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ABSTRACT 

To overcome some of these challenges posed by ND climate, the utilization of native 

wild Vitis-derived varieties is the best possible option available. Despite advantageous 

environmental tolerances of native wild Vitis spp. derived crosses, their acid and sugar 

concentrations often deviate from expectations set for V. vinifera. Identifying the genetic 

determinants of titratable acidity (TA), pH, and total soluble solids (TSS/°Brix) in interspecific 

hybrid populations can help improve new hybrid cultivars. For this purpose, an incomplete 

diallel mapping population with substantial riparia and other wild Vitis spp. in its background 

was used to perform association studies. The population is genotyped with single nucleotide 

polymorphism (SNP) markers and phenotyped over two years. Genome wide association 

analysis (GWAS) identified a significant association on chromosomes 6 and 16 for all three traits 

in both years. Candidate gene identification under the significant region revealed multiple 

glucose, fructose, and amino acid metabolism genes.  
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LITERATURE REVIEW 

Grapevine introduction 

The grapevine is one of the significant global horticulture crops. Grapevine cultivation is 

almost as old as civilization, beginning around 8000 years ago (McGovern et al., 2003). In 2020, 

grapevines were cultivated roughly in 6.95 million ha worldwide and produced roughly 78 

million metric tons (Mg) of grapes (FAO, 2020). In the United States, the grapevine is the 

leading fruit in terms of production quantity, with some 6 million Mg produced in 2020 

nationally. California is the leading state contributing up to 94% of the national production, 

followed by Washington (NASS, 2020). Most of the fruit produced is being used for 

winemaking, and the remainder is being consumed as a variety of products such as table grapes, 

raisins, bottled fresh grape juice for consumption, processed into jellied products like ‘Concord’ 

jelly, or concentrated into syrups like "Pecmez" (Bouquet., 2011). 

Grapevine belongs to the family Vitis, which consist of approximately 60 interfertile 

species that have evolved worldwide. Vitis vinifera L., indigenous to Eurasia, has been used most 

extensively for wine and table grape purposes (This et al., 2006; Reynolds., 2017). Grapes can be 

cultivated at latitudes ranging from 50°N to 40°S and up to 3,000 meters above sea level, with 

Vitis vinifera L. ssp. sativa varietals of Eurasian descent representing nearly 98 % of the vines 

worldwide (McGovern et al., 2003). Vitis vinifera originated from its progenitor species, Vitis 

vinifera subsp. sylvestris (Heywood and Zohary., 1995). As per historical evidence, the 

foundations of grape domestication are believed to have occurred in the South Caucasus between 

the Caspian and Black Seas (Terral et al., 2010; Myles et al., 2011). During domestication, Vitis 

vinifera underwent many morphological and physiological changes, such as a shift from the 
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dioecious nature of V. vinifera ssp. sylvestris to hermaphroditism in Vitis vinifera ssp. sativa by 

developing perfect flowers to reduce reliance on pollen donors and ensure self-pollination. 

Additionally, due to human selection pressure, the size of berries and clusters increased 

significantly with high levels of sugar content for better fermentation (Martin et al., 2009; Zecca 

et al., 2010; Myles et al., 2011). Many wild Vitis species (V. riparia, V. rupestris, V. lubrasca, V. 

aestivalis, etc.) have been long grown under different biotic and abiotic stresses of North 

America. Two-thirds of the total Vitis species are native to the North American region (Aradhya 

et al., 2003). These wild relatives provide promising germplasm for breeders to develop 

resistance against different pests and diseases and adapt to unfavorable environmental 

conditions. During the mid-19th century, the accidental introduction of pests and diseases such as 

phylloxera (Daktulosphaira vitifoliae Fitch), downy mildew (Plasmopara viticola Berl.), and 

powdery mildew (Uncinula necator Burr) led to extensive destruction of vineyards in Europe 

due to the sensitive nature of Vitis vinifera which drastically reduced genetic diversity of the 

species (This et al., 2006; Myles et al., 2011). These adverse events lead to the widescale 

adaption of rootstock breeding programs utilizing resistance North American rootstock, 

including V. riparia, V. rupestris, V. lubrasca, and V. aestivalis (Cousins and Striegler., 2005; 

Terral et al., 2010). Additionally, many hectares of French American hybrids (V. vinifera x Wild 

American Vitis spp.) were planted in Europe during the same period. Many of the French-

American hybrids lasted until the late twentieth century, thanks to scion breeding operations. 

Many of those French American hybrid cultivars were also transported to eastern North America 

in the late 1940s and established a critical element of the industry in the US (Reynolds., 2015). 

However, rootstock and scion breeding operations stagnated over the twentieth century. The 

varietal range in commercial vineyards declined dramatically, owing to establishing a wine trade 



 

3 

centered on a few internationally renowned cultivars, among other factors. Thousands of V. 

vinifera cultivars exist currently, but only a handful of cultivars dominate the global wine market 

(This et al., 2006; Bouquet., 2011). 

Grapevine berry developmental stages 

Grapes are classified as berries because their seeds are wrapped in a thick fleshy pericarp. 

Grape berries are organized in clusters, with a pedicel containing vascular bundles connecting 

each berry to the cluster. The growth of grape berries consists of two sigmoidal phases separated 

by a lag phase (Coombe and McCarthy., 2000; Robinson and Davies.,2000). The first growth 

stage lasts around 60 days from the start of the bloom. During this stage, berries and seed 

embryos develop from the flowers. Within the first several weeks of this stage, rapid cell 

division occurs, and the extent of this division influences the final size of the berries. Along with 

cell division, various nutrients are supplied to developing berries through the vascular system 

during this stage. The xylem transports water, nutrients, minerals, and growth regulators from the 

roots to the developing fruits early in the stage. The buildup of these solutes, particularly malic 

and tartaric acid, causes the berry volume to expand (Kennedy., 2002).  These two acids make up 

to 90 % of the total acid content of the berries. The distribution and accumulation of these acids 

within the berries vary based on location and time. Tartaric acid tends to build on the outside of 

the berries towards skins, while malic acid tends to accumulate inside the flesh. Tartaric acid 

accumulates early in the growth stage, while most malic acid accumulates near the end of the 

first growth stage, shortly before veraison (Kennedy., 2002). Tannins, another essential 

component that gives the wine its bitter and astringent flavor, accumulates in the skin and seed 

during the early stage of growth.  
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Veraison, the second stage of berry development, is marked by the softening and 

coloration of the berries. The berries double in size between the start of the second growth stage 

and harvest. Most of the compound produced during the first growth stage remains until the end 

of the second phase, but their concentration dilutes due to the doubling of berry size. However, 

during the second phase, the malic acid content in berries declines, and the extent of this 

decrease is mainly determined by environmental conditions during veraison. Typically, warmer 

regions tend to have less malic acid when compared to cooler regions. Another significant 

change during veraison is the influx of sugars into the berries. Sucrose produced by 

photosynthesis in the leaves is actively transported into the berries through the phloem. Once 

transported into berries, this sucrose hydrolyzes into reduced sugars such as glucose and fructose 

(Coombe et al., 1987; Kennedy., 2002). The amount of sugar that accumulates during veraison is 

determined by various factors, including crop load, canopy management, disease pressure, and 

the length of time the berries are kept on the vine. Aside from sugar accumulation, another 

critical alteration that affects wine quality during veraison is the accumulation of secondary 

metabolites. These mainly include anthocyanins in red varieties and terpenoids in white varieties 

(Coombe et al., 2000, Kennedy., 2002).  

Fruit quality parameters 

Total soluble solids (TSS) measurements are commonly used to determine the sugar 

content of berries. Glucose and fructose make up nearly 99% of grape juice's total carbohydrates, 

representing a significant amount of the total soluble solids (Kliewer., 1966). Soluble solids, 

measured in oBrix, are an estimate for sugar concentration based on the juice's refractive index. 

Soluble solids describe a juice sample's relative sugar weight; for example, 1oBrix denotes 1 % 

sugar by weight (Jackson and Lombard, 1993). Glucose and fructose are essential components of 
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fermentation in winemaking since yeast processes sugars into alcohol. Glucose and fructose also 

have an impact on wine quality because they are responsible for the sweet flavor and aid in the 

balance of sourness, bitterness, and astringency. As the grape berries ripen, soluble solids rise to 

a level that can indicate the optimum harvest ripeness (Jackson and Lombard, 1993). Wine made 

from grapes with a high °Brix can have a high alcohol content, which can mask other quality 

characteristics. As a result, a 24 °Brix upper limit is commonly utilized to signify adequate 

ripeness for quality wine production (Winkler., 1974).  

Fruit pH is another vital component that can determine wine quality. A wine's pH level of 

3.60 or above may cause some quality issues. High pH levels promote the relative activity of 

microbes such as bacteria that impair the color intensity of red wines, absorb more sulphur 

dioxide, and reduce free SO2 concentration, and can slow down the wine's aging process 

(Jackson and Lombard, 1993). Increases in pH are generally correlated with increases in soluble 

solids (°Brix) during maturity and can be used to determine the best time to harvest. 

Acidity levels fluctuate throughout berry growth stages as a result of metabolic activities. 

Typically, 90 % of the acids contained in grapes are tartaric and malic acids, with tartaric acid 

being the most common (Kliewer., 1965; Lamikanra et al., 1995). Succinic, acetic, citric, lactic, 

fumaric, and shikimic acids, among others, can be present in varying amounts depending on 

cultivar and environmental factors (García-Ruiz et al., 2008). Grape acidity is commonly 

expressed as titratable or total acidity (TA). The TA is a critical metric that grape growers use to 

assess the quality of their juice and wine. The cultivar, growing region, and environmental 

conditions such as sunshine, precipitation, and temperature can all affect the composition of 

organic acids. (Lamikanra et al., 1995). In general, V. riparia derived grapes have more malic 

acid than tartaric acid, which could explain why V. riparia hybrid cultivars have such high 
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titratable and sensory acidity. The TA value was reduced rapidly during maturation because of 

dilution with sugars and other components during veraison. During maturation, the drop in TA 

was a function of temperature and is linked to the berry's respiration rate (Winkler., 1974). The 

primary acid that was impacted by respiration was malic acid, and the main difference between 

cool and warm climates was that malate concentration decrease slowly in cool climates but 

quickly in warm climates. 

Grapevine genome 

The grapevine genome is thought to have formed due to an ancient polyploidization event 

involving the fusion of three genomes or a hexaploidization event. (Jaillon et al., 2007; 

Malacarne et al., 2012). The grapevine genome is diploid (2n = 38chromosomes) in a 

contemporary breeding sense and relatively small, at approximately 475-500 Mb in size (Lodhi 

and Reisch, 1995). There is a total of 19 haploid linkage groups. This is small compared to other 

commonly cultivated crops (approximately one-sixth of the corn genome), making it more 

appealing for genetic research. (This et al., 2006). Even though grapevine is hermaphrodite, 

outcrossing by means of wind or insects is the primary mode of pollination. As a result, cultivars 

are highly heterozygous and contain a significant number of harmful recessive mutations. Due to 

the high levels of heterozygosity, inbreeding depression is severe, and sterility often increases 

from the second generation when selfed, which would make it difficult for whole-genome 

sequencing of grapevine (Rick and Simmonds, 1976). PN40024, a selection derived from 'Pinot 

noir'. By successive selfings, this line has been bred near full homozygosity (estimated at 93 %), 

enabling high-quality whole-genome shotgun assembly (Jaillon et al., 2007). In the same year, 

another Pinot noir-derived variety 'ENTAV 115' was successfully sequenced using whole-

genome shotgun sequencing (Velasco et al., 2007) and was the first perennial crop whose 
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genome was sequenced completely (Bouquet., 2011). Two high-quality reference genomes 

assisted breeding operations worldwide. The reference genome aided in the discovery of genes 

that underpin different cultural and quality characteristics and opened up new avenues for 

molecular breeding. 

Genotyping-by-sequencing 

Plant genetics and crop improvement programs rely heavily on genomic variation studies. 

DNA polymorphisms can be linked to phenotype differences or reflect the relation between 

individuals in the populations (Rafalski., 2002). Genotyping has aided the mapping of several 

candidate genes and metabolic pathways, as well as the study of evolution, diversity, and 

marker-assisted selection (MAS) in a variety of crop species over the last few decades 

(Deschamps et al., 2012). The first plant DNA markers used were restriction fragment length 

polymorphisms (RFLPs). Later due to their inherent challenges, RFLP's were replaced by PCR-

based markers such as simple sequence repeats (SSR), random amplification of polymorphic 

DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), and others. The PCR-

based markers are relatively abundant in the genome, less expensive, polymorphic, and co-

dominant in nature (Williams et al., 1990; Paran and Michelmore., 1993). Later the introduction 

of next-generation sequencing (NGS) technology in the early 21st century allowed for the 

detection of genetic variation at a single base-pair resolution, which led to the development of a 

new type of marker known as single nucleotide polymorphisms (SNPs) (Deschamps et al., 2012). 

Genotyping by Sequencing (GBS) is a novel application of NGS technologies for 

identifying and genotyping SNPs in crop genomes and populations without going through the 

complete marker assay development stage (Elshire et al., 2011; Deschamps et al., 2012). Low 

cost, simplified handling, fewer PCR and purification steps, no reference sequence 



 

8 

restrictions, no size stratification, fast barcoding, and convenience of scaling up are all critical 

features of GBS technology (Davey et al., 2011). Elshire et al. (2011) were the first to describe 

and test GBS in maize and barley recombinant inbred lines populations. GBS is becoming more 

and more essential in various plant species as a cost-effective and unique method for genomics-

assisted breeding (He et al., 2014). However, missing data and heterozygote under-calling 

affected the progress of GBS genetic maps in highly heterozygous species like grapevine 

GBS has several advantages, including a highly multiplexed and shallow sequencing that 

simplifies library construction and lowers per-sample costs. However, this key advantage 

becomes a significant disadvantage when it comes to heterozygous crops like grapevine since 

shallow sequencing leads to genotyping errors, under-calling heterozygous sites, and missing 

data (Hyma et al., 2015). In heterozygous samples, imputation of missing data is more complex 

than in homozygous samples, resulting in a more significant number of imputation errors (Swarts 

et al., 2014). To overcome these difficulties of GBS in heterozygous crops, programs and 

functions, such as Heterozygous Mapping Strategy (HetMappS) have been developed to handle 

errors associated with heterozygosity and missing data while constructing genetic maps (Hyma et 

al. 2015). There are already a variety of grapevine populations that have been genotyped using 

GBS. These populations have been used to examine a variety of traits of interest, including 

quality attributes, pests, and disease resistance. 

GBS libraries can now be sequenced on a variety of platforms. Illumina Genome 

Analyzer is one of them, and it is based on the notion of sequencing by synthesis (Mardis, 2008). 

The widescale availability of this novel NGS protocol at a cheaper cost makes the GBS an 

appealing strategy to map the breeding population with a high density of SNP markers. This 

opens the doors for more widespread use of genome-wide association studies (GWAS), genomic 
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selection (GS), and marker-assisted selection (MAS) to better understand a variety of traits in 

diverse crop species (He et al., 2014). 

Association studies and linkage disequilibrium  

The terms association mapping and linkage disequilibrium (LD) are often misunderstood. 

Linkage disequilibrium refers to the non-random association between two genes, two markers, or 

two QTLs within a population. In contrast, association mapping refers to a strong association of 

a genetic marker to a specific phenotype (Gupta et al., 2005). Association mapping is quickly 

becoming a popular tool for analyzing several complex traits in crop plants. It offers a benefit 

over linkage mapping, such as increased mapping resolution without a substantial increase in 

population size (Owens, 2011). In linkage mapping, the resolution of the genetic map is based on 

the recombination events that happened in the bi-parental population, which generally involves 

only one generation/round of recombinations, particularly in perennial crops. In comparison, 

association mapping is based on recombination events in a group of unrelated individuals in the 

past (historical recombinations) (Altshuler et al., 2008). This approach has numerous advantages 

in long-lived perennial crops like grape, where establishing and maintaining a mapping 

population is both time-consuming and expensive (Myles et al., 2011; Nicolas et al., 2016).  

LD and genetic diversity within the association panel play a pivotal role in the association 

analysis. LD is influenced by various components in a particular species, including population 

structure, admixture, mutations, drift, and selection. Henceforth it is essential in determining 

domestication, evolution, and breeding patterns of plants and animals (Amaral et al., 2008; 

Slatkin., 2008). The number and density of markers in an association panel will be determined by 

the distance over which LD persists. In general, mutation contributes to the creation of LD 

between loci, and recombination is the critical mechanism that weakens the LD between two loci 
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(Flint-Garcia et al., 2003; Zhu et al., 2008). The rate of LD decay across chromosomal segments 

is of critical importance for improving mapping resolution (Falconer and Mackay, 1996; Mackay 

and Powell, 2007). Typically, LD decays occur faster in outcrossing species than in selfing 

species. In selfing species, where individuals are more likely to be homozygous, the chance 

of recombination is less than outcrossing species (Flint-Garcia et al., 2003). Grape is an 

outcrossing species; it is expected to have rapid LD decay, and this has been proven in several 

studies (Barnaud et al., 2006; Lijavetzky et al., 2007; Barnaud et al., 2010; Zhang et al., 2017).  

Barnaud et al. (2006) published the first study on LD within cultivated V. vinifera L. 

subsp. Vinifera using 38 microsatellite loci spread across five linkage groups. They observed that 

LD has occurred over 16.8 cM regions within five linkage groups. In contrast, LD decay 

occurred much more rapidly when they studied the wild population of 85 French Vitis vinifera L. 

subsp. silvestris selections, demonstrating a potentially restricted genetic base following 

domestication, with few recombination events (Barnaud et al., 2010). Another detailed 

investigation by Lijavetzky et al. (2007), using 11 genotypes and 1500 SNP's, revealed rapid 

decay of LD in over 200 random loci, representing over 1Mb length of the sequence. 

Interestingly, following potential bottleneck events associated with the introduction of pests and 

diseases, genetic diversity was found to be reduced in wild grapevines when compared to 

cultivated. Using 160 SSR markers, two grouping clusters were estimated based on 81 Chinese 

native selections composed of 15 Vitis species, and LD was estimated to occur up to 14.13 cM 

(Zhang et al., 2017). 

In humans and animals, and more recently in plants, genome-wide association studies 

(GWAS) have been shown to be a viable technique for mapping associations (Begum et al., 

2015). The initial success of GWAS came from its application in human studies that resulted in a 
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better understanding of Type 2 diabetes risk factors and the discovery of over 100 schizophrenia 

risk loci (Visscher et al., 2017). After that, GWAS adaption in plants increased tremendously and 

became a standard tool in dissecting different complex traits. Examples of GWAS in crops 

include the discovery of significant SNPs linked to soybean resistance to bacterial, fungal, 

nematode, and viral diseases (Chang et al., 2016) and identification of SNP associations related 

to flowering time and plant height-related traits in maize (Xiao et al., 2017)  

The majority of economically important traits in the grapevine are quantitative in nature, 

following a complex inheritance pattern involving many genes. The use of GWAS and 

candidate-gene association analysis have emerged as valuable approaches to study these complex 

traits effectively. The GWAS analysis using a subset of individuals from USDA grape core 

collection focused on berry color, identified 5 Mb genomic region on Chromosome-2. Later it 

was determined that MYB transcriptome genes in this 5 Mb region control the color of berries in 

grapes (Myles et al., 2011). Association study on a panel of 148 genotypes revealed that gain of 

function point mutation from G to T in the candidate gene VvDXS resulted in muscat flavor in 

grapes (Emanuelli et al., 2010). Other noticeable GWAS studies focused on different traits of 

grapes, such as determining the genetic basis of leaf shape (Chitwood et al., 2014), seedlessness 

(Zhang et al., 2017), establishing VviUCC1 gene role in cluster architecture traits (Tello et al., 

2020), stomatal conductance under drought stress response (Trenti et al., 2021) and many other 

trait associations. 

GAPIT 

Genome Association Prediction Integrated Tool (GAPIT) is a statistical package for 

Genome-Wide Association Studies (GWAS) and Genomic Selection (GS) that is runs in R 

statistical software (https://zzlab.net/GAPIT/gapit_help_document.pdf). GAPIT is simple to use 

https://zzlab.net/GAPIT/gapit_help_document.pdf
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and generates extensive data interpretation reports in a publishable format. GAPIT handles both 

numeric and HapMap genotypic formats as input data. Individuals in the phenotypic file do not 

have to be in the same order as those in the genotype file. GAPIT can implement a wide range of 

models such as general linear model (GLM), mixed linear model (MLM), compressed mixed 

linear model (CMLM), enhanced compressed mixed linear model (ECMLM), multiple loci 

mixed model (MLMM), fixed and random model circulating probability unification (FarmCPU), 

Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK) and 

genomic best linear unbiased prediction (gBLUP) to perform GWAS and GS in a user-defined 

way. The CMLM and MLMM models were adopted in the current project, and they will be 

explored in detail. 

CMLM and MLMM 

Although GWAS offers the ability to uncover genetic polymorphisms that underlie 

various traits, the false discovery rate is a key issue, which can be attributed partly to spurious 

associations caused by population structure and unequal relatedness among individuals in a 

population. To address these issues, several statistical methods have been proposed so far. The 

GLM was the initial model adapted to address population structure in GWAS by integrating 

population structure as a cofactor with marker data (Li et al., 2014). 

Y = Si + Q + e 

Where 'Y' denotes phenotype, 'Si' is the marker under test, 'Q' is population structure, and 

'e' is residual error. Here, the cofactor 'Q' aids in adjusting effects that are not related to the 

testing markers, resulting in fewer false positives. The MLM applies the same principle by 

jointly adding a genetic marker-based kinship matrix (K) with the population structure (Zhang et 

al., 2010) 
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Y = Si + Q + K + e 

However, because kinship is obtained from all markers, applying kinship for the testing 

marker in an MLM creates conflict between the testing markers and the genetic effects specified 

by kinship. To get around this, Individuals are compressed into groups in CMLM to reduce 

kinship and testing marker confounding (Zhang et al., 2010). The user can specify the desired 

number of groups. Summary statistics of kinship between and within groups are applied as 

elements of a reduced kinship matrix after lines are divided into a given number of groups. To 

determine the best compression level, several mixed models will be applied. For each model, the 

log-likelihood function values will be determined, and the best compression level is decided as 

the one with the most significant log-likelihood function value.  

All the mentioned approaches are based on single-locus tests to identify associations 

between polymorphisms and traits. These techniques, however, may not be well suited for 

complex traits regulated by multiple large-effect loci, especially in the presence of population 

structure. Using several cofactors directly in the statistical model is an easy way to increase 

efficiency and has indeed become the norm in modern linkage mapping, where both multiple–

quantitative trait locus mapping and composite interval mapping have been proven to outperform 

basic interval mapping. The justification for incorporating multiple loci in GWAS is perhaps 

much more substantial because background loci might cause confounding effects across the 

genome owing to linkage disequilibrium, rather than just locally due to linkage. Using MLMM is 

a new technique that permits effects from multiple loci simultaneously and includes associated 

markers as covariates by employing forward-backward stepwise linear mixed-model regression. 

The MLMM investigations using human and Arabidopsis thaliana data outperformed existing 

approaches in terms of power and false discovery rate (Segura et al., 2012). 
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Current study focus 

Previously an incomplete diallel mapping population of 1064 individuals was created by 

crossing three different parents with significant riparia and other Vitis sps. backgrounds in them. 

The population was genotyped with 25490 GBS-derived SNP markers to perform linkage and 

association studies focused on traits such as fruit quality and cold hardiness. 

The present study investigated the genetic determinants of degree °Brix, pH, and total 

acidity (TA) in the incomplete diallel population. The population was genotyped using GBS-

derived SNP markers and phenotyped for °Brix, pH, and TA over two years. A genome-wide 

association study was performed using genotypic and phenotypic data collected from the 

population. 
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MATERIALS AND METHODS 

The incomplete diallel population development  

A mapping population of 1064 F1 individuals was created by crossing three different 

parents in a diallel mating design. This population was called an incomplete diallel because it 

only includes three out of nine possible families of a 3×3 diallel mating design without including 

self and reciprocal crosses (Table 1). Three parents used in the development of the population 

were ND 213, SKND.009.41, and ND.054.27.  

Table 1. Incomplete diallel population mating design with the number of individuals in each 

family 

 
♀ 

ND.213 ND.054.27 SKND.009.41 

♂ 

ND.213 × 99 618 

ND.054.27 × × 347 

SKND.009.41 × × × 

 

The parent ND 213 was created by crossing female parent 'Alpenglow (ES 2-8-1)' with 

the pollen donor 'C14' (Figure 1). Parent ND.054.27 was created by crossing female parent 

'Frontenac Gris' with the pollen donor 'Adalmiina (ES 6-16-30)'. Third parent SKND.099.41 was 

gifted to NDSU-Grape Germplasm Enhancement Program (NDSU-GGEP) by the University of 

Saskatchewan, created by crossing female parent 'Perle de Csaba' with the pollen donor 'Riparia 

L,' a Vitis riparia accession from Saskatchewan. This population consisted of three distinct 

families, with SKND.009.41 × ND.213 as the biggest family with 618 individuals. The cross 

SKND.009.41 × ND.054.27 was the second biggest family with a total of 347 individuals, and 

finally, the cross ND.054.27 × ND.213 was the smallest family with a total of 99 individuals. 
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Figure 1. Pedigree history of the parents used in the creation of population 

Seeds of Individuals were created by careful hand pollination. After germination, 

individual plants were grown in greenhouse conditions for about a month before acclimating to 

outdoor conditions for 14 d and then transplanting to the field environment. Vines were 
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transplanted in 2017, using an un-replicated design, in a research vineyard located at the NDSU 

Agriculture Experiment Station, Fargo, North Dakota (46°53'28.9"N 96°48'46.9"W). Vines were 

trained on a single-wire bilateral cordon system consisting of single trellis wire at 5ft height to 

support the cordons and crop. Row spacing was 1.52 m (5 feet) while vine spacing was 0.91 m (3 

feet) within the row. Due to winter injury, rabbit damage during early years, and variable 

environmental factors, many individuals failed to establish a healthy vine. After excluding 

dead/damaged vines, the current population consists of around ~750 individuals in the vineyard. 

Vines were supported by drip irrigation during the initial two years of management to support 

good trunk establishment. A total of ~750 genotypes of the population with good establishment 

were selected to construct the genetic maps. Plant protection chemicals used include glufosinate 

(Rely® 280, BASF Ag Products, Research Triangle Park, NC, USA) to control weed competition 

during the summer season. No fungicides were used diseases such as powdery mildew or downy 

mildew were not present. Vines were covered with bird netting from veraison until harvest to 

prevent bird damage to the clusters. 

Phenotypic data collection 

The primary phenotypic data collected measured the basic fruit chemistry (°Brix, pH, and 

TA) of individual vines in the population. The population was adequately pruned and maintained 

throughout the growing season to establish an optimum fruit set. The number of vines that 

produced fruit varied from year to year and depended on many factors such as reaching 

reproductive maturity, winter survival, and other environmental factors during the growing 

season (temperature and photoperiod). In 2020, three years after transplanting, a total of 255 

genotypes of the population produced fruit for the first time. That the following year (2021), 

most of the individuals (~ 575) of the population can set the fruit.  
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To measure the changes in basic fruit chemistry during veraison, berry samples for 

testing were collected at three different times each year during the ripening period. Harvest dates 

varied from year to year, depending on photoperiod variations and visible assessments of grape 

maturity (Stage 85-89 in the BBCH-scale for grapevine). In both years, sample collection was 

mainly based on the decreasing photoperiod with an average gap of ten days between one harvest 

and another. During the 2020 growing season, harvests one, two, and three were completed at 

decreasing photoperiods of 14.5, 14, and 13.5, respectively (Table 2). In 2021, genotypes 

matured a week earlier than the previous year due to drier and warmer conditions during growing 

season. In 2021 berry sampling during harvest one, two, and three were completed at decreasing 

photoperiods 15, 14.5, and 14, respectively (Table 3). 

Table 2. Photoperiod, number of genotypes sampled, number of berries sampled, and harvest 

date for sample collection in 2020. 

Description 
The year 2020  

Harvest 1 Harvest 2 Harvest 3 

Photoperiod 14.5 14 13.5 

Number of genotypes sampled 269 237 213 

Number of berries sampled 5-10 5-10 60-80 

Date 08/07/2020 08/18/2020 08/31/2020 

 

Table 3. Photoperiod, number of genotypes sampled, number of berries sampled, and harvest 

date for sample collection in 2021. 

Description 
The year 2021 

Harvest 1 Harvest 2 Harvest 3 

Photoperiod 15 14.5 14 

Number of genotypes sampled 574 547 528 

Number of berries sampled 5-10 10-20 60-80 

Date 08/02/2021 08/11/2021 08/24/2021 
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The number of berries sampled for testing during each harvest varied primarily due to 

genotype-specific fruit availability. The third harvest was the most extensive sample collection in 

both years and was done after the berries attained optimum harvest ripeness. During both 

growing years, a ten-milliliter (ml) juice sample from the third sample collection was kept at -

20°C for HPLC testing, and a 5-milliliter (ml) juice sample was saved to determine titratable 

acidity using a pH meter. For HPLC testing, samples were shipped with dry ice to the Iowa State 

wine laboratory (Ames, IA, USA) and Northern Crop Institute (Fargo, ND, USA) during the 

years 2020 and 2021, respectively (Data not included here).  

Berry samples from each fruiting genotype of the population were collected using plastic 

bags in the early morning hours of the respective harvest dates. To prevent desiccation, collected 

samples were immediately transported to a walk-in cooler (maintained at 4℃) in the nearby 

greenhouse. After collecting the required sample, the weight of the collected berries was 

measured using a Mettler AE100 Analytical Balance (Mettler-Toledo, Toledo, OH, USA). Single 

berry mass (SBM) from each genotype was obtained by dividing the berries measured weight by 

the number of berries in that respective sample. To measure the samples °Brix, pH, and TA 

content, the juice was extracted by hand pressing the berries in the plastic collection bags. Fruit 

°Brix was measured using a Pocket Refractometer for grape & wine (Atago PAL-1 | 3810, 

Atago, Bellevue, WA, USA). Fruit pH was measured using a Digital Pocket pH Meter for grape 

& wine (PAL-pH | 4311, Atago, Bellevue, WA, USA). TA was measured using a Pocket Acidity 

Meter for grape & wine (PAL-Easy ACID2, Atago, Bellevue, WA, USA). Dilution used for TA 

measurement was ten μl grape juice in 490 μl distilled water.  
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Leaf tissue collection and DNA extraction 

Leaf tissue was collected from the selected ~750 vines that had good establishment for 

DNA extraction. A dime-sized piece of freshly formed tender leaf tissue without any primary 

vein or tendrils was collected to get an optimum quality DNA library. Collected leaf tissue from 

each individual was placed in a single 2.2 ml deep well of 96-well plates with silica balls to grind 

the tissue. After tissue collection, DNA plates were immediately stored in ice and later freeze-

dried to -80℃ using a LABCONCO Freeze Dryer (LABCONCO, Kansas City, MO, USA). 

Lyophilized tissue was ground into a fine powder using a Retsch mixer mill (Retsch, Haan, 

Germany). Sample DNA was extracted from the grounded tissue using an in-house DNA 

extraction protocol.  

GBS marker genotyping 

Single nucleotide polymorphisms (SNPs) were generated from the extracted DNA of the 

population using the Brummer procedure. Sample GBS was performed utilizing restriction 

enzyme ApeKI for digestion and sequencing platform Illumina HiSeq 2000 (Illumina, San Diego, 

CA, USA) for sequencing. A 20 μl of diluted DNA was transferred to a new plate. Transferred 

DNA was restricted with ApeKI restriction enzymes (Incubated for two hours at 75 ℃ and then 

cooled to 4 ℃). Within a single well of a 96-well plate, each genotype was allocated a unique 

barcode ranging from 5-10 bp. A 30 μl of DNA ligase master mix and common adaptors together 

with the barcode adapters were added for ligation step (22 ℃ for 2 h, 65 ℃ for 30 min and 

cooled to 4 ℃ to hold). With barcodes added, DNA fragments were cleaned using beads that 

eliminated fragments < 300 bp in size. The success of digestion and ligation was tested to ensure 

the equivalent amount of DNA from each genotype using the Qiagen PCR cleanup kit following 

the kit instructions. The 50 ng cleaned DNA, 25 μl Kapa library amplification ready mix and 
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primers for the barcoded adaptors were used for PCR test (5 min at 72 °C, 30 sec at 98 °C, 10 

cycles of 10 sec at 98 °C, 30 sec at 65 °C, and 30 sec at 72 °C each, 5 min at 72 °C then finally 

hold at 4 °C). Finally, the resulting libraries were validated using the Bioanalyzer. After 

validation, a total of eight DNA libraries were sent to the Univ. Texas Southwestern Medical 

Center (Dallas, Texas, USA) for sequencing using the sequencing platform Illumina HiSeq 2000.  

The Univ. Texas Southwestern Medical Center provided the sequence data in a 

compressed file format. Individual vines in the population had their sequence data aligned to the 

12x v2 V.vinifera' PN40024' for SNP calling. The TASSEL 5.2.79 software (Buckler lab) was 

used to filter the resulting SNP data, saved in VCF file format (Bradbury et al., 2007). Then, 

using in-house scripts, markers with ≥ 50% missing data were eliminated. Finally, genotypes that 

had more than 50% of their genotypic information missing were discarded. After removing 

genotypes with more missing reads, 605 individuals' genotypic information remained. The LD 

KNNi method in TASSEL 5.2.79 software was used to impute the SNPs with missing data 

(Figure A3). A total of 25490 SNPs having a minor allele frequency (MAF) of 0.05 were 

included in the final HapMap (Figure A4). 

Genome-Wide Association Study (GWAS) 

Phenotypic results of basic fruit chemistry (°Brix, pH, and TA) from three different 

harvests of both years and the GBS marker data set were used to perform GWAS analysis. 

Phenotypic data were checked for outlier and exceptional values by generating histograms, QQ 

plots, and box plots using R statistical software. Data was not checked for normality due to 

expected differences in phenotypic values due to the varying maturity of individuals in the 

population. Genome Association and Prediction Integrated Tools version 3 (GAPIT3) (Wang and 

Zhang, 2021) package in R statistical software were used to perform association analysis. 
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Principal component analysis (PCA) was used to estimate population structure, and it was 

performed using the GAPIT3 package (Figure A1). The kinship matrix or population relatedness 

was calculated using the GAPIT3 package from marker data. Multiple statistical methods can be 

implemented to perform association analysis using the GAPIT3 package. The models 

Compressed MLM (CMLM) (Zhang et al., 2010) and multiple loci MLM (MLMM) (Segura et 

al., 2012) were used in this study to perform GWAS analysis. After running both models in 

GAPIT3, a series of output files (.cvs and .pdf) were generated containing information such as 

Manhattan plots, Q-Q plots, significant SNPs with their p-values, MAF, genotypic best linear 

unbiased estimates (BLUEs) and best linear unbiased predictions (BLUPs), heritability, and 

population structure graphs (PCA and VanRaden) (Figure A2). Candidate gene scan under the 

significant genomic regions was done with the help of gene annotated Vitis.vinifera 12X 

reference genome file (Grimplet and Fennel., 2011).  
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RESULTS 

Trait ‘°Brix’ 

The °Brix phenotypic distribution in 2020 ranged from 1.98 to 30.15 across various 

harvests, whereas it ranged from 2.07 to 32.85 in 2021 (Table 4). The °Brix phenotypic data in 

both cropping seasons highly correlated with different harvests and years (Tables 5, 6, and 7). 

The mean °Brix levels in the first, second, and third harvests of 2020 were 13.1, 17.1, and 20.3, 

respectively. In 2021, mean °Brix levels were 11.6, 16.3, and 21.4 during harvests one, two, and 

three, respectively, exhibiting similar trends as in 2020 (Table 4). The °Brix values varied from 

harvest to harvest, with harvest one having the lowest mean value and harvest three having the 

highest in both growing seasons (Figures 2 and 3). After reaching harvest maturity in 2020, 63 % 

of individuals had a °Brix value greater than 20, but in 2021, 70 % of individuals had a °Brix 

value greater than 20. Compared to the previous year, more accessions produced fruit in 2021, 

enabling the phenotypic screening of more genotypes of the population. 

Table 4. Summary statistics of trait °Brix. 

Trait Year Harvest 
N 

Mean Maximum Median Minimum 
Total IWG 

°Brix 

2020 

1 268 195 13.13 30.15 13.5 1.98 

2 237 173 17.17 25.25 18.05 3.2 

3 205 157 20.27 26.1 20.24 5.6 

2021 

1 565 404 11.59 28.4 10.65 3.85 

2 535 386 16.32 30.2 16.65 2.07 

3 521 378 21.44 32.85 21.92 5.15 

Note: N = number of individuals sampled; IWG = Individuals with GBS markers. 
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Figure 2. Histogram showing the phenotypic distribution of °Brix in year 2020. A) Histogram of 

°Brix in harvest one. B) Histogram of °Brix in harvest two. C) Histogram of °Brix in harvest 

three. Dashed vertical red line indicating the mean value of the trait.  
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Figure 3. Histogram showing the phenotypic distribution of °Brix in year 2021. A) Histogram of 

°Brix in harvest one. B) Histogram of °Brix in harvest two. C) Histogram of °Brix in harvest 

three. Dashed vertical red line indicating the mean value of the trait.  
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Table 5. Pearson’s correlation coefficient and significant estimates for °Brix in the year 2020. 

Year  Harvest 2 Harvest 3 

2020 
Harvest 1 0.967 *** 0.895 *** 

Harvest 2  0.972 *** 

Note: P-value 0.05*, 0.01**, 0.001*** 

 

Table 6. Pearson’s correlation coefficient and significant estimates for °Brix in the year 2021. 

Year  Harvest 2 Harvest 3 

2021 
Harvest 1 0.980 *** 0.919 *** 

Harvest 2  0.958 *** 

Note: P-value 0.05*, 0.01**, 0.001*** 

 

Table 7. Pearson’s correlation coefficient and significant estimates for °Brix between years. 

Year  2020 

  Harvest 1 Harvest 2 Harvest 3 

2021 

Harvest 1 0.959 *** 0.919 *** 0.821 *** 

Harvest 2 0.961 *** 0.942 *** 0.851 *** 

Harvest 3 0.925 *** 0.945 *** 0.884 *** 

Note: P-value 0.05*, 0.01**, 0.001*** 

 

GWAS analysis of ‘°Brix in the year 2020’ 

In 2020, phenotypic data from 195, 173, and 157 individuals with GBS markers from 

harvests one, two, and three were included in the GWAS study (Table 4). GWAS analysis of the 

trait °Brix was conducted using two different models, CMLM and MLMM. On chromosome 16, 

a strong relationship between traits and markers was discovered using the CMLM model. The 

GWAS of harvest one data exhibited the SNPs at a higher log-likelihood p-value of 6.06E-07, 

above the threshold -log10 p-value cut off, indicating that this association is most significant. In 

subsequent harvests, the log-likelihood p-value of the most significant SNP is less than harvest 
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one and a little below the significant threshold, indicating that the association had been reduced 

slightly. For the third harvest, the association shifted to chromosome 2, with some SNPs at a log-

likelihood p-value of 4.34E-06, below the threshold cutoff (Table 8 and Figure 4). 

The MLMM model produced comparable results to the CMLM model, with the same 

SNPs as the most significant ones during respective harvests. However, the significance level of 

the SNPs improved greatly. All significant SNPs were above the threshold level in all three 

harvests with the MLMM model, and an additional SNP above the cutoff was discovered on 

chromosome 17 for harvest one (Table 8 and Figure 5). 

Table 8. Peak SNPs associated with °Brix in the incomplete-diallel population during growing 

season 2020 using two different models (CMLM and MLMM). 

Harvest 

number 
Model Significant SNPs Chr. 

Position 

(cM) 
P values MAF Effect 

Harvest 1 

CMLM 

S16_14593162 16 14.59 6.98E-07 0.238 4.186087 

S16_15731027 16 15.73 2.51E-06 0.238 3.8631 

S16_15991560 16 15.99 5.40E-06 0.246 3.658164 

S16_16345474* 16 16.34 6.06E-07 0.269 4.31868 

MLMM 
S16_16345474* 16 16.34 1.55E-10 0.269 NA 

S17_5458267 17 54.58 1.98E-07 0.382 NA 

Harvest 2 
CMLM 

S16_21082304* 16 21.08 2.71E-06 0.257 2.993647 

S16_21082329 16 21.08 2.71E-06 0.257 2.993647 

S16_16345474 16 16.34 4.57E-06 0.260 2.97309 

MLMM S16_15731027* 16 15.73 3.85E-07 0.234 NA 

Harvest 3 
CMLM S2_4112015* 2 41.12 4.34E-06 0.134 2.681323 

MLMM S2_4112015* 2 41.12 4.34E-06 0.134 NA 

Note: * Most significant SNP in the respective model, MAF = Minor allele frequency, cM = 

Centimorgan, NA = Not available. 
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Figure 4. Manhattan plots of ‘°Brix in 2020’ using CMLM model. A) °Brix in harvest one of 

year 2020. B) °Brix in harvest two of year 2020. and C) °Brix in harvest three of year 2020. 

Green horizontal line indicating the threshold cutoff -log10 p value.  
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Figure 5. Manhattan plots of ‘°Brix in 2020’ using MLMM model. A) °Brix in harvest one of 

year 2020. B) °Brix in harvest two of year 2020. C) °Brix in harvest three of year 2020. Green 

horizontal line indicating the threshold cutoff -log10 p value.  
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Figure 6. Q-Q plots of °Brix in 2020. A) CMLM of °Brix harvest one phenotypic distribution. B) 

MLMM of °Brix harvest one phenotypic distribution. C) CMLM of °Brix harvest two 

phenotypic distribution. D) MLMM of °Brix harvest two phenotypic distribution. E) CMLM of 

°Brix harvest three phenotypic distribution. F) MLMM of °Brix harvest three phenotypic 

distribution. 

The QQ plot is a graphical representation of the deviation of the observed P values from 

the null hypothesis. Observed P values were more significant than expected for some SNPs 

under the null hypothesis. Those significant SNPs were moved away from the line, which means 

they were associated with the trait. SNPs in the MLMM model moved further away from the line 

than the CMLM model, resulting in a high significance level (Figure 6).  
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Figure 7. Minor allele frequency and heritability plots of the population for °Brix in year 2020. 

A) MAF of °Brix harvest one phenotypic distribution. B) Heritability of °Brix harvest one 

phenotypic distribution. C) MAF of °Brix harvest two phenotypic distribution. D) Heritability of 

°Brix harvest two phenotypic distribution. E) MAF of °Brix harvest three phenotypic 

distribution. F) Heritability of °Brix harvest three phenotypic distribution. Red shaded area in the 

pie chart indicating the heritability of the trait. *MAF = Minor allele frequency. 

The °Brix phenotype data in 2020 showed substantial heritability estimates ranging from 

0.74 to 0.86 across different harvests. This indicated that the trait was controlled to a high degree 

by genetic variance rather than environmental influences (Figure 7 and Table 9). 
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Table 9. Heritability estimates for °Brix in the year 2020. 

Trait Year Harvest 
Genetic variance 

(σ2
G) 

Residual variance 

(σ2
e) 

H2 = 
𝝈𝟐𝑮

𝝈𝟐𝑮+𝝈𝟐𝒆
 

 

°Brix 2020 

Harvest 1 24.92 8.7 0.741 

Harvest 2 17.39 2.71 0.865 

Harvest 3 10.27 2.41 0.81 

Note: H2 = Broad sense heritability. 

 

GWAS analysis of ‘°Brix in the year 2021’ 

In 2021, phenotypic data from 404, 386, and 378 individuals with GBS markers from 

harvests one, two, and three were included in the GWAS study (Table 4). The GWAS analysis of 

°Brix in 2021 was performed using the same two models, CMLM and MLMM, as earlier 

described. Similar to 2020 results, the CMLM model found a significant association between 

markers and the trait on chromosome 16. Harvest one results were more significant than the rest 

of the harvests, which exhibited SNPs at a higher log-likelihood p-value of 1.48E-13. Also, a 

significant number of SNPs in Harvest one surpassed the cutoff -log10 p-value threshold (Table 

10). The GWAS analysis of harvest two was also identified as a significant association in the 

same region on chromosome 16. However, the level of the most significant SNP was slightly less 

than harvest one, and, a slightly smaller number of SNPs were able to surpass the -log10 p-value 

cutoff (Table 11). The association was still exhibited on the same chromosome in harvest three, 

unlike the 2020 results where the association was shifted to chromosome 2. Compared to the first 

two harvests the log-likelihood p-value of significant SNPs was reduced by half, and only two 

SNPs were able to surpass the cutoff -log10 p-value in harvest three (Table 12 and Figure 8).  

Analysis using the MLMM model produced the exact same results, but the log-likelihood 

p-value of the most significant SNPs improved tremendously for all three harvests. In MLMM, a 
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new association was found on chromosome 6 for the °Brix for harvest two, along with the stable 

association on chromosome 16 (Table 11 and Figure 9). A clear-cut deviation in the log-

likelihood p-value of the SNPs was observed from the expected p-value in both models, which 

was accurately depicted in the Q-Q plots (Figure 10). The °Brix heritability estimates ranged 

from 78.6 to 83.2% across the three harvests of 2021 (Table 13 and Figure 11). 

Table 10. Peak SNPs associated with °Brix in the incomplete-diallel population during harvest 

one of the year 2021 using two different models (CMLM and MLMM). 

Harvest 

number 
Model Significant SNPs Chr. 

Position 

(cM) 
P values MAF Effect 

Harvest 1 
CMLM 

S16_14021985 16 14.02 1.65E-06 0.256 2.64224 

S16_14154471 16 14.15 3.83E-07 0.235 2.957013 

S16_14156209 16 14.15 8.24E-06 0.245 2.563899 

S16_14170272 16 14.17 7.27E-06 0.224 2.565626 

S16_14446661 16 14.44 8.63E-09 0.248 3.269763 

S16_14578110 16 14.57 1.93E-06 0.247 2.688043 

S16_14593121 16 14.59 7.49E-06 0.222 2.566139 

S16_14593159 16 14.59 8.09E-07 0.225 2.88612 

S16_14593162 16 14.59 2.82E-08 0.242 3.351063 

S16_14757290 16 14.75 4.32E-07 0.226 3.018021 

S16_14992417 16 14.99 2.36E-08 0.433 2.472278 

S16_15731027 16 15.73 9.98E-09 0.246 3.21474 

S16_15855853 16 15.85 1.42E-05 0.368 1.993878 

S16_15855878 16 15.85 1.74E-05 0.283 1.966421 

S16_15872050 16 15.87 5.01E-11 0.232 3.86917 

S16_15872893 16 15.87 5.03E-06 0.5 1.670673 

S16_15991560* 16 15.99 1.48E-13 0.237 4.332953 

S16_15992710 16 15.99 5.41E-08 0.246 3.134357 

S16_15992931 16 15.99 1.64E-09 0.242 3.704784 

S16_16345474 16 16.34 8.97E-09 0.259 3.453306 

MLMM S16_15991560* 16 15.99 2.15E-16 0.237 NA 

Note: * Most significant SNP in the respective model, MAF = Minor allele frequency, cM = 

centimorgan, NA = Not available. 
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Table 11. Peak SNPs associated with °Brix in the incomplete-diallel population during harvest 

two of the year 2021 using two different models (CMLM and MLMM). 

Harvest 

number 
Model Significant SNPs Chr. 

Position 

(cM) 
P values MAF Effect 

Harvest 2 

CMLM 

S16_14021985 16 14.02 1.16E-05 0.253 2.640424 

S16_14022036 16 14.02 1.39E-05 0.363 2.388652 

S16_14156209 16 14.15 2.42E-05 0.244 2.600947 

S16_14446661 16 14.44 2.63E-08 0.253 3.371863 

S16_14578110 16 14.57 1.49E-06 0.246 2.895624 

S16_14593121 16 14.59 7.98E-07 0.229 3.021784 

S16_14593159 16 14.59 6.04E-07 0.229 3.08065 

S16_14593162 16 14.59 6.36E-07 0.246 3.10455 

S16_14992417 16 14.99 1.16E-06 0.440 2.291631 

S16_15731027 16 15.73 5.43E-07 0.247 2.969624 

S16_15855853 16 15.85 7.62E-06 0.379 2.189805 

S16_15872050 16 15.87 7.60E-07 0.237 3.040421 

S16_15991560* 16 15.99 9.60E-09 0.240 3.533564 

S16_15992710 16 15.99 1.60E-06 0.251 2.935211 

S16_15992931 16 15.99 2.68E-07 0.246 3.288058 

S16_16345474 16 16.34 4.11E-08 0.262 3.519691 

MLMM 

S16_15991560* 16 15.99 1.02E-09 0.240 NA 

S16_20841143 16 20.84 1.06E-06 0.386 NA 

S6_8828811 6 8.82 8.00E-08 0.418 NA 

Note: * Most significant SNP in the respective model, MAF = Minor allele frequency, cM = 

Centimorgan, NA = Not available. 

 

Table 12. Peak SNPs associated with °Brix in the incomplete-diallel population during harvest 

three of the year 2021 using two different models (CMLM and MLMM). 

Harvest 

number 
Model Significant SNPs Chr. 

Position 

(cM) 
P values MAF Effect 

Harvest 3 
CMLM 

S16_15731027* 16 15.73 3.18E-07 0.252 2.257613 

S16_15991560 16 15.99 3.71E-05 0.246 1.837448 

S16_15992931 16 15.99 9.83E-07 0.255 2.297578 

MLMM S16_15731027* 16 15.73 1.16E-07 0.252 NA 

Note: * Most significant SNP in the respective model, MAF = Minor allele frequency, cM = 

Centimorgan, NA = Not available. 
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Figure 8. Manhattan plots of ‘°Brix in 2021’ using CMLM model. A) °Brix in harvest one of 

year 2021. B) °Brix in harvest two of year 2021. C) °Brix in harvest three of year 2021. Green 

horizontal line indicating the threshold cutoff -log10 p value.   
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Figure 9. Manhattan plots of ‘°Brix in 2021’ using MLMM model. A) °Brix in harvest one of 

year 2021. B) °Brix in harvest two of year 2021. C) °Brix in harvest three of year 2021. Green 

horizontal line indicating the threshold cutoff -log10 p value. 
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Figure 10. Q-Q plots of °Brix in 2021. A) CMLM of °Brix harvest one phenotypic distribution. 

B) MLMM of °Brix harvest one phenotypic distribution. C) CMLM of °Brix harvest two 

phenotypic distribution. D) MLMM of °Brix harvest two phenotypic distribution. E) CMLM of 

°Brix harvest three phenotypic distribution. F) MLMM of °Brix harvest three phenotypic 

distribution. 
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Figure 11. Minor allele frequency and heritability plots of the population for °Brix in year 2021. 

A) MAF of °Brix harvest one phenotypic distribution. B) Heritability of °Brix harvest one 

phenotypic distribution. C) MAF of °Brix harvest two phenotypic distribution. D) Heritability of 

°Brix harvest two phenotypic distribution. E) MAF of °Brix harvest three phenotypic 

distribution. F) Heritability of °Brix harvest three phenotypic distribution. Red shaded area in the 

pie chart indicating the heritability of the trait. *MAF = Minor allele frequency. 
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Table 13. Heritability estimates for °Brix in the year 2021. 

Trait Year Harvest 
Genetic variance 

(σ2
G) 

Residual variance 

(σ2
e) 

H2 = 
𝝈𝟐𝑮

𝝈𝟐𝑮+𝝈𝟐𝒆
 

 

°Brix 2021 

Harvest 1 26.47 5.49 0.828 

Harvest 2 27.22 7.42 0.786 

Harvest 3 15.61 3.15 0.832 

Note: H2 = Broad sense heritability. 

 

Trait ‘pH’ 

Fruit pH phenotypic distribution in 2020 ranged from 1.7 to 4.62 across various harvests, 

whereas it ranged from 2.39 to 3.96 in 2021 (Table 14). Fruit pH phenotypic data in both 

cropping seasons was highly correlated within different harvests and years (Table 15, 16, and 

17). In 2021, mean pH values were slightly higher than mean pH values for 2020 during harvests 

one and two, while the mean pH value for the third harvest, was higher in 2020. In both years, 

mean pH values increased to level desired for winemaking by the later harvests. During the first, 

second, and third harvests of 2020, the mean pH levels were 2.26, 2.35, and 3.34, respectively 

(Table 14 and Figure 12). In 2021, mean pH values of harvest one, two, and three were 2.73, 

2.92, and 3.10, respectively (Table 14 and Figure 13). About 92 % and 73 % of the accessions 

had pH values greater than 3.0 after harvest maturity in 2020 and 2021, respectively. 
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Table 14. Summary statistics of trait pH. 

Trait Year Harvest 
N 

Mean Maximum Median Minimum 
Total IWG 

pH 

2020 

1 268 195 2.26 2.83 2.24 1.8 

2 237 173 2.35 2.95 2.38 1.7 

3 204 156 3.34 4.62 3.23 2.7 

2021 

1 565 403 2.73 3.96 2.69 2.46 

2 535 386 2.92 3.8 2.9 2.39 

3 521 378 3.10 3.7 3.1 2.57 

Note: N = Number of individuals sampled, IWG = Individuals with GBS markers. 
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Figure 12. Histogram showing the phenotypic distribution of pH in year 2020. A) Histogram of 

pH in harvest one. B) Histogram of pH in harvest two. C) Histogram of pH in harvest three. 

Dashed vertical red line indicating the mean value of the trait.  
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Figure 13. Histogram showing the phenotypic distribution of pH in year 2021. A) Histogram of 

pH in harvest one. B) Histogram of pH in harvest two. C) Histogram of pH in harvest three. 

Dashed vertical red line indicating the mean value of the trait.  
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Table 15. Pearson’s correlation coefficient and significant estimates for pH in the year 2020. 

Year  Harvest 2 Harvest 3 

2020 
Harvest 1 0.870 *** 0.684 ** 

Harvest 2  0.772 *** 

Note: P-value 0.05*, 0.01**, 0.001*** 

 

Table 16. Pearson’s correlation coefficient and significant estimates for pH in the year 2021. 

Year  Harvest 2 Harvest 3 

2021 
Harvest 1 0.962 *** 0.901 *** 

Harvest 2  0.957 *** 

Note: P-value 0.05*, 0.01**, 0.001*** 

 

Table 17. Pearson’s correlation coefficient and significant estimates for pH between years. 

Year  2020 

  Harvest 1 Harvest 2 Harvest 3 

2021 

Harvest 1 0.953 *** 0.826 *** 0.631 ** 

Harvest 2 0.970 *** 0.840 *** 0.656 ** 

Harvest 3 0.957 *** 0.854 *** 0.712 *** 

Note: P-value 0.05*, 0.01**, 0.001*** 

 

GWAS analysis of ‘pH in the year 2020’ 

For GWAS analysis of pH in 2020, phenotypic data from 195, 173, and 156 individuals 

with GBS markers from harvest one, two, and three were used, respectively (Table 14). As 

previously described, GWAS was performed using two different models, CMLM and MLMM. 

No significant associations above the threshold cutoff were discovered using the CMLM model 

in any of the three harvests. But in harvest one, some SNPs were placed almost close to the 

cutoff line with a log-likelihood p-value of 5 on chromosome 16, which is in the same interval as 

identified for °Brix earlier (Table 18 and Figure 14). In the MLMM model, a significant 
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association on chromosome 16 above the threshold cutoff -log10 p-value is identified for pH in 

harvest one. For the remaining two harvests, no significant associations were found in either 

model (Table 18 and Figure 15).       

Except in the harvest one, observed p values of all the SNPs were in line with the 

expected p values in both models indicating no significant relationship between trait and 

markers. In harvest one, p values of some significant SNPs were deviated slightly from the 

expected range, indicating a somewhat relation between marker and phenotype (Figure 16). 

Heritability and MAF ranges were generally good for pH in 2020 harvests (Figure 17). Still, the 

failure to find a significant association even with the good heritability (H2) and MAF is mainly 

due to the availability of limited phenotypic data and possible error associated with precocity.  

Table 18. Peak SNPs associated with pH in incomplete-diallel population during growing 

season 2020 using two different models (CMLM and MLMM). 

Harvest 

number 
Model 

Significant 

SNPs 
Chr. 

Position 

(cM) 
P values MAF Effect 

Harvest 1 
CMLM 

S16_16975630* 16 16.97 4.47E-06 0.241 0.136743 

S16_16975634 16 16.97 4.47E-06 0.241 0.136743 

MLMM S16_16975630* 16 16.97 4.29E-07 0.241 NA 

Harvest 2 
CMLM No significant associations 

MLMM No significant associations 

Harvest 3 
CMLM No significant associations 

MLMM No significant associations 

Note: * Most significant SNP in the respective model, MAF = Minor allele frequency, cM = 

Centimorgan, NA = Not available. 

 



 

45 

 

Figure 14. Manhattan plots of ‘pH in 2020’ using CMLM model. A) pH in harvest one of year 

2020. B) pH in harvest two of year 2020. C) pH in harvest three of year 2020. Green horizontal 

line indicating the threshold cutoff -log10 p value.    
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Figure 15. Manhattan plots of ‘pH in 2020’ using MLMM model. A) pH in harvest one of year 

2020. B) pH in harvest two of year 2020. C) pH in harvest three of year 2020. Green horizontal 

line indicating the threshold cutoff -log10 p value.     
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Figure 16. Q-Q plots of pH in 2020. A) CMLM of pH harvest one phenotypic distribution. B) 

MLMM of pH harvest one phenotypic distribution. C) CMLM of pH harvest two phenotypic 

distribution. D) MLMM of pH harvest two phenotypic distribution. E) CMLM of pH harvest 

three phenotypic distribution. F) CMLM of pH harvest three phenotypic distribution. 
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Figure 17. Minor allele frequency and heritability plots of the population for pH in year 2020. A) 

MAF of pH harvest one phenotypic distribution. B) Heritability of pH harvest one phenotypic 

distribution. C) MAF of pH harvest two phenotypic distribution. D) Heritability of pH harvest 

two phenotypic distribution. E) MAF of pH harvest three phenotypic distribution. F) Heritability 

of pH harvest three phenotypic distribution. Red shaded area in the pie chart indicating the 

heritability of the trait. *MAF = Minor allele frequency. 
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GWAS analysis of ‘pH in the year 2021’ 

For GWAS analysis of pH in 2021, phenotypic data from 403, 386, and 378 individuals 

with GBS markers from harvest one, two, and three were used, respectively (Table 14). As 

previously described, GWAS was performed using two different models, CMLM and MLMM. 

Using the CMLM model, a significant association between pH and markers was found on 

chromosome 16 in all three harvests. This is a good improvement compared to the 2020 results, 

where both models failed to detect significant associations. This improvement is mainly due to 

the availability of phenotype from more individuals of the population. Even though log-

likelihood p-values of significant SNPs were well above the cutoff -log10 p-value in all three 

harvests of 2021, SNPs in harvest two are most significant than the rest of the harvests. Log-

likelihood p-values of the significant SNPs increased from harvest one to harvest two. Then 

decreased slightly in harvest three but still higher than harvest one (Table 19 to 21, and Figure 

18). 

The MLMM model GWAS analysis also produced the same results as CMLM by 

identifying the association on the same chromosomal region. Still, log-likelihood p-values of the 

significant SNPs improved tremendously in all three harvests. Along with the improved 

significance of SNPs on chromosome 16, an additional association was found on chromosome 6 

for pH in harvest two. These results of pH are almost identical with °Brix in 2021 results (Table 

20 and Figure 19). 

Q-Q plots explained the apparent deviation in observed p values of SNPs from expected p 

values, affirming the association between significant SNPs with the trait pH (Figure 20). 

Heritability estimates of pH in 2021 were relatively high, ranging from 64% to 76.5%, showing a 

strong genetic influence on the trait (Figure 21). 
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Table 19. Peak SNPs associated with pH in incomplete-diallel population during harvest one 

of the year 2021 using two different models (CMLM and MLMM). 

Harvest 

number 
Model 

Significant 

SNPs 
Chr. 

Position 

(cM) 
P values MAF Effect 

Harvest 1 
CMLM 

S16_14446661 16 14.44 1.68E-06 0.249 0.102227 

S16_15855853 16 15.85 1.62E-05 0.369 0.075189 

S16_15872050* 16 15.87 3.41E-08 0.233 0.121129 

S16_15991560 16 15.99 1.38E-06 0.238 0.10496 

S16_15992710 16 15.99 1.49E-05 0.246 0.094212 

MLMM S16_15872050* 16 15.87 2.88E-09 0.233 NA 

Note: * Most significant SNP in the respective model, MAF = Minor allele frequency, cM = 

Centimorgan, NA = Not available. 
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Table 20. Peak SNPs associated with pH in incomplete-diallel population during harvest two 

of the year 2021 using two different models (CMLM and MLMM). 

Harvest 

number 
Model Significant SNPs Chr. 

Position 

(cM) 
P values MAF Effect 

Harvest 2 

CMLM 

S16_14156209 16 14.15 5.27E-06 0.244 0.082463 

S16_14446661 16 14.44 1.97E-07 0.253 0.092566 

S16_14578110 16 14.57 2.27E-06 0.246 0.085025 

S16_14593159 16 14.59 3.00E-06 0.229 0.085779 

S16_14593162 16 14.59 2.99E-07 0.246 0.090815 

S16_14757290 16 14.75 3.74E-06 0.226 0.085669 

S16_14992417 16 14.99 3.85E-06 0.440 0.064296 

S16_15731027 16 15.73 3.54E-06 0.247 0.080624 

S16_15872050 16 15.87 4.45E-09 0.237 0.107436 

S16_15872893 16 15.87 5.30E-06 0.497 0.054057 

S16_15991560* 16 15.99 1.98E-10 0.240 0.115686 

S16_15992710 16 15.99 1.12E-07 0.251 0.096329 

S16_15992931 16 15.99 4.20E-08 0.246 0.104238 

S16_16345474 16 16.34 1.53E-08 0.262 0.107877 

S16_16918882 16 16.91 7.70E-07 0.243 0.087501 

S16_16918954 16 16.91 7.70E-07 0.243 0.087501 

MLMM 
S16_15991560* 16 15.99 3.46E-15 0.240 NA 

S6_6641054 6 6.64 9.21E-07 0.265 NA 

Note: * Most significant SNP in the respective model, MAF = Minor allele frequency, cM = 

Centimorgan, NA = Not available. 
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Table 21. Peak SNPs associated with pH in incomplete-diallel population during harvest three 

of the year 2021 using two different models (CMLM and MLMM). 

Harvest 

number 
Model Significant SNPs Chr. 

Position 

(cM) 
P values MAF Effect 

Harvest 3 
CMLM 

S16_14021985 16 14.02 2.00E-06 0.259 0.098265 

S16_14446661 16 14.44 9.99E-06 0.259 0.089473 

S16_15731027 16 15.73 1.24E-07 0.252 0.108309 

S16_15872050 16 15.87 3.88E-07 0.242 0.105602 

S16_15991560 16 15.99 2.69E-08 0.246 0.115662 

S16_15992710 16 15.99 3.19E-07 0.255 0.108039 

S16_15992931 16 15.99 3.04E-08 0.255 0.12056 

S16_16345474* 16 16.34 6.11E-09 0.267 0.128089 

MLMM S16_16345474* 16 16.34 4.04E-10 0.267 NA 

Note: * Most significant SNP in the respective model, MAF = Minor allele frequency, cM = 

Centimorgan, NA = Not available. 
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Figure 18. Manhattan plots of ‘pH in 2021’ using CMLM model. A) pH in harvest one of year 

2021. B) pH in harvest two of year 2021. C) pH in harvest three of year 2021. Green horizontal 

line indicating the threshold cutoff -log10 p value.  
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Figure 19. Manhattan plots of ‘pH in 2021’ using MLMM model. A) pH in harvest one of year 

2021. B) pH in harvest two of year 2021. C) pH in harvest three of year 2021. Green horizontal 

line indicating the threshold cutoff -log10 p value. 
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Figure 20. Q-Q plots of pH in 2021. A) CMLM of pH harvest one phenotypic distribution. B) 

MLMM of pH harvest one phenotypic distribution. C) CMLM of pH harvest two phenotypic 

distribution. D) MLMM of pH harvest two phenotypic distribution. E) CMLM of pH harvest 

three phenotypic distribution. F) CMLM of pH harvest three phenotypic distribution. 
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Figure 21. Minor allele frequency and heritability plots the population for pH in 2021 growing 

season. A) MAF of pH harvest one phenotypic distribution. B) Heritability of pH harvest one 

phenotypic distribution. C) MAF of pH harvest two phenotypic distribution. D) Heritability of 

pH harvest two phenotypic distribution. E) MAF of pH harvest three phenotypic distribution. F) 

Heritability of pH harvest three phenotypic distribution. Red shaded area in the pie chart 

indicating the heritability value of the trait. *MAF = Minor allele frequency. 
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Trait ‘TA’ 

Phenotypic distribution of TA in the year 2020 ranging from 0.97 to 5.39 across different 

harvests (Table 22). In 2021, TA values ranged from 0.57 to 6.82. TA phenotypic data in both 

growing seasons were highly correlated within different harvests and years (Table 23 to 25). In 

2021, mean TA values were slightly higher than 2020 except in harvest three. The mean TA 

values decreased with time and later harvests in both years. During the first, second, and third 

harvests of 2020, the mean TA levels were 2.88, 2.57, and 1.96, respectively (Figure 22). In 2021 

mean TA values of harvest one, two, and three were 3.24, 2.62, and 1.83, respectively (Table 22 

and Figure 23). In 2020 only three individuals had a TA value less than one, whereas, in 2021, 

approximately 30 individual vines had a TA value less than one.  

Table 22. Summary statistics of trait TA. 

Trait Year Harvest 
N 

Mean Maximum Median Minimum 
Total IWG 

TA 

2020 

1 268 195 2.88 5.26 2.85 1.4 

2 237 173 2.57 5.39 2.54 0.98 

3 204 156 1.96 3.76 1.86 0.97 

2021 

1 565 402 3.24 6.82 3.18 1.19 

2 535 382 2.62 5.86 2.52 0.68 

3 521 378 1.83 4.66 1.75 0.57 

 

Table 23. Pearson’s correlation coefficient and significant estimates for TA in the year 2020. 

Year  Harvest 2 Harvest 3 

2020 
Harvest 1 0.910 *** 0.757 *** 

Harvest 2  0.769 *** 

Note: P-value 0.05*, 0.01**, 0.001*** 
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Table 24. Pearson’s correlation coefficient and significant estimates for TA in the year 2021. 

Year  Harvest 2 Harvest 3 

2021 
Harvest 1 0.866 *** 0.808 *** 

Harvest 2  0.806 *** 

Note: P-value 0.05*, 0.01**, 0.001*** 

  



 

59 

 

 

 

Figure 22. Histogram showing the phenotypic distribution of TA in year 2020. A) Histogram of 

TA in harvest one B) Histogram of TA in harvest two C) Histogram of TA in harvest three. 

Dashed vertical red line indicating the mean value of the trait.  
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Figure 23. Histogram showing the phenotypic distribution of TA in year 2021. A) Histogram of 

TA in harvest one B) Histogram of TA in harvest two C) Histogram of TA in harvest three. 

Dashed vertical red line indicating the mean value of the trait. 
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Table 25. Pearson’s correlation coefficient and significant estimates for TA between years. 

Year  2020 

  Harvest 1 Harvest 2 Harvest 3 

2021 

Harvest 1 0.912 *** 0.865 *** 0.745 *** 

Harvest 2 0.824 *** 0.821 *** 0.822 *** 

Harvest 3 0.862 *** 0.872 *** 0.824 *** 

Note: P-value 0.05*, 0.01**, 0.001*** 

 

GWAS analysis of ‘TA in the year 2020’ 

For GWAS analysis of TA in 2020, phenotypic data from 195, 173, and 156 individuals 

with GBS markers from harvest one, two, and three were used, respectively (Table 22). As 

previously described, GWAS analysis was performed using two different models, CMLM and 

MLMM. No significant associations were found in any harvests using either CMLM or MLMM. 

But in harvest three, some SNPs on chromosome 6 were placed at a higher log-likelihood p-

value level than the other two harvests in 2020 (Table 26, Figures 24 and 25). The Q-Q plots of 

both models displayed the same trend as the observed p values and were aligned with expected p 

values (Figure 26).  
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Table 26. Peak SNPs associated with TA in incomplete-diallel population during growing 

season 2020 using two different models (CMLM and MLMM). 

Harvest 

number 
Model 

Significant 

SNPs 
Chr. 

Position 

(cM) 
P values MAF Effect 

Harvest 1 
CMLM No significant associations 

MLMM No significant associations 

Harvest 2 
CMLM No significant associations 

MLMM No significant associations 

Harvest 3 
CMLM S6_2785463* 6 2.78 6.67E-05 0.230 0.286241 

MLMM S6_5522070* 6 5.52 2.27E-05 0.278 0.230798 

Note: * Most significant SNP in the respective model, MAF = Minor allele frequency, cM = 

centimorgan, NA = Not available. 
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Figure 24. Manhattan plots of ‘TA in 2020’ using CMLM model. A) TA in harvest one of year 

2020. B) TA in harvest two of year 2020. C) TA in harvest three of year 2020. Green horizontal 

line indicating the threshold cutoff -log10 p value. 
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Figure 25. Manhattan plots of ‘TA in 2020’ using MLMM model. A) TA in harvest one of year 

2020. B) TA in harvest two of year 2020. C) TA in harvest three of year 2020. Green horizontal 

line indicating the threshold cutoff -log10 p value. 
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Figure 26. Q-Q plots of TA in year 2020. A) CMLM of TA harvest one phenotypic distribution. 

B) MLMM of TA harvest one phenotypic distribution. C) CMLM of TA harvest two phenotypic 

distribution. D) MLMM of TA harvest two phenotypic distribution. E) CMLM of TA harvest 

three phenotypic distribution. F) MLMM of TA harvest three phenotypic distribution. 



 

66 

 

Figure 27. Minor allele frequency and heritability plots the population for TA in 2020 growing 

season. A) MAF of TA harvest one phenotypic distribution. B) Heritability of TA harvest one 

phenotypic distribution. C) MAF of TA harvest two phenotypic distribution. D) Heritability of 

TA harvest two phenotypic distribution. E) MAF of TA harvest three phenotypic distribution. F) 

Heritability of TA harvest three phenotypic distribution. Red shaded area in the pie chart 

indicating the heritability value of the trait. *MAF = Minor allele frequency. 
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GWAS analysis of ‘TA in the year 2021’ 

For GWAS analysis of TA in 2021, phenotypic data from 402, 382, and 378 individuals 

with GBS markers from harvest one, two, and three were used, respectively (Table 22). As 

previously described, GWAS was performed using two different models such as CMLM and 

MLMM. In the CMLM model, unlike 2020 results, significant SNPs above the cutoff -log10 p-

value were identified on chromosome 16 during the first two harvests. Significant SNPs in 

harvest one were placed at a higher log-likelihood p-value than those in harvest two. In the third 

harvest, no association was observed above the cutoff threshold using CMLM, but similar to 

2020 results, some SNPs are placed almost close to the cutoff line on chromosome 6 (Table 27 

and Figure 28).  

Analysis using the MLMM model was able to find the significant association in all three 

harvests of 2021. Similar to CMLM results, MLMM identified a relation between SNPs and the 

trait on chromosome 16 during the first two harvests. Still, log-likelihood p-values of the 

significant SNPs were slightly higher. Unlike CMLM, in harvest three, the association found on 

chromosome 6 is above the cutoff -log10 p-value in MLMM (Table 27 and Figure 29).  

Except in the third harvest of the CMLM model, observed p values were deviated from 

the expected p values in all other harvests using both models. This indicated a significant 

association between the deviated SNPs and trait TA (Figure 30). Heritability values of trait TA 

range from 50% to 60%, indicating the trait was majorly influenced by genetic variance (Figure 

31). 
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Table 27. Peak SNPs associated with TA in incomplete-diallel population during growing 

season 2021 using two different models (CMLM and MLMM). 

Harvest 

number 
Model 

Significant 

SNPs 
Chr. 

Position 

(cM) 
P values MAF Effect 

Harvest 1 
CMLM 

S16_10023969 16 10.02 1.11E-06 0.317 0.497087 

S16_13846780 16 13.84 9.50E-07 0.440 0.441889 

S16_13846784 16 13.84 9.50E-07 0.440 0.441889 

S16_15872050* 16 15.87 1.83E-07 0.232 -0.61615 

S16_15872778 16 15.87 8.43E-06 0.333 0.462167 

S16_15992697 16 15.99 1.46E-06 0.373 0.464762 

MLMM S16_15872050* 16 15.87 6.46E-08 0.232 NA 

Harvest 2 
CMLM S16_21085301* 16 21.08 1.35E-06 0.269 0.491869 

MLMM S16_21085301* 16 21.08 4.13E-07 0.269 NA 

Harvest 3 
CMLM No significant associations 

MLMM S6_5521338* 6 5.52 4.31E-07 0.267 NA 

Note: * Most significant SNP in the respective model, MAF = Minor allele frequency, cM = 

Centimorgan, NA = Not available. 
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Figure 28. Manhattan plots of ‘TA in 2021’ using CMLM model. A) TA in harvest one of year 

2021. B) TA in harvest two of year 2021. C) TA in harvest three of year 2021. Green horizontal 

line indicating the threshold cutoff -log10 p value. 
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Figure 29. Manhattan plots of ‘TA in 2021’ using MLMM model. A) TA in harvest one of year 

2021. B) TA in harvest two of year 2021. C) TA in harvest three of year 2021. Green horizontal 

line indicating the threshold cutoff -log10 p value. 
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Figure 30. Q-Q plots of TA in 2021. A) CMLM of TA harvest one phenotypic distribution. B) 

MLMM of TA harvest one phenotypic distribution. C) CMLM of TA harvest two phenotypic 

distribution. D) MLMM of TA harvest two phenotypic distribution. E) CMLM of TA harvest 

three phenotypic distribution. F) MLMM of TA harvest three phenotypic distribution. 
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Figure 31. Minor allele frequency and heritability plots the population for TA in 2021 growing 

season. A) MAF of TA harvest one phenotypic distribution. B) Heritability of TA harvest one 

phenotypic distribution. C) MAF of TA harvest two phenotypic distribution. D) Heritability of 

TA harvest two phenotypic distribution. E) MAF of TA harvest three phenotypic distribution. F) 

Heritability of TA harvest three phenotypic distribution. Red shaded area in the pie chart 

indicating the heritability value of the trait. *MAF = Minor allele frequency. 
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DISCUSSION 

In the continental climates of North Dakota, grape growers face many production issues 

such as winter injury, poor fruit quality, short growing season, and frost damage. Due to these 

obstacles, cold-hardy hybrid grape cultivars are the only suitable grapevines for production in 

this region. Most of the cultivars grown in this area are hybrids of different native and Eurasian 

Vitis spp. Diverse genetic backgrounds of these cultivars resulted in atypical fruit ripening 

profiles with high titratable acidity that tend to make wines less appealing to the consumer. To 

overcome some of these difficulties, in this current study, I focused on understanding the genetic 

determinants of the basic fruit chemistry (˚Brix, pH, and TA) through an association study in a 

cold-hardy hybrid population suitable to this region. 

Efficient phenotypic data collection was the first step to conducting an association study. 

The collection of phenotypic data at three different times during each year greatly helped to 

document both gradual changes in trait value and changes in genetic factors responsible for the 

trait. In both years, ˚Brix and pH values were improved substantially from initial sample 

collection to the later harvest. Total acidity levels were decreased greatly from the earliest 

harvest to the latter as expected. The population at maturity still had a higher TA mean value 

than the generally acceptable range, and only a handful of individual vines had TA values under 

one. Phenotypic data collected in different years was consistent with each other and no 

significant variations in traits were found between years (Table A1). Phenotypic data of all three 

traits are highly correlated between years and different harvests of each year. Mean phenotypic 

distribution of population in comparison with parental phenotypic distribution was clearly 

expressed in table A2. 
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GWAS analysis on an incomplete diallel population identified marker-trait association on 

chromosome 16 for all three traits in both years. Along with this, an additional association on 

chromosome 6 was also identified for all three traits in at least one harvest of 2021. All the 

associations related to sugar/°Brix were identified on chromosomes 2, 6, 16, and 17 in the 

present study. Previous linkage mapping studies that focused on interspecific hybrid populations, 

showed QTLs related to sugar were identified on chromosomes 4, 11, 14, and 17 by Chen et al., 

2015 and on chromosome 6 by Yang et al., 2016 and on chromosome 2 by Bayo-Canha et al., 

2019. The association identified on chromosome 16 for sugar in the present study is novel and 

hasn't been previously reported. 

In the present study, associations related to trait TA were only identified on chromosomes 

6 and 16. Previous linkage mapping studies on interspecific hybrid populations reported QTLs 

related to acid on chromosome 6 by Chen et al., 2015; Duchêne et al., 2020 and Negus et al., 

2021. The association identified on chromosome 6 for trait TA in the current study is a repetition 

of previous findings and signifies the stable nature of this association across different 

populations. The QTLs related to acid were also previously identified on other linkage groups 5, 

8, 15, and 18 (Chen et al., 2015, Bayo-Canha et al., 2019, Duchêne et al., 2020 and Negus et al., 

2021). However, the association found on chromosome 16 for trait TA in the current study is 

novel, not previously been reported anywhere.  

For trait pH, associations were only identified on chromosomes 6 and 16 in the current 

study. Very recently, a stable QTL for pH on chromosome 6 in two different years was reported 

in a Vitis. aestivalis derived ‘Norton’ population (Negus et al., 2021). Repetition of this 

association for pH on chromosome 6 in our mapping population shows the importance of this 

QTL in various interspecific hybrid populations. Again, the association on chromosome 16 for 
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trait pH is a novel finding that has not been identified previously. Almost 90% of the significant 

SNPs identified in the current GWAS study of these three traits were in a narrow ~2.5 cM region 

on chromosome 16 between 14446661 to 16918954 base pairs. Also, the most significant SNPs 

of these traits on chromosome 6 were in a short 3 cM region between 5522070 to 8828811 base 

pairs. Candidate gene scanning in these two genomic regions using a gene annotated 

Vitis.vinifera 12X reference genome file (Grimplet and Fennel., 2011) revealed multiple genes 

related to carbohydrate and amino acid metabolism (Tables 28 to 31).  

The SNPs found in these significant regions of the genome have a differential effect on 

the three traits. Some SNPs showed a strong positive effect on ˚Brix and pH while having a 

negative effect on trait TA and vice versa (Table 32 and 33). SNP ‘S16_15991560' was the most 

significant in multiple GWAS analyses. It showed a higher log-likelihood p-value above the 

cutoff in almost every harvest for ˚Brix and pH. This SNP has a big effect on the traits, and it 

alone contributes more than four units of ˚Brix and 0.11 units of pH. Along with this, other SNPs 

such as S16_15731027, S16_15872050, S16_16345474, S16_16975630 were found significant 

in multiple harvests. Gene scanning under these most significant SNPs revealed important genes 

in their proximity, such as fructokinase-2, glutamine synthetase B1 GLB1, UDP-

glycosyltransferase 88A4, and sorbitol dehydrogenase, etc. which has a function in glucose, 

fructose, and amino acid metabolism.  

Besides identifying new novel regions, this research also validates some QTLs identified 

previously. Based on its significance and metabolism (carbohydrate & amino acid) related genes 

located in the targeted genomic region, markers S6_5521338, S16_15991560, S16_15731027, 

S16_15872050, S16_16345474, and S16_16975630 are promising to be helpful in breeding 

purposes to improve these traits further (Table A3).   
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Table 28. Genes facilitating carbohydrate metabolism in the significant region on 

chromosome 6. 

Chr. Position (cM) Gene annotation Function 

6 5.386 - 5.387 Lactoylglutathione lyase Monosaccharide and pyruvate 

metabolism 

6 5.683 - 5.684 Beta-1,3 glucanase Polysaccharide metabolism 

6 5.717 - 5.725 Triosephosphate isomerase, cytosolic Fructose and mannose metabolism 

6 5.873 - 5.875 Exostosin (Xyloglucan galactosyltransferase 

KATAMARI 1) 

Oligosaccharide metabolism 

6 6.106 - 6.109 Ribulose bisphosphate 

carboxylase/oxygenase activase, chloroplast 

Photosynthesis and Calvin cycle 

6 6.364 - 6.368 Serine/threonine-protein phosphatase PP1 Starch and sucrose metabolism 

6 6.472 - 6.474 Glycosyltransferase family 1 protein Carbohydrate metabolism 

6 6.648 - 6.656 Phosphopyruvate hydratase. Glycolysis and Gluconeogenesis 

6 6.901 - 6.906 Exo-1,3-beta-glucanase Starch and sucrose metabolism 

6 7.027 - 7.045 SETH2; transferase, Glycosyl transference transferring glycosyl groups 

6 7.366 - 7.369 1-phosphatidylinositol-4,5-bisphosphate 

phosphodiesterase 

Monosaccharide metabolism 

6 7.370 - 7.375 Phosphoinositide-specific phospholipase C Monosaccharide metabolism 

6 7.629 - 7.641 fructose-6-phosphate-2-kinase Fructose and mannose metabolism 

6 8.023 - 8.024 UDP-glucuronosyl/UDP-

glucosyltransferase 

Pentose glucuronate interconversion 

and sucrose metabolism 

6 8.395 – 8.397 Ribokinase Monosaccharide metabolism 

6 8.784 – 8.785 Beta-fructofuranosidase Starch, sucrose and galactose 

metabolism 
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Table 29. Genes facilitating carbohydrate metabolism in the significant region on the 

chromosome 16. 

Chr. Position (cM) Gene annotation Function 

16 14.269 - 14.271 
Anthocyanidin 3-O-

glucosyltransferase 
Flavonoid biosynthesis 

16 14.530 - 14.532 Exostosin family protein 
Oligosaccharide and carbohydrate 

metabolism 

16 14.619 - 14.632 Alpha-L-fructosidase 
Glycan degradation and oligosaccharide 

metabolism 

16 14.959 - 14.964 fructokinase-2 
Sucrose, fructose, mannose, and starch 

metabolism 

16 15.621 - 15.623 
Glucose-methanol-choline (GMC) 

oxidoreductase family protein 
Amino acid metabolism 

16 15.651 - 15.669 L-idonate dehydrogenase Fructose and mannose metabolism 

16 15.675 - 15.679 Sorbitol dehydrogenase Fructose and mannose metabolism 

16 16.080 - 16.081 Glutamine synthetase B1 GLB1 Carbohydrate and amino acid metabolism 

16 16.717 - 16.718 6-phospho 3-hexuloisomerase Monosaccharide metabolism 

16 17.046 - 17.047 UDP-glycosyltransferase 88A4 Carbohydrate metabolism 

16 18.582 - 18.583 
UDP-glucose: isoflavone 7-O-

glucosyltransferase 
Isoflavonoid biosynthesis 

16 18.585 - 18.586 
UDP-glucose: anthocyanidin 5,3-O-

glucosyltransferase 
Anthocyanin-glycoside biosynthesis 

16 19.150 - 19.157 
Pyruvate kinase isozyme G, 

chloroplast precursor 
Glycolysis and carbon fixation 

16 19.180 - 19.188 Acidic endochitinase (CHIB1) Amino sugar metabolism 

16 19.193 - 19.194 Chitinase [Vitis vinifera] Amino sugar metabolism 

16 19.585 - 19.587 Trehalose-6-phosphate phosphatase Starch and sucrose metabolism 

16 19.670 - 19.676 Pyruvate kinase Glycolysis and carbohydrate metabolism 
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Table 30. Genes facilitating amino acid metabolism in the significant region on the 

chromosome 6. 

Chr. Position (cM) Gene annotation Function 

6 5.967 - 5.968 
Protein-S-isoprenylcysteine O-

methyltransferase 
Amino acid (Methionine) metabolism 

6 6.168 - 6.171 Tropinone reductase 
Amino acid (Arginine and proline) 

metabolism 

6 6.883 - 6.887 Diphenol oxidase 
Aromatic amino acid (Tyrosine) 

metabolism 

6 7.107 - 7.113 
Anthranilate synthase component I-1, 

chloroplast precursor 
Tyrosine and tryptophan biosynthesis 

6 7.765 - 7.771 Ethylene overproducer 1 (ETO1) Ethylene signaling 

6 8.386 - 8.387 Aspartyl-tRNA synthetase 
Amino acid (Alanine and aspartate) 

metabolism 

6 8.408 - 8.409 Acetohydroxy acid reductoisomerase Valine leucine and isoleucine biosynthesis 

6 8.450 - 8.454 
Alanine--glyoxylate aminotransferase 2 

2, mitochondrial 

Glycine, serine, alanine, and threonine 

metabolism 

6 8.523 - 8.524 
S-adenosyl-L-methionine-dependent 

methyltransferase mraW 
Amino acid derivative metabolism 

6 8.542 - 8.545 Cationic peroxidase 1 precursor 
Aromatic amino acid (Phenylalanine) 

metabolism 

6 8.545 - 8.546 TPA: class III peroxidase 40 
Aromatic amino acid (Phenylalanine) 

metabolism 

6 8.561 - 8.564 Peroxidase 
Aromatic amino acid (Phenylalanine) 

metabolism 

6 8.882 - 8.885 Trans-cinnamate 4-monooxygenase 
Aromatic amino acid (Phenylalanine) 

metabolism 

 

  



 

79 

Table 31. Genes facilitating amino acid metabolism in the significant region on the 

chromosome 16. 

Chr. Position (cM) Gene annotation Function 

16 14.302 – 14.307 
1-aminocyclopropane-1-carboxylate 

synthase 

Organic acid metabolism and ethylene 

signaling 

16 15.385 – 15.386 Cationic peroxidase Aromatic amino acid metabolism 

16 15.623 – 15.628 Mandelonitrile lyase-like protein Amino acid derivative metabolism 

16 15.763 – 15.813 Valyl-tRNA synthetase 
Amino acid (Valine, leucine, and 

isoleucine) metabolism 

16 15.957 – 15.959 Dihydrodipicolinate reductase Lysine biosynthesis 

16 16.028 – 16.030 S-N-methylcoclaurine 3'-hydroxylase 
Primary amino acids derivate metabolism 

and alkaloid biosynthesis 

16 17.588 – 17.591 Prolyl 4-hydroxylase Amino acid and flavonoid metabolism 

16 19.678 – 19.685 Spermine synthase 
Amino acid (Arginine and proline) 

metabolism 

16 20.666 – 20.679 
GLT1 (NADH-dependent glutamate 

synthase one gene) 
Amino acid (Glutamate) biosynthesis 

16 21.152 – 21.156 Peroxidase 3 
Aromatic amino acid (Phenylalanine) 

metabolism 
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Table 32. Significant SNPs and their effect on °Brix, pH, TA of different harvests in the year 

2020. 

SNP 

Effect on ˚Brix  Effect on pH  Effect on TA 

Harvest 

1 

Harvest 

2 

Harvest 

3 

Harvest 

1 

Harvest 

2 

Harvest 

3 

Harvest 

1 

Harvest 

2 

Harvest 

3 

S16_14446661 2.99 2.10 0.88  0.12 0.09 0.06  -0.26 -0.31 -0.01 

S16_15731027 3.86 2.56 1.31  0.10 0.11 0.06  -0.41 -0.27 -0.18 

S16_15872050 3.50 1.54 0.99  0.11 0.11 0.02  -0.26 -0.25 -0.10 

S16_15991560 3.65 2.44 1.11  0.12 0.09 0.04  -0.28 -0.25 -0.14 

S16_15992931 3.68 2.43 1.40  0.11 0.15 0.06  -0.32 -0.39 -0.14 

S16_16345474 4.31 2.97 1.50  0.10 0.09 0.00  -0.45 -0.33 -0.22 

S16_16975630 2.99 2.18 1.53  0.13 0.07 0.10  -0.27 -0.36 -0.14 

S16_21082304 2.74 2.99 1.94  0.07 0.06 0.12  -0.35 -0.20 -0.12 

S16_21085301 -2.18 -1.47 -0.79  -0.06 -0.05 -0.08  0.21 0.09 0.03 

S6_5521338 1.09 1.55 0.92  0.04 0.02 0.13  -0.24 -0.31 -0.19 

S6_5522070 2.13 1.08 0.38  0.06 0.07 0.02  -0.26 -0.24 -0.35 

S6_8828811 -1.64 -1.21 -1.01  -0.01 -0.03 -0.03  0.22 0.07 0.09 

 

Table 33. Significant SNPs and their effect on °Brix, pH, TA of different harvests in the year 

2021. 

 

SNP 

Effect on ˚Brix  Effect on pH  Effect on TA 

Harvest 

1 

Harvest 

2 

Harvest 

3 

Harvest 

1 

Harvest 

2 

Harvest 

3 

Harvest 

1 

Harvest 

2 

Harvest 

3 

S16_14446661 3.26 3.37 1.60  0.10 0.09 0.08  -0.48 -0.40 -0.14 

S16_15731027 3.21 2.96 2.25  0.08 0.08 0.10  -0.48 -0.29 -0.09 

S16_15872050 3.86 3.04 1.61  0.12 0.10 0.10  -0.61 -0.38 -0.17 

S16_15991560 4.33 3.53 1.83  0.10 0.11 0.11  -0.52 -0.34 -0.13 

S16_15992931 3.70 3.28 2.29  0.08 0.10 0.12  -0.49 -0.39 -0.19 

S16_16345474 3.45 3.51 1.89  0.07 0.10 0.12  -0.51 -0.43 -0.17 

S16_16975630 2.09 1.35 0.96  0.04 0.05 0.06  -0.33 -0.24 -0.13 

S16_21082304 1.83 2.28 1.13  0.02 0.04 0.04  -0.17 -0.22 -0.02 

S16_21085301 -1.99 -2.27 -0.84  -0.02 -0.05 -0.05  0.17 0.49 0.08 

S6_2785463 -0.33 -0.56 -0.31  -0.00 -0.00 -0.00  0.04 0.10 0.03 

S6_5521338 0.81 0.54 0.51  0.03 0.00 0.03  -0.09 -0.05 -0.30 

S6_5522070 1.08 0.94 0.92  0.06 0.01 0.05  -0.21 -0.19 -0.17 

S6_8828811 -1.33 -1.92 -0.82  -0.03 -0.04 -0.02  0.15 0.24 0.11 
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APPENDIX 

Table A1. Phenotype summary statistics. 

Trait Year Harvest 
N 

Mean Maximum Median Minimum 
Total IWG 

°Brix 

2020 

1 268 195 13.13 30.15 13.5 1.98 

2 237 173 17.17 25.25 18.05 3.2 

3 205 157 20.27 26.1 20.24 5.6 

2021 

1 565 404 11.59 28.4 10.65 3.85 

2 535 386 16.32 30.2 16.65 2.07 

3 521 378 21.44 32.85 21.92 5.15 

pH 

2020 

1 268 195 2.26 2.83 2.24 1.8 

2 237 173 2.35 2.95 2.38 1.7 

3 204 156 3.34 4.62 3.23 2.7 

2021 

1 565 403 2.73 3.96 2.69 2.46 

2 535 386 2.92 3.8 2.9 2.39 

3 521 378 3.10 3.7 3.1 2.57 

TA 

2020 

1 268 195 2.88 5.26 2.85 1.4 

2 237 173 2.57 5.39 2.54 0.98 

3 204 156 1.96 3.76 1.86 0.97 

2021 

1 565 402 3.24 6.82 3.18 1.19 

2 535 382 2.62 5.86 2.52 0.68 

3 521 378 1.83 4.66 1.75 0.57 

*N = Number of individuals sampled; IWG = Individuals with GBS markers. 

 

Table A2. Parent phenotypic distribution in comparison with mean phenotype values of the 

population in year 2021. 

Harvest Trait ND 213 ND.054.21 SKND.009.41 Population mean 

1 

Brix 7.5 7.6 12 11.59 

pH 2.68 2.65 2.61 2.73 

TA 3.34 3.25 3.97 3.24 

2 

Brix 12.3 12.2 20.1 16.32 

Ph 2.91 2.75 2.91 2.92 

TA 2.30 2.61 3.30 2.62 

3 

Brix 16.45 19.4 25.3 21.44 

pH 3.17 3.04 3.08 3.10 

TA 1.18 1.69 1.76 1.83 
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Table A3. Most significant SNPs associated with °Brix, pH, TA in the incomplete-diallel 

populations using compression mixed model.  

Trait Year Harvest 
Significant 

SNPs 
Chr. 

Position 

(cM) 
P values MAF Effect 

°Brix 2020 

1 S16_16345474* 16 16.34 6.06E-07 0.269 4.31868 

2 S16_21082304* 16 21.08 2.71E-06 0.257 2.99365 

3 S2_4112015* 2 41.12 4.34E-06 0.134 2.68132 

°Brix 2021 

1 S16_15991560* 16 15.99 1.48E-13 0.237 4.33295 

2 S16_15991560* 16 15.99 9.60E-09 0.24 3.53356 

3 S16_15731027* 16 15.73 3.18E-07 0.252 2.25761 

pH 2020 

1 S16_16975630* 16 16.97 4.47E-06 0.241 0.13674 

2 No significant associations 

3 No significant associations 

pH 2021 

1 S16_15872050* 16 15.87 3.41E-08 0.233 0.12113 

2 S16_15991560* 16 15.99 1.98E-10 0.24 0.11569 

3 S16_16345474* 16 16.34 6.11E-09 0.267 0.12809 

TA 2020 

1 No significant associations 

2 No significant associations 

3 S6_2785463* 6 2.78 6.67E-05 0.23 0.28624 

TA 2021 

1 S16_15872050* 16 15.87 1.83E-07 0.232 -0.6162 

2 S16_21085301* 16 21.08 1.35E-06 0.269 0.49187 

3 S6_5521338* 6 5.52 4.31E-07 0.267 NA 

*MAF: Minor allele frequency; NA: Not available. 
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Figure A1. Principal component analysis 3D plot of incomplete-diallel population showing 

population structure using marker data. 
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Figure A2. VanRaden plot of incomplete-diallel population showing population structure using 

marker data. 
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Figure A3. Linkage disequilibrium decay of incomplete-diallel population. 

 

Figure A4. Marker density of incomplete-diallel population. 


