmospheric pressure (p.atm) is 760 at sea level 

p.atm<-760 

 

apacheApsVar2 = apacheApsVar2 %>%  

  mutate(aa_grade = (fio2/100)*(p.atm-47)-(pco2/1)-pao2) 

 

apacheApsVar2 = apacheApsVar2 %>% 

  mutate(aa_grade_score = case_when( 

    intubated==0 ~ 0L, 

    intubated==1 & fio2>=50 & aa_grade < 100 ~ 0L, 

    intubated==1 & fio2>=50 & aa_grade <250 ~ 7L, 

    intubated==1 & fio2>=50 & aa_grade <350 ~ 9L, 

    intubated==1 & fio2>=50 & aa_grade <500 ~ 11L, 

    intubated==1 & fio2>=50 & aa_grade >=500 ~ 14L 

  )) 

 

apacheApsVar2 = apacheApsVar2 %>% 

  mutate(pao2_aa_score = case_when( 

    intubated==0 ~ pao2_score, 

    intubated==1 & fio2 < 50 ~ pao2_score, 

    intubated==1 & fio2 >= 50 ~ aa_grade_score 

  )) 

 

# APACHE scores for Glasgow Coma Scale 

apacheApsVar2 = apacheApsVar2 %>% 

  mutate(gcs_score = case_when( 

    eyes == -1 | verbal == -1 | motor == -1 ~ 0, 

    eyes == 1 & verbal == 1 & motor <= 2 ~ 48, 

    eyes == 1 & verbal == 1 & motor <= 4 ~ 33, 

    eyes == 1 & verbal == 1 & motor <= 6 ~ 16, 

    eyes == 1 & verbal > 1 & motor <= 2 ~ 29, 
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    eyes == 1 & verbal > 1 & motor <= 4 ~ 24, 

    eyes == 1 & verbal > 1 & motor <= 6 ~ 99, 

     

    eyes > 1 & verbal == 1 & motor <= 2 ~ 29, 

    eyes > 1 & verbal == 1 & motor <= 4 ~ 24, 

    eyes > 1 & verbal == 1 & motor <= 6 ~ 15, 

    eyes > 1 & verbal <= 3 & motor <= 2 ~ 29, 

    eyes > 1 & verbal <= 3 & motor <= 4 ~ 24, 

    eyes > 1 & verbal <= 3 & motor == 5 ~ 13, 

    eyes > 1 & verbal <= 3 & motor == 6 ~ 10, 

    eyes > 1 & verbal == 4 & motor <= 4 ~ 13, 

    eyes > 1 & verbal == 4 & motor == 5 ~ 8, 

    eyes > 1 & verbal == 4 & motor == 6 ~ 3, 

     

    eyes > 1 & verbal == 5 & motor <= 5 ~ 3, 

    eyes > 1 & verbal == 5 & motor == 6 ~ 0, 

    TRUE ~ 0 

  )) 

 

#Glasgow Coma Score, rescaled 

apacheApsVar2 = apacheApsVar2 %>% 

  mutate(Glasgow_rescaled=15-(eyes+verbal+motor)) 

 

apacheApsVar2 = apacheApsVar2 %>% 

  mutate(Glasgow_rescaled = if_else( 

    eyes == -1 | verbal == -1 | motor == -1 , 15, Glasgow_rescaled 

    )) 

     

# Join to patient_filtered 

eicu = patient_filtered %>%  

  left_join(apacheApsVar2, by="patientunitstayid") #135987 

 

#Diagnoses 

dx<-read.csv("diagnoses categories.csv") 

 

eicu<-eicu%>% 

  left_join(dx %>%  

            select(apacheadmissiondx, category, dx, postop, Diagnosis_code), 

            by="apacheadmissiondx") 

 

eicu$Diagnosis_code<-as.factor(eicu$Diagnosis_code) 

 

#Create dummy variables for the categorical diagnosis  

eicu <- dummy_cols(eicu, select_columns = 'dx') 
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#ED Admission 

eicu$ED<-ifelse(eicu$hospitaladmitsource=="Emergency Department", 1, 0) 

 

eicu$male<-if_else(eicu$gender=="Male", 1, 0) 

 

eicu$gender[is.na(eicu$gender)]<-"Unknown" 

eicu$ED[is.na(eicu$ED)]<-0 

 

#Remove missing/other gender 

eicu<-eicu[which(eicu$gender != "Unknown" & eicu$gender !="Other"),] 

#Range of unit stays by hospital 

eicu$hospid<-as.factor(eicu$hospitalid) 

 

#Range of unit stays by hospital: 

hosps<-eicu%>% 

  group_by(hospitalid)%>% 

  summarise(n=n()) 

 

#Limit to patients that went to hospitals with at least 300 hospitalizationshosps<-

hosps[which(hosps$n>=300), ]  

 

eicu = hosps %>% left_join(eicu, by="hospitalid") 
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Analysis of eICU Data 

devtools::install('C:/Users/mcgrathb/OneDrive - North Dakota University 

System/NDSU/Dissertation/ProfileMatchit') 

 

library("ProfileMatchit") 

library(lme4) 

library(table1) 

library(dplyr) 

library(gtsummary) 

library(sqldf) 

library(arm) 

library(ggplot2) 

 

#Read in the data and functions 

eicu<-readRDS("eicu.rds") 

 

#set the covariates 

covars<-c("albumin_score", "bilirubin_score", "bun_score", "creatinine_score", 

"glucose_score","hct_score", "acidbase_score", "sodium_score", "wbc_score",  "pao2_aa_score", 

"uo_score", "hr_score", "map_score", "temp_score", "rr_score", "gcs_score", "male" , "postop", 

"ED", "age_numeric", "comorbid_score","dx_CARDIOVASC", "dx_GI", "dx_HEMATO", 

"dx_METABENDO",  "dx_MUSKELSKIN", "dx_NEUROLOGIC", "dx_RENALGENI", 

"dx_RESPIRAT", "dx_SEPSIS", "dx_TRAUMA", "apachescore") 

 

hosps<-eicu%>% 

group_by(hospitalid)%>% 

summarise(n=n()) 

 

#Create an indicator variable for hospital 

hosps$hosp = seq.int(nrow(hosps)) 
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One-to-One Matching 

### one-to-one matching. 

#Use each hospital as the profile. Find one match from the remaining control hospitals. 

set.seed(1234) 

datalist = list() 

 

for (i in 1:nrow(hosps)) { 

    eicu$case<-ifelse(eicu$hosp==i,1,0) 

 

#Set the target to be the mean of the focal group (i.e., case hospital's population) 

targets<-apply(eicu[which(eicu$case==1),covars], 2, mean) 

 

#Let the tolerances be .05 standard deviations from the focal group 

tols<-.05*apply(eicu[which(eicu$case==1),covars], 2, sd) 

 

match.out<-ProfileMatchit::profilematchit(treat=eicu$case,  

                                          covs=eicu[,covars],  

                                          targets=targets,  

                                          tols=tols, 

                                          method = "cardinality",  

                                          estimand = "ATT", 

                                          ratio = 1,   

                                          verbose = FALSE,  

                                          solver="gurobi", 

                                          time=60*20) 

 

#Output the matched sample 

matched<-match.data(match.out, data=eicu) 

 

matched$iteration<-i 

counts<-as.data.frame(table(matched$hosp)) 

counts<-counts[which(counts$Var1 !=i),] 

average.cluster.size<-mean(counts$Freq) 

datalist[[i]]<-matched 

} 

allhosp1<-do.call(rbind, datalist)  

allhosp1$iteration<-as.factor(allhosp1$iteration) 

 

allhosp1$case <- factor(allhosp1$case, levels=c(0, 1), labels=c("Matched Controls", "Case 

Hospital")) 

allhosp1$diedinhospital <- factor(allhosp1$diedinhospital, levels=c(0, 1), labels=c("Alive", 

"Expired")) 

label(allhosp1$iteration) <- "Hospital" 

saveRDS(allhosp1, "allhosp1.RDS") 
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##Compare in-hospital mortality rates at the case hospital relative to the comparison hospitals. 

#Use a model that has a random intercept for hospital. 

 

#Contains a random effect for matched hospital 

modellist = list() 

 

for (i in 1:nrow(hosps)) { 

 

#Determine which hospitals were significantly higher than their benchmark. 

  test<-allhosp1[which(allhosp1$iteration==i), ]    

   

model <- glmer(diedinhospital ~ case + comorbid_score + male + postop + ED + 

age_numeric +   dx_CARDIOVASC + dx_GI + dx_HEMATO + dx_METABENDO + 

dx_MUSKELSKIN +  dx_NEUROLOGIC + dx_RENALGENI +  dx_RESPIRAT + 

dx_SEPSIS + apachescore + (1 | hosp), data = test, family = binomial,  control = 

glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=1e6)), nAGQ =10) 

 

  fixef<-as.data.frame(coef(summary(model))) 

  fixef<-fixef[2,] #only keep the fixed effect associated with "case" 

   

  fixef$sig<-ifelse(fixef$"Pr(>|z|)"<.05, 1,0) 

  fixef$direction<-ifelse(fixef$"Estimate"<0, "lower","higher") 

  fixef$iteration<-i 

    modellist[[i]]<-fixef 

} 

 

allmodel1<-do.call(rbind, modellist)  

saveRDS(allmodel1, "allmodel1.RDS") 

table(sig=allmodel1$sig,allmodel1$direction) 
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Ten-to-One Matching 

### ten-to-one Matching 

#ten-to-one Mahalanbois distance matching was used in Silber, 2016 

 

set.seed(1234) 

datalist = list() 

 

for (i in 1:nrow(hosps)) { 

    eicu$case<-ifelse(eicu$hosp==i,1,0) 

 

#Set the target to be the mean of the focal group (i.e., case hospital's population) 

targets<-apply(eicu[which(eicu$case==1),covars], 2, mean) 

 

#Let the tolerances be .05 standard deviations from the focal group 

tols<-.05*apply(eicu[which(eicu$case==1),covars], 2, sd) 

 

match.out<-ProfileMatchit::profilematchit(treat=eicu$case,  

                                          covs=eicu[,covars],  

                                          targets=targets,  

                                          tols=tols, 

                                          method = "cardinality",  

                                          estimand = "ATT", 

                                          ratio = 10,   

                                          verbose = FALSE,  

                                          solver="gurobi", 

                                          time=60*20) 

 

#Output the matched sample 

matched<-match.data(match.out, data=eicu) 

 

matched$iteration<-i 

counts<-as.data.frame(table(matched$hosp)) 

counts<-counts[which(counts$Var1 !=i),] 

average.cluster.size<-mean(counts$Freq) 

datalist[[i]]<-matched 

} 

allhosp10<-do.call(rbind, datalist)  

allhosp10$iteration<-as.factor(allhosp10$iteration) 

 

allhosp10$case <- factor(allhosp1$case, levels=c(0, 1), labels=c("Matched Controls", "Case 

Hospital")) 

allhosp1$diedinhospital <- factor(allhosp10$diedinhospital, levels=c(0, 1), labels=c("Alive", 

"Expired")) 

label(allhosp10$iteration) <- "Hospital" 

saveRDS(allhosp10, " allhosp10.RDS") 
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##Compare in-hospital mortality rates at the case hospital relative to the comparison hospitals. 

#Use a model that has a random intercept for hospital. 

 

#Contains a random effect for matched hospital 

modellist = list() 

 

for (i in 1:nrow(hosps)) { 

 

#Determine which hospitals were significantly higher than their benchmark. 

  test<- allhosp10[which(allhosp10$iteration==i), ]    

   

model <- glmer(diedinhospital ~ case + comorbid_score + male + postop + ED + 

age_numeric +   dx_CARDIOVASC + dx_GI + dx_HEMATO + dx_METABENDO + 

dx_MUSKELSKIN +  dx_NEUROLOGIC + dx_RENALGENI +  dx_RESPIRAT + 

dx_SEPSIS + apachescore + (1 | hosp), data = test, family = binomial,  control = 

glmerControl(optimizer = "bobyqa", optCtrl=list(maxfun=1e6)), nAGQ =10) 

 

  fixef<-as.data.frame(coef(summary(model))) 

  fixef<-fixef[2,] #only keep the fixed effect associated with "case" 

   

  fixef$sig<-ifelse(fixef$"Pr(>|z|)"<.05, 1,0) 

  fixef$direction<-ifelse(fixef$"Estimate"<0, "lower","higher") 

  fixef$iteration<-i 

    modellist[[i]]<-fixef 

} 

 

allmodel10<-do.call(rbind, modellist)  

saveRDS(allmodel10, " allmodel10.RDS") 

table(sig= allmodel10$sig, allmodel10$direction) 
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Compute SMD of One-to-One and Ten-to-One Matched Samples 

library(lme4) 

library(arm) 

library(ggplot2) 

library(tidyverse) 

library(smd) 

 

allhosp1<-readRDS("allhosp1.RDS") 

allhosp10<-readRDS("allhosp10.RDS") 

 

#convert to factors 

 

cols<- c("male" , "postop", "ED", "dx_CARDIOVASC", "dx_GI", "dx_HEMATO", 

"dx_METABENDO", "dx_MUSKELSKIN", "dx_NEUROLOGIC", "dx_RENALGENI", 

"dx_RESPIRAT", "dx_SEPSIS", "dx_TRAUMA") 

 

allhosp1[cols] <- lapply(allhosp1[cols], factor) 

allhosp10[cols] <- lapply(allhosp10[cols], factor) 

 

keep<-c("iteration", "case", "albumin_score", "bilirubin_score", "bun_score", "creatinine_score", 

"glucose_score","hct_score", "acidbase_score", "sodium_score", "wbc_score",  "pao2_aa_score", 

"uo_score", "hr_score", "map_score", "temp_score", "rr_score", "gcs_score", "male" , "postop", 

"ED", "age_numeric", "comorbid_score","dx_CARDIOVASC", "dx_GI", "dx_HEMATO", 

"dx_METABENDO", "dx_MUSKELSKIN", "dx_NEUROLOGIC", "dx_RENALGENI", 

"dx_RESPIRAT", "dx_SEPSIS", "dx_TRAUMA", "apachescore") 

 

 

covars<-c("albumin_score", "bilirubin_score", "bun_score", "creatinine_score", 

"glucose_score","hct_score", "acidbase_score", "sodium_score", "wbc_score",  "pao2_aa_score", 

"uo_score", "hr_score", "map_score", "temp_score", "rr_score", "gcs_score", "male" , "postop", 

"ED", "age_numeric", "comorbid_score","dx_CARDIOVASC", "dx_GI", "dx_HEMATO", 

"dx_METABENDO", "dx_MUSKELSKIN", "dx_NEUROLOGIC", "dx_RENALGENI", 

"dx_RESPIRAT", "dx_SEPSIS", "dx_TRAUMA", "apachescore") 

 

meanSMD = list() 

 

for (i in 1:113) { 

      test<-allhosp1[which(allhosp1$iteration==i), keep ]  

      #Compute the SMD for each variable used in the matching algorithm 

      smd<-test %>% 

        summarize_at( 

          .vars = covars, 

          .funs = list(smd = ~ smd(., g = case)$estimate)) 
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meansmd<-as.data.frame(apply(abs(smd),1,mean)) 

  meansmd$iteration<-i 

   meanSMD[[i]]<-meansmd 

} 

 

meanSMD<-do.call(rbind, meanSMD)  

colnames(meanSMD)<-c("meanSMD", "iteration") 

min(meanSMD[,1]) 

max(meanSMD[,1]) 

median(meanSMD[,1]) 

 

#SMD for the ten-to-one Matched cohort 

 

meanSMD = list() 

for (i in 1:113) { 

    test<-allhosp10[which(allhosp10$iteration==i), keep ]  

  #Compute the SMD for each variable used in the matching algorithm 

  smd<-test %>% 

    summarize_at( 

      .vars = covars, 

      .funs = list(smd = ~ smd(., g = case)$estimate)) 

   

  meansmd<-as.data.frame(apply(abs(smd),1,mean)) 

  meansmd$iteration<-i 

   

  meanSMD[[i]]<-meansmd 

} 

 

meanSMD<-do.call(rbind, meanSMD)  

colnames(meanSMD)<-c("meanSMD", "iteration") 

min(meanSMD[,1]) 

max(meanSMD[,1]) 

median(meanSMD[,1]) 
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Standard Regression Approach 

library(lme4) 

library(table1) 

library(dplyr) 

library(gtsummary) 

library(sqldf) 

library(arm) 

library(ggplot2) 

library(tidyverse) 

 

n_percent = function(x, value = 1) { 

  return(paste0( 

    format(sum(x %in% value, na.rm = T), big.mark = ","), " (", 

    format(round(sum(x %in% value, na.rm = T)/n()*100, digits = 1), nsmall = 1), "%)")) 

} 

 

median_iqr = function(x) { 

  return(paste0(format(round(median(x, na.rm = T),2), nsmall = 0, big.mark = ","), " (", 

                format(round(quantile(x, probs = .25, na.rm = T), 2), nsmall = 0), "-" , 

                format(round(quantile(x, probs = .75, na.rm = T),2), nsmall = 0), ")")) 

} 

 

median_range = function(x) { 

  return(paste0(format(round(median(x, na.rm = T),2), nsmall = 0, big.mark = ","), " (", 

                format(round(min(x, na.rm = T), 2), nsmall = 0), "-" , 

                format(round(max(x, na.rm = T),2), nsmall = 0), ")")) 

} 

 

eicu<-readRDS("eicu.rds") 

 

covars<-c("albumin_score", "bilirubin_score", "bun_score", "creatinine_score", "glucose_score", 

"hct_score" 

          , "acidbase_score", "sodium_score", "wbc_score",  "pao2_aa_score", "uo_score" 

          , "hr_score", "map_score", "temp_score", "rr_score", "gcs_score" 

          , "male" , "postop", "ED", "age_numeric", "comorbid_score" 

          ,"dx_CARDIOVASC", "dx_GI", "dx_HEMATO", "dx_METABENDO", 

          "dx_MUSKELSKIN", "dx_NEUROLOGIC", "dx_RENALGENI", "dx_RESPIRAT",  

          "dx_SEPSIS", "dx_TRAUMA", 

          "apachescore", "acutephysiologyscore", "hosp") 

 

 

data<-eicu[covars] 
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#Descriptives 

table1(~age_numeric+factor(male)  + factor(postop)  + factor(ED)  + acidbase_score + 

albumin_score + bilirubin_score + bun_score + creatinine_score + glucose_score + hct_score +  

pao2_aa_score + sodium_score + uo_score + wbc_score + hr_score + map_score + rr_score + 

temp_score + gcs_score + factor(dx_CARDIOVASC) + factor(dx_GI) + factor(dx_HEMATO) + 

factor(dx_METABENDO) + factor(dx_MUSKELSKIN) + factor(dx_NEUROLOGIC) + 

factor(dx_RENALGENI) + factor(dx_RESPIRAT) + factor(dx_SEPSIS) + 

factor(dx_TRAUMA) + comorbid_score + acutephysiologyscore, data=data) 

 

out<-data%>% 

  group_by(hosp)%>% 

  summarize( 

    age_numeric=mean(age_numeric), 

    male=mean(male), 

    postop=mean(postop), 

    ED=mean(ED), 

    acidbase_score=mean(acidbase_score), 

    albumin_score=mean(albumin_score), 

    bilirubin_score=mean(bilirubin_score), 

    bun_score=mean(bun_score), 

    creatinine_score=mean(creatinine_score), 

    glucose_score=mean(glucose_score), 

    hct_score=mean(hct_score), 

    pao2_aa_score=mean(pao2_aa_score), 

    sodium_score=mean(sodium_score), 

    uo_score=mean(uo_score), 

    wbc_score=mean(wbc_score), 

    hr_score=mean(hr_score), 

    map_score=mean(map_score), 

    rr_score=mean(rr_score), 

    temp_score=mean(temp_score), 

    gcs_score=mean(gcs_score), 

    dx_CARDIOVASC=mean(dx_CARDIOVASC), 

    dx_GI=mean(dx_GI), 

    dx_HEMATO=mean(dx_HEMATO), 

    dx_METABENDO=mean(dx_METABENDO), 

    dx_MUSKELSKIN=mean(dx_MUSKELSKIN), 

    dx_NEUROLOGIC=mean(dx_NEUROLOGIC), 

    dx_RENALGENI=mean(dx_RENALGENI), 

    dx_RESPIRAT=mean(dx_RESPIRAT), 

    dx_SEPSIS=mean(dx_SEPSIS), 

    dx_TRAUMA=mean(dx_TRAUMA), 

    comorbid_score=mean(comorbid_score) 

  ) 
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hosp.medians<-out%>% 

  summarise( 

    age_numeric=median_iqr(age_numeric), 

    male=median_iqr(male), 

    postop=median_iqr(postop), 

    ED=median_iqr(ED), 

    acidbase_score=median_iqr(acidbase_score), 

    albumin_score=median_iqr(albumin_score), 

    bilirubin_score=median_iqr(bilirubin_score), 

    bun_score=median_iqr(bun_score), 

    creatinine_score=median_iqr(creatinine_score), 

    glucose_score=median_iqr(glucose_score), 

    hct_score=median_iqr(hct_score), 

    pao2_aa_score=median_iqr(pao2_aa_score), 

    sodium_score=median_iqr(sodium_score), 

    uo_score=median_iqr(uo_score), 

    wbc_score=median_iqr(wbc_score), 

    hr_score=median_iqr(hr_score), 

    map_score=median_iqr(map_score), 

    rr_score=median_iqr(rr_score), 

    temp_score=median_iqr(temp_score), 

    gcs_score=median_iqr(gcs_score), 

    dx_CARDIOVASC=median_iqr(dx_CARDIOVASC), 

    dx_GI=median_iqr(dx_GI), 

    dx_HEMATO=median_iqr(dx_HEMATO), 

    dx_METABENDO=median_iqr(dx_METABENDO), 

    dx_MUSKELSKIN=median_iqr(dx_MUSKELSKIN), 

    dx_NEUROLOGIC=median_iqr(dx_NEUROLOGIC), 

    dx_RENALGENI=median_iqr(dx_RENALGENI), 

    dx_RESPIRAT=median_iqr(dx_RESPIRAT), 

    dx_SEPSIS=median_iqr(dx_SEPSIS), 

    dx_TRAUMA=median_iqr(dx_TRAUMA), 

    comorbid_score=median_iqr(comorbid_score))%>% 

  pivot_longer(cols=age_numeric:comorbid_score, names_to="variable") 
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###Multilevel model with full population### 

full.model <- glmer(diedinhospital ~ albumin_score + bilirubin_score + bun_score + 

creatinine_score + glucose_score + hct_score + acidbase_score + sodium_score + wbc_score +  

pao2_aa_score + uo_score + hr_score + map_score + temp_score +  rr_score + gcs_score + male 

+ postop + ED + age_numeric + dx_CARDIOVASC + dx_GI + dx_HEMATO + 

dx_METABENDO + dx_MUSKELSKIN + dx_NEUROLOGIC + dx_RENALGENI + 

dx_RESPIRAT + dx_SEPSIS  + comorbid_score 

                    + (1 | hosp), data = eicu,  family = binomial) 

saveRDS(full.model, "full.model.rds") 

 

summary(full.model) 

fixed<-as.data.frame(coef(summary(full.model))) 

RandomEffects <- as.data.frame(VarCorr(full.model)) 

ICC_between <- RandomEffects[1,4]/(RandomEffects[1,4]+pi^2/3) 

#Note The residual deviance in logistic regression is fixed to (pi ^ 2) / 3 
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Creating the Figures 

library(lme4) 

library(arm) 

library(ggplot2) 

library(tidyverse) 

 

#Read in the models from the standard approach, one-to-one matching, and ten-to-one matching 

full.model<-readRDS("full.model.rds") 

allmodel1<-readRDS("allmodel1.RDS") 

allmodel10<-readRDS("allmodel10.RDS") 

 

#Caterpillar plot 

# Extract higher level residuals 

ranef <-ranef(full.model) 

ranef.se<-se.ranef(full.model) 

 

ranef<-do.call(rbind, ranef)  

ranef <- cbind(rownames(ranef), data.frame(ranef, row.names=NULL)) 

 

ranef.se<-do.call(rbind, ranef.se)  

 

# Rank residuals 

rank = rank(ranef[,2]) 

 

hi <- ranef[,2] + (1.96*ranef.se) 

low <- ranef[,2]  - (1.96*ranef.se) 

 

# Combine into data.frame 

d <-data.frame(ranef,rank, hi, low) 

 

d$sig<-if_else(0<d$X.Intercept..1 & 0>d$X.Intercept..2, 0, 1) 

d$higher<-if_else(d$X.Intercept.>0, 1, 0) 

 

table(significant=d$sig, higher=d$higher) #26 significantly higher, 20 significantly lower 

 

#Compare the estimates from the one-to-one match and the standard regression approach. 

d$iteration<-as.numeric(stringr::str_remove_all(d$rownames.ranef., "hosp.")) 

 

both<-d%>%left_join(allmodel1, by="iteration") 

both$color<-if_else(both$sig.y==1 & both$direction=="lower", "#4daf4a", 

                    if_else(both$sig.y==1 & both$direction=="higher", "#e41a1c", "black")) 

#Significant by one-to-one matching 

 

ggplot()+ 

geom_hline(yintercept=0,size=1, alpha=0.7,colour="gray", linetype="twodash")+ 
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geom_pointrange(data=both,mapping=aes(x=rank, y=X.Intercept., 

ymin=X.Intercept..2,ymax=X.Intercept..1, color=color), ="identity", size=1)+ 

  theme_classic()+ 

  theme(axis.text.x=element_blank()) + 

  theme(axis.text.y=element_text(size=12)) + 

  theme(axis.title.y=element_text(size=12,vjust=1.5)) + 

  theme(axis.title.x=element_text(size=12,vjust=-.5)) + 

  theme(legend.position= "bottom") + 

scale_x_continuous(name="Hospital Rank by Standard Regression Approach", 

breaks=seq(1,113,1)) + 

scale_y_continuous(name="Hospital Random Intercept") + 

scale_color_manual(name="Result of one-to-one Matching",  

labels=c("Significantly Lower", "Significantly Higher", "Not Significantly Different"),  

values=c("#4daf4a","#e41a1c","black" ))+ 

# Plot margins and finally line annotations 

theme(plot.margin = unit(c(1, 1, .5, .7), "cm")) 

ggsave("caterpillar_1to1.tiff", dpi=300, width = 7, height = 5, units="in") 

 

##Ten-to-One vs Standard Regression 

 

both<-d%>%left_join(allmodel10, by="iteration") 

both$color<-if_else(both$sig.y==1 & both$direction=="lower", "#4daf4a", 

                    if_else(both$sig.y==1 & both$direction=="higher", "#e41a1c", "black")) 

#Significant by ten-to-one matching 

 

ggplot()+ 

geom_hline(yintercept=0,size=1, alpha=0.7,colour="gray", linetype="twodash")+ 

geom_pointrange(data=both,mapping=aes(x=rank, y=X.Intercept., 

ymin=X.Intercept..2,ymax=X.Intercept..1, color=color),  position="identity", size=1)+ 

  theme_classic()+ 

  theme(axis.text.x=element_blank()) + 

  theme(axis.text.y=element_text(size=12)) + 

  theme(axis.title.y=element_text(size=12,vjust=1.5)) + 

  theme(axis.title.x=element_text(size=12,vjust=-.5)) + 

  theme(legend.position= "bottom") + 

scale_x_continuous(name="Hospital Rank by Standard Regression Approach", 

breaks=seq(1,113,1)) + 

scale_y_continuous(name="Hospital Random Intercept") + 

scale_color_manual(name="Result of ten-to-one Matching", labels=c("Significantly Lower", 

"Significantly Higher", "Not Significantly Different"), values=c("#4daf4a","#e41a1c","black"))+ 

# Plot margins and finally line annotations 

theme(plot.margin = unit(c(1, 1, .5, .7), "cm")) 

ggsave("caterpillar_10to1.tiff", dpi=300, width = 7, height = 5, units="in") 
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#Compare the estimates from the one-to-one match and the ten-to-one match. 

 

both<-allmodel1%>%left_join(allmodel10, by="iteration") 

both$color<-if_else(both$sig.x==1 & both$direction.x=="lower", "#4daf4a", 

                    if_else(both$sig.x==1 & both$direction.x=="higher", "#e41a1c", "black")) 

#Significant by one-to-one matching 

 

both$shape<-if_else(both$sig.y==1 & both$direction.y=="lower", "A", 

if_else(both$sig.y==1 & both$direction.y=="higher", "B", "C")) #Significant by one-to-one 

matching 

 

reg<-lm(formula = Estimate.y ~ Estimate.x, data=both)                       

 

#get intercept and slope value 

coeff<-coefficients(reg)           

intercept<-coeff[1] 

slope<- coeff[2] 

 

ggplot()+ 

  geom_point(data=both, aes(x=Estimate.x, y=Estimate.y, color=color, shape=shape),  

             position="identity", size=2)+ 

  theme_classic()+ 

  theme(axis.text.y=element_text(size=12)) + 

  theme(axis.title.y=element_text(size=12,vjust=1.5)) + 

  theme(axis.title.x=element_text(size=12,vjust=-.5)) + 

  theme(legend.position= "right") + 

  scale_x_continuous(name="one-to-one Matching Estimate") + 

  scale_y_continuous(name="ten-to-one Matching Estimate") + 

  scale_color_manual(name="Result of one-to-one Matching",  

labels=c("Significantly Lower", "Significantly Higher", "Not Significantly Different"),  

values=c("#4daf4a","#e41a1c","black" ))+ 

  scale_shape_manual(name="Result of ten-to-one Matching",  

labels=c("Significantly Lower", "Significantly Higher", "Not Significantly Different"),  

values=c("triangle","square","circle"))+ 

  # Plot margins and finally line annotations 

theme(legend.direction = "vertical", legend.box = "vertical") 

ggsave("compare_1to1_10to1.tiff", dpi=300, width = 7, height = 5, units="in") 

 


