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ABSTRACT 

Many researchers have used the intersection method to compare the results of differential 

expression analysis between two or more gene expression experiments. Some methods have been 

proposed to estimate the number of genes commonly differentially expressed in two independent 

gene expression experiments or analyses, but there has not been a method for estimating this 

number using dependent experiments or analyses other than the intersection method. In this thesis 

project, we propose a method for estimating the number of differentially expressed genes in two 

dependent experiments or analyses. Simulation studies are performed to compare the proposed to 

existing methods and an analysis of a real gene expression data set is performed to illustrate the 

use of the proposed method. 
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CHAPTER 1: INTRODUCTION 

1.1. Background Study 

1.1.1. Gene Expression 

Gene expression can be described as the process by which information from a gene is used 

in the synthesis of a functional gene product. Recent advances in technologies have contributed 

significantly to the understanding of the regulation of gene expression, and this regulation is done 

at the transcriptional level. A common purpose of these technologies is to quantify gene expression 

by measuring the abundance of mRNA in a sample organism. Some common technologies such 

as real-time PCR, microarray analysis, next-generation sequencing, and RNA-seq used in 

functional genomics depend on the scale and intent of the experiment. 

1.1.2. Microarray Technology 

Microarray technologies have become more relevant tools since their development in the 

1990s for clinical research purposes. Microarray technologies are easier to use compared to several 

gene expressions profiling methods such as differential display and serial analysis of gene 

expression. They do not require large-scale DNA sequencing and allow the parallel quantification 

of thousands of genes from multiple samples (Russo, Zegar, and Giordano, 2003). There have been 

several research studies conducted using these technologies; for instance, toxicologists can now 

define specific patterns of gene expression under a given set of experimental conditions and 

provide a mechanistic rationale for such changes (Shankar and Mehendale, 2014); they have been 

used to analyze normal and cancerous tissues and cell lines (Bull et al., 2001). Microarrays 

technologies are also used for several other purposes; for example, they are efficient in the 

interrogation of chromosome structure and integrity; and are of two types, namely, comparative 
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genomic hybridization (CGH) arrays and single nucleotide polymorphism (SNP) – based arrays 

(Martin, 2020). 

1.1.3. RNA-seq Technology 

RNA sequencing technologies are high-throughput transcriptome profiling technologies 

used to directly determine the cDNA sequence. There have been many developments in 

sequencing technologies over time, starting with the Double helix structure in 1953. Sanger 

sequencing was developed in 1977 and is referred to as the first-generation sequencing technology. 

The first high-throughput sequencing platform was developed in 2005, followed by many next-

generation sequencing platforms (NGS). The comparison between NGS platforms’ accuracy and 

reproducibility are measured using several factors such as the features and their corresponding 

analysis pipelines. NGS can detect unknown gene expression sequences as compared to 

microarrays but is time-consuming (Hong et al., 2020). 

1.2. Differential Gene Expression Analysis 

 A common goal of gene expression experiments is to identify genes that are differentially 

expressed (i.e., genes whose mean expression values differ between two groups). In microarray 

experiments, expression levels are considered continuous measurements, and statistical methods 

assuming normality of gene expressions are regularly employed. In RNA-seq experiments, 

expression measurements are discrete counts, and often, the assumption is that the expression 

measurements follow negative binomial distributions. Because gene expression analysis involves 

performing inferences on thousands of genes simultaneously and could lead to multiple testing 

errors, there is a need to control the number of false-positive results, i.e., the number of 

equivalently expressed genes identified as differentially expressed. The False Discovery Rate 
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(FDR), proposed by Benjamini and Hochberg (1995), is a popular method for controlling multiple 

testing errors in gene expression experiments. 

1.3. Intersection Method 

It is common for researchers to compare the results of two differential expression analyses, 

and in many cases, a list of genes identified as commonly differentially expressed is determined 

for each analysis. The number of genes common to both lists is often reported using the Venn 

diagram graphical approach. We would refer to this method as the “intersection method”. Using 

the intersection method, the number of genes identified as differentially expressed in both analyses 

or experiments relies heavily on the level at which the FDR is controlled. This is a potential 

drawback if researchers are interested in evaluating the degree of differential expression common 

to both analyses or experiments. 

1.4. Estimating Differentially Expressed Genes in Two Experiments or Analyses 

The intersection method allows us to determine the genes that are common to both lists of 

two differentially expressed genes in gene expression experiments when the FDR is controlled at 

a nominal level α. The results of the intersection method, or the number of genes declared to be 

differentially expressed in two experiments rely heavily on the value of α. The number of 

commonly differentially expressed genes in the two experiments increases as α increases. 

(Orr et al., 2012) proposed a method to estimate the number of genes that are differentially 

expressed in two experiments. This method uses the p-values from the two experiments 

simultaneously, to produce an estimate that does not depend on the False Discovery Rate (FDR). 

1.5. Research Objectives 

Many researchers have used the intersection method to perform statistical analysis on gene 

expression experiments between two or more groups or two or more methods. Some methods have 
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been proposed to estimate the number of genes commonly differentially expressed in two 

independent experiments/analyses. To our knowledge, there has not been a method for estimating 

this number using dependent experiments or analyses other than the intersection method. The goal 

of this research is to propose a method for estimating the number of differentially expressed genes 

in two dependent experiments or analyses. We would perform simulation studies and compare the 

proposed method to the existing ones and illustrate the use of the proposed method on real gene 

expression data sets. 

1.6. Organization 

The rest of this work is organized as follows; In Chapter 2 – we perform a literature review 

of topics related to this project. Chapter 3 describes the proposed methods, simulations studies, 

and real data analysis; In chapter 4, we present the results of the simulation study and real data 

analysis using the methods in chapter 3 and finally, we present our overall findings and conclusions 

of the analysis as well as recommendations for future work in chapter 5.
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CHAPTER 2: LITERATURE REVIEW 

2.1. Estimating the Number of Equivalently Expressed Genes in a Single Experiment Using 

p-values 

Consider the problem of simultaneously testing null hypotheses "!", … , "!# for experiment 

% based on the corresponding p-values &!", … , &!#. For ' = 1,… ,!, we assume that 

&!$ 	~	,-%./0!(0,1)) when "!$ is true and that &!$ has a distribution that is stochastically smaller 

than the uniform distribution when "!$ is false. These are standard assumptions which imply that 

an unbiased size α test can be obtained for each gene ' by rejecting "!$ if and only if &!$ ≤ 	5.  

(Storey and Tibshirani, 2003) showed that, for any fixed 6! 	 ∈ 	 [0, 1) in experiment %, 

!%
(!)(6!) =

∑ :;&!$ > 6!=#
$("

1 − 6!
 

is an estimator of !%
(!)

, the number of true null hypotheses among "!", … , "!#. As illustrated by 

(Storey and Tibshirani, 2003), to demonstrate the method for estimating !%
(!)

, the histogram-based 

method proposed by (Liang and Nettleton, 2012) was used. This method selects a value of 6! from 

a set of candidate values so that a histogram of p-values less than 6! is approximately decreasing 

while a histogram of p-values greater than  6! is approximately uniform. 

The algorithm of Liang and Nettleton (2012) can be described as follows: 

1. Partition the interval [0,1] into B bins of equal width. Let ?) = @)*"+ , )+A 	./0	B =

1, 2, … , D. 

2. Denote the number of p-values in the interval ?)	EF	-)	./0	B = 1,2, … , D. 

3. For each B	 = 1, 2, … , D, calculate  

-G) =
∑ -)+
,()

D − B + 1
. 

(2.1) 



 6 

4. Let B∗ = min{!%-{B: -B ≤ 	 -̄B}, D − 1}Select 6! =
)∗
+ .  

We use D = 20 when applying this algorithm according to the recommendations by (Nettleton et 

al., 2006) and (Liang and Nettleton, 2012).  

There have been many other methods proposed to estimate the number of equivalently 

expressed genes and the number of differentially expressed genes when performing a hypothesis 

test for each gene in one gene expression data set, (Storey, 2002), (Storey and Tibshirani, 2003), 

(Storey, Taylor, and Siegmund, 2004), (Langaas, Ferkingstad, and Lindqvist, 2005), (Nettleton et 

al., 2006), and (Liang and Nettleton, 2012) amongst others.  

2.2. Estimating the Number of Equivalently Expressed Genes in Two Experiments Using  

p-values 

Now considering the problem of testing m pairs of null hypotheses 

(""", "."), (""., "..), … , (""#, ".#), where "!$ is the null hypothesis for experiment (or 

analysis) %	(% = 1,2) and gene '	(' = 1, 2, . . , !). Each hypothesis "!$ is either true (gene ' in 

experiment % is equivalently expressed), or false (gene ' in experiment % is differently expressed).  

Table 2.1: Contingency table of the estimate of equivalently expressed and differentially 

expressed genes for each of the m genes in each experiment described by (Orr et al., 2012). 

 

Experiment 2  

Gene EE Gene DE Total 

Experiment 1 

Gene EE !%% !%" !%
(")

 

Gene DE !"% !"" !"
(")

 

 Total !%
(.)

 !"
(.)

 ! 

In table 2.1., !%% represents the number of equivalently expressed (EE) genes in both 

experiments; !"", the number of differentially expressed (DE) genes in both experiments; !%", 
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the number of EE genes in experiment 1 but DE in experiment 2; 	!"% is the number of genes that 

are DE in experiment 1 but EE in experiment 2; !%
(!), % = 1,2 is the total number of EE genes in 

experiments 1 and 2; 	!"
(!), % = 1,2 is the total number of DE genes in experiments 1 and 2;	and ! 

is the overall total number of genes in both experiments.  

Following the setup of (Orr et al., 2012), the histogram-based method was used to estimate 

the number of equivalently expressed genes in each experiment. For p-value pairs R&"$ , &.$S 

corresponding to gene ', if both null hypotheses in the pair R""$ , ".$S are true, then it is assumed 

that &"$ and &.$ are independent and both follow a Uniform(0,1) distribution.  

From this assumption, 

T0 @R&"$ , &.$S ∈ [6", 1] × [6., 1]W = (1 − 6")(1 − 6.) 

Now, let -%% be the number of p-values pairs that fall into the upper right quadrant defined by 6" 

and 6., i.e., 

-%% =X:
#

!("
;R&"$ , &.$S ∈ [6", 1] × [6., 1]= 

Thus, a conservative estimate of !%%, the number of genes that are EE in both experiments, is 

given as 

!Y%% =
-%%

(1 − 6")(1 − 6.)
 

2.3. Estimating the Number of Differentially Expressed Genes in Two Experiments Using  

p-values 

To estimate !"", we need to first estimate !%
(!),	the number of EE genes for a single 

expression experiment %	(% = 1,2) using the method proposed by (Storey and Tibshirani, 2003; 

Liang, and Nettleton, 2012). The p-values from both experiments are paired for each gene ' to 

(2.2) 

(2.3) 

(2.4) 
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estimate !%% using the methods described by (Orr et al., 2012; Lai, 2007) but these methods 

assume that the experiments are independent.  

Following the work of (Orr et al., 2012) in obtaining p-value pairs, we used a truncated 

bivariate normal distribution method in estimating !%% for two dependent experiments, and then 

obtain !"" by combining !%
(!)	E-Z	!%% which can be expressed as 

!"" = ! −!%
(") −!%

(.) +!%% 

We estimate !%
(!)

 for experiment 1 and 2 using the previously proposed methods, and then estimate 

!%%, which we propose later in this section, and finally, we estimate !"" which is our goal, and is 

given as: 

!Y"" = ! −!Y%
(") −!Y%

(.) +!Y%% 

2.4. Estimating the Number of Differentially Expressed Genes in Two Experiments Using  

the Intersection Method 

Several research studies on gene expression experiments have been conducted to identify 

genes that are differentially expressed in multiple experiments or analyses using the intersection 

method. (Miyama and Hanagata, 2006) analyzed gene expression profiles in salt-stressed burma 

mangrove to identify genes that are likely to be of important to salt tolerance in burma mangrove. 

They used Venn diagrams to visualize the results of the analysis that showed tissue-specific and 

overlapping between genes that were up-regulated more than five-fold and genes were suppressed 

less than one-fifth. 

(Liu et al., 2020) performed a transcriptome analysis of schistosoma japonicum derived 

from SCID mice and BALB/c mice to identify differentially expressed genes using an intersection 

method. Significant differential expression between the two independent experiments was 

computed using false discovery rate (FDR) estimation with q values. They presented the results of 

(2.5) 

(2.6) 
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the intersection method using a Venn diagram to reveal four DEGs that are present in both 

comparisons. 

Other authors that used the intersection method include (Sandford et al., 2012; HAI‐XIA 

GAO et al., 2021; Glen et al., 2015) amongst others. 

2.5. Calculating p-values in Gene Expressions Experiments 

We divide each experiment into two groups of equal samples (replicates), and then use 

student t-test and moderated t-test to perform hypothesis testing and obtain the p-values 

corresponding to gene ' for each experiment. 

2.5.1. Student’s t-test 

We wish to test 

"%$: ["$ = [.$ 		\F.		""$: ["$ ≠ [.$ 

for each ^_-_	' = 1,2, …!. The test statistic for each gene j is given as 

$̀ =
aG"$ − aG.$

bF$
. @ 1-"

+ 1
-.
W
 

where aG!$ is the sample mean of treatment %	(% = 1, 2) observations for gene ', F$
. is the estimate 

of c$
., and the pooled sample variance is 

F$
. =

(-" − 1)F"$
. + (-. − 1)F.$

.

(-" − 1) + (-. − 1)
 

F!$
.  is the sample variance of treatment %	(% = 1, 2) observations for gene '. 

If "%$ is true (i.e., whenever gene j is equivalently expressed for ' = 1,… ,!), $̀ will 

have a central t-distribution with Z = -" + -. − 2	degrees of freedom such that 

$̀~`/"0/#*.(0) 

(2.8) 

(2.9) 

(2.10) 

(2.7) 
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If "%$ is false (i.e., whenever gene j is differentially expressed), $̀ will have a non-central 

t-distribution with Z = -" + -. − 2 degrees of freedom and non-centrality parameter such that 

$̀ =
["$ − [.$

bc$
. @ 1-"

+ 1
-.
W
 

2.5.2. Moderated t-test 

(Smith, 2004) proposed that the estimator of the variance for gene j is given as 

F1d
. =

ZF$
. + Z%F%.

Z + Z%
 

such that for each gene ', F1d
.
 is a weighted average of the prior variance (F%.) and the sample 

variance of the '`ℎ gene RF$
.S. The weights are the prior degrees of freedom (Z%) and the standard 

degrees of freedom for a pooled two-sample t-test (Z). It is stated that this method shrinks the 

individual estimate F$
. towards F%.. 

Thus, using F1d
.
, the test statistic for the hypothesis testing is given as 

1̀d =
aG"$ − aG.$

bF1d
. @ 1-"

+ 1
-.
W
 

where 1̀d is referred to as the moderated t-statistic and can be shown that 

1̀d =
aG"$ − aG.$

bF1d
. @ 1-"

+ 1
-.
W
~	`202$(0) 

when "%$ is true (i.e., whenever gene ' is equivalently expressed), and Z% and F%. are known. 

2.6. Multiple Testing 

2.6.1. Type I and II Errors 

When performing a hypothesis test using gene expression data, a Type I error (false 

positive) is committed when a gene is declared to be differentially expressed when it is truly 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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equivalently expressed, and a Type II error (false negative) is committed when the test fails to 

identify a gene that is truly differentially expressed. However, when we perform multiple 

hypothesis testing and the Type I error rate is controlled at α for each test, the probability of 

committing one or more Type I errors increases from α as the number of tests increases. The 

Family-Wise Error Rate (FWER) is a common method for controlling multiple testing error rate 

defined as the probability of committing at least one Type I error in a family of tests. The common 

procedures for controlling the FWER are the Bonferroni (Simes, 1986) and Holm (Holm, 1979) 

methods. However, when FWER is used in gene expression experiments in which thousands of 

hypotheses are being tested simultaneously, the FWER generally results in extremely low 

statistical power for identifying DE genes. False Discovery Rate (FDR) introduced by (Benjamini 

and Hochberg, 1995) is a more powerful alternative to FWER. 

Table 2.2. summarizes the hypothesis testing errors and the decision when null hypothesis 

is true or false. 5 = T(fa&_	g	_00/0), the probability of committing an error of rejecting the null 

hypothesis when it is actually true, while  h = T(fa&_	gg	_00/0), the probability of committing 

an error of failing to reject the null hypothesis when it is actually false. 

Table 2.2: Summary of hypothesis testing errors. 

Decision "%	f0i_ "%	jEkF_ 

Do Not Reject "% 

Correct Decision 

1 − 5 

Incorrect Decision 

Type II Error 

h 

Reject "% 

Incorrect Decision 

Type I Error 

5 

Correct Decision 

1 − h 
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2.6.2. Obtaining p-values from Gene Expression Data 

2.6.2.1. edgeR 

edgeR is a Bioconductor package for differential expression analyses of RNA-Seq read 

count data with biological replication. It is an implementation of statistical methodologies by 

(Robinson and Smyth, 2007; 2008) based on the negative binomial distributions.  Empirical Bayes 

methods are used to moderate the degree of overdispersion across transcripts which leads to 

improving the reliability of inference (Robinson et al., 2010). Like RNA-seq, edgeR can also be 

used for analysis of differential signal of some other types of genomic data that produce count data 

such as ChIP-seq, ATAC-seq, Bisulfite-seq, SAGE and CAGE (Chen et al.). It was initially 

developed for SAGE (serial analysis of gene expression).  

2.6.2.2. DESeq2 

DESeq2 is another method for differential analysis of count data, using shrinkage 

estimation for dispersions and fold changes to improve stability and interpretability of estimates. 

It is an improvement from DESeq and uses the same median of ratios normalization method. The 

key difference between the two versions is that DESeq2 tests for strength of differential expression 

rather than just its presence (Love at al., 2014). DESeq2 also shrinks log fold changes toward zero, 

with shrinkage being stronger for genes with lower read counts because ratios can be noisier for 

weakly expressed genes. It uses a Wald test for testing for differential expression. 

2.6.2.3. voom (Limma) 

Linear models for microarray (Limma) is a package available in R for analyzing differential 

expression of microarray and RNA-seq experiments. It can be used for pre-processing of a two-

color microarray data by fitting a linear model for each gene and then use an empirical Bayes 

approach to borrow information between genes to estimate gene-wise variance better (Ritchie et 
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al., 2015). A moderated t-test is used for testing for differential expression by considering all genes 

when estimating the variance of each gene. This method makes inferences reliable due to increase 

of degrees of freedom regardless of small sample sizes. Because of its vast usage for different 

experimental designs, Limma is a popular choice amongst researchers for differential experiment 

analysis. 

2.7. False Discovery Rate (FDR) 

The false discovery rate (FDR) is a method of conceptualizing the rate of type I 

errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling 

procedures are designed to control the FDR, which is the expected proportion of "discoveries" 

(rejected null hypotheses) that are false (incorrect rejections of the null).  

The FDR was developed by (Benjamini and Hochberg, 1995) and can be used as a more 

powerful alternative to family FWER. Consider the problem of testing ! null hypotheses 

simultaneously, especially when ! is large. !% is denoted as the number of true null hypotheses, 

R is the number of hypotheses rejected, V is the number of null hypotheses rejected from EE genes 

(false discoveries), and S is the number of null hypotheses rejected from DE genes (true 

discoveries).  Table 2.3. summarizes notation for random variables associated with different 

scenarios in a multiple testing experiment. In table 2.3., l is the number of true non-discoveries 

(true negatives); m, the number false discoveries or false positives (Type I errors); !% represents 

the number of equivalently expressed genes; n, the number of false non-discoveries or false 

negatives (Type II errors); o, the number of true discoveries or true positives; !", the number 

differentially expressed genes; ! −p, total number of non-discoveries or negatives; p, total 

number of discoveries or positives; and ! is the total number of tests/genes.  ! is known, but !% 

and !" 	= 	!	–	!% are unknown parameters.  
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Table 2.3: Random Variables Corresponding to the Number of Errors Committed when Testing 

m Hypothesis. 

 Declared Non-significant Declared Significant Total 

True Null Hypotheses U V !% 

Non-True Null Hypothesis T S !" 

 ! −p R ! 

Benjamini and Hochberg defined FDR as 

jrs = t u
m

max(s, 1)
x = t @ms ys > 0WT(s > 0) 

and proved by induction that the following procedure controls the FDR at level α when the p-

values from true null hypotheses are independent and uniformly distributed. 

2.7.1. Benjamini-Hochberg Procedure to Control the FDR 

1. Specify z, the level at which to control FDR and compute the p-values  &(") ≤ &(.) ≤ ⋯ ≤

&(#) for the ! null hypothesis. 

2. Let &(") ≤ &(.) ≤ ⋯ ≤ &(#)	be the ordered, observed p-values 

3. Find z| , the largest z such that  

&(z) ≤ 5
z
!

 

4. If z|  exists, then reject null hypotheses corresponding to &(") ≤ ⋯ ≤ &3,4 5. Otherwise, reject 

nothing. 

 

 

 

 

(2.15) 

(2.16) 
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CHAPTER 3: METHODS 

3.1. Proposed Method for Estimating the Number of Equivalently Expressed Genes in Two 

Dependent Experiments 

 All methods reviewed in Chapter 2 are intended to analyze data from a single gene 

expression experiment or data from two independent experiments or analyses. Here, we propose a 

new method for analyzing gene expression data from two dependent experiments or analyses using 

p-values. 

Again, consider the problem of testing m pairs of null hypotheses 

(""", "."), (""., "..), … , (""#, ".#) with their corresponding p-value pairs 

(&"", &."), (&"., &..), … , (&"#, &.#). Within each pair, the p-values are assumed to be dependent. 

We propose applying the 6 - estimator method and the histogram-based method to each set of p-

values individually to obtain 6" and 6. values for each experiment (or analysis), and further 

consider the bivariate !∗ p-values pairs such that &"$ ≥	6" and &.$ ≥ 6.. The !∗ pairs of bivariate 

p-values are converted to z-values pairs (~"", ~".), (~"., ~..), … , (~"#∗ , ~.#∗), which are assumed 

to follow a truncated bivariate normal distribution with means [! = 0 and variance c!
. = 1	for % =

1,2. These means and variances follow from the assumption that, within each experiment or 

analysis, the p-values from equivalently expressed genes follow a Uniform (0,1) distribution. Thus, 

the joint probability density function for a z-value pair is given as 

.R~"$ , ~.$; 	�S =
1

2ÄÅ1 − �.
_
* 6%
.("*7#) 

6"∗ ≤ ~"$ < ∞, 6.∗ ≤ ~.$ < ∞. 6!
∗ is the &!$ ≥	6! converted to z-values, ~$ ≡ ~"$

. + ~.$
. +

2�R~"$SR~.$S, and  � ≡ ?/0R~"$ , ~.$S is the correlation between the dependent ~!$ , % = 1,2. The 

cumulative density function (CDF) is found to be 

(3.1) 
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&Ö = Ü Ü .R~"$ , ~.$ , �S
8

9#∗

8

9"∗
Z~.$ , Z~"$ , 6"∗ ≤ ~"$ < ∞, 6.∗ ≤ ~.$ < ∞ 

The lower bounds for the bivariate z-values are obtained by converting the 6!
∗	(% = 1, 2) to 

bivariate ~! values. The joint density of the !∗ pairs of the bivariate z-values are found, and using 

the maximum likelihood estimate, �, the correlation between the !∗ pairs of dependent z-values 

from experiment 1 and experiment 2 were obtained. � was obtained using the optimize function in 

R. 

Next, the estimate of !%% is calculated by dividing the number of p-values pairs, &!$ ≥

6! , % = 1,2, the probability that a given pair … based on the CDF of z-values pairs with the 

estimated correlation, i.e., 

!Y%% =
∑ :;R&"$ , &.$S ∈ [6", 1] × [6., 1]=#
$("

&Ö
 

where  

&Ö = Ü Ü .R~"$ , ~.$ , �S
8

9#∗

8

9"∗
Z~.$ , Z~"$ 

Finally, the estimate of !"", the number of genes that are differentially expressed in both 

experiments or analyses is, 

!Y"" = ! −!Y%
(") −!Y%

(.) +!Y%% 

The proposed method was compared with the intersection method by controlling FDR at 

5% and 10% using Benjamini-Hochberg (BH) adjusted p-values so that jrs ≤ 	5, and the method 

by (Orr et. al., 2012) to evaluate its performances.  

3.2. Simulation Studies 

To compare the performance of the proposed method to other existing methods, we 

performed three separate simulation studies. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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3.2.1. Simulation I – Analysis of Two Dependent Experiments 

In the first simulation study, we use microarray data sets consisting of gene expressions 

from paired aliquots of lymphoblastoid cell lines (collected as a part of the HapMap project) treated 

with dexamethasone or vehicle (EtOH) for 8 hours. The data set is described by (Maranville JC, 

Luca F, Richards AL, Wen X et al., 2011) and available on GEO under the accession number 

GSE29342. Only D_trep1 and D_trep2 (experiments treated with dexamethasone) consisting of 

22725 common genes and 112 subjects each were considered for this simulation. Paired t-test was 

conducted between the two experiments, and the mean difference was added to experiment 2 so 

that both experiments have the same means and p-values of 1. A total of ! = 10,000 genes were 

randomly selected for the simulations. Each data set was simulated as follows: 

1. For each experiment, treatment effects were generated following the settings in section 3.2. 

of (Orr et al., 2012). Simulations were done in a similar manner as in 3.2 of (Orr et al., 

2012). 

2. !"%, the number of DE genes in experiment 1, but EE in 2 are selected for each simulation 

setting. Treatment effects are added to !"%. 

3. !%", the number of DE genes in experiment 2, but EE in 1 are selected for each simulation 

setting. Treatment effects are added to !%". 

4. For each simulation setting, treatment effects are added to !"", the selected DE genes in 

both experiments.  

5. A total of 2- subjects are selected from each experiment and further split into 2 groups of 

- subjects each.  

6. Limma package for moderated t-test in R was used to obtain p-values from each experiment 

and combined to forms ! pairs of p-values. 
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7. !∗ p-value pairs are found as discussed in 3.1. 

8. Finally, !Y%%	E-Z	!Y"" genes are estimated using the proposed method and the results are 

compared to (Orr et al., 2012) and intersection method. 

3.2.2. Simulation II – Analysis of Two Dependent Experiments 

In the second simulation study, the same data sets in simulation I are used, but for this 

simulation, E_trep1 and E_trep2 (experiments treated with vechicle (EtOH)) are considered, and 

the mean difference was not added to the experiments. The same simulation settings in section 

3.2.1. are employed. 

3.2.3. Simulation III – A Single Experiment with Two Dependent Analyses 

In this simulation study, the gene expression data sets from a single two-group experiment 

were simulated using a real microarray data set.  This data set consists of 462 patients diagnosed 

with chronic lymphocytic leukemia (CLL)/MBL patients that were prospectively enrolled from 

several Italian Institutions in an observational multicenter study (O-CLL1 protocol, clinical- 

trial.gov identifier NCT00917540) from January 2007 to May 2011.  

The data set can be obtained from the Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51528). A total of ! = 10,000 genes 

from this data set were randomly selected to be included in the simulations.  Following a procedure 

similar to that of (Orr et al., 2012), each data set was simulated as follows: 

1. A total of 2- experimental units were randomly selected from the samples and further split 

into 2 treatment groups of - subject each. 

2. Treatment effects were generated following the settings in section 3.1. of (Orr et al., 2012), 

and added to one of the treatment groups chosen to contain DE genes. 
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3. Student t-test and moderated t-test (limma) were employed to obtain the ! p-value pairs 

from the two treatment groups separately. 

4. !∗ p-value pairs are found as discussed in section 3.1. 

5. !"", differentially expressed genes are estimated using the proposed method. 

3.2.4. Methods Compared 

The proposed method was compared with (Orr et al., 2012) and the intersection method. 

3.2.5. Performance Measures 

The mean estimates of !"" and root mean squared errors (RMSEs) were reported for each 

setting of 100 simulated data sets. RMSE was used to evaluate the performances of the proposed 

method against other methods and used boxplots for visualization of the results. 

3.3. Real Data Analysis 

We analyzed the microarray data set from a real gene expression experiment. As described 

by (Glen et al., 2015), the data set was obtained from experiments in which Male CBA/Ca and 

BALB/c inbred mice were obtained from Harlan (Bicester, UK) and housed at the Division of 

Biomedical Services, University of Leicester. The tissue samples were taken from the liver and 

kidney of each mouse with the purpose of comparing or determining genes that are differentially 

expressed in both CBA/Ca and BALB/c mice. The focus of this analysis is the same as the one 

done by (Glen et al., 2015), to estimate the number of genes that are differentially expressed in 

both experiments. There are 42,575 genes common to both experiments, with experiment 1 and 2 

having the RNA samples extracted from liver and kidney of treated BALB/c and CBA/Ca male 

mice respectively. Using the histogram-based method by (Liang and Nettleton, 2012) and the 6-

estimator by (Storey and Tibshirani, 2003), we extracted p-value pairs in the upper-right quadrant 

of the histogram of p-values from both experiments. The p-values were obtained for each 
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experiment separately using student t-test and moderated t-test for the hypothesis testing as 

described in section 2.5.1. and 2.5.2. The proposed method was then used to estimate genes that 

are differentially expressed in both experiments.  The results are compared to (Orr et al., 2012) 

and the intersection method as shown in section 4.5.
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CHAPTER 4: RESULTS 

4.1. Simulation Results 

For each simulation setting, 100 data sets were simulated, the mean and root mean squared 

error (RMSE) of the estimated !"" are reported for each of the methods considered in the analysis, 

and using the proposed method, the mean of the correlation between the two experiments are 

reported. The lowest RMSE is in bold font and parenthesis; - represents the number of 

subjects/samples in each treatment group; [: is the relative effect size; !%% is the number of EE 

genes in both experiments; !"" is the number of DE genes (genes with treatment effects as 

discussed in the simulation settings) in both experiments; !Y"", is the estimated number of DE 

genes in both experiments; jrs ≤ 0.05 and jrs ≤ 0.1 represent the level at which the FDR is 

controlled for the intersection method; �̅ is the mean of the correlation between the experiments. 

Also, for every simulated data and simulation setting presented in the table, their boxplots are 

reported for visualization. 

4.2. Results of Simulation I - Two Dependent Experiments 

Table 4.1. presents the results of analyzing the data from the two dependent experiments 

involving D_trep1 and D_trep2 (experiments treated with dexamethasone) consisting of 22725 

common genes and 112 subjects/samples described in Section 3.2.1.   

 In table 4.1., when the relative effect size is 1, the sample size is 4, and the differentially 

expressed genes are 500, we found that even though the intersection method seemed to have the 

lowest RMSE when the jrs is controlled at both 0.05 and 0.1, but was only able to estimate 0 

differentially expressed genes in both experiments. There is a similar occurrence when the relative 

effect size is 2, the intersection method has the lowest RMSE, the proposed method estimated 1 

differentially expressed gene in both experiments. This is evident from the boxplots as well. 
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Overall, aside from the two cases stated above, in other simulation settings, the proposed method 

has the lowest RMSE in four settings, two for the intersection method while (Orr et al., 2012) also 

has four. The mean of the correlation between the p-values pairs of the two dependent experiments 

is reported to be between -0.01 and 0.08 by the proposed method. In figure 4.1. and figure 4.2., 

there seems to be enough variation between the p-value pairs and appear to be normally distributed 

for most of the simulation settings as identified by the proposed method and (Orr et al., 2012). The 

intersection methods identified low number of DE genes.
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Table 4.1: Results of Simulation I - Two Dependent Experiments as described in section 3.2.1. The mean and RMSE for the 100 
simulated data sets are reported for estimated !!! for each simulation setting. The lowest RMSE amongst the methods is in bold font 

and parenthesis.

" #" !## !!! 
Proposed Orr et al., 2012 Intersection Method 

$̅ 
!&!! !&!! '() ≤ 0.05 '() ≤ 0.1 

4 1 8500 500 752(640) 876(654) 0(500) 0(500) 0.05 

  7000 1000 928(485) 1049(451) 0(1000) 0(1000) 0.03 

  1000 3000 1439(1678) 1367(1669) 1(2999) 1(2999) -0.01 

 2 8500 500 826(653) 957(738) 1(499) 1(499) 0.06 

  7000 1000 1229(553) 1389(627) 1(999) 2(998) 0.05 

  1000 3000 2421(756) 2387(715) 4(2996) 7(2993) -0.01 

10 1 8500 500 642(553) 769(594) 5(495) 6(494) 0.07 

  7000 1000 960(468) 1122(491) 10(990) 13(987) 0.05 

  1000 3000 1856(1223) 1788(1258) 28(2972) 39(2961) -0.01 

 2 8500 500 769(542) 932(670) 49(451) 62(438) 0.08 

  7000 1000 1197(543) 1313(608) 98(902) 124(876) 0.07 

  1000 3000 2622(528) 2626(498) 307(2693) 388(2613) 0.01 
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Figure 4.1: Boxplots of the results of Simulation I. The 100 simulated data for different simulation settings described in 3.2.1. with 
" = 4	2"3	10 subjects/samples in each treatment group, and #" = 1. 456 is the results of the proposed method, Orr represents the 

results for the method by (Orr et al., 2012) while	7"8#$ and 7"8!# represent the results for the intersection method when '() is 
controlled at 5% and 10% respectively.
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Figure 4.2: Boxplots of the results of Simulation I. The 100 simulated data for different simulation settings described in 3.2.1. with 
" = 4	2"3	10 subjects/samples in each treatment group, and #" = 2. 456 is the results of the Proposed method, Orr represents the 

results for the method by (Orr et al., 2012) while	7"8#$ and 7"8!# represent the results for the intersection method when '() is 
controlled at 5% and 10% respectively. 
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4.3. Results of Simulation II – Two Dependent Experiments 

Table 4.2. presents the results of analyses of the data from the two dependent experiments 

involving E_trep1 and E_trep2 (experiments treated with vechicle (EtOH)) consisting of 22725 

common genes and 112 subjects/samples described in Section 3.2.2.  In this section, the report is 

similar to that of simulation I. 

 In table 4.2., similar to what we noticed in the result of simulation I, when the relative 

effect size is 1 and 2, the sample size is 4, and the differentially expressed genes are 500, the 

intersection method gives the same results as in simulation I. In general, the proposed method has 

the lowest RMSE in five simulation settings, (Orr et al., 2012) also has three while the intersection 

method has two for both when the !"# is being controlled at 5% and 10%, and one more at 10%. 

The mean correlation for the 100 simulated data sets between the p-values pairs of the two 

dependent experiments is reported to be between -0.01 and 0.09 by the proposed method. In figure 

4.3. and 4.4., there seems to be enough variation between the p-value pairs for the 100 simulated 

data sets, and the p-value pairs appear to be normally distributed with a few outliers for most of 

the simulation settings as identified by the proposed method and (Orr et al., 2012). The intersection 

methods identified low number of DE genes.
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Table 4.2: Results of Simulation II – Two Dependent Experiments as described in section 3.2.2. The mean and RMSE for the 100 
simulated data sets are reported for estimated !!!for each simulation setting. The lowest RMSE amongst the methods is in bold font 

and parenthesis. 

" #" !## !!! 
$%&'&()* +%% Intersection Method 

,̅ 
!.!! !.!! /01 ≤ 0.05 /01 ≤ 0.1 

4 1 8500 500 705(639) 743(623) 0(500) 0(500) 0.06 

  7000 1000 925(522) 1054(459) 0(1000) 0(1000) 0.04 

  1000 3000 1481(1664) 1346(1698) 1(2999) 1(2999) -0.01 

 2 8500 500 826(654) 934(700) 1(499) 1(499) 0.06 

  7000 1000 1229(533) 1327(572) 1(999) 2(998) 0.04 

  1000 3000 2426(736) 2331(759) 4(2996) 7(2993) -0.03 

10 1 8500 500 710(579) 830(640) 5(495) 7(493) 0.07 

  7000 1000 994(511) 1097(479) 9(991) 13(987) 0.05 

  1000 3000 1793(1287) 1750(1305) 29(2971) 41(2959) -0.01 

 2 8500 500 792(580) 945(726) 50(450) 62(439) 0.09 

  7000 1000 1248(565) 1373(655) 98(902) 123(877) 0.07 

  1000 3000 2614(547) 2611(529) 304(2697) 384(2616) 0.00 
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 Figure 4.3: Boxplots of the results of Simulation II. The 100 simulated data for different simulation setting described in 3.2.2. with 
" = 4	:"*	10 subjects/samples in each treatment group, and #" = 1; ;)< is the results of the proposed method; Orr represents the 

results for the method by (Orr et al., 2012); while	=">#$ and =">!# represent the results for the intersection method when /01 is 
controlled at 5% and 10% respectively
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Figure 4.4: Boxplots of the results of Simulation II. The 100 simulated data for different simulation setting described in 3.2.2. with 
" = 4	:"*	10 subjects/samples in each treatment group, and #" = 2; ;)< is the results of the proposed method; Orr represents the 

results for the method by (Orr et al., 2012); while	=">#$ and =">!# represent the results for the intersection method when /01 is 
controlled at 5% and 10% respectively. 
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4.4. Results of Simulation III – A Single Experiment with Two Dependent Analyses 

Table 4.3. presents the results of the analysis of the data sets from a single two-group 

experiment simulated using a real microarray data set.  This data set consists of 462 patients 

diagnosed with chronic lymphocytic leukemia (CLL)/MBL patients described in Section 3.2.3. 

In table 4.3., It is observed that for the 12 different simulation settings considered, the 

proposed method has the lowest RMSE in 7 when estimating the number of DE genes in both 

experiments, the intersection method has 5 cases when !"# is controlled at 10%. There appears 

to be a strong dependency between the experiments having a mean correlation ranging between 

0.982 and 0.999. In figure 4.5. and 4.6., there seems to be enough variation between the p-value 

pairs for the 100 simulated data sets, and the p-value pairs appear to be normally distributed with 

a few outliers for most of the simulation settings when estimating DE genes using the proposed 

method. 
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Table 4.3: Results of Simulation III – A Single Experiment with Two Dependent Analyses as described in section 3.2.3. The mean and 
RMSE for the 100 simulated data sets are reported for estimated !!!for each simulation setting. The lowest RMSE amongst the 

methods is in bold font and parenthesis. 

" #" !## !!! 
Proposed 

!$!! 

Orr 

!$!! 

Intersection Method 
%̅ 

'() ≤ 0.05 '() ≤ 0.1 

4 1 9000 1000 886(1031) 0(1000) 3(997) 19(984) 0.999 

  7000 3000 1904(1527) 35(2985) 67(2934) 230(2776) 0.993 

  5000 5000 2856(2320) 0(5000) 229(4776) 638(4376) 0.994 

 2 9000 1000 1137(1031) 15(996) 77(924) 196(809) 0.990 

  7000 3000 2452(1004) 667(2673) 781(2238) 1273(1754) 0.982 

  5000 5000 4268(1052) 1821(4265) 1807(3223) 2648(2388) 0.993 

10 1 9000 1000 1178(1179) 14(996) 309(694) 397(617) 0.999 

  7000 3000 2196(1157) 508(2684) 1196(1809) 1451(1558) 0.999 

  5000 5000 3706(1486) 734(4655) 2212(2797) 2658(2356) 0.999 

 2 9000 1000 1287(1009) 17(998) 698(308) 787(233) 0.999 

  7000 3000 2884(771) 1654(2284) 2289(720) 2513(510) 0.999 

  5000 5000 4536(715) 4379(3295) 3981(1028) 4294(722) 0.999 
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Figure 4.5: Boxplots of the results of Simulation III. The 100 simulated data for different simulation setting described in 3.2.3. with 
" = 4	2"3	10 subjects/samples in each treatment group, and #" = 1; 456 is the results of the proposed method; Orr represents the 

results for the method by (Orr et al., 2012); while	7"8#$ and 7"8!# represent the results for the intersection method when '() is 
controlled at 5% and 10% respectively. 
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Figure 4.6: Boxplots of the results of Simulation III. The 100 simulated data for different simulation setting described in 3.2.3. with 
" = 4	2"3	10 subjects/samples in each treatment group, and #" = 2; 456 is the results of the proposed method; Orr represents the 

results for the method by (Orr et al., 2012); while	7"8#$ and 7"8!# represent the results for the intersection method when '() is 
controlled at 5% and 10% respectively. 
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4.5. Real Data Analysis Results  

Table 4.4. and 4.5. present the results of analyzing the data from the two dependent 

experiments involving kidney and liver gene expression described in Section 3.3. using Student’s 

t-tests and moderated t-test (limma) respectively. 

In table 4.4., we found the cut-off points !! 	= 	0.8	'()	!" = 	0.9 for the kidney and liver 

experiments, respectively, while in table 4.5., the cut-off points are !! 	= 	0.95	'()	!" = 	0.8 for 

the kidney and liver experiments respectively. Both the proposed and (Orr et al., 2012) results 

suggest a high level of differential expression common to both experiments, with the proposed 

method having the highest estimate of 20,821 genes differentially expressed in both experiments 

using student t-test for the hypothesis testing and obtaining the p-value pairs for both experiments, 

but when moderated t-test was used, (Orr et al., 2012) has the highest estimate of 21,373 

differentially expressed genes in both experiments. The intersection method identified a much 

smaller estimate of the number of genes that are differentially expressed in both experiments using 

Benjamini-Hochberg adjusted p-values for both experiments.  The estimate of the correlations 

between the p-value pairs by the proposed method were -0.09 and 1.00 using student t-test and 

moderated t-test respectively. 

Table 4.4: Result of the analysis from the two dependent experiments involving kidney and liver 
gene expression described in Section 3.3. using Student’s t-test. 

 Proposed Orr et al. 
2012 

Intersection 

,-. ≤ 0.05 ,-. ≤ 0.1 
Cut-off !! 	= 	0.8, !" = 	0.9, 2 = −0.09 

4 42575    

4## 3366 2650 40979 40346 

4!! 20821 20105 98 124 
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Table 4.5: Result of the analysis from the two dependent experiments involving kidney and liver 
gene expression described in Section 3.3. using Moderated t-test (limma). 

 Proposed Orr et al. 
2012 

Intersection 

,-. ≤ 0.05 ,-. ≤ 0.1 
Cut-off !! = 	0.95, !" = 	0.8, 2 = 1.0 

4 42575    

4## 660 3300 38624 37660 

4!! 18735 21375 248 296 

In table 4.6., we present the results of analyzing the data from a single experiment with two 

dependent analyses involving kidney gene expression and present the results of the analysis 

involving liver gene expression in table 4.7. as described in Section 3.3. Student t-test and 

moderated t-test are used for the hypothesis testing separately on each gene expression to obtain 

the 4 p-value pairs. 

In table 4.6., we found the points !! 	= 	0.8	'()	!" = 	0.95 for the kidney gene expression 

involving analysis 1 and 2 respectively, while in table 4.7., the cut-off points are !! 	=

	0.9	'()	!" = 	0.8 for the liver gene expression involving analysis 1 and 2 respectively. The 

results suggest a high level of differential expression common to both analyses, with the proposed 

method having the highest estimate of 34,575 and 25,515 genes differentially expressed in kidney 

and liver gene expressions respectively. Using Benjamini-Hochberg adjusted p-values for each p-

value from both analyses, the intersection method identified a much smaller estimate of the number 

of genes differentially expressed in both analyses.  The estimate of the correlations between p-

value pairs by the proposed method were 1.0 for both results in table 4.6. and 4.7. For both results 

presented in table 4.6. and 4.7., number of differentially expressed genes in both analyses is set to 

0 for (Orr et al., 2012) because of the very large estimate of 4##	(4## > 4) by the method. This 
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is due to the very high correlation between the 4∗ p-value pairs. The p-values are not spread out 

randomly throughout the entire scatterplot (as we would expect if the p-values in a pair were 

independent) but are concentrated in the lower left quadrant and upper right quadrant of the 

histogram of p-values from both analyses.  Because the points are “overrepresented” in this upper 

right quadrant compared to what is expected under independence, the number of the equivalently 

expressed genes is also very large, much larger than 4 (the overall number of genes in both 

analyses). 

Table 4.6: Results of analyzing the data from a single experiment with two dependent analyses 
involving kidney gene expression described in Section 3.3. using student t-test and limma to 

obtain 4 p-value pairs. 

 Proposed Orr et al. 
2012 

Intersection 

,-. ≤ 0.05 ,-. ≤ 0.1 
Cut-off !! = 	0.8, !" = 	0.95, 2 = 1.0 

4 42575    

4## 7440 42575 39336 38500 

4!! 34575 0 1097 1567 

Table 4.7: Results of analyzing the data from a single experiment with two dependent analyses 
involving liver gene expression for the analysis described in Section 3.3. using student t-test and 

limma to obtain 4 p-value pairs. 

 Proposed Orr et al. 
2012 

Intersection 

,-. ≤ 0.05 ,-. ≤ 0.1 
Cut-off !! = 	0.9, !" 	= 	0.8, 2 = 1.0 

4 42575    

4## 17120 42575 41472 41247 

4!! 25515 0 454 594 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 

5.1. Conclusion 

In this research work, gene expressions involving two dependent experiments or analyses 

were analyzed to determine the number of differentially expressed genes in both experiments or 

analyses using different methods.  Microarray data sets were used for both simulation studies and 

real data analysis. The mean estimates and RMSE were reported for each simulation setting of the 

100 simulated data sets. RMSE is used to measure and compare the performances of the methods. 

The mean correlation between the two experiments or analyses was reported for each 100 

simulated data set using the proposed method. 

In the simulation settings involving two dependent experiments, the proposed method had 

the lowest RMSE in four and five different simulation settings for simulation 1 and 2 respectively; 

(Orr et al., 2012) had the lowest RMSE in three different settings for both simulation 1 and 2; the 

intersection method had the lowest RMSE in 4 settings when FDR is controlled at 10% in 

simulation 1 and 2. Although, the intersection method had  the lowest RMSE when the ,-. is 

controlled at 5% and 10% for simulation 1 and 2, it resulted in estimates 0 and 1 differentially 

expressed gene in both experiments. In addition, the high correlation between gene expressions 

from the same experimental units did not translate to high correlation between the p-value pairs. 

In the simulation involving a single experiment with two dependent analyses, the proposed 

method had the lowest RMSE in seven of the twelve simulation settings while the intersection 

method had the lowest RMSE in the other five settings when FDR is controlled at 10% but failed 

completely when it is controlled at 5%. The performance of the intersection method depends on 

the choice or level of 8. (Orr et al., 2012) failed completely amongst other methods due to the high 

correlation between the p-values of the two analyses. The proposed method is the clear winner 
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when comparing two dependent analyses of the same data set having the highest number of lowest 

RMSE but did not perform as well as expected in the two dependent experiments case for simulated 

data sets. 

In the real data analysis, the proposed method identified more differentially expressed 

genes than the other methods for the analyses involving two dependent experiments when using 

student t-test for the hypothesis testing, but when using moderated t-test for the hypothesis testing, 

(Orr et al., 2012) identified more differentially expressed genes than the other methods.  

5.2. Future Research 

Proposed method can be used in situations where experiments are independent because 

estimated correlation will be close to zero. 

We assume that the transformed z-scores from equivalently expressed genes follow a 

bivariate normal distribution, but some other distribution may be more appropriate and 

investigated in the future. 

The performance of the proposed method can be explored further using RNA-seq 

experiments. 
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