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ABSTRACT 

Because of rising energy consumption, climate change, and environmental concerns about 

fossil fuels, finding alternative renewable energy sources is becoming increasingly crucial. With 

the non-advanced share of the U.S. Renewable Fuel Standard having been mainly met by corn 

ethanol, many states are considering cellulosic or non-edible oilseed crops as the next source of 

biofuels. This study seeks to design a supply chain to produce renewable jet fuel (RJF) within the 

Midwest region and southeastern U.S. This is accomplished through the use of optimization 

models (mixed-integer linear programming). Furthermore, because RJF manufacturing incurs 

higher expenses than conventional jet fuel, the use of various monetary incentives is being studied 

to establish their usefulness in commercializing the supply chain. The findings of this study can 

be used by energy policymakers, RJF producers, and investors to operate in a competitive market 

while safeguarding the environment. 

In another study, we evaluate speeding crash risk in North Dakota counties. In the United 

States, one of the most common contributing factors to car crashes is speeding. Speeding impairs 

a driver's ability to control and steer properly, as well as respond to a dangerous situation in a 

timely manner. Speeding crashes account for one-third of fatal crashes in the United States and are 

one of the risks for drivers on U.S. highways. Speeding crash risk can vary among regions. When 

it comes to allocating road safety expenditures to regions in order to reduce speeding crashes, it's 

vital for road management to understand which areas are at higher risk and should be prioritized 

for safety measures. This study uses a failure mode effect analysis method to evaluate the speeding 

crash risk. 
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1. INTRODUCTION 

1.1. Background and motivation 

1.1.1. Renewable jet fuel supply chain network design 

The aviation industry is responsible for 2% of global carbon emissions (Claudia Gutiérrez-

Antonio et al., 2013). However, the industry will continue to grow, and emissions are expected to 

increase respectively. Although electric and hydro-powered vehicles are replacing vehicles 

powered by fluid fuels such as fossil-based and biomass-based fluid fuels, there are not similar 

options for the aviation industry. The International Air Transport Aviation (IATA) has committed 

to reducing its net carbon footprint to below 50% of the volume by 2050 (referenced to 2005) (de 

Jong et al., 2017). To reach this goal, renewable jet fuel (RJF) has been proposed as a practical 

replacement that will effectively reduce the consumption rate of fossil-based jet fuels and 

environmental effects by jet fuel consumption (Wei et al., 2019). Finding greener energy sources 

is crucial for addressing energy security, food security, and environmental concerns. The problem 

has sparked a significant amount of research into developing biofuel supply chains based on 

biomass feedstock (Haji Esmaeili, Sobhani, Szmerekovsky, Dybing, & Pourhashem, 2020; E. 

Huang et al., 2019; Leila et al., 2018). 

Fuel and energy products that can be produced directly/indirectly from biomass are called 

feedstocks. Biomass feedstock is an important component in biofuel supply chains, and its 

utilization as a source of supply should help reduce GHG emissions (Hendricks et al., 2016). 

Appropriate biomass to a biofuel supply chain needs to meet several requirements such as a high 

conversion rate to biofuels, causing no conflicts with food crops and livestock feeding, and causing 

no change in land use at croplands. This study investigates the application of two types of biomass 



 

2 

feedstock to produce RJF where winter carinata is used in the study provided in chapter 2 and corn 

stover supplies the RJF supply chain studied in chapter 3. 

Geographically, biomass supply sites are not necessarily near airports. Because of the low 

energy density and dispersed nature of biomass, a biomass supply chain system needs a vast 

sourcing region to be able to cover any given demand for economic benefits. Hence, designing an 

optimized supply chain network for RJF has emerged as an issue. Additionally, implementing an 

RJF supply chain may not be economically competitive with fossil-based jet fuel. Government 

interventions and setting financial incentives can improve efficiency and sustainability of biofuel 

supply chains (Zheng et al., 2020). Government intervention through incentives for renewable 

energy is potentially advantageous in that they can encourage the expansion of renewable energy 

to benefit society, economy, and environment (Mohamed Abdul Ghani et al., 2018). Therefore, it 

has become increasingly important to learn about the different aspects of considering monetary 

incentives when producing RJF. 

Recently, federal agencies such as the Department of Energy (DOE), US Department of 

Agriculture (USDA), and Department of Transportation (DOT) agreed to work together to develop 

strategies to scale up RJF production (DOE, 2022). RJF production can improve the economy of 

farmers, reduce greenhouse gas emissions (GHG), save energy sources for future generations, 

improve diversity of energy resources, and make industries more resilient to oil price changes and 

supply risks. 

A biofuel supply chain requires a vast network of suppliers, manufacturers, transportation 

providers, and consumers, where sustainability should be considered in the network for not only 

maximizing profits but also for minimizing adverse environmental impacts from the network 

(Park, 2018). Several countries presented various carbon emission mitigation policies (Haji 
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Esmaeili, Sobhani, et al., 2020). These policies not only could assist in emission reduction but also 

might convey economic benefits to companies (Mohammed et al., 2017). Therefore, it would be 

important for policymakers and producers to find policies that can efficiently and effectively 

incentivize the RJF production. 

1.1.2. Risk assessment of speeding crashes 

Traffic crashes and their related consequences such as fatalities, injuries, and financial loss 

remain critical whereas safety road managers work relentlessly to realize approaches to reduce 

them. Speed is one of the most important contributing factors to a significant number of crashes 

as it can affect crash risk and severity (Castillo-Manzano et al., 2019). Speed not only increases 

the severity of a crash, it can also affect the risk of having other vehicles involved in a crash (Aarts 

& van Schagen, 2006). Almost a third of fatal crashes in the United States are related to speeding 

and can be considered speeding crashes (Fitzpatrick et al., 2017). Highway agencies have limited 

resources when it comes to executing road safety initiatives. As a result, they require a realistic 

evaluation approach for identifying crash-prone regions. Therefore, before taking safety actions to 

reduce speeding crash risks, it is important to determine which regions should be prioritized for 

receiving safety measures based on their speeding crash risk level. 

1.2. Research objectives 

Due to a considerable amount of investments for construction, high operational costs and 

related risks with new applied technologies, many advanced biorefineries have failed to maintain 

commercialization (Martinkus et al., 2019). Therefore, optimal designing of an RJF supply chain 

network that aims to improve economic, environmental, and social performance of a biofuel supply 

chain is of high importance (Ghaderi et al., 2016). However, implementing an RJF supply chain 

may not be economically competitive with fossil-based jet fuel. Government interventions and 
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setting financial incentives can improve efficiency and sustainability of biofuel supply chains 

(Zheng et al., 2020). However, due to the complexities in calculating possible impacts of the 

interventions, governments usually lack the guidance to formulate and acquire optimal strategies 

and policies to biofuel supply chains (Zhou et al., 2020; Tangtinthai, Heidrich, & Manning, 2019). 

Thus, in the first two topics in this essay, we design RJF supply chain and investigate the 

application of monetary incentives to answer the following questions:  

• How much biomass feedstock is available to supply the RJF supply chain in the 

studied regions? 

• Which supply and demand zones should be assigned to biorefineries to maximize 

profit and reduce carbon emissions? 

• How many and what capacity of biorefineries would be needed to meet jet fuel 

demand? 

• How do applications of different monetary incentives affect profitability of a RJF 

supply chain? 

In chapter 4, using three risk factors including occurrence, severity, and detectability we 

assess speeding crash risk in North Dakota counties. The following essential questions will be 

explored to address the stated objectives of this study: 

• Which ND counties have the highest occurrence risk of speeding crashes? 

• Which counties have the highest risk of severe speeding crashes? 

• How do ND counties compare on their detection risk of speeding crashes? 

• How do the speeding crash risks compare among the ND counties? 

• Which counties are prioritized for receiving funding to reduce speeding in their 

roadways? 
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1.3. Research methodologies and contributions 

The following three studies will provide original contributions to address the questions. 

Chapter 2 uses a mixed integer linear programming to design supply chain networks. Also, 

the impact of three incentive policies including producer credit program (PCP), biomass credit 

assistance program (BCAP), and biorefinery assistance program (BAP) are accounted for 

accelerating RJF production.   This study considers southeastern US including Alabama, Florida, 

and Georgia as the study region while carinata is considered as the biomass feedstock for the 

supply chain. Our research aims to make strategic and operational decisions in an RJF supply chain 

such as selecting biomass sources, determining biorefinery locations and capacities, logistics of 

biomass and RJF between components of the supply chain. Further, impacts of considering 

monetary incentives are investigated. Findings from this study will inform policymakers and 

investors on the feasibility and effectiveness of each policy in accelerating the commercialization 

of RJF production. 

Chapter 3 is devoted to the construction of a corn stover-based RJF supply chain network 

in the Midwest region, while four monetary/environmental incentives, including PCP, BCAP, 

BAP, and cap-and-trade carbon policy, are considered for subsidizing RJF production and 

accelerating its commercialization. This study is validated by applying the model on designing an 

RJF supply chain in the Midwest region. In the light of the results of this study, policy makers can 

develop policies that can accelerate commercialization of RJF production. 

Finally, in Chapter 4, we use an integrated framework including failure mode and effect 

analysis (FMEA) and Delphi method to assess speeding crash risks in ND counties. According to 

the crash data from ND counties and experts’ opinions, three risk factors are evaluated for each 

county, including the occurrence, severity, and detectability of speeding crashes. The approach 



 

6 

identifies counties with a higher risk of speeding crashes, so that they can be prioritized for safety 

measures to reduce speeding crash risks.  
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2. RENEWABLE JET FUEL SUPPLY CHAIN NETWORK DESIGN: APPLICATION OF 

DIRECT MONETARY INCENTIVES1 

2.1. Abstract 

Currently, the global aviation industry uses around 341 billion liters of jet fuel per year, 

with demand predicted to grow by 50% by the end of 2050. Renewable jet fuel (RJF) may cut 

greenhouse gas emissions (GHG), increase fuel diversity for the aviation industry, and promote 

rural economies. The commercialization of RJF has been delayed due to a shortage of sustainable 

biomass resources. This study recommends using winter carinata crops as a reliable biomass 

feedstock in the southeastern US states, where the availability of resources will be investigated in 

each agricultural zone. RJF production is more expensive than traditional jet fuel production. 

Investors and legislators need to learn more about prospective federal financial initiatives, such as 

subsidies and grants, to help with RJF supply chain implementation. In this paper, using a 

mathematical programming approach, we designed an RJF supply chain and then investigated the 

effects of three direct monetary incentive programs, including producer credit program (PCP), 

biomass crop assistance program (BCAP), and biorefinery assistance program (BAP), to accelerate 

the commercialization of RJF manufacturing. According to the findings, the amount of incentives 

through PCP needed to fulfill 50% of the RJF demand was assessed to cover 16.70% of the total 

costs, while the BCAP could reach the commercialization threshold by receiving incentives for 

22.84% of the biomass purchasing cost. Furthermore, having the BAP covering 89.39% of the 

annual capital and operating costs could help commercialize RJF production. This study also 

 
1 The material in this chapter was co-authored by Sajad Ebrahimi, Seyed Ali Haji Esmaeili, Ahmad 

Sobhani, and Joseph Szmerekovsky. Sajad Ebrahimi had primary responsibility for collecting data 

and conducting the analysis. Sajad Ebrahimi was the primary developer of the concept, models, 

and conclusions that are advanced here. Sajad Ebrahimi also drafted and revised all versions of 

this chapter. This chapter appears in Applied Energy (Ebrahimi et al., 2022). 
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evaluated the effects of changes in renewable fuel prices, demand fulfillment rates, biomass yield 

rates, and the price of biomass feedstock and its resulting meal on the profitability of the supply 

chain. The study's findings will advise policymakers and investors on developing the RJF supply 

chain given various financial assistance programs and subsidies. 

2.2. Introduction 

According to the International Air Transport Association (IATA), by the end of 2036, the 

number of people utilizing air transport will have increased to 7.8 billion, which is more than 

double the number of users in 2017 (Alam & Dwivedi, 2019). Despite the relatively small 

contribution to emissions caused by the aviation sector, demand for jet fuel is predicted to rise by 

50% by the end of 2050 (Alam & Dwivedi, 2019). Although commercial aviation currently emits 

approximately 859 million metric tons of carbon dioxide, accounting for approximately 2% of total 

man-made carbon dioxide emissions, this percentage is anticipated to rise to 20.2% by 2050 (Alam 

& Dwivedi, 2019). Although fuel alternatives for conventional gasoline-powered vehicles, such as 

low-carbon electricity or hydrogen, have been introduced, electrification of the aviation sector is 

still on a century time scale, and the industry will continue to rely on liquid fuels. With the rapid 

expansion of the fossil-fuel intensive aircraft transportation mode, renewable jet fuel (RJF) is 

gaining attention as a possible alternative to cut carbon emission (Wise et al., 2017). RJF can be 

produced from renewable biomass such as corn grain, oil seeds, algae, animal fats, agricultural 

residues, Forestry residues, and waste resources (FAA, 2021). RJF can perform as effectively as 

fossil-based jet fuel does, with a low carbon footprint compared to conventional jet fuel (DOE, 

2021). The potential benefits of adopting RJF include increased energy security, diversification of 

energy sources, economic gains in rural regions with more job possibilities, and reduced 

greenhouse gas emissions (Bacenetti et al., 2017). The availability and sustainability of the 
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biomass feedstock are critical to replace fossil-based fuels with suitable renewable fuels that can 

be derived from biomass feedstock (Agusdinata et al., 2011). Appropriate biomass for a biofuel 

supply chain must meet a set of criteria, including a high conversion rate to biofuels, no conflicts 

with food crops or livestock feeding, and no change in land use at croplands (Alam & Dwivedi, 

2019; Haji Esmaeili, Szmerekovsky, et al., 2020; Zemanek et al., 2020). Oilseeds have been 

identified as a potential source for producing RJF due to their chemical and economic performance 

as biomass. 

However, producing RJF from oilseeds on a commercial scale would be difficult due to 

land limitations such as appropriateness and competition with primary crops.  Even though winter 

crops have been proposed as a viable solution to the problem of supplying biomass feedstock and 

animal feed, investigating their sufficiency and practicality as feedstock have received little 

attention (Poiša et al., 2010; Blanco-Canqui et al., 2020). Winter cover crops can be planted after 

the summer planting season and prefer cooler temperatures to grow. In a pilot project, Seepaul et 

al. (2019) investigated cultivating carinata (Brassica carinata) during mild winters in the 

southeastern U.S. states of Alabama, Florida, and Georgia. Carinata, with its high oil content, low 

breaking rates, large seed size, and great heat and drought tolerance, is a suitable cover crop for 

areas with mild winters (R Seepaul et al., 2019; Kumar et al., 2020; Ramdeo Seepaul et al., 2021; 

Nóia Júnior et al., 2022; Alam & Dwivedi, 2019). Planting carinata as a cover crop has several 

advantages, including higher revenue for local farmers, reduced leaching and soil erosion, weed 

suppression, enhanced soil fertility, and providing a food supply for cattle (R Seepaul et al., 2019; 

Kumar et al., 2020; Ramdeo Seepaul et al., 2021). Additionally, carinata oil is unique in that it 

contains a high concentration of erucic and linoleic acids while containing less than 7% saturated 
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fatty acids, making it an attractive resource for use as biomass in RJF production (R Seepaul et al., 

2019). 

RJF can be produced using a variety of conversion processes depending on the biomass 

feedstock, including hydrothermal liquefaction (HTL) (Kargbo et al., 2021), Fischer Tropsch (FT) 

(Ail & Dasappa, 2016), alcohol to jet (ATJ) (W. C. Wang et al., 2016; Geleynse et al., 2018), and 

hydroprocessed esters and fatty acids (HEFA) (Mousavi-Avval & Shah, 2021). However, to 

replace fossil-based fuels with suitable renewable fuels that can be produced from biomass 

feedstock, production must be technically and economically feasible. HEFA is used to transform 

fats and oils (such as animal fats, used cooking oils, and seed oils) into RJF, renewable diesel fuel 

(RDF), liquefied petroleum gas (LPG), and naphtha. HEFA has received considerable research 

and investment and has been performing consistently on a commercial scale (Witcover & 

Williams, 2020; Gutiérrez-Antonio et al., 2017). In 2011, RJF derived through HEFA was certified 

by the American Society for Testing and Materials (ASTM). The blending rate with conventional 

jet fuel was allowed to be as much as 50% (Tao et al., 2017). Pearlson (2007) provides more 

extensive information regarding the production process under HEFA for interested readers. 

Several researchers employed techno-economic analysis (TEA) to explore the feasibility of using 

various conversion technologies to convert oilseed biomasses into RJF (Li et al., 2018; Tao et al., 

2017). Chu et al. (2017) employed carinata as one of the prospective oilseed biomasses in a TEA 

study to analyze the financial viability of RJF production, with HEFA as the conversion pathway. 

Although the research investigated the economic feasibility of RJF production, it failed to take into 

account the intricacies of the RJF supply chain, such as the location of supply and demand nodes, 

the number of biorefineries needed, their location and capacities, the material flow between various 

components of the supply chain, and distances between the components. Determining these 
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configurations may be critical in understanding the realistic profits of RJF manufacturing (E. 

Huang et al., 2019), as many advanced biorefineries have failed to maintain commercialization 

due to significant construction investments and high operational costs that could be the result of 

an inefficient supply chain (Martinkus et al., 2019). Therefore, optimal design of a renewable fuel 

supply chain with the goal of improving economic performance of the network is critical (Ghaderi 

et al., 2016). 

To design economically efficient biofuel supply chain networks, several researchers 

employed mathematical programming approach such as mixed integer linear programming 

(MILP) that could recommend optimal configurations for biofuel supply chains (Walther et al., 

2012; Giarola et al., 2012; Schmidt et al., 2011). Furthermore, several studies, applying 

optimization models, designed RJF supply chain networks. Huang et al. (2019) used a multi-

objective optimization model to explore the use of three pathways to convert corn stover to RJF. 

They developed a supply chain network with four tiers, including counties as supply nodes, 

centralized storage and preprocessing sites, biorefineries, and airports in major cities as demand 

nodes. 

To become commercially feasible, the RJF price must be competitive with the price of 

fossil-based jet fuel. However, developing an RJF supply chain may not result in RJF being 

economically competitive with fossil-based jet fuel. Government actions and financial incentives 

can improve the efficiency and sustainability of biofuel supply networks (Zheng et al., 2020). In a 

comprehensive study on the literature of applying incentive mechanisms in biofuel supply chains, 

Noh, Benito, & Alonso (2016) presented several supportive programs in the U.S. provided by 

organizations such as the Environmental Protection Agency (EPA), Internal Revenue Service 

(IRS), Department of Agriculture (DOA), Department of Energy (DOE), US Customs and Border 
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Protection, and Department of Transportation (DOT). The monetary incentives are provided to 

different components in the production network and are offered through direct grants and subsidies 

or indirectly via loans or mortgages. Due to the difficulties in determining the potential impacts of 

intervention, governments frequently lack direction in developing and implementing effective 

strategies and regulations for renewable fuel supply chains (Zhou et al., 2020; Tangtinthai et al., 

2019). 

Few studies in biofuel supply chains have examined the effects of financial incentives on 

supply chain optimization. Leila et al. (2018) investigated the application of direct monetary 

incentives allocated to activated biorefineries. Haji Esmaeili et al. (2020) used MILPs to determine 

the financial incentives required to induce first-generation bioethanol producers to transition to 

second-generation biomass. Delving into the related literature, we could not find any study 

comparing the application of different direct monetary incentives to an RJF supply chain. 

Inspired by previous research and to bridge the research gaps, our study uses MILPs to 

create an RJF supply chain network and explores the influence of three unique monetary incentives 

on supply chain profitability. To our knowledge, this is the first research to build an RJF supply 

chain network utilizing carinata as its biomass feedstock, and more specifically, as a winter crop. 

This study suggests direct federal initiatives, such as BCAP, BAP, and PCP, which can provide 

direct monetary incentives to encourage commercial-scale production of biofuels. BCAP, 

managed by the DOA, provides financial support for biomass crop adoption expenses, annual 

payments for biomass production, and payments to assist with biomass collection, harvest, storage, 

and transportation activities. In this study, we will investigate how the BCAP may improve supply 

chain profitability by lowering the costs associated with biomass provision, excluding the 

transportation costs. BAP is a program run by the Department of Agriculture (DOA) that offers 
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payments to assist in building and maintaining biorefineries to encourage the production of 

advanced biofuels. By considering the application of this program, we investigate how the 

program's cost coverage regarding manufacturing costs may affect the supply chain profits. PCP, 

a direct incentive program proposed by several studies (Mohamed Abdul Ghani et al., 2018; Haji 

Esmaeili, Szmerekovsky, et al., 2020; Haji Esmaeili, Sobhani, et al., 2020) provides monetary 

credits for each gallon of RJF produced. PCP covers all costs associated with RJF production, 

including supply purchasing, transportation, and capital and operational costs. Readers interested 

in learning more about potential federal monetary incentives for biofuel production might refer to 

Noh et al. (2016). The results from analyzing the policies' applications in the supply chain network 

will inform investors and decision-makers on the feasibility and effectiveness of each policy in 

accelerating the commercialization of RJF production. 

This paper presents an integrated mathematical model that optimizes RJF supply chain in 

the US southeastern states. The research calculates the potential amount of carinata that can be 

planted in the region as a winter crop and the amount of RJF and byproducts that can be produced 

from the biomass. In addition, we compare the effects of three direct monetary incentives on 

profitability of the RJF supply chain and offer analysis on supply chain profit given varied 

coverage rates granted by the incentive programs. Finally, we provide a comprehensive analysis 

on the effect of changes in supply chain parameters such as biomass availability and cost, biomass 

yield rate, fuel price, and demand fulfillment rate. 

2.3. Material and methods 

2.3.1. Problem statement 

In this study, using a MILP, we design an optimal RJF supply chain network including 

three echelons: croplands as supply nodes, biorefineries as manufacturing nodes, and airports as 
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demand nodes. The biomass feedstock flows from supplier nodes to biorefineries, where it is 

preprocessed (seed crushing) and processed (HEFA), and the outputs, including RJF, protein meal, 

LPG, RDF, and naphtha are transported to their demand nodes. While we explored a supply chain 

network setting in which preprocessing and biorefineries are co-located, it should be noted that 

preprocessing might be separated from biorefineries in other supply chain settings. Because road 

haulage (through trucks and tankers) is readily available, this study will focus only on road haulage 

for the delivery of biomass, protein meal, and the biofuels. Figure 2.1 displays the RJF supply 

chain network and its corresponding components and activities. 

 

Figure 2.1. RJF supply chain network and the activities at each echelon 
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To validate our findings, we investigated decision-making aspects in a carinata-based RJF 

supply chain, such as the number, location, and capacity of required facilities and their 

establishment and operating costs, logistics related to supplies and final products, and mainly RJF 

required to meet demand in the southeastern United States. The supply nodes were spread across 

three states: Alabama (67 counties), Florida (67 counties), and Georgia (159 counties). To make 

the calculations scale consistent with the strategic level decision making of this study's topic, we 

grouped the counties into 19 Agricultural Statistical Districts (ASDs) (Gonela et al., 2015; Haji 

Esmaeili, Szmerekovsky, et al., 2020; Haji Esmaeili, Sobhani, et al., 2020). Assuming that each 

ASD is a supply zone for carinata (farms) and demand zone for carinata meal (cattle farms), the 

centroid of each ASD was chosen as the point from which carinata would be carried to biorefineries 

and carinata meal would be transported from biorefineries to cattle farms. Areas to obtain carinata 

as biomass in the RJF supply chain were chosen based on available lands in the southeastern United 

States, including Alabama, Florida, and Georgia, which were suitable for planting carinata after 

the regular planting season. Lands to plant cotton, corn, soybean, sorghum, and peanut were among 

the prospective croplands (Kumar et al., 2020). The available amount of carinata at each ASD was 

calculated using a yield rate of 2,802.70 kg/ha for carinata (Alam & Dwivedi, 2019). The 

aforementioned farmland area at each ASD was obtained from the National Agricultural Statistics 

Service (NASS) database (NASS, 2021). Table A2  in Appendix A shows the availability of 

carinata by each ASD in the three states. 

For the biorefineries, three facility sizes were considered: small (350-700 M liter/year), 

medium (700-1,100 M liter/year), and large (1,100-1,500 M liter/year). Potential locations of 

biorefineries were considered at the center of each ASD. In the case of biorefineries located in an 

ASD, the transportation distance between the supply node from the same ASD and the biorefinery 
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was considered to be within 2/3 of the radius of that ASD, which was computed by the area of the 

ASD (E. Huang et al., 2019). 

We considered 25, 35, and 45 required employees for small, medium, and large 

biorefineries, respectively. Furthermore, each employee's annual compensation was assumed 

$88,000 (M. Pearlson et al., 2013). We used Eq. (2.1) to compute the total capital cost (𝑄𝑟) of a 

biorefinery with capacity 𝑍𝑟, where 𝛼 was a scaling factor set to 0.6 (Haydary, 2019), 𝑍0 was a 

reference capacity, and 𝑄0 was the total cost of a biorefinery with capacity of 𝑍0 (Osmani & Zhang, 

2013). The total capital cost for a biorefinery with the HEFA pathway and capacity of 398 million 

liters of liquid fuel annually (reference capacity), including RJF from carinata, was estimated to 

be $411.28 million (Chu et al., 2017). 

 𝑄𝑟 = 𝑄0(𝑍𝑟 𝑍0⁄ )𝛼      ∀r ∈ R (2.1) 

The annualized fixed capital cost of building a biorefinery varies with capacity. Because 

we wanted to determine the annual profit of the supply chain, we looked at the capital cost of 

biorefineries on an annual basis and computed it for each capacity. Eq. (2.2) is used to annualize 

the initial investment of a biorefinery with an expected life of n years and an interest rate of 𝑞 %. 

The expected life of the biorefineries was set at 20 years, with a 11.5% interest rate (Osmani & 

Zhang, 2014; Zetterholm et al., 2018). The biorefinery's annualized capital cost was $74.86 

million, $98.19 million, and $118,27 million for small, medium, and large biorefineries, 

respectively. 

 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡 = [𝑞 ∗ (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡)] [1 − (1 + 𝑞)−𝑛]⁄  (2.2) 

Airports in the region with jet fuel demand greater than 10,000 million gallons per year 

(MGPY) were identified as demand nodes. Airports with high demand shares were selected on the 

basis that airports with greater demand were assumed to be a more reliable market for RJF than 
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airports with low demand. However, since RJF produced by HEFA allows for up to 50% blending, 

only 50% of the annual demand for conventional jet fuel in the selected airports was expected to 

be met by RJF; hence Table 2.1 shows RJF demands at each airport. 

Table 2.1. Demand for RJF at the selected airports (BTS, 2021) 

Airports Demand for RJF (MGPY) 

Orlando International  139.61 

Miami International  132.80 

Tampa International  76.89 

Southwest Florida International  33.11 

Jacksonville International  31.72 

Palm Beach International  26.10 

Orlando Sanford International Airport 9.44 

St. Pete–Clearwater International Airport 6.72 

Pensacola International  11.86 

Sarasota–Bradenton International Airport 6.32 

Panama City, FL: Northwest Florida Beaches International 5.27 

Tallahassee International 6.96 

Hartsfield–Jackson Atlanta International  422.31 

Savannah/Hilton Head International  16.01 

Augusta Regional at Bush Field 5.05 

Birmingham–Shuttles worth International  19.46 

Huntsville International-Carl T Jones Field 10.02 

Mobile Regional 6.60 

 

The demand for carinata meal was considered proportional to the cattle inventory in the 

ASDs and were determined based on the carinata meal produced in biorefineries. The Cattle 

population in each ASD and their corresponding shares are provided in Table A3. It is assumed 

that the demand nodes for carinata meal are located on ASD’s centroids and all demand for the 

meal will be fulfilled by the biorefineries. 

The liquid byproducts including LPG, naphtha, and RDF are considered to be transported 

to their demand nodes in the three states. The demand nodes were chosen on the basis of having 

populations more than one million, which could assure a reliable demand rate for the products. It 
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turned out that five counties in Florida (Miami-Dade County, Broward County, Palm Beach 

County, Hillsborough County, Orange County) and one county in Georgia (Fulton County) could 

meet the condition. County Seats (administrative centers) in each county were considered as 

destinations. It is assumed that all the fuel byproducts produced by biorefineries would be 

consumed by their demand nodes. However, the amount of fuel byproducts to be supplied to each 

of the six demand nodes are proportional to their population resulting 10.67%, 19.21%, 26.59%, 

13.85%, 14.90%, and 14.78% of the produced fuel byproducts to be allocated to Atlanta, Fort 

Lauderdale, Miami, Orlando, West Palm Beach, and Tampa, respectively. Figure 2.2 depicts the 

spatial distribution of supply chain components, including ASDs that can include the location of 

possible suppliers and manufacturers, as well as the location of the demand nodes to be serviced. 
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Figure 2.2. Spatial distribution of RJF supply chain components in the southeastern United States 

2.3.2. Mathematical model 

Optimization models were developed to optimally design a carinata-based RJF supply 

chain network and manage the logistics of RJF facilities. In this study, we developed four MILPs. 

The first MILP includes no monetary incentives, and the remaining three models consider three 
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distinct monetary incentives, PCP, BCAP, and BAP, to evaluate the impacts of employing 

monetary incentives on the supply chain's profitability. The developed models maximize the RJF 

supply chain profit. In addition, the MILPs calculate the number, location, and capacity of 

biorefineries required to meet the demand. 

The supply chain's revenue included earnings from selling RJF and coproducts (protein 

meal, LPG, RDF, and naphtha). In contrast, costs included expenses associated with acquiring 

biomass feedstock from farms, transportation, establishing biorefineries, and fixed and variable 

operational costs. Constraints (2.4) – (2.18) outline the constraints of the model. Table 2.2 shows 

the notation used in the models. The MILPs are solved via Python 3.7 using the Gurobi 9.1.2 

optimization engine. 
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Table 2.2. Sets, decision variables, and parameters 

Notation Description Notation Description 

Sets Parameters 

𝑰 Set of suppliers, indexed by i  𝛾𝑐  Transportation fixed cost of 

carinata/meal ($/ton) 

𝑲 Set of biorefineries, indexed by k 𝜂𝑐 Transportation variable cost of 

carinata/meal ($/ton-mile) 

𝑬 Set of demand zones for RJF, indexed by e 𝛾𝑗 Transportation fixed cost of liquid fuel 

($/gallon) 

𝑺 Set of biorefinery sizes, indexed by s; small, 

medium, and large 
𝜂𝑗 Transportation variable cost of liquid 

fuel ($/gallon-mile) 

𝑹 Set of fuel byproducts, indexed by 𝑟; LPG, 

naphtha, and RDF 

𝜌  Operational production cost of RJF 

from carinata at biorefinery ($/ton) 

𝑮 Set of demand zones for carinata meal, 

indexed by g 
𝜕𝑟 Fuel coproduct r conversion rate from 

carinata (gallon/ton) 

V Set of demand zones for fuel byproducts, 

indexed by v 
𝜗 Contingency rate 

Variables 𝜃 RJF conversion rate from carinata 

(gallon/ton) 

𝒀𝒌
𝒔  1 if a biorefinery with size s is opened at 

location k; 0 otherwise 
𝜎 Carinata meal conversion rate from 

carinata (ton/ton) 

𝑸𝒊𝒌 Quantity of carinata transported from 

supply area i to biorefinery k (tons) 
𝑝𝑠 Capacity of biorefinery size s to 

produce RJF (MGPY)2 

𝑸𝒌𝒗
𝒎  Quantity of carinata meal transported from 

biorefinery k to cattle farm v (tons) 
𝐷𝑒 Demand for RJF at demand zone e 

(gallons) 

𝑸𝒌𝒈
𝒓  Quantity of biofuel coproduct r (naphtha, 

LPG, or RDF) transported from biorefinery 

k to county Seat g (gallons) 

𝐷𝑣
𝑟 Demand for liquid fuel byproduct r 

(RDF, LPG, naphtha) at demand zone v 

(gallons) 

𝑵𝒌 Number of employees required for 

biorefinery k 
𝑑𝑖𝑘  Distance from supplier i to biorefinery k 

(mile) 

Z Profit ($) 𝑑𝑘𝑒 Distance from biorefinery k to demand 

zone e (miles) 

Parameters 𝑑𝑘𝑔 Distance from biorefinery k to demand 

zone g (miles) 

𝒂𝒊 The amount of carinata available at supply 

node i  
𝑑𝑘𝑣 Distance from biorefinery k to demand 

zone v (miles) 

𝝅  RJF selling price ($/gallon) λ RJF production credit under PCP 

($/gallon) 

𝝋 Carinata meal selling price ($/ton) 𝛽 Rate of carinata selling price reduction 

under BCAP (%) 

𝝍𝒓 Fuel coproduct r selling price ($/ton) 𝜙 Rate of biorefinery capital and 

operational cost reduction under BAP 

(%) 

𝜶  Purchasing price of carinata ($/ton) 𝜉 Aggregate rate of utility cost (overhead, 

maintenance, insurance, and taxes) ($) 

 
2 Million gallons per year. 
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Other data related to the parameters used in the RJF supply chain model is provided in 

Table A1 in Appendix A. 

2.3.2.1. RJF supply chain with no monetary incentives 

In this section, Eq. (2.3) presents the objective function used in the model for maximizing 

profits. The first three statements in Eq. (2.3) represent revenue to be earned from selling RJF, fuel 

coproducts including LPG, naphtha, and RDF, and protein meal produced from carinata. The 

remainder of the statement represents costs incurred as a result of purchasing biomass from 

suppliers, constructing biorefineries, annual payments to required staff, operational fixed and 

variable costs associated with producing RJF from carinata, transportation cost to transport 

feedstock from supplier nodes to biorefineries, transportation cost to deliver RJF, protein meal, 

and fuel byproducts from biorefineries to demand nodes. 

Constraints (2.4) - (2.18) describe the model's limitations and constraints. Constraint (2.4) 

represents the supply constraint for carinata and ensures that the amount of carinata purchased 

does not exceed the maximum carinata available at supplier nodes. Constraint (2.5) depicts 

material flow in the supply chain and assures that the amount of RJF created from biomass in a 

biorefinery is equal to the amount of RJF leaving the biorefinery and reaching demand nodes. Eq. 

(2.6) guarantees that the amount of protein meal produced in a biorefinery is equal to the amount 

of the meal that leaves the biorefinery. Also, Eq. (2.7) assures the amount of each fuel byproducts 

such as LPG, naphtha, and RDF produced at a biorefinery is equal to the amount of the biofuel 

that leaves the biorefinery. Eq. (2.8) assures that the quantity of RJF and biofuel coproducts 

produced at each biorefinery (if activated) does not exceed the biorefinery capacity. Eq. (2.9) 

assigns the required number of employees to a biorefinery. Only one biorefinery can be activated 

in each ASD, as stipulated by constraint (2.10). Constraints (2.11), (2.12), and (2.13) ensure that 
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the RJF, fuel byproducts, and protein meal delivered from biorefineries to their demand nodes are 

sufficient to meet the demand. Eqs. (2.14) to (2.18) show the nature of the variables included in 

the model and their non-negativity. 

𝑀𝑎𝑥 𝑍 = 𝜋 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

+ ∑ ∑ ∑ 𝜓𝑟𝑄𝑘𝑣
𝑟

𝑣∈𝑉𝑘∈𝐾𝑟∈𝑅

+ 𝜑 ∑ ∑ 𝑄𝑘𝑔
𝑚

𝑔∈𝐺𝑘∈𝐾

− 𝛼 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑ 𝑓𝑠

𝑠∈𝑆

𝑌𝑘
𝑠

𝑘∈𝐾

− ∑ ∑ 𝑁𝑘𝑤𝑌𝑘
𝑠

𝑠∈𝑆𝑘∈𝐾

− 𝜉(1 + 𝜗) ∑ ∑ 𝑓𝑠

𝑠∈𝑆

𝑌𝑘
𝑠

𝑘∈𝐾

− 𝜌 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑐 + 𝜂𝑐  𝑑𝑖𝑘)𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑗 + 𝜂𝑗  𝑑𝑘𝑒) 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

− ∑ ∑(𝛾𝑐 + 𝜂𝑐  𝑑𝑘𝑔) 𝑄𝑘𝑔
𝑚

𝑔∈𝐺𝑘∈𝐾

− ∑ ∑ ∑(𝛾𝑗 + 𝜂𝑗  𝑑𝑘𝑣) 𝑄𝑘𝑣
𝑟

𝑣∈𝑉𝑘∈𝐾𝑟∈𝑅

 (2.3) 

 

Subject to: 

 ∑ 𝑄𝑖𝑘𝑘∈𝐾 ≤ 𝑎𝑖     ∀𝑖 ∈ 𝐼 (2.4) 

 𝜃 ∑ 𝑄𝑖𝑘𝑖∈𝐼 = ∑ 𝑄𝑘𝑒𝑒∈𝐸      ∀𝑘 ∈ 𝐾 (2.5) 

 𝜎 ∑ 𝑄𝑖𝑘𝑖∈𝐼 = ∑ 𝑄𝑘𝑔
𝑚

𝑔∈𝐺       ∀𝑘 ∈ 𝐾 (2.6) 

 𝜕𝑟 ∑ 𝑄𝑖𝑘𝑖∈𝐼 = ∑ 𝑄𝑘𝑔
𝑟

𝑔∈𝐺     ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (2.7) 

 ∑ ∑ 𝑄𝑘𝑒𝑠∈𝑆𝑒∈𝐸 ≤ 𝑝𝑠 ∙ 𝑌𝑘
𝑠    ∀𝑘 ∈ 𝐾 (2.8) 

 𝑁𝑘
𝑠 = 25𝑌𝑘

𝑆 + 35𝑌𝑘
𝑀 + 45𝑌𝑘

𝐿    ∀𝑘 ∈ 𝐾 (2.9) 

 ∑ 𝑌𝑘
𝑠

𝑠∈𝑆 ≤ 1       ∀𝑘 ∈ 𝐾 (2.10) 

 ∑ 𝑄𝑘𝑒𝑘∈𝐾 ≥ 𝐷𝑒    ∀𝑒 ∈ 𝐸 (2.11) 

 ∑ 𝑄𝑘𝑣
𝑟

𝑘∈𝐾 ≥ 𝐷𝑣
𝑟     ∀𝑣 ∈ 𝑉, ∀𝑟 ∈ 𝑅 (2.12) 
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 ∑ 𝑄𝑘𝑔
𝑚

𝑘∈𝐾 ≥ 𝐷𝑔    ∀ 𝑔 ∈ 𝐺 (2.13) 

 𝑌𝑘
𝑠 = {0,1}      ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆 (2.14) 

 𝑄𝑖𝑘 ≥ 0      ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾 (2.15) 

 𝑄𝑘𝑣
𝑟 ≥ 0      ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑣 ∈ 𝑉 (2.16) 

 𝑄𝑘𝑔
𝑚 ≥ 0      ∀𝑘 ∈ 𝐾, ∀𝑔 ∈ 𝐺     (2.17) 

 𝑄𝑘𝑒 ≥ 0     ∀𝑘 ∈ 𝐾, ∀𝑒 ∈ 𝐸 (2.18) 

2.3.2.2. RJF supply chain incentivized with PCP 

In this section, RJF produced by the supply chain will be incentivized with PCP which 

considers monetary incentives for each gallon of RJF produced by biorefineries. The objective 

function employed in this model to optimize supply chain profits is shown in Eq. (2.19). The first 

part of the equation represents the revenue from selling RJF, with a producer credit for the RJF 

produced. The rest of the elements are the same as in Eq. (2.3) 

𝑀𝑎𝑥 𝑍 = (𝜋 + 𝜆) ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

+ ∑ ∑ ∑ 𝜓𝑟𝑄𝑘𝑣
𝑟

𝑣∈𝑉𝑘∈𝐾𝑟∈𝑅

+ 𝜑 ∑ ∑ 𝑄𝑘𝑔
𝑚

𝑔∈𝐺𝑘∈𝐾

−  𝛼 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑ 𝑓𝑠

𝑠∈𝑆

𝑌𝑘
𝑠

𝑘∈𝐾

− ∑ ∑ 𝑁𝑘𝑤𝑌𝑘
𝑠

𝑠∈𝑆𝑘∈𝐾

− 𝜉(1 + 𝜗) ∑ ∑ 𝑓𝑠

𝑠∈𝑆

𝑌𝑘
𝑠

𝑘∈𝐾

− 𝜌 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑐 + 𝜂𝑐  𝑑𝑖𝑘)𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑗 + 𝜂𝑗  𝑑𝑘𝑒) 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

− ∑ ∑(𝛾𝑐 + 𝜂𝑐  𝑑𝑘𝑔) 𝑄𝑘𝑔
𝑚

𝑔∈𝐺𝑘∈𝐾

− ∑ ∑ ∑(𝛾𝑗 + 𝜂𝑗  𝑑𝑘𝑣) 𝑄𝑘𝑣
𝑟

𝑣∈𝑉𝑘∈𝐾𝑟∈𝑅

 (2.19) 

Similar to the preceding model, this objective function is subject to limitations (2.4) to 

(2.18). 
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2.3.2.3. RJF supply chain incentivized with BCAP 

In this section, we use BCAP to incentivize the supply chain, with all components in Eq. 

(2. 20) being the same as in Eq. (2.3), except for monetary incentives for purchasing biomass crops 

(discounts on carinata selling prices) in the fourth component. 

𝑀𝑎𝑥 𝑍 = 𝜋 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

+ ∑ ∑ ∑ 𝜓𝑟𝑄𝑘𝑣
𝑟

𝑣∈𝑉𝑘∈𝐾𝑟∈𝑅

+ 𝜑 ∑ ∑ 𝑄𝑘𝑔
𝑚

𝑔∈𝐺𝑘∈𝐾

− (1 − 𝛽) 𝛼 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑ 𝑓𝑠

𝑠∈𝑆

𝑌𝑘
𝑠

𝑘∈𝐾

− ∑ ∑ 𝑁𝑘𝑤𝑌𝑘
𝑠

𝑠∈𝑆𝑘∈𝐾

− 𝜉(1 + 𝜗) ∑ ∑ 𝑓𝑠

𝑠∈𝑆

𝑌𝑘
𝑠

𝑘∈𝐾

− 𝜌 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑐 + 𝜂𝑐  𝑑𝑖𝑘)𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑗 + 𝜂𝑗  𝑑𝑘𝑒) 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

− ∑ ∑(𝛾𝑐 + 𝜂𝑐  𝑑𝑘𝑔) 𝑄𝑔
𝑚

𝑔∈𝐺𝑘∈𝐾

− ∑ ∑ ∑(𝛾𝑗 + 𝜂𝑗  𝑑𝑘𝑣) 𝑄𝑘𝑣
𝑟

𝑣∈𝑉𝑘∈𝐾𝑟∈𝑅

 (2.20) 

This objective function, similar to the previous model, is subject to constraints (2.4) to 

(2.18). 

2.3.2.4. RJF supply chain incentivized with the BAP  

This section uses BAP to incentivize the supply chain, with all components in Eq. (2.21) 

identical to those in Eq. (2.3), except for the monetary incentives considered in the fifth composite 

component. This component takes into account discounts for production costs and capital costs at 

biorefineries. 
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𝑀𝑎𝑥 𝑍 = 𝜋 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

+ ∑ ∑ ∑ 𝜓𝑟𝑄𝑘𝑣
𝑟

𝑣∈𝑉𝑘∈𝐾𝑟∈𝑅

+ 𝜑 ∑ ∑ 𝑄𝑘𝑔
𝑚

𝑔∈𝐺𝑘∈𝐾

− 𝛼 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− (1 − 𝜙) (∑ ∑ 𝑓𝑠

𝑠∈𝑆

𝑌𝑘
𝑠

𝑘∈𝐾

+ ∑ ∑ 𝑁𝑘𝑤𝑌𝑘
𝑠

𝑠∈𝑆𝑘∈𝐾

+ 𝜉(1 + 𝜗) ∑ ∑ 𝑓𝑠

𝑠∈𝑆

𝑌𝑘
𝑠

𝑘∈𝐾

+ 𝜌 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

) − ∑ ∑(𝛾𝑐 + 𝜂𝑐  𝑑𝑖𝑘)𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑗 + 𝜂𝑗  𝑑𝑘𝑒) 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

− ∑ ∑(𝛾𝑐 + 𝜂𝑐  𝑑𝑘𝑔) 𝑄𝑘𝑔
𝑚

𝑔∈𝐺𝑘∈𝐾

− ∑ ∑ ∑(𝛾𝑗 + 𝜂𝑗  𝑑𝑘𝑣) 𝑄𝑘𝑣
𝑟

𝑣∈𝑉𝑘∈𝐾𝑟∈𝑅

 (2.21) 

This objective function, similar to previous models, is subject to constraints (2.4) to (2.18). 

2.4. Results and discussion 

In this section, we first illustrate and discuss various optimized supply chain decisions with 

regard to supply management of the supply chain network, transportation management, location 

of biorefineries, capacity level for activated biorefineries, and material flow from supply nodes to 

activated biorefineries, and material flow from biorefineries to airports. Following that, the models' 

implementation of three direct incentive policies is considered, and the corresponding results are 

discussed. It is worth noting that the minimal incentive to commercialize RJF production is 

assumed to be the level that decreases profit loss to zero. Finally, optimal decisions for various 

market penetrations to meet their corresponding RJF demand are examined, and the impacts of 

various biofuel prices (RJF, RDF, LPG, and naphtha), carinata yield rate, and carinata and meal 

prices on the supply chain's profitability are evaluated. 

2.4.1. Supply chain analysis with no monetary incentives 

The results from the MILP show that the optimal number of biorefineries to be activated is 

three, including one small, one medium, and one large biorefinery with capacities of 185 MGPY, 
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291 MGPY, and 396 MGPY, respectively. Based on the available biomass feedstock to be 

converted to RJF and the demands for RJF at the selected airports, it could be concluded that the 

produced RJF from the available biomass could only supply 53.9% of the projected RJF demand 

($520.83 MGPY). The base optimization model was solved when we assumed that the supply 

would be converted to RJF and would meet 50% of the jet fuel demand in the airports. Table 2.3 

depicts the optimal supply allocations to activated biorefineries and optimal RJF assignment from 

activated biorefineries to the airports. To supply the biorefineries, 94% of the available farm fields 

had to be planted with Carinata. 

Table 2.3. Optimal assignment of supply zones and demand nodes to activated biorefineries 

Supplier district (share of supply 

assignment) 

Activated 

biorefinery and its 

capacity 

Demand node (share of demand 

fulfillment) 

S30110 (42.20%), S0120 

(21.11%), S0130 (8.67%), S0140 
(15.62%), S1310 (4.43%), S1320 

(0.99%), S1340 (6.98%). 

B40120 

(Small) 

Pensacola International (5.79%), 

Hartsfield-Jackson Atlanta International 
(76.58%), Birmingham–Shuttlesworth 

International (9.51%), Huntsville (4.89%), 

Mobile Regional (3.22%). 

S1230 (6.22%), S1250 (4.52%), 

S1350 (6.46%), S1360 (19.99%), 

S1380 (50.66%), S1390 (12.14%). 

B1230 

(Large) 

Orlando International (33.88%), Orlando 

Sanford (2.29%), St. Pete–Clearwater, 

International Airport (1.63%), Sarasota–

Bradenton International Airport (1.53%), 
Northwest Florida Beaches International 

(1.28%), Tallahassee International 

(1.69%), Hartsfield–Jackson Atlanta 
International (52.58%), Savannah/Hilton 

Head International (3.89%), Augusta 

Regional at Bush Field (1.23%). 

S0160 (20.94%), S1210 (19.55%), 

S1350 (1.49%), S1370 (58.03%). 
B1370 

(Medium) 

Miami International (38%), Tampa 

International (22%), Southwest Florida 

International (9.47%), Jacksonville 

International (9.08%), Palm Beach  

International (7.47%), Hartsfield–Jackson  

Atlanta International (13.98%). 

 
3 The letter “S” in the beginning of the biorefinery node indicates that the supply node is located at ASD 0110. 
4 The letter “B” in the beginning of the biorefinery node indicates that the biorefinery node is located at ASD 0120. 
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Figure 2.3(a) depicts the spatial aspect of the supply chain decisions on the activation of 

biorefineries with varying capacities and the provision of RJF from each of the activated 

biorefineries to the specified airports. To meet 50% of the RJF demand, three biorefineries must 

be established, as shown in Figure 2.3(a). The model determined the optimal locations where 

biorefineries would be built so that transportation costs for transporting carinata from farms to 

biorefineries, carinata meal from biorefineries to cattle farms, and RJF from biorefineries to the 

airports would be as low as possible while all the predefined demands for the outputs would be 

met. Due to the higher transportation costs required to transport each ton of biomass feedstock and 

carinata meal compared with the costs for transporting RJF and other fuel products, the model 

prioritized the distance between supply nodes and biorefineries and the distance between 

biorefineries and cattle farms above the distance between biorefineries and the airports and the 

demand nodes for the fuel byproducts (Leila et al., 2018). Thus, biorefineries are activated in ASDs 

closer to supply zones with a high rate of carinata available and also cattle farms with high rate of 

demand for carinata meal rather than being closer to the airports. It should be mentioned that the 

supply chain did not need to supply its activated biorefineries with carinata from three ASDs, 

including S0150, S1330, and S1280 (illustrated with hatched lines in Figure 2.3(a)). Additionally, 

only 62% of the supply in S1350 (illustrated with crosshatched lines in Figure 2.3(a)) was used to 

produce RJF in activated biorefineries. Figure 2.3(b) shows the optimal assignment of the airports 

to individual biorefineries. As depicted in this figure, there were airports that needed only one 

biorefinery to supply them, as well as airports that required numerous biorefineries to supply them. 

 



 

 

2
9
 

 

Figure 2.3. (a). Optimal decisions with regard to location allocation of biorefineries and their capacities and (b) material flow from 

activated biorefineries to the airports 
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Figure 2.4(a) provides the details of cost components in the supply chain. The total cost 

was $2,722 million, including biomass feedstock purchasing cost, transportation costs, capital 

costs, and operational costs. The majority of the cost (72.15%) is associated with supply 

purchasing expenses. As a result, changes in availability and the price of biomass feedstock are 

likely to have a significant impact on supply chain costs. These results agree with previous findings 

from studies that considered oilseeds as their biomass (Leila et al., 2018; Chu et al., 2017; Diniz 

et al., 2018). Nine percent of the entire cost was allocated to transportation.  

Capital expenses (CAPEX) were tied to the overall annualized costs for constructing the 

needed biorefineries, which included 11% of the total cost resulting from the establishment of 

three biorefineries. It was projected that 105 employees were needed to operate the activated 

biorefineries. Furthermore, operating expenses (OPEX) accounted for 8.28% of total costs, with 

fixed operational costs (13.35%) attributed to employees, overhead, maintenance, insurance, taxes, 

and contingency, and variable operational costs (86.65%) associated with utility costs (thermal 

energy, electricity, water, and hydrogen gas). Regarding the high share of total capital and 

operational costs (19%), it was expected that providing subsidies for establishing biorefineries and 

their associated operating expenses would significantly lower operational costs. This is consistent 

with the conclusion from the study by Chu et al. (2017) which highlights the sensitivity of RJF 

production costs to its production costs at biorefineries. 

The results in Figure 2.4(b) reveal that the revenue created by protein meal extracted from 

carinata (43.17%) outweighs the overall revenue from fuel coproducts, including RJF, LPG, and 

naphtha (20%) and the revenue generated by selling RJF (36.93%). It should also be noted that, 

while procuring biomass was the most expensive cost component of the supply chain, half of the 

costs ($979 M of a total of $1,973 M for purchasing the biomass feedstock) could be offset by 
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selling the protein meal produced from it. Furthermore, the revenue from coproducts (protein meal 

and biofuel coproducts combined) generated throughout the RJF production process was 63% of 

the total revenue, which confirms that selling coproducts from oilseed through HEFA have a 

significant impact on the supply chain's profitability (Chu et al., 2017). 

 

Figure 2.4. Total cost and revenue breakdowns: (a) cost breakdown of the supply chain ($ M), 

(b) revenue breakdown of the supply chain ($ M) 

When the transportation expenses were broken down (Figure 2.5), 45.69% and 34.73% of 

the costs were associated with transporting feedstock and carinata meal respectively, while 

transporting fuel products altogether, including RJF, LPG, naphtha, and RDF, incurred 19.59% of 

the costs. These results could be attributed to the greater costs of transporting biomass and carinata 

meal (fixed and variable transportation costs) and their lower density compared to biofuels. 
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Figure 2.5. Transportation cost breakdown for the RJF supply chain 

2.4.2. Supply chain analysis with application of different monetary incentives 

2.4.2.1. Supply chain incentivized with PCP 

The PCP monetary incentive was developed to determine the direct monetary incentives to 

bridge the gap between the profit loss per gallon of RJF produced and profit loss of zero for a 

gallon of RJF produced (the breakeven point). Because the incentives would cover a proportion of 

the total costs, PCP could be viewed as a comprehensive assistance program covering all forms of 

RJF production costs, such as capital, operating, carinata procurement, and transportation costs. 

According to the results shown in Figure 2.6, the optimized supply chain network needed to have 

16.70% of its total cost compensated by PCP to start commercializing the RJF production. In other 

words, to reach profitability in the supply chain and cover the $0.94 cost per gallon of the RJF 

produced, at least 16.70% of the total cost had to be covered by the assistance program. In case of 

applying inclusive incentives, $0.57 incentive per gallon of biofuels was needed to commercialize 

RJF production. 
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Figure 2.6. RJF production profit, with regard to various PCP incentive scenarios 

2.4.2.2. Supply chain incentivized with BCAP 

In this section, the BCAP incentive is incorporated into the supply chain model. BCAP 

allocates monetary incentives to manufacturers to buy biomass feedstock from farmers, as 

explained in section 2.2. As shown in Figure 2.7, as the share of BCAP incentives provided to the 

supply chain increases, profit per gallon of RJF in the supply chain gradually increases. When the 

assistance program covers 22.84% of the carinata price ($254.02 per ton of carinata), the graph 

approaches zero profit, indicating that the supply chain could produce RJF commercially. 

However, when the BCAP program covers the entire cost of the biomass feedstock, the maximum 

profit per gallon of RJF ($3.13) is achieved. Because supply provision accounted for 72% of the 

overall supply chain expenses, carinata buying prices significantly impacted the supply chain's 

total profit (Chu et al., 2017). 
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We also considered a case where an inclusive monetary incentive could be applied to all 

the produced liquid fuels. The results in  Figure 2.7 shows that by spreading the incentives over 

all the produced liquid fuels, the RJF supply chain needs to get lower incentives per gallon of 

biofuels produced ($0.56 per gallon for the biofuels produced versus $0.93 per gallon for the RJF 

produced). 

 

Figure 2.7. RJF production profit, with regard to various BCAP incentive scenarios 

2.4.2.3. Supply chain incentivized with BAP 

Under BAP, manufacturers (biorefineries) would be compensated for capital investments 

in biorefineries and operational costs for producing RJF. Figure 2.8 depicts the effects of different 

shares of BAP coverage of biorefinery expenses on the supply chain's profitability. As shown in 

Figure 2.8, the supply chain did not profit from RJF production until its capital and operational 

costs of the base case were covered by at least 89.39%. The large share of the BAP incentive 
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required to commercialize the supply chain is related to the low proportion of biorefinery-related 

costs in the total costs (19%). 

 

Figure 2.8. RJF production profit, with regard to various BAP incentive scenarios 

We also examined the application of a combination of BCAP and BAP to cover the costs. 

The results are demonstrated in Table 2.4. As it can be observed from the results of the combined 

assistance programs, the supply chain could reach the commercialization level with lower rates of 

BCAP compared to the rates of BAP in the combinations. This results from the higher share of 

costs to be covered by BCAP (72.15%) compared with the costs to be covered by BAP (19%). 
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Table 2.4. Combination of BCAP and BAP to reach commercialization  

Share of incentives 

BCAP (%) BAP (%) BCAP (%) BAP (%) 

2 80.57 14 34.17 

4 72.84 16 26.44 

6 65.11 18 18.7 

8 57.37 20 10.97 

10 49.64 22 3.24 

12 41.9     

 

2.4.3. Supply chain analysis with regard to changes in parameters 

To evaluate the effect of various demand fulfillment rates on the profitability of the RJF 

supply chain, we also examined the impact of various market penetration scenarios on the supply 

chain decisions and its economic dynamics. According to the results shown in Figure 2.9, meeting 

higher demands in the airports resulted in lower total profit. However, the increased cost of 

meeting higher demand rates was offset by producing more RJF and coproducts, resulting in a 

lower cost per gallon of RJF produced. This outcome was anticipated given the economies of scale 

realized by producing more RJF. It was revealed that the cost per gallon of RJF generated was 

lowest (0.90 $/gallon) when the RJF supply chain satisfied 35% of the jet fuel demand in the 

airports (70% of the demands in the base case, respectively). In a case where only 48.31 M gallons 

of demand fulfillment for RJF was projected, an RJF supply chain network with one small 

biorefinery was optimal (with a 43.45% utilization rate). The cost of producing RJF per gallon 

changed for various market shares. However, for the rates between 50% of the demand fulfillment 

(the base case) and 35% of the base case, the changes in cost per gallon of RJF stabilized, resulting 

in almost equal costs per gallon of RJF and biofuels produced. Even though establishing more 

biorefineries to meet more demand may result in higher costs for a given demand fulfillment rate 

until all the capacity of biorefineries is used, the supply chain was able to balance the needed 
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capacity based on existing demand and could use the capacity more efficiently thanks to the 

flexibility of capacities in each potential biorefinery location. 

 

Figure 2.9. The effects of different demand fulfillments rates on the RJF supply chain 

profitability and incentive payments 

We also studied the impact of low and high yield rates of carinata on the RJF demand 

fulfillment in the airports. As depicted in Table 2.5, for the low yield rate of 2,242.20 kg/ha (Alam 

& Dwivedi, 2019), the RJF supply chain could meet 43.12% of the RJF demand in the airports 

(86% of the demands in the base case). On the other hand, higher yield rate of 3,363.30 kg/ha 

(Alam & Dwivedi, 2019) resulted in a fulfillment rate of 64.69% of the RJF demand (128% of the 

demand in the base case). In the face of a low yield rate, we may need to consider other states as 

supply nodes in order to meet the established demands in airports (Alam & Dwivedi, 2019). On 

the other hand, higher carinata yield increases availability of the supplies that can lead to higher 

rate of RJF demand fulfillment which eventually benefits farmer’s economy and reduces carbon 

emissions. 
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Table 2.5. Profit of RJF supply chain and incentive payments with regard to changes in carinata 

yield rate 

Profit of RJF supply chain & incentive payments 

Carinata yield rate (kg/ha) 

Low 

(2,242.20) 

High 

(3,363.30) 

Total Profit of RJF supply chain ($ M) -386.05 -553.61 

Profit per gallon of produced RJF ($) -0.93 -0.90 

RJF Incentive ($/gallon) 0.93 0.90 

Inclusive Incentive ($/gallon) 0.56 0.54 

To better understand the impact of the produced biofuels’ prices on the supply chain's 

profitability, we examined the price changes over a range from the lowest to the highest average 

of conventional jet fuel prices between 2011 and 2020 (10 years). According to EIA (2021), the 

lowest average of conventional jet fuel prices was assigned to 2020, with 1.293 $/gallon, while the 

highest average price was attributed to 2012, with 3.104 $/gallon. Because the base price for selling 

RJF (1.73 $/gallon) was based on the average of conventional jet fuel prices from 2016 to 2020, 

the lowest range for the threshold could be set to 30% less than the base price, while the maximum 

range for the threshold could be set to 80% higher. Figure 2.10 depicts the variations in the 

profitability of the supply chain as a result of changes in the prices of all the biofuels produced in 

the supply chain. Furthermore, the amount of incentives (RJF and inclusive incentives) required 

to offset the associated costs is depicted at each price adjustment level. As indicated in Figure 2.10, 

if the biofuels’ prices dropped by 30%, the supply chain would experience its highest profit loss 

($853.37 M) and would need to offset $1.77 per gallon of RJF produced via RJF incentives or 

$1.06 per gallon produced biofuels to reach the commercialization level. The graph shows that 

when the base fuel price increases by more than 30%, the supply chain may begin commercializing 

RJF, though profit per gallon of RJF produced may reach 1.19 $/gallon if the fuel price grows by 
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80%. This results confirms the findings from the study by Chu et al. (2017) that highlights the 

impact of fuel price on RJF commercialization. 

 

Figure 2.10. Profit of RJF supply chain and incentive payments under different fuel prices 

We also investigated the impacts of changes in the carinata and meal prices on the profit 

of the RJF supply chain and found the incentive payments required to reach the commercialization 

level. The low price rate for purchasing carinata was considered at 254.01 $/ton while the highest 

range was set to 399.16 $/ton (Chu et al., 2017). Also, we considered 254.01 $/ton and 344.73 

$/ton for the lowest and highest price range for selling carinata meal, respectively, while the prices 

corresponding to the base case were considered as the most likely prices expected (Chu et al., 

2017). 

According to the results indicated in Table 2.6, the supply chain with a low price for 

carinata and meal needs the lowest incentives ($0.32 per gallon from RJF incentives and $0.19 per 

gallon from inclusive incentives) to start commercialization. The resulting differences in the 
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supply chain’s profits and incentive payments refers to the difference between carinata price and 

meal price in each price level. In the low-price range, the price of carinata and meal are assumed 

to be the same, however in the other two pricing scenarios, the price of carinata is greater than the 

price of meal, incurring higher supply chain costs. The analysis emphasizes the importance of 

carinata meal pricing and finding markets where we may sell them at prices higher than carinata 

price. 

Table 2.6. Profit of RJF supply chain and incentive payments with regard to changes in the prices 

of carinata and meal 

Profit of RJF supply chain & incentive 

payments 

Carinata and Meal price ($/ton) 

Low 

(254.01, 

254.01) 

Base 

(317.52, 

281.23) 

High 

(399.16, 

344.73) 

Total Profit of RJF supply chain ($ M) -154.53 -454.45 -744.58 

Profit per gallon of produced RJF ($) -0.32 -0.94 -1.54 

RJF incentive ($/gallon) 0.32 0.94 1.54 

Inclusive incentive ($/gallon) 0.19 0.57 0.93 

 

We also investigated the impact of soil erosion on the profitability of the supply chain. 

Leaving land bare and unprotected for a long time (during winter) can cause soil erosion in farm 

fields (DeLonge & Stillerman, 2020). Soil erosion can eventually incur costs to farmers and 

society. According to Duffy (2012), the range of cost per acre per year caused by erosion  would 

be from $2.75 to $6.45 an acre. However, considering planting carinata during winter, we assumed 

that there will be no erosion in fields planted by winter carinata. Hence, the corresponding costs 

would be transformed to revenues by farm fields not experiencing erosion. The farm fields planted 

with carinata totaled 2,995 thousand acres and planting carinata during winter could result in 

reduced soil erosion which would save $13.61 million to $31.93 million annually. Adjusting the 

supply chain’s profits by this cost savings from reduced soil erosion changed the $0.93 loss per 

gallon of RJF to a profit loss of no more than $0.9 and as low as $0.87 per gallon of RJF. Hence, 
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potential savings from soil erosion can have a substantial impact on the viability of an RJF supply 

chain.  

2.5. Conclusion 

Using a MILP, we identified an optimal supply chain design to meet 50% of the existing 

demand at airports in the southeastern United States. This study offered an optimal RJF supply 

chain configuration that could minimize costs, as well as assess the adoption of several existing 

and proposed direct monetary incentive programs to commercialize mass RJF production. We 

suggested employing carinata as a viable biomass alternative that could be grown 

throughout winter and was proven to be effective biomass to produce RJF. The study also 

determined the supply chain configurations required to manufacture RJF in the study region that 

could reflect a realistic network setting and enhance understanding of various aspects to implement 

the supply chain. 

Considering the findings, more availability of carinata in the region would cut the cost of 

generating RJF per gallon. According to the findings almost 43% of the revenue in the RJF supply 

chain could be earned by selling the protein meal. As a result, finding local or international markets 

for protein meals that can guarantee a profit from selling them is critical to the supply chain's 

profitability. 

This research analyzed the application of three distinct incentive policies, PCP, BCAP, and 

BAP, on the RJF supply chain profitability. From these results, it could be concluded that the 

supply chain's profitability was highly sensitive to changes in PCP and BCAP coverage shares. 

The reason is that high proportion of cost consist of biomass feedstock costs (72%), which makes 

the costs to be covered by the two programs close. It is likely that after planting carinata on a 

massive scale in the region, its farming costs will decline, resulting in a lower coverage rate 
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needed from the BCAP program. It is projected that once RJF production from carinata is 

commercialized, the costs associated with the manufacturing, such as costs related to biomass 

feedstock, preprocessing, and conversion, will gradually decrease due to technological 

developments in those areas (Leila et al., 2018; J. Zhang et al., 2013). As Gutiérrez-Antonio et al. 

(2017) suggested, there would be potentials to create hydro-processing technology that may 

effectively cut operational and capital costs, resulting in lower RJF prices. Even if none of the 

aforementioned changes occur, the supply chain may become profitable if the biofuels prices 

increase by more than 35.26%. Furthermore, the results indicated that planting carinata with 

greater yield rates might improve supply chain sustainability, and that could be obtained by 

adopting high yielding varieties with optimum oil content and fatty acid profile (Ramdeo Seepaul 

et al., 2021). It can be concluded that there are several opportunities to make the supply chain 

profitable, and if financially supported earlier by federal agencies, the RJF supply chain can start 

its journey toward maturity and cutting costs and GHG emissions in the coming years. 

This study investigated the effects of various monetary incentives that would be directly 

supplied to RJF producers. However, there are numerous financial incentives that can be provided 

to producers indirectly, such as tax credits or loans, as highlighted by Noh et al. (2016). Recently, 

under a collaborative plan, called sustainable aviation fuel grand challenge, DOE, USDA, and 

DOT set a goal of delivering enough RJF to cover all aviation fuel needs by 2050 (DOE, 2022). 

Therefore, the RJF production is expected to be incentivized until it reaches the commercialization 

level with innovative conversion technologies and the implementation of optimized supply chains 

with the lowest possible cost. However, there might be issues such as drought, floods, or even 

pandemics that could impair the profitability of supply chains. Therefore, it would be also 

important to consider risk mitigation strategies that can offset the related risks. According to Sajid 
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(2021), uncertainties in the biomass supply chain, such as biomass production, biomass harvesting, 

transportation, labor availability, and high preprocessing costs caused by the Covid-19, have 

harmed biofuel supply chains. There have been recommended strategies to mitigate the 

risks including providing temporary biofuel sales tax reductions and extending the debt repayment 

schedules of refiners, which could also be applied to RJF production (Nocera Alves Junior et al., 

2021). 

Although this study was conducted for the southeastern United States case study, the 

decision-making approach in this research could be applied to any place with similar 

environmental conditions, provided sufficient farming lands would be available. Furthermore, the 

approach appears to be feasible for places with extensive fallow lands and favorable 

meteorological conditions for carinata throughout the summer planting season (Kumar et al., 

2020).  

The availability of feedstock for biofuel, which can consequently impact biofuel 

production can be affected by precipitation, biomass pricing, and fuel price. Thus, another analysis 

is proposed that considers the stochastic character of components that contribute to the RJF supply 

chains. In the future, it may be feasible to do a more comprehensive study of the supply with 

particular farm sites, as well as include more freight options such as rail and pipeline. Furthermore, 

future research can incorporate geographic information system (GIS) tools into optimization 

models to analyze geographical features of potential locations for constructing biorefineries in the 

supply chain.  
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3. RENEWABLE JET FUEL SUPPLY CHAIN NETWORK DESIGN: THE 

APPLICATION OF INCENTIVES TO ACCELERATE COMMERCIALIZATION 

3.1. Abstract 

The manufacture of renewable jet fuel (RJF) has been recognized as a promising approach 

for reducing the aviation sector's carbon footprint. Over the last decade, commercial production of 

RJF has piqued the interest of airlines and governments around the world. However, RJF 

production can be challenging due to its disperse supply resources. Furthermore, the production of 

RJF is more costly compared to producing conventional jet fuel. In this study, using a mixed 

integer linear programming, we design an RJF supply chain network in which we obtain an 

optimized configuration of the supply chain and determine operational decisions required to meet 

RJF demand in airports. To accelerate commercialization of the RJF production, we considered 

four different monetary incentive programs, which could cover the supply chain’s costs. This study 

is validated by employing the model on designing an RJF supply chain in the Midwest region, US. 

Results from this study is promising as it shows that the supply chain could reach the 

commercialization level via partial financial coverage from the incentive programs. Based on the 

findings of this study, policymakers can devise policies to commercialize RJF production and 

accelerate its adoption by the industry. 

3.2. Introduction 

Finding cleaner sources of energy is critical to addressing concerns about energy security, 

food, and the environment. The aviation industry is responsible for 2% of the global carbon 

emissions (Claudia Gutiérrez-Antonio et al., 2013). However, the industry will continue to expand, 

and emissions will rise accordingly. Although electric and hydro-powered vehicles are replacing 

vehicles powered by fluid fuels such as fossil-based and biomass-based fluid fuels, there are not 
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similar options for the aviation industry. In 2005, the International Aviation industry committed to 

cut its net carbon footprint to less than half of its volume by 2050 (Chu et al., 2017). To achieve 

this goal, renewable jet fuel (RJF) has been proposed as a viable replacement that will effectively 

reduce the consumption rate of fossil-based jet fuels as well as the environmental effects of jet fuel 

consumption (Wei et al., 2019). RJF production can improve the economy of farmers, reduce 

greenhouse gas emissions (GHG), save energy sources for future generations, improve diversity 

of energy resources, and make industries more resilient to oil price changes and supply risks. 

Several types of feedstocks can be considered as biomass for producing RJF. However, 

feedstock derived from food crops is contentious because it can also be used as food (Stelle & 

Pearce, 2011). Most of the expected sustainability impacts of RJF stem from feedstock choice and 

its associated characteristics (Diniz et al., 2018). To address these concerns and improve 

sustainability in producing RJF, the aviation industry has committed to using second-generation 

feedstock that does not compromise food security, requires low energy to produce, uses minimal 

land with high yield, and improves socio-economic values to local areas where biomass is planted. 

Second-generation biomass comprises crop residues (e.g., corn stover, wheat straw, rice straw, rice 

hull, etc.), forestry residues (e.g., wood pulp, wood chips, and sawdust), waste products (e.g., used 

cooking oils), or crops cultivated in perennial fields as biomass that does not induce food conflicts 

(e.g., switchgrass, camelina, and carinata). As Perkis & Tyner (2018) stated, after meeting the U.S. 

Renewable Fuel Standard (RFS) requirements by first-generation corn ethanol, many states are 

now looking for other generations of biomass feedstock such as cellulosic crops. According to the 

U.S. Billion-Ton Update, there are sufficient biomass resources to meet the advanced biofuel 

standards of the RFS (U.S. Department of Energy, 2011). The Midwest region in the United States 
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entails regions where corn is widely cultivated, and its residues seem to be a reliable resource for 

the RJF production.  

W. C. Wang et al. (2016) provided a comprehensive review of the pathways (process 

technologies) applied to RJF production. Pathways such as alcohol-to-jet (ATJ), Fischer Tropsch 

(FT), hydrothermal liquefaction (HTL), and hydroprocessed esters and fatty acids (HEFA) are 

considered to convert biomass to RJF (de Jong et al., 2015). The pathways are certified or under 

review by the American Society for Testing and Materials (ASTM). Many studies known as 

techno-economic analysis (TEA) compared the feasibility of using the conversion technologies 

(Wang, 2016; de Jong et al., 2015; Natelson, Wang, Roberts, & Zering, 2015; Pearlson, 

Wollersheim, & Hileman, 2013; Pham, Holtzapple, & El-Halwagi, 2010). In a study comparing 

the feasibility of technologies such as FT, ATJ, and HTL, de Jong et al. (2015) discovered RJF 

price ranges higher than conventional jet fuel prices. Furthermore, several studies known as life-

cycle analyses (LCA) have been conducted to estimate GHG emissions caused by the 

implementation of various pathway technologies (de Jong et al., 2017; Agusdinata, Zhao, Ileleji, 

& Delaurentis, 2011).  

Despite rigorous assessment on the application of TEA and LCA approaches in the 

literature, the related studies fail to consider the complexity of RJF supply chains. These studies 

do not take into consideration optimized number and location of biorefineries that could potentially 

affect the supply chain costs. Due to the dispersed nature of biomass supply sources and their low 

energy density, a biofuel supply chain requires a large sourcing area that can meet demands and 

make the supply chain profitable (Castillo-Manzano et al., 2019; Malladi & Sowlati, 2018). To 

achieve this goal, it is critical to locate biorefineries optimally to reduce transportation costs and 

emissions while also ensuring feedstock availability. 
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To become commercially feasible, RJF production cost must become competitive with the 

production cost of fossil-based jet fuel. The costs incurred by the RJF production needs to be 

covered by government assistance and subsidies (Zheng et al., 2020). Noh et al. (2016) conducted 

a comprehensive study in which they discussed multiple existing incentive policies that are already 

in use in US agencies and could be considered for RJF production. In another study, Ebrahimi et 

al. (2022) investigated the application of three monetary incentives to cover the costs of RJF supply 

chain. They considered three different incentive programs including biomass crop assistance 

program (BCAP), producer credit program (PCP), and biorefinery assistance program (BAP). In 

BCAP, governments and agencies cover the costs related to supplying biomass feedstock for 

producing the biofuel. This program has been provided by the US department of Agriculture 

(USDA). BAP has provided financial support to cover the production costs in biorefineries. This 

assistance program has been provided by USDA. PCP provides comprehensive support to cover 

all costs associated with RJF production in the supply chain, including costs associated with 

biomass supply, production, and transportation. Furthermore, the use of carbon trading has been 

considered in several studies that could help renewable energy production compete with the cost 

of conventional fossil-based fuel production (Haji Esmaeili et al., 2020; Waltho et al., 2019). Cap-

and-trade is one of the carbon policies that has been applied to restrict carbon emissions by fuel 

industries. Since the biofuel production could incur lower carbon emissions compared to the 

production of fossil-based fuels, application of carbon policies that capacitate carbon generation 

through the production process and allow the producers to trade and sell the unused amount of 

carbon emissions could be considered as an incentive program. 

While many studies have examined the economic and environmental aspects of RJF 

production, a few have investigated how various monetary incentives could be employed to cover 
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costs related to RJF production (Ebrahimi et al., 2022; Haji Esmaeili et al., 2020). In this study, 

after designing an optimized RJF supply chain network in the Midwest region, we study the impact 

of four various monetary incentives to commercialize RJF production. The monetary incentives 

include programs such as PCP, BCAP, BAP, and cap-and-trade carbon policy. 

The contributions of this study are 

• Collecting associated data regarding amount of second-generation biomass 

feedstock (corn stover) in the Midwest and finding the optimal locations to 

establish biorefineries. 

• Designing a corn stover based RJF supply chain with the application of FT 

pathway. 

• Comparing the impacts of various incentive policies on profitability of the supply 

chain. 

• Providing managerial implications of the results related to the application of 

monetary incentives. 

3.3. Material and methods 

3.3.1. The RJF supply chain configuration 

Corn is widely planted in the Midwest and its residues are considered good feedstock 

resource for producing second-generation biofuels. In this study, we developed models that could 

be used to design an RJF supply chain using corn stover. The models determined the supply chain’s 

profit through producing RJF. FT is considered as the conversion pathway to produce RJF from 

corn stover. The outputs from the production process include RJF, renewable diesel fuel (RDF), 

naphtha, and electricity (Pereira et al., 2017). 
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We assumed the supply chain network has three tiers: supplier nodes, biorefineries, and 

demand nodes. The biomass feedstock flows from supplier nodes to biorefineries where after being 

preprocessed and going through conversion process, produced RJF in biorefineries is disseminated 

to demand nodes (airports). Transporting raw materials to biorefineries and RJF to demand nodes 

is conducted by trucks. It was assumed that selling RDF and naphtha took place at biorefineries, 

and that customers were responsible for the transportation costs. We also assumed that 

preprocessing of corn stover is performed at the activated biorefineries. Figure 3.1 illustrates the 

three echelons of the RJF supply chain and its including components.  

 

Figure 3.1. RJF supply chain network and the activities at each echelon 

To validate our study, we considered the Midwest region in the United States. The Midwest 

region comprises of the states Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, 

Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. For supplier nodes, we consider 

each agricultural statistical district (ASD) as a supply node (Ebrahimi et al., 2022; Haji Esmaeili 

et al., 2020). Supply for each ASD includes supply from all farms planting corn in the 

corresponding ASDs. However, to consider the extractable corn stover from farm, we excluded 

50% of the available corn stover and assumed only 35% of farmers in the studied region would be 

interested to sell their corn stover (Guo et al., 2022). The quantity of biomass feedstock was 

calculated based on the planted areas with corn (NASS, 2021) in the region multiplied by the yield 
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rate of corn stover (3.099 tonnes per acre) that could be extracted from them. Figure 3.2 shows the 

spatial placement of the RJF supply chain including the supply areas as well as potential 

biorefinery locations and airports. The biorefineries can be supplied by 2,000 million tonnes of 

corn stover annually (E. Huang et al., 2019). It is assumed that both preprocessing of the corn 

stover and producing RJF are performed at biorefineries.



 

 

5
1
 

 

Figure 3.2. Spatial distribution of the RJF supply chain components in the Midwest region 
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For transportation purposes, each supply node at an ASD is considered to originate from 

the center of the ASD unless the destination biorefinery is in the originating ASD. In which case, 

the transportation distance is assumed 2/3 of the radius of that ASD which is calculated by the area 

of each ASD (E. Huang et al., 2019). Demand nodes are airports in the region with annual RJF 

demands greater than 100 million gallons. Due to a 50% maximum blending limit of RJF produced 

via FT pathway, only 50 percent of the required jet fuel in the airports was projected to be fulfilled 

by RJF. The airports with their corresponding demands are depicted in Table 3.1. 

Table 3.1. The estimated RJF demand in the airports 

Airports 
Jet fuel demand 

(MLPY) 

Estimated RJF 

demand 

(MLPY) 

O'Hare International Airport (ORD) 2,846.51 1,423.25 

Minneapolis-Saint Paul International Airport (MSP) 1,301.50 650.75 

Detroit Metropolitan Wayne County Airport (DTW) 1,314.88 657.44 

Chicago Midway International Airport (MDW) 653.79 326.90 

St. Louis Lambert International Airport (STL) 618.58 309.29 

Kansas City International Airport (KCI) 415.03 207.51 

Indianapolis International Airport (IND) 375.96 187.98 

Cincinnati/Northern Kentucky International Airport 

(CVG) 
365.37 182.69 

General Mitchell International Airport (MKE) 276.33 138.16 

Eppley Airfield (OMA) 192.90 96.45 

Total  8,360.84 4,180.42 

 

Other data related to the parameters used in the RJF supply chain model is provided in 

Table B1. 

3.3.2. Model formulation 

We developed five MILP models: a base model with no monetary incentives and four 

alternative models, each with an assistance program. The models were designed to maximize the 

total profit of the RJF supply chain while accounting for the use of incentive programs. Moreover, 
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the models find the optimal number and location of biorefineries to be established in the study 

region. 

3.3.2.1. RJF supply chain with no monetary incentives 

In this section, no carbon policy is considered in the supply chain. Eq. (3.1) presents the 

objective function used in this model to maximize profits through using FT conversion technology. 

The first two components of the statement represent revenue from selling RJF and coproducts 

including RDF, naphtha, and electricity. The remainder of the statement represents costs incurred 

by purchasing biomass feedstock from suppliers, establishing biorefineries, production, 

transportation. Coproducts are assumed to be sold to customers at the location of biorefineries, and 

costs related to transporting them are not considered in the model. Table 3.2 demonstrates the 

notations used in the models.  
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Table 3.2. Sets, decision variables, and parameters 

Indices Description Indices Description 

Sets Parameters 

𝐼 Set of suppliers, indexed by i  𝛾𝑏  Transportation fixed cost of corn 

stover via truck ($/tonne) 

𝐾 Set of biorefineries, indexed by k 𝜂𝑏 Transportation variable cost of corn 

stover via truck ($/tonne-km) 

𝐸 Set of demand zones, indexed by e 𝛾𝑚 Transportation fixed cost of RJF via 

truck ($/liter) 

𝐽 Set of byproducts, indexed by j; 

naphtha, RDF, and electricity 
𝜂𝑚  Transportation variable cost of RJF 

via truck ($/liter-km) 

Variables 𝜔𝑗  Selling price of byproduct j ($/liter) 

𝑌𝑘 1 if a biorefinery is activated at 

location k; 0 otherwise 
𝐷𝑒 Annual RJF demand level at demand 

node e (liter) 

𝑄𝑖𝑘 Quantity of biomass transported 
from supply area i to biorefinery k 

(tonne) 

𝜌 Production cost of RJF at biorefinery 

($/liter) 

𝑄𝑘𝑒 Quantity of RJF transported from 

biorefinery k to demand zone e 

(liter) 

𝑝+ Buying price of one kg of carbon 

(𝐶𝑂2𝑒) in the carbon market ($) 

𝑄𝑘
𝑗
 Quantity of byproduct j produced at 

biorefinery k (liter) 
𝑝− Selling price of one kg of carbon 

(CO2e) in the carbon market ($) 

𝑒+ Number of carbon credits purchased 𝑒𝑏 Emission factor of transporting corn 

stover (kg 𝐶𝑂2𝑒 /tonne-km) 

𝑒− Number of carbon credits sold 𝑒𝑗 Emission factor of transporting RJF 

(kg 𝐶𝑂2𝑒 /liter-km) 

Parameters 𝐶𝑐𝑎𝑝 Carbon capacity allowed for the RJF 

supply chain (kg 𝐶𝑂2𝑒) 

𝜋  RJF selling price ($/liter) 𝑒𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 Emission factor of corn stover 

acquisition (kg 𝐶𝑂2𝑒 /tonne) 

𝜑 BAP discount rate 𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  Emission factor of producing RJF 

from corn stover (kg 𝐶𝑂2𝑒 /liter) 

𝛽 BCAP discount rate 𝑑𝑖𝑘 Distance from supplier i to 

biorefinery k (km) 

𝜆 Monetary incentive for PCP 

program ($/liter) 
𝑑𝑘𝑒 Distance from biorefinery k to 

demand zone e (km) 

𝛼 Selling price of corn stover ($/tonne) 𝑇 Capacity of biorefinery (tonne) 

𝑎𝑖 Quantity of corn stover available at 

supply node i 
𝑓 Annualized fixed cost of biorefinery 

($) 

𝜃 RJF conversion rate from corn 

stover (liter/tonne) 
𝑉 Annualized variable cost of 

biorefinery ($) 

𝜎𝑗  Conversion rate of fuel byproduct j 

from corn stover (liter/tonne) 
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Max 𝑍 = 𝜋 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

+ ∑ ∑ 𝜔𝑗𝑄𝑘
𝑗

𝑘∈𝐾𝑗∈𝐽

− 𝛼 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− 𝑓 ∑ 𝑌𝑘

𝑘∈𝐾

− 𝜌 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

− ∑ ∑(𝛾𝑏 + 𝜂𝑏𝑑𝑖𝑘)𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑚 + 𝜂𝑚𝑑𝑘𝑒)𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

 

(3.1) 

 

Subject to: 

 ∑ 𝑄𝑖𝑘𝑘∈𝐾 ≤ 𝑎𝑖       ∀𝑖 ∈ 𝐼 (3.2) 

 𝜃 ∑ 𝑄𝑖𝑘𝑖∈𝐼 = 𝑄𝑘𝑒      ∀𝑘 ∈ 𝐾 (3.3) 

 𝑄𝑗 ∑ 𝑄𝑖𝑘𝑖∈𝐼 = 𝑄𝑘
𝑗
     ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽 (3.4) 

 ∑ 𝑄𝑘𝑒  ≥ 𝐷𝑒 𝑘∈𝐾     ∀𝑒 ∈ 𝐸 (3.5) 

 ∑ ∑ 𝑄𝑖𝑘  𝑘∈𝐾𝑖∈𝐼 ≤ 𝑇𝑌𝑘    ∀𝑘 ∈ 𝐾 (3.6) 

 𝑌𝑘 = {0,1}     ∀𝑘 ∈ 𝐾 (3.7) 

 𝑌𝑘 ≥ 0       ∀𝑘 ∈ 𝐾 (3.8) 

 𝑄𝑖𝑘 ≥ 0      ∀𝑖 ∈  𝐼, ∀𝑘 ∈ 𝐾 (3.9) 

 𝑄𝑘𝑒 ≥ 0     ∀𝑘 ∈ 𝐾, ∀𝑒 ∈ 𝐸 (3.10) 

Eqs. (3.2) to (3.10) represent the constraints for the RJF supply chain. Constraint (3.2) is a 

supply constraint for the feedstock availability and ensures the amount of corn stover purchased 

does not exceed the maximum biomass feedstock available in supplier nodes. Constraint (3.3) 

presents material flow in the supply chain and ensures the quantity of RJF converted from biomass 

in a biorefinery is equal to the quantity of RJF leaving the biorefinery to demand nodes. Eq. (3.4) 

shows the quantity of generated coproducts at each established biorefinery. Constraint (3.5) 

guarantees the RJF transported from biorefineries to an airport will meet the RJF demand in the 
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airport. Based on Eq. (3.6), a biorefinery located at location k cannot exceed the designated 

capacity for the biorefinery. Eqs. (3.7) – (3.10) display the nature and non-negativity of variables 

applied to the model.  

3.3.2.2. RJF supply chain incentivized with PCP  

This part provides PCP incentives to the supply chain for each liter of RJF produced by 

biorefineries. In order to apply the PCP incentives into the model, we added parameter λ to the 

first component of the objective function in Eq. (3.11). However, the rest of the equation is 

identical to Eq. (3.1). 

Max 𝑍 = (𝜋 + 𝜆) ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

+ ∑ ∑ 𝜔𝑗𝑄𝑘
𝑗

𝑘∈𝐾𝑗∈𝐽

 − 𝛼 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− 𝑓 ∑ 𝑌𝑘

𝑘∈𝐾

− 𝜌 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

− ∑ ∑(𝛾𝑏 + 𝜂𝑏𝑑𝑖𝑘)𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑚 + 𝜂𝑚𝑑𝑘𝑒)𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

 
(3.11) 

Subject to constraints (3.2) to (3.10).  

3.3.2.3. RJF supply chain incentivized with BCAP 

This section employs BCAP to incentivize the supply chain, with all components in Eq. 

(3.12) identical to those in Eq. (3.1), except for the monetary incentives to purchase corn stover 

(discounts on corn stover pricing) in the third component. 

Max 𝑍 = 𝜋 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

+ ∑ ∑ 𝜔𝑗𝑄𝑘
𝑗

𝑘∈𝐾𝑗∈𝐽

 − (1 − 𝛽)𝛼 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− 𝑓 ∑ 𝑌𝑘

𝑘∈𝐾

− 𝜌 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

− ∑ ∑(𝛾𝑏 + 𝜂𝑏𝑑𝑖𝑘)𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑚 + 𝜂𝑚𝑑𝑘𝑒)𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

 

(3.12) 
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Subject to constraints (3.2) to (3.10).  

3.3.2.4. RJF supply chain incentivized with BAP 

In this section, the supply chain is incentivized using BAP, with each component in Eq. 

(3.12) being identical to those in Eq. (3.1), except for monetary incentives that are factored into 

the fourth composite component, including costs related to capital and operational costs at 

biorefineries. 

Max 𝑍 = 𝜋 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

+ ∑ ∑ 𝜔𝑗𝑄𝑘
𝑗

𝑘∈𝐾𝑗∈𝐽

− 𝛼 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− (1 − 𝜑) (𝑓 ∑ 𝑌𝑘

𝑘∈𝐾

+ 𝜌 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

)

− ∑ ∑(𝛾𝑏 + 𝜂𝑏𝑑𝑖𝑘)𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑚 + 𝜂𝑚𝑑𝑘𝑒)𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

 

(3.13) 

Subject to constraints (3.2) to (3.10).  

3.3.2.5. RJF supply chain incentivized with cap-and-trade policy 

This section considers cap-and-trade carbon policy for emissions created by the RJF supply 

chain. Cap-and-trade policy considers a carbon capacity for the supply chain, while it also allows 

trading unused carbon credits. In other words, with a capacitated emission level in a supply chain, 

the network might either sell unused carbon emissions or purchase more carbon credits to 

successfully satisfy its demands. In the objective function presented in Eq. (3.14), 𝑒+ and 𝑒− are 

defined as the quantity of carbon credits purchased and sold, respectively. Eq. (3.15) ensures the 

carbon generated throughout the supply chain does not exceed the carbon cap considered for the 

supply chain. However, if needed, the capacity could be increased by purchasing carbon credits. 
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𝑀𝑎𝑥 𝑍 = 𝜋 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

+ ∑ ∑ 𝜔𝑗𝑄𝑘
𝑗

𝑘∈𝐾𝑗∈𝐽

− 𝛼 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− 𝑓 ∑ 𝑌𝑘

𝑘∈𝐾

− 𝜌 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

− ∑ ∑(𝛾𝑏 + 𝜂𝑏𝑑𝑖𝑘)𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

− ∑ ∑(𝛾𝑚 + 𝜂𝑚𝑑𝑘𝑒)𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

− [𝑝+𝑒+ − 𝑝−𝑒−] 
(3.14) 

Subject to constraints (3.2) to (3.10) and   

𝑒𝑎𝑐𝑞𝑢𝑖𝑧𝑖𝑡𝑖𝑜𝑛 ∑ ∑ 𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

+ 𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ∑ ∑ 𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

 +  ∑ ∑ 𝑒𝑏𝑑𝑖𝑘𝑄𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

+  ∑ ∑ 𝑒𝑗𝑑𝑘𝑒𝑄𝑘𝑒

𝑒∈𝐸𝑘∈𝐾

+ 𝑒− ≤  𝐶𝑐𝑎𝑝 + 𝑒+ 
(3.15) 

3.4. Results and discussion 

In this section, we first define the optimal structure of the RJF supply chain network, 

including the number and location of biorefineries (strategic decisions), as well as the material 

flow between the various supply chain components (tactical decisions). Afterwards, application of 

the four incentive policies on profitability of the supply chain is discussed. We assume the minimal 

incentive to commercialize RJF production is the level that reduces profit losses to zero. Finally, 

the impacts of changes in various parameters of the supply chain on its profitability are discussed. 

3.4.1. Supply chain analysis with no monetary incentives 

The results showed that 10 biorefineries in ASDs 1710, 1720, 1750, 1850, 2690, 2750, 

2790, 2910, 2960, 5590 were required to be established to meet the demand in the airports. In 

terms of the biomass feedstock necessary to supply the biorefineries, 28.96 million tonnes of corn 

stover were required to create the desired RJF. However, the region's potential biomass might 

result in 44.44 million tonnes of feedstock, which could provide 6,417 million liters per year 

(MLPY) of RJF. Due to the blending limitations, the airports could only refill their airplanes with 
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up to 50% of their capacity. Therefore, only 4,180.42 million liters RJF was projected to be 

supplied to the airports in the region. The optimal assignments of the supply and demand nodes to 

the activated biorefineries are shown in Table B2. 

According to the findings, the supply chain resulted in a profit loss of $481.65 million, 

which equates to a profit loss of $0.12 per liter. As shown in Figure 3.3, the majority of supply 

chain revenue (46%) could be attributed to the selling of RJF, while the lowest revenue share 

(15%) could be attributed to the sale of power generated during the manufacturing process. 

Supply chain costs include operational costs (OPEX), capital costs (CAPEX), 

transportation costs, and purchasing cost of biomass feedstock, where operational costs constitute 

the largest portion of overall costs. In terms of transportation costs, 25.53% and 41.48 % of the 

total transportation cost was allocated to fixed and variable transportation costs for transporting 

corn stover, while 0.22% and 32.78% of the total transportation cost was allocated to fixed and 

variable transportation costs for transporting RJF from biorefineries to airports. 
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Figure 3.3. Total revenue and cost breakdowns for producing RJF 

Also Figure 3.4 shows the spatial configuration of the optimized RJF supply chain network 

including the location of farms and their potential to supply the supply chain with available corn 

stover, location of activated biorefineries, and location of the supported airports. According to the 

results, the 10 activated biorefineries wished to be located in ASDs where there was a balanced 

distance between biorefineries and airports, as well as between farms and refineries. Thus, the 

model allocated biorefineries to ASDs where biomass feedstock was abundant in their vicinity, 

while simultaneously reducing transportation costs between biorefineries and supported airports. 

It should be noted that due to the higher transportation costs to transport biomass feedstock from 

western part of the region, the model decided not to supply the activated biorefineries with corn 

stover from ASDs in those regions. The ASDs that did not supply the biorefineries are 

differentiated from supplying ASDs with hatched lines. It should also be stated that only 18% of 
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the available corn stover in ASD 4630 was utilized to supply the RJF production in the supply 

chain (illustrated with crosshatched lines in Figure 3.4). 



 

 

6
2
 

 

Figure 3.4. Configuration of the RJF supply chain for the base model
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3.4.2. Supply chain analysis with application of different monetary incentives 

In this section, we provide the results regarding the application of various monetary 

incentives, including PCP, BCAP, BAP, and cap-and-trade carbon policy, on the RJF supply chain 

profitability.  

3.4.2.1. Supply chain incentivized with PCP 

PCP could allocate direct monetary incentives to each liter of produced RJF. PCP 

incentives were considered to cover all kinds of costs in the supply chain including purchasing 

costs of the biomass feedstock, transportation cost, and capital and operational costs. Figure 3.5 

shows the impact of PCP incentive programs on reducing supply chain costs. By having PCP 

incentive programs cover 9.04% of its total costs, the supply chain could achieve breakeven. The 

point where the supply chain revenue starts to exceed the costs is called the breakeven point.   

Since monetary incentives could also be employed to other biofuels produced along RJF, 

including RDF and naphtha, we calculated the quantity of monetary incentives that could be 

applied to the total amount of biofuel produced. The required incentive is referred to as the 

inclusive incentive (Ebrahimi et al., 2022). According to the results illustrated in Figure 3.5, the 

supply chain needed $0.12 incentive per liter of RJF produced, while the quantity of inclusive 

monetary incentives to obtain profitability was $0.06. 
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Figure 3.5. RJF supply chain profit, with regard to various PCP incentive scenarios 

3.4.2.2. Supply chain incentivized with BCAP 

In this section, we included a BCAP monetary incentive that could be applied to costs 

associated with purchasing corn stover from farmers. The results related to applying BCAP to the 

RJF supply chain profits are illustrated in Figure 3.6. The results showed that the RJF supply chain 

could achieve the commercialization level where 33.53% of the costs related to purchasing corn 

stover was covered by the incentive program. A greater percentage of the costs covered by the 

incentive program compared to the PCP program is due to a lower share of the costs associated 

with the purchase of biomass feedstock compared to the total costs in the supply chain. 
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Figure 3.6. RJF production profit, with regard to various BCAP incentive scenarios 

3.4.2.3. Supply chain incentivized with BAP 

The costs associated with the manufacturing aspect of the supply chain could be 

compensated by BAP as an incentive program. The costs include fixed capital costs and 

operational costs to produce RJF. According to the results, presented in Figure 3.7, the BAP 

incentive program could potentially reduce the profit loss to the commercialization level by 

covering at least 16.64% of the capital and operational costs in the supply chain. The high 

percentage of capital and operating costs (57.3%) in the supply chain is the cause for the BAP 

program's low coverage rate in reaching commercialization. We also considered the PCP 

incentives as a complementary incentive program to cover the remaining costs of the supply chain.  
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Figure 3.7. RJF supply chain profit, with regard to various BAP incentive scenarios 

3.4.2.4. Supply chain incentivized with cap-and-trade 

Via implementing a cap-and-trade policy, we consider a carbon capacity for the carbon 

generated through the supply chain. The supply chain players can sell the unused amount of carbon 

emissions or buy additional carbon emission credits. Since RJF production is expected to generate 

less carbon emissions compared to the production of conventional jet fuel, we expect that the RJF 

supply chain would have unused amount of carbon emissions to be sold. This could ensure that 

the carbon policy is an efficient mechanism for incentivizing RJF production and assisting it in 

achieving commercialization. 

After implanting the carbon policy, it could be concluded that the 10 biorefineries were 

needed to fulfill the demand in airports. We considered the purchasing and selling price to be $0.22 

per kg of CO2 produced (H. Huang et al., 2016). The amount of CO2 generated throughout the 

supply chain’s activities was 446,909.58 tonnes. We established the baseline capacity for carbon 

emission generation based on the quantity of CO2 that might be produced by producing the same 
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amount of traditional jet fuel. For the production of fossil-based jet fuel, we considered an emission 

rate of 3.08 kg CO2 per liter (de Jong et al., 2017). Additionally, we assumed that by reducing one 

additional kg of CO2, the supply chain could earn $0.22 (J. Huang et al., 2020). We examined the 

policy under four different scenarios where the carbon allowance by the RJF supply chain was 

capacitated to various levels with regard to the carbon generation for producing the same amount 

of conventional jet fuel. The carbon allowance levels were set to 100%, 75%, 50%, and 25% of 

the level of carbon generation in conventional jet fuel production. The results are illustrated in 

Table 3.3. Findings showed that if carbon emissions were capacitated at least by the level of 20% 

of the carbon emission generated from conventional jet fuel production, the RJF supply chain 

might become profitable. 

If the supply chain could set the carbon cap in the supply chain to the capacity of total 

carbon emissions made by generating conventional jet fuel, it might end up with a profit of $0.5 

per liter of RJF produced. Comparing the results related to the profit loss concluded from the base 

model with cases having monetary incentives from cap-and-trade policy employed, one could 

verify the significant impact of implementing the policy on incentivizing RJF production. Table 

3.3 depicts the effects of implementing a carbon cap policy on supply chain profitability, 

demonstrating that the policy has the potential to increase supply chain profitability by 65% (from 

-$0.12 to $0.53 per liter). 
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Table 3.3. Supply chain performance under cap-and-trade policy 

 Carbon cap with regard to emission created by fossil-based jet fuel 

 Base 25% 50% 75% 100% 

Total profit ($ M) -481.65 126.59 826.27 1,526.82 2,210.26 

Sold carbon credit 

(Mg) 
0 

2,795 
6,013 9,236 12,442 

Profit per liter ($) -0.12 0.03 0.19 0.37 0.53 

 

3.4.3. Supply chain analysis with regard to changes in parameters 

In this section, we evaluated the effect of changing various model parameters on supply 

chain profitability. Figure 3.8 indicated that lowering the demand fulfillment rate could necessitate 

relatively lower monetary incentives to commercialize RJF manufacturing. However, given the 

social costs of using conventional jet fuel, creating more RJF and its associated social and 

environmental advantages may balance the impact of additional monetary incentives required for 

greater demand fulfillment rates. 

 

Figure 3.8. The effects of different demand fulfillments rates on the RJF supply chain 
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We also investigated the impact of changing biofuel prices on profitability of the RJF 

supply chain. Based on the data from EIA (EIA, 2021), the lowest average price for conventional 

jet fuel was attributed to 2020, at 1.293 $/gallon, while the highest average price was assigned to 

2012, at 3.104 $/gallon. Comparing the base price ($0.51 per liter) with the maximum and 

minimum prices experienced through recent years, it could be concluded that the jet fuel price 

fluctuated between 30% less and 60% higher than the base price. If biofuel prices rise by 60% 

above the basis price, the supply chain could become profitable, resulting in a profit of $0.45 per 

liter of RJF produced, whereas biofuel prices fall by 30% below the base price, resulting in a profit 

loss of $0.40 per liter of RJF produced. It could also be concluded that if biofuel prices (RJF, RDF, 

and naphtha prices) increased by 12% over the base case, the supply chain could become 

profitable. 

3.5. Conclusion 

Commercialization of RJF can be highly dependent on the lower cost of the supply chains 

that can efficiently produce the required RJF to meet the demand in airports. Using proper biomass 

that is abundantly available and does not put a threat on food and feed production is essential. 

Furthermore, RJF production can cost higher compared to the production of fossil-based jet fuel. 

In this study, using MILP, we designed a supply chain that had access to large resource of biomass 

feedstock (corn stover) that did not compete with any food resources. The study investigated the 

application of four different monetary incentives on profitability of the supply chain. From the 

results, we could conclude that all the studied incentives could make the supply chain profitable. 

It is worth mentioning that while the three monetary incentives of PCP, BCAP, and BAP were 

purely aimed to incentivize the supply chain with covering various costs, the cap-and-trade policy 

offered monetary incentives that could be earned over selling unused carbon credits (with regard 
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to carbon capacity allowed). It could also be concluded that a lower coverage share of PCP (9.04 

percent) was required to attain the commercialization threshold when compared to other analyzed 

monetary incentives. Other monetary incentives in terms of their minimum coverage share to 

become profitable could be listed as BAP with 16.64%, cap-and-trade capacitated on 20% of the 

carbon generated through producing conventional jet fuel, and BCAP with covering 33.53% of the 

costs related to purchasing corn stover. It should be noted that all the incentive programs were 

aimed at covering the same amount of costs of the supply chain. However, they differed based on 

the types of costs they covered (total costs, biomass purchasing costs, operational costs).  

From policy and managerial standpoint, results from this study could help producers find 

out the potential of each incentive program to commercialize the production. Furthermore, the 

discussed commercialization potential may inspire policymakers to provide assistive programs, 

which may result in increased interest in generating RJF and accelerate RJF production. 

Furthermore, due to the high sensitivity of the RJF supply chain’s profitability to changes in the 

biofuel price and considering the increase in the oil price (which can affect biofuel price), it is 

expected that price increase will result in a profitable RJF supply chain, even without application 

of the offered monetary incentives.  

Future studies can be related to the consideration of multiple biomass feedstock for 

producing RJF in the Midwest region. Considering uncertainties of the supply chain parameters in 

the model through using stochastic programming could also be a way to proceed this study. 
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4. A DECISION SUPPORT FRAMEWORK TO ASSESS SPEEDING CRASH RISK 

4.1. Abstract 

Speeding is a common contributing factor to traffic crashes. It contributes to a third of fatal 

crashes in the United States and is a critical risky behavior for drivers. Due to the limited budgets 

received by states to improve traffic safety, they must identify high-risk regions that can be 

prioritized to receive safety-related funding. Speeding crash risk can vary among regions. 

Therefore, identifying regions with the highest speeding crash risk enables road managers to 

balance and arrange corresponding budget allocations. Failure modes and effects analysis (FMEA) 

was used to assess speeding crash risk. A localized risk assessment of the speeding crashes was 

demonstrated for North Dakota counties. Local experts' opinions determined thresholds to 

calculate risk priority number (RPN). Additionally, an innovative preference approach was 

employed to rank the duplicate RPN values. A comparison study was conducted to validate the 

effectiveness of incorporating detectability risk and localized degrees of risk parameters in 

evaluating the speeding crash risks. The findings equip decisionmakers and road managers with 

an effective tool to prioritize high-risk counties in receiving safety budgets. Due to its generality, 

the new framework can be adapted for a wide range of applications in evaluating risks of various 

crash types. 

4.2. Introduction and literature review  

Traffic crashes and their related consequences, such as fatalities, injuries, and economic 

loss, remain critical. Road managers work relentlessly to find approaches to reduce them. Speed 

is one of the most important contributing factors to many crashes as it can affect crash risk and 

severity (Castillo-Manzano et al., 2019). Speeding not only increases the severity of a crash but 

can also affect the risk of having other vehicles involved (Aarts & van Schagen, 2006). It also 
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reduces a driver's ability to control safely and react quickly to a dangerous situation. Almost a third 

of US fatal crashes are considered speeding-induced crashes (Fitzpatrick et al., 2017). Speeding is 

defined as an attribute related to driving behaviors that refers to two modes of speeding: driving 

too fast for conditions and exceeding posted speed limits (Bagdade et al., 2012). According to the 

National Safety Highway Traffic Safety Administration (NHTSA), speeding can result in 

consequences such as a higher probability of losing control of a vehicle, reduced effectiveness of 

occupants' protection equipment, increased fuel consumption, more severe injuries and fatalities, 

and increased stopping distance after detecting a danger. Speeding is a complicated issue, 

involving driver behavior, vehicle performance, roadway characteristics and design, posted speed 

limits, and enforcement activities.  

A primary objective of a road safety management study is determining crash risk within 

the covered area (Shah & Ahmad, 2020). In the United States, an interdisciplinary approach termed 

speed management planning involving engineering, enforcement, education, and emergency 

services is incorporated to counteract speeding-related crashes (Bagdade et al., 2012). Bagdade et 

al. (2012) introduced four steps for the speed management process, which initiated with identifying 

locations of speeding issues.  

Addressing safety issues such as speeding can be very challenging to transportation 

agencies because they face tight budgets and few tools in implementing road safety assessments 

(Bagdade et al., 2012). Road agencies prioritize high-risk regions to best direct funding to serve 

safety needs. Thus, they would benefit from a systematic assessment tool that reliably identifies 

areas with the highest priority based on speeding crash risk. The results from this demonstration 

of a holistic risk assessment approach can be used as a starting point for more detailed studies. 
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Frequency, severity, and detectability before occurrence are the risk parameters that can be 

used to compare various crash risks. Numerous attempts have explored the frequency and severity 

of crashes (Delen, Sharda, & Bessonov, 2006; Alkheder, Taamneh, & Taamneh, 2017; 

Abdulhafedh, 2016; Xie, Lord, & Zhang, 2007; Geedipally, Gates, Stapleton, Ingle, & Avelar, 

2019; Delen, Tomak, Topuz, & Eryarsoy, 2017; Behbahani, Amiri, Imaninasab, & Alizamir, 

2018). However, most studies focused on finding the frequency and severity of different types of 

crashes in very limited areas such as a specific length of a route, by studying the potential 

attributing factors in crashes such as road characteristics, drivers, vehicle type, or environment 

(microscopic level crash studies).  

Hotspot identification methods have also been used to determine the locations with high 

crash risk. Ryder, Gahr, Egolf, Dahlinger, & Wortmann (2017) used a decision support system 

(DSS) that informed drivers about high-risk crash hotspots. Al-Kaisy, Ewan, & Hossain (2019) 

used an index to find the highest crash risk sites. The index identified hazardous locations utilizing 

highway geometry, traffic exposure, roadway features, and crash occurrence in a case study in 

Oregon. Applying an empirical Bayes sliding window technique in a geographic information 

system (GIS) environment, Qin & Wellner (2011) identified the high crash risk locations in South 

Dakota. Chen, Chen, & Anderson (2013) used the same method to find locations with a high risk 

of crashes. 

Several studies were aimed to find regions with the highest crash risk. Shen, Hermans, 

Brijs, Wets, & Vanhoof  (2012) used data envelopment analysis (DEA) to evaluate traffic safety 

in 27 European countries. Applying clustering analysis, they determined best-performing and 

under-performing countries with regard to traffic safety outcomes. Shah et al. (2018) used a similar 
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approach in assessing road safety risk where they used DEA to calculate and rank the road safety 

risk levels in Asian countries.  

Even though previous studies have investigated crash risk through various methods, they 

only incorporated the occurrence probability of events and the severity of the consequences. 

According to Wan et al. (2019), reliance on only two risk parameters (occurrence and severity) 

would inevitably result in misleading information from the risk analysis. Additionally, 

distinguishing various risks based on their safety levels suffers from loss of useful information if 

other important risk parameters are not considered in evaluating the risks (Wan et al., 2019). Wan 

et al. (2019) used FMEA to analyze the associated risks where visibility of the system was added 

to the aforementioned risk parameters in the assessment. Since the impacts of detecting speeding 

crash risk and the risks' visibility in reducing the number of crashes and speeding behavior had 

already been highlighted by transportation agencies, the application of the method to achieve a 

more realistic crash risk analysis seemed promising. 

FMEA is well-known as a structured, systematic, and proactive approach to analyzing 

system failures (Xu et al., 2020). FMEA ranks risks according to RPN, a multiplication of three 

risk parameters (namely, failure occurrence likelihood (O), consequence severity (S), and the 

likelihood of the failure being undetected (D)) (Alyami et al., 2019). The method identifies and 

ranks the failure modes (potential or existing risks) in a system to allocate scarce resources to the 

most severe risk items (Liu et al., 2013). 

Despite the popularity of the method in analyzing risks, FMEA is not without 

shortcomings. One shortfall is related to the duplicate RPNs produced by different risk parameters 

that can hinder the ranking process and provide misleading results to decisionmakers (Wan et al., 

2019; Ciani et al., 2019; Mandal and Maiti, 2014). Furthermore, the scale defined to assess risk 
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parameters for different types of risks and in various regions can be different, which requires the 

application of local estimations to analyze the risks (Alyami et al., 2019), while predefined risk 

degrees in FMEA to evaluate risk parameters may not exactly reflect risk parameters' severities in 

a system. 

This study introduces a novel framework to facilitate FMEA application in speeding crash 

risk analysis. It incorporates the Delphi method to reach consensus on the evaluation levels of the 

risk parameters in FMEA and employs an innovative preference approach to effectively rank the 

risks. Using this analysis, limited resources can be reallocated and rebalanced more effectively. In 

addition to discovering the overall speeding crash risk for the studied regions, the proposed 

approach results in important information regarding risks related to the occurrence, severity, and 

detectability of speeding-related crashes. Additionally, to reach a localized consensus on the 

evaluation levels of risk parameters in FMEA and obtain a realistic risk analysis, the Delphi 

method was employed. To validate the framework's practicality, the model was applied to assess 

the risk of speeding-related crashes in 53 counties in North Dakota. The results will allow road 

safety managers to systematically identify areas with the highest speeding crash risk. 

The expected contributions from this research, compared to the previous work, primarily 

lie in that: 

• For the first time, a holistic risk assessment approach is used, incorporating the 

three risk factors of occurrence, severity, and detectability to rank speeding crash 

risk. 

• It uses the Delphi method to obtain localized severity levels of risk parameters to 

be used in calculating RPN. 

• It develops a new preference algorithm to effectively rank risks with equal values. 
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Methodologically, this approach can be employed to analyze safety big data and identify 

regions with the highest risk to prioritize scarce resource allocations. The remainder of this paper 

proceeds as follows: 1) Section two introduces the framework and the theoretical dimensions of 

the research in detail, 2) Section three presents the results, 3) Section four provides a 

comprehensive discussion of the results, and 4) Section five provides a conclusion of the research 

including a concise summary and critique of the findings. 

4.3. Methodology 

This study uses FMEA to evaluate speeding crash risk. However, to incorporate experts' 

opinions into the ranking process, the Delphi method is employed within FMEA. Finally, utilizing 

a newly developed preference algorithm, the final ranking for each risk is obtained. The three 

analytical phases of the framework are explained in the following subsections. 

4.3.1. Quantification of risk factors for each risk using FMEA 

FMEA is a widely used technique, usually applied to identify and eliminate/reduce known 

or potential risks. The method can enhance the reliability and safety of complicated systems, 

providing managers with information to make effective decisions ( Liu et al., 2013). The first step 

in implementing this method is identifying the failure modes (risks) in the system. This study 

defined the various risks as speeding crash risk in each ND county. After the risks have been 

defined, evaluating the severity level of risk parameters corresponding to each risk is the next step. 

The risk parameters include occurrence risk, severity risk, and detectability risk. A high occurrence 

level means a high probability of a risk happening, a high value of severity risk implies the 

heightened effect of the risk, and a high value of detectability risk refers to a high probability of 

the risk being undetected before occurrence. As presented in Eq. (4.1), the risk priority number 

(RPN), which includes the overall risk values, results from multiplying the risk factors. The main 
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goal of FMEA is to measure and prioritize the risks with respect to the RPN values, where the 

results can lead managers to a more effective assignment of limited resources. The RPN is 

expressed as: 

 RPN𝑖 = 𝑂𝑖 × 𝑆𝑖 × 𝐷𝑖 (4.1) 

where 𝑂𝑖 is the probability of failure i, 𝑆𝑖  is the severity of failure i, 𝐷𝑖 is the detectability of failure 

i, and i refers to the county for which we are evaluating the crash risk.  

As a risk factor, each county's occurrence risk is calculated by dividing the number of 

speeding crashes in the county by the county's vehicle miles travelled (VMT). The severity of 

crashes in each county was obtained from a crash database for 2015 through 2018 (inclusive). Eq. 

(4.2) calculates the results for the severity of crashes. 

 𝑂𝑖 =
𝐶𝑅𝑖

𝑉𝑖
 (4.2) 

In Eq. (4.2), 𝐶𝑅𝑖 denotes the number of crashes due to speeding in county i and 𝑉𝑖 refers to the 

annual average vehicle miles travelled (VMT) in county i. 

The severity risk of speeding crashes is a function of various types of losses caused by the 

crashes. Eq. (4.3) is used to calculate the severity risk of the crashes where the coefficients are 

defined as the average of estimated costs related to each type of loss. 

 𝑆𝑖 =
∑ 𝑎𝑗𝑋𝑗𝑖𝑗

𝑉𝑖
 (4.3) 

where 𝑎𝑗 is the weight (comprehensive equivalent cost) defined for severity of injury type j, and 

𝑋𝑗𝑖 is the number of type j injuries in county i from 2015 through 2018. The losses correspond to 

injuries in several ranges, such as death, disabling injury, evident injury, possible injury, and no 

injury observed (property damage only). The average comprehensive cost of each injury type, 

including a measure of the economic cost components and lost quality of life, is illustrated in Table 

4.1 (National Safety Council & ANSI, 2017). 
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Table 4.1. Average comprehensive cost of injuries with respect to their intensity 

Injury intensity Cost 

Death $10,855,000 

Disabling $1,187,000 

Evident $327,000 

Possible injury $151,000 

No injury observed $50,000 

 

Detectability of risks is a significant risk factor that informs managers about the probability 

of a risk being realized by determining its likelihood of being undetected before a crash happens. 

Using an innovative index, we calculate the detectability risk. The index is presented in Eq. (4.4): 

 𝐷𝑖 =
𝐶𝑅𝑖

𝐶𝑖
 (4.4) 

where 𝐶𝑅𝑖 denotes the number of crashes due to speeding in county i and 𝐶𝑖 denotes the number 

of citations related to speeding in county i, including citations resulting from either speeding 

crashes or speeding violations with no associated crashes. It is assumed that the speeding crashes 

are cited by the police at the crash scene, while the number of citations (𝐶𝑖) refers to the total 

number of citations spotted by police, either leading to a crash or not. Therefore, the 𝐷𝑖 values 

range between zero and one. The closer to zero, the higher the likelihood of the crash risk being 

detected. In other words, the equation implies that if the total number of citations in a county 

approaches the number of crash-involved citations, the risk of speeding crashes becomes less likely 

to be detected. 

4.3.2. Incorporation of the Delphi method to FMEA 

After the three risk factors' values have been determined for each county, we have to 

calculate the RPN for each county. To determine RPNs, values for the risk factors between 1 to 10 

associated with the linguistic variables presented in Table 4.2 are needed. Even though the risk 

levels provided in the table are self-explanatory, some implications from the provided risk level 
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conversions are explained here. Regarding the occurrence risk, "extremely high" level of the risk 

relates to a high probability of speeding crashes while "nearly impossible" level conveys a very 

low possibility. Regarding the severity risk of speeding crashes, the "hazardous" risk level refers 

to the high costs resulting from a large number of crashes and/or a high ratio of the crashes 

associated with severe injuries and/ fatalities that result in higher costs. 

Conversely, the "none" risk level for severity risk factor implies that the costs associated 

with the risk in a given county are negligible. Regarding detectability risk, "absolute uncertainty" 

relates to a situation where speed violations are not detected by police and the likelihood of 

speeding behavior being detected by the police is very low. On the other hand, the "almost certain" 

risk level indicates situations where police will certainly detect speed violations. 

Table 4.2. Ratings for the occurrence, severity, and detectability risks of speeding crashes 

Occurrence risk Severity risk Detectability risk Score 

Extremely high Hazardous Absolute uncertainty 10 

Very high Serious Very remote detectability 9 

Repeated failure Extreme Remote detectability 8 

High Major Very low detectability 7 

Moderately high Significant Low detectability 6 

Moderate Moderate Moderate detectability 5 

Relatively low Low 
Moderately high 

detectability 
4 

Low Minor High detectability 3 

Remote Very minor Very high detectability 2 

Nearly impossible None Almost certain 1 

 

However, rescaling the actual values from each risk factor to values between 1 to 10 

without considering their local risk degrees may not result in a realistic risk assessment. In other 

words, the ranking could not necessarily mirror the locally perceived risk levels in the study region. 

To resolve the issue, this research uses the Delphi method to determine the localized risk degrees 

of actual values that can be mapped into linguistic variables associated with each risk factor. 
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The Delphi method is an influential tool that has been widely used to achieve consensus 

on topics where empirical evidence is insufficient or contentious (Okoli & Pawlowski, 2004). 

Here, we used the Delphi method to collect experts' estimations of risk degree regarding linguistic 

variables defined for each risk factor. Specifically, they are asked to share their estimations of high 

and low levels of the occurrence risk, severity risk, and detectability risk of speeding crashes in 

ND counties. After having results from the first survey, the average of the responses regarding 

each risk factor were shared with the survey participants and they were asked to complete the 

survey again. The participants were questioned about the risk of each risk factor for two risk levels, 

including the highest and lowest risk degree levels for the risk factors. The average values obtained 

from the second round of the survey were compared with the average from the first round. 

Differences less than 10% indicate that consensus has been reached on the value for the risk level 

while obtaining differences larger than 10% indicates the need for another round of the survey, 

until consensus is met. A sample of the questionnaire appears in Appendix C.1 and Appendix C.2. 

After having the highest and lowest values for each risk factor from the survey, we also 

needed to have other internal risk degrees between the extremes. The values were determined by 

considering eight equal intervals between the highest and lowest risk degree levels. Then, each of 

the ten values extracted from the survey was rescaled into values 1 to 10. 

Having the model equipped with the conversion process, the results from actual values for 

the risk factors could be rescaled to risk degrees ranging from 1 to 10, where one corresponded to 

the lowest risk level, and ten referred to the highest. After rescaling the risk factors' values, the 

results were inserted into Eq. (4.1) to calculate RPN. Finally, RPNs represented the speeding crash 

risk in each county. The higher the RPN for a county, the higher the county's speeding crash risk. 

Figure 4.1 illustrates how the framework assesses speeding crash risks.
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Figure 4.1. The flowchart of the proposed framework 

4.3.3. The application of the preference algorithm 

As discussed before, FMEA can generate several RPNs with equal values, resulting in 

multiple ties when ranking by RPN. To address the issue of duplicate RPN values, the model 

considered an extra procedure that prioritized the risks with regard to higher severity risk, 

occurrence risk, and lower VMT, respectively. In other words, to rank risks with equal RPNs, first, 

they would be compared based on their severity risks. We assume that severity risk is the most 

crucial risk parameter among the three because it reflects the social and financial impacts of the 

crashes. If one of the risks had a higher severity risk, it would be prioritized with a higher ranking. 

If the counties also had equal values for their severity risk, they would be compared based on 
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occurrence risk. The county with a higher occurrence risk would receive priority with a higher 

ranking. We preferred occurrence risk to the detectability risk as the comparative risk parameter 

because the occurrence risk would reflect a likelihood directly resulting from historical speeding 

crashes, while the detectability would refer to the likelihood of speeding behavior that might not 

necessarily lead to crashes. Finally, there would be other cases for duplicate RPNs in which all the 

risk factors would be equal. To rank those risks, they would be compared based on their associated 

VMTs. It is assumed that if two counties with equal risk values also had similar risk parameter 

values, the risk in the county with smaller VMT would be ranked higher. The logic behind this 

ranking refers to the fact that, for two counties with equal risk values, the multitude of a given risk 

value per VMT will be higher for the county with lower VMT. Figure 4.2 illustrates the procedure 

to rank two given risks with equal RPN values. In this figure, it is assumed that two equally 

assessed risks are being re-ranked.  

 

Figure 4.2. The flowchart for ranking duplicate risk values (the preference algorithm) 

4.4. Data and study scope 

The crash records between the years 2015 and 2018 were obtained from the North Dakota 

Department of Transportation (NDDOT) in a limited use agreement and aggregated by county. To 

calculate the occurrence risk, the model incorporated data concerning speeding crashes in ND 
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counties. Speeding crashes, exceeding the posted speed limit, and being too fast for conditions 

were recognized as identifying factors to quantify speeding crashes (Fitzpatrick, Rakasi, & 

Knodler, 2017). Also, to find the severity of crashes and their related injuries, the authors explored 

occupant injury records for observations between 2015 and 2018, considering crash outcomes that 

included fatal injuries, other injuries, property damage only, or no injury. The observations used 

to calculate detectability risk were obtained from the NDDOT citation records for the same period. 

For the number of speeding crashes used in calculating the detectability risk, the observations 

identified with speeding as one of the contributing factors or as the major contributing factor were 

considered.  

According to the speed management plan that was developed jointly by the National 

Highway Traffic Safety Administration (NHTSA), the Federal Highway Administration (FHWA), 

and the Federal Motor Carrier Safety Administration (FMCSA) in 2014, the accurate role of 

speeding in crashes can be difficult to determine, and judgment of the investigating law 

enforcement officer plays an important role in determining the major contributing factor to crashes 

(Speed Management Program Plan, 2014). Therefore, to counteract the impact of possible 

misjudgments and underreporting in speeding crashes, all observations for which speeding was 

identified as a contributing factor to the crash have been counted as speeding crashes, even if 

speeding was not indicated as the major contributing factor. Data analysis was conducted using 

SAS Studio 3.8. 

To find the severity level of the risk parameters, this research used experts' opinions 

through a Delphi survey. The survey was conducted in two rounds by sending emails to a group 

of local speeding/aggressive driving subject matter experts. Three experts participated in the 

survey. A consensus was reached in two rounds of the survey, finding the risk parameters' degrees. 
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4.5. Results 

FMEA was used to find speeding crash risk in each ND county. To calculate RPNs, the 

occurrence, severity, and detectability risks were obtained. Subsections (4.5.1 - 4.5.3) present the 

results related to each of the risk factors. In section 4.5.4, the results from the previous sections 

are converted to values between 1 and 10 on the basis of the risk levels from the Delphi method. 

Finally, the overall risk value and ranking for each county, considering the preference algorithm, 

are provided. 

4.5.1. Occurrence risk 

Each county's frequency of speeding crashes is standardized by considering the VMT in 

that county. The number of crashes calculated in each county in the last column of Table 4.3 is 

based on the number of speeding crashes per 100 million VMT. 
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Table 4.3. Occurrence risk of speeding crashes in ND counties 

County Frequency 

Frequency per 

100 million 

VMT 

County Frequency 

Frequency 

per 100M 

VMT 

Burleigh 2,836 253 Emmons 34 14 

Cass 2,232 112 Pierce 30 13 

Ward 1,216 78 Dunn 90 13 

Grand Forks 994 68 Hettinger 18 12 

Stark 747 68 Slope 11 12 

Williams 998 52 Cavalier 29 12 

Stutsman 469 45 Mountrail 128 12 

Morton 533 44 Logan 12 12 

Ramsey 127 29 Nelson 32 12 

Mercer 101 27 Dickey 26 12 

McKenzie 498 26 McHenry 57 12 

Barnes 201 25 Billings 41 10 

Renville 35 23 Kidder 54 10 

Bottineau 79 22 Pembina 49 10 

Ransom 46 21 Golden Valley 19 9 

Walsh 124 20 Eddy 11 9 

McIntosh 22 19 Grant 12 9 

Burke 43 18 Griggs 10 9 

Richland 192 18 Divide 20 8 

Sheridan 19 18 Steele 12 7 

Adams 20 17 Benson 28 7 

LaMoure 38 16 Towner 10 7 

McLean 134 16 Bowman 11 6 

Wells 43 15 Oliver 9 6 

Traill 125 15 Rolette 20 5 

Foster 28 15 Sioux 8 5 

Sargent 33 14    

 

According to Table 4.3, Burleigh had the highest occurrence risk with 253 crashes annually 

per 100 million VMT, followed by Cass, Ward, Grand Forks, Stark, and Williams. In contrast, 

Rolette had the lowest occurrence risk.  
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4.5.2. Severity risk 

The severity of speeding crashes was calculated by applying Eq. (4.3), where the costs 

related to different injury types caused by speeding crashes were calculated based on their 

associated estimated total costs. The severity of speeding crashes in ND counties from 2015 to 

2018 appears in cost per crash in Table 4.4. 

Table 4.4. Severity risk of speeding crashes in each ND county 

County No-injury Fatal Disabling 

Not-

disabling 

(Evident) 

Possible/ 

claimed 

Cost per crash 

($) 

Sioux 5 2 1 2 1 $2,177,455 

Oliver 7 1 1 2 2 $1,026,769 

Benson 28 2 1 9 1  $668,073  

Golden Valley 18 1 4 2 2  $646,630  

McHenry 52 3 12 17 6  $620,822  

Renville 31 2 6 14 6  $607,898  

Billings 47 2 8 4 4  $545,662  

McLean 140 7 14 28 23  $529,396  

Divide 27 1 5 3 3  $501,897  

Rolette 22 1 3 7 9  $456,286  

Dunn 128 4 16 17 9  $435,230  

Mountrail 163 5 13 28 24  $388,996  

LaMoure 36 1 4 12 5  $380,724  

Pierce 39 1 1 6 3  $328,140  

McKenzie 647 12 55 121 60  $308,963  

Kidder 64 1 5 9 7  $278,953  

Sargent 25 - 6 14 4  $276,612  

Griggs 8 - 2 2 1  $275,308  

Slope 7 - 2 3 4  $269,313  

Pembina 58 1 2 10 10  $258,136  

Mercer 124 2 4 23 18  $250,860  

Emmons 38 - 6 10 3  $223,596  

Richland 269 3 11 35 34  $214,918  

Barnes 295 3 16 31 40  $214,244  

Logan 11 - 1 5 1  $195,722  

Cavalier 29 - 4 4 7  $194,614  

Towner 8 - 1 1 4  $179,857  

Steele  11 - 1 3 2  $177,647  

Traill 163 1 6 24 14  $173,505  

Grant 11 - 1 3 8  $170,696  
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Table 4.4. Severity risk of speeding crashes in each ND county (continued) 

County No-injury Fatal Disabling 

Not-

disabling 

(Evident) 

Possible/ 

claimed 

Cost per crash 

($) 

Bottineau 84 - 6 20 15  $161,016  

Burke 58 - 5 7 4  $158,486  

Wells 63 - 6 2 9  $153,563  

Hettinger 16 - - 9 1  $149,769  

McIntosh 22 - 1 5 5  $141,727  

Williams 1,579 5 52 168 104  $139,198  

Walsh 168 - 10 18 19  $135,000  

Ward 1,991 8 44 165 240  $134,319  

Nelson 45 - 2 8 2  $132,316  

Morton 883 3 15 76 87  $124,539  

Dickey 28 - - 10 1  $123,615  

Grand Forks 1,749 6 26 127 155  $120,396  

Adams 22 - - 7 2  $119,065  

Stutsman 816 2 14 36 68  $108,085  

Stark 1,272 3 14 77 69  $103,401  

Ransom 63 - 1 8 7  $101,392  

Ramsey 198 - 4 13 27  $94,942  

Foster 34 - - 5 5  $92,955  

Bowman 16 - - 2 3  $90,810  

Sheridan 26 - - 4 1  $89,000  

Cass 3,522 2 38 221 295  $88,212  

Burleigh 5,150 4 33 188 472  $80,869  

Eddy 14 - - - 2  $62,625  

 

As depicted in Table 4.4, the highest severity based on estimated costs was for Sioux 

county, with $2,177,455 per speeding crash. Following Sioux, Oliver's average speeding crash cost 

is about $1,026,769, which is also considerably higher than that for other ND counties. The lowest 

average cost was for Eddy county, with an average estimated cost of about $62,625 per speeding 

crash. Further, the associated average costs for counties Burleigh, Cass, Sheridan, Bowman, 

Foster, and Ramsey were less than $100,000 per speeding crash. 
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4.5.3. Detectability risk 

According to Eq. (4.4), each county's detectability risk level is calculated by dividing the 

number of speeding citations issued at crash scenes by the total number of citations. Table 4.5 

presents the corresponding results. 

Table 4.5. Detectability risk of speeding crashes in ND counties 

County 

Speeding  

citations at  

crash scene 

Total 

speeding 

citations 

Detectability  

Risk (%) 
County 

Speeding 

citations 

at crash 

scene 

Total 

speeding 

citations 

Detectability 

Risk (%) 

Billings 22 96 22.92 Bottineau 50 826 6.05 

Burleigh 2,047 9,678 21.15 Pierce 19 318 5.97 

Stutsman 331 1793 18.46 Bowman 10 179 5.59 

McKenzie 338 1946 17.37 Renville 16 292 5.48 

Slope 8 47 17.02 Walsh 77 1,485 5.19 

Stark 558 3,893 14.33 Foster 15 310 4.84 

Barnes 125 897 13.94 Ransom 32 667 4.80 

Kidder 27 194 13.92 Mountrail 77 1,618 4.76 

Williams 780 5,836 13.37 Eddy 9 195 4.62 

Grand Forks 644 5,452 11.81 Hettinger 10 232 4.31 

Sheridan 15 138 10.87 Cavalier 20 501 3.99 

Burke 33 305 10.82 Sargent 15 399 3.76 

McLean 93 896 10.38 Divide 10 281 3.56 

Wells 37 375 9.87 LaMoure 16 464 3.45 

Richland 104 1,126 9.24 Logan 9 269 3.35 

Golden Valley 8 89 8.99 McHenry 25 753 3.32 

Dunn 51 592 8.61 Dickey 14 450 3.11 

Ramsey 79 925 8.54 Towner 6 211 2.84 

Ward 888 10,449 8.50 Griggs 5 176 2.84 

Traill 63 801 7.87 Pembina 18 737 2.44 

Morton 333 4,283 7.77 Grant 6 264 2.27 

Emmons 25 332 7.53 Benson 9 492 1.83 

Nelson 18 272 6.62 Steele 3 237 1.27 

Cass 1,094 16,809 6.51 Oliver 3 249 1.20 

Adams 12 191 6.28 Rolette 8 1,176 0.68 

Mercer 70 1,131 6.19 Sioux 1 269 0.37 

McIntosh 18 297 6.06     

 

According to the results, Billings receives the highest detectability risk, where nearly 23% 

of the total speeding-related citations are associated with crashes. In other words, about 77% of 
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total speeding citations in Billings are not associated with crashes. This indicates that the likelihood 

of speeding crashes being detected before their occurrence in Billings was lower than in other ND 

counties. Sioux and Rolette experienced likelihood levels higher than 99%. 

4.5.4. The Delphi method 

To calculate the final speeding crash risk, RPNs had to be calculated, where the results 

would represent the speeding crash risk for each county. However, to determine a localized risk 

assessment of the risk factors, the Delphi method was conducted. Running two rounds of surveys, 

the method reached a consensus on the risk levels for each risk factor. Next, the agreed risk level 

values for the lowest and the highest risk levels of each risk factor were rescaled to values between 

1 and 10. The highest surveyed value from the two-round Delphi method for a specific risk factor 

was set to 10, and the lowest was converted to 1. The averages of the highest and lowest estimated 

values for each risk factor from the second-round survey are provided in Table 4.6. It should be 

noted that the internal risk level values between 1 and 10 (2, 3, …,9) were allocated based on the 

eight equal intervals considered between the lowest and the highest risk values. 

Table 4.6. Experts' opinions on the level of risk factors in FMEA 

Occurrence risk of speeding crashes 
 Frequency of speeding crashes per 100M 

VMT 

Highest occurrence risk level   75  

Lowest occurrence risk level   5  

Severity risk of speeding crashes  Average cost per crash ($) 

Highest severity risk level   700,000  

Lowest severity risk level   50,000  

Detectability risk of speeding crashes 
 Speeding citations at the crash scene

Total number of speeding citations
% 

Highest detectability risk level   25   

Lowest detectability risk level   5   
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4.5.5. Risk priority number, considering the preference algorithm 

Using the values from the Delphi method regarding risk factors, Eq. (4.1) was used to 

calculate the RPN for each risk. Table 4.7 illustrates the rescaled risk factor values for each county 

and their associated RPNs and risk rankings. Comparing speeding crash risks among counties, 

Burleigh followed by Billings and McKenzie were ranked with the highest speeding crash risk, 

while counties Dickey and Eddy were found to have the lowest speeding crash risk. As expected, 

the model resulted in multiple duplicates of RPNs that made it necessary to compare the risks with 

regard to their RPN component risk levels (severity and occurrence) and VMTs. For example, the 

RPNs calculated for Ward and Stark were 90, putting them in the same ranking. To rank the risks 

effectively, they were compared according to the guidelines explained by the preference algorithm. 

First, they were compared based on severity risk. Since the counties had different severity risks 

and Ward County had the higher severity risk (three versus two), Ward was ranked higher than 

Stark. 
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Table 4.7. Risk assessment of speeding crashes in ND counties 

County VMT RPN Rank County VMT RPN Rank County VMT RPN Rank 

Burleigh 280 160 1 Burke 58 36 19 Sargent 59 12 37 

Billings 98 144 2 Morton 300 36 20 Nelson 69 12 38 

McKenzie 477 120 3 Mercer 95 32 21 Adams 29 12 39 

Williams 478 105 4 Wells 71 27 22 Sioux 41 10 40 

Ward 275 90 5 Traill 214 27 23 Griggs 28 8 41 

Stark 391 90 6 Ramsey 111 24 24 Pembina 124 8 42 

McLean 213 84 7 Sheridan 26 24 25 Bowman 45 8 43 

Stutsman 263 84 8 Oliver 39 20 26 Logan 26 6 44 

Barnes 205 80 9 Pierce 56 20 27 Grant 34 6 45 

Grand Forks 364 72 10 Benson 100 18 28 Hettinger 37 6 46 

Renville 39 64 11 McHenry 123 18 29 Towner 38 6 47 

Golden 

Valley 

51 54 12 LaMoure 58 18 30 Steele 41 6 48 

Slope 23 48 13 McIntosh 29 18 31 Cavalier 61 6 49 

Kidder 129 40 14 Bottineau 89 18 32 Foster 48 6 50 

Cass 499 40 15 Walsh 158 18 33 Ransom 55 6 51 

Dunn 173 36 16 Divide 63 14 34 Eddy 30 4 52 

Emmons 61 36 17 Rolette 96 14 35 Dickey 56 4 53 

Richland 261 36 18 Mountrail 270 12 36 
 

 
 

 

 

4.6. Discussion 

4.6.1. Distribution of risk parameters and speeding crash risk in ND counties 

Regarding the frequency of speeding crashes (occurrence risk), the results indicated that 

the number of speeding crashes in Burleigh was considerably higher than the number in other 

counties, while its VMT was almost half of the VMT in the second high-risk county in the list 

(Cass County). This finding was unexpected and suggested that future studies would be beneficial 

to investigate the underlying reasons behind the low rate of speeding crashes while having high 

VMT rates in such counties. Discovering the relationship between the number and severity of 

speeding crashes, speed limits, speeding behavior, roadway geometry, demographics, and the 

acquisition rate of safety measurements could also help road managers in high-risk counties 
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determine the contributing factors in road segments that cause a higher frequency of speeding 

crashes (Islam & Mannering, 2021).  

It was observed that the highest occurrence risk resulted from the most populated ND 

counties such as Cass, Burleigh, Grand Forks, Ward, Morton, Stark, Williams, and Stutsman. 

Counties such as Sioux, Rolette, Oliver, and Bowman experienced the lowest frequency of 

speeding crashes, indicating their speed management strategies for reducing speeding crashes 

could be investigated as alternatives for counties experiencing a high frequency of crashes. Figure 

4.3(a)-3(c) depict occurrence, severity, and detectability risk mapped based on their risk values 

from 1 to 10 when values 1-3 are labeled low, values 4-6 are labeled moderate, and values 7-10 

are labeled high. The results concerning the occurrence risk of speeding crashes are visualized in 

Figure 4.3(a). It was observed that counties with a high frequency of speeding crashes created 

semi-clusters in the east, north, west, and center of the state which could be resulted from a spatial 

correlation between the speeding crash risk in the corresponding counties. Further research might 

explore the effective speed management strategies in low-risk counties and examine their 

application to counties with similar geometries, demographics, and infrastructural characteristics, 

that were identified as high-risk counties. 

As mentioned before, the results from this approach can be considered input for regulating 

the speed management strategy plan in ND counties. More specifically, results from the occurrence 

risk of speeding crashes can be used to reconsider engineering features in the roadways, such as 

re-establishing speed limits that balance mobility and safety for all road users, designing roads that 

enforce desired vehicle speed, and creating self-regulating roadways by adding physical 

countermeasures. The frequency of the crashes in different counties also informs law enforcement 

about the places that need more monitoring to ensure drivers' compliance with posted speed limits. 
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Furthermore, the frequency results could be a starting point for reallocating emergency medical 

services to affected areas regarding the various occurrence risks in different counties. However, 

more detailed studies such as assignment problems would be needed to allocate enough resources 

to the regions at a detailed level (Chen et al., 2013). 

The severity of speeding crashes was calculated using the cost estimations for each type of 

consequence caused by the speeding crashes. Based on the results, it can be concluded that the 

cost per speeding crash in Sioux and Oliver counties was much higher than in other counties 

($2,177,455 and $1,026,769 versus 90th percentile value of $615,653 per speeding crash). The 

high severity of the crashes could be caused by the two and one fatal crashes in the counties, 

respectively, while the total number of crashes in those counties was not as high as the number of 

crashes in other counties. A likely explanation for the results is that the road conditions on some 

routes in the counties elevate the severity risk of speeding. In contrast, Eddy, Burleigh, Cass, 

Sheridan, Bowman, Foster, and Ramsey maintained the lowest severity risk of speeding crashes 

among ND counties with a cost per speeding crash less than $100,000. Despite suffering from a 

considerably higher number of speeding crashes than other counties, Burleigh and Cass had low 

severity of speeding crashes. This finding relates to the small number of fatalities and disabling 

injuries in those counties that can burden high costs on a transportation system. Therefore, it would 

be reasonable for other counties to follow speed management strategies implemented in counties 

with lower severity risk, such as Burleigh and Cass. Figure 4.3(b) illustrates a map of ND counties 

ranked with regard to the severity of speeding crashes. It can be observed that clusters of counties 

in the northern and western parts encountered higher costs than other counties. The severity risk 

results suggest considering more detailed studies for counties at high risk to determine if 

redesigning road features or reallocating emergency services is required. 
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Considering that speeding citations and control activities play a preventive role in speeding 

crashes, counties such as Billings, Burleigh, Stutsman, McKenzie, and Slope are experiencing high 

detectability risk (higher than 17%). A likely explanation for this result is the lack of adequate law 

enforcement or speed violation detection facilities in those counties. Figure 4.3(c) depicts the 

distribution of detectability risk in ND counties. The map shows clusters of counties with 

moderate/high detectability risk of speeding crashes in central and western regions. The results 

from the detectability risk can inform law enforcement about the effectiveness of their enforcement 

countermeasures to curtail speeding crashes. Therefore, they could effectively rebalance their 

personnel and resources to the affected regions with different detectability risk values. 

Finally, considering the three risk factors of occurrence, severity, and detectability, 

Burleigh was identified with the highest speeding crash risk. One recommendation to reduce the 

speeding crash risks is to identify effective strategies for lowering speeding crashes in counties 

with low risk of speeding crashes and applying them to counties with similar characteristics. As 

depicted in Figure 4.3(d), the high-ranking quartile of the speeding crashes consisted of two 

clusters; one extended from Barnes in the east to Renville in the northwest, and the other included 

six counties in the west. The clustered structure of the speeding crashes in the high-risk counties 

can accelerate the implementation of risk mitigation strategies. The FMEA tool for speeding crash 

risk informs decisionmakers about a data-driven prioritization to be considered in subsequent 

actions to reduce speeding crash risk. 
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Figure 4.3. Spatial distribution of the risk parameters and risk values in ND counties 
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4.6.2. Exploring the effect of detectability in the risk assessment results 

To illustrate the importance of incorporating detectability in the speeding crash risk 

assessment model, the results obtained using RPN are compared with the results obtained using 

the criticality index (Czernakowski & Müller, 1993) which uses only the product of occurrence 

risk and severity risk. A graph comparing the results from criticality analysis and RPN appears in 

Figure 4.4. The graph shows the criticality risk values (O×S) in ascending order for ND counties 

when their corresponding RPN values are also graphed along with the criticality values. As can be 

observed, adding detectability to the risk assessment method caused changes in risk values and 

final risk rankings. The observed changes in risk values by RPN show how a high or low 

detectability risk can affect speeding crash risk rankings for a given county. The highest increases 

calculated by RPN compared to criticality values were in Oliver with a change of 21 in ranking 

(from 5 to 26), and Benson, McHenry, and LaMoure with changes of 18 in rankings (from 10 to 

28, from 11 to 29, and from 12 to 30). 

On the other hand, low detectability risk in some counties caused decreases in the total risk 

value for some counties when the criticality index was used. The most significant reductions in 

rankings were observed in Kidder with a change of 24 in ranking (from 38 to 14) and Slope and 

Sheridan with changes of 22 in rankings (from 35 to 13 and from 47 to 25, respectively). From the 

results, it can be seen how significant the inclusion of detectability risk is to proper assessment of 

speeding crash risk. The changes become more important when the budget to be allocated for 

implementing the risk management programs is very limited and the ranking process will qualify 

a few high-risk counties to be funded.
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Figure 4.4. Comparing rankings evaluated by RPN and criticality 
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4.6.3. Exploring the effect of experts' opinions on ranking the risks 

Figure 4.5 indicates the rankings resulting from a traditional FMEA method (without using 

the Delphi method) and the rankings from the modified FMEA method proposed by this study 

(RPN1 is the method used in this research while RPN2 is from an FMEA approach without 

incorporating expert opinions through the Delphi method). The comparison is provided to verify 

the importance of incorporating experts' opinions in the process of speeding crash risk assessment. 

To calculate the rankings with the traditional FMEA, the 10th percentile of the data corresponding 

to each risk parameter was mapped to a value of 1 and the 90th percentile of each risk parameter's 

results was mapped to a value of 10. The internal intervals were set by assigning equal intervals to 

risk scores from 2 to 9, between the lowest and highest defined thresholds. 

According to the following Figure 4.5, the rankings obtained from the two approaches are 

highly different for some counties. For example, Adams, Cavalier, Bottineau, Foster Dickey, and 

Eddy were ranked considerably higher (differing by more than 20 ranks) when expert opinion was 

incorporated than their ranking obtained from the traditional RPN. On the other hand, the rankings 

for Oliver, Renville, and Traill were significantly lower (differing by more than 20 ranks) 

compared to the rankings obtained from the traditional RPN. The considerable differences in the 

rankings from the two FMEA approaches show how important experts' opinions are to speeding 

crash risk assessment.
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Figure 4.5. Comparing rankings evaluated with and without expert opinion
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4.7. Conclusion 

This study aimed to assess speeding crash risk among ND counties. A mix of empirical 

data (speeding crashes, injuries, and citation counts) and linguistic insights (experts' opinions of 

risk levels) were incorporated to evaluate the speeding crash risk. Using detectability as a risk 

factor is a novel approach to appraising speeding crash risk. Previous literature primarily used 

frequency and severity to measure crash risks while neglecting detectability. In addition, FMEA 

has been previously used to find the risk of failures in manufacturing or service companies, while 

the transportation sector has rarely applied this approach to evaluate failure risks. The evaluation 

of the speeding crash risk was conducted for a macroscopic scale of the region (county-level) with 

aggregate level data on speeding crashes. 

Further, to establish the risk level for risk factors of occurrence, severity, and detectability, 

the Delphi method was used. This method evaluated the risk parameters based on local experts' 

perceptions of each risk factor. Finally, the findings could provide policymakers with an efficient 

and practical approach to differentiating between risky and safe regions regarding speeding 

behavior and speeding crashes. Several clusters of counties affected by various risks such as 

occurrence, severity, and detectability were identified. The declaration of the clusters can help 

provide the affected counties in each cluster the opportunity to collaborate regarding implementing 

more consistent safety policies. 

This study provides road managers with helpful information to evaluate the speeding crash 

risk in ND counties and can inform them about their current speed management strategies' 

effectiveness in reducing speeding crash risk. In addition, the results can help road managers 

rebalance budget allocations to areas with a critical need for safety improvements. Having 

speeding crash risk broken down into three risk factors, safety practitioners can better identify the 
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origin of high speeding crash risk in a county. By doing so, they can address the areas that need 

development with appropriate safety improvement activities. 

The findings in this study were subject to several limitations. First, there could be 

underreporting of the crashes in counties such as Sioux and Rollette that encompass Indian 

Nations. According to Iragavarapu et al. (2015), in tribal regions, crash data reporting and 

collection might not be accurate enough to capture all the traffic violations and crashes. Second, 

speeding-related crashes are identified by law enforcement officers who respond to a crash and 

complete a subsequent crash report where they must select one or more factors contributing to the 

crash. Since the crash reports can result from the discretionary decisions of different individuals 

completing the crash report, the data related to speeding-related crashes could be subject to 

misjudgments (Monsere et al., 2006). 

Further studies that take into account potential contributing factors to speeding crashes and 

forecast occurrence, severity, and detectability of the crashes in high-risk counties are 

recommended. In addition, the performance of the proposed framework was not compared with 

other state of practice models and would be a worthy research direction. This study aimed to 

provide a decision-making approach to facilitate the process of evaluating crash risks at a strategic 

level. However, discovering the detailed reasons behind the high and low speeding crash risks 

across the counties is not within the scope and can be considered in upcoming studies. A future 

study may also use an optimization model to optimize the resource allocation of the safety 

improvement strategies (Chen et al., 2013). 
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APPENDIX A. SUPPLEMENTAL INFORMATION FOR CHAPTER 2 

Table A1. Values of input parameters for the carinata-based RJF supply chain model in 

Chapter 2 

Parameter & 

 Value 

Description Reference 

𝜋=1.73 RJF selling price ($/gallon) (EIA, 2021) 

𝜑=281.23 Carinata coproduct selling price (protein meal) ($/ton) (Chu et al., 2017) 

𝜓𝐿𝑃𝐺=0.66 Carinata coproduct selling price (LPG) ($/gallon) (EIA, 2021) 

𝜓𝑁𝑎𝑝ℎ𝑡ℎ𝑎=1.37 Carinata coproduct selling price (naphtha) ($/gallon) (E. Huang et al., 

2019) 

𝜓𝑅𝐷𝐹=1.90 Carinata coproduct selling price (RDF) ($/gallon) (EIA, 2021) 

𝛼=317.52 Selling price of carinata ($/ton) (Chu et al., 2017) 

𝜌 =29.59 Operational cost to convert carinata oil to renewable fuel products 

($/ton) 

(Diniz et al., 

2018) 

𝛾𝑐=6.3 Transportation fixed cost of carinata/meal ($/ton) (Čuček et al., 

2014) 

𝜂𝑐=0.113 Transportation variable cost of carinata/meal ($/ton-mile) (Čuček et al., 

2014) 

𝛾𝑗=0.0124 Transportation fixed cost of liquid fuels ($/gallon) (Čuček et al., 

2014) 

𝜂𝑗=0.00024 Transportation variable cost of liquid fuels ($/gallon-km) (Čuček et al., 

2014) 

𝜃=77.75 RJF conversion rate from carinata (gallons/ton) (EIA, 2021) 

𝜕𝐿𝑃𝐺=11.44 LPG conversion rate from carinata (gallons/ton) (EIA, 2021) 

𝜕𝑁𝑎𝑝ℎ𝑡ℎ𝑎=20.99 Naphtha conversion rate from carinata (gallons/ton) (E. Huang et al., 

2019) 

𝜕𝑅𝐷𝐹=19.11 RDF conversion rate from carinata (gallons/ton) (EIA, 2021) 

𝜎=0.560 Carinata meal coproduct conversion rate from carinata (ton/ton) (Chu et al., 2017) 

𝐷𝑒 Demand for RJF at demand zone e (gallons/year) (BTS, 2021) 

𝐷𝑔
𝑟 Demand for fuel byproduct r at demand zone g (gallons/year) Assumed 

𝐷𝑣
𝑚 Demand for carinata meal at demand zone v (tons/year) (NASS, 2021) 

𝑑𝑖𝑘  Distance from supplier i to biorefinery k (miles) From GIS 

𝑑𝑘𝑒 Distance from biorefinery k to demand zone e (miles) From GIS 

𝑑𝑘𝑔 Distance from biorefinery k to demand zone g (miles) From GIS 

𝑑𝑘𝑣 Distance from biorefinery k to demand zone v (miles) From GIS 

λ RJF production credit under RPCP ($/gallon) Variable 

𝛽 Discount rate on selling price of carinata under BCAP incentive (%) Variable 

𝜙 Rate of biorefinery cost reduction under BAP (%) Variable 

𝑤=88,000 Annual payment to each work force ($) (M. Pearlson et 

al., 2013) 

𝜉=0.072 
Aggregate rate of utility cost (overhead, maintenance, insurance, and 

taxes) 

(Diniz et al., 

2018) 
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Table A2. Available carinata at each ASD in Chapter 2 (NASS, 2021) 

ASDs Carinata seed 

(Thousand tons) 

ASDs Carinata seed 

(Thousand tons) 

Alabama                              Georgia  

0110 555.66 1310 58.33 

0120 278.00 1320 13.02 

0130 114.14 1330 22.83 

0140 205.66 1340 91.85 

0150 283.27 1350 327.99 

0160 470.54 1360 529.72 

Florida 1370 1,304.19 

1210 439.28 1380 1,342.45 

1230 164.87 1390 321.73 

1250 119.84 
Total               2,686.85 

1280 55.60 

 

Table A3. Demand for carinata meal at ASDs (NASS, 2021) 

States  ASDs Demand share (%) 

Alabama 

0110 4.70% 

0120 7.73% 

0130 4.54% 

0140 6.26% 

0150 3.09% 

0160 5.31% 

Florida 

1210 3.40% 

1230 4.26% 

1250 14.04% 

1280 19.66% 

Georgia 

1310 2.88% 

1320 2.89% 

1330 4.15% 

1340 2.85% 

1350 3.40% 

1360 2.40% 

1370 3.80% 

1380 3.11% 

1390 1.53% 
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APPENDIX B. SUPPLEMENTAL INFORMATION FOR CHAPTER 3 

Table B1. Values of input parameters for RJF supply chain with corn stover feedstock 

Parameter & Value Description Reference 

𝜔𝑛𝑎𝑝ℎ𝑡ℎ𝑎  = 0.36 Selling price of naphtha ($/liter) (Ebrahimi et al., 2022) 

𝜔𝑅𝐷𝐹  = 0.50 Selling price of RDF ($/liter) (Ebrahimi et al., 2022) 

𝜋 =0.51 Selling price of RJF ($/liter) (E. Huang et al., 2019) 

𝛼𝑐 = 49.61 Selling price of corn stover ($/tonne) (Haji Esmaeili, 

Sobhani, et al., 2020) 

𝜌 =0.59 Production cost of RJF at biorefinery ($/liter) (Pereira et al., 2017) 

𝜃= 144.38 RJF conversion rate from corn stover (liter/tonne) (Pereira et al., 2017) 

𝜎𝑛𝑎𝑝ℎ𝑡ℎ𝑎 = 72.25 Fuel coproduct j (naphtha) conversion rate from corn 

stover (liter/tonne) 

(Pereira et al., 2017) 

𝜎𝑅𝐷𝐹 = 72.25 Fuel coproduct j (RDF) conversion rate from corn 

stover (liter/tonne) 

(Pereira et al., 2017) 

𝛾𝑏= 6.615 Transportation fixed cost of corn stover via truck 

($/tonne) 

(Sokhansanj et al., 

2009) 

𝜂𝑏 = 0.0548 Transportation variable cost of corn stover via truck 

($/tonne-km) 

(Sokhansanj et al., 

2009) 

𝛾𝑚= 0.0031 Transportation fixed cost of RJF via truck ($/liter) (Searcy et al., 2007) 

𝜂𝑚  = 0.000394 Transportation variable cost of RJF via truck ($/liter-

km) 
(Searcy et al., 2007) 

𝑒𝑐 = 0.0756 Emission factor of transporting corn stover (kg 

CO2/tonne-km) 

(You & Wang, 2011) 

𝑒𝑗
𝑡𝑟𝑢𝑐𝑘 = 0.00009235 Emission factor of transporting RJF (kg CO2/liter-km) (F. Zhang et al., 2015) 

𝑒𝑐
𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 

 = 0.0001654 Emission factor of corn stover acquisition (kg 

CO2/tonne) 

(You & Wang, 2011) 

𝑒𝐹
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

= - 0.343 Emission factor of producing RJF through FT pathway 

from corn stover (kg CO2/liter) 

(E. Huang et al., 2019) 

𝑓= 45.51 Annual fixed cost of biorefinery (M $) (E. Huang et al., 2019) 

𝜌 =0.59 Production cost of RJF at biorefinery ($/liter) (Pereira et al., 2017) 

  



 

115 

Table B2. Optimal assignment of supply zones and demand nodes to activated biorefineries 

Supplier district  

(share of supply assignment) 

Activated biorefinery and its 

capacity 

Demand node  

(share of demand fulfillment) 

S51940 (34.82%), S1950 (38.53%), 

S1960 (26.65%). 
B61710 ORD (100%). 

S1710 (34.07%), S1720 (16.16%), 

S1810 (17.09%), S1930 (5.30%), 

S1980 (10.40%), S1990 (16.98%). 

B1720 MDW (1.11%), ORD (98.89). 

S1730 (19.75%), S1740 (29.67%), 

S1750 (28.36%), S1760 (21.18%), 

S1810 (1.04%). 

B1750 MDW (71.53%), DTW (28.47%). 

S1770 (26.67%), S1820 (10.88%), 

S1840 (12.69%), S1850 (18.06%), 

S1860 (7.59%), S1870 (12.28%), 

S1880 (3.09%), S1890 (2.45%), 

S3790 (5.98%). 

B1850 
CVG (40.60%), DTW (17.63%), 

IND (41.77%). 

S1820 (3.03%), S1830 (8.21%), 

S2610 (0.38%), S2620 (1.10%), 

S2630 (0.83%), S2640 (1.78%), 

S2650 (5.34%), S2660 (8.19%), 

S2670 (7.53%), S2680 (12.20%), 

S2690 (3.76%), S3910 (6.09%), 

S3920 (7.08%), S3930 (4.12%), 
S3940 (11.77%), S3950 (13.56%), 

S3960 (1.67%), S3980 (2.03%), 

S3990 (1.32%). 

B2690 DTW (100%). 

S2740 (31.79%), S2750 (29.97%), 

S2760 (3.18%), S2770 (25.42%) 

S4630 (3.06%), S5510 (6.58%). 

B2750 MSP (100%). 

S1920 (40.24%), S2780 (34.29%), 

S2790 (23.51%), S5540 (1.96%). 
B2790 MSP (48.12%), ORD (51.88%). 

S1970 (30.36%), S2070 (20.13%), 

S2080 (8.74%), S2910 (21.21%), 

S3190 (19.56%). 

B2910 OMA (31.73), KCI (68.27%). 

S1760 (10.14%), S1780 (12.06%), 

S1790 (12.14%), S2080 (0.92%), 

S2920 (9.76%), S2930 (15.18%), 

S2940 (10.23%), S2950 (11.37%), 

S2960 (4.62%), S2970 (3.82%), 

S2980 (0.56%), S2990 (9.21%). 

B2960 STL (100%). 

S1930 (27.65%), S5520 (6.59%), 

S5530 (3.97%), S5540 (11.67%), 

S5550 (8.04%), S5560 (10.36%), 

S5570 (11.36%), S5580 (16.32%), 

S5590 (4.06%). 

B5590 MKE (30.70%), ORD (69.30%). 

  

 
5 The letter “S” in the beginning of the biorefinery node indicates that the supply node is located at ASD 1940. 
6 The letter “B” in the beginning of the biorefinery node indicates that the biorefinery node is located at ASD 1720. 
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APPENDIX C. SUPPLEMENTAL INFORMATION FOR CHAPTER 4: DELPHI 

SURVEY ROUND 1 

The following is the first round of survey questionnaire distributed to experts. 

SPEEDING CRASH RISK FACTORS, EXPERT SURVEY 

Introduction 

In a study to assess risk of speeding crashes in ND counties, we collected data related to risk factors, 

including occurrence, severity, and detectability of speeding crashes. Results associated with county-level 

risk factors are presented in summary tables accompanying each of the following sections (Summary Table 

1, Summary Table 2, and Summary Table 3). To have a local assessment of crash risks and prioritize them, 

we need to know experts' opinions about each risk factor's different severity levels. Reaching consensus on 

the levels from this survey, we will categorize the level of risk for each risk factor more effectively.  

1. Occurrence risk of speeding crashes 

Occurrence risk of speeding crashes is defined as how likely speeding crashes are to occur in each county. 

Actual values from our study for speeding crash occurrence risks, including the 10th, 50th, and 90th 

percentile for the risk in ND counties, are presented in Summary Table 1. (A percentile is a value below 

which a given percentage of values in a data set fall) 

Summary Table 1. Speeding crashes occurrence, 10th, 50th, and 90th percentile for the observed values 

Actual occurrence risk percentiles observed for 

ND counties 

 

Observed frequency of speeding 

crashes per 100M VMT 

 

90th percentile for the occurrence risk observed 62* 

50th percentile for the occurrence risk observed 14 

10th percentile for the occurrence risk observed 7 

*90 percent of the speeding crash risk observations in ND counties experienced less than or equal to 62 crashes per 100M VMT. 

Based on your experience and the results provided to you, please share your opinions and estimations on 

different levels of speeding crash occurrence. 

  

To Survey Participants: 

Please provide your estimation and comments on these metrics based on your experience. Results from 

our study are provided as context for your response. The extreme limits for each risk factor may be 

higher or lower than the actual (observed) ND county results that are shared in Tables 1, 2, and 3. Your 

responses are encouraged even if you are uncertain about values, since you will be able to revise your 

responses in knowing the ‘average response’ in a next survey round to move toward consensus. 
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Expert table 1. Experts' opinions on the risk level of speeding crash occurrence 

Risk of speeding crash occurrence range value 

(probability of occurrence) 

Frequency of speeding crashes per 

100M VMT 

1.a. Highest occurrence risk estimate  

1.b. Lowest occurrence risk estimate  

 
2. Severity risk of speeding crashes 

Severity risk of speeding crashes among counties illustrates event consequences. Severity is evaluated 

based on proxy financial costs for speeding crashes in injury outcomes of "death", "disabling injury", 

"evident injury", "possible injury", and "no-injury observed". The severity of speeding crashes is presented 

by incurred costs illustrated by costs per speeding crash. We obtained the results using the cost estimations 

for the various injury intensities provided in Complementary data Table 2. Actual values in our study's 

results for speeding crash severity risks, including 10th, 50th, and 90th percentile for the risks in ND counties, 

are presented in Summary Table 2. 

Complimentary Table 2. Average comprehensive cost of injuries with respect to their intensity1 

Injury intensity Cost 

Death $10,855,000 

Disabling $1,187,000 

Evident $327,000 

Possible injury $151,000 

No injury observed $50,000 

1
National Safety Council & ANSI (2017) 

Summary Table 2. Speeding crashes severity, 10th, 50th, and 90th percentile for the observed values 

 

Actual severity risk percentiles observed for 

ND Counties 

 

Cost per crash ($) 

90th percentile for the severity risk observed $616,000 

50th percentile for the severity risk observed $180,000 

10th percentile for the severity risk observed $92,000 

Based on your experience and the results provided, please share your opinions and estimations of severity 

values. 
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Expert Table 2. Experts' opinions on the level of risk of speeding crash severity 

 

Severity risk of speeding crashes 

 

Cost per crash ($) 

2.a. Highest severity risk estimate  

2.b. Lowest severity risk estimate  

 

3. Detectability Risk of Speeding Crashes 

This factor shows law enforcement activity related to speeding and crashes before the crash event. The 

value is defined by dividing the number of speeding tickets cited at crash scenes by the total number of 

speeding citations either from speeding crashes or only speeding behavior. Therefore, the higher values 

mean that the higher percentage of citations have been related to speeding crashes. In comparison, lower 

values imply having more speeding tickets cited for speeding behavior, not including crashes, which means 

higher detectability of the risk (less detectability risk). The tenth, 50th, and 90th percentiles of observed 

values for speeding crash detectability risk in ND counties are presented in Summary Table 3. 

Summary Table 3. Detectability of speeding crashes, 10th, 50th, and 90th percentile for the observed values 

 

Actual detectability risk percentiles observed for 

ND Counties 

 
𝑆𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑟𝑎𝑠ℎ 𝑠𝑐𝑒𝑛𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠
% 

 

90th percentile for the detectability risk observed 16 % 

50th percentile for the detectability risk observed 6 % 

10th percentile for the detectability risk observed 2 % 

Please share your opinions and estimations of detectability risk values associated with the scoring values.  

Table 3. Experts' opinions on the level of risk of speeding crash detectability 

Detectability risk of speeding crashes 

 
𝑆𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑟𝑎𝑠ℎ 𝑠𝑐𝑒𝑛𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠
% 

 

3.a. Highest detectability risk estimate**  

3.b. Lowest detectability risk estimate*  

**Every speeding behavior will certainly be detected by law enforcement. 

*Very remote chance that the speeding behavior will be detected by law enforcement. 
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APPENDIX D. SUPPLEMENTAL INFORMATION FOR CHAPTER 4: DELPHI 

SURVEY-ROUND 2 

The following is the second round of survey questionnaire distributed to experts. 

SPEEDING CRASH RISK FACTORS, EXPERT 

SURVEY (Second round) 

 

Introduction 

In a study to assess risk of speeding crashes in ND counties, we collected data related to risk factors 

including occurrence, severity, and detectability of speeding crashes. Results associated with county-level 

risk factors are presented in summary tables accompanying each of the following sections (Summary Table 

1, Summary Table 2, and Summary Table 3). To have a local assessment of crash risks and prioritize them, 

we need to know experts' opinions about the different severity levels of each risk factor. Reaching 

consensus on the levels from this survey, we will be able to categorize the level of risk for each risk factor 

more practically. 

1. Occurrence Risk of Speeding crashes 

Occurrence risk of speeding crashes is defined as how likely speeding crashes are to occur in each county. 

Actual values from our study for speeding crash occurrence risks, including the 10th, 50th, and 90th percentile 

for the risk in ND counties, are presented in Summary Table 1. (A percentile is a value below which a given 

percentage of values in a data set fall) 

Summary Table 1. Speeding crashes occurrence, 10th, 50th, and 90th percentile for the observed values 

Actual occurrence risk percentiles observed for 

ND counties 

 

Observed frequency of speeding 

crashes per 100M VMT 

 

90th percentile for the occurrence risk observed 62* 

50th percentile for the occurrence risk observed 14 

10th percentile for the occurrence risk observed 7 

*90 percent of the speeding crash risk observations in ND counties experienced less than or equal to 62 crashes per 100M VMT. 

Based on your experience and the results provided to you, please share your opinions and estimations on 

different levels of speeding crash occurrence. 

  

To Survey Participants in Round Two: 

 

Results from our study and Round One are provided as context for your response. The extreme limits 

for each risk factor may be higher or lower than the actual ND county results that are shared in Tables 

1, 2, and 3. Your responses are encouraged even if you are uncertain about values. 
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Response 1. Experts' opinions on level of risk of speeding crash occurrence 

Risk of speeding crash occurrence range value 

(probability of occurrence) 
Average from the first-

round survey 

Frequency of 

speeding crashes 

per 100M VMT 

1.a. Highest occurrence risk level   

1.b. Lowest occurrence risk level   

2.Severity Risk of Speeding Crashes 

Severity risk of speeding crashes among counties illustrates event consequences. Severity is evaluated 

based on proxy financial costs for speeding crashes in injury outcomes of "death", "disabling injury", 

"evident injury", "possible injury", and "no-injury observed". The severity of speeding crashes is presented 

by incurred costs illustrated by costs per speeding crash. We obtained the results using the cost estimations 

for the various injury intensities provided in Summary Table 2. Actual values in our study's results for 

speeding crash severity risks, including 10th, 50th, and 90th percentile for the risks in ND counties, are 

presented in Summary Table 2. 

Complimentary Table 2. Average comprehensive cost of injuries with respect to their intensity1 

Injury intensity Cost 

Death $10,855,000 

Disabling $1,187,000 

Evident $327,000 

Possible injury $151,000 

No injury observed $50,000 
1
National Safety Council & ANSI (2017) 

Summary Table 2. Speeding crashes severity, 10th, 50th, and 90th percentile for the observed values 

Actual severity risk percentiles observed for 
ND Counties 

Cost per crash ($) 

90th percentile for the severity risk observed $616,000 

50th percentile for the severity risk observed $180,000 

10th percentile for the severity risk observed $92,000 

 

Based on your experience and the results provided to you, please share your opinions and estimations of 

severity values. 

Expert Table 2. Experts' opinions on level of risk of speeding crashes severity 

 
Severity risk of speeding crashes 

Average from the 

first-round survey 
Cost per 100M VMT 

2.a. Highest severity risk level   

2.b. Lowest severity risk level   
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3. Detectability Risk of Speeding Crashes 

This factor shows law enforcement activity related to speeding and crashes before the crash event. The 

value is defined by dividing the number of speeding tickets cited at crash scenes by the total number of 

speeding citations either from speeding crashes or only speeding behavior. Therefore, the higher values 

mean that the higher percentage of citations have been related to speeding crashes. In comparison, lower 

values imply having more speeding tickets cited for speeding behavior, not including crashes, which means 

higher detectability of the risk (less detectability risk). The tenth, 50th, and 90th percentiles of observed 

values for speeding crash detectability risk in ND counties are presented in Summary Table 3. 

Summary Table 3. Detectability of speeding crashes, 10th, 50th, and 90th percentile for the observed values 

 

Actual detectability risk percentiles observed for ND 

Counties 

 
𝑆𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑟𝑎𝑠ℎ 𝑠𝑐𝑒𝑛𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠
% 

 

90th percentile for the detectability risk observed 16 % 

50th percentile for the detectability risk observed 6 % 

10th percentile for the detectability risk observed 2 % 

 

Please share your opinions and estimations of detectability risk values associated with the scoring values. 

Table 3. Experts' opinions on level of risk of speeding crash detectability 

 Detectability risk of 

speeding crashes 

Average from the 

first-round survey 

𝑆𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑟𝑎𝑠ℎ 𝑠𝑐𝑒𝑛𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠
% 

3.a. 
Highest detectability 

risk level * 
  

3.b. 
Lowest detectability 

risk level ** 
  

* Very remote chance that the speeding behavior will be detected by law enforcement. 

** Every speeding behavior will certainly be detected by law enforcement. 

 


