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ABSTRACT 

Throughout the past few decades, North American bat species have experienced 

population declines due to White-Nose Syndrome, wind energy, climate change, and other 

factors. In North Dakota, the presence of wind energy, and the recent arrival of White-Nose 

Syndrome in 2019, pose serious threats to bat populations in the state. The objective of this 

study was to gather and analyze long term population data on the different bat species in North 

Dakota. In Summers of 2019-2021, we recorded bat echolocation call sequences at 60 grid cells 

established across North Dakota. We compared data across years to determine if any species 

showed changes in activity level. Occupancy modeling was also used to determine any link 

between occupancy/detectability and some environmental features for four bat species in 

2020. Our results suggest a possible decline in regional populations of species in the Myotis 

genus. We found no link between occupancy and environmental factors.  
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INTRODUCTION 

 Some North American bat populations are currently experiencing unprecedented 

population declines (Brooks 2011). Bats have been facing threats for many years due to habitat 

loss and fragmentation (Kitzes et al. 2014), pesticide contamination (Oliveira et al. 2018), and 

impacts of global climate change (Sherwin et al. 2013). In recent decades, the expansion of 

wind energy has caused a significant decline of some North American bat populations in a short 

period of time (Frick et al. 2017). Bats appear to be attracted to wind turbines, and it is 

estimated that over 500,000 bats are killed annually (Guest et al. 2022, Hayes 2013). It is 

predicted that further wind energy development may cause the extinction of certain bat 

species, such as the hoary bat (Frick et al. 2017) or red bat (Arnett et al. 2016).  

The largest threat currently faced by bats in the United States and Canada is the spread 

of White-Nose Syndrome (WNS).  White-Nose Syndrome is caused by the psychrophilic fungus 

Pseudogymnoascus destructans. Characterized by white fungal growth on the skin of its host, 

WNS disrupts the hibernation patterns of bats (Pettit et al. 2017, Hoyt et al. 2021). Infected 

individuals exhibit abnormal arousal patterns during hibernation that burn through fat reserves 

needed to survive winter (Reeder et al. 2012). Occasionally, afflicted bats will leave their 

hibernaculum too early and perish from the cold (Pettit et al. 2017). Bats that survive WNS may 

have difficulties surviving in the spring, as the fungus can cause major wing damage (Cryan et 

al. 2010). The disease has only been documented in North America for about 15 years (Foley et 

al. 2011). However, in that short period of time, the disease has had a profound impact on 

hibernating bat populations. It is estimated that over 5.5 million bats have died from White-

Nose Syndrome (Pettit et al. 2017). The little brown bat (Myotis lucifugus) seems to be highly 
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susceptible to the disease, along with other species of the genus Myotis (Dzal et al. 2011), 

although the reason for this increased susceptibility is not clear. As the disease continues to 

spread across the United States and Canada, more hibernating bats will die and population 

declines will continue.   

 The decline of North American bats is likely to have ecological and economic 

consequences. Bats help maintain ecosystems as a predator to insects (Kunz et al. 2011). 

Because of their long lifespans and sensitivity to environmental stressors, they have been used 

in the past as bioindicator species for assessing the stability of an ecosystem (Jones et al. 2009). 

As insectivores, bats act as natural pest control agents in human agricultural systems, valued at 

providing over 20 billion dollars of pest control services each year in the United States (Boyles 

et al. 2011). These potential benefits further emphasize concern over the decline of North 

American bat populations.  

 A critical tool for bat conservation efforts to succeed is long-term monitoring to track 

patterns of population growth and decline. Having reliable data on populations will greatly aid 

the decision making that has to be done to mitigate the various threats facing bats, as well as 

manage current populations (Loeb et al. 2015). However, gathering data on bat populations is 

challenging. Their ability to fly, coupled with difficulty recapturing individuals (i.e. trap-shy 

behavior) makes it difficult, if not impossible, to estimate population abundances (Britzke et al. 

2013). Further, mist nets – the primary tool used to capture bats – are biased in that some 

species are particularly adept at avoiding them (MacSwiney 2008, Larsen et al. 2007). 

 Currently, the most effective and widely-used means of gathering population data on 

bats away from roosts is acoustic monitoring, which provides an index of abundance for 
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comparisons over space or time (Kunz et al. 2009). This form of monitoring involves deploying 

ultrasonic detectors that can record the echolocation calls of passing bats. The North American 

Bat Monitoring Program (NABat) is a continent-wide effort to support the establishment of 

long-term acoustic monitoring programs and provide a repository for acoustic data (Loeb et al 

2015), which can be used for regional and national conservation efforts.   

 Bat populations in the Northern Great Plains are less studied than populations in other 

regions of the United States. In 2019, White-Nose Syndrome was documented for the first time 

in North Dakota within Mercer county (USFWS 2022). Since then it has been documented in 

Billings and Burleigh county (USFWS 2022). Additionally, North Dakota currently has more than 

2,200 wind turbines active in the state as of 2020 (Great Plains Energy Corridor 2021). It is 

critical that a long-term bat monitoring program be established and maintained in the state so 

that temporal trends can be assessed. Nelson et al. (2015) used acoustic monitoring with live 

capture data to determine the occurrence and distribution of bat species across the state of 

North Dakota from 2009-2012. However, this research was conducted before the arrival of 

WNS and the passive acoustic monitoring data was not collected using a standardized 

repeatable manner, such as the NABat program uses (Loeb et al. 2015).  

 In this study, our first objective was to quantify patterns of activity for individual bat 

species across the state of North Dakota from 2019-2021 with passive acoustic monitoring. Our 

second objective was to use occupancy modeling to better understand the distribution of 

species across the landscape and possible factors driving those patterns. We hypothesized that 

activity levels will have declined from 2019-2021 for certain species due to the arrival of WNS in 

the region. Our prediction is that species from the genus Myotis will experience decline 
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compared to the other species, which will be stable over time. Previous research has shown 

that several species belonging to this genus experienced population declines following the 

arrival of WNS (Brooks et al. 2011, Ford et al. 2011). Additionally, we hypothesize that 

occupancy will be higher in areas that have relatively denser vegetation. These areas have high 

availability of insects, as well as opportunities for roosts. 
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METHODS 

Study Area 

Data was collected in the state of North Dakota from June 1 – August 15 during the 

summers of 2019 - 2021.  The study followed the guidelines established by the NABat 

Monitoring Program (Loeb et al. 2015). We selected 30 grid cells  in the state of ND that were 

identified as priority sampling areas by the NABat program. Grid cells were 10x10 km each, and 

were further divided into four 5x5 km sub-cells to identify sampling sites. It is recommended by 

NABat that 2-4 sub-cells are sampled per cell. Due to the size of North Dakota, we chose to 

sample 2 sub-cells in each cell. Sites were chosen based on their potential to attract bats, such 

as being near water, forest edge, or corridors. In total, 60 sampling sites across North Dakota 

were established in 2019 (Figure 1). To help identify population trends in different regions of 

the state, grid cells were categorized as belonging to either the East, West, or Central part of 

North Dakota based on longitude. East was classified as grid cells with a longitude greater than -

98.9999 W. Central was defined as points between the longitudes -101.4999 W and -99.0000 

W. West was classified as any grid cell with a longitude less than -101.5000 W.  
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Figure 1. A) Map of North Dakota showing the West, Central, and East regions. Also shows the 

locations of the 30 10x10 km GRTS sampling cells (purple squares) selected for the North 

Dakota long-term bat monitoring program.  Two sampling sites were established within each 

selected grid cell. B) Expansion of one sampling CELL (outlined in purple), within which are two 

sampling SITES (yellow circles).   

 

Sampling sites were visited once for each year of the study. Each season, sampling 

would begin on the east side of the state and progressively move west until sampling 

concluded. To ensure all bats had emerged from hibernation, the sampling period was set up to 

overlap with the summer residency period for bat species in North Dakota. Permission to use 

the land was obtained primarily in advance via a written agreement; in some cases, permission 

was granted verbally on the day of equipment placement. If permission could not be obtained 

again, or if the site was deemed inaccessible, sites were relocated within the grid cell.  

Field Methods 

At a given site, data was collected for 4-7 nights.  Data was obtained for the study via 

stationary acoustic monitoring devices. SM4BATFS Wildlife Acoustic bat detectors were used in 

this study (Figure 2). Each detector included a microphone attached to an extendable flag pole 

that could be adjusted to distance the microphone away from environmental clutter. When a 

A 
B 
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detector was active, the calls of bats passing the microphone were recorded. Note that 

recording only occurred when a pre-set amplitude threshold was exceeded. Detectors were 

active from 6pm each evening until 6am the following morning. All settings were standardized 

across detectors, and microphones were tested intermittently to ensure high sensitivity. 

 

 

Figure 2. Stationary monitoring setup at a typical site. The SM4BATFS acoustic bat detector is 

strapped to the tree, while a Wildlife Acoustics U2 microphone is attached to the end of the 

extendable flagpole (silver color) 

 

Throughout the course of the study, six detectors were deployed simultaneously (one 

detector per site), allowing for multiple cells to be sampled at one time. Monitoring occurred at 

each site for a minimum of 4-5 nights. Deployment/pick up was extended or delayed on some 

occasions due to technical issues or harsh weather. At each site, the detector was deployed 1-

3m above the ground depending upon the characteristics of the sampling site. For example, 

detector microphones would be positioned at a height and orientation that allowed the survey 

of open flight areas adjacent to a patch of trees. Precise data about the detector deployment 

location within each sampling site was gathered using a handheld GPS in 2019 and a Garmin 

device designed specifically to integrate with the bat detector in 2020 and 2021. The type of 
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habitat in which the detector was deployed (e.g. forest, agricultural field, open water, etc.) was 

recorded for each site. Photos were taken of the area surrounding the detector, which also 

assisted in keeping the deployment location the same across seasons.  

Sound Analysis 

All data was stored on two hard drives, each of which was housed in a different location.   

In addition, all data and associated sound analysis was uploaded to the NABat online database.   

Sound analysis was done using Sonobat 4.4, an echolocation analysis program that allows 

automatic classification of call sequences to the species level using a region-specific call library 

(Szewczak 2018). Recordings were batch processed to: 1) identify and remove recordings of 

noise, and 2) identify and analyze recordings of bat echolocation.  For each call within an 

echolocation recording, more than 70 parameter measurements were extracted; this call data 

was then compared to known recordings from different species to determine an identification.  

Decision algorithms within Sonobat aggregated species ID information for calls within a 

sequence to report the final species ID, as well as a measure of the program’s confidence in 

that call sequence identification.  Only identifications with a 90% or greater confidence score 

were included in data analysis. Call sequences were either identified to the species level, or 

were binned into one of four groups: HiF (high frequency echolocating species), LoF (low 

frequency echolocating species), HiLo (calls with both high and low frequency calls), and NoID 

(sequences where an ID could not be determined). The MT plains identification package was 

used for species ID analysis within Sonobat.   

After species identification analysis, the Sonobat NABat Attributor was used to associate 

metadata with each recording, such as information about the sampling dates, location of 
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collection, descriptors of the sampling site’s habitat, and species ID assigned to the call 

sequence.  Once data were attributed, both the metadata and the original call files were 

uploaded to the online NABat database. 

Data Analyses 

Activity patterns of individual species were compared across years to assess relative 

changes over time.  Activity level is defined in this study as the number of bat passes recorded 

at a site divided by the number of deployment nights at that site. A bat pass is defined as the 

sequence of calls made by an individual bat as it flew by the microphone. Deployment nights 

are defined as the period of time when one detector was deployed, beginning from the evening 

of deployment to the morning of removal. Relative patterns of activity were assessed at the 

grid cell and regional level.  

To assess the stated hypotheses regarding activity level, the R package lme4 was used to 

generate a linear mixed model.  In the model, grid cell was the random effect. The fixed effects 

were species, region, year, and three interactions (species*year, species*region, and 

region*year).  Only species and species groups with >15 identified call sequences per year were 

included in the model.   

Species richness is defined as the total number of species in an assemblage or sampled 

area (Gotelli and Chao 2013). Species richness often reflects habitat quality, which bats are 

highly sensitive to (Jones et al. 2009). Similar to species activity, species richness was analyzed 

by region and year. Each survey year, the total number of detected species was recorded for 

each grid cell. Once collected, grid cells were grouped by region (East, Central, West), and 
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analyzed using a linear mixed model. The grid cell was used as the random effect, while the 

fixed effects were region, year, and a region*year interaction.  

Single-season, single-species occupancy modeling was used to assess occupancy and 

detectability of the four most common species found in the 2020 stationary monitoring 

dataset. Occupancy is defined as the probability that a species will be present at the study site. 

Detectability is the chance of detecting the species at the studied site if present. To ensure 

accuracy of detectability, multiple visits to each site are needed (MacKenzie et al. 2017). To 

account for this, we treated each night a detector was deployed as an independent visit/survey. 

Five nights were analyzed for each site. 

 The four species we examined included the big brown bat (Eptesicus fuscus), the little 

brown bat (Myotis lucifugus), the silver-haired bat (Lasionycteris noctivagans), and the hoary 

bat (Lasiurus cinereus).  Analysis was conducted using the unmarked package within program R 

(R Core Team 2021). To examine the impact of environmental variables, two observational level 

covariates were examined: date and temperature. Three site-level covariates were also 

included in the model: vegetation, latitude, and longitude. Date refers to the start date on 

which detectors were deployed. Temperature references the background temperature at the 

time the detectors were deployed. All temperature data was collected using the R package 

RNCEP. This package uses data collected from the NCEP-DOE Reanalysis 1 and 2, a forecast 

system which utilizes past data from weather stations around the globe to estimate 

past/present weather conditions at a specified location/time based on historical data from 

nearby weather stations (Kemp et al. 2012; NOAA/OAR/ESRL PSD, Boulder, Colorado, USA; 

http://www.esrl.noaa.gov/psd/). Vegetation describes how dense the levels of foliage were 



 11

surrounding the detectors. Vegetative clutter was ranked on a scale of zero to three, with zero 

being a completely open area around the microphone (e.g. open grassland), and three being 

heavily cluttered with trees and other vegetation (e.g. woodlands).  Latitude and longitude 

provided information on where the detectors were deployed in the state.   
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RESULTS 

Activity Level 

All activity level data for the three-year sampling period can be found in Appendix 1.  

The fixed effects results from the activity level model can be found in Appendix 2.  When 

modeling activity level, the only species/species groups that were significantly different in the 

model were the high frequency species group (HiF) and the group for sequences without an 

assigned ID (NoID) (Table 1; See appendix).  For the Species*Year term (Figure 3), we found that 

activity level for the HiF group in 2021 was significantly lower compared to the two previous 

years.  For the Species*Region interaction, the HiF group activity was significantly higher in the 

Central and West regions compared to the East, while the opposite pattern was seen for the 

LoF group and silver-haired bats (Figure 4).   
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Table 1. Fixed effects table from linear mixed model for species richness.  In the model, Region, 

Year, and Region*Year were included as fixed effects, while grid cell was included as a random 

effect.   

 

Species Richness Linear Mixed Model 
 

Fixed Effect 
Estimate Std. Error df 

t 

value Pr(>|t|)    Significance 
 

(Intercept) 
4 0.3866 

37.768

1 10.346 

1.41E-

12 *** 
 

RegionEast 
-0.4444 0.5618 

37.768

1 -0.791 0.43379 n.s. 
 

RegionWest 
1.4545 0.5342 

37.768

1 2.723 0.00974 ** 
 

Year2020 -0.5 0.2698 54 -1.853 0.06931 n.s.  

Year2021 -0.5 0.2698 54 -1.853 0.06931 n.s.  

RegionEast:Year2020 0.5 0.392 54 1.275 0.20759 n.s.  

RegionWest:Year2020 1.0455 0.3728 54 2.805 0.00699 **  

RegionEast:Year2021 0.6111 0.392 54 1.559 0.12485 n.s.  

RegionWest:Year2021 0.1364 0.3728 54 0.366 0.71594 n.s.  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   n.s.= Not Significant  
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Figure 3.  Activity level changes across a three-year period (2019-2021) for stationary acoustic 

monitoring collected across the state of North Dakota.  Abbreviations for species/species group 

identification classifications from Sonobat are as following: EPFU = big brown bat, Eptesicus 

fuscus; HIF = high frequency echolocating bats; HILO = high or low echolocating bats; LABO = 

red bat, Lasiurus borealis; LACI = hoary bat, Lasiurus cinereus; LANO = silver-haired bat, 

Lasionycteris noctivigans; LOF = low frequency echolocating bats; MYLU = little brown bat, 

Myotis lucifugus; NOID = call sequences that could not be identified to species. Data for Myotis 

evotis (long-eared myotis; n = 11), Myotis septentrionalis (northern long-eared bat; n = 0), 

Myotis thysanodes (fringed myotis; n = 2), and Myotis volans (long-legged myotis; n = 81) were 

excluded due to very low sample sizes. 
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Figure 4.  Activity level data divided by year (2019, 2020, 2021) and region (East, Central, West) 

for 1) silver-haired bats, Lasionycteris noctavagans, 2) LoF (species group for sequences with 

low frequency echolocation calls), and 3) HiF (species group for sequences with high frequency 

echolocation calls).   

 

Species Richness 

When examining the linear mixed model for species richness, the West region showed 

significantly higher levels of species richness compared to the Central or East regions (Table 2). 

For the Region*Year term, the west region exhibited significantly higher richness in 2020 

compared to 2019 or 2021 (Table 1).  

Occupancy and Detection 

 

For the four species analyzed, the probability of a species occurring at a sampling site 

varied (Table 2), ranging from .49 (little brown bat) to 0.90 (hoary bat). Detectability ranged 

from .46 to .68 (Table 2). Of the four examined species, only Myotis lucifugus showed a 

significant difference in longitude, increasing in the West region, with a p-value of 0.006. No 

other covariates were significant for any of the species. 
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Table 2. Occupancy and detection values for each of the four common species in the data set, 

as well as the standard error, and upper/lower 95% confidence values.  MYLU = little brown bat, 

Myotis lucifugus, EPFU = big brown bat, Eptesicus fuscus, LANO = silver-haired bat, Lasionycteris 

noctivagans, LACI = hoary bat, Lasiurus cinereus 

 

Occupancy/Detection by Species 
 

Species 
Occupancy 

Estimate 
 SE Lower Upper 

Detection 

Estimate 
SE Lower Upper 

 

 

MYLU 0.49 0.07 0.35 0.62 0.46 0.05 0.37 0.56  

EPFU 0.67 0.06 0.53 0.78 0.59 0.03 0.51 0.66  

LANO 0.69 0.06 0.55 0.79 0.6 0.04 0.53 0.67  

LACI 0.9 0.04 0.78 0.95 0.68 0.03 0.61 0.73  
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DISCUSSION 

We predicted that due to WNS, species from the genus Myotis would experience 

significant declines in activity level. Furthermore, we also predicted that prey availability and 

roosting opportunities of densely vegetated areas would lead to high occupancy levels. Our 

results show evidence that Myotis populations have likely declined since 2019, but does not 

find any link between vegetation density and occupancy. 

The activity level of the HiF group was significantly reduced in 2021 compared to 2019 

or 2020. One possible cause of this decline could be the arrival of WNS in the Northern Great 

Plains. The genus Myotis most likely composes a large part of the HiF group, as it is well 

established that differentiating echolocation call sequences among species within the Myotis 

genus is difficult, hence the existence of this species group (Goodwin 2019). The most common 

Myotis species in North Dakota, the little brown bat, has been shown to be particularly 

vulnerable to this disease (Dzal et al. 2011, Frick et al. 2010). It seems likely that large numbers 

of little brown bats calls are being binned into the HiF group, and this reduction in activity in 

2021 is indicative of population declines in the state, as has been seen in other states.  For 

example, in Fort Drum, New York, three Myotis species (including M. lucifugus) showed 

significant decline in activity levels following the arrival of WNS (Ford et al. 2011). Similarly, 

central Massachusetts recorded a 72% decline in Myotis call activity after establishment of the 

disease (Brooks et al. 2011). Our data only shows significant decline in the HiF group, but note 

that few call sequences were classified as Myotis species. For example, the Myotis lucifugus 

classification makes up less than 1% of recorded calls in 2019, around 1.9% of calls in 2020, and 
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approximately 3% of calls in 2021. It is likely that the ID algorithms are conservative, and 

commonly put MYLU sequences into the HiF group. 

When examining the Species*Region interaction for the activity model, the East region 

had significantly different activity levels for HiF, LoF, and silver-haired bats when compared to 

the other regions. More specifically, the silver-haired bat and LoF group had significantly higher 

activity levels in the East, while the HiF group showed more significantly more activity in the 

Central and West regions. These trends are likely occurring due to the natural ranges of these 

bat species. Nelson et al. (2015) found that silver-haired bats, which also likely make up part of 

the LoF group, are more commonly found in the Central and East regions of North Dakota than 

in the West.  Conversely, many of the species that likely compose the HiF group were found to 

be more common in the West and Central parts of North Dakota (Nelson et al. 2015). 

Species richness was examined to determine if there was any variation in the number of 

species based on region or year. The West region showed significantly more species richness 

than the Central or East regions. This pattern is likely the result of differences in the number of 

bat species inhabiting each of the three regions. As previous studies have shown, more bat 

species are found in the West region than in the Central or Eastern regions of ND (Nelson et al. 

2015). For example, six species belonging to the genus Myotis can be found in western North 

Dakota, while only one is found in eastern North Dakota (Nelson et al. 2015). Western North 

Dakota also had significantly higher richness in 2020 than in 2019 or 2021. While the reason for 

this is not completely clear, it is possible that this is a result of sampling error, as there is no 

guarantee that every species occupying a region will always be detected.  
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We assessed the occupancy of four bat species across the state. In addition, we 

examined if environmental factors had any effect on species occupancy or detectability. None 

of the tested observation or site-level covariates appeared to hold any significance over 

occupancy or detectability of the species. The only exception was for little brown bats, for 

which longitude predicted occupancy across the state. This is most likely a result of how rare 

the species is in eastern North Dakota. Previous capture and acoustic monitoring efforts found 

far substantially fewer little brown bats in the East region than in the Central and West regions 

(Nelson et al. 2015).  

Hoary bats had the highest occupancy and detectability of all four tested species, with 

an occupancy of approximately 90% and detectability of 68%. These high rates could be a result 

of the low frequencies of their calls. Low frequency calls travel farther through the air than 

higher frequency calls, allowing them to be picked up at farther distances (Fenton 2003). 

Additionally, hoary bats are found in all parts of the state, and are capable of flying long 

distances in a single night (Nelson et al. 2015, Morningstar et al. 2019). Little brown bats had 

the lowest occupancy and detectability, with an occupancy of ~49% and detectability of 46%. It 

is possible this is due to the limited distribution of the species across the state. Previous capture 

and acoustic data show that little brown bats are rarely found in East ND, and are more 

prevalent in the Central and West regions (Nelson et al. 2015). Another factor to consider is 

that little brown bats have the highest frequency calls of the four examined species. High 

frequency calls attenuate quicker, and are less likely to be picked up by the detectors, reducing 

the likelihood that such species will have their calls recorded at moderate distances from the 

detector. 
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Several other studies have examined the impacts of environmental factors on bat 

species in similar ways. Bender et al. (2021) utilized acoustic data to determine if vegetative 

structure and/or insect abundance had any effect on occupancy in pine forest. They found a 

negative relationship between vegetation structure and occupancy, although occupancy was 

best explained by combining vegetation and insect abundance.  Mena et al. (2020) used capture 

data to determine if elevation or forest cover had an impact on occupancy, as well as the 

effects of lunar illumination on detectability. While they found that elevation may have some 

impact on occupancy, forest cover did not. Unlike both of these studies, we did not find any 

links between environment and occupancy. It is possible that we did not find an effect of 

vegetation because of the coarseness of the scale we used, which was simpler than the 

methods used by Bender et al. (2021) and Mena et al. (2020). There is also the possibility that 

bats do not exhibit a strong preference in regards to vegetative clutter levels in North Dakota. 

However, this is unlikely as previous work from Trubitt et al. (2019) and Nelson et al. (2020) 

have found various bat species show a preference for cluttered areas.  Future studies should 

incorporate the more detailed measures these studies used for assessing vegetative clutter, 

including tree density and canopy cover. Additionally, differences among study areas with 

different habitats should be noted. Occupancy patterns could be different in open plains 

compared to large areas of forests or elevated mountains.  

Several limitations of this study should be considered. Passive acoustic monitoring has 

the potential for biased results. Factors such as echolocation call frequency, position, 

microphone sensitivity, or background noise, can potentially impact the number of call 

sequences at a site (Voigt et al. 2021).  While these factors are inevitable when conducting 
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passive acoustic monitoring, we believe that our use of a standardized protocol across sites and 

years minimizes the impacts these potential biases would have when making relative 

comparisons of activity over space and time.   

We set out to quantify patterns of activity and occupancy for individual bat species 

across the state through acoustic monitoring. Our results suggest that since its arrival in 2019, 

WNS has reduced Myotis populations in North Dakota. No patterns were found linking 

occupancy or detectability with environmental covariates. The data collected provides useful 

insights into the activity patterns of various species of bats across the state. Wildlife managers 

will be able to use this data to assist with survey efforts in the future, knowing which parts of 

the state certain species are more active in. This is one of the first studies examining the 

potential impacts of WNS on the bat populations of North Dakota. However, more research, 

through acoustic monitoring and/or direct capture, will need to be conducted to better 

understand the impact of the disease as it continues to spread through the state and region.  
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Table A1. Data from long-term stationary acoustic monitoring in North Dakota from 2019 to 2021. Most grid cells included two 

sampling sites (data for sites within the same grid cell are pooled here). Abbreviations for species/species group identification 

classifications from Sonobat are as following: EPFU = big brown bat, Eptesicus fuscus; LABO = red bat; Lasiurus borealis, LACI = hoary 

bat, Lasiurus cinereus; LANO = silver-haired bat, Lasionycteris noctivigans; LoF = low frequency echolocating bats; Myci = western 

small-footed myotis, Myotis ciliolabrum; MYEV = long-eared myotis, Myotis evotis; MYLU = little brown bat, Myotis lucifugus; MYSE = 

northern long-eared myotis, Myotis septentrionalis; MYTH = fringed myotis, Myotis thysanodes; MYVO = long-legged myotis, Myotis 

volans; HIF = high frequency echolocating bats; HILO = high or low echolocating bats; LOF = low frequency echolocating bats; NOID = 

no identification to species.. Grid cells are arranged from east to west, and each grid cell was categorized into one of three regions in 

North Dakota. “West” was defined as all points with longitudes greater than -101.5000 W. “Central” was defined as all points with 

longitudes between -101.4999 W and -99.0000 W. “East” was defined as points with longitudes smaller than -98.9999W. 

 

Year Cell Region Epfu Labo Laci Lano Myev Mylu Myse Myth Myvo HIF HILO LOF NOID Total 

2019 309 East 685 88 390 246           84 82 2,129 435 4,139 

2019 485 East 63 39 127 719           20 23 1,017 248 2,256 

2019 741 East 11   68 60           2   160 139 440 

2019 1333 East 137 2 584 343           5 7 808 439 2,325 

2019 1765 East 107 1 27 489             3 926 566 2,119 

2019 1893 East 3   18 237           8 2 168 177 613 

2019 1509 East 44 21 63 359   17       383 26 436 343 1,692 

2019 869 East     78 5           1   58 150 292 

2019 821 East   29 50 3           34 65 61 140 382 

2019 1637 Central     25 6               42 42 115 

2019 997 Central   25 133 13           13 56 493 505 1,238 

2019 1845 Central   6 8 7           9   41 113 184 

2019 2021 Central   1 13             12 3 23 143 195 

2019 1381 Central 1   31 47   1       25 6 22 49 182 

2019 1077 Central   2 60     14     12 917 29 48 137 1,219 

2019 613 Central 1 6 94 39   7       113 12 80 295 647 

2019 37 Central 19 18 132 12   6     1 101 4 416 339 1,048 

2019 1125 Central 18 80 200 105 1 16       377 38 388 430 1,653 

2019 101 Central 3 84 200     79 1     5,990 408 72 550 7,387 
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Table A1. Data from long-term stationary acoustic monitoring in North Dakota from 2019 to 2021 (continued) 

 

Year Cell Region Epfu Labo Laci Lano Myev Mylu Myse Myth Myvo HIF HILO LOF NOID Total 

2019 2085 West 6 20 2 5   9       501 15 49 218 825 

2019 357 West 5 16 15 11   5 2     1,311 25 47 186 1,623 

2019 1653 West   7 2 2   9       52 2 8 12 94 

2019 2005 West 76 46 81 22   42       484 73 142 83 1,049 

2019 1749 West 223 38 80 20 3 22       476 22 484 333 1,701 

2019 693 West 2 6 1     4       48 6 10 5 82 

2019 1461 West 5 60 11 1   11     1 1,190 53 51 78 1,461 

2019 981 West 9 4 5 6 4 2   1 2 162 25 55 44 319 

2019 1205 West 2 11       5       350 37 13 89 507 

2019 725 West 9   74 46 2 8   2   39 2 73 84 339 

2019 1829 West 63 1 7 17 8 5   8   171 23 139 40 482 

2019 Total 1,492 611 2,579 2,820 18 262 3 11 16 12,878 1,047 8,459 6,412 36,608 

2020 309 East 135 212 103 131 0 0 0 0 0 295 72 796 580 2,189 

2020 485 East 47 29 93 707 0 0 0 0 0 15 9 907 210 1,970 

2020 741 East 25 2 23 49 0 0 0 0 0 3 1 105 72 255 

2020 1333 East 94 1 379 151 0 0 0 0 0 1 1 365 360 1,258 

2020 1765 East 2 0 21 194 0 0 0 0 0 0 0 74 107 396 

2020 1893 East 46 6 45 1,172 0 0 0 0 0 5 0 1,030 521 2,779 

2020 1509 East 40 0 35 844 0 1 0 0 0 144 76 1,152 442 2,694 

2020 869 East 0 0 129 2 0 0 0 0 0 0 0 47 47 225 

2020 821 East 0 167 24 3 0 0 0 0 0 111 72 27 123 527 

2020 1637 Central 0 0 35 3 0 0 0 0 0 0 0 20 27 85 

2020 997 Central 0 2 31 4 0 0 0 0 0 5 2 105 185 334 

2020 1845 Central 0 0 12 0 0 0 0 0 0 1 0 66 208 287 

2020 2021 Central 0 1 0 0 0 0 0 0 0 2 0 2 12 17 

2020 1381 Central 20 1 26 647 0 6 0 0 0 14 2 233 198 1,127 

2020 1077 Central 0 5 17 0 0 6 0 0 0 77 0 14 68 187 

2020 613 Central 3 35 32 216 0 1 0 0 0 110 22 183 289 888 
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Table A1. Data from long-term stationary acoustic monitoring in North Dakota from 2019 to 2021 (continued) 

 

Year Cell Region Epfu Labo Laci Lano Myev Mylu Myse Myth Myvo HIF HILO LOF NOID Total 

2020 37 Central 88 19 14 0 0 37 0 0 0 264 6 34 52 426 

2020 1125 Central 118 8 187 331 0 32 0 0 6 328 73 515 364 1,844 

2020 101 Central 16 50 259 0 0 1,014 0 0 21 5,382 366 68 669 7,829 

2020 2085 West 19 3 4 4 0 16 0 0 8 977 7 32 313 1,364 

2020 357 West 6 6 13 16 0 1 0 0 2 392 13 54 123 620 

2020 1653 West 4 24 6 0 0 22 0 0 2 90 2 14 33 193 

2020 2005 West 1,012 39 24 11 0 76 0 0 7 646 73 369 161 1,406 

2020 1749 West 312 18 79 16 4 5 0 0 0 266 14 151 239 792 

2020 693 West 11 21 5 0 0 4 0 0 1 50 18 39 11 149 

2020 1461 West 8 21 7 6 0 14 0 0 4 98 5 27 20 202 

2020 981 West 22 16 7 5 5 5 1 0 0 116 12 21 51 239 

2020 1205 West 9 31 7 5 0 9 0 0 0 219 6 25 22 324 

2020 725 West 2 2 15 3 6 0 0 0 1 20 3 32 66 148 

2020 1829 West 100 5 5 13 15 5 0 2 3 700 26 118 187 1,079 

2020 Total 2,139 724 1,637 4,533 30 1,254 1 2 55 10,331 881 6,625 5,760 31,833 

2021 309 East 483 12 90 85 0 0 0 0 0 50 23 993 765 2,501 

2021 485 East 119 101 392 647 0 0 0 0 0 66 55 632 589 2,601 

2021 741 East 15 2 167 190 0 0 0 0 0 8 5 327 305 1,019 

2021 1333 East 145 8 2,966 320 0 0 0 0 0 6 49 1,047 719 5,260 

2021 1765 East 21 4 35 612 0 0 0 0 0 2 1 537 360 1,572 

2021 1893 East 49 0 45 778 0 0 0 0 0 1 0 638 358 1,869 

2021 1509 East 41 5 209 1,052 0 5 0 0 0 74 20 825 554 2,785 

2021 869 East 0 0 171 2 0 0 0 0 0 0 0 100 102 375 

2021 821 East 0 2 41 1 0 0 0 0 0 3 1 45 106 199 

2021 1637 Central 1 0 691 11 0 0 0 0 0 0 0 255 254 1,212 

2021 997 Central 0 0 7 1 0 0 0 0 0 0 0 3 91 102 

2021 1845 Central 0 11 13 0 0 0 0 0 0 19 1 22 98 164 

2021 2021 Central 0 0 4 1 0 0 0 0 0 1 0 5 37 48 
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Table A1. Data from long-term stationary acoustic monitoring in North Dakota from 2019 to 2021 (continued) 

 

Year Cell Region Epfu Labo Laci Lano Myev Mylu Myse Myth Myvo HIF HILO LOF NOID Total 

2021 1381 Central 2 0 61 391 0 0 0 0 0 1 0 128 121 704 

2021 1077 Central 0 0 22 5 0 6 0 0 1 113 1 21 82 251 

2021 613 Central 0 0 19 6 0 2 0 0 0 3 0 50 124 204 

2021 37 Central 59 4 5 0 0 13 0 0 1 55 0 19 40 196 

2021 1125 Central 62 2 74 46 0 2 0 0 0 66 4 160 120 536 

2021 101 Central 5 15 180 1 0 935 0 0 50 3,234 156 31 854 5,461 

2021 2085 West 100 7 5 0 0 3 0 0 3 781 9 58 142 1,108 

2021 357 West 8 4 10 11 0 0 0 0 17 470 6 37 115 678 

2021 1653 West 1 9 5 0 0 3 0 0 0 23 3 3 21 68 

2021 2005 West 297 15 52 17 0 6 0 0 0 153 22 261 282 1,105 

2021 1749 West 73 8 58 18 0 4 0 0 2 230 2 70 425 890 

2021 693 West 17 8 3 6 0 0 0 0 1 22 1 20 76 154 

2021 1461 West 4 255 11 5 0 41 0 0 3 359 99 43 133 953 

2021 981 West 18 1 26 7 0 2 0 0 3 64 0 35 50 206 

2021 1205 West 1 2 4 0 0 0 0 0 0 31 3 14 43 98 

2021 725 West 6 1 15 1 10 0 0 0 0 37 7 17 63 157 

2021 1829 West 55 5 11 28 1 0 0 2 0 182 22 200 210 716 

2021 Total 1,582 481 5,392 4,242 11 1,022 0 2 81 6,054 490 6,596 7,239 33,192 
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Table A2. Fixed effects table for the linear mixed model for activity. The model included 

species, year, region, species*year, species*region, and region*year as fixed effects, with grid 

cell as a random effect.  

 
Fixed Effect Estimate Std. Error df t value Pr(>|t|)  

(Intercept) 0.66 7.15 293 0.09 0.93  

SpeciesHIF 51.61 8.54 734 6.04 <0.001  

SpeciesHILO 3.27 8.54 734 0.38 0.70  

SpeciesLABO 0.51 8.54 734 0.06 0.95  

SpeciesLACI 6.10 8.54 734 0.71 0.48  

SpeciesLANO 2.97 8.54 734 0.35 0.73  

SpeciesLOF 15.23 8.54 734 1.78 0.08  

SpeciesMYLU 3.37 8.54 734 0.39 0.69  

SpeciesNOID 17.25 8.54 734 2.02 0.04  

RegionEast 7.17 8.97 186 0.80 0.42  

RegionWest 7.33 8.53 186 0.86 0.39  

Year2020 3.78 7.32 734 0.52 0.61  

Year2021 -2.57 7.32 734 -0.35 0.73  

SpeciesHIF:Year2020 -12.22 9.36 734 -1.31 0.19  

SpeciesHILO:Year2020 -3.35 9.36 734 -0.36 0.72  

SpeciesLABO:Year2020 -2.40 9.36 734 -0.26 0.80  

SpeciesLACI:Year2020 -6.32 9.36 734 -0.68 0.50  

SpeciesLANO:Year2020 1.43 9.36 734 0.15 0.88  

SpeciesLOF:Year2020 -10.57 9.36 734 -1.13 0.26  

SpeciesMYLU:Year2020 -0.44 9.36 734 -0.05 0.96  

SpeciesNOID:Year2020 -5.07 9.36 734 -0.54 0.59  

SpeciesHIF:Year2021 -21.53 9.36 734 -2.30 0.02  

SpeciesHILO:Year2021 -1.08 9.36 734 -0.12 0.91  

SpeciesLABO:Year2021 0.51 9.36 734 0.06 0.96  

SpeciesLACI:Year2021 6.68 9.36 734 0.71 0.48  

SpeciesLANO:Year2021 4.01 9.36 734 0.43 0.67  

SpeciesLOF:Year2021 -9.14 9.36 734 -0.98 0.33  

SpeciesMYLU:Year2021 1.99 9.36 734 0.21 0.83  

SpeciesNOID:Year2021 1.39 9.36 734 0.15 0.88  

RegionEast:Year2020 -3.66 5.55 734 -0.66 0.51  

RegionWest:Year2020 -0.18 5.28 734 -0.03 0.97  

RegionEast:Year2021 5.03 5.55 734 0.91 0.36  

RegionWest:Year2021 1.06 5.28 734 0.20 0.84  
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Table A2. Fixed effects table for the linear mixed model for activity (continued) 

 

Fixed Effect Estimate Std. Error df t value Pr(>|t|)  

SpeciesHIF:RegionEast -43.84 9.62 734 -4.56 <0.001  

SpeciesHILO:RegionEast -8.38 9.62 734 -0.87 0.38  

SpeciesLABO:RegionEast -5.93 9.62 734 -0.62 0.54  

SpeciesLACI:RegionEast 6.65 9.62 734 0.69 0.49  

SpeciesLANO:RegionEast 23.76 9.62 734 2.47 0.01  

SpeciesLOF:RegionEast 41.97 9.62 734 4.36 <0.001  

SpeciesMYLU:RegionEast -12.48 9.62 734 -1.30 0.19  

SpeciesNOID:RegionEast 9.19 9.62 734 0.96 0.34  

SpeciesHIF:RegionWest -16.68 9.14 734 -1.82 0.07  

SpeciesHILO:RegionWest -8.22 9.14 734 -0.90 0.37  

SpeciesLABO:RegionWest -6.04 9.14 734 -0.66 0.51  

SpeciesLACI:RegionWest -12.44 9.14 734 -1.36 0.17  

SpeciesLANO:RegionWest -12.46 9.14 734 -1.36 0.17  

SpeciesLOF:RegionWest -8.47 9.14 734 -0.93 0.35  

SpeciesMYLU:RegionWest -11.40 9.14 734 -1.25 0.21  

SpeciesNOID:RegionWest -12.33 9.14 734 -1.35 0.18  

 

 


